]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/kmemleak.c
Merge tag 'drm-misc-fixes-2019-06-13' of git://anongit.freedesktop.org/drm/drm-misc...
[thirdparty/linux.git] / mm / kmemleak.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (rwlock): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
19 * blocks. The object_tree_root is a red black tree used to look-up
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
26 * the metadata (e.g. count) are protected by this lock. Note that some
27 * members of this structure may be protected by other means (atomic or
28 * kmemleak_lock). This lock is also held when scanning the corresponding
29 * memory block to avoid the kernel freeing it via the kmemleak_free()
30 * callback. This is less heavyweight than holding a global lock like
31 * kmemleak_lock during scanning
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
41 * pointer
42 *
43 * Locks and mutexes are acquired/nested in the following order:
44 *
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46 *
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48 * regions.
49 *
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
55 * structure.
56 */
57
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98
99 #include <linux/kasan.h>
100 #include <linux/kmemleak.h>
101 #include <linux/memory_hotplug.h>
102
103 /*
104 * Kmemleak configuration and common defines.
105 */
106 #define MAX_TRACE 16 /* stack trace length */
107 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
108 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
109 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
110 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
111
112 #define BYTES_PER_POINTER sizeof(void *)
113
114 /* GFP bitmask for kmemleak internal allocations */
115 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 __GFP_NORETRY | __GFP_NOMEMALLOC | \
117 __GFP_NOWARN | __GFP_NOFAIL)
118
119 /* scanning area inside a memory block */
120 struct kmemleak_scan_area {
121 struct hlist_node node;
122 unsigned long start;
123 size_t size;
124 };
125
126 #define KMEMLEAK_GREY 0
127 #define KMEMLEAK_BLACK -1
128
129 /*
130 * Structure holding the metadata for each allocated memory block.
131 * Modifications to such objects should be made while holding the
132 * object->lock. Insertions or deletions from object_list, gray_list or
133 * rb_node are already protected by the corresponding locks or mutex (see
134 * the notes on locking above). These objects are reference-counted
135 * (use_count) and freed using the RCU mechanism.
136 */
137 struct kmemleak_object {
138 spinlock_t lock;
139 unsigned int flags; /* object status flags */
140 struct list_head object_list;
141 struct list_head gray_list;
142 struct rb_node rb_node;
143 struct rcu_head rcu; /* object_list lockless traversal */
144 /* object usage count; object freed when use_count == 0 */
145 atomic_t use_count;
146 unsigned long pointer;
147 size_t size;
148 /* pass surplus references to this pointer */
149 unsigned long excess_ref;
150 /* minimum number of a pointers found before it is considered leak */
151 int min_count;
152 /* the total number of pointers found pointing to this object */
153 int count;
154 /* checksum for detecting modified objects */
155 u32 checksum;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long trace[MAX_TRACE];
159 unsigned int trace_len;
160 unsigned long jiffies; /* creation timestamp */
161 pid_t pid; /* pid of the current task */
162 char comm[TASK_COMM_LEN]; /* executable name */
163 };
164
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED (1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED (1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN (1 << 2)
171
172 #define HEX_PREFIX " "
173 /* number of bytes to print per line; must be 16 or 32 */
174 #define HEX_ROW_SIZE 16
175 /* number of bytes to print at a time (1, 2, 4, 8) */
176 #define HEX_GROUP_SIZE 1
177 /* include ASCII after the hex output */
178 #define HEX_ASCII 1
179 /* max number of lines to be printed */
180 #define HEX_MAX_LINES 2
181
182 /* the list of all allocated objects */
183 static LIST_HEAD(object_list);
184 /* the list of gray-colored objects (see color_gray comment below) */
185 static LIST_HEAD(gray_list);
186 /* search tree for object boundaries */
187 static struct rb_root object_tree_root = RB_ROOT;
188 /* rw_lock protecting the access to object_list and object_tree_root */
189 static DEFINE_RWLOCK(kmemleak_lock);
190
191 /* allocation caches for kmemleak internal data */
192 static struct kmem_cache *object_cache;
193 static struct kmem_cache *scan_area_cache;
194
195 /* set if tracing memory operations is enabled */
196 static int kmemleak_enabled;
197 /* same as above but only for the kmemleak_free() callback */
198 static int kmemleak_free_enabled;
199 /* set in the late_initcall if there were no errors */
200 static int kmemleak_initialized;
201 /* enables or disables early logging of the memory operations */
202 static int kmemleak_early_log = 1;
203 /* set if a kmemleak warning was issued */
204 static int kmemleak_warning;
205 /* set if a fatal kmemleak error has occurred */
206 static int kmemleak_error;
207
208 /* minimum and maximum address that may be valid pointers */
209 static unsigned long min_addr = ULONG_MAX;
210 static unsigned long max_addr;
211
212 static struct task_struct *scan_thread;
213 /* used to avoid reporting of recently allocated objects */
214 static unsigned long jiffies_min_age;
215 static unsigned long jiffies_last_scan;
216 /* delay between automatic memory scannings */
217 static signed long jiffies_scan_wait;
218 /* enables or disables the task stacks scanning */
219 static int kmemleak_stack_scan = 1;
220 /* protects the memory scanning, parameters and debug/kmemleak file access */
221 static DEFINE_MUTEX(scan_mutex);
222 /* setting kmemleak=on, will set this var, skipping the disable */
223 static int kmemleak_skip_disable;
224 /* If there are leaks that can be reported */
225 static bool kmemleak_found_leaks;
226
227 static bool kmemleak_verbose;
228 module_param_named(verbose, kmemleak_verbose, bool, 0600);
229
230 /*
231 * Early object allocation/freeing logging. Kmemleak is initialized after the
232 * kernel allocator. However, both the kernel allocator and kmemleak may
233 * allocate memory blocks which need to be tracked. Kmemleak defines an
234 * arbitrary buffer to hold the allocation/freeing information before it is
235 * fully initialized.
236 */
237
238 /* kmemleak operation type for early logging */
239 enum {
240 KMEMLEAK_ALLOC,
241 KMEMLEAK_ALLOC_PERCPU,
242 KMEMLEAK_FREE,
243 KMEMLEAK_FREE_PART,
244 KMEMLEAK_FREE_PERCPU,
245 KMEMLEAK_NOT_LEAK,
246 KMEMLEAK_IGNORE,
247 KMEMLEAK_SCAN_AREA,
248 KMEMLEAK_NO_SCAN,
249 KMEMLEAK_SET_EXCESS_REF
250 };
251
252 /*
253 * Structure holding the information passed to kmemleak callbacks during the
254 * early logging.
255 */
256 struct early_log {
257 int op_type; /* kmemleak operation type */
258 int min_count; /* minimum reference count */
259 const void *ptr; /* allocated/freed memory block */
260 union {
261 size_t size; /* memory block size */
262 unsigned long excess_ref; /* surplus reference passing */
263 };
264 unsigned long trace[MAX_TRACE]; /* stack trace */
265 unsigned int trace_len; /* stack trace length */
266 };
267
268 /* early logging buffer and current position */
269 static struct early_log
270 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
271 static int crt_early_log __initdata;
272
273 static void kmemleak_disable(void);
274
275 /*
276 * Print a warning and dump the stack trace.
277 */
278 #define kmemleak_warn(x...) do { \
279 pr_warn(x); \
280 dump_stack(); \
281 kmemleak_warning = 1; \
282 } while (0)
283
284 /*
285 * Macro invoked when a serious kmemleak condition occurred and cannot be
286 * recovered from. Kmemleak will be disabled and further allocation/freeing
287 * tracing no longer available.
288 */
289 #define kmemleak_stop(x...) do { \
290 kmemleak_warn(x); \
291 kmemleak_disable(); \
292 } while (0)
293
294 #define warn_or_seq_printf(seq, fmt, ...) do { \
295 if (seq) \
296 seq_printf(seq, fmt, ##__VA_ARGS__); \
297 else \
298 pr_warn(fmt, ##__VA_ARGS__); \
299 } while (0)
300
301 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
302 int rowsize, int groupsize, const void *buf,
303 size_t len, bool ascii)
304 {
305 if (seq)
306 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
307 buf, len, ascii);
308 else
309 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
310 rowsize, groupsize, buf, len, ascii);
311 }
312
313 /*
314 * Printing of the objects hex dump to the seq file. The number of lines to be
315 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
316 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
317 * with the object->lock held.
318 */
319 static void hex_dump_object(struct seq_file *seq,
320 struct kmemleak_object *object)
321 {
322 const u8 *ptr = (const u8 *)object->pointer;
323 size_t len;
324
325 /* limit the number of lines to HEX_MAX_LINES */
326 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
327
328 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
329 kasan_disable_current();
330 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
331 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
332 kasan_enable_current();
333 }
334
335 /*
336 * Object colors, encoded with count and min_count:
337 * - white - orphan object, not enough references to it (count < min_count)
338 * - gray - not orphan, not marked as false positive (min_count == 0) or
339 * sufficient references to it (count >= min_count)
340 * - black - ignore, it doesn't contain references (e.g. text section)
341 * (min_count == -1). No function defined for this color.
342 * Newly created objects don't have any color assigned (object->count == -1)
343 * before the next memory scan when they become white.
344 */
345 static bool color_white(const struct kmemleak_object *object)
346 {
347 return object->count != KMEMLEAK_BLACK &&
348 object->count < object->min_count;
349 }
350
351 static bool color_gray(const struct kmemleak_object *object)
352 {
353 return object->min_count != KMEMLEAK_BLACK &&
354 object->count >= object->min_count;
355 }
356
357 /*
358 * Objects are considered unreferenced only if their color is white, they have
359 * not be deleted and have a minimum age to avoid false positives caused by
360 * pointers temporarily stored in CPU registers.
361 */
362 static bool unreferenced_object(struct kmemleak_object *object)
363 {
364 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
365 time_before_eq(object->jiffies + jiffies_min_age,
366 jiffies_last_scan);
367 }
368
369 /*
370 * Printing of the unreferenced objects information to the seq file. The
371 * print_unreferenced function must be called with the object->lock held.
372 */
373 static void print_unreferenced(struct seq_file *seq,
374 struct kmemleak_object *object)
375 {
376 int i;
377 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
378
379 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
380 object->pointer, object->size);
381 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
382 object->comm, object->pid, object->jiffies,
383 msecs_age / 1000, msecs_age % 1000);
384 hex_dump_object(seq, object);
385 warn_or_seq_printf(seq, " backtrace:\n");
386
387 for (i = 0; i < object->trace_len; i++) {
388 void *ptr = (void *)object->trace[i];
389 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
390 }
391 }
392
393 /*
394 * Print the kmemleak_object information. This function is used mainly for
395 * debugging special cases when kmemleak operations. It must be called with
396 * the object->lock held.
397 */
398 static void dump_object_info(struct kmemleak_object *object)
399 {
400 pr_notice("Object 0x%08lx (size %zu):\n",
401 object->pointer, object->size);
402 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
403 object->comm, object->pid, object->jiffies);
404 pr_notice(" min_count = %d\n", object->min_count);
405 pr_notice(" count = %d\n", object->count);
406 pr_notice(" flags = 0x%x\n", object->flags);
407 pr_notice(" checksum = %u\n", object->checksum);
408 pr_notice(" backtrace:\n");
409 stack_trace_print(object->trace, object->trace_len, 4);
410 }
411
412 /*
413 * Look-up a memory block metadata (kmemleak_object) in the object search
414 * tree based on a pointer value. If alias is 0, only values pointing to the
415 * beginning of the memory block are allowed. The kmemleak_lock must be held
416 * when calling this function.
417 */
418 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
419 {
420 struct rb_node *rb = object_tree_root.rb_node;
421
422 while (rb) {
423 struct kmemleak_object *object =
424 rb_entry(rb, struct kmemleak_object, rb_node);
425 if (ptr < object->pointer)
426 rb = object->rb_node.rb_left;
427 else if (object->pointer + object->size <= ptr)
428 rb = object->rb_node.rb_right;
429 else if (object->pointer == ptr || alias)
430 return object;
431 else {
432 kmemleak_warn("Found object by alias at 0x%08lx\n",
433 ptr);
434 dump_object_info(object);
435 break;
436 }
437 }
438 return NULL;
439 }
440
441 /*
442 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
443 * that once an object's use_count reached 0, the RCU freeing was already
444 * registered and the object should no longer be used. This function must be
445 * called under the protection of rcu_read_lock().
446 */
447 static int get_object(struct kmemleak_object *object)
448 {
449 return atomic_inc_not_zero(&object->use_count);
450 }
451
452 /*
453 * RCU callback to free a kmemleak_object.
454 */
455 static void free_object_rcu(struct rcu_head *rcu)
456 {
457 struct hlist_node *tmp;
458 struct kmemleak_scan_area *area;
459 struct kmemleak_object *object =
460 container_of(rcu, struct kmemleak_object, rcu);
461
462 /*
463 * Once use_count is 0 (guaranteed by put_object), there is no other
464 * code accessing this object, hence no need for locking.
465 */
466 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
467 hlist_del(&area->node);
468 kmem_cache_free(scan_area_cache, area);
469 }
470 kmem_cache_free(object_cache, object);
471 }
472
473 /*
474 * Decrement the object use_count. Once the count is 0, free the object using
475 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
476 * delete_object() path, the delayed RCU freeing ensures that there is no
477 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
478 * is also possible.
479 */
480 static void put_object(struct kmemleak_object *object)
481 {
482 if (!atomic_dec_and_test(&object->use_count))
483 return;
484
485 /* should only get here after delete_object was called */
486 WARN_ON(object->flags & OBJECT_ALLOCATED);
487
488 call_rcu(&object->rcu, free_object_rcu);
489 }
490
491 /*
492 * Look up an object in the object search tree and increase its use_count.
493 */
494 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
495 {
496 unsigned long flags;
497 struct kmemleak_object *object;
498
499 rcu_read_lock();
500 read_lock_irqsave(&kmemleak_lock, flags);
501 object = lookup_object(ptr, alias);
502 read_unlock_irqrestore(&kmemleak_lock, flags);
503
504 /* check whether the object is still available */
505 if (object && !get_object(object))
506 object = NULL;
507 rcu_read_unlock();
508
509 return object;
510 }
511
512 /*
513 * Look up an object in the object search tree and remove it from both
514 * object_tree_root and object_list. The returned object's use_count should be
515 * at least 1, as initially set by create_object().
516 */
517 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
518 {
519 unsigned long flags;
520 struct kmemleak_object *object;
521
522 write_lock_irqsave(&kmemleak_lock, flags);
523 object = lookup_object(ptr, alias);
524 if (object) {
525 rb_erase(&object->rb_node, &object_tree_root);
526 list_del_rcu(&object->object_list);
527 }
528 write_unlock_irqrestore(&kmemleak_lock, flags);
529
530 return object;
531 }
532
533 /*
534 * Save stack trace to the given array of MAX_TRACE size.
535 */
536 static int __save_stack_trace(unsigned long *trace)
537 {
538 return stack_trace_save(trace, MAX_TRACE, 2);
539 }
540
541 /*
542 * Create the metadata (struct kmemleak_object) corresponding to an allocated
543 * memory block and add it to the object_list and object_tree_root.
544 */
545 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
546 int min_count, gfp_t gfp)
547 {
548 unsigned long flags;
549 struct kmemleak_object *object, *parent;
550 struct rb_node **link, *rb_parent;
551 unsigned long untagged_ptr;
552
553 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
554 if (!object) {
555 pr_warn("Cannot allocate a kmemleak_object structure\n");
556 kmemleak_disable();
557 return NULL;
558 }
559
560 INIT_LIST_HEAD(&object->object_list);
561 INIT_LIST_HEAD(&object->gray_list);
562 INIT_HLIST_HEAD(&object->area_list);
563 spin_lock_init(&object->lock);
564 atomic_set(&object->use_count, 1);
565 object->flags = OBJECT_ALLOCATED;
566 object->pointer = ptr;
567 object->size = size;
568 object->excess_ref = 0;
569 object->min_count = min_count;
570 object->count = 0; /* white color initially */
571 object->jiffies = jiffies;
572 object->checksum = 0;
573
574 /* task information */
575 if (in_irq()) {
576 object->pid = 0;
577 strncpy(object->comm, "hardirq", sizeof(object->comm));
578 } else if (in_softirq()) {
579 object->pid = 0;
580 strncpy(object->comm, "softirq", sizeof(object->comm));
581 } else {
582 object->pid = current->pid;
583 /*
584 * There is a small chance of a race with set_task_comm(),
585 * however using get_task_comm() here may cause locking
586 * dependency issues with current->alloc_lock. In the worst
587 * case, the command line is not correct.
588 */
589 strncpy(object->comm, current->comm, sizeof(object->comm));
590 }
591
592 /* kernel backtrace */
593 object->trace_len = __save_stack_trace(object->trace);
594
595 write_lock_irqsave(&kmemleak_lock, flags);
596
597 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
598 min_addr = min(min_addr, untagged_ptr);
599 max_addr = max(max_addr, untagged_ptr + size);
600 link = &object_tree_root.rb_node;
601 rb_parent = NULL;
602 while (*link) {
603 rb_parent = *link;
604 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
605 if (ptr + size <= parent->pointer)
606 link = &parent->rb_node.rb_left;
607 else if (parent->pointer + parent->size <= ptr)
608 link = &parent->rb_node.rb_right;
609 else {
610 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
611 ptr);
612 /*
613 * No need for parent->lock here since "parent" cannot
614 * be freed while the kmemleak_lock is held.
615 */
616 dump_object_info(parent);
617 kmem_cache_free(object_cache, object);
618 object = NULL;
619 goto out;
620 }
621 }
622 rb_link_node(&object->rb_node, rb_parent, link);
623 rb_insert_color(&object->rb_node, &object_tree_root);
624
625 list_add_tail_rcu(&object->object_list, &object_list);
626 out:
627 write_unlock_irqrestore(&kmemleak_lock, flags);
628 return object;
629 }
630
631 /*
632 * Mark the object as not allocated and schedule RCU freeing via put_object().
633 */
634 static void __delete_object(struct kmemleak_object *object)
635 {
636 unsigned long flags;
637
638 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
639 WARN_ON(atomic_read(&object->use_count) < 1);
640
641 /*
642 * Locking here also ensures that the corresponding memory block
643 * cannot be freed when it is being scanned.
644 */
645 spin_lock_irqsave(&object->lock, flags);
646 object->flags &= ~OBJECT_ALLOCATED;
647 spin_unlock_irqrestore(&object->lock, flags);
648 put_object(object);
649 }
650
651 /*
652 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
653 * delete it.
654 */
655 static void delete_object_full(unsigned long ptr)
656 {
657 struct kmemleak_object *object;
658
659 object = find_and_remove_object(ptr, 0);
660 if (!object) {
661 #ifdef DEBUG
662 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
663 ptr);
664 #endif
665 return;
666 }
667 __delete_object(object);
668 }
669
670 /*
671 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
672 * delete it. If the memory block is partially freed, the function may create
673 * additional metadata for the remaining parts of the block.
674 */
675 static void delete_object_part(unsigned long ptr, size_t size)
676 {
677 struct kmemleak_object *object;
678 unsigned long start, end;
679
680 object = find_and_remove_object(ptr, 1);
681 if (!object) {
682 #ifdef DEBUG
683 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
684 ptr, size);
685 #endif
686 return;
687 }
688
689 /*
690 * Create one or two objects that may result from the memory block
691 * split. Note that partial freeing is only done by free_bootmem() and
692 * this happens before kmemleak_init() is called. The path below is
693 * only executed during early log recording in kmemleak_init(), so
694 * GFP_KERNEL is enough.
695 */
696 start = object->pointer;
697 end = object->pointer + object->size;
698 if (ptr > start)
699 create_object(start, ptr - start, object->min_count,
700 GFP_KERNEL);
701 if (ptr + size < end)
702 create_object(ptr + size, end - ptr - size, object->min_count,
703 GFP_KERNEL);
704
705 __delete_object(object);
706 }
707
708 static void __paint_it(struct kmemleak_object *object, int color)
709 {
710 object->min_count = color;
711 if (color == KMEMLEAK_BLACK)
712 object->flags |= OBJECT_NO_SCAN;
713 }
714
715 static void paint_it(struct kmemleak_object *object, int color)
716 {
717 unsigned long flags;
718
719 spin_lock_irqsave(&object->lock, flags);
720 __paint_it(object, color);
721 spin_unlock_irqrestore(&object->lock, flags);
722 }
723
724 static void paint_ptr(unsigned long ptr, int color)
725 {
726 struct kmemleak_object *object;
727
728 object = find_and_get_object(ptr, 0);
729 if (!object) {
730 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
731 ptr,
732 (color == KMEMLEAK_GREY) ? "Grey" :
733 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
734 return;
735 }
736 paint_it(object, color);
737 put_object(object);
738 }
739
740 /*
741 * Mark an object permanently as gray-colored so that it can no longer be
742 * reported as a leak. This is used in general to mark a false positive.
743 */
744 static void make_gray_object(unsigned long ptr)
745 {
746 paint_ptr(ptr, KMEMLEAK_GREY);
747 }
748
749 /*
750 * Mark the object as black-colored so that it is ignored from scans and
751 * reporting.
752 */
753 static void make_black_object(unsigned long ptr)
754 {
755 paint_ptr(ptr, KMEMLEAK_BLACK);
756 }
757
758 /*
759 * Add a scanning area to the object. If at least one such area is added,
760 * kmemleak will only scan these ranges rather than the whole memory block.
761 */
762 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
763 {
764 unsigned long flags;
765 struct kmemleak_object *object;
766 struct kmemleak_scan_area *area;
767
768 object = find_and_get_object(ptr, 1);
769 if (!object) {
770 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
771 ptr);
772 return;
773 }
774
775 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
776 if (!area) {
777 pr_warn("Cannot allocate a scan area\n");
778 goto out;
779 }
780
781 spin_lock_irqsave(&object->lock, flags);
782 if (size == SIZE_MAX) {
783 size = object->pointer + object->size - ptr;
784 } else if (ptr + size > object->pointer + object->size) {
785 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
786 dump_object_info(object);
787 kmem_cache_free(scan_area_cache, area);
788 goto out_unlock;
789 }
790
791 INIT_HLIST_NODE(&area->node);
792 area->start = ptr;
793 area->size = size;
794
795 hlist_add_head(&area->node, &object->area_list);
796 out_unlock:
797 spin_unlock_irqrestore(&object->lock, flags);
798 out:
799 put_object(object);
800 }
801
802 /*
803 * Any surplus references (object already gray) to 'ptr' are passed to
804 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
805 * vm_struct may be used as an alternative reference to the vmalloc'ed object
806 * (see free_thread_stack()).
807 */
808 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
809 {
810 unsigned long flags;
811 struct kmemleak_object *object;
812
813 object = find_and_get_object(ptr, 0);
814 if (!object) {
815 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
816 ptr);
817 return;
818 }
819
820 spin_lock_irqsave(&object->lock, flags);
821 object->excess_ref = excess_ref;
822 spin_unlock_irqrestore(&object->lock, flags);
823 put_object(object);
824 }
825
826 /*
827 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
828 * pointer. Such object will not be scanned by kmemleak but references to it
829 * are searched.
830 */
831 static void object_no_scan(unsigned long ptr)
832 {
833 unsigned long flags;
834 struct kmemleak_object *object;
835
836 object = find_and_get_object(ptr, 0);
837 if (!object) {
838 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
839 return;
840 }
841
842 spin_lock_irqsave(&object->lock, flags);
843 object->flags |= OBJECT_NO_SCAN;
844 spin_unlock_irqrestore(&object->lock, flags);
845 put_object(object);
846 }
847
848 /*
849 * Log an early kmemleak_* call to the early_log buffer. These calls will be
850 * processed later once kmemleak is fully initialized.
851 */
852 static void __init log_early(int op_type, const void *ptr, size_t size,
853 int min_count)
854 {
855 unsigned long flags;
856 struct early_log *log;
857
858 if (kmemleak_error) {
859 /* kmemleak stopped recording, just count the requests */
860 crt_early_log++;
861 return;
862 }
863
864 if (crt_early_log >= ARRAY_SIZE(early_log)) {
865 crt_early_log++;
866 kmemleak_disable();
867 return;
868 }
869
870 /*
871 * There is no need for locking since the kernel is still in UP mode
872 * at this stage. Disabling the IRQs is enough.
873 */
874 local_irq_save(flags);
875 log = &early_log[crt_early_log];
876 log->op_type = op_type;
877 log->ptr = ptr;
878 log->size = size;
879 log->min_count = min_count;
880 log->trace_len = __save_stack_trace(log->trace);
881 crt_early_log++;
882 local_irq_restore(flags);
883 }
884
885 /*
886 * Log an early allocated block and populate the stack trace.
887 */
888 static void early_alloc(struct early_log *log)
889 {
890 struct kmemleak_object *object;
891 unsigned long flags;
892 int i;
893
894 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
895 return;
896
897 /*
898 * RCU locking needed to ensure object is not freed via put_object().
899 */
900 rcu_read_lock();
901 object = create_object((unsigned long)log->ptr, log->size,
902 log->min_count, GFP_ATOMIC);
903 if (!object)
904 goto out;
905 spin_lock_irqsave(&object->lock, flags);
906 for (i = 0; i < log->trace_len; i++)
907 object->trace[i] = log->trace[i];
908 object->trace_len = log->trace_len;
909 spin_unlock_irqrestore(&object->lock, flags);
910 out:
911 rcu_read_unlock();
912 }
913
914 /*
915 * Log an early allocated block and populate the stack trace.
916 */
917 static void early_alloc_percpu(struct early_log *log)
918 {
919 unsigned int cpu;
920 const void __percpu *ptr = log->ptr;
921
922 for_each_possible_cpu(cpu) {
923 log->ptr = per_cpu_ptr(ptr, cpu);
924 early_alloc(log);
925 }
926 }
927
928 /**
929 * kmemleak_alloc - register a newly allocated object
930 * @ptr: pointer to beginning of the object
931 * @size: size of the object
932 * @min_count: minimum number of references to this object. If during memory
933 * scanning a number of references less than @min_count is found,
934 * the object is reported as a memory leak. If @min_count is 0,
935 * the object is never reported as a leak. If @min_count is -1,
936 * the object is ignored (not scanned and not reported as a leak)
937 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
938 *
939 * This function is called from the kernel allocators when a new object
940 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
941 */
942 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
943 gfp_t gfp)
944 {
945 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
946
947 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
948 create_object((unsigned long)ptr, size, min_count, gfp);
949 else if (kmemleak_early_log)
950 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
951 }
952 EXPORT_SYMBOL_GPL(kmemleak_alloc);
953
954 /**
955 * kmemleak_alloc_percpu - register a newly allocated __percpu object
956 * @ptr: __percpu pointer to beginning of the object
957 * @size: size of the object
958 * @gfp: flags used for kmemleak internal memory allocations
959 *
960 * This function is called from the kernel percpu allocator when a new object
961 * (memory block) is allocated (alloc_percpu).
962 */
963 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
964 gfp_t gfp)
965 {
966 unsigned int cpu;
967
968 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
969
970 /*
971 * Percpu allocations are only scanned and not reported as leaks
972 * (min_count is set to 0).
973 */
974 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
975 for_each_possible_cpu(cpu)
976 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
977 size, 0, gfp);
978 else if (kmemleak_early_log)
979 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
980 }
981 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
982
983 /**
984 * kmemleak_vmalloc - register a newly vmalloc'ed object
985 * @area: pointer to vm_struct
986 * @size: size of the object
987 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
988 *
989 * This function is called from the vmalloc() kernel allocator when a new
990 * object (memory block) is allocated.
991 */
992 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
993 {
994 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
995
996 /*
997 * A min_count = 2 is needed because vm_struct contains a reference to
998 * the virtual address of the vmalloc'ed block.
999 */
1000 if (kmemleak_enabled) {
1001 create_object((unsigned long)area->addr, size, 2, gfp);
1002 object_set_excess_ref((unsigned long)area,
1003 (unsigned long)area->addr);
1004 } else if (kmemleak_early_log) {
1005 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1006 /* reusing early_log.size for storing area->addr */
1007 log_early(KMEMLEAK_SET_EXCESS_REF,
1008 area, (unsigned long)area->addr, 0);
1009 }
1010 }
1011 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1012
1013 /**
1014 * kmemleak_free - unregister a previously registered object
1015 * @ptr: pointer to beginning of the object
1016 *
1017 * This function is called from the kernel allocators when an object (memory
1018 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1019 */
1020 void __ref kmemleak_free(const void *ptr)
1021 {
1022 pr_debug("%s(0x%p)\n", __func__, ptr);
1023
1024 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1025 delete_object_full((unsigned long)ptr);
1026 else if (kmemleak_early_log)
1027 log_early(KMEMLEAK_FREE, ptr, 0, 0);
1028 }
1029 EXPORT_SYMBOL_GPL(kmemleak_free);
1030
1031 /**
1032 * kmemleak_free_part - partially unregister a previously registered object
1033 * @ptr: pointer to the beginning or inside the object. This also
1034 * represents the start of the range to be freed
1035 * @size: size to be unregistered
1036 *
1037 * This function is called when only a part of a memory block is freed
1038 * (usually from the bootmem allocator).
1039 */
1040 void __ref kmemleak_free_part(const void *ptr, size_t size)
1041 {
1042 pr_debug("%s(0x%p)\n", __func__, ptr);
1043
1044 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1045 delete_object_part((unsigned long)ptr, size);
1046 else if (kmemleak_early_log)
1047 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1048 }
1049 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1050
1051 /**
1052 * kmemleak_free_percpu - unregister a previously registered __percpu object
1053 * @ptr: __percpu pointer to beginning of the object
1054 *
1055 * This function is called from the kernel percpu allocator when an object
1056 * (memory block) is freed (free_percpu).
1057 */
1058 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1059 {
1060 unsigned int cpu;
1061
1062 pr_debug("%s(0x%p)\n", __func__, ptr);
1063
1064 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1065 for_each_possible_cpu(cpu)
1066 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1067 cpu));
1068 else if (kmemleak_early_log)
1069 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1070 }
1071 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1072
1073 /**
1074 * kmemleak_update_trace - update object allocation stack trace
1075 * @ptr: pointer to beginning of the object
1076 *
1077 * Override the object allocation stack trace for cases where the actual
1078 * allocation place is not always useful.
1079 */
1080 void __ref kmemleak_update_trace(const void *ptr)
1081 {
1082 struct kmemleak_object *object;
1083 unsigned long flags;
1084
1085 pr_debug("%s(0x%p)\n", __func__, ptr);
1086
1087 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1088 return;
1089
1090 object = find_and_get_object((unsigned long)ptr, 1);
1091 if (!object) {
1092 #ifdef DEBUG
1093 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1094 ptr);
1095 #endif
1096 return;
1097 }
1098
1099 spin_lock_irqsave(&object->lock, flags);
1100 object->trace_len = __save_stack_trace(object->trace);
1101 spin_unlock_irqrestore(&object->lock, flags);
1102
1103 put_object(object);
1104 }
1105 EXPORT_SYMBOL(kmemleak_update_trace);
1106
1107 /**
1108 * kmemleak_not_leak - mark an allocated object as false positive
1109 * @ptr: pointer to beginning of the object
1110 *
1111 * Calling this function on an object will cause the memory block to no longer
1112 * be reported as leak and always be scanned.
1113 */
1114 void __ref kmemleak_not_leak(const void *ptr)
1115 {
1116 pr_debug("%s(0x%p)\n", __func__, ptr);
1117
1118 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1119 make_gray_object((unsigned long)ptr);
1120 else if (kmemleak_early_log)
1121 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1122 }
1123 EXPORT_SYMBOL(kmemleak_not_leak);
1124
1125 /**
1126 * kmemleak_ignore - ignore an allocated object
1127 * @ptr: pointer to beginning of the object
1128 *
1129 * Calling this function on an object will cause the memory block to be
1130 * ignored (not scanned and not reported as a leak). This is usually done when
1131 * it is known that the corresponding block is not a leak and does not contain
1132 * any references to other allocated memory blocks.
1133 */
1134 void __ref kmemleak_ignore(const void *ptr)
1135 {
1136 pr_debug("%s(0x%p)\n", __func__, ptr);
1137
1138 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1139 make_black_object((unsigned long)ptr);
1140 else if (kmemleak_early_log)
1141 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1142 }
1143 EXPORT_SYMBOL(kmemleak_ignore);
1144
1145 /**
1146 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1147 * @ptr: pointer to beginning or inside the object. This also
1148 * represents the start of the scan area
1149 * @size: size of the scan area
1150 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1151 *
1152 * This function is used when it is known that only certain parts of an object
1153 * contain references to other objects. Kmemleak will only scan these areas
1154 * reducing the number false negatives.
1155 */
1156 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1157 {
1158 pr_debug("%s(0x%p)\n", __func__, ptr);
1159
1160 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1161 add_scan_area((unsigned long)ptr, size, gfp);
1162 else if (kmemleak_early_log)
1163 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1164 }
1165 EXPORT_SYMBOL(kmemleak_scan_area);
1166
1167 /**
1168 * kmemleak_no_scan - do not scan an allocated object
1169 * @ptr: pointer to beginning of the object
1170 *
1171 * This function notifies kmemleak not to scan the given memory block. Useful
1172 * in situations where it is known that the given object does not contain any
1173 * references to other objects. Kmemleak will not scan such objects reducing
1174 * the number of false negatives.
1175 */
1176 void __ref kmemleak_no_scan(const void *ptr)
1177 {
1178 pr_debug("%s(0x%p)\n", __func__, ptr);
1179
1180 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1181 object_no_scan((unsigned long)ptr);
1182 else if (kmemleak_early_log)
1183 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1184 }
1185 EXPORT_SYMBOL(kmemleak_no_scan);
1186
1187 /**
1188 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1189 * address argument
1190 * @phys: physical address of the object
1191 * @size: size of the object
1192 * @min_count: minimum number of references to this object.
1193 * See kmemleak_alloc()
1194 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1195 */
1196 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1197 gfp_t gfp)
1198 {
1199 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1200 kmemleak_alloc(__va(phys), size, min_count, gfp);
1201 }
1202 EXPORT_SYMBOL(kmemleak_alloc_phys);
1203
1204 /**
1205 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1206 * physical address argument
1207 * @phys: physical address if the beginning or inside an object. This
1208 * also represents the start of the range to be freed
1209 * @size: size to be unregistered
1210 */
1211 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1212 {
1213 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1214 kmemleak_free_part(__va(phys), size);
1215 }
1216 EXPORT_SYMBOL(kmemleak_free_part_phys);
1217
1218 /**
1219 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1220 * address argument
1221 * @phys: physical address of the object
1222 */
1223 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1224 {
1225 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1226 kmemleak_not_leak(__va(phys));
1227 }
1228 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1229
1230 /**
1231 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1232 * address argument
1233 * @phys: physical address of the object
1234 */
1235 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1236 {
1237 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1238 kmemleak_ignore(__va(phys));
1239 }
1240 EXPORT_SYMBOL(kmemleak_ignore_phys);
1241
1242 /*
1243 * Update an object's checksum and return true if it was modified.
1244 */
1245 static bool update_checksum(struct kmemleak_object *object)
1246 {
1247 u32 old_csum = object->checksum;
1248
1249 kasan_disable_current();
1250 object->checksum = crc32(0, (void *)object->pointer, object->size);
1251 kasan_enable_current();
1252
1253 return object->checksum != old_csum;
1254 }
1255
1256 /*
1257 * Update an object's references. object->lock must be held by the caller.
1258 */
1259 static void update_refs(struct kmemleak_object *object)
1260 {
1261 if (!color_white(object)) {
1262 /* non-orphan, ignored or new */
1263 return;
1264 }
1265
1266 /*
1267 * Increase the object's reference count (number of pointers to the
1268 * memory block). If this count reaches the required minimum, the
1269 * object's color will become gray and it will be added to the
1270 * gray_list.
1271 */
1272 object->count++;
1273 if (color_gray(object)) {
1274 /* put_object() called when removing from gray_list */
1275 WARN_ON(!get_object(object));
1276 list_add_tail(&object->gray_list, &gray_list);
1277 }
1278 }
1279
1280 /*
1281 * Memory scanning is a long process and it needs to be interruptable. This
1282 * function checks whether such interrupt condition occurred.
1283 */
1284 static int scan_should_stop(void)
1285 {
1286 if (!kmemleak_enabled)
1287 return 1;
1288
1289 /*
1290 * This function may be called from either process or kthread context,
1291 * hence the need to check for both stop conditions.
1292 */
1293 if (current->mm)
1294 return signal_pending(current);
1295 else
1296 return kthread_should_stop();
1297
1298 return 0;
1299 }
1300
1301 /*
1302 * Scan a memory block (exclusive range) for valid pointers and add those
1303 * found to the gray list.
1304 */
1305 static void scan_block(void *_start, void *_end,
1306 struct kmemleak_object *scanned)
1307 {
1308 unsigned long *ptr;
1309 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1310 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1311 unsigned long flags;
1312 unsigned long untagged_ptr;
1313
1314 read_lock_irqsave(&kmemleak_lock, flags);
1315 for (ptr = start; ptr < end; ptr++) {
1316 struct kmemleak_object *object;
1317 unsigned long pointer;
1318 unsigned long excess_ref;
1319
1320 if (scan_should_stop())
1321 break;
1322
1323 kasan_disable_current();
1324 pointer = *ptr;
1325 kasan_enable_current();
1326
1327 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1328 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1329 continue;
1330
1331 /*
1332 * No need for get_object() here since we hold kmemleak_lock.
1333 * object->use_count cannot be dropped to 0 while the object
1334 * is still present in object_tree_root and object_list
1335 * (with updates protected by kmemleak_lock).
1336 */
1337 object = lookup_object(pointer, 1);
1338 if (!object)
1339 continue;
1340 if (object == scanned)
1341 /* self referenced, ignore */
1342 continue;
1343
1344 /*
1345 * Avoid the lockdep recursive warning on object->lock being
1346 * previously acquired in scan_object(). These locks are
1347 * enclosed by scan_mutex.
1348 */
1349 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1350 /* only pass surplus references (object already gray) */
1351 if (color_gray(object)) {
1352 excess_ref = object->excess_ref;
1353 /* no need for update_refs() if object already gray */
1354 } else {
1355 excess_ref = 0;
1356 update_refs(object);
1357 }
1358 spin_unlock(&object->lock);
1359
1360 if (excess_ref) {
1361 object = lookup_object(excess_ref, 0);
1362 if (!object)
1363 continue;
1364 if (object == scanned)
1365 /* circular reference, ignore */
1366 continue;
1367 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1368 update_refs(object);
1369 spin_unlock(&object->lock);
1370 }
1371 }
1372 read_unlock_irqrestore(&kmemleak_lock, flags);
1373 }
1374
1375 /*
1376 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1377 */
1378 #ifdef CONFIG_SMP
1379 static void scan_large_block(void *start, void *end)
1380 {
1381 void *next;
1382
1383 while (start < end) {
1384 next = min(start + MAX_SCAN_SIZE, end);
1385 scan_block(start, next, NULL);
1386 start = next;
1387 cond_resched();
1388 }
1389 }
1390 #endif
1391
1392 /*
1393 * Scan a memory block corresponding to a kmemleak_object. A condition is
1394 * that object->use_count >= 1.
1395 */
1396 static void scan_object(struct kmemleak_object *object)
1397 {
1398 struct kmemleak_scan_area *area;
1399 unsigned long flags;
1400
1401 /*
1402 * Once the object->lock is acquired, the corresponding memory block
1403 * cannot be freed (the same lock is acquired in delete_object).
1404 */
1405 spin_lock_irqsave(&object->lock, flags);
1406 if (object->flags & OBJECT_NO_SCAN)
1407 goto out;
1408 if (!(object->flags & OBJECT_ALLOCATED))
1409 /* already freed object */
1410 goto out;
1411 if (hlist_empty(&object->area_list)) {
1412 void *start = (void *)object->pointer;
1413 void *end = (void *)(object->pointer + object->size);
1414 void *next;
1415
1416 do {
1417 next = min(start + MAX_SCAN_SIZE, end);
1418 scan_block(start, next, object);
1419
1420 start = next;
1421 if (start >= end)
1422 break;
1423
1424 spin_unlock_irqrestore(&object->lock, flags);
1425 cond_resched();
1426 spin_lock_irqsave(&object->lock, flags);
1427 } while (object->flags & OBJECT_ALLOCATED);
1428 } else
1429 hlist_for_each_entry(area, &object->area_list, node)
1430 scan_block((void *)area->start,
1431 (void *)(area->start + area->size),
1432 object);
1433 out:
1434 spin_unlock_irqrestore(&object->lock, flags);
1435 }
1436
1437 /*
1438 * Scan the objects already referenced (gray objects). More objects will be
1439 * referenced and, if there are no memory leaks, all the objects are scanned.
1440 */
1441 static void scan_gray_list(void)
1442 {
1443 struct kmemleak_object *object, *tmp;
1444
1445 /*
1446 * The list traversal is safe for both tail additions and removals
1447 * from inside the loop. The kmemleak objects cannot be freed from
1448 * outside the loop because their use_count was incremented.
1449 */
1450 object = list_entry(gray_list.next, typeof(*object), gray_list);
1451 while (&object->gray_list != &gray_list) {
1452 cond_resched();
1453
1454 /* may add new objects to the list */
1455 if (!scan_should_stop())
1456 scan_object(object);
1457
1458 tmp = list_entry(object->gray_list.next, typeof(*object),
1459 gray_list);
1460
1461 /* remove the object from the list and release it */
1462 list_del(&object->gray_list);
1463 put_object(object);
1464
1465 object = tmp;
1466 }
1467 WARN_ON(!list_empty(&gray_list));
1468 }
1469
1470 /*
1471 * Scan data sections and all the referenced memory blocks allocated via the
1472 * kernel's standard allocators. This function must be called with the
1473 * scan_mutex held.
1474 */
1475 static void kmemleak_scan(void)
1476 {
1477 unsigned long flags;
1478 struct kmemleak_object *object;
1479 int i;
1480 int new_leaks = 0;
1481
1482 jiffies_last_scan = jiffies;
1483
1484 /* prepare the kmemleak_object's */
1485 rcu_read_lock();
1486 list_for_each_entry_rcu(object, &object_list, object_list) {
1487 spin_lock_irqsave(&object->lock, flags);
1488 #ifdef DEBUG
1489 /*
1490 * With a few exceptions there should be a maximum of
1491 * 1 reference to any object at this point.
1492 */
1493 if (atomic_read(&object->use_count) > 1) {
1494 pr_debug("object->use_count = %d\n",
1495 atomic_read(&object->use_count));
1496 dump_object_info(object);
1497 }
1498 #endif
1499 /* reset the reference count (whiten the object) */
1500 object->count = 0;
1501 if (color_gray(object) && get_object(object))
1502 list_add_tail(&object->gray_list, &gray_list);
1503
1504 spin_unlock_irqrestore(&object->lock, flags);
1505 }
1506 rcu_read_unlock();
1507
1508 #ifdef CONFIG_SMP
1509 /* per-cpu sections scanning */
1510 for_each_possible_cpu(i)
1511 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1512 __per_cpu_end + per_cpu_offset(i));
1513 #endif
1514
1515 /*
1516 * Struct page scanning for each node.
1517 */
1518 get_online_mems();
1519 for_each_online_node(i) {
1520 unsigned long start_pfn = node_start_pfn(i);
1521 unsigned long end_pfn = node_end_pfn(i);
1522 unsigned long pfn;
1523
1524 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1525 struct page *page = pfn_to_online_page(pfn);
1526
1527 if (!page)
1528 continue;
1529
1530 /* only scan pages belonging to this node */
1531 if (page_to_nid(page) != i)
1532 continue;
1533 /* only scan if page is in use */
1534 if (page_count(page) == 0)
1535 continue;
1536 scan_block(page, page + 1, NULL);
1537 if (!(pfn & 63))
1538 cond_resched();
1539 }
1540 }
1541 put_online_mems();
1542
1543 /*
1544 * Scanning the task stacks (may introduce false negatives).
1545 */
1546 if (kmemleak_stack_scan) {
1547 struct task_struct *p, *g;
1548
1549 read_lock(&tasklist_lock);
1550 do_each_thread(g, p) {
1551 void *stack = try_get_task_stack(p);
1552 if (stack) {
1553 scan_block(stack, stack + THREAD_SIZE, NULL);
1554 put_task_stack(p);
1555 }
1556 } while_each_thread(g, p);
1557 read_unlock(&tasklist_lock);
1558 }
1559
1560 /*
1561 * Scan the objects already referenced from the sections scanned
1562 * above.
1563 */
1564 scan_gray_list();
1565
1566 /*
1567 * Check for new or unreferenced objects modified since the previous
1568 * scan and color them gray until the next scan.
1569 */
1570 rcu_read_lock();
1571 list_for_each_entry_rcu(object, &object_list, object_list) {
1572 spin_lock_irqsave(&object->lock, flags);
1573 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1574 && update_checksum(object) && get_object(object)) {
1575 /* color it gray temporarily */
1576 object->count = object->min_count;
1577 list_add_tail(&object->gray_list, &gray_list);
1578 }
1579 spin_unlock_irqrestore(&object->lock, flags);
1580 }
1581 rcu_read_unlock();
1582
1583 /*
1584 * Re-scan the gray list for modified unreferenced objects.
1585 */
1586 scan_gray_list();
1587
1588 /*
1589 * If scanning was stopped do not report any new unreferenced objects.
1590 */
1591 if (scan_should_stop())
1592 return;
1593
1594 /*
1595 * Scanning result reporting.
1596 */
1597 rcu_read_lock();
1598 list_for_each_entry_rcu(object, &object_list, object_list) {
1599 spin_lock_irqsave(&object->lock, flags);
1600 if (unreferenced_object(object) &&
1601 !(object->flags & OBJECT_REPORTED)) {
1602 object->flags |= OBJECT_REPORTED;
1603
1604 if (kmemleak_verbose)
1605 print_unreferenced(NULL, object);
1606
1607 new_leaks++;
1608 }
1609 spin_unlock_irqrestore(&object->lock, flags);
1610 }
1611 rcu_read_unlock();
1612
1613 if (new_leaks) {
1614 kmemleak_found_leaks = true;
1615
1616 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1617 new_leaks);
1618 }
1619
1620 }
1621
1622 /*
1623 * Thread function performing automatic memory scanning. Unreferenced objects
1624 * at the end of a memory scan are reported but only the first time.
1625 */
1626 static int kmemleak_scan_thread(void *arg)
1627 {
1628 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1629
1630 pr_info("Automatic memory scanning thread started\n");
1631 set_user_nice(current, 10);
1632
1633 /*
1634 * Wait before the first scan to allow the system to fully initialize.
1635 */
1636 if (first_run) {
1637 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1638 first_run = 0;
1639 while (timeout && !kthread_should_stop())
1640 timeout = schedule_timeout_interruptible(timeout);
1641 }
1642
1643 while (!kthread_should_stop()) {
1644 signed long timeout = jiffies_scan_wait;
1645
1646 mutex_lock(&scan_mutex);
1647 kmemleak_scan();
1648 mutex_unlock(&scan_mutex);
1649
1650 /* wait before the next scan */
1651 while (timeout && !kthread_should_stop())
1652 timeout = schedule_timeout_interruptible(timeout);
1653 }
1654
1655 pr_info("Automatic memory scanning thread ended\n");
1656
1657 return 0;
1658 }
1659
1660 /*
1661 * Start the automatic memory scanning thread. This function must be called
1662 * with the scan_mutex held.
1663 */
1664 static void start_scan_thread(void)
1665 {
1666 if (scan_thread)
1667 return;
1668 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1669 if (IS_ERR(scan_thread)) {
1670 pr_warn("Failed to create the scan thread\n");
1671 scan_thread = NULL;
1672 }
1673 }
1674
1675 /*
1676 * Stop the automatic memory scanning thread.
1677 */
1678 static void stop_scan_thread(void)
1679 {
1680 if (scan_thread) {
1681 kthread_stop(scan_thread);
1682 scan_thread = NULL;
1683 }
1684 }
1685
1686 /*
1687 * Iterate over the object_list and return the first valid object at or after
1688 * the required position with its use_count incremented. The function triggers
1689 * a memory scanning when the pos argument points to the first position.
1690 */
1691 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1692 {
1693 struct kmemleak_object *object;
1694 loff_t n = *pos;
1695 int err;
1696
1697 err = mutex_lock_interruptible(&scan_mutex);
1698 if (err < 0)
1699 return ERR_PTR(err);
1700
1701 rcu_read_lock();
1702 list_for_each_entry_rcu(object, &object_list, object_list) {
1703 if (n-- > 0)
1704 continue;
1705 if (get_object(object))
1706 goto out;
1707 }
1708 object = NULL;
1709 out:
1710 return object;
1711 }
1712
1713 /*
1714 * Return the next object in the object_list. The function decrements the
1715 * use_count of the previous object and increases that of the next one.
1716 */
1717 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1718 {
1719 struct kmemleak_object *prev_obj = v;
1720 struct kmemleak_object *next_obj = NULL;
1721 struct kmemleak_object *obj = prev_obj;
1722
1723 ++(*pos);
1724
1725 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1726 if (get_object(obj)) {
1727 next_obj = obj;
1728 break;
1729 }
1730 }
1731
1732 put_object(prev_obj);
1733 return next_obj;
1734 }
1735
1736 /*
1737 * Decrement the use_count of the last object required, if any.
1738 */
1739 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1740 {
1741 if (!IS_ERR(v)) {
1742 /*
1743 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1744 * waiting was interrupted, so only release it if !IS_ERR.
1745 */
1746 rcu_read_unlock();
1747 mutex_unlock(&scan_mutex);
1748 if (v)
1749 put_object(v);
1750 }
1751 }
1752
1753 /*
1754 * Print the information for an unreferenced object to the seq file.
1755 */
1756 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1757 {
1758 struct kmemleak_object *object = v;
1759 unsigned long flags;
1760
1761 spin_lock_irqsave(&object->lock, flags);
1762 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1763 print_unreferenced(seq, object);
1764 spin_unlock_irqrestore(&object->lock, flags);
1765 return 0;
1766 }
1767
1768 static const struct seq_operations kmemleak_seq_ops = {
1769 .start = kmemleak_seq_start,
1770 .next = kmemleak_seq_next,
1771 .stop = kmemleak_seq_stop,
1772 .show = kmemleak_seq_show,
1773 };
1774
1775 static int kmemleak_open(struct inode *inode, struct file *file)
1776 {
1777 return seq_open(file, &kmemleak_seq_ops);
1778 }
1779
1780 static int dump_str_object_info(const char *str)
1781 {
1782 unsigned long flags;
1783 struct kmemleak_object *object;
1784 unsigned long addr;
1785
1786 if (kstrtoul(str, 0, &addr))
1787 return -EINVAL;
1788 object = find_and_get_object(addr, 0);
1789 if (!object) {
1790 pr_info("Unknown object at 0x%08lx\n", addr);
1791 return -EINVAL;
1792 }
1793
1794 spin_lock_irqsave(&object->lock, flags);
1795 dump_object_info(object);
1796 spin_unlock_irqrestore(&object->lock, flags);
1797
1798 put_object(object);
1799 return 0;
1800 }
1801
1802 /*
1803 * We use grey instead of black to ensure we can do future scans on the same
1804 * objects. If we did not do future scans these black objects could
1805 * potentially contain references to newly allocated objects in the future and
1806 * we'd end up with false positives.
1807 */
1808 static void kmemleak_clear(void)
1809 {
1810 struct kmemleak_object *object;
1811 unsigned long flags;
1812
1813 rcu_read_lock();
1814 list_for_each_entry_rcu(object, &object_list, object_list) {
1815 spin_lock_irqsave(&object->lock, flags);
1816 if ((object->flags & OBJECT_REPORTED) &&
1817 unreferenced_object(object))
1818 __paint_it(object, KMEMLEAK_GREY);
1819 spin_unlock_irqrestore(&object->lock, flags);
1820 }
1821 rcu_read_unlock();
1822
1823 kmemleak_found_leaks = false;
1824 }
1825
1826 static void __kmemleak_do_cleanup(void);
1827
1828 /*
1829 * File write operation to configure kmemleak at run-time. The following
1830 * commands can be written to the /sys/kernel/debug/kmemleak file:
1831 * off - disable kmemleak (irreversible)
1832 * stack=on - enable the task stacks scanning
1833 * stack=off - disable the tasks stacks scanning
1834 * scan=on - start the automatic memory scanning thread
1835 * scan=off - stop the automatic memory scanning thread
1836 * scan=... - set the automatic memory scanning period in seconds (0 to
1837 * disable it)
1838 * scan - trigger a memory scan
1839 * clear - mark all current reported unreferenced kmemleak objects as
1840 * grey to ignore printing them, or free all kmemleak objects
1841 * if kmemleak has been disabled.
1842 * dump=... - dump information about the object found at the given address
1843 */
1844 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1845 size_t size, loff_t *ppos)
1846 {
1847 char buf[64];
1848 int buf_size;
1849 int ret;
1850
1851 buf_size = min(size, (sizeof(buf) - 1));
1852 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1853 return -EFAULT;
1854 buf[buf_size] = 0;
1855
1856 ret = mutex_lock_interruptible(&scan_mutex);
1857 if (ret < 0)
1858 return ret;
1859
1860 if (strncmp(buf, "clear", 5) == 0) {
1861 if (kmemleak_enabled)
1862 kmemleak_clear();
1863 else
1864 __kmemleak_do_cleanup();
1865 goto out;
1866 }
1867
1868 if (!kmemleak_enabled) {
1869 ret = -EBUSY;
1870 goto out;
1871 }
1872
1873 if (strncmp(buf, "off", 3) == 0)
1874 kmemleak_disable();
1875 else if (strncmp(buf, "stack=on", 8) == 0)
1876 kmemleak_stack_scan = 1;
1877 else if (strncmp(buf, "stack=off", 9) == 0)
1878 kmemleak_stack_scan = 0;
1879 else if (strncmp(buf, "scan=on", 7) == 0)
1880 start_scan_thread();
1881 else if (strncmp(buf, "scan=off", 8) == 0)
1882 stop_scan_thread();
1883 else if (strncmp(buf, "scan=", 5) == 0) {
1884 unsigned long secs;
1885
1886 ret = kstrtoul(buf + 5, 0, &secs);
1887 if (ret < 0)
1888 goto out;
1889 stop_scan_thread();
1890 if (secs) {
1891 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1892 start_scan_thread();
1893 }
1894 } else if (strncmp(buf, "scan", 4) == 0)
1895 kmemleak_scan();
1896 else if (strncmp(buf, "dump=", 5) == 0)
1897 ret = dump_str_object_info(buf + 5);
1898 else
1899 ret = -EINVAL;
1900
1901 out:
1902 mutex_unlock(&scan_mutex);
1903 if (ret < 0)
1904 return ret;
1905
1906 /* ignore the rest of the buffer, only one command at a time */
1907 *ppos += size;
1908 return size;
1909 }
1910
1911 static const struct file_operations kmemleak_fops = {
1912 .owner = THIS_MODULE,
1913 .open = kmemleak_open,
1914 .read = seq_read,
1915 .write = kmemleak_write,
1916 .llseek = seq_lseek,
1917 .release = seq_release,
1918 };
1919
1920 static void __kmemleak_do_cleanup(void)
1921 {
1922 struct kmemleak_object *object;
1923
1924 rcu_read_lock();
1925 list_for_each_entry_rcu(object, &object_list, object_list)
1926 delete_object_full(object->pointer);
1927 rcu_read_unlock();
1928 }
1929
1930 /*
1931 * Stop the memory scanning thread and free the kmemleak internal objects if
1932 * no previous scan thread (otherwise, kmemleak may still have some useful
1933 * information on memory leaks).
1934 */
1935 static void kmemleak_do_cleanup(struct work_struct *work)
1936 {
1937 stop_scan_thread();
1938
1939 mutex_lock(&scan_mutex);
1940 /*
1941 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1942 * longer track object freeing. Ordering of the scan thread stopping and
1943 * the memory accesses below is guaranteed by the kthread_stop()
1944 * function.
1945 */
1946 kmemleak_free_enabled = 0;
1947 mutex_unlock(&scan_mutex);
1948
1949 if (!kmemleak_found_leaks)
1950 __kmemleak_do_cleanup();
1951 else
1952 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1953 }
1954
1955 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1956
1957 /*
1958 * Disable kmemleak. No memory allocation/freeing will be traced once this
1959 * function is called. Disabling kmemleak is an irreversible operation.
1960 */
1961 static void kmemleak_disable(void)
1962 {
1963 /* atomically check whether it was already invoked */
1964 if (cmpxchg(&kmemleak_error, 0, 1))
1965 return;
1966
1967 /* stop any memory operation tracing */
1968 kmemleak_enabled = 0;
1969
1970 /* check whether it is too early for a kernel thread */
1971 if (kmemleak_initialized)
1972 schedule_work(&cleanup_work);
1973 else
1974 kmemleak_free_enabled = 0;
1975
1976 pr_info("Kernel memory leak detector disabled\n");
1977 }
1978
1979 /*
1980 * Allow boot-time kmemleak disabling (enabled by default).
1981 */
1982 static int __init kmemleak_boot_config(char *str)
1983 {
1984 if (!str)
1985 return -EINVAL;
1986 if (strcmp(str, "off") == 0)
1987 kmemleak_disable();
1988 else if (strcmp(str, "on") == 0)
1989 kmemleak_skip_disable = 1;
1990 else
1991 return -EINVAL;
1992 return 0;
1993 }
1994 early_param("kmemleak", kmemleak_boot_config);
1995
1996 static void __init print_log_trace(struct early_log *log)
1997 {
1998 pr_notice("Early log backtrace:\n");
1999 stack_trace_print(log->trace, log->trace_len, 2);
2000 }
2001
2002 /*
2003 * Kmemleak initialization.
2004 */
2005 void __init kmemleak_init(void)
2006 {
2007 int i;
2008 unsigned long flags;
2009
2010 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2011 if (!kmemleak_skip_disable) {
2012 kmemleak_early_log = 0;
2013 kmemleak_disable();
2014 return;
2015 }
2016 #endif
2017
2018 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2019 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2020
2021 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2022 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2023
2024 if (crt_early_log > ARRAY_SIZE(early_log))
2025 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2026 crt_early_log);
2027
2028 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2029 local_irq_save(flags);
2030 kmemleak_early_log = 0;
2031 if (kmemleak_error) {
2032 local_irq_restore(flags);
2033 return;
2034 } else {
2035 kmemleak_enabled = 1;
2036 kmemleak_free_enabled = 1;
2037 }
2038 local_irq_restore(flags);
2039
2040 /* register the data/bss sections */
2041 create_object((unsigned long)_sdata, _edata - _sdata,
2042 KMEMLEAK_GREY, GFP_ATOMIC);
2043 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2044 KMEMLEAK_GREY, GFP_ATOMIC);
2045 /* only register .data..ro_after_init if not within .data */
2046 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
2047 create_object((unsigned long)__start_ro_after_init,
2048 __end_ro_after_init - __start_ro_after_init,
2049 KMEMLEAK_GREY, GFP_ATOMIC);
2050
2051 /*
2052 * This is the point where tracking allocations is safe. Automatic
2053 * scanning is started during the late initcall. Add the early logged
2054 * callbacks to the kmemleak infrastructure.
2055 */
2056 for (i = 0; i < crt_early_log; i++) {
2057 struct early_log *log = &early_log[i];
2058
2059 switch (log->op_type) {
2060 case KMEMLEAK_ALLOC:
2061 early_alloc(log);
2062 break;
2063 case KMEMLEAK_ALLOC_PERCPU:
2064 early_alloc_percpu(log);
2065 break;
2066 case KMEMLEAK_FREE:
2067 kmemleak_free(log->ptr);
2068 break;
2069 case KMEMLEAK_FREE_PART:
2070 kmemleak_free_part(log->ptr, log->size);
2071 break;
2072 case KMEMLEAK_FREE_PERCPU:
2073 kmemleak_free_percpu(log->ptr);
2074 break;
2075 case KMEMLEAK_NOT_LEAK:
2076 kmemleak_not_leak(log->ptr);
2077 break;
2078 case KMEMLEAK_IGNORE:
2079 kmemleak_ignore(log->ptr);
2080 break;
2081 case KMEMLEAK_SCAN_AREA:
2082 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2083 break;
2084 case KMEMLEAK_NO_SCAN:
2085 kmemleak_no_scan(log->ptr);
2086 break;
2087 case KMEMLEAK_SET_EXCESS_REF:
2088 object_set_excess_ref((unsigned long)log->ptr,
2089 log->excess_ref);
2090 break;
2091 default:
2092 kmemleak_warn("Unknown early log operation: %d\n",
2093 log->op_type);
2094 }
2095
2096 if (kmemleak_warning) {
2097 print_log_trace(log);
2098 kmemleak_warning = 0;
2099 }
2100 }
2101 }
2102
2103 /*
2104 * Late initialization function.
2105 */
2106 static int __init kmemleak_late_init(void)
2107 {
2108 struct dentry *dentry;
2109
2110 kmemleak_initialized = 1;
2111
2112 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2113 &kmemleak_fops);
2114 if (!dentry)
2115 pr_warn("Failed to create the debugfs kmemleak file\n");
2116
2117 if (kmemleak_error) {
2118 /*
2119 * Some error occurred and kmemleak was disabled. There is a
2120 * small chance that kmemleak_disable() was called immediately
2121 * after setting kmemleak_initialized and we may end up with
2122 * two clean-up threads but serialized by scan_mutex.
2123 */
2124 schedule_work(&cleanup_work);
2125 return -ENOMEM;
2126 }
2127
2128 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2129 mutex_lock(&scan_mutex);
2130 start_scan_thread();
2131 mutex_unlock(&scan_mutex);
2132 }
2133
2134 pr_info("Kernel memory leak detector initialized\n");
2135
2136 return 0;
2137 }
2138 late_initcall(kmemleak_late_init);