]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/internal.h
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / mm / internal.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/tracepoint-defs.h>
15
16 struct folio_batch;
17
18 /*
19 * The set of flags that only affect watermark checking and reclaim
20 * behaviour. This is used by the MM to obey the caller constraints
21 * about IO, FS and watermark checking while ignoring placement
22 * hints such as HIGHMEM usage.
23 */
24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27 __GFP_NOLOCKDEP)
28
29 /* The GFP flags allowed during early boot */
30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31
32 /* Control allocation cpuset and node placement constraints */
33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34
35 /* Do not use these with a slab allocator */
36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37
38 /*
39 * Different from WARN_ON_ONCE(), no warning will be issued
40 * when we specify __GFP_NOWARN.
41 */
42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \
43 static bool __section(".data.once") __warned; \
44 int __ret_warn_once = !!(cond); \
45 \
46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
47 __warned = true; \
48 WARN_ON(1); \
49 } \
50 unlikely(__ret_warn_once); \
51 })
52
53 void page_writeback_init(void);
54
55 /*
56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
57 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit
58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
60 */
61 #define COMPOUND_MAPPED 0x800000
62 #define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1)
63
64 /*
65 * How many individual pages have an elevated _mapcount. Excludes
66 * the folio's entire_mapcount.
67 */
68 static inline int folio_nr_pages_mapped(struct folio *folio)
69 {
70 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
71 }
72
73 static inline void *folio_raw_mapping(struct folio *folio)
74 {
75 unsigned long mapping = (unsigned long)folio->mapping;
76
77 return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
78 }
79
80 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
81 int nr_throttled);
82 static inline void acct_reclaim_writeback(struct folio *folio)
83 {
84 pg_data_t *pgdat = folio_pgdat(folio);
85 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
86
87 if (nr_throttled)
88 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
89 }
90
91 static inline void wake_throttle_isolated(pg_data_t *pgdat)
92 {
93 wait_queue_head_t *wqh;
94
95 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
96 if (waitqueue_active(wqh))
97 wake_up(wqh);
98 }
99
100 vm_fault_t do_swap_page(struct vm_fault *vmf);
101 void folio_rotate_reclaimable(struct folio *folio);
102 bool __folio_end_writeback(struct folio *folio);
103 void deactivate_file_folio(struct folio *folio);
104 void folio_activate(struct folio *folio);
105
106 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
107 struct vm_area_struct *start_vma, unsigned long floor,
108 unsigned long ceiling, bool mm_wr_locked);
109 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
110
111 struct zap_details;
112 void unmap_page_range(struct mmu_gather *tlb,
113 struct vm_area_struct *vma,
114 unsigned long addr, unsigned long end,
115 struct zap_details *details);
116
117 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
118 unsigned int order);
119 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
120 static inline void force_page_cache_readahead(struct address_space *mapping,
121 struct file *file, pgoff_t index, unsigned long nr_to_read)
122 {
123 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
124 force_page_cache_ra(&ractl, nr_to_read);
125 }
126
127 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
128 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
129 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
130 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
131 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
132 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
133 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
134 loff_t end);
135 long invalidate_inode_page(struct page *page);
136 unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
137 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
138
139 /**
140 * folio_evictable - Test whether a folio is evictable.
141 * @folio: The folio to test.
142 *
143 * Test whether @folio is evictable -- i.e., should be placed on
144 * active/inactive lists vs unevictable list.
145 *
146 * Reasons folio might not be evictable:
147 * 1. folio's mapping marked unevictable
148 * 2. One of the pages in the folio is part of an mlocked VMA
149 */
150 static inline bool folio_evictable(struct folio *folio)
151 {
152 bool ret;
153
154 /* Prevent address_space of inode and swap cache from being freed */
155 rcu_read_lock();
156 ret = !mapping_unevictable(folio_mapping(folio)) &&
157 !folio_test_mlocked(folio);
158 rcu_read_unlock();
159 return ret;
160 }
161
162 /*
163 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
164 * a count of one.
165 */
166 static inline void set_page_refcounted(struct page *page)
167 {
168 VM_BUG_ON_PAGE(PageTail(page), page);
169 VM_BUG_ON_PAGE(page_ref_count(page), page);
170 set_page_count(page, 1);
171 }
172
173 extern unsigned long highest_memmap_pfn;
174
175 /*
176 * Maximum number of reclaim retries without progress before the OOM
177 * killer is consider the only way forward.
178 */
179 #define MAX_RECLAIM_RETRIES 16
180
181 /*
182 * in mm/early_ioremap.c
183 */
184 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
185 unsigned long size, pgprot_t prot);
186
187 /*
188 * in mm/vmscan.c:
189 */
190 bool isolate_lru_page(struct page *page);
191 bool folio_isolate_lru(struct folio *folio);
192 void putback_lru_page(struct page *page);
193 void folio_putback_lru(struct folio *folio);
194 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
195
196 /*
197 * in mm/rmap.c:
198 */
199 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
200
201 /*
202 * in mm/page_alloc.c
203 */
204 #define K(x) ((x) << (PAGE_SHIFT-10))
205
206 extern char * const zone_names[MAX_NR_ZONES];
207
208 /* perform sanity checks on struct pages being allocated or freed */
209 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
210
211 static inline bool is_check_pages_enabled(void)
212 {
213 return static_branch_unlikely(&check_pages_enabled);
214 }
215
216 /*
217 * Structure for holding the mostly immutable allocation parameters passed
218 * between functions involved in allocations, including the alloc_pages*
219 * family of functions.
220 *
221 * nodemask, migratetype and highest_zoneidx are initialized only once in
222 * __alloc_pages() and then never change.
223 *
224 * zonelist, preferred_zone and highest_zoneidx are set first in
225 * __alloc_pages() for the fast path, and might be later changed
226 * in __alloc_pages_slowpath(). All other functions pass the whole structure
227 * by a const pointer.
228 */
229 struct alloc_context {
230 struct zonelist *zonelist;
231 nodemask_t *nodemask;
232 struct zoneref *preferred_zoneref;
233 int migratetype;
234
235 /*
236 * highest_zoneidx represents highest usable zone index of
237 * the allocation request. Due to the nature of the zone,
238 * memory on lower zone than the highest_zoneidx will be
239 * protected by lowmem_reserve[highest_zoneidx].
240 *
241 * highest_zoneidx is also used by reclaim/compaction to limit
242 * the target zone since higher zone than this index cannot be
243 * usable for this allocation request.
244 */
245 enum zone_type highest_zoneidx;
246 bool spread_dirty_pages;
247 };
248
249 /*
250 * This function returns the order of a free page in the buddy system. In
251 * general, page_zone(page)->lock must be held by the caller to prevent the
252 * page from being allocated in parallel and returning garbage as the order.
253 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
254 * page cannot be allocated or merged in parallel. Alternatively, it must
255 * handle invalid values gracefully, and use buddy_order_unsafe() below.
256 */
257 static inline unsigned int buddy_order(struct page *page)
258 {
259 /* PageBuddy() must be checked by the caller */
260 return page_private(page);
261 }
262
263 /*
264 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
265 * PageBuddy() should be checked first by the caller to minimize race window,
266 * and invalid values must be handled gracefully.
267 *
268 * READ_ONCE is used so that if the caller assigns the result into a local
269 * variable and e.g. tests it for valid range before using, the compiler cannot
270 * decide to remove the variable and inline the page_private(page) multiple
271 * times, potentially observing different values in the tests and the actual
272 * use of the result.
273 */
274 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
275
276 /*
277 * This function checks whether a page is free && is the buddy
278 * we can coalesce a page and its buddy if
279 * (a) the buddy is not in a hole (check before calling!) &&
280 * (b) the buddy is in the buddy system &&
281 * (c) a page and its buddy have the same order &&
282 * (d) a page and its buddy are in the same zone.
283 *
284 * For recording whether a page is in the buddy system, we set PageBuddy.
285 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
286 *
287 * For recording page's order, we use page_private(page).
288 */
289 static inline bool page_is_buddy(struct page *page, struct page *buddy,
290 unsigned int order)
291 {
292 if (!page_is_guard(buddy) && !PageBuddy(buddy))
293 return false;
294
295 if (buddy_order(buddy) != order)
296 return false;
297
298 /*
299 * zone check is done late to avoid uselessly calculating
300 * zone/node ids for pages that could never merge.
301 */
302 if (page_zone_id(page) != page_zone_id(buddy))
303 return false;
304
305 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
306
307 return true;
308 }
309
310 /*
311 * Locate the struct page for both the matching buddy in our
312 * pair (buddy1) and the combined O(n+1) page they form (page).
313 *
314 * 1) Any buddy B1 will have an order O twin B2 which satisfies
315 * the following equation:
316 * B2 = B1 ^ (1 << O)
317 * For example, if the starting buddy (buddy2) is #8 its order
318 * 1 buddy is #10:
319 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
320 *
321 * 2) Any buddy B will have an order O+1 parent P which
322 * satisfies the following equation:
323 * P = B & ~(1 << O)
324 *
325 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
326 */
327 static inline unsigned long
328 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
329 {
330 return page_pfn ^ (1 << order);
331 }
332
333 /*
334 * Find the buddy of @page and validate it.
335 * @page: The input page
336 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
337 * function is used in the performance-critical __free_one_page().
338 * @order: The order of the page
339 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
340 * page_to_pfn().
341 *
342 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
343 * not the same as @page. The validation is necessary before use it.
344 *
345 * Return: the found buddy page or NULL if not found.
346 */
347 static inline struct page *find_buddy_page_pfn(struct page *page,
348 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
349 {
350 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
351 struct page *buddy;
352
353 buddy = page + (__buddy_pfn - pfn);
354 if (buddy_pfn)
355 *buddy_pfn = __buddy_pfn;
356
357 if (page_is_buddy(page, buddy, order))
358 return buddy;
359 return NULL;
360 }
361
362 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
363 unsigned long end_pfn, struct zone *zone);
364
365 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
366 unsigned long end_pfn, struct zone *zone)
367 {
368 if (zone->contiguous)
369 return pfn_to_page(start_pfn);
370
371 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
372 }
373
374 extern int __isolate_free_page(struct page *page, unsigned int order);
375 extern void __putback_isolated_page(struct page *page, unsigned int order,
376 int mt);
377 extern void memblock_free_pages(struct page *page, unsigned long pfn,
378 unsigned int order);
379 extern void __free_pages_core(struct page *page, unsigned int order);
380
381 static inline void prep_compound_head(struct page *page, unsigned int order)
382 {
383 struct folio *folio = (struct folio *)page;
384
385 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
386 set_compound_order(page, order);
387 atomic_set(&folio->_entire_mapcount, -1);
388 atomic_set(&folio->_nr_pages_mapped, 0);
389 atomic_set(&folio->_pincount, 0);
390 }
391
392 static inline void prep_compound_tail(struct page *head, int tail_idx)
393 {
394 struct page *p = head + tail_idx;
395
396 p->mapping = TAIL_MAPPING;
397 set_compound_head(p, head);
398 set_page_private(p, 0);
399 }
400
401 extern void prep_compound_page(struct page *page, unsigned int order);
402
403 extern void post_alloc_hook(struct page *page, unsigned int order,
404 gfp_t gfp_flags);
405 extern int user_min_free_kbytes;
406
407 extern void free_unref_page(struct page *page, unsigned int order);
408 extern void free_unref_page_list(struct list_head *list);
409
410 extern void zone_pcp_reset(struct zone *zone);
411 extern void zone_pcp_disable(struct zone *zone);
412 extern void zone_pcp_enable(struct zone *zone);
413 extern void zone_pcp_init(struct zone *zone);
414
415 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
416 phys_addr_t min_addr,
417 int nid, bool exact_nid);
418
419 int split_free_page(struct page *free_page,
420 unsigned int order, unsigned long split_pfn_offset);
421
422 /*
423 * This will have no effect, other than possibly generating a warning, if the
424 * caller passes in a non-large folio.
425 */
426 static inline void folio_set_order(struct folio *folio, unsigned int order)
427 {
428 if (WARN_ON_ONCE(!folio_test_large(folio)))
429 return;
430
431 folio->_folio_order = order;
432 #ifdef CONFIG_64BIT
433 /*
434 * When hugetlb dissolves a folio, we need to clear the tail
435 * page, rather than setting nr_pages to 1.
436 */
437 folio->_folio_nr_pages = order ? 1U << order : 0;
438 #endif
439 }
440
441 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
442
443 /*
444 * in mm/compaction.c
445 */
446 /*
447 * compact_control is used to track pages being migrated and the free pages
448 * they are being migrated to during memory compaction. The free_pfn starts
449 * at the end of a zone and migrate_pfn begins at the start. Movable pages
450 * are moved to the end of a zone during a compaction run and the run
451 * completes when free_pfn <= migrate_pfn
452 */
453 struct compact_control {
454 struct list_head freepages; /* List of free pages to migrate to */
455 struct list_head migratepages; /* List of pages being migrated */
456 unsigned int nr_freepages; /* Number of isolated free pages */
457 unsigned int nr_migratepages; /* Number of pages to migrate */
458 unsigned long free_pfn; /* isolate_freepages search base */
459 /*
460 * Acts as an in/out parameter to page isolation for migration.
461 * isolate_migratepages uses it as a search base.
462 * isolate_migratepages_block will update the value to the next pfn
463 * after the last isolated one.
464 */
465 unsigned long migrate_pfn;
466 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
467 struct zone *zone;
468 unsigned long total_migrate_scanned;
469 unsigned long total_free_scanned;
470 unsigned short fast_search_fail;/* failures to use free list searches */
471 short search_order; /* order to start a fast search at */
472 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
473 int order; /* order a direct compactor needs */
474 int migratetype; /* migratetype of direct compactor */
475 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
476 const int highest_zoneidx; /* zone index of a direct compactor */
477 enum migrate_mode mode; /* Async or sync migration mode */
478 bool ignore_skip_hint; /* Scan blocks even if marked skip */
479 bool no_set_skip_hint; /* Don't mark blocks for skipping */
480 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
481 bool direct_compaction; /* False from kcompactd or /proc/... */
482 bool proactive_compaction; /* kcompactd proactive compaction */
483 bool whole_zone; /* Whole zone should/has been scanned */
484 bool contended; /* Signal lock contention */
485 bool finish_pageblock; /* Scan the remainder of a pageblock. Used
486 * when there are potentially transient
487 * isolation or migration failures to
488 * ensure forward progress.
489 */
490 bool alloc_contig; /* alloc_contig_range allocation */
491 };
492
493 /*
494 * Used in direct compaction when a page should be taken from the freelists
495 * immediately when one is created during the free path.
496 */
497 struct capture_control {
498 struct compact_control *cc;
499 struct page *page;
500 };
501
502 unsigned long
503 isolate_freepages_range(struct compact_control *cc,
504 unsigned long start_pfn, unsigned long end_pfn);
505 int
506 isolate_migratepages_range(struct compact_control *cc,
507 unsigned long low_pfn, unsigned long end_pfn);
508
509 int __alloc_contig_migrate_range(struct compact_control *cc,
510 unsigned long start, unsigned long end);
511
512 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
513 void init_cma_reserved_pageblock(struct page *page);
514
515 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
516
517 int find_suitable_fallback(struct free_area *area, unsigned int order,
518 int migratetype, bool only_stealable, bool *can_steal);
519
520 static inline bool free_area_empty(struct free_area *area, int migratetype)
521 {
522 return list_empty(&area->free_list[migratetype]);
523 }
524
525 /*
526 * These three helpers classifies VMAs for virtual memory accounting.
527 */
528
529 /*
530 * Executable code area - executable, not writable, not stack
531 */
532 static inline bool is_exec_mapping(vm_flags_t flags)
533 {
534 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
535 }
536
537 /*
538 * Stack area - automatically grows in one direction
539 *
540 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
541 * do_mmap() forbids all other combinations.
542 */
543 static inline bool is_stack_mapping(vm_flags_t flags)
544 {
545 return (flags & VM_STACK) == VM_STACK;
546 }
547
548 /*
549 * Data area - private, writable, not stack
550 */
551 static inline bool is_data_mapping(vm_flags_t flags)
552 {
553 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
554 }
555
556 /* mm/util.c */
557 struct anon_vma *folio_anon_vma(struct folio *folio);
558
559 #ifdef CONFIG_MMU
560 void unmap_mapping_folio(struct folio *folio);
561 extern long populate_vma_page_range(struct vm_area_struct *vma,
562 unsigned long start, unsigned long end, int *locked);
563 extern long faultin_vma_page_range(struct vm_area_struct *vma,
564 unsigned long start, unsigned long end,
565 bool write, int *locked);
566 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
567 unsigned long len);
568 /*
569 * mlock_vma_folio() and munlock_vma_folio():
570 * should be called with vma's mmap_lock held for read or write,
571 * under page table lock for the pte/pmd being added or removed.
572 *
573 * mlock is usually called at the end of page_add_*_rmap(), munlock at
574 * the end of page_remove_rmap(); but new anon folios are managed by
575 * folio_add_lru_vma() calling mlock_new_folio().
576 *
577 * @compound is used to include pmd mappings of THPs, but filter out
578 * pte mappings of THPs, which cannot be consistently counted: a pte
579 * mapping of the THP head cannot be distinguished by the page alone.
580 */
581 void mlock_folio(struct folio *folio);
582 static inline void mlock_vma_folio(struct folio *folio,
583 struct vm_area_struct *vma, bool compound)
584 {
585 /*
586 * The VM_SPECIAL check here serves two purposes.
587 * 1) VM_IO check prevents migration from double-counting during mlock.
588 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
589 * is never left set on a VM_SPECIAL vma, there is an interval while
590 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
591 * still be set while VM_SPECIAL bits are added: so ignore it then.
592 */
593 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
594 (compound || !folio_test_large(folio)))
595 mlock_folio(folio);
596 }
597
598 void munlock_folio(struct folio *folio);
599 static inline void munlock_vma_folio(struct folio *folio,
600 struct vm_area_struct *vma, bool compound)
601 {
602 if (unlikely(vma->vm_flags & VM_LOCKED) &&
603 (compound || !folio_test_large(folio)))
604 munlock_folio(folio);
605 }
606
607 void mlock_new_folio(struct folio *folio);
608 bool need_mlock_drain(int cpu);
609 void mlock_drain_local(void);
610 void mlock_drain_remote(int cpu);
611
612 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
613
614 /*
615 * Return the start of user virtual address at the specific offset within
616 * a vma.
617 */
618 static inline unsigned long
619 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
620 struct vm_area_struct *vma)
621 {
622 unsigned long address;
623
624 if (pgoff >= vma->vm_pgoff) {
625 address = vma->vm_start +
626 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
627 /* Check for address beyond vma (or wrapped through 0?) */
628 if (address < vma->vm_start || address >= vma->vm_end)
629 address = -EFAULT;
630 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
631 /* Test above avoids possibility of wrap to 0 on 32-bit */
632 address = vma->vm_start;
633 } else {
634 address = -EFAULT;
635 }
636 return address;
637 }
638
639 /*
640 * Return the start of user virtual address of a page within a vma.
641 * Returns -EFAULT if all of the page is outside the range of vma.
642 * If page is a compound head, the entire compound page is considered.
643 */
644 static inline unsigned long
645 vma_address(struct page *page, struct vm_area_struct *vma)
646 {
647 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
648 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
649 }
650
651 /*
652 * Then at what user virtual address will none of the range be found in vma?
653 * Assumes that vma_address() already returned a good starting address.
654 */
655 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
656 {
657 struct vm_area_struct *vma = pvmw->vma;
658 pgoff_t pgoff;
659 unsigned long address;
660
661 /* Common case, plus ->pgoff is invalid for KSM */
662 if (pvmw->nr_pages == 1)
663 return pvmw->address + PAGE_SIZE;
664
665 pgoff = pvmw->pgoff + pvmw->nr_pages;
666 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
667 /* Check for address beyond vma (or wrapped through 0?) */
668 if (address < vma->vm_start || address > vma->vm_end)
669 address = vma->vm_end;
670 return address;
671 }
672
673 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
674 struct file *fpin)
675 {
676 int flags = vmf->flags;
677
678 if (fpin)
679 return fpin;
680
681 /*
682 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
683 * anything, so we only pin the file and drop the mmap_lock if only
684 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
685 */
686 if (fault_flag_allow_retry_first(flags) &&
687 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
688 fpin = get_file(vmf->vma->vm_file);
689 mmap_read_unlock(vmf->vma->vm_mm);
690 }
691 return fpin;
692 }
693 #else /* !CONFIG_MMU */
694 static inline void unmap_mapping_folio(struct folio *folio) { }
695 static inline void mlock_new_folio(struct folio *folio) { }
696 static inline bool need_mlock_drain(int cpu) { return false; }
697 static inline void mlock_drain_local(void) { }
698 static inline void mlock_drain_remote(int cpu) { }
699 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
700 {
701 }
702 #endif /* !CONFIG_MMU */
703
704 /* Memory initialisation debug and verification */
705 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
706 DECLARE_STATIC_KEY_TRUE(deferred_pages);
707
708 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
709 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
710
711 enum mminit_level {
712 MMINIT_WARNING,
713 MMINIT_VERIFY,
714 MMINIT_TRACE
715 };
716
717 #ifdef CONFIG_DEBUG_MEMORY_INIT
718
719 extern int mminit_loglevel;
720
721 #define mminit_dprintk(level, prefix, fmt, arg...) \
722 do { \
723 if (level < mminit_loglevel) { \
724 if (level <= MMINIT_WARNING) \
725 pr_warn("mminit::" prefix " " fmt, ##arg); \
726 else \
727 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
728 } \
729 } while (0)
730
731 extern void mminit_verify_pageflags_layout(void);
732 extern void mminit_verify_zonelist(void);
733 #else
734
735 static inline void mminit_dprintk(enum mminit_level level,
736 const char *prefix, const char *fmt, ...)
737 {
738 }
739
740 static inline void mminit_verify_pageflags_layout(void)
741 {
742 }
743
744 static inline void mminit_verify_zonelist(void)
745 {
746 }
747 #endif /* CONFIG_DEBUG_MEMORY_INIT */
748
749 #define NODE_RECLAIM_NOSCAN -2
750 #define NODE_RECLAIM_FULL -1
751 #define NODE_RECLAIM_SOME 0
752 #define NODE_RECLAIM_SUCCESS 1
753
754 #ifdef CONFIG_NUMA
755 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
756 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
757 #else
758 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
759 unsigned int order)
760 {
761 return NODE_RECLAIM_NOSCAN;
762 }
763 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
764 {
765 return NUMA_NO_NODE;
766 }
767 #endif
768
769 /*
770 * mm/memory-failure.c
771 */
772 extern int hwpoison_filter(struct page *p);
773
774 extern u32 hwpoison_filter_dev_major;
775 extern u32 hwpoison_filter_dev_minor;
776 extern u64 hwpoison_filter_flags_mask;
777 extern u64 hwpoison_filter_flags_value;
778 extern u64 hwpoison_filter_memcg;
779 extern u32 hwpoison_filter_enable;
780
781 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
782 unsigned long, unsigned long,
783 unsigned long, unsigned long);
784
785 extern void set_pageblock_order(void);
786 unsigned long reclaim_pages(struct list_head *folio_list);
787 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
788 struct list_head *folio_list);
789 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
790 #define ALLOC_WMARK_MIN WMARK_MIN
791 #define ALLOC_WMARK_LOW WMARK_LOW
792 #define ALLOC_WMARK_HIGH WMARK_HIGH
793 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
794
795 /* Mask to get the watermark bits */
796 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
797
798 /*
799 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
800 * cannot assume a reduced access to memory reserves is sufficient for
801 * !MMU
802 */
803 #ifdef CONFIG_MMU
804 #define ALLOC_OOM 0x08
805 #else
806 #define ALLOC_OOM ALLOC_NO_WATERMARKS
807 #endif
808
809 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
810 * to 25% of the min watermark or
811 * 62.5% if __GFP_HIGH is set.
812 */
813 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
814 * of the min watermark.
815 */
816 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
817 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
818 #ifdef CONFIG_ZONE_DMA32
819 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
820 #else
821 #define ALLOC_NOFRAGMENT 0x0
822 #endif
823 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
824 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
825
826 /* Flags that allow allocations below the min watermark. */
827 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
828
829 enum ttu_flags;
830 struct tlbflush_unmap_batch;
831
832
833 /*
834 * only for MM internal work items which do not depend on
835 * any allocations or locks which might depend on allocations
836 */
837 extern struct workqueue_struct *mm_percpu_wq;
838
839 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
840 void try_to_unmap_flush(void);
841 void try_to_unmap_flush_dirty(void);
842 void flush_tlb_batched_pending(struct mm_struct *mm);
843 #else
844 static inline void try_to_unmap_flush(void)
845 {
846 }
847 static inline void try_to_unmap_flush_dirty(void)
848 {
849 }
850 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
851 {
852 }
853 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
854
855 extern const struct trace_print_flags pageflag_names[];
856 extern const struct trace_print_flags pagetype_names[];
857 extern const struct trace_print_flags vmaflag_names[];
858 extern const struct trace_print_flags gfpflag_names[];
859
860 static inline bool is_migrate_highatomic(enum migratetype migratetype)
861 {
862 return migratetype == MIGRATE_HIGHATOMIC;
863 }
864
865 static inline bool is_migrate_highatomic_page(struct page *page)
866 {
867 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
868 }
869
870 void setup_zone_pageset(struct zone *zone);
871
872 struct migration_target_control {
873 int nid; /* preferred node id */
874 nodemask_t *nmask;
875 gfp_t gfp_mask;
876 };
877
878 /*
879 * mm/filemap.c
880 */
881 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
882 struct folio *folio, loff_t fpos, size_t size);
883
884 /*
885 * mm/vmalloc.c
886 */
887 #ifdef CONFIG_MMU
888 void __init vmalloc_init(void);
889 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
890 pgprot_t prot, struct page **pages, unsigned int page_shift);
891 #else
892 static inline void vmalloc_init(void)
893 {
894 }
895
896 static inline
897 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
898 pgprot_t prot, struct page **pages, unsigned int page_shift)
899 {
900 return -EINVAL;
901 }
902 #endif
903
904 int __must_check __vmap_pages_range_noflush(unsigned long addr,
905 unsigned long end, pgprot_t prot,
906 struct page **pages, unsigned int page_shift);
907
908 void vunmap_range_noflush(unsigned long start, unsigned long end);
909
910 void __vunmap_range_noflush(unsigned long start, unsigned long end);
911
912 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
913 unsigned long addr, int page_nid, int *flags);
914
915 void free_zone_device_page(struct page *page);
916 int migrate_device_coherent_page(struct page *page);
917
918 /*
919 * mm/gup.c
920 */
921 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
922 int __must_check try_grab_page(struct page *page, unsigned int flags);
923
924 enum {
925 /* mark page accessed */
926 FOLL_TOUCH = 1 << 16,
927 /* a retry, previous pass started an IO */
928 FOLL_TRIED = 1 << 17,
929 /* we are working on non-current tsk/mm */
930 FOLL_REMOTE = 1 << 18,
931 /* pages must be released via unpin_user_page */
932 FOLL_PIN = 1 << 19,
933 /* gup_fast: prevent fall-back to slow gup */
934 FOLL_FAST_ONLY = 1 << 20,
935 /* allow unlocking the mmap lock */
936 FOLL_UNLOCKABLE = 1 << 21,
937 };
938
939 /*
940 * Indicates for which pages that are write-protected in the page table,
941 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
942 * GUP pin will remain consistent with the pages mapped into the page tables
943 * of the MM.
944 *
945 * Temporary unmapping of PageAnonExclusive() pages or clearing of
946 * PageAnonExclusive() has to protect against concurrent GUP:
947 * * Ordinary GUP: Using the PT lock
948 * * GUP-fast and fork(): mm->write_protect_seq
949 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
950 * page_try_share_anon_rmap()
951 *
952 * Must be called with the (sub)page that's actually referenced via the
953 * page table entry, which might not necessarily be the head page for a
954 * PTE-mapped THP.
955 *
956 * If the vma is NULL, we're coming from the GUP-fast path and might have
957 * to fallback to the slow path just to lookup the vma.
958 */
959 static inline bool gup_must_unshare(struct vm_area_struct *vma,
960 unsigned int flags, struct page *page)
961 {
962 /*
963 * FOLL_WRITE is implicitly handled correctly as the page table entry
964 * has to be writable -- and if it references (part of) an anonymous
965 * folio, that part is required to be marked exclusive.
966 */
967 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
968 return false;
969 /*
970 * Note: PageAnon(page) is stable until the page is actually getting
971 * freed.
972 */
973 if (!PageAnon(page)) {
974 /*
975 * We only care about R/O long-term pining: R/O short-term
976 * pinning does not have the semantics to observe successive
977 * changes through the process page tables.
978 */
979 if (!(flags & FOLL_LONGTERM))
980 return false;
981
982 /* We really need the vma ... */
983 if (!vma)
984 return true;
985
986 /*
987 * ... because we only care about writable private ("COW")
988 * mappings where we have to break COW early.
989 */
990 return is_cow_mapping(vma->vm_flags);
991 }
992
993 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
994 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
995 smp_rmb();
996
997 /*
998 * Note that PageKsm() pages cannot be exclusive, and consequently,
999 * cannot get pinned.
1000 */
1001 return !PageAnonExclusive(page);
1002 }
1003
1004 extern bool mirrored_kernelcore;
1005
1006 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1007 {
1008 /*
1009 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1010 * enablements, because when without soft-dirty being compiled in,
1011 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1012 * will be constantly true.
1013 */
1014 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1015 return false;
1016
1017 /*
1018 * Soft-dirty is kind of special: its tracking is enabled when the
1019 * vma flags not set.
1020 */
1021 return !(vma->vm_flags & VM_SOFTDIRTY);
1022 }
1023
1024 /*
1025 * VMA Iterator functions shared between nommu and mmap
1026 */
1027 static inline int vma_iter_prealloc(struct vma_iterator *vmi)
1028 {
1029 return mas_preallocate(&vmi->mas, GFP_KERNEL);
1030 }
1031
1032 static inline void vma_iter_clear(struct vma_iterator *vmi,
1033 unsigned long start, unsigned long end)
1034 {
1035 mas_set_range(&vmi->mas, start, end - 1);
1036 mas_store_prealloc(&vmi->mas, NULL);
1037 }
1038
1039 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1040 {
1041 return mas_walk(&vmi->mas);
1042 }
1043
1044 /* Store a VMA with preallocated memory */
1045 static inline void vma_iter_store(struct vma_iterator *vmi,
1046 struct vm_area_struct *vma)
1047 {
1048
1049 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1050 if (WARN_ON(vmi->mas.node != MAS_START && vmi->mas.index > vma->vm_start)) {
1051 printk("%lu > %lu\n", vmi->mas.index, vma->vm_start);
1052 printk("store of vma %lu-%lu", vma->vm_start, vma->vm_end);
1053 printk("into slot %lu-%lu", vmi->mas.index, vmi->mas.last);
1054 mt_dump(vmi->mas.tree);
1055 }
1056 if (WARN_ON(vmi->mas.node != MAS_START && vmi->mas.last < vma->vm_start)) {
1057 printk("%lu < %lu\n", vmi->mas.last, vma->vm_start);
1058 printk("store of vma %lu-%lu", vma->vm_start, vma->vm_end);
1059 printk("into slot %lu-%lu", vmi->mas.index, vmi->mas.last);
1060 mt_dump(vmi->mas.tree);
1061 }
1062 #endif
1063
1064 if (vmi->mas.node != MAS_START &&
1065 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1066 vma_iter_invalidate(vmi);
1067
1068 vmi->mas.index = vma->vm_start;
1069 vmi->mas.last = vma->vm_end - 1;
1070 mas_store_prealloc(&vmi->mas, vma);
1071 }
1072
1073 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1074 struct vm_area_struct *vma, gfp_t gfp)
1075 {
1076 if (vmi->mas.node != MAS_START &&
1077 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1078 vma_iter_invalidate(vmi);
1079
1080 vmi->mas.index = vma->vm_start;
1081 vmi->mas.last = vma->vm_end - 1;
1082 mas_store_gfp(&vmi->mas, vma, gfp);
1083 if (unlikely(mas_is_err(&vmi->mas)))
1084 return -ENOMEM;
1085
1086 return 0;
1087 }
1088
1089 /*
1090 * VMA lock generalization
1091 */
1092 struct vma_prepare {
1093 struct vm_area_struct *vma;
1094 struct vm_area_struct *adj_next;
1095 struct file *file;
1096 struct address_space *mapping;
1097 struct anon_vma *anon_vma;
1098 struct vm_area_struct *insert;
1099 struct vm_area_struct *remove;
1100 struct vm_area_struct *remove2;
1101 };
1102 #endif /* __MM_INTERNAL_H */