]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/kmemleak.c
Merge branch 'for-6.2/sony' into for-linus
[thirdparty/linux.git] / mm / kmemleak.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17 * accesses to the object_tree_root (or object_phys_tree_root). The
18 * object_list is the main list holding the metadata (struct kmemleak_object)
19 * for the allocated memory blocks. The object_tree_root and object_phys_tree_root
20 * are red black trees used to look-up metadata based on a pointer to the
21 * corresponding memory block. The object_phys_tree_root is for objects
22 * allocated with physical address. The kmemleak_object structures are
23 * added to the object_list and object_tree_root (or object_phys_tree_root)
24 * in the create_object() function called from the kmemleak_alloc() (or
25 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
26 * the kmemleak_free() callback
27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
28 * Accesses to the metadata (e.g. count) are protected by this lock. Note
29 * that some members of this structure may be protected by other means
30 * (atomic or kmemleak_lock). This lock is also held when scanning the
31 * corresponding memory block to avoid the kernel freeing it via the
32 * kmemleak_free() callback. This is less heavyweight than holding a global
33 * lock like kmemleak_lock during scanning.
34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
35 * unreferenced objects at a time. The gray_list contains the objects which
36 * are already referenced or marked as false positives and need to be
37 * scanned. This list is only modified during a scanning episode when the
38 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
39 * Note that the kmemleak_object.use_count is incremented when an object is
40 * added to the gray_list and therefore cannot be freed. This mutex also
41 * prevents multiple users of the "kmemleak" debugfs file together with
42 * modifications to the memory scanning parameters including the scan_thread
43 * pointer
44 *
45 * Locks and mutexes are acquired/nested in the following order:
46 *
47 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
48 *
49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50 * regions.
51 *
52 * The kmemleak_object structures have a use_count incremented or decremented
53 * using the get_object()/put_object() functions. When the use_count becomes
54 * 0, this count can no longer be incremented and put_object() schedules the
55 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
56 * function must be protected by rcu_read_lock() to avoid accessing a freed
57 * structure.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/init.h>
63 #include <linux/kernel.h>
64 #include <linux/list.h>
65 #include <linux/sched/signal.h>
66 #include <linux/sched/task.h>
67 #include <linux/sched/task_stack.h>
68 #include <linux/jiffies.h>
69 #include <linux/delay.h>
70 #include <linux/export.h>
71 #include <linux/kthread.h>
72 #include <linux/rbtree.h>
73 #include <linux/fs.h>
74 #include <linux/debugfs.h>
75 #include <linux/seq_file.h>
76 #include <linux/cpumask.h>
77 #include <linux/spinlock.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/rcupdate.h>
81 #include <linux/stacktrace.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105
106 /*
107 * Kmemleak configuration and common defines.
108 */
109 #define MAX_TRACE 16 /* stack trace length */
110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
114
115 #define BYTES_PER_POINTER sizeof(void *)
116
117 /* GFP bitmask for kmemleak internal allocations */
118 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119 __GFP_NOLOCKDEP)) | \
120 __GFP_NORETRY | __GFP_NOMEMALLOC | \
121 __GFP_NOWARN)
122
123 /* scanning area inside a memory block */
124 struct kmemleak_scan_area {
125 struct hlist_node node;
126 unsigned long start;
127 size_t size;
128 };
129
130 #define KMEMLEAK_GREY 0
131 #define KMEMLEAK_BLACK -1
132
133 /*
134 * Structure holding the metadata for each allocated memory block.
135 * Modifications to such objects should be made while holding the
136 * object->lock. Insertions or deletions from object_list, gray_list or
137 * rb_node are already protected by the corresponding locks or mutex (see
138 * the notes on locking above). These objects are reference-counted
139 * (use_count) and freed using the RCU mechanism.
140 */
141 struct kmemleak_object {
142 raw_spinlock_t lock;
143 unsigned int flags; /* object status flags */
144 struct list_head object_list;
145 struct list_head gray_list;
146 struct rb_node rb_node;
147 struct rcu_head rcu; /* object_list lockless traversal */
148 /* object usage count; object freed when use_count == 0 */
149 atomic_t use_count;
150 unsigned long pointer;
151 size_t size;
152 /* pass surplus references to this pointer */
153 unsigned long excess_ref;
154 /* minimum number of a pointers found before it is considered leak */
155 int min_count;
156 /* the total number of pointers found pointing to this object */
157 int count;
158 /* checksum for detecting modified objects */
159 u32 checksum;
160 /* memory ranges to be scanned inside an object (empty for all) */
161 struct hlist_head area_list;
162 unsigned long trace[MAX_TRACE];
163 unsigned int trace_len;
164 unsigned long jiffies; /* creation timestamp */
165 pid_t pid; /* pid of the current task */
166 char comm[TASK_COMM_LEN]; /* executable name */
167 };
168
169 /* flag representing the memory block allocation status */
170 #define OBJECT_ALLOCATED (1 << 0)
171 /* flag set after the first reporting of an unreference object */
172 #define OBJECT_REPORTED (1 << 1)
173 /* flag set to not scan the object */
174 #define OBJECT_NO_SCAN (1 << 2)
175 /* flag set to fully scan the object when scan_area allocation failed */
176 #define OBJECT_FULL_SCAN (1 << 3)
177 /* flag set for object allocated with physical address */
178 #define OBJECT_PHYS (1 << 4)
179
180 #define HEX_PREFIX " "
181 /* number of bytes to print per line; must be 16 or 32 */
182 #define HEX_ROW_SIZE 16
183 /* number of bytes to print at a time (1, 2, 4, 8) */
184 #define HEX_GROUP_SIZE 1
185 /* include ASCII after the hex output */
186 #define HEX_ASCII 1
187 /* max number of lines to be printed */
188 #define HEX_MAX_LINES 2
189
190 /* the list of all allocated objects */
191 static LIST_HEAD(object_list);
192 /* the list of gray-colored objects (see color_gray comment below) */
193 static LIST_HEAD(gray_list);
194 /* memory pool allocation */
195 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
196 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
197 static LIST_HEAD(mem_pool_free_list);
198 /* search tree for object boundaries */
199 static struct rb_root object_tree_root = RB_ROOT;
200 /* search tree for object (with OBJECT_PHYS flag) boundaries */
201 static struct rb_root object_phys_tree_root = RB_ROOT;
202 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
203 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
204
205 /* allocation caches for kmemleak internal data */
206 static struct kmem_cache *object_cache;
207 static struct kmem_cache *scan_area_cache;
208
209 /* set if tracing memory operations is enabled */
210 static int kmemleak_enabled = 1;
211 /* same as above but only for the kmemleak_free() callback */
212 static int kmemleak_free_enabled = 1;
213 /* set in the late_initcall if there were no errors */
214 static int kmemleak_initialized;
215 /* set if a kmemleak warning was issued */
216 static int kmemleak_warning;
217 /* set if a fatal kmemleak error has occurred */
218 static int kmemleak_error;
219
220 /* minimum and maximum address that may be valid pointers */
221 static unsigned long min_addr = ULONG_MAX;
222 static unsigned long max_addr;
223
224 static struct task_struct *scan_thread;
225 /* used to avoid reporting of recently allocated objects */
226 static unsigned long jiffies_min_age;
227 static unsigned long jiffies_last_scan;
228 /* delay between automatic memory scannings */
229 static unsigned long jiffies_scan_wait;
230 /* enables or disables the task stacks scanning */
231 static int kmemleak_stack_scan = 1;
232 /* protects the memory scanning, parameters and debug/kmemleak file access */
233 static DEFINE_MUTEX(scan_mutex);
234 /* setting kmemleak=on, will set this var, skipping the disable */
235 static int kmemleak_skip_disable;
236 /* If there are leaks that can be reported */
237 static bool kmemleak_found_leaks;
238
239 static bool kmemleak_verbose;
240 module_param_named(verbose, kmemleak_verbose, bool, 0600);
241
242 static void kmemleak_disable(void);
243
244 /*
245 * Print a warning and dump the stack trace.
246 */
247 #define kmemleak_warn(x...) do { \
248 pr_warn(x); \
249 dump_stack(); \
250 kmemleak_warning = 1; \
251 } while (0)
252
253 /*
254 * Macro invoked when a serious kmemleak condition occurred and cannot be
255 * recovered from. Kmemleak will be disabled and further allocation/freeing
256 * tracing no longer available.
257 */
258 #define kmemleak_stop(x...) do { \
259 kmemleak_warn(x); \
260 kmemleak_disable(); \
261 } while (0)
262
263 #define warn_or_seq_printf(seq, fmt, ...) do { \
264 if (seq) \
265 seq_printf(seq, fmt, ##__VA_ARGS__); \
266 else \
267 pr_warn(fmt, ##__VA_ARGS__); \
268 } while (0)
269
270 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
271 int rowsize, int groupsize, const void *buf,
272 size_t len, bool ascii)
273 {
274 if (seq)
275 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
276 buf, len, ascii);
277 else
278 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
279 rowsize, groupsize, buf, len, ascii);
280 }
281
282 /*
283 * Printing of the objects hex dump to the seq file. The number of lines to be
284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
286 * with the object->lock held.
287 */
288 static void hex_dump_object(struct seq_file *seq,
289 struct kmemleak_object *object)
290 {
291 const u8 *ptr = (const u8 *)object->pointer;
292 size_t len;
293
294 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
295 return;
296
297 /* limit the number of lines to HEX_MAX_LINES */
298 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
299
300 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
301 kasan_disable_current();
302 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
303 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
304 kasan_enable_current();
305 }
306
307 /*
308 * Object colors, encoded with count and min_count:
309 * - white - orphan object, not enough references to it (count < min_count)
310 * - gray - not orphan, not marked as false positive (min_count == 0) or
311 * sufficient references to it (count >= min_count)
312 * - black - ignore, it doesn't contain references (e.g. text section)
313 * (min_count == -1). No function defined for this color.
314 * Newly created objects don't have any color assigned (object->count == -1)
315 * before the next memory scan when they become white.
316 */
317 static bool color_white(const struct kmemleak_object *object)
318 {
319 return object->count != KMEMLEAK_BLACK &&
320 object->count < object->min_count;
321 }
322
323 static bool color_gray(const struct kmemleak_object *object)
324 {
325 return object->min_count != KMEMLEAK_BLACK &&
326 object->count >= object->min_count;
327 }
328
329 /*
330 * Objects are considered unreferenced only if their color is white, they have
331 * not be deleted and have a minimum age to avoid false positives caused by
332 * pointers temporarily stored in CPU registers.
333 */
334 static bool unreferenced_object(struct kmemleak_object *object)
335 {
336 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
337 time_before_eq(object->jiffies + jiffies_min_age,
338 jiffies_last_scan);
339 }
340
341 /*
342 * Printing of the unreferenced objects information to the seq file. The
343 * print_unreferenced function must be called with the object->lock held.
344 */
345 static void print_unreferenced(struct seq_file *seq,
346 struct kmemleak_object *object)
347 {
348 int i;
349 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
350
351 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
352 object->pointer, object->size);
353 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
354 object->comm, object->pid, object->jiffies,
355 msecs_age / 1000, msecs_age % 1000);
356 hex_dump_object(seq, object);
357 warn_or_seq_printf(seq, " backtrace:\n");
358
359 for (i = 0; i < object->trace_len; i++) {
360 void *ptr = (void *)object->trace[i];
361 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
362 }
363 }
364
365 /*
366 * Print the kmemleak_object information. This function is used mainly for
367 * debugging special cases when kmemleak operations. It must be called with
368 * the object->lock held.
369 */
370 static void dump_object_info(struct kmemleak_object *object)
371 {
372 pr_notice("Object 0x%08lx (size %zu):\n",
373 object->pointer, object->size);
374 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
375 object->comm, object->pid, object->jiffies);
376 pr_notice(" min_count = %d\n", object->min_count);
377 pr_notice(" count = %d\n", object->count);
378 pr_notice(" flags = 0x%x\n", object->flags);
379 pr_notice(" checksum = %u\n", object->checksum);
380 pr_notice(" backtrace:\n");
381 stack_trace_print(object->trace, object->trace_len, 4);
382 }
383
384 /*
385 * Look-up a memory block metadata (kmemleak_object) in the object search
386 * tree based on a pointer value. If alias is 0, only values pointing to the
387 * beginning of the memory block are allowed. The kmemleak_lock must be held
388 * when calling this function.
389 */
390 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
391 bool is_phys)
392 {
393 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
394 object_tree_root.rb_node;
395 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
396
397 while (rb) {
398 struct kmemleak_object *object;
399 unsigned long untagged_objp;
400
401 object = rb_entry(rb, struct kmemleak_object, rb_node);
402 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
403
404 if (untagged_ptr < untagged_objp)
405 rb = object->rb_node.rb_left;
406 else if (untagged_objp + object->size <= untagged_ptr)
407 rb = object->rb_node.rb_right;
408 else if (untagged_objp == untagged_ptr || alias)
409 return object;
410 else {
411 kmemleak_warn("Found object by alias at 0x%08lx\n",
412 ptr);
413 dump_object_info(object);
414 break;
415 }
416 }
417 return NULL;
418 }
419
420 /* Look-up a kmemleak object which allocated with virtual address. */
421 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
422 {
423 return __lookup_object(ptr, alias, false);
424 }
425
426 /*
427 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428 * that once an object's use_count reached 0, the RCU freeing was already
429 * registered and the object should no longer be used. This function must be
430 * called under the protection of rcu_read_lock().
431 */
432 static int get_object(struct kmemleak_object *object)
433 {
434 return atomic_inc_not_zero(&object->use_count);
435 }
436
437 /*
438 * Memory pool allocation and freeing. kmemleak_lock must not be held.
439 */
440 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
441 {
442 unsigned long flags;
443 struct kmemleak_object *object;
444
445 /* try the slab allocator first */
446 if (object_cache) {
447 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
448 if (object)
449 return object;
450 }
451
452 /* slab allocation failed, try the memory pool */
453 raw_spin_lock_irqsave(&kmemleak_lock, flags);
454 object = list_first_entry_or_null(&mem_pool_free_list,
455 typeof(*object), object_list);
456 if (object)
457 list_del(&object->object_list);
458 else if (mem_pool_free_count)
459 object = &mem_pool[--mem_pool_free_count];
460 else
461 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
462 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
463
464 return object;
465 }
466
467 /*
468 * Return the object to either the slab allocator or the memory pool.
469 */
470 static void mem_pool_free(struct kmemleak_object *object)
471 {
472 unsigned long flags;
473
474 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
475 kmem_cache_free(object_cache, object);
476 return;
477 }
478
479 /* add the object to the memory pool free list */
480 raw_spin_lock_irqsave(&kmemleak_lock, flags);
481 list_add(&object->object_list, &mem_pool_free_list);
482 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
483 }
484
485 /*
486 * RCU callback to free a kmemleak_object.
487 */
488 static void free_object_rcu(struct rcu_head *rcu)
489 {
490 struct hlist_node *tmp;
491 struct kmemleak_scan_area *area;
492 struct kmemleak_object *object =
493 container_of(rcu, struct kmemleak_object, rcu);
494
495 /*
496 * Once use_count is 0 (guaranteed by put_object), there is no other
497 * code accessing this object, hence no need for locking.
498 */
499 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
500 hlist_del(&area->node);
501 kmem_cache_free(scan_area_cache, area);
502 }
503 mem_pool_free(object);
504 }
505
506 /*
507 * Decrement the object use_count. Once the count is 0, free the object using
508 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
509 * delete_object() path, the delayed RCU freeing ensures that there is no
510 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
511 * is also possible.
512 */
513 static void put_object(struct kmemleak_object *object)
514 {
515 if (!atomic_dec_and_test(&object->use_count))
516 return;
517
518 /* should only get here after delete_object was called */
519 WARN_ON(object->flags & OBJECT_ALLOCATED);
520
521 /*
522 * It may be too early for the RCU callbacks, however, there is no
523 * concurrent object_list traversal when !object_cache and all objects
524 * came from the memory pool. Free the object directly.
525 */
526 if (object_cache)
527 call_rcu(&object->rcu, free_object_rcu);
528 else
529 free_object_rcu(&object->rcu);
530 }
531
532 /*
533 * Look up an object in the object search tree and increase its use_count.
534 */
535 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
536 bool is_phys)
537 {
538 unsigned long flags;
539 struct kmemleak_object *object;
540
541 rcu_read_lock();
542 raw_spin_lock_irqsave(&kmemleak_lock, flags);
543 object = __lookup_object(ptr, alias, is_phys);
544 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
545
546 /* check whether the object is still available */
547 if (object && !get_object(object))
548 object = NULL;
549 rcu_read_unlock();
550
551 return object;
552 }
553
554 /* Look up and get an object which allocated with virtual address. */
555 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
556 {
557 return __find_and_get_object(ptr, alias, false);
558 }
559
560 /*
561 * Remove an object from the object_tree_root (or object_phys_tree_root)
562 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
563 * is still enabled.
564 */
565 static void __remove_object(struct kmemleak_object *object)
566 {
567 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
568 &object_phys_tree_root :
569 &object_tree_root);
570 list_del_rcu(&object->object_list);
571 }
572
573 /*
574 * Look up an object in the object search tree and remove it from both
575 * object_tree_root (or object_phys_tree_root) and object_list. The
576 * returned object's use_count should be at least 1, as initially set
577 * by create_object().
578 */
579 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
580 bool is_phys)
581 {
582 unsigned long flags;
583 struct kmemleak_object *object;
584
585 raw_spin_lock_irqsave(&kmemleak_lock, flags);
586 object = __lookup_object(ptr, alias, is_phys);
587 if (object)
588 __remove_object(object);
589 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
590
591 return object;
592 }
593
594 /*
595 * Save stack trace to the given array of MAX_TRACE size.
596 */
597 static int __save_stack_trace(unsigned long *trace)
598 {
599 return stack_trace_save(trace, MAX_TRACE, 2);
600 }
601
602 /*
603 * Create the metadata (struct kmemleak_object) corresponding to an allocated
604 * memory block and add it to the object_list and object_tree_root (or
605 * object_phys_tree_root).
606 */
607 static void __create_object(unsigned long ptr, size_t size,
608 int min_count, gfp_t gfp, bool is_phys)
609 {
610 unsigned long flags;
611 struct kmemleak_object *object, *parent;
612 struct rb_node **link, *rb_parent;
613 unsigned long untagged_ptr;
614 unsigned long untagged_objp;
615
616 object = mem_pool_alloc(gfp);
617 if (!object) {
618 pr_warn("Cannot allocate a kmemleak_object structure\n");
619 kmemleak_disable();
620 return;
621 }
622
623 INIT_LIST_HEAD(&object->object_list);
624 INIT_LIST_HEAD(&object->gray_list);
625 INIT_HLIST_HEAD(&object->area_list);
626 raw_spin_lock_init(&object->lock);
627 atomic_set(&object->use_count, 1);
628 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
629 object->pointer = ptr;
630 object->size = kfence_ksize((void *)ptr) ?: size;
631 object->excess_ref = 0;
632 object->min_count = min_count;
633 object->count = 0; /* white color initially */
634 object->jiffies = jiffies;
635 object->checksum = 0;
636
637 /* task information */
638 if (in_hardirq()) {
639 object->pid = 0;
640 strncpy(object->comm, "hardirq", sizeof(object->comm));
641 } else if (in_serving_softirq()) {
642 object->pid = 0;
643 strncpy(object->comm, "softirq", sizeof(object->comm));
644 } else {
645 object->pid = current->pid;
646 /*
647 * There is a small chance of a race with set_task_comm(),
648 * however using get_task_comm() here may cause locking
649 * dependency issues with current->alloc_lock. In the worst
650 * case, the command line is not correct.
651 */
652 strncpy(object->comm, current->comm, sizeof(object->comm));
653 }
654
655 /* kernel backtrace */
656 object->trace_len = __save_stack_trace(object->trace);
657
658 raw_spin_lock_irqsave(&kmemleak_lock, flags);
659
660 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
661 /*
662 * Only update min_addr and max_addr with object
663 * storing virtual address.
664 */
665 if (!is_phys) {
666 min_addr = min(min_addr, untagged_ptr);
667 max_addr = max(max_addr, untagged_ptr + size);
668 }
669 link = is_phys ? &object_phys_tree_root.rb_node :
670 &object_tree_root.rb_node;
671 rb_parent = NULL;
672 while (*link) {
673 rb_parent = *link;
674 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
675 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
676 if (untagged_ptr + size <= untagged_objp)
677 link = &parent->rb_node.rb_left;
678 else if (untagged_objp + parent->size <= untagged_ptr)
679 link = &parent->rb_node.rb_right;
680 else {
681 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
682 ptr);
683 /*
684 * No need for parent->lock here since "parent" cannot
685 * be freed while the kmemleak_lock is held.
686 */
687 dump_object_info(parent);
688 kmem_cache_free(object_cache, object);
689 goto out;
690 }
691 }
692 rb_link_node(&object->rb_node, rb_parent, link);
693 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
694 &object_tree_root);
695
696 list_add_tail_rcu(&object->object_list, &object_list);
697 out:
698 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
699 }
700
701 /* Create kmemleak object which allocated with virtual address. */
702 static void create_object(unsigned long ptr, size_t size,
703 int min_count, gfp_t gfp)
704 {
705 __create_object(ptr, size, min_count, gfp, false);
706 }
707
708 /* Create kmemleak object which allocated with physical address. */
709 static void create_object_phys(unsigned long ptr, size_t size,
710 int min_count, gfp_t gfp)
711 {
712 __create_object(ptr, size, min_count, gfp, true);
713 }
714
715 /*
716 * Mark the object as not allocated and schedule RCU freeing via put_object().
717 */
718 static void __delete_object(struct kmemleak_object *object)
719 {
720 unsigned long flags;
721
722 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
723 WARN_ON(atomic_read(&object->use_count) < 1);
724
725 /*
726 * Locking here also ensures that the corresponding memory block
727 * cannot be freed when it is being scanned.
728 */
729 raw_spin_lock_irqsave(&object->lock, flags);
730 object->flags &= ~OBJECT_ALLOCATED;
731 raw_spin_unlock_irqrestore(&object->lock, flags);
732 put_object(object);
733 }
734
735 /*
736 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
737 * delete it.
738 */
739 static void delete_object_full(unsigned long ptr)
740 {
741 struct kmemleak_object *object;
742
743 object = find_and_remove_object(ptr, 0, false);
744 if (!object) {
745 #ifdef DEBUG
746 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
747 ptr);
748 #endif
749 return;
750 }
751 __delete_object(object);
752 }
753
754 /*
755 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
756 * delete it. If the memory block is partially freed, the function may create
757 * additional metadata for the remaining parts of the block.
758 */
759 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
760 {
761 struct kmemleak_object *object;
762 unsigned long start, end;
763
764 object = find_and_remove_object(ptr, 1, is_phys);
765 if (!object) {
766 #ifdef DEBUG
767 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
768 ptr, size);
769 #endif
770 return;
771 }
772
773 /*
774 * Create one or two objects that may result from the memory block
775 * split. Note that partial freeing is only done by free_bootmem() and
776 * this happens before kmemleak_init() is called.
777 */
778 start = object->pointer;
779 end = object->pointer + object->size;
780 if (ptr > start)
781 __create_object(start, ptr - start, object->min_count,
782 GFP_KERNEL, is_phys);
783 if (ptr + size < end)
784 __create_object(ptr + size, end - ptr - size, object->min_count,
785 GFP_KERNEL, is_phys);
786
787 __delete_object(object);
788 }
789
790 static void __paint_it(struct kmemleak_object *object, int color)
791 {
792 object->min_count = color;
793 if (color == KMEMLEAK_BLACK)
794 object->flags |= OBJECT_NO_SCAN;
795 }
796
797 static void paint_it(struct kmemleak_object *object, int color)
798 {
799 unsigned long flags;
800
801 raw_spin_lock_irqsave(&object->lock, flags);
802 __paint_it(object, color);
803 raw_spin_unlock_irqrestore(&object->lock, flags);
804 }
805
806 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
807 {
808 struct kmemleak_object *object;
809
810 object = __find_and_get_object(ptr, 0, is_phys);
811 if (!object) {
812 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
813 ptr,
814 (color == KMEMLEAK_GREY) ? "Grey" :
815 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
816 return;
817 }
818 paint_it(object, color);
819 put_object(object);
820 }
821
822 /*
823 * Mark an object permanently as gray-colored so that it can no longer be
824 * reported as a leak. This is used in general to mark a false positive.
825 */
826 static void make_gray_object(unsigned long ptr)
827 {
828 paint_ptr(ptr, KMEMLEAK_GREY, false);
829 }
830
831 /*
832 * Mark the object as black-colored so that it is ignored from scans and
833 * reporting.
834 */
835 static void make_black_object(unsigned long ptr, bool is_phys)
836 {
837 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
838 }
839
840 /*
841 * Add a scanning area to the object. If at least one such area is added,
842 * kmemleak will only scan these ranges rather than the whole memory block.
843 */
844 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
845 {
846 unsigned long flags;
847 struct kmemleak_object *object;
848 struct kmemleak_scan_area *area = NULL;
849 unsigned long untagged_ptr;
850 unsigned long untagged_objp;
851
852 object = find_and_get_object(ptr, 1);
853 if (!object) {
854 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
855 ptr);
856 return;
857 }
858
859 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
860 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
861
862 if (scan_area_cache)
863 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
864
865 raw_spin_lock_irqsave(&object->lock, flags);
866 if (!area) {
867 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
868 /* mark the object for full scan to avoid false positives */
869 object->flags |= OBJECT_FULL_SCAN;
870 goto out_unlock;
871 }
872 if (size == SIZE_MAX) {
873 size = untagged_objp + object->size - untagged_ptr;
874 } else if (untagged_ptr + size > untagged_objp + object->size) {
875 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
876 dump_object_info(object);
877 kmem_cache_free(scan_area_cache, area);
878 goto out_unlock;
879 }
880
881 INIT_HLIST_NODE(&area->node);
882 area->start = ptr;
883 area->size = size;
884
885 hlist_add_head(&area->node, &object->area_list);
886 out_unlock:
887 raw_spin_unlock_irqrestore(&object->lock, flags);
888 put_object(object);
889 }
890
891 /*
892 * Any surplus references (object already gray) to 'ptr' are passed to
893 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
894 * vm_struct may be used as an alternative reference to the vmalloc'ed object
895 * (see free_thread_stack()).
896 */
897 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
898 {
899 unsigned long flags;
900 struct kmemleak_object *object;
901
902 object = find_and_get_object(ptr, 0);
903 if (!object) {
904 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
905 ptr);
906 return;
907 }
908
909 raw_spin_lock_irqsave(&object->lock, flags);
910 object->excess_ref = excess_ref;
911 raw_spin_unlock_irqrestore(&object->lock, flags);
912 put_object(object);
913 }
914
915 /*
916 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
917 * pointer. Such object will not be scanned by kmemleak but references to it
918 * are searched.
919 */
920 static void object_no_scan(unsigned long ptr)
921 {
922 unsigned long flags;
923 struct kmemleak_object *object;
924
925 object = find_and_get_object(ptr, 0);
926 if (!object) {
927 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
928 return;
929 }
930
931 raw_spin_lock_irqsave(&object->lock, flags);
932 object->flags |= OBJECT_NO_SCAN;
933 raw_spin_unlock_irqrestore(&object->lock, flags);
934 put_object(object);
935 }
936
937 /**
938 * kmemleak_alloc - register a newly allocated object
939 * @ptr: pointer to beginning of the object
940 * @size: size of the object
941 * @min_count: minimum number of references to this object. If during memory
942 * scanning a number of references less than @min_count is found,
943 * the object is reported as a memory leak. If @min_count is 0,
944 * the object is never reported as a leak. If @min_count is -1,
945 * the object is ignored (not scanned and not reported as a leak)
946 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
947 *
948 * This function is called from the kernel allocators when a new object
949 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
950 */
951 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
952 gfp_t gfp)
953 {
954 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
955
956 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
957 create_object((unsigned long)ptr, size, min_count, gfp);
958 }
959 EXPORT_SYMBOL_GPL(kmemleak_alloc);
960
961 /**
962 * kmemleak_alloc_percpu - register a newly allocated __percpu object
963 * @ptr: __percpu pointer to beginning of the object
964 * @size: size of the object
965 * @gfp: flags used for kmemleak internal memory allocations
966 *
967 * This function is called from the kernel percpu allocator when a new object
968 * (memory block) is allocated (alloc_percpu).
969 */
970 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
971 gfp_t gfp)
972 {
973 unsigned int cpu;
974
975 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
976
977 /*
978 * Percpu allocations are only scanned and not reported as leaks
979 * (min_count is set to 0).
980 */
981 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
982 for_each_possible_cpu(cpu)
983 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
984 size, 0, gfp);
985 }
986 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
987
988 /**
989 * kmemleak_vmalloc - register a newly vmalloc'ed object
990 * @area: pointer to vm_struct
991 * @size: size of the object
992 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
993 *
994 * This function is called from the vmalloc() kernel allocator when a new
995 * object (memory block) is allocated.
996 */
997 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
998 {
999 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1000
1001 /*
1002 * A min_count = 2 is needed because vm_struct contains a reference to
1003 * the virtual address of the vmalloc'ed block.
1004 */
1005 if (kmemleak_enabled) {
1006 create_object((unsigned long)area->addr, size, 2, gfp);
1007 object_set_excess_ref((unsigned long)area,
1008 (unsigned long)area->addr);
1009 }
1010 }
1011 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1012
1013 /**
1014 * kmemleak_free - unregister a previously registered object
1015 * @ptr: pointer to beginning of the object
1016 *
1017 * This function is called from the kernel allocators when an object (memory
1018 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1019 */
1020 void __ref kmemleak_free(const void *ptr)
1021 {
1022 pr_debug("%s(0x%p)\n", __func__, ptr);
1023
1024 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1025 delete_object_full((unsigned long)ptr);
1026 }
1027 EXPORT_SYMBOL_GPL(kmemleak_free);
1028
1029 /**
1030 * kmemleak_free_part - partially unregister a previously registered object
1031 * @ptr: pointer to the beginning or inside the object. This also
1032 * represents the start of the range to be freed
1033 * @size: size to be unregistered
1034 *
1035 * This function is called when only a part of a memory block is freed
1036 * (usually from the bootmem allocator).
1037 */
1038 void __ref kmemleak_free_part(const void *ptr, size_t size)
1039 {
1040 pr_debug("%s(0x%p)\n", __func__, ptr);
1041
1042 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1043 delete_object_part((unsigned long)ptr, size, false);
1044 }
1045 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1046
1047 /**
1048 * kmemleak_free_percpu - unregister a previously registered __percpu object
1049 * @ptr: __percpu pointer to beginning of the object
1050 *
1051 * This function is called from the kernel percpu allocator when an object
1052 * (memory block) is freed (free_percpu).
1053 */
1054 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1055 {
1056 unsigned int cpu;
1057
1058 pr_debug("%s(0x%p)\n", __func__, ptr);
1059
1060 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1061 for_each_possible_cpu(cpu)
1062 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1063 cpu));
1064 }
1065 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1066
1067 /**
1068 * kmemleak_update_trace - update object allocation stack trace
1069 * @ptr: pointer to beginning of the object
1070 *
1071 * Override the object allocation stack trace for cases where the actual
1072 * allocation place is not always useful.
1073 */
1074 void __ref kmemleak_update_trace(const void *ptr)
1075 {
1076 struct kmemleak_object *object;
1077 unsigned long flags;
1078
1079 pr_debug("%s(0x%p)\n", __func__, ptr);
1080
1081 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1082 return;
1083
1084 object = find_and_get_object((unsigned long)ptr, 1);
1085 if (!object) {
1086 #ifdef DEBUG
1087 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1088 ptr);
1089 #endif
1090 return;
1091 }
1092
1093 raw_spin_lock_irqsave(&object->lock, flags);
1094 object->trace_len = __save_stack_trace(object->trace);
1095 raw_spin_unlock_irqrestore(&object->lock, flags);
1096
1097 put_object(object);
1098 }
1099 EXPORT_SYMBOL(kmemleak_update_trace);
1100
1101 /**
1102 * kmemleak_not_leak - mark an allocated object as false positive
1103 * @ptr: pointer to beginning of the object
1104 *
1105 * Calling this function on an object will cause the memory block to no longer
1106 * be reported as leak and always be scanned.
1107 */
1108 void __ref kmemleak_not_leak(const void *ptr)
1109 {
1110 pr_debug("%s(0x%p)\n", __func__, ptr);
1111
1112 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1113 make_gray_object((unsigned long)ptr);
1114 }
1115 EXPORT_SYMBOL(kmemleak_not_leak);
1116
1117 /**
1118 * kmemleak_ignore - ignore an allocated object
1119 * @ptr: pointer to beginning of the object
1120 *
1121 * Calling this function on an object will cause the memory block to be
1122 * ignored (not scanned and not reported as a leak). This is usually done when
1123 * it is known that the corresponding block is not a leak and does not contain
1124 * any references to other allocated memory blocks.
1125 */
1126 void __ref kmemleak_ignore(const void *ptr)
1127 {
1128 pr_debug("%s(0x%p)\n", __func__, ptr);
1129
1130 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1131 make_black_object((unsigned long)ptr, false);
1132 }
1133 EXPORT_SYMBOL(kmemleak_ignore);
1134
1135 /**
1136 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1137 * @ptr: pointer to beginning or inside the object. This also
1138 * represents the start of the scan area
1139 * @size: size of the scan area
1140 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1141 *
1142 * This function is used when it is known that only certain parts of an object
1143 * contain references to other objects. Kmemleak will only scan these areas
1144 * reducing the number false negatives.
1145 */
1146 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1147 {
1148 pr_debug("%s(0x%p)\n", __func__, ptr);
1149
1150 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1151 add_scan_area((unsigned long)ptr, size, gfp);
1152 }
1153 EXPORT_SYMBOL(kmemleak_scan_area);
1154
1155 /**
1156 * kmemleak_no_scan - do not scan an allocated object
1157 * @ptr: pointer to beginning of the object
1158 *
1159 * This function notifies kmemleak not to scan the given memory block. Useful
1160 * in situations where it is known that the given object does not contain any
1161 * references to other objects. Kmemleak will not scan such objects reducing
1162 * the number of false negatives.
1163 */
1164 void __ref kmemleak_no_scan(const void *ptr)
1165 {
1166 pr_debug("%s(0x%p)\n", __func__, ptr);
1167
1168 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1169 object_no_scan((unsigned long)ptr);
1170 }
1171 EXPORT_SYMBOL(kmemleak_no_scan);
1172
1173 /**
1174 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1175 * address argument
1176 * @phys: physical address of the object
1177 * @size: size of the object
1178 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1179 */
1180 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1181 {
1182 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1183
1184 if (kmemleak_enabled)
1185 /*
1186 * Create object with OBJECT_PHYS flag and
1187 * assume min_count 0.
1188 */
1189 create_object_phys((unsigned long)phys, size, 0, gfp);
1190 }
1191 EXPORT_SYMBOL(kmemleak_alloc_phys);
1192
1193 /**
1194 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1195 * physical address argument
1196 * @phys: physical address if the beginning or inside an object. This
1197 * also represents the start of the range to be freed
1198 * @size: size to be unregistered
1199 */
1200 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1201 {
1202 pr_debug("%s(0x%pa)\n", __func__, &phys);
1203
1204 if (kmemleak_enabled)
1205 delete_object_part((unsigned long)phys, size, true);
1206 }
1207 EXPORT_SYMBOL(kmemleak_free_part_phys);
1208
1209 /**
1210 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1211 * address argument
1212 * @phys: physical address of the object
1213 */
1214 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1215 {
1216 pr_debug("%s(0x%pa)\n", __func__, &phys);
1217
1218 if (kmemleak_enabled)
1219 make_black_object((unsigned long)phys, true);
1220 }
1221 EXPORT_SYMBOL(kmemleak_ignore_phys);
1222
1223 /*
1224 * Update an object's checksum and return true if it was modified.
1225 */
1226 static bool update_checksum(struct kmemleak_object *object)
1227 {
1228 u32 old_csum = object->checksum;
1229
1230 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1231 return false;
1232
1233 kasan_disable_current();
1234 kcsan_disable_current();
1235 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1236 kasan_enable_current();
1237 kcsan_enable_current();
1238
1239 return object->checksum != old_csum;
1240 }
1241
1242 /*
1243 * Update an object's references. object->lock must be held by the caller.
1244 */
1245 static void update_refs(struct kmemleak_object *object)
1246 {
1247 if (!color_white(object)) {
1248 /* non-orphan, ignored or new */
1249 return;
1250 }
1251
1252 /*
1253 * Increase the object's reference count (number of pointers to the
1254 * memory block). If this count reaches the required minimum, the
1255 * object's color will become gray and it will be added to the
1256 * gray_list.
1257 */
1258 object->count++;
1259 if (color_gray(object)) {
1260 /* put_object() called when removing from gray_list */
1261 WARN_ON(!get_object(object));
1262 list_add_tail(&object->gray_list, &gray_list);
1263 }
1264 }
1265
1266 /*
1267 * Memory scanning is a long process and it needs to be interruptible. This
1268 * function checks whether such interrupt condition occurred.
1269 */
1270 static int scan_should_stop(void)
1271 {
1272 if (!kmemleak_enabled)
1273 return 1;
1274
1275 /*
1276 * This function may be called from either process or kthread context,
1277 * hence the need to check for both stop conditions.
1278 */
1279 if (current->mm)
1280 return signal_pending(current);
1281 else
1282 return kthread_should_stop();
1283
1284 return 0;
1285 }
1286
1287 /*
1288 * Scan a memory block (exclusive range) for valid pointers and add those
1289 * found to the gray list.
1290 */
1291 static void scan_block(void *_start, void *_end,
1292 struct kmemleak_object *scanned)
1293 {
1294 unsigned long *ptr;
1295 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1296 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1297 unsigned long flags;
1298 unsigned long untagged_ptr;
1299
1300 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1301 for (ptr = start; ptr < end; ptr++) {
1302 struct kmemleak_object *object;
1303 unsigned long pointer;
1304 unsigned long excess_ref;
1305
1306 if (scan_should_stop())
1307 break;
1308
1309 kasan_disable_current();
1310 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1311 kasan_enable_current();
1312
1313 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1314 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1315 continue;
1316
1317 /*
1318 * No need for get_object() here since we hold kmemleak_lock.
1319 * object->use_count cannot be dropped to 0 while the object
1320 * is still present in object_tree_root and object_list
1321 * (with updates protected by kmemleak_lock).
1322 */
1323 object = lookup_object(pointer, 1);
1324 if (!object)
1325 continue;
1326 if (object == scanned)
1327 /* self referenced, ignore */
1328 continue;
1329
1330 /*
1331 * Avoid the lockdep recursive warning on object->lock being
1332 * previously acquired in scan_object(). These locks are
1333 * enclosed by scan_mutex.
1334 */
1335 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1336 /* only pass surplus references (object already gray) */
1337 if (color_gray(object)) {
1338 excess_ref = object->excess_ref;
1339 /* no need for update_refs() if object already gray */
1340 } else {
1341 excess_ref = 0;
1342 update_refs(object);
1343 }
1344 raw_spin_unlock(&object->lock);
1345
1346 if (excess_ref) {
1347 object = lookup_object(excess_ref, 0);
1348 if (!object)
1349 continue;
1350 if (object == scanned)
1351 /* circular reference, ignore */
1352 continue;
1353 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1354 update_refs(object);
1355 raw_spin_unlock(&object->lock);
1356 }
1357 }
1358 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1359 }
1360
1361 /*
1362 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1363 */
1364 #ifdef CONFIG_SMP
1365 static void scan_large_block(void *start, void *end)
1366 {
1367 void *next;
1368
1369 while (start < end) {
1370 next = min(start + MAX_SCAN_SIZE, end);
1371 scan_block(start, next, NULL);
1372 start = next;
1373 cond_resched();
1374 }
1375 }
1376 #endif
1377
1378 /*
1379 * Scan a memory block corresponding to a kmemleak_object. A condition is
1380 * that object->use_count >= 1.
1381 */
1382 static void scan_object(struct kmemleak_object *object)
1383 {
1384 struct kmemleak_scan_area *area;
1385 unsigned long flags;
1386 void *obj_ptr;
1387
1388 /*
1389 * Once the object->lock is acquired, the corresponding memory block
1390 * cannot be freed (the same lock is acquired in delete_object).
1391 */
1392 raw_spin_lock_irqsave(&object->lock, flags);
1393 if (object->flags & OBJECT_NO_SCAN)
1394 goto out;
1395 if (!(object->flags & OBJECT_ALLOCATED))
1396 /* already freed object */
1397 goto out;
1398
1399 obj_ptr = object->flags & OBJECT_PHYS ?
1400 __va((phys_addr_t)object->pointer) :
1401 (void *)object->pointer;
1402
1403 if (hlist_empty(&object->area_list) ||
1404 object->flags & OBJECT_FULL_SCAN) {
1405 void *start = obj_ptr;
1406 void *end = obj_ptr + object->size;
1407 void *next;
1408
1409 do {
1410 next = min(start + MAX_SCAN_SIZE, end);
1411 scan_block(start, next, object);
1412
1413 start = next;
1414 if (start >= end)
1415 break;
1416
1417 raw_spin_unlock_irqrestore(&object->lock, flags);
1418 cond_resched();
1419 raw_spin_lock_irqsave(&object->lock, flags);
1420 } while (object->flags & OBJECT_ALLOCATED);
1421 } else
1422 hlist_for_each_entry(area, &object->area_list, node)
1423 scan_block((void *)area->start,
1424 (void *)(area->start + area->size),
1425 object);
1426 out:
1427 raw_spin_unlock_irqrestore(&object->lock, flags);
1428 }
1429
1430 /*
1431 * Scan the objects already referenced (gray objects). More objects will be
1432 * referenced and, if there are no memory leaks, all the objects are scanned.
1433 */
1434 static void scan_gray_list(void)
1435 {
1436 struct kmemleak_object *object, *tmp;
1437
1438 /*
1439 * The list traversal is safe for both tail additions and removals
1440 * from inside the loop. The kmemleak objects cannot be freed from
1441 * outside the loop because their use_count was incremented.
1442 */
1443 object = list_entry(gray_list.next, typeof(*object), gray_list);
1444 while (&object->gray_list != &gray_list) {
1445 cond_resched();
1446
1447 /* may add new objects to the list */
1448 if (!scan_should_stop())
1449 scan_object(object);
1450
1451 tmp = list_entry(object->gray_list.next, typeof(*object),
1452 gray_list);
1453
1454 /* remove the object from the list and release it */
1455 list_del(&object->gray_list);
1456 put_object(object);
1457
1458 object = tmp;
1459 }
1460 WARN_ON(!list_empty(&gray_list));
1461 }
1462
1463 /*
1464 * Conditionally call resched() in a object iteration loop while making sure
1465 * that the given object won't go away without RCU read lock by performing a
1466 * get_object() if !pinned.
1467 *
1468 * Return: false if can't do a cond_resched() due to get_object() failure
1469 * true otherwise
1470 */
1471 static bool kmemleak_cond_resched(struct kmemleak_object *object, bool pinned)
1472 {
1473 if (!pinned && !get_object(object))
1474 return false;
1475
1476 rcu_read_unlock();
1477 cond_resched();
1478 rcu_read_lock();
1479 if (!pinned)
1480 put_object(object);
1481 return true;
1482 }
1483
1484 /*
1485 * Scan data sections and all the referenced memory blocks allocated via the
1486 * kernel's standard allocators. This function must be called with the
1487 * scan_mutex held.
1488 */
1489 static void kmemleak_scan(void)
1490 {
1491 struct kmemleak_object *object;
1492 struct zone *zone;
1493 int __maybe_unused i;
1494 int new_leaks = 0;
1495 int loop_cnt = 0;
1496
1497 jiffies_last_scan = jiffies;
1498
1499 /* prepare the kmemleak_object's */
1500 rcu_read_lock();
1501 list_for_each_entry_rcu(object, &object_list, object_list) {
1502 bool obj_pinned = false;
1503
1504 raw_spin_lock_irq(&object->lock);
1505 #ifdef DEBUG
1506 /*
1507 * With a few exceptions there should be a maximum of
1508 * 1 reference to any object at this point.
1509 */
1510 if (atomic_read(&object->use_count) > 1) {
1511 pr_debug("object->use_count = %d\n",
1512 atomic_read(&object->use_count));
1513 dump_object_info(object);
1514 }
1515 #endif
1516
1517 /* ignore objects outside lowmem (paint them black) */
1518 if ((object->flags & OBJECT_PHYS) &&
1519 !(object->flags & OBJECT_NO_SCAN)) {
1520 unsigned long phys = object->pointer;
1521
1522 if (PHYS_PFN(phys) < min_low_pfn ||
1523 PHYS_PFN(phys + object->size) >= max_low_pfn)
1524 __paint_it(object, KMEMLEAK_BLACK);
1525 }
1526
1527 /* reset the reference count (whiten the object) */
1528 object->count = 0;
1529 if (color_gray(object) && get_object(object)) {
1530 list_add_tail(&object->gray_list, &gray_list);
1531 obj_pinned = true;
1532 }
1533
1534 raw_spin_unlock_irq(&object->lock);
1535
1536 /*
1537 * Do a cond_resched() every 64k objects to avoid soft lockup.
1538 */
1539 if (!(++loop_cnt & 0xffff) &&
1540 !kmemleak_cond_resched(object, obj_pinned))
1541 loop_cnt--; /* Try again on next object */
1542 }
1543 rcu_read_unlock();
1544
1545 #ifdef CONFIG_SMP
1546 /* per-cpu sections scanning */
1547 for_each_possible_cpu(i)
1548 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1549 __per_cpu_end + per_cpu_offset(i));
1550 #endif
1551
1552 /*
1553 * Struct page scanning for each node.
1554 */
1555 get_online_mems();
1556 for_each_populated_zone(zone) {
1557 unsigned long start_pfn = zone->zone_start_pfn;
1558 unsigned long end_pfn = zone_end_pfn(zone);
1559 unsigned long pfn;
1560
1561 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1562 struct page *page = pfn_to_online_page(pfn);
1563
1564 if (!page)
1565 continue;
1566
1567 /* only scan pages belonging to this zone */
1568 if (page_zone(page) != zone)
1569 continue;
1570 /* only scan if page is in use */
1571 if (page_count(page) == 0)
1572 continue;
1573 scan_block(page, page + 1, NULL);
1574 if (!(pfn & 63))
1575 cond_resched();
1576 }
1577 }
1578 put_online_mems();
1579
1580 /*
1581 * Scanning the task stacks (may introduce false negatives).
1582 */
1583 if (kmemleak_stack_scan) {
1584 struct task_struct *p, *g;
1585
1586 rcu_read_lock();
1587 for_each_process_thread(g, p) {
1588 void *stack = try_get_task_stack(p);
1589 if (stack) {
1590 scan_block(stack, stack + THREAD_SIZE, NULL);
1591 put_task_stack(p);
1592 }
1593 }
1594 rcu_read_unlock();
1595 }
1596
1597 /*
1598 * Scan the objects already referenced from the sections scanned
1599 * above.
1600 */
1601 scan_gray_list();
1602
1603 /*
1604 * Check for new or unreferenced objects modified since the previous
1605 * scan and color them gray until the next scan.
1606 */
1607 rcu_read_lock();
1608 loop_cnt = 0;
1609 list_for_each_entry_rcu(object, &object_list, object_list) {
1610 /*
1611 * Do a cond_resched() every 64k objects to avoid soft lockup.
1612 */
1613 if (!(++loop_cnt & 0xffff) &&
1614 !kmemleak_cond_resched(object, false))
1615 loop_cnt--; /* Try again on next object */
1616
1617 /*
1618 * This is racy but we can save the overhead of lock/unlock
1619 * calls. The missed objects, if any, should be caught in
1620 * the next scan.
1621 */
1622 if (!color_white(object))
1623 continue;
1624 raw_spin_lock_irq(&object->lock);
1625 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1626 && update_checksum(object) && get_object(object)) {
1627 /* color it gray temporarily */
1628 object->count = object->min_count;
1629 list_add_tail(&object->gray_list, &gray_list);
1630 }
1631 raw_spin_unlock_irq(&object->lock);
1632 }
1633 rcu_read_unlock();
1634
1635 /*
1636 * Re-scan the gray list for modified unreferenced objects.
1637 */
1638 scan_gray_list();
1639
1640 /*
1641 * If scanning was stopped do not report any new unreferenced objects.
1642 */
1643 if (scan_should_stop())
1644 return;
1645
1646 /*
1647 * Scanning result reporting.
1648 */
1649 rcu_read_lock();
1650 loop_cnt = 0;
1651 list_for_each_entry_rcu(object, &object_list, object_list) {
1652 /*
1653 * Do a cond_resched() every 64k objects to avoid soft lockup.
1654 */
1655 if (!(++loop_cnt & 0xffff) &&
1656 !kmemleak_cond_resched(object, false))
1657 loop_cnt--; /* Try again on next object */
1658
1659 /*
1660 * This is racy but we can save the overhead of lock/unlock
1661 * calls. The missed objects, if any, should be caught in
1662 * the next scan.
1663 */
1664 if (!color_white(object))
1665 continue;
1666 raw_spin_lock_irq(&object->lock);
1667 if (unreferenced_object(object) &&
1668 !(object->flags & OBJECT_REPORTED)) {
1669 object->flags |= OBJECT_REPORTED;
1670
1671 if (kmemleak_verbose)
1672 print_unreferenced(NULL, object);
1673
1674 new_leaks++;
1675 }
1676 raw_spin_unlock_irq(&object->lock);
1677 }
1678 rcu_read_unlock();
1679
1680 if (new_leaks) {
1681 kmemleak_found_leaks = true;
1682
1683 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1684 new_leaks);
1685 }
1686
1687 }
1688
1689 /*
1690 * Thread function performing automatic memory scanning. Unreferenced objects
1691 * at the end of a memory scan are reported but only the first time.
1692 */
1693 static int kmemleak_scan_thread(void *arg)
1694 {
1695 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1696
1697 pr_info("Automatic memory scanning thread started\n");
1698 set_user_nice(current, 10);
1699
1700 /*
1701 * Wait before the first scan to allow the system to fully initialize.
1702 */
1703 if (first_run) {
1704 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1705 first_run = 0;
1706 while (timeout && !kthread_should_stop())
1707 timeout = schedule_timeout_interruptible(timeout);
1708 }
1709
1710 while (!kthread_should_stop()) {
1711 signed long timeout = READ_ONCE(jiffies_scan_wait);
1712
1713 mutex_lock(&scan_mutex);
1714 kmemleak_scan();
1715 mutex_unlock(&scan_mutex);
1716
1717 /* wait before the next scan */
1718 while (timeout && !kthread_should_stop())
1719 timeout = schedule_timeout_interruptible(timeout);
1720 }
1721
1722 pr_info("Automatic memory scanning thread ended\n");
1723
1724 return 0;
1725 }
1726
1727 /*
1728 * Start the automatic memory scanning thread. This function must be called
1729 * with the scan_mutex held.
1730 */
1731 static void start_scan_thread(void)
1732 {
1733 if (scan_thread)
1734 return;
1735 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1736 if (IS_ERR(scan_thread)) {
1737 pr_warn("Failed to create the scan thread\n");
1738 scan_thread = NULL;
1739 }
1740 }
1741
1742 /*
1743 * Stop the automatic memory scanning thread.
1744 */
1745 static void stop_scan_thread(void)
1746 {
1747 if (scan_thread) {
1748 kthread_stop(scan_thread);
1749 scan_thread = NULL;
1750 }
1751 }
1752
1753 /*
1754 * Iterate over the object_list and return the first valid object at or after
1755 * the required position with its use_count incremented. The function triggers
1756 * a memory scanning when the pos argument points to the first position.
1757 */
1758 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1759 {
1760 struct kmemleak_object *object;
1761 loff_t n = *pos;
1762 int err;
1763
1764 err = mutex_lock_interruptible(&scan_mutex);
1765 if (err < 0)
1766 return ERR_PTR(err);
1767
1768 rcu_read_lock();
1769 list_for_each_entry_rcu(object, &object_list, object_list) {
1770 if (n-- > 0)
1771 continue;
1772 if (get_object(object))
1773 goto out;
1774 }
1775 object = NULL;
1776 out:
1777 return object;
1778 }
1779
1780 /*
1781 * Return the next object in the object_list. The function decrements the
1782 * use_count of the previous object and increases that of the next one.
1783 */
1784 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1785 {
1786 struct kmemleak_object *prev_obj = v;
1787 struct kmemleak_object *next_obj = NULL;
1788 struct kmemleak_object *obj = prev_obj;
1789
1790 ++(*pos);
1791
1792 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1793 if (get_object(obj)) {
1794 next_obj = obj;
1795 break;
1796 }
1797 }
1798
1799 put_object(prev_obj);
1800 return next_obj;
1801 }
1802
1803 /*
1804 * Decrement the use_count of the last object required, if any.
1805 */
1806 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1807 {
1808 if (!IS_ERR(v)) {
1809 /*
1810 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1811 * waiting was interrupted, so only release it if !IS_ERR.
1812 */
1813 rcu_read_unlock();
1814 mutex_unlock(&scan_mutex);
1815 if (v)
1816 put_object(v);
1817 }
1818 }
1819
1820 /*
1821 * Print the information for an unreferenced object to the seq file.
1822 */
1823 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1824 {
1825 struct kmemleak_object *object = v;
1826 unsigned long flags;
1827
1828 raw_spin_lock_irqsave(&object->lock, flags);
1829 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1830 print_unreferenced(seq, object);
1831 raw_spin_unlock_irqrestore(&object->lock, flags);
1832 return 0;
1833 }
1834
1835 static const struct seq_operations kmemleak_seq_ops = {
1836 .start = kmemleak_seq_start,
1837 .next = kmemleak_seq_next,
1838 .stop = kmemleak_seq_stop,
1839 .show = kmemleak_seq_show,
1840 };
1841
1842 static int kmemleak_open(struct inode *inode, struct file *file)
1843 {
1844 return seq_open(file, &kmemleak_seq_ops);
1845 }
1846
1847 static int dump_str_object_info(const char *str)
1848 {
1849 unsigned long flags;
1850 struct kmemleak_object *object;
1851 unsigned long addr;
1852
1853 if (kstrtoul(str, 0, &addr))
1854 return -EINVAL;
1855 object = find_and_get_object(addr, 0);
1856 if (!object) {
1857 pr_info("Unknown object at 0x%08lx\n", addr);
1858 return -EINVAL;
1859 }
1860
1861 raw_spin_lock_irqsave(&object->lock, flags);
1862 dump_object_info(object);
1863 raw_spin_unlock_irqrestore(&object->lock, flags);
1864
1865 put_object(object);
1866 return 0;
1867 }
1868
1869 /*
1870 * We use grey instead of black to ensure we can do future scans on the same
1871 * objects. If we did not do future scans these black objects could
1872 * potentially contain references to newly allocated objects in the future and
1873 * we'd end up with false positives.
1874 */
1875 static void kmemleak_clear(void)
1876 {
1877 struct kmemleak_object *object;
1878
1879 rcu_read_lock();
1880 list_for_each_entry_rcu(object, &object_list, object_list) {
1881 raw_spin_lock_irq(&object->lock);
1882 if ((object->flags & OBJECT_REPORTED) &&
1883 unreferenced_object(object))
1884 __paint_it(object, KMEMLEAK_GREY);
1885 raw_spin_unlock_irq(&object->lock);
1886 }
1887 rcu_read_unlock();
1888
1889 kmemleak_found_leaks = false;
1890 }
1891
1892 static void __kmemleak_do_cleanup(void);
1893
1894 /*
1895 * File write operation to configure kmemleak at run-time. The following
1896 * commands can be written to the /sys/kernel/debug/kmemleak file:
1897 * off - disable kmemleak (irreversible)
1898 * stack=on - enable the task stacks scanning
1899 * stack=off - disable the tasks stacks scanning
1900 * scan=on - start the automatic memory scanning thread
1901 * scan=off - stop the automatic memory scanning thread
1902 * scan=... - set the automatic memory scanning period in seconds (0 to
1903 * disable it)
1904 * scan - trigger a memory scan
1905 * clear - mark all current reported unreferenced kmemleak objects as
1906 * grey to ignore printing them, or free all kmemleak objects
1907 * if kmemleak has been disabled.
1908 * dump=... - dump information about the object found at the given address
1909 */
1910 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1911 size_t size, loff_t *ppos)
1912 {
1913 char buf[64];
1914 int buf_size;
1915 int ret;
1916
1917 buf_size = min(size, (sizeof(buf) - 1));
1918 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1919 return -EFAULT;
1920 buf[buf_size] = 0;
1921
1922 ret = mutex_lock_interruptible(&scan_mutex);
1923 if (ret < 0)
1924 return ret;
1925
1926 if (strncmp(buf, "clear", 5) == 0) {
1927 if (kmemleak_enabled)
1928 kmemleak_clear();
1929 else
1930 __kmemleak_do_cleanup();
1931 goto out;
1932 }
1933
1934 if (!kmemleak_enabled) {
1935 ret = -EPERM;
1936 goto out;
1937 }
1938
1939 if (strncmp(buf, "off", 3) == 0)
1940 kmemleak_disable();
1941 else if (strncmp(buf, "stack=on", 8) == 0)
1942 kmemleak_stack_scan = 1;
1943 else if (strncmp(buf, "stack=off", 9) == 0)
1944 kmemleak_stack_scan = 0;
1945 else if (strncmp(buf, "scan=on", 7) == 0)
1946 start_scan_thread();
1947 else if (strncmp(buf, "scan=off", 8) == 0)
1948 stop_scan_thread();
1949 else if (strncmp(buf, "scan=", 5) == 0) {
1950 unsigned secs;
1951 unsigned long msecs;
1952
1953 ret = kstrtouint(buf + 5, 0, &secs);
1954 if (ret < 0)
1955 goto out;
1956
1957 msecs = secs * MSEC_PER_SEC;
1958 if (msecs > UINT_MAX)
1959 msecs = UINT_MAX;
1960
1961 stop_scan_thread();
1962 if (msecs) {
1963 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1964 start_scan_thread();
1965 }
1966 } else if (strncmp(buf, "scan", 4) == 0)
1967 kmemleak_scan();
1968 else if (strncmp(buf, "dump=", 5) == 0)
1969 ret = dump_str_object_info(buf + 5);
1970 else
1971 ret = -EINVAL;
1972
1973 out:
1974 mutex_unlock(&scan_mutex);
1975 if (ret < 0)
1976 return ret;
1977
1978 /* ignore the rest of the buffer, only one command at a time */
1979 *ppos += size;
1980 return size;
1981 }
1982
1983 static const struct file_operations kmemleak_fops = {
1984 .owner = THIS_MODULE,
1985 .open = kmemleak_open,
1986 .read = seq_read,
1987 .write = kmemleak_write,
1988 .llseek = seq_lseek,
1989 .release = seq_release,
1990 };
1991
1992 static void __kmemleak_do_cleanup(void)
1993 {
1994 struct kmemleak_object *object, *tmp;
1995
1996 /*
1997 * Kmemleak has already been disabled, no need for RCU list traversal
1998 * or kmemleak_lock held.
1999 */
2000 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2001 __remove_object(object);
2002 __delete_object(object);
2003 }
2004 }
2005
2006 /*
2007 * Stop the memory scanning thread and free the kmemleak internal objects if
2008 * no previous scan thread (otherwise, kmemleak may still have some useful
2009 * information on memory leaks).
2010 */
2011 static void kmemleak_do_cleanup(struct work_struct *work)
2012 {
2013 stop_scan_thread();
2014
2015 mutex_lock(&scan_mutex);
2016 /*
2017 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2018 * longer track object freeing. Ordering of the scan thread stopping and
2019 * the memory accesses below is guaranteed by the kthread_stop()
2020 * function.
2021 */
2022 kmemleak_free_enabled = 0;
2023 mutex_unlock(&scan_mutex);
2024
2025 if (!kmemleak_found_leaks)
2026 __kmemleak_do_cleanup();
2027 else
2028 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2029 }
2030
2031 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2032
2033 /*
2034 * Disable kmemleak. No memory allocation/freeing will be traced once this
2035 * function is called. Disabling kmemleak is an irreversible operation.
2036 */
2037 static void kmemleak_disable(void)
2038 {
2039 /* atomically check whether it was already invoked */
2040 if (cmpxchg(&kmemleak_error, 0, 1))
2041 return;
2042
2043 /* stop any memory operation tracing */
2044 kmemleak_enabled = 0;
2045
2046 /* check whether it is too early for a kernel thread */
2047 if (kmemleak_initialized)
2048 schedule_work(&cleanup_work);
2049 else
2050 kmemleak_free_enabled = 0;
2051
2052 pr_info("Kernel memory leak detector disabled\n");
2053 }
2054
2055 /*
2056 * Allow boot-time kmemleak disabling (enabled by default).
2057 */
2058 static int __init kmemleak_boot_config(char *str)
2059 {
2060 if (!str)
2061 return -EINVAL;
2062 if (strcmp(str, "off") == 0)
2063 kmemleak_disable();
2064 else if (strcmp(str, "on") == 0)
2065 kmemleak_skip_disable = 1;
2066 else
2067 return -EINVAL;
2068 return 0;
2069 }
2070 early_param("kmemleak", kmemleak_boot_config);
2071
2072 /*
2073 * Kmemleak initialization.
2074 */
2075 void __init kmemleak_init(void)
2076 {
2077 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2078 if (!kmemleak_skip_disable) {
2079 kmemleak_disable();
2080 return;
2081 }
2082 #endif
2083
2084 if (kmemleak_error)
2085 return;
2086
2087 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2088 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2089
2090 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2091 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2092
2093 /* register the data/bss sections */
2094 create_object((unsigned long)_sdata, _edata - _sdata,
2095 KMEMLEAK_GREY, GFP_ATOMIC);
2096 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2097 KMEMLEAK_GREY, GFP_ATOMIC);
2098 /* only register .data..ro_after_init if not within .data */
2099 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2100 create_object((unsigned long)__start_ro_after_init,
2101 __end_ro_after_init - __start_ro_after_init,
2102 KMEMLEAK_GREY, GFP_ATOMIC);
2103 }
2104
2105 /*
2106 * Late initialization function.
2107 */
2108 static int __init kmemleak_late_init(void)
2109 {
2110 kmemleak_initialized = 1;
2111
2112 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2113
2114 if (kmemleak_error) {
2115 /*
2116 * Some error occurred and kmemleak was disabled. There is a
2117 * small chance that kmemleak_disable() was called immediately
2118 * after setting kmemleak_initialized and we may end up with
2119 * two clean-up threads but serialized by scan_mutex.
2120 */
2121 schedule_work(&cleanup_work);
2122 return -ENOMEM;
2123 }
2124
2125 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2126 mutex_lock(&scan_mutex);
2127 start_scan_thread();
2128 mutex_unlock(&scan_mutex);
2129 }
2130
2131 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2132 mem_pool_free_count);
2133
2134 return 0;
2135 }
2136 late_initcall(kmemleak_late_init);