]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/kmemleak.c
Merge tag 'linux-kselftest-5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / mm / kmemleak.c
1 /*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/dev-tools/kmemleak.rst.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * Locks and mutexes are acquired/nested in the following order:
57 *
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
62 *
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/module.h>
90 #include <linux/mutex.h>
91 #include <linux/rcupdate.h>
92 #include <linux/stacktrace.h>
93 #include <linux/cache.h>
94 #include <linux/percpu.h>
95 #include <linux/memblock.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
107
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
111
112 #include <linux/kasan.h>
113 #include <linux/kmemleak.h>
114 #include <linux/memory_hotplug.h>
115
116 /*
117 * Kmemleak configuration and common defines.
118 */
119 #define MAX_TRACE 16 /* stack trace length */
120 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
121 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
122 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
123 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
124
125 #define BYTES_PER_POINTER sizeof(void *)
126
127 /* GFP bitmask for kmemleak internal allocations */
128 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
129 __GFP_NORETRY | __GFP_NOMEMALLOC | \
130 __GFP_NOWARN | __GFP_NOFAIL)
131
132 /* scanning area inside a memory block */
133 struct kmemleak_scan_area {
134 struct hlist_node node;
135 unsigned long start;
136 size_t size;
137 };
138
139 #define KMEMLEAK_GREY 0
140 #define KMEMLEAK_BLACK -1
141
142 /*
143 * Structure holding the metadata for each allocated memory block.
144 * Modifications to such objects should be made while holding the
145 * object->lock. Insertions or deletions from object_list, gray_list or
146 * rb_node are already protected by the corresponding locks or mutex (see
147 * the notes on locking above). These objects are reference-counted
148 * (use_count) and freed using the RCU mechanism.
149 */
150 struct kmemleak_object {
151 spinlock_t lock;
152 unsigned int flags; /* object status flags */
153 struct list_head object_list;
154 struct list_head gray_list;
155 struct rb_node rb_node;
156 struct rcu_head rcu; /* object_list lockless traversal */
157 /* object usage count; object freed when use_count == 0 */
158 atomic_t use_count;
159 unsigned long pointer;
160 size_t size;
161 /* pass surplus references to this pointer */
162 unsigned long excess_ref;
163 /* minimum number of a pointers found before it is considered leak */
164 int min_count;
165 /* the total number of pointers found pointing to this object */
166 int count;
167 /* checksum for detecting modified objects */
168 u32 checksum;
169 /* memory ranges to be scanned inside an object (empty for all) */
170 struct hlist_head area_list;
171 unsigned long trace[MAX_TRACE];
172 unsigned int trace_len;
173 unsigned long jiffies; /* creation timestamp */
174 pid_t pid; /* pid of the current task */
175 char comm[TASK_COMM_LEN]; /* executable name */
176 };
177
178 /* flag representing the memory block allocation status */
179 #define OBJECT_ALLOCATED (1 << 0)
180 /* flag set after the first reporting of an unreference object */
181 #define OBJECT_REPORTED (1 << 1)
182 /* flag set to not scan the object */
183 #define OBJECT_NO_SCAN (1 << 2)
184
185 #define HEX_PREFIX " "
186 /* number of bytes to print per line; must be 16 or 32 */
187 #define HEX_ROW_SIZE 16
188 /* number of bytes to print at a time (1, 2, 4, 8) */
189 #define HEX_GROUP_SIZE 1
190 /* include ASCII after the hex output */
191 #define HEX_ASCII 1
192 /* max number of lines to be printed */
193 #define HEX_MAX_LINES 2
194
195 /* the list of all allocated objects */
196 static LIST_HEAD(object_list);
197 /* the list of gray-colored objects (see color_gray comment below) */
198 static LIST_HEAD(gray_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* rw_lock protecting the access to object_list and object_tree_root */
202 static DEFINE_RWLOCK(kmemleak_lock);
203
204 /* allocation caches for kmemleak internal data */
205 static struct kmem_cache *object_cache;
206 static struct kmem_cache *scan_area_cache;
207
208 /* set if tracing memory operations is enabled */
209 static int kmemleak_enabled;
210 /* same as above but only for the kmemleak_free() callback */
211 static int kmemleak_free_enabled;
212 /* set in the late_initcall if there were no errors */
213 static int kmemleak_initialized;
214 /* enables or disables early logging of the memory operations */
215 static int kmemleak_early_log = 1;
216 /* set if a kmemleak warning was issued */
217 static int kmemleak_warning;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error;
220
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr = ULONG_MAX;
223 static unsigned long max_addr;
224
225 static struct task_struct *scan_thread;
226 /* used to avoid reporting of recently allocated objects */
227 static unsigned long jiffies_min_age;
228 static unsigned long jiffies_last_scan;
229 /* delay between automatic memory scannings */
230 static signed long jiffies_scan_wait;
231 /* enables or disables the task stacks scanning */
232 static int kmemleak_stack_scan = 1;
233 /* protects the memory scanning, parameters and debug/kmemleak file access */
234 static DEFINE_MUTEX(scan_mutex);
235 /* setting kmemleak=on, will set this var, skipping the disable */
236 static int kmemleak_skip_disable;
237 /* If there are leaks that can be reported */
238 static bool kmemleak_found_leaks;
239
240 static bool kmemleak_verbose;
241 module_param_named(verbose, kmemleak_verbose, bool, 0600);
242
243 /*
244 * Early object allocation/freeing logging. Kmemleak is initialized after the
245 * kernel allocator. However, both the kernel allocator and kmemleak may
246 * allocate memory blocks which need to be tracked. Kmemleak defines an
247 * arbitrary buffer to hold the allocation/freeing information before it is
248 * fully initialized.
249 */
250
251 /* kmemleak operation type for early logging */
252 enum {
253 KMEMLEAK_ALLOC,
254 KMEMLEAK_ALLOC_PERCPU,
255 KMEMLEAK_FREE,
256 KMEMLEAK_FREE_PART,
257 KMEMLEAK_FREE_PERCPU,
258 KMEMLEAK_NOT_LEAK,
259 KMEMLEAK_IGNORE,
260 KMEMLEAK_SCAN_AREA,
261 KMEMLEAK_NO_SCAN,
262 KMEMLEAK_SET_EXCESS_REF
263 };
264
265 /*
266 * Structure holding the information passed to kmemleak callbacks during the
267 * early logging.
268 */
269 struct early_log {
270 int op_type; /* kmemleak operation type */
271 int min_count; /* minimum reference count */
272 const void *ptr; /* allocated/freed memory block */
273 union {
274 size_t size; /* memory block size */
275 unsigned long excess_ref; /* surplus reference passing */
276 };
277 unsigned long trace[MAX_TRACE]; /* stack trace */
278 unsigned int trace_len; /* stack trace length */
279 };
280
281 /* early logging buffer and current position */
282 static struct early_log
283 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
284 static int crt_early_log __initdata;
285
286 static void kmemleak_disable(void);
287
288 /*
289 * Print a warning and dump the stack trace.
290 */
291 #define kmemleak_warn(x...) do { \
292 pr_warn(x); \
293 dump_stack(); \
294 kmemleak_warning = 1; \
295 } while (0)
296
297 /*
298 * Macro invoked when a serious kmemleak condition occurred and cannot be
299 * recovered from. Kmemleak will be disabled and further allocation/freeing
300 * tracing no longer available.
301 */
302 #define kmemleak_stop(x...) do { \
303 kmemleak_warn(x); \
304 kmemleak_disable(); \
305 } while (0)
306
307 #define warn_or_seq_printf(seq, fmt, ...) do { \
308 if (seq) \
309 seq_printf(seq, fmt, ##__VA_ARGS__); \
310 else \
311 pr_warn(fmt, ##__VA_ARGS__); \
312 } while (0)
313
314 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
315 int rowsize, int groupsize, const void *buf,
316 size_t len, bool ascii)
317 {
318 if (seq)
319 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
320 buf, len, ascii);
321 else
322 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
323 rowsize, groupsize, buf, len, ascii);
324 }
325
326 /*
327 * Printing of the objects hex dump to the seq file. The number of lines to be
328 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
329 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
330 * with the object->lock held.
331 */
332 static void hex_dump_object(struct seq_file *seq,
333 struct kmemleak_object *object)
334 {
335 const u8 *ptr = (const u8 *)object->pointer;
336 size_t len;
337
338 /* limit the number of lines to HEX_MAX_LINES */
339 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
340
341 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
342 kasan_disable_current();
343 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
344 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
345 kasan_enable_current();
346 }
347
348 /*
349 * Object colors, encoded with count and min_count:
350 * - white - orphan object, not enough references to it (count < min_count)
351 * - gray - not orphan, not marked as false positive (min_count == 0) or
352 * sufficient references to it (count >= min_count)
353 * - black - ignore, it doesn't contain references (e.g. text section)
354 * (min_count == -1). No function defined for this color.
355 * Newly created objects don't have any color assigned (object->count == -1)
356 * before the next memory scan when they become white.
357 */
358 static bool color_white(const struct kmemleak_object *object)
359 {
360 return object->count != KMEMLEAK_BLACK &&
361 object->count < object->min_count;
362 }
363
364 static bool color_gray(const struct kmemleak_object *object)
365 {
366 return object->min_count != KMEMLEAK_BLACK &&
367 object->count >= object->min_count;
368 }
369
370 /*
371 * Objects are considered unreferenced only if their color is white, they have
372 * not be deleted and have a minimum age to avoid false positives caused by
373 * pointers temporarily stored in CPU registers.
374 */
375 static bool unreferenced_object(struct kmemleak_object *object)
376 {
377 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
378 time_before_eq(object->jiffies + jiffies_min_age,
379 jiffies_last_scan);
380 }
381
382 /*
383 * Printing of the unreferenced objects information to the seq file. The
384 * print_unreferenced function must be called with the object->lock held.
385 */
386 static void print_unreferenced(struct seq_file *seq,
387 struct kmemleak_object *object)
388 {
389 int i;
390 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
391
392 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
393 object->pointer, object->size);
394 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
395 object->comm, object->pid, object->jiffies,
396 msecs_age / 1000, msecs_age % 1000);
397 hex_dump_object(seq, object);
398 warn_or_seq_printf(seq, " backtrace:\n");
399
400 for (i = 0; i < object->trace_len; i++) {
401 void *ptr = (void *)object->trace[i];
402 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
403 }
404 }
405
406 /*
407 * Print the kmemleak_object information. This function is used mainly for
408 * debugging special cases when kmemleak operations. It must be called with
409 * the object->lock held.
410 */
411 static void dump_object_info(struct kmemleak_object *object)
412 {
413 pr_notice("Object 0x%08lx (size %zu):\n",
414 object->pointer, object->size);
415 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
416 object->comm, object->pid, object->jiffies);
417 pr_notice(" min_count = %d\n", object->min_count);
418 pr_notice(" count = %d\n", object->count);
419 pr_notice(" flags = 0x%x\n", object->flags);
420 pr_notice(" checksum = %u\n", object->checksum);
421 pr_notice(" backtrace:\n");
422 stack_trace_print(object->trace, object->trace_len, 4);
423 }
424
425 /*
426 * Look-up a memory block metadata (kmemleak_object) in the object search
427 * tree based on a pointer value. If alias is 0, only values pointing to the
428 * beginning of the memory block are allowed. The kmemleak_lock must be held
429 * when calling this function.
430 */
431 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
432 {
433 struct rb_node *rb = object_tree_root.rb_node;
434
435 while (rb) {
436 struct kmemleak_object *object =
437 rb_entry(rb, struct kmemleak_object, rb_node);
438 if (ptr < object->pointer)
439 rb = object->rb_node.rb_left;
440 else if (object->pointer + object->size <= ptr)
441 rb = object->rb_node.rb_right;
442 else if (object->pointer == ptr || alias)
443 return object;
444 else {
445 kmemleak_warn("Found object by alias at 0x%08lx\n",
446 ptr);
447 dump_object_info(object);
448 break;
449 }
450 }
451 return NULL;
452 }
453
454 /*
455 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
456 * that once an object's use_count reached 0, the RCU freeing was already
457 * registered and the object should no longer be used. This function must be
458 * called under the protection of rcu_read_lock().
459 */
460 static int get_object(struct kmemleak_object *object)
461 {
462 return atomic_inc_not_zero(&object->use_count);
463 }
464
465 /*
466 * RCU callback to free a kmemleak_object.
467 */
468 static void free_object_rcu(struct rcu_head *rcu)
469 {
470 struct hlist_node *tmp;
471 struct kmemleak_scan_area *area;
472 struct kmemleak_object *object =
473 container_of(rcu, struct kmemleak_object, rcu);
474
475 /*
476 * Once use_count is 0 (guaranteed by put_object), there is no other
477 * code accessing this object, hence no need for locking.
478 */
479 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
480 hlist_del(&area->node);
481 kmem_cache_free(scan_area_cache, area);
482 }
483 kmem_cache_free(object_cache, object);
484 }
485
486 /*
487 * Decrement the object use_count. Once the count is 0, free the object using
488 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
489 * delete_object() path, the delayed RCU freeing ensures that there is no
490 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
491 * is also possible.
492 */
493 static void put_object(struct kmemleak_object *object)
494 {
495 if (!atomic_dec_and_test(&object->use_count))
496 return;
497
498 /* should only get here after delete_object was called */
499 WARN_ON(object->flags & OBJECT_ALLOCATED);
500
501 call_rcu(&object->rcu, free_object_rcu);
502 }
503
504 /*
505 * Look up an object in the object search tree and increase its use_count.
506 */
507 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
508 {
509 unsigned long flags;
510 struct kmemleak_object *object;
511
512 rcu_read_lock();
513 read_lock_irqsave(&kmemleak_lock, flags);
514 object = lookup_object(ptr, alias);
515 read_unlock_irqrestore(&kmemleak_lock, flags);
516
517 /* check whether the object is still available */
518 if (object && !get_object(object))
519 object = NULL;
520 rcu_read_unlock();
521
522 return object;
523 }
524
525 /*
526 * Look up an object in the object search tree and remove it from both
527 * object_tree_root and object_list. The returned object's use_count should be
528 * at least 1, as initially set by create_object().
529 */
530 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
531 {
532 unsigned long flags;
533 struct kmemleak_object *object;
534
535 write_lock_irqsave(&kmemleak_lock, flags);
536 object = lookup_object(ptr, alias);
537 if (object) {
538 rb_erase(&object->rb_node, &object_tree_root);
539 list_del_rcu(&object->object_list);
540 }
541 write_unlock_irqrestore(&kmemleak_lock, flags);
542
543 return object;
544 }
545
546 /*
547 * Save stack trace to the given array of MAX_TRACE size.
548 */
549 static int __save_stack_trace(unsigned long *trace)
550 {
551 return stack_trace_save(trace, MAX_TRACE, 2);
552 }
553
554 /*
555 * Create the metadata (struct kmemleak_object) corresponding to an allocated
556 * memory block and add it to the object_list and object_tree_root.
557 */
558 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
559 int min_count, gfp_t gfp)
560 {
561 unsigned long flags;
562 struct kmemleak_object *object, *parent;
563 struct rb_node **link, *rb_parent;
564 unsigned long untagged_ptr;
565
566 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
567 if (!object) {
568 pr_warn("Cannot allocate a kmemleak_object structure\n");
569 kmemleak_disable();
570 return NULL;
571 }
572
573 INIT_LIST_HEAD(&object->object_list);
574 INIT_LIST_HEAD(&object->gray_list);
575 INIT_HLIST_HEAD(&object->area_list);
576 spin_lock_init(&object->lock);
577 atomic_set(&object->use_count, 1);
578 object->flags = OBJECT_ALLOCATED;
579 object->pointer = ptr;
580 object->size = size;
581 object->excess_ref = 0;
582 object->min_count = min_count;
583 object->count = 0; /* white color initially */
584 object->jiffies = jiffies;
585 object->checksum = 0;
586
587 /* task information */
588 if (in_irq()) {
589 object->pid = 0;
590 strncpy(object->comm, "hardirq", sizeof(object->comm));
591 } else if (in_softirq()) {
592 object->pid = 0;
593 strncpy(object->comm, "softirq", sizeof(object->comm));
594 } else {
595 object->pid = current->pid;
596 /*
597 * There is a small chance of a race with set_task_comm(),
598 * however using get_task_comm() here may cause locking
599 * dependency issues with current->alloc_lock. In the worst
600 * case, the command line is not correct.
601 */
602 strncpy(object->comm, current->comm, sizeof(object->comm));
603 }
604
605 /* kernel backtrace */
606 object->trace_len = __save_stack_trace(object->trace);
607
608 write_lock_irqsave(&kmemleak_lock, flags);
609
610 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
611 min_addr = min(min_addr, untagged_ptr);
612 max_addr = max(max_addr, untagged_ptr + size);
613 link = &object_tree_root.rb_node;
614 rb_parent = NULL;
615 while (*link) {
616 rb_parent = *link;
617 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
618 if (ptr + size <= parent->pointer)
619 link = &parent->rb_node.rb_left;
620 else if (parent->pointer + parent->size <= ptr)
621 link = &parent->rb_node.rb_right;
622 else {
623 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
624 ptr);
625 /*
626 * No need for parent->lock here since "parent" cannot
627 * be freed while the kmemleak_lock is held.
628 */
629 dump_object_info(parent);
630 kmem_cache_free(object_cache, object);
631 object = NULL;
632 goto out;
633 }
634 }
635 rb_link_node(&object->rb_node, rb_parent, link);
636 rb_insert_color(&object->rb_node, &object_tree_root);
637
638 list_add_tail_rcu(&object->object_list, &object_list);
639 out:
640 write_unlock_irqrestore(&kmemleak_lock, flags);
641 return object;
642 }
643
644 /*
645 * Mark the object as not allocated and schedule RCU freeing via put_object().
646 */
647 static void __delete_object(struct kmemleak_object *object)
648 {
649 unsigned long flags;
650
651 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
652 WARN_ON(atomic_read(&object->use_count) < 1);
653
654 /*
655 * Locking here also ensures that the corresponding memory block
656 * cannot be freed when it is being scanned.
657 */
658 spin_lock_irqsave(&object->lock, flags);
659 object->flags &= ~OBJECT_ALLOCATED;
660 spin_unlock_irqrestore(&object->lock, flags);
661 put_object(object);
662 }
663
664 /*
665 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
666 * delete it.
667 */
668 static void delete_object_full(unsigned long ptr)
669 {
670 struct kmemleak_object *object;
671
672 object = find_and_remove_object(ptr, 0);
673 if (!object) {
674 #ifdef DEBUG
675 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
676 ptr);
677 #endif
678 return;
679 }
680 __delete_object(object);
681 }
682
683 /*
684 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
685 * delete it. If the memory block is partially freed, the function may create
686 * additional metadata for the remaining parts of the block.
687 */
688 static void delete_object_part(unsigned long ptr, size_t size)
689 {
690 struct kmemleak_object *object;
691 unsigned long start, end;
692
693 object = find_and_remove_object(ptr, 1);
694 if (!object) {
695 #ifdef DEBUG
696 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
697 ptr, size);
698 #endif
699 return;
700 }
701
702 /*
703 * Create one or two objects that may result from the memory block
704 * split. Note that partial freeing is only done by free_bootmem() and
705 * this happens before kmemleak_init() is called. The path below is
706 * only executed during early log recording in kmemleak_init(), so
707 * GFP_KERNEL is enough.
708 */
709 start = object->pointer;
710 end = object->pointer + object->size;
711 if (ptr > start)
712 create_object(start, ptr - start, object->min_count,
713 GFP_KERNEL);
714 if (ptr + size < end)
715 create_object(ptr + size, end - ptr - size, object->min_count,
716 GFP_KERNEL);
717
718 __delete_object(object);
719 }
720
721 static void __paint_it(struct kmemleak_object *object, int color)
722 {
723 object->min_count = color;
724 if (color == KMEMLEAK_BLACK)
725 object->flags |= OBJECT_NO_SCAN;
726 }
727
728 static void paint_it(struct kmemleak_object *object, int color)
729 {
730 unsigned long flags;
731
732 spin_lock_irqsave(&object->lock, flags);
733 __paint_it(object, color);
734 spin_unlock_irqrestore(&object->lock, flags);
735 }
736
737 static void paint_ptr(unsigned long ptr, int color)
738 {
739 struct kmemleak_object *object;
740
741 object = find_and_get_object(ptr, 0);
742 if (!object) {
743 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
744 ptr,
745 (color == KMEMLEAK_GREY) ? "Grey" :
746 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
747 return;
748 }
749 paint_it(object, color);
750 put_object(object);
751 }
752
753 /*
754 * Mark an object permanently as gray-colored so that it can no longer be
755 * reported as a leak. This is used in general to mark a false positive.
756 */
757 static void make_gray_object(unsigned long ptr)
758 {
759 paint_ptr(ptr, KMEMLEAK_GREY);
760 }
761
762 /*
763 * Mark the object as black-colored so that it is ignored from scans and
764 * reporting.
765 */
766 static void make_black_object(unsigned long ptr)
767 {
768 paint_ptr(ptr, KMEMLEAK_BLACK);
769 }
770
771 /*
772 * Add a scanning area to the object. If at least one such area is added,
773 * kmemleak will only scan these ranges rather than the whole memory block.
774 */
775 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
776 {
777 unsigned long flags;
778 struct kmemleak_object *object;
779 struct kmemleak_scan_area *area;
780
781 object = find_and_get_object(ptr, 1);
782 if (!object) {
783 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
784 ptr);
785 return;
786 }
787
788 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
789 if (!area) {
790 pr_warn("Cannot allocate a scan area\n");
791 goto out;
792 }
793
794 spin_lock_irqsave(&object->lock, flags);
795 if (size == SIZE_MAX) {
796 size = object->pointer + object->size - ptr;
797 } else if (ptr + size > object->pointer + object->size) {
798 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
799 dump_object_info(object);
800 kmem_cache_free(scan_area_cache, area);
801 goto out_unlock;
802 }
803
804 INIT_HLIST_NODE(&area->node);
805 area->start = ptr;
806 area->size = size;
807
808 hlist_add_head(&area->node, &object->area_list);
809 out_unlock:
810 spin_unlock_irqrestore(&object->lock, flags);
811 out:
812 put_object(object);
813 }
814
815 /*
816 * Any surplus references (object already gray) to 'ptr' are passed to
817 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
818 * vm_struct may be used as an alternative reference to the vmalloc'ed object
819 * (see free_thread_stack()).
820 */
821 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
822 {
823 unsigned long flags;
824 struct kmemleak_object *object;
825
826 object = find_and_get_object(ptr, 0);
827 if (!object) {
828 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
829 ptr);
830 return;
831 }
832
833 spin_lock_irqsave(&object->lock, flags);
834 object->excess_ref = excess_ref;
835 spin_unlock_irqrestore(&object->lock, flags);
836 put_object(object);
837 }
838
839 /*
840 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
841 * pointer. Such object will not be scanned by kmemleak but references to it
842 * are searched.
843 */
844 static void object_no_scan(unsigned long ptr)
845 {
846 unsigned long flags;
847 struct kmemleak_object *object;
848
849 object = find_and_get_object(ptr, 0);
850 if (!object) {
851 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
852 return;
853 }
854
855 spin_lock_irqsave(&object->lock, flags);
856 object->flags |= OBJECT_NO_SCAN;
857 spin_unlock_irqrestore(&object->lock, flags);
858 put_object(object);
859 }
860
861 /*
862 * Log an early kmemleak_* call to the early_log buffer. These calls will be
863 * processed later once kmemleak is fully initialized.
864 */
865 static void __init log_early(int op_type, const void *ptr, size_t size,
866 int min_count)
867 {
868 unsigned long flags;
869 struct early_log *log;
870
871 if (kmemleak_error) {
872 /* kmemleak stopped recording, just count the requests */
873 crt_early_log++;
874 return;
875 }
876
877 if (crt_early_log >= ARRAY_SIZE(early_log)) {
878 crt_early_log++;
879 kmemleak_disable();
880 return;
881 }
882
883 /*
884 * There is no need for locking since the kernel is still in UP mode
885 * at this stage. Disabling the IRQs is enough.
886 */
887 local_irq_save(flags);
888 log = &early_log[crt_early_log];
889 log->op_type = op_type;
890 log->ptr = ptr;
891 log->size = size;
892 log->min_count = min_count;
893 log->trace_len = __save_stack_trace(log->trace);
894 crt_early_log++;
895 local_irq_restore(flags);
896 }
897
898 /*
899 * Log an early allocated block and populate the stack trace.
900 */
901 static void early_alloc(struct early_log *log)
902 {
903 struct kmemleak_object *object;
904 unsigned long flags;
905 int i;
906
907 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
908 return;
909
910 /*
911 * RCU locking needed to ensure object is not freed via put_object().
912 */
913 rcu_read_lock();
914 object = create_object((unsigned long)log->ptr, log->size,
915 log->min_count, GFP_ATOMIC);
916 if (!object)
917 goto out;
918 spin_lock_irqsave(&object->lock, flags);
919 for (i = 0; i < log->trace_len; i++)
920 object->trace[i] = log->trace[i];
921 object->trace_len = log->trace_len;
922 spin_unlock_irqrestore(&object->lock, flags);
923 out:
924 rcu_read_unlock();
925 }
926
927 /*
928 * Log an early allocated block and populate the stack trace.
929 */
930 static void early_alloc_percpu(struct early_log *log)
931 {
932 unsigned int cpu;
933 const void __percpu *ptr = log->ptr;
934
935 for_each_possible_cpu(cpu) {
936 log->ptr = per_cpu_ptr(ptr, cpu);
937 early_alloc(log);
938 }
939 }
940
941 /**
942 * kmemleak_alloc - register a newly allocated object
943 * @ptr: pointer to beginning of the object
944 * @size: size of the object
945 * @min_count: minimum number of references to this object. If during memory
946 * scanning a number of references less than @min_count is found,
947 * the object is reported as a memory leak. If @min_count is 0,
948 * the object is never reported as a leak. If @min_count is -1,
949 * the object is ignored (not scanned and not reported as a leak)
950 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
951 *
952 * This function is called from the kernel allocators when a new object
953 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
954 */
955 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
956 gfp_t gfp)
957 {
958 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
959
960 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
961 create_object((unsigned long)ptr, size, min_count, gfp);
962 else if (kmemleak_early_log)
963 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
964 }
965 EXPORT_SYMBOL_GPL(kmemleak_alloc);
966
967 /**
968 * kmemleak_alloc_percpu - register a newly allocated __percpu object
969 * @ptr: __percpu pointer to beginning of the object
970 * @size: size of the object
971 * @gfp: flags used for kmemleak internal memory allocations
972 *
973 * This function is called from the kernel percpu allocator when a new object
974 * (memory block) is allocated (alloc_percpu).
975 */
976 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
977 gfp_t gfp)
978 {
979 unsigned int cpu;
980
981 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
982
983 /*
984 * Percpu allocations are only scanned and not reported as leaks
985 * (min_count is set to 0).
986 */
987 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
988 for_each_possible_cpu(cpu)
989 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
990 size, 0, gfp);
991 else if (kmemleak_early_log)
992 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
993 }
994 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
995
996 /**
997 * kmemleak_vmalloc - register a newly vmalloc'ed object
998 * @area: pointer to vm_struct
999 * @size: size of the object
1000 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1001 *
1002 * This function is called from the vmalloc() kernel allocator when a new
1003 * object (memory block) is allocated.
1004 */
1005 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1006 {
1007 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1008
1009 /*
1010 * A min_count = 2 is needed because vm_struct contains a reference to
1011 * the virtual address of the vmalloc'ed block.
1012 */
1013 if (kmemleak_enabled) {
1014 create_object((unsigned long)area->addr, size, 2, gfp);
1015 object_set_excess_ref((unsigned long)area,
1016 (unsigned long)area->addr);
1017 } else if (kmemleak_early_log) {
1018 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1019 /* reusing early_log.size for storing area->addr */
1020 log_early(KMEMLEAK_SET_EXCESS_REF,
1021 area, (unsigned long)area->addr, 0);
1022 }
1023 }
1024 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1025
1026 /**
1027 * kmemleak_free - unregister a previously registered object
1028 * @ptr: pointer to beginning of the object
1029 *
1030 * This function is called from the kernel allocators when an object (memory
1031 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1032 */
1033 void __ref kmemleak_free(const void *ptr)
1034 {
1035 pr_debug("%s(0x%p)\n", __func__, ptr);
1036
1037 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1038 delete_object_full((unsigned long)ptr);
1039 else if (kmemleak_early_log)
1040 log_early(KMEMLEAK_FREE, ptr, 0, 0);
1041 }
1042 EXPORT_SYMBOL_GPL(kmemleak_free);
1043
1044 /**
1045 * kmemleak_free_part - partially unregister a previously registered object
1046 * @ptr: pointer to the beginning or inside the object. This also
1047 * represents the start of the range to be freed
1048 * @size: size to be unregistered
1049 *
1050 * This function is called when only a part of a memory block is freed
1051 * (usually from the bootmem allocator).
1052 */
1053 void __ref kmemleak_free_part(const void *ptr, size_t size)
1054 {
1055 pr_debug("%s(0x%p)\n", __func__, ptr);
1056
1057 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058 delete_object_part((unsigned long)ptr, size);
1059 else if (kmemleak_early_log)
1060 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1061 }
1062 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1063
1064 /**
1065 * kmemleak_free_percpu - unregister a previously registered __percpu object
1066 * @ptr: __percpu pointer to beginning of the object
1067 *
1068 * This function is called from the kernel percpu allocator when an object
1069 * (memory block) is freed (free_percpu).
1070 */
1071 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1072 {
1073 unsigned int cpu;
1074
1075 pr_debug("%s(0x%p)\n", __func__, ptr);
1076
1077 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1078 for_each_possible_cpu(cpu)
1079 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1080 cpu));
1081 else if (kmemleak_early_log)
1082 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1083 }
1084 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1085
1086 /**
1087 * kmemleak_update_trace - update object allocation stack trace
1088 * @ptr: pointer to beginning of the object
1089 *
1090 * Override the object allocation stack trace for cases where the actual
1091 * allocation place is not always useful.
1092 */
1093 void __ref kmemleak_update_trace(const void *ptr)
1094 {
1095 struct kmemleak_object *object;
1096 unsigned long flags;
1097
1098 pr_debug("%s(0x%p)\n", __func__, ptr);
1099
1100 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1101 return;
1102
1103 object = find_and_get_object((unsigned long)ptr, 1);
1104 if (!object) {
1105 #ifdef DEBUG
1106 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1107 ptr);
1108 #endif
1109 return;
1110 }
1111
1112 spin_lock_irqsave(&object->lock, flags);
1113 object->trace_len = __save_stack_trace(object->trace);
1114 spin_unlock_irqrestore(&object->lock, flags);
1115
1116 put_object(object);
1117 }
1118 EXPORT_SYMBOL(kmemleak_update_trace);
1119
1120 /**
1121 * kmemleak_not_leak - mark an allocated object as false positive
1122 * @ptr: pointer to beginning of the object
1123 *
1124 * Calling this function on an object will cause the memory block to no longer
1125 * be reported as leak and always be scanned.
1126 */
1127 void __ref kmemleak_not_leak(const void *ptr)
1128 {
1129 pr_debug("%s(0x%p)\n", __func__, ptr);
1130
1131 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1132 make_gray_object((unsigned long)ptr);
1133 else if (kmemleak_early_log)
1134 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1135 }
1136 EXPORT_SYMBOL(kmemleak_not_leak);
1137
1138 /**
1139 * kmemleak_ignore - ignore an allocated object
1140 * @ptr: pointer to beginning of the object
1141 *
1142 * Calling this function on an object will cause the memory block to be
1143 * ignored (not scanned and not reported as a leak). This is usually done when
1144 * it is known that the corresponding block is not a leak and does not contain
1145 * any references to other allocated memory blocks.
1146 */
1147 void __ref kmemleak_ignore(const void *ptr)
1148 {
1149 pr_debug("%s(0x%p)\n", __func__, ptr);
1150
1151 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1152 make_black_object((unsigned long)ptr);
1153 else if (kmemleak_early_log)
1154 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1155 }
1156 EXPORT_SYMBOL(kmemleak_ignore);
1157
1158 /**
1159 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1160 * @ptr: pointer to beginning or inside the object. This also
1161 * represents the start of the scan area
1162 * @size: size of the scan area
1163 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1164 *
1165 * This function is used when it is known that only certain parts of an object
1166 * contain references to other objects. Kmemleak will only scan these areas
1167 * reducing the number false negatives.
1168 */
1169 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1170 {
1171 pr_debug("%s(0x%p)\n", __func__, ptr);
1172
1173 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1174 add_scan_area((unsigned long)ptr, size, gfp);
1175 else if (kmemleak_early_log)
1176 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1177 }
1178 EXPORT_SYMBOL(kmemleak_scan_area);
1179
1180 /**
1181 * kmemleak_no_scan - do not scan an allocated object
1182 * @ptr: pointer to beginning of the object
1183 *
1184 * This function notifies kmemleak not to scan the given memory block. Useful
1185 * in situations where it is known that the given object does not contain any
1186 * references to other objects. Kmemleak will not scan such objects reducing
1187 * the number of false negatives.
1188 */
1189 void __ref kmemleak_no_scan(const void *ptr)
1190 {
1191 pr_debug("%s(0x%p)\n", __func__, ptr);
1192
1193 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1194 object_no_scan((unsigned long)ptr);
1195 else if (kmemleak_early_log)
1196 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1197 }
1198 EXPORT_SYMBOL(kmemleak_no_scan);
1199
1200 /**
1201 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1202 * address argument
1203 * @phys: physical address of the object
1204 * @size: size of the object
1205 * @min_count: minimum number of references to this object.
1206 * See kmemleak_alloc()
1207 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1208 */
1209 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1210 gfp_t gfp)
1211 {
1212 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1213 kmemleak_alloc(__va(phys), size, min_count, gfp);
1214 }
1215 EXPORT_SYMBOL(kmemleak_alloc_phys);
1216
1217 /**
1218 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1219 * physical address argument
1220 * @phys: physical address if the beginning or inside an object. This
1221 * also represents the start of the range to be freed
1222 * @size: size to be unregistered
1223 */
1224 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1225 {
1226 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1227 kmemleak_free_part(__va(phys), size);
1228 }
1229 EXPORT_SYMBOL(kmemleak_free_part_phys);
1230
1231 /**
1232 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1233 * address argument
1234 * @phys: physical address of the object
1235 */
1236 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1237 {
1238 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1239 kmemleak_not_leak(__va(phys));
1240 }
1241 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1242
1243 /**
1244 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1245 * address argument
1246 * @phys: physical address of the object
1247 */
1248 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1249 {
1250 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1251 kmemleak_ignore(__va(phys));
1252 }
1253 EXPORT_SYMBOL(kmemleak_ignore_phys);
1254
1255 /*
1256 * Update an object's checksum and return true if it was modified.
1257 */
1258 static bool update_checksum(struct kmemleak_object *object)
1259 {
1260 u32 old_csum = object->checksum;
1261
1262 kasan_disable_current();
1263 object->checksum = crc32(0, (void *)object->pointer, object->size);
1264 kasan_enable_current();
1265
1266 return object->checksum != old_csum;
1267 }
1268
1269 /*
1270 * Update an object's references. object->lock must be held by the caller.
1271 */
1272 static void update_refs(struct kmemleak_object *object)
1273 {
1274 if (!color_white(object)) {
1275 /* non-orphan, ignored or new */
1276 return;
1277 }
1278
1279 /*
1280 * Increase the object's reference count (number of pointers to the
1281 * memory block). If this count reaches the required minimum, the
1282 * object's color will become gray and it will be added to the
1283 * gray_list.
1284 */
1285 object->count++;
1286 if (color_gray(object)) {
1287 /* put_object() called when removing from gray_list */
1288 WARN_ON(!get_object(object));
1289 list_add_tail(&object->gray_list, &gray_list);
1290 }
1291 }
1292
1293 /*
1294 * Memory scanning is a long process and it needs to be interruptable. This
1295 * function checks whether such interrupt condition occurred.
1296 */
1297 static int scan_should_stop(void)
1298 {
1299 if (!kmemleak_enabled)
1300 return 1;
1301
1302 /*
1303 * This function may be called from either process or kthread context,
1304 * hence the need to check for both stop conditions.
1305 */
1306 if (current->mm)
1307 return signal_pending(current);
1308 else
1309 return kthread_should_stop();
1310
1311 return 0;
1312 }
1313
1314 /*
1315 * Scan a memory block (exclusive range) for valid pointers and add those
1316 * found to the gray list.
1317 */
1318 static void scan_block(void *_start, void *_end,
1319 struct kmemleak_object *scanned)
1320 {
1321 unsigned long *ptr;
1322 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1323 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1324 unsigned long flags;
1325 unsigned long untagged_ptr;
1326
1327 read_lock_irqsave(&kmemleak_lock, flags);
1328 for (ptr = start; ptr < end; ptr++) {
1329 struct kmemleak_object *object;
1330 unsigned long pointer;
1331 unsigned long excess_ref;
1332
1333 if (scan_should_stop())
1334 break;
1335
1336 kasan_disable_current();
1337 pointer = *ptr;
1338 kasan_enable_current();
1339
1340 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1341 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1342 continue;
1343
1344 /*
1345 * No need for get_object() here since we hold kmemleak_lock.
1346 * object->use_count cannot be dropped to 0 while the object
1347 * is still present in object_tree_root and object_list
1348 * (with updates protected by kmemleak_lock).
1349 */
1350 object = lookup_object(pointer, 1);
1351 if (!object)
1352 continue;
1353 if (object == scanned)
1354 /* self referenced, ignore */
1355 continue;
1356
1357 /*
1358 * Avoid the lockdep recursive warning on object->lock being
1359 * previously acquired in scan_object(). These locks are
1360 * enclosed by scan_mutex.
1361 */
1362 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1363 /* only pass surplus references (object already gray) */
1364 if (color_gray(object)) {
1365 excess_ref = object->excess_ref;
1366 /* no need for update_refs() if object already gray */
1367 } else {
1368 excess_ref = 0;
1369 update_refs(object);
1370 }
1371 spin_unlock(&object->lock);
1372
1373 if (excess_ref) {
1374 object = lookup_object(excess_ref, 0);
1375 if (!object)
1376 continue;
1377 if (object == scanned)
1378 /* circular reference, ignore */
1379 continue;
1380 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1381 update_refs(object);
1382 spin_unlock(&object->lock);
1383 }
1384 }
1385 read_unlock_irqrestore(&kmemleak_lock, flags);
1386 }
1387
1388 /*
1389 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1390 */
1391 #ifdef CONFIG_SMP
1392 static void scan_large_block(void *start, void *end)
1393 {
1394 void *next;
1395
1396 while (start < end) {
1397 next = min(start + MAX_SCAN_SIZE, end);
1398 scan_block(start, next, NULL);
1399 start = next;
1400 cond_resched();
1401 }
1402 }
1403 #endif
1404
1405 /*
1406 * Scan a memory block corresponding to a kmemleak_object. A condition is
1407 * that object->use_count >= 1.
1408 */
1409 static void scan_object(struct kmemleak_object *object)
1410 {
1411 struct kmemleak_scan_area *area;
1412 unsigned long flags;
1413
1414 /*
1415 * Once the object->lock is acquired, the corresponding memory block
1416 * cannot be freed (the same lock is acquired in delete_object).
1417 */
1418 spin_lock_irqsave(&object->lock, flags);
1419 if (object->flags & OBJECT_NO_SCAN)
1420 goto out;
1421 if (!(object->flags & OBJECT_ALLOCATED))
1422 /* already freed object */
1423 goto out;
1424 if (hlist_empty(&object->area_list)) {
1425 void *start = (void *)object->pointer;
1426 void *end = (void *)(object->pointer + object->size);
1427 void *next;
1428
1429 do {
1430 next = min(start + MAX_SCAN_SIZE, end);
1431 scan_block(start, next, object);
1432
1433 start = next;
1434 if (start >= end)
1435 break;
1436
1437 spin_unlock_irqrestore(&object->lock, flags);
1438 cond_resched();
1439 spin_lock_irqsave(&object->lock, flags);
1440 } while (object->flags & OBJECT_ALLOCATED);
1441 } else
1442 hlist_for_each_entry(area, &object->area_list, node)
1443 scan_block((void *)area->start,
1444 (void *)(area->start + area->size),
1445 object);
1446 out:
1447 spin_unlock_irqrestore(&object->lock, flags);
1448 }
1449
1450 /*
1451 * Scan the objects already referenced (gray objects). More objects will be
1452 * referenced and, if there are no memory leaks, all the objects are scanned.
1453 */
1454 static void scan_gray_list(void)
1455 {
1456 struct kmemleak_object *object, *tmp;
1457
1458 /*
1459 * The list traversal is safe for both tail additions and removals
1460 * from inside the loop. The kmemleak objects cannot be freed from
1461 * outside the loop because their use_count was incremented.
1462 */
1463 object = list_entry(gray_list.next, typeof(*object), gray_list);
1464 while (&object->gray_list != &gray_list) {
1465 cond_resched();
1466
1467 /* may add new objects to the list */
1468 if (!scan_should_stop())
1469 scan_object(object);
1470
1471 tmp = list_entry(object->gray_list.next, typeof(*object),
1472 gray_list);
1473
1474 /* remove the object from the list and release it */
1475 list_del(&object->gray_list);
1476 put_object(object);
1477
1478 object = tmp;
1479 }
1480 WARN_ON(!list_empty(&gray_list));
1481 }
1482
1483 /*
1484 * Scan data sections and all the referenced memory blocks allocated via the
1485 * kernel's standard allocators. This function must be called with the
1486 * scan_mutex held.
1487 */
1488 static void kmemleak_scan(void)
1489 {
1490 unsigned long flags;
1491 struct kmemleak_object *object;
1492 int i;
1493 int new_leaks = 0;
1494
1495 jiffies_last_scan = jiffies;
1496
1497 /* prepare the kmemleak_object's */
1498 rcu_read_lock();
1499 list_for_each_entry_rcu(object, &object_list, object_list) {
1500 spin_lock_irqsave(&object->lock, flags);
1501 #ifdef DEBUG
1502 /*
1503 * With a few exceptions there should be a maximum of
1504 * 1 reference to any object at this point.
1505 */
1506 if (atomic_read(&object->use_count) > 1) {
1507 pr_debug("object->use_count = %d\n",
1508 atomic_read(&object->use_count));
1509 dump_object_info(object);
1510 }
1511 #endif
1512 /* reset the reference count (whiten the object) */
1513 object->count = 0;
1514 if (color_gray(object) && get_object(object))
1515 list_add_tail(&object->gray_list, &gray_list);
1516
1517 spin_unlock_irqrestore(&object->lock, flags);
1518 }
1519 rcu_read_unlock();
1520
1521 #ifdef CONFIG_SMP
1522 /* per-cpu sections scanning */
1523 for_each_possible_cpu(i)
1524 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1525 __per_cpu_end + per_cpu_offset(i));
1526 #endif
1527
1528 /*
1529 * Struct page scanning for each node.
1530 */
1531 get_online_mems();
1532 for_each_online_node(i) {
1533 unsigned long start_pfn = node_start_pfn(i);
1534 unsigned long end_pfn = node_end_pfn(i);
1535 unsigned long pfn;
1536
1537 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1538 struct page *page = pfn_to_online_page(pfn);
1539
1540 if (!page)
1541 continue;
1542
1543 /* only scan pages belonging to this node */
1544 if (page_to_nid(page) != i)
1545 continue;
1546 /* only scan if page is in use */
1547 if (page_count(page) == 0)
1548 continue;
1549 scan_block(page, page + 1, NULL);
1550 if (!(pfn & 63))
1551 cond_resched();
1552 }
1553 }
1554 put_online_mems();
1555
1556 /*
1557 * Scanning the task stacks (may introduce false negatives).
1558 */
1559 if (kmemleak_stack_scan) {
1560 struct task_struct *p, *g;
1561
1562 read_lock(&tasklist_lock);
1563 do_each_thread(g, p) {
1564 void *stack = try_get_task_stack(p);
1565 if (stack) {
1566 scan_block(stack, stack + THREAD_SIZE, NULL);
1567 put_task_stack(p);
1568 }
1569 } while_each_thread(g, p);
1570 read_unlock(&tasklist_lock);
1571 }
1572
1573 /*
1574 * Scan the objects already referenced from the sections scanned
1575 * above.
1576 */
1577 scan_gray_list();
1578
1579 /*
1580 * Check for new or unreferenced objects modified since the previous
1581 * scan and color them gray until the next scan.
1582 */
1583 rcu_read_lock();
1584 list_for_each_entry_rcu(object, &object_list, object_list) {
1585 spin_lock_irqsave(&object->lock, flags);
1586 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1587 && update_checksum(object) && get_object(object)) {
1588 /* color it gray temporarily */
1589 object->count = object->min_count;
1590 list_add_tail(&object->gray_list, &gray_list);
1591 }
1592 spin_unlock_irqrestore(&object->lock, flags);
1593 }
1594 rcu_read_unlock();
1595
1596 /*
1597 * Re-scan the gray list for modified unreferenced objects.
1598 */
1599 scan_gray_list();
1600
1601 /*
1602 * If scanning was stopped do not report any new unreferenced objects.
1603 */
1604 if (scan_should_stop())
1605 return;
1606
1607 /*
1608 * Scanning result reporting.
1609 */
1610 rcu_read_lock();
1611 list_for_each_entry_rcu(object, &object_list, object_list) {
1612 spin_lock_irqsave(&object->lock, flags);
1613 if (unreferenced_object(object) &&
1614 !(object->flags & OBJECT_REPORTED)) {
1615 object->flags |= OBJECT_REPORTED;
1616
1617 if (kmemleak_verbose)
1618 print_unreferenced(NULL, object);
1619
1620 new_leaks++;
1621 }
1622 spin_unlock_irqrestore(&object->lock, flags);
1623 }
1624 rcu_read_unlock();
1625
1626 if (new_leaks) {
1627 kmemleak_found_leaks = true;
1628
1629 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1630 new_leaks);
1631 }
1632
1633 }
1634
1635 /*
1636 * Thread function performing automatic memory scanning. Unreferenced objects
1637 * at the end of a memory scan are reported but only the first time.
1638 */
1639 static int kmemleak_scan_thread(void *arg)
1640 {
1641 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1642
1643 pr_info("Automatic memory scanning thread started\n");
1644 set_user_nice(current, 10);
1645
1646 /*
1647 * Wait before the first scan to allow the system to fully initialize.
1648 */
1649 if (first_run) {
1650 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1651 first_run = 0;
1652 while (timeout && !kthread_should_stop())
1653 timeout = schedule_timeout_interruptible(timeout);
1654 }
1655
1656 while (!kthread_should_stop()) {
1657 signed long timeout = jiffies_scan_wait;
1658
1659 mutex_lock(&scan_mutex);
1660 kmemleak_scan();
1661 mutex_unlock(&scan_mutex);
1662
1663 /* wait before the next scan */
1664 while (timeout && !kthread_should_stop())
1665 timeout = schedule_timeout_interruptible(timeout);
1666 }
1667
1668 pr_info("Automatic memory scanning thread ended\n");
1669
1670 return 0;
1671 }
1672
1673 /*
1674 * Start the automatic memory scanning thread. This function must be called
1675 * with the scan_mutex held.
1676 */
1677 static void start_scan_thread(void)
1678 {
1679 if (scan_thread)
1680 return;
1681 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1682 if (IS_ERR(scan_thread)) {
1683 pr_warn("Failed to create the scan thread\n");
1684 scan_thread = NULL;
1685 }
1686 }
1687
1688 /*
1689 * Stop the automatic memory scanning thread.
1690 */
1691 static void stop_scan_thread(void)
1692 {
1693 if (scan_thread) {
1694 kthread_stop(scan_thread);
1695 scan_thread = NULL;
1696 }
1697 }
1698
1699 /*
1700 * Iterate over the object_list and return the first valid object at or after
1701 * the required position with its use_count incremented. The function triggers
1702 * a memory scanning when the pos argument points to the first position.
1703 */
1704 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1705 {
1706 struct kmemleak_object *object;
1707 loff_t n = *pos;
1708 int err;
1709
1710 err = mutex_lock_interruptible(&scan_mutex);
1711 if (err < 0)
1712 return ERR_PTR(err);
1713
1714 rcu_read_lock();
1715 list_for_each_entry_rcu(object, &object_list, object_list) {
1716 if (n-- > 0)
1717 continue;
1718 if (get_object(object))
1719 goto out;
1720 }
1721 object = NULL;
1722 out:
1723 return object;
1724 }
1725
1726 /*
1727 * Return the next object in the object_list. The function decrements the
1728 * use_count of the previous object and increases that of the next one.
1729 */
1730 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1731 {
1732 struct kmemleak_object *prev_obj = v;
1733 struct kmemleak_object *next_obj = NULL;
1734 struct kmemleak_object *obj = prev_obj;
1735
1736 ++(*pos);
1737
1738 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1739 if (get_object(obj)) {
1740 next_obj = obj;
1741 break;
1742 }
1743 }
1744
1745 put_object(prev_obj);
1746 return next_obj;
1747 }
1748
1749 /*
1750 * Decrement the use_count of the last object required, if any.
1751 */
1752 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1753 {
1754 if (!IS_ERR(v)) {
1755 /*
1756 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1757 * waiting was interrupted, so only release it if !IS_ERR.
1758 */
1759 rcu_read_unlock();
1760 mutex_unlock(&scan_mutex);
1761 if (v)
1762 put_object(v);
1763 }
1764 }
1765
1766 /*
1767 * Print the information for an unreferenced object to the seq file.
1768 */
1769 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1770 {
1771 struct kmemleak_object *object = v;
1772 unsigned long flags;
1773
1774 spin_lock_irqsave(&object->lock, flags);
1775 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1776 print_unreferenced(seq, object);
1777 spin_unlock_irqrestore(&object->lock, flags);
1778 return 0;
1779 }
1780
1781 static const struct seq_operations kmemleak_seq_ops = {
1782 .start = kmemleak_seq_start,
1783 .next = kmemleak_seq_next,
1784 .stop = kmemleak_seq_stop,
1785 .show = kmemleak_seq_show,
1786 };
1787
1788 static int kmemleak_open(struct inode *inode, struct file *file)
1789 {
1790 return seq_open(file, &kmemleak_seq_ops);
1791 }
1792
1793 static int dump_str_object_info(const char *str)
1794 {
1795 unsigned long flags;
1796 struct kmemleak_object *object;
1797 unsigned long addr;
1798
1799 if (kstrtoul(str, 0, &addr))
1800 return -EINVAL;
1801 object = find_and_get_object(addr, 0);
1802 if (!object) {
1803 pr_info("Unknown object at 0x%08lx\n", addr);
1804 return -EINVAL;
1805 }
1806
1807 spin_lock_irqsave(&object->lock, flags);
1808 dump_object_info(object);
1809 spin_unlock_irqrestore(&object->lock, flags);
1810
1811 put_object(object);
1812 return 0;
1813 }
1814
1815 /*
1816 * We use grey instead of black to ensure we can do future scans on the same
1817 * objects. If we did not do future scans these black objects could
1818 * potentially contain references to newly allocated objects in the future and
1819 * we'd end up with false positives.
1820 */
1821 static void kmemleak_clear(void)
1822 {
1823 struct kmemleak_object *object;
1824 unsigned long flags;
1825
1826 rcu_read_lock();
1827 list_for_each_entry_rcu(object, &object_list, object_list) {
1828 spin_lock_irqsave(&object->lock, flags);
1829 if ((object->flags & OBJECT_REPORTED) &&
1830 unreferenced_object(object))
1831 __paint_it(object, KMEMLEAK_GREY);
1832 spin_unlock_irqrestore(&object->lock, flags);
1833 }
1834 rcu_read_unlock();
1835
1836 kmemleak_found_leaks = false;
1837 }
1838
1839 static void __kmemleak_do_cleanup(void);
1840
1841 /*
1842 * File write operation to configure kmemleak at run-time. The following
1843 * commands can be written to the /sys/kernel/debug/kmemleak file:
1844 * off - disable kmemleak (irreversible)
1845 * stack=on - enable the task stacks scanning
1846 * stack=off - disable the tasks stacks scanning
1847 * scan=on - start the automatic memory scanning thread
1848 * scan=off - stop the automatic memory scanning thread
1849 * scan=... - set the automatic memory scanning period in seconds (0 to
1850 * disable it)
1851 * scan - trigger a memory scan
1852 * clear - mark all current reported unreferenced kmemleak objects as
1853 * grey to ignore printing them, or free all kmemleak objects
1854 * if kmemleak has been disabled.
1855 * dump=... - dump information about the object found at the given address
1856 */
1857 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1858 size_t size, loff_t *ppos)
1859 {
1860 char buf[64];
1861 int buf_size;
1862 int ret;
1863
1864 buf_size = min(size, (sizeof(buf) - 1));
1865 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1866 return -EFAULT;
1867 buf[buf_size] = 0;
1868
1869 ret = mutex_lock_interruptible(&scan_mutex);
1870 if (ret < 0)
1871 return ret;
1872
1873 if (strncmp(buf, "clear", 5) == 0) {
1874 if (kmemleak_enabled)
1875 kmemleak_clear();
1876 else
1877 __kmemleak_do_cleanup();
1878 goto out;
1879 }
1880
1881 if (!kmemleak_enabled) {
1882 ret = -EBUSY;
1883 goto out;
1884 }
1885
1886 if (strncmp(buf, "off", 3) == 0)
1887 kmemleak_disable();
1888 else if (strncmp(buf, "stack=on", 8) == 0)
1889 kmemleak_stack_scan = 1;
1890 else if (strncmp(buf, "stack=off", 9) == 0)
1891 kmemleak_stack_scan = 0;
1892 else if (strncmp(buf, "scan=on", 7) == 0)
1893 start_scan_thread();
1894 else if (strncmp(buf, "scan=off", 8) == 0)
1895 stop_scan_thread();
1896 else if (strncmp(buf, "scan=", 5) == 0) {
1897 unsigned long secs;
1898
1899 ret = kstrtoul(buf + 5, 0, &secs);
1900 if (ret < 0)
1901 goto out;
1902 stop_scan_thread();
1903 if (secs) {
1904 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1905 start_scan_thread();
1906 }
1907 } else if (strncmp(buf, "scan", 4) == 0)
1908 kmemleak_scan();
1909 else if (strncmp(buf, "dump=", 5) == 0)
1910 ret = dump_str_object_info(buf + 5);
1911 else
1912 ret = -EINVAL;
1913
1914 out:
1915 mutex_unlock(&scan_mutex);
1916 if (ret < 0)
1917 return ret;
1918
1919 /* ignore the rest of the buffer, only one command at a time */
1920 *ppos += size;
1921 return size;
1922 }
1923
1924 static const struct file_operations kmemleak_fops = {
1925 .owner = THIS_MODULE,
1926 .open = kmemleak_open,
1927 .read = seq_read,
1928 .write = kmemleak_write,
1929 .llseek = seq_lseek,
1930 .release = seq_release,
1931 };
1932
1933 static void __kmemleak_do_cleanup(void)
1934 {
1935 struct kmemleak_object *object;
1936
1937 rcu_read_lock();
1938 list_for_each_entry_rcu(object, &object_list, object_list)
1939 delete_object_full(object->pointer);
1940 rcu_read_unlock();
1941 }
1942
1943 /*
1944 * Stop the memory scanning thread and free the kmemleak internal objects if
1945 * no previous scan thread (otherwise, kmemleak may still have some useful
1946 * information on memory leaks).
1947 */
1948 static void kmemleak_do_cleanup(struct work_struct *work)
1949 {
1950 stop_scan_thread();
1951
1952 mutex_lock(&scan_mutex);
1953 /*
1954 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1955 * longer track object freeing. Ordering of the scan thread stopping and
1956 * the memory accesses below is guaranteed by the kthread_stop()
1957 * function.
1958 */
1959 kmemleak_free_enabled = 0;
1960 mutex_unlock(&scan_mutex);
1961
1962 if (!kmemleak_found_leaks)
1963 __kmemleak_do_cleanup();
1964 else
1965 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1966 }
1967
1968 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1969
1970 /*
1971 * Disable kmemleak. No memory allocation/freeing will be traced once this
1972 * function is called. Disabling kmemleak is an irreversible operation.
1973 */
1974 static void kmemleak_disable(void)
1975 {
1976 /* atomically check whether it was already invoked */
1977 if (cmpxchg(&kmemleak_error, 0, 1))
1978 return;
1979
1980 /* stop any memory operation tracing */
1981 kmemleak_enabled = 0;
1982
1983 /* check whether it is too early for a kernel thread */
1984 if (kmemleak_initialized)
1985 schedule_work(&cleanup_work);
1986 else
1987 kmemleak_free_enabled = 0;
1988
1989 pr_info("Kernel memory leak detector disabled\n");
1990 }
1991
1992 /*
1993 * Allow boot-time kmemleak disabling (enabled by default).
1994 */
1995 static int __init kmemleak_boot_config(char *str)
1996 {
1997 if (!str)
1998 return -EINVAL;
1999 if (strcmp(str, "off") == 0)
2000 kmemleak_disable();
2001 else if (strcmp(str, "on") == 0)
2002 kmemleak_skip_disable = 1;
2003 else
2004 return -EINVAL;
2005 return 0;
2006 }
2007 early_param("kmemleak", kmemleak_boot_config);
2008
2009 static void __init print_log_trace(struct early_log *log)
2010 {
2011 pr_notice("Early log backtrace:\n");
2012 stack_trace_print(log->trace, log->trace_len, 2);
2013 }
2014
2015 /*
2016 * Kmemleak initialization.
2017 */
2018 void __init kmemleak_init(void)
2019 {
2020 int i;
2021 unsigned long flags;
2022
2023 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2024 if (!kmemleak_skip_disable) {
2025 kmemleak_early_log = 0;
2026 kmemleak_disable();
2027 return;
2028 }
2029 #endif
2030
2031 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2032 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2033
2034 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2035 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2036
2037 if (crt_early_log > ARRAY_SIZE(early_log))
2038 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2039 crt_early_log);
2040
2041 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2042 local_irq_save(flags);
2043 kmemleak_early_log = 0;
2044 if (kmemleak_error) {
2045 local_irq_restore(flags);
2046 return;
2047 } else {
2048 kmemleak_enabled = 1;
2049 kmemleak_free_enabled = 1;
2050 }
2051 local_irq_restore(flags);
2052
2053 /* register the data/bss sections */
2054 create_object((unsigned long)_sdata, _edata - _sdata,
2055 KMEMLEAK_GREY, GFP_ATOMIC);
2056 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2057 KMEMLEAK_GREY, GFP_ATOMIC);
2058 /* only register .data..ro_after_init if not within .data */
2059 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
2060 create_object((unsigned long)__start_ro_after_init,
2061 __end_ro_after_init - __start_ro_after_init,
2062 KMEMLEAK_GREY, GFP_ATOMIC);
2063
2064 /*
2065 * This is the point where tracking allocations is safe. Automatic
2066 * scanning is started during the late initcall. Add the early logged
2067 * callbacks to the kmemleak infrastructure.
2068 */
2069 for (i = 0; i < crt_early_log; i++) {
2070 struct early_log *log = &early_log[i];
2071
2072 switch (log->op_type) {
2073 case KMEMLEAK_ALLOC:
2074 early_alloc(log);
2075 break;
2076 case KMEMLEAK_ALLOC_PERCPU:
2077 early_alloc_percpu(log);
2078 break;
2079 case KMEMLEAK_FREE:
2080 kmemleak_free(log->ptr);
2081 break;
2082 case KMEMLEAK_FREE_PART:
2083 kmemleak_free_part(log->ptr, log->size);
2084 break;
2085 case KMEMLEAK_FREE_PERCPU:
2086 kmemleak_free_percpu(log->ptr);
2087 break;
2088 case KMEMLEAK_NOT_LEAK:
2089 kmemleak_not_leak(log->ptr);
2090 break;
2091 case KMEMLEAK_IGNORE:
2092 kmemleak_ignore(log->ptr);
2093 break;
2094 case KMEMLEAK_SCAN_AREA:
2095 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2096 break;
2097 case KMEMLEAK_NO_SCAN:
2098 kmemleak_no_scan(log->ptr);
2099 break;
2100 case KMEMLEAK_SET_EXCESS_REF:
2101 object_set_excess_ref((unsigned long)log->ptr,
2102 log->excess_ref);
2103 break;
2104 default:
2105 kmemleak_warn("Unknown early log operation: %d\n",
2106 log->op_type);
2107 }
2108
2109 if (kmemleak_warning) {
2110 print_log_trace(log);
2111 kmemleak_warning = 0;
2112 }
2113 }
2114 }
2115
2116 /*
2117 * Late initialization function.
2118 */
2119 static int __init kmemleak_late_init(void)
2120 {
2121 struct dentry *dentry;
2122
2123 kmemleak_initialized = 1;
2124
2125 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2126 &kmemleak_fops);
2127 if (!dentry)
2128 pr_warn("Failed to create the debugfs kmemleak file\n");
2129
2130 if (kmemleak_error) {
2131 /*
2132 * Some error occurred and kmemleak was disabled. There is a
2133 * small chance that kmemleak_disable() was called immediately
2134 * after setting kmemleak_initialized and we may end up with
2135 * two clean-up threads but serialized by scan_mutex.
2136 */
2137 schedule_work(&cleanup_work);
2138 return -ENOMEM;
2139 }
2140
2141 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2142 mutex_lock(&scan_mutex);
2143 start_scan_thread();
2144 mutex_unlock(&scan_mutex);
2145 }
2146
2147 pr_info("Kernel memory leak detector initialized\n");
2148
2149 return 0;
2150 }
2151 late_initcall(kmemleak_late_init);