]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/kmemleak.c
Merge tag 'drm-intel-fixes-2019-02-20' of git://anongit.freedesktop.org/drm/drm-intel...
[thirdparty/kernel/stable.git] / mm / kmemleak.c
1 /*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/dev-tools/kmemleak.rst.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * Locks and mutexes are acquired/nested in the following order:
57 *
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
62 *
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/module.h>
90 #include <linux/mutex.h>
91 #include <linux/rcupdate.h>
92 #include <linux/stacktrace.h>
93 #include <linux/cache.h>
94 #include <linux/percpu.h>
95 #include <linux/memblock.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
107
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
111
112 #include <linux/kasan.h>
113 #include <linux/kmemleak.h>
114 #include <linux/memory_hotplug.h>
115
116 /*
117 * Kmemleak configuration and common defines.
118 */
119 #define MAX_TRACE 16 /* stack trace length */
120 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
121 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
122 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
123 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
124
125 #define BYTES_PER_POINTER sizeof(void *)
126
127 /* GFP bitmask for kmemleak internal allocations */
128 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
129 __GFP_NORETRY | __GFP_NOMEMALLOC | \
130 __GFP_NOWARN | __GFP_NOFAIL)
131
132 /* scanning area inside a memory block */
133 struct kmemleak_scan_area {
134 struct hlist_node node;
135 unsigned long start;
136 size_t size;
137 };
138
139 #define KMEMLEAK_GREY 0
140 #define KMEMLEAK_BLACK -1
141
142 /*
143 * Structure holding the metadata for each allocated memory block.
144 * Modifications to such objects should be made while holding the
145 * object->lock. Insertions or deletions from object_list, gray_list or
146 * rb_node are already protected by the corresponding locks or mutex (see
147 * the notes on locking above). These objects are reference-counted
148 * (use_count) and freed using the RCU mechanism.
149 */
150 struct kmemleak_object {
151 spinlock_t lock;
152 unsigned int flags; /* object status flags */
153 struct list_head object_list;
154 struct list_head gray_list;
155 struct rb_node rb_node;
156 struct rcu_head rcu; /* object_list lockless traversal */
157 /* object usage count; object freed when use_count == 0 */
158 atomic_t use_count;
159 unsigned long pointer;
160 size_t size;
161 /* pass surplus references to this pointer */
162 unsigned long excess_ref;
163 /* minimum number of a pointers found before it is considered leak */
164 int min_count;
165 /* the total number of pointers found pointing to this object */
166 int count;
167 /* checksum for detecting modified objects */
168 u32 checksum;
169 /* memory ranges to be scanned inside an object (empty for all) */
170 struct hlist_head area_list;
171 unsigned long trace[MAX_TRACE];
172 unsigned int trace_len;
173 unsigned long jiffies; /* creation timestamp */
174 pid_t pid; /* pid of the current task */
175 char comm[TASK_COMM_LEN]; /* executable name */
176 };
177
178 /* flag representing the memory block allocation status */
179 #define OBJECT_ALLOCATED (1 << 0)
180 /* flag set after the first reporting of an unreference object */
181 #define OBJECT_REPORTED (1 << 1)
182 /* flag set to not scan the object */
183 #define OBJECT_NO_SCAN (1 << 2)
184
185 #define HEX_PREFIX " "
186 /* number of bytes to print per line; must be 16 or 32 */
187 #define HEX_ROW_SIZE 16
188 /* number of bytes to print at a time (1, 2, 4, 8) */
189 #define HEX_GROUP_SIZE 1
190 /* include ASCII after the hex output */
191 #define HEX_ASCII 1
192 /* max number of lines to be printed */
193 #define HEX_MAX_LINES 2
194
195 /* the list of all allocated objects */
196 static LIST_HEAD(object_list);
197 /* the list of gray-colored objects (see color_gray comment below) */
198 static LIST_HEAD(gray_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* rw_lock protecting the access to object_list and object_tree_root */
202 static DEFINE_RWLOCK(kmemleak_lock);
203
204 /* allocation caches for kmemleak internal data */
205 static struct kmem_cache *object_cache;
206 static struct kmem_cache *scan_area_cache;
207
208 /* set if tracing memory operations is enabled */
209 static int kmemleak_enabled;
210 /* same as above but only for the kmemleak_free() callback */
211 static int kmemleak_free_enabled;
212 /* set in the late_initcall if there were no errors */
213 static int kmemleak_initialized;
214 /* enables or disables early logging of the memory operations */
215 static int kmemleak_early_log = 1;
216 /* set if a kmemleak warning was issued */
217 static int kmemleak_warning;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error;
220
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr = ULONG_MAX;
223 static unsigned long max_addr;
224
225 static struct task_struct *scan_thread;
226 /* used to avoid reporting of recently allocated objects */
227 static unsigned long jiffies_min_age;
228 static unsigned long jiffies_last_scan;
229 /* delay between automatic memory scannings */
230 static signed long jiffies_scan_wait;
231 /* enables or disables the task stacks scanning */
232 static int kmemleak_stack_scan = 1;
233 /* protects the memory scanning, parameters and debug/kmemleak file access */
234 static DEFINE_MUTEX(scan_mutex);
235 /* setting kmemleak=on, will set this var, skipping the disable */
236 static int kmemleak_skip_disable;
237 /* If there are leaks that can be reported */
238 static bool kmemleak_found_leaks;
239
240 static bool kmemleak_verbose;
241 module_param_named(verbose, kmemleak_verbose, bool, 0600);
242
243 /*
244 * Early object allocation/freeing logging. Kmemleak is initialized after the
245 * kernel allocator. However, both the kernel allocator and kmemleak may
246 * allocate memory blocks which need to be tracked. Kmemleak defines an
247 * arbitrary buffer to hold the allocation/freeing information before it is
248 * fully initialized.
249 */
250
251 /* kmemleak operation type for early logging */
252 enum {
253 KMEMLEAK_ALLOC,
254 KMEMLEAK_ALLOC_PERCPU,
255 KMEMLEAK_FREE,
256 KMEMLEAK_FREE_PART,
257 KMEMLEAK_FREE_PERCPU,
258 KMEMLEAK_NOT_LEAK,
259 KMEMLEAK_IGNORE,
260 KMEMLEAK_SCAN_AREA,
261 KMEMLEAK_NO_SCAN,
262 KMEMLEAK_SET_EXCESS_REF
263 };
264
265 /*
266 * Structure holding the information passed to kmemleak callbacks during the
267 * early logging.
268 */
269 struct early_log {
270 int op_type; /* kmemleak operation type */
271 int min_count; /* minimum reference count */
272 const void *ptr; /* allocated/freed memory block */
273 union {
274 size_t size; /* memory block size */
275 unsigned long excess_ref; /* surplus reference passing */
276 };
277 unsigned long trace[MAX_TRACE]; /* stack trace */
278 unsigned int trace_len; /* stack trace length */
279 };
280
281 /* early logging buffer and current position */
282 static struct early_log
283 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
284 static int crt_early_log __initdata;
285
286 static void kmemleak_disable(void);
287
288 /*
289 * Print a warning and dump the stack trace.
290 */
291 #define kmemleak_warn(x...) do { \
292 pr_warn(x); \
293 dump_stack(); \
294 kmemleak_warning = 1; \
295 } while (0)
296
297 /*
298 * Macro invoked when a serious kmemleak condition occurred and cannot be
299 * recovered from. Kmemleak will be disabled and further allocation/freeing
300 * tracing no longer available.
301 */
302 #define kmemleak_stop(x...) do { \
303 kmemleak_warn(x); \
304 kmemleak_disable(); \
305 } while (0)
306
307 #define warn_or_seq_printf(seq, fmt, ...) do { \
308 if (seq) \
309 seq_printf(seq, fmt, ##__VA_ARGS__); \
310 else \
311 pr_warn(fmt, ##__VA_ARGS__); \
312 } while (0)
313
314 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
315 int rowsize, int groupsize, const void *buf,
316 size_t len, bool ascii)
317 {
318 if (seq)
319 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
320 buf, len, ascii);
321 else
322 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
323 rowsize, groupsize, buf, len, ascii);
324 }
325
326 /*
327 * Printing of the objects hex dump to the seq file. The number of lines to be
328 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
329 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
330 * with the object->lock held.
331 */
332 static void hex_dump_object(struct seq_file *seq,
333 struct kmemleak_object *object)
334 {
335 const u8 *ptr = (const u8 *)object->pointer;
336 size_t len;
337
338 /* limit the number of lines to HEX_MAX_LINES */
339 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
340
341 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
342 kasan_disable_current();
343 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
344 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
345 kasan_enable_current();
346 }
347
348 /*
349 * Object colors, encoded with count and min_count:
350 * - white - orphan object, not enough references to it (count < min_count)
351 * - gray - not orphan, not marked as false positive (min_count == 0) or
352 * sufficient references to it (count >= min_count)
353 * - black - ignore, it doesn't contain references (e.g. text section)
354 * (min_count == -1). No function defined for this color.
355 * Newly created objects don't have any color assigned (object->count == -1)
356 * before the next memory scan when they become white.
357 */
358 static bool color_white(const struct kmemleak_object *object)
359 {
360 return object->count != KMEMLEAK_BLACK &&
361 object->count < object->min_count;
362 }
363
364 static bool color_gray(const struct kmemleak_object *object)
365 {
366 return object->min_count != KMEMLEAK_BLACK &&
367 object->count >= object->min_count;
368 }
369
370 /*
371 * Objects are considered unreferenced only if their color is white, they have
372 * not be deleted and have a minimum age to avoid false positives caused by
373 * pointers temporarily stored in CPU registers.
374 */
375 static bool unreferenced_object(struct kmemleak_object *object)
376 {
377 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
378 time_before_eq(object->jiffies + jiffies_min_age,
379 jiffies_last_scan);
380 }
381
382 /*
383 * Printing of the unreferenced objects information to the seq file. The
384 * print_unreferenced function must be called with the object->lock held.
385 */
386 static void print_unreferenced(struct seq_file *seq,
387 struct kmemleak_object *object)
388 {
389 int i;
390 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
391
392 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
393 object->pointer, object->size);
394 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
395 object->comm, object->pid, object->jiffies,
396 msecs_age / 1000, msecs_age % 1000);
397 hex_dump_object(seq, object);
398 warn_or_seq_printf(seq, " backtrace:\n");
399
400 for (i = 0; i < object->trace_len; i++) {
401 void *ptr = (void *)object->trace[i];
402 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
403 }
404 }
405
406 /*
407 * Print the kmemleak_object information. This function is used mainly for
408 * debugging special cases when kmemleak operations. It must be called with
409 * the object->lock held.
410 */
411 static void dump_object_info(struct kmemleak_object *object)
412 {
413 struct stack_trace trace;
414
415 trace.nr_entries = object->trace_len;
416 trace.entries = object->trace;
417
418 pr_notice("Object 0x%08lx (size %zu):\n",
419 object->pointer, object->size);
420 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
421 object->comm, object->pid, object->jiffies);
422 pr_notice(" min_count = %d\n", object->min_count);
423 pr_notice(" count = %d\n", object->count);
424 pr_notice(" flags = 0x%x\n", object->flags);
425 pr_notice(" checksum = %u\n", object->checksum);
426 pr_notice(" backtrace:\n");
427 print_stack_trace(&trace, 4);
428 }
429
430 /*
431 * Look-up a memory block metadata (kmemleak_object) in the object search
432 * tree based on a pointer value. If alias is 0, only values pointing to the
433 * beginning of the memory block are allowed. The kmemleak_lock must be held
434 * when calling this function.
435 */
436 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
437 {
438 struct rb_node *rb = object_tree_root.rb_node;
439
440 while (rb) {
441 struct kmemleak_object *object =
442 rb_entry(rb, struct kmemleak_object, rb_node);
443 if (ptr < object->pointer)
444 rb = object->rb_node.rb_left;
445 else if (object->pointer + object->size <= ptr)
446 rb = object->rb_node.rb_right;
447 else if (object->pointer == ptr || alias)
448 return object;
449 else {
450 kmemleak_warn("Found object by alias at 0x%08lx\n",
451 ptr);
452 dump_object_info(object);
453 break;
454 }
455 }
456 return NULL;
457 }
458
459 /*
460 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
461 * that once an object's use_count reached 0, the RCU freeing was already
462 * registered and the object should no longer be used. This function must be
463 * called under the protection of rcu_read_lock().
464 */
465 static int get_object(struct kmemleak_object *object)
466 {
467 return atomic_inc_not_zero(&object->use_count);
468 }
469
470 /*
471 * RCU callback to free a kmemleak_object.
472 */
473 static void free_object_rcu(struct rcu_head *rcu)
474 {
475 struct hlist_node *tmp;
476 struct kmemleak_scan_area *area;
477 struct kmemleak_object *object =
478 container_of(rcu, struct kmemleak_object, rcu);
479
480 /*
481 * Once use_count is 0 (guaranteed by put_object), there is no other
482 * code accessing this object, hence no need for locking.
483 */
484 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
485 hlist_del(&area->node);
486 kmem_cache_free(scan_area_cache, area);
487 }
488 kmem_cache_free(object_cache, object);
489 }
490
491 /*
492 * Decrement the object use_count. Once the count is 0, free the object using
493 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
494 * delete_object() path, the delayed RCU freeing ensures that there is no
495 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
496 * is also possible.
497 */
498 static void put_object(struct kmemleak_object *object)
499 {
500 if (!atomic_dec_and_test(&object->use_count))
501 return;
502
503 /* should only get here after delete_object was called */
504 WARN_ON(object->flags & OBJECT_ALLOCATED);
505
506 call_rcu(&object->rcu, free_object_rcu);
507 }
508
509 /*
510 * Look up an object in the object search tree and increase its use_count.
511 */
512 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
513 {
514 unsigned long flags;
515 struct kmemleak_object *object;
516
517 rcu_read_lock();
518 read_lock_irqsave(&kmemleak_lock, flags);
519 object = lookup_object(ptr, alias);
520 read_unlock_irqrestore(&kmemleak_lock, flags);
521
522 /* check whether the object is still available */
523 if (object && !get_object(object))
524 object = NULL;
525 rcu_read_unlock();
526
527 return object;
528 }
529
530 /*
531 * Look up an object in the object search tree and remove it from both
532 * object_tree_root and object_list. The returned object's use_count should be
533 * at least 1, as initially set by create_object().
534 */
535 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
536 {
537 unsigned long flags;
538 struct kmemleak_object *object;
539
540 write_lock_irqsave(&kmemleak_lock, flags);
541 object = lookup_object(ptr, alias);
542 if (object) {
543 rb_erase(&object->rb_node, &object_tree_root);
544 list_del_rcu(&object->object_list);
545 }
546 write_unlock_irqrestore(&kmemleak_lock, flags);
547
548 return object;
549 }
550
551 /*
552 * Save stack trace to the given array of MAX_TRACE size.
553 */
554 static int __save_stack_trace(unsigned long *trace)
555 {
556 struct stack_trace stack_trace;
557
558 stack_trace.max_entries = MAX_TRACE;
559 stack_trace.nr_entries = 0;
560 stack_trace.entries = trace;
561 stack_trace.skip = 2;
562 save_stack_trace(&stack_trace);
563
564 return stack_trace.nr_entries;
565 }
566
567 /*
568 * Create the metadata (struct kmemleak_object) corresponding to an allocated
569 * memory block and add it to the object_list and object_tree_root.
570 */
571 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
572 int min_count, gfp_t gfp)
573 {
574 unsigned long flags;
575 struct kmemleak_object *object, *parent;
576 struct rb_node **link, *rb_parent;
577
578 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
579 if (!object) {
580 pr_warn("Cannot allocate a kmemleak_object structure\n");
581 kmemleak_disable();
582 return NULL;
583 }
584
585 INIT_LIST_HEAD(&object->object_list);
586 INIT_LIST_HEAD(&object->gray_list);
587 INIT_HLIST_HEAD(&object->area_list);
588 spin_lock_init(&object->lock);
589 atomic_set(&object->use_count, 1);
590 object->flags = OBJECT_ALLOCATED;
591 object->pointer = ptr;
592 object->size = size;
593 object->excess_ref = 0;
594 object->min_count = min_count;
595 object->count = 0; /* white color initially */
596 object->jiffies = jiffies;
597 object->checksum = 0;
598
599 /* task information */
600 if (in_irq()) {
601 object->pid = 0;
602 strncpy(object->comm, "hardirq", sizeof(object->comm));
603 } else if (in_softirq()) {
604 object->pid = 0;
605 strncpy(object->comm, "softirq", sizeof(object->comm));
606 } else {
607 object->pid = current->pid;
608 /*
609 * There is a small chance of a race with set_task_comm(),
610 * however using get_task_comm() here may cause locking
611 * dependency issues with current->alloc_lock. In the worst
612 * case, the command line is not correct.
613 */
614 strncpy(object->comm, current->comm, sizeof(object->comm));
615 }
616
617 /* kernel backtrace */
618 object->trace_len = __save_stack_trace(object->trace);
619
620 write_lock_irqsave(&kmemleak_lock, flags);
621
622 min_addr = min(min_addr, ptr);
623 max_addr = max(max_addr, ptr + size);
624 link = &object_tree_root.rb_node;
625 rb_parent = NULL;
626 while (*link) {
627 rb_parent = *link;
628 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
629 if (ptr + size <= parent->pointer)
630 link = &parent->rb_node.rb_left;
631 else if (parent->pointer + parent->size <= ptr)
632 link = &parent->rb_node.rb_right;
633 else {
634 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
635 ptr);
636 /*
637 * No need for parent->lock here since "parent" cannot
638 * be freed while the kmemleak_lock is held.
639 */
640 dump_object_info(parent);
641 kmem_cache_free(object_cache, object);
642 object = NULL;
643 goto out;
644 }
645 }
646 rb_link_node(&object->rb_node, rb_parent, link);
647 rb_insert_color(&object->rb_node, &object_tree_root);
648
649 list_add_tail_rcu(&object->object_list, &object_list);
650 out:
651 write_unlock_irqrestore(&kmemleak_lock, flags);
652 return object;
653 }
654
655 /*
656 * Mark the object as not allocated and schedule RCU freeing via put_object().
657 */
658 static void __delete_object(struct kmemleak_object *object)
659 {
660 unsigned long flags;
661
662 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
663 WARN_ON(atomic_read(&object->use_count) < 1);
664
665 /*
666 * Locking here also ensures that the corresponding memory block
667 * cannot be freed when it is being scanned.
668 */
669 spin_lock_irqsave(&object->lock, flags);
670 object->flags &= ~OBJECT_ALLOCATED;
671 spin_unlock_irqrestore(&object->lock, flags);
672 put_object(object);
673 }
674
675 /*
676 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
677 * delete it.
678 */
679 static void delete_object_full(unsigned long ptr)
680 {
681 struct kmemleak_object *object;
682
683 object = find_and_remove_object(ptr, 0);
684 if (!object) {
685 #ifdef DEBUG
686 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
687 ptr);
688 #endif
689 return;
690 }
691 __delete_object(object);
692 }
693
694 /*
695 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
696 * delete it. If the memory block is partially freed, the function may create
697 * additional metadata for the remaining parts of the block.
698 */
699 static void delete_object_part(unsigned long ptr, size_t size)
700 {
701 struct kmemleak_object *object;
702 unsigned long start, end;
703
704 object = find_and_remove_object(ptr, 1);
705 if (!object) {
706 #ifdef DEBUG
707 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
708 ptr, size);
709 #endif
710 return;
711 }
712
713 /*
714 * Create one or two objects that may result from the memory block
715 * split. Note that partial freeing is only done by free_bootmem() and
716 * this happens before kmemleak_init() is called. The path below is
717 * only executed during early log recording in kmemleak_init(), so
718 * GFP_KERNEL is enough.
719 */
720 start = object->pointer;
721 end = object->pointer + object->size;
722 if (ptr > start)
723 create_object(start, ptr - start, object->min_count,
724 GFP_KERNEL);
725 if (ptr + size < end)
726 create_object(ptr + size, end - ptr - size, object->min_count,
727 GFP_KERNEL);
728
729 __delete_object(object);
730 }
731
732 static void __paint_it(struct kmemleak_object *object, int color)
733 {
734 object->min_count = color;
735 if (color == KMEMLEAK_BLACK)
736 object->flags |= OBJECT_NO_SCAN;
737 }
738
739 static void paint_it(struct kmemleak_object *object, int color)
740 {
741 unsigned long flags;
742
743 spin_lock_irqsave(&object->lock, flags);
744 __paint_it(object, color);
745 spin_unlock_irqrestore(&object->lock, flags);
746 }
747
748 static void paint_ptr(unsigned long ptr, int color)
749 {
750 struct kmemleak_object *object;
751
752 object = find_and_get_object(ptr, 0);
753 if (!object) {
754 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
755 ptr,
756 (color == KMEMLEAK_GREY) ? "Grey" :
757 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
758 return;
759 }
760 paint_it(object, color);
761 put_object(object);
762 }
763
764 /*
765 * Mark an object permanently as gray-colored so that it can no longer be
766 * reported as a leak. This is used in general to mark a false positive.
767 */
768 static void make_gray_object(unsigned long ptr)
769 {
770 paint_ptr(ptr, KMEMLEAK_GREY);
771 }
772
773 /*
774 * Mark the object as black-colored so that it is ignored from scans and
775 * reporting.
776 */
777 static void make_black_object(unsigned long ptr)
778 {
779 paint_ptr(ptr, KMEMLEAK_BLACK);
780 }
781
782 /*
783 * Add a scanning area to the object. If at least one such area is added,
784 * kmemleak will only scan these ranges rather than the whole memory block.
785 */
786 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
787 {
788 unsigned long flags;
789 struct kmemleak_object *object;
790 struct kmemleak_scan_area *area;
791
792 object = find_and_get_object(ptr, 1);
793 if (!object) {
794 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
795 ptr);
796 return;
797 }
798
799 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
800 if (!area) {
801 pr_warn("Cannot allocate a scan area\n");
802 goto out;
803 }
804
805 spin_lock_irqsave(&object->lock, flags);
806 if (size == SIZE_MAX) {
807 size = object->pointer + object->size - ptr;
808 } else if (ptr + size > object->pointer + object->size) {
809 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
810 dump_object_info(object);
811 kmem_cache_free(scan_area_cache, area);
812 goto out_unlock;
813 }
814
815 INIT_HLIST_NODE(&area->node);
816 area->start = ptr;
817 area->size = size;
818
819 hlist_add_head(&area->node, &object->area_list);
820 out_unlock:
821 spin_unlock_irqrestore(&object->lock, flags);
822 out:
823 put_object(object);
824 }
825
826 /*
827 * Any surplus references (object already gray) to 'ptr' are passed to
828 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
829 * vm_struct may be used as an alternative reference to the vmalloc'ed object
830 * (see free_thread_stack()).
831 */
832 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
833 {
834 unsigned long flags;
835 struct kmemleak_object *object;
836
837 object = find_and_get_object(ptr, 0);
838 if (!object) {
839 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
840 ptr);
841 return;
842 }
843
844 spin_lock_irqsave(&object->lock, flags);
845 object->excess_ref = excess_ref;
846 spin_unlock_irqrestore(&object->lock, flags);
847 put_object(object);
848 }
849
850 /*
851 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
852 * pointer. Such object will not be scanned by kmemleak but references to it
853 * are searched.
854 */
855 static void object_no_scan(unsigned long ptr)
856 {
857 unsigned long flags;
858 struct kmemleak_object *object;
859
860 object = find_and_get_object(ptr, 0);
861 if (!object) {
862 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
863 return;
864 }
865
866 spin_lock_irqsave(&object->lock, flags);
867 object->flags |= OBJECT_NO_SCAN;
868 spin_unlock_irqrestore(&object->lock, flags);
869 put_object(object);
870 }
871
872 /*
873 * Log an early kmemleak_* call to the early_log buffer. These calls will be
874 * processed later once kmemleak is fully initialized.
875 */
876 static void __init log_early(int op_type, const void *ptr, size_t size,
877 int min_count)
878 {
879 unsigned long flags;
880 struct early_log *log;
881
882 if (kmemleak_error) {
883 /* kmemleak stopped recording, just count the requests */
884 crt_early_log++;
885 return;
886 }
887
888 if (crt_early_log >= ARRAY_SIZE(early_log)) {
889 crt_early_log++;
890 kmemleak_disable();
891 return;
892 }
893
894 /*
895 * There is no need for locking since the kernel is still in UP mode
896 * at this stage. Disabling the IRQs is enough.
897 */
898 local_irq_save(flags);
899 log = &early_log[crt_early_log];
900 log->op_type = op_type;
901 log->ptr = ptr;
902 log->size = size;
903 log->min_count = min_count;
904 log->trace_len = __save_stack_trace(log->trace);
905 crt_early_log++;
906 local_irq_restore(flags);
907 }
908
909 /*
910 * Log an early allocated block and populate the stack trace.
911 */
912 static void early_alloc(struct early_log *log)
913 {
914 struct kmemleak_object *object;
915 unsigned long flags;
916 int i;
917
918 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
919 return;
920
921 /*
922 * RCU locking needed to ensure object is not freed via put_object().
923 */
924 rcu_read_lock();
925 object = create_object((unsigned long)log->ptr, log->size,
926 log->min_count, GFP_ATOMIC);
927 if (!object)
928 goto out;
929 spin_lock_irqsave(&object->lock, flags);
930 for (i = 0; i < log->trace_len; i++)
931 object->trace[i] = log->trace[i];
932 object->trace_len = log->trace_len;
933 spin_unlock_irqrestore(&object->lock, flags);
934 out:
935 rcu_read_unlock();
936 }
937
938 /*
939 * Log an early allocated block and populate the stack trace.
940 */
941 static void early_alloc_percpu(struct early_log *log)
942 {
943 unsigned int cpu;
944 const void __percpu *ptr = log->ptr;
945
946 for_each_possible_cpu(cpu) {
947 log->ptr = per_cpu_ptr(ptr, cpu);
948 early_alloc(log);
949 }
950 }
951
952 /**
953 * kmemleak_alloc - register a newly allocated object
954 * @ptr: pointer to beginning of the object
955 * @size: size of the object
956 * @min_count: minimum number of references to this object. If during memory
957 * scanning a number of references less than @min_count is found,
958 * the object is reported as a memory leak. If @min_count is 0,
959 * the object is never reported as a leak. If @min_count is -1,
960 * the object is ignored (not scanned and not reported as a leak)
961 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
962 *
963 * This function is called from the kernel allocators when a new object
964 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
965 */
966 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
967 gfp_t gfp)
968 {
969 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
970
971 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
972 create_object((unsigned long)ptr, size, min_count, gfp);
973 else if (kmemleak_early_log)
974 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
975 }
976 EXPORT_SYMBOL_GPL(kmemleak_alloc);
977
978 /**
979 * kmemleak_alloc_percpu - register a newly allocated __percpu object
980 * @ptr: __percpu pointer to beginning of the object
981 * @size: size of the object
982 * @gfp: flags used for kmemleak internal memory allocations
983 *
984 * This function is called from the kernel percpu allocator when a new object
985 * (memory block) is allocated (alloc_percpu).
986 */
987 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
988 gfp_t gfp)
989 {
990 unsigned int cpu;
991
992 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
993
994 /*
995 * Percpu allocations are only scanned and not reported as leaks
996 * (min_count is set to 0).
997 */
998 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
999 for_each_possible_cpu(cpu)
1000 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1001 size, 0, gfp);
1002 else if (kmemleak_early_log)
1003 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
1004 }
1005 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1006
1007 /**
1008 * kmemleak_vmalloc - register a newly vmalloc'ed object
1009 * @area: pointer to vm_struct
1010 * @size: size of the object
1011 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1012 *
1013 * This function is called from the vmalloc() kernel allocator when a new
1014 * object (memory block) is allocated.
1015 */
1016 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1017 {
1018 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1019
1020 /*
1021 * A min_count = 2 is needed because vm_struct contains a reference to
1022 * the virtual address of the vmalloc'ed block.
1023 */
1024 if (kmemleak_enabled) {
1025 create_object((unsigned long)area->addr, size, 2, gfp);
1026 object_set_excess_ref((unsigned long)area,
1027 (unsigned long)area->addr);
1028 } else if (kmemleak_early_log) {
1029 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1030 /* reusing early_log.size for storing area->addr */
1031 log_early(KMEMLEAK_SET_EXCESS_REF,
1032 area, (unsigned long)area->addr, 0);
1033 }
1034 }
1035 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1036
1037 /**
1038 * kmemleak_free - unregister a previously registered object
1039 * @ptr: pointer to beginning of the object
1040 *
1041 * This function is called from the kernel allocators when an object (memory
1042 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1043 */
1044 void __ref kmemleak_free(const void *ptr)
1045 {
1046 pr_debug("%s(0x%p)\n", __func__, ptr);
1047
1048 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1049 delete_object_full((unsigned long)ptr);
1050 else if (kmemleak_early_log)
1051 log_early(KMEMLEAK_FREE, ptr, 0, 0);
1052 }
1053 EXPORT_SYMBOL_GPL(kmemleak_free);
1054
1055 /**
1056 * kmemleak_free_part - partially unregister a previously registered object
1057 * @ptr: pointer to the beginning or inside the object. This also
1058 * represents the start of the range to be freed
1059 * @size: size to be unregistered
1060 *
1061 * This function is called when only a part of a memory block is freed
1062 * (usually from the bootmem allocator).
1063 */
1064 void __ref kmemleak_free_part(const void *ptr, size_t size)
1065 {
1066 pr_debug("%s(0x%p)\n", __func__, ptr);
1067
1068 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1069 delete_object_part((unsigned long)ptr, size);
1070 else if (kmemleak_early_log)
1071 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1072 }
1073 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1074
1075 /**
1076 * kmemleak_free_percpu - unregister a previously registered __percpu object
1077 * @ptr: __percpu pointer to beginning of the object
1078 *
1079 * This function is called from the kernel percpu allocator when an object
1080 * (memory block) is freed (free_percpu).
1081 */
1082 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1083 {
1084 unsigned int cpu;
1085
1086 pr_debug("%s(0x%p)\n", __func__, ptr);
1087
1088 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1089 for_each_possible_cpu(cpu)
1090 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1091 cpu));
1092 else if (kmemleak_early_log)
1093 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1094 }
1095 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1096
1097 /**
1098 * kmemleak_update_trace - update object allocation stack trace
1099 * @ptr: pointer to beginning of the object
1100 *
1101 * Override the object allocation stack trace for cases where the actual
1102 * allocation place is not always useful.
1103 */
1104 void __ref kmemleak_update_trace(const void *ptr)
1105 {
1106 struct kmemleak_object *object;
1107 unsigned long flags;
1108
1109 pr_debug("%s(0x%p)\n", __func__, ptr);
1110
1111 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1112 return;
1113
1114 object = find_and_get_object((unsigned long)ptr, 1);
1115 if (!object) {
1116 #ifdef DEBUG
1117 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1118 ptr);
1119 #endif
1120 return;
1121 }
1122
1123 spin_lock_irqsave(&object->lock, flags);
1124 object->trace_len = __save_stack_trace(object->trace);
1125 spin_unlock_irqrestore(&object->lock, flags);
1126
1127 put_object(object);
1128 }
1129 EXPORT_SYMBOL(kmemleak_update_trace);
1130
1131 /**
1132 * kmemleak_not_leak - mark an allocated object as false positive
1133 * @ptr: pointer to beginning of the object
1134 *
1135 * Calling this function on an object will cause the memory block to no longer
1136 * be reported as leak and always be scanned.
1137 */
1138 void __ref kmemleak_not_leak(const void *ptr)
1139 {
1140 pr_debug("%s(0x%p)\n", __func__, ptr);
1141
1142 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1143 make_gray_object((unsigned long)ptr);
1144 else if (kmemleak_early_log)
1145 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1146 }
1147 EXPORT_SYMBOL(kmemleak_not_leak);
1148
1149 /**
1150 * kmemleak_ignore - ignore an allocated object
1151 * @ptr: pointer to beginning of the object
1152 *
1153 * Calling this function on an object will cause the memory block to be
1154 * ignored (not scanned and not reported as a leak). This is usually done when
1155 * it is known that the corresponding block is not a leak and does not contain
1156 * any references to other allocated memory blocks.
1157 */
1158 void __ref kmemleak_ignore(const void *ptr)
1159 {
1160 pr_debug("%s(0x%p)\n", __func__, ptr);
1161
1162 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1163 make_black_object((unsigned long)ptr);
1164 else if (kmemleak_early_log)
1165 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1166 }
1167 EXPORT_SYMBOL(kmemleak_ignore);
1168
1169 /**
1170 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1171 * @ptr: pointer to beginning or inside the object. This also
1172 * represents the start of the scan area
1173 * @size: size of the scan area
1174 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1175 *
1176 * This function is used when it is known that only certain parts of an object
1177 * contain references to other objects. Kmemleak will only scan these areas
1178 * reducing the number false negatives.
1179 */
1180 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1181 {
1182 pr_debug("%s(0x%p)\n", __func__, ptr);
1183
1184 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1185 add_scan_area((unsigned long)ptr, size, gfp);
1186 else if (kmemleak_early_log)
1187 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1188 }
1189 EXPORT_SYMBOL(kmemleak_scan_area);
1190
1191 /**
1192 * kmemleak_no_scan - do not scan an allocated object
1193 * @ptr: pointer to beginning of the object
1194 *
1195 * This function notifies kmemleak not to scan the given memory block. Useful
1196 * in situations where it is known that the given object does not contain any
1197 * references to other objects. Kmemleak will not scan such objects reducing
1198 * the number of false negatives.
1199 */
1200 void __ref kmemleak_no_scan(const void *ptr)
1201 {
1202 pr_debug("%s(0x%p)\n", __func__, ptr);
1203
1204 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1205 object_no_scan((unsigned long)ptr);
1206 else if (kmemleak_early_log)
1207 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1208 }
1209 EXPORT_SYMBOL(kmemleak_no_scan);
1210
1211 /**
1212 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1213 * address argument
1214 * @phys: physical address of the object
1215 * @size: size of the object
1216 * @min_count: minimum number of references to this object.
1217 * See kmemleak_alloc()
1218 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1219 */
1220 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1221 gfp_t gfp)
1222 {
1223 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1224 kmemleak_alloc(__va(phys), size, min_count, gfp);
1225 }
1226 EXPORT_SYMBOL(kmemleak_alloc_phys);
1227
1228 /**
1229 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1230 * physical address argument
1231 * @phys: physical address if the beginning or inside an object. This
1232 * also represents the start of the range to be freed
1233 * @size: size to be unregistered
1234 */
1235 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1236 {
1237 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1238 kmemleak_free_part(__va(phys), size);
1239 }
1240 EXPORT_SYMBOL(kmemleak_free_part_phys);
1241
1242 /**
1243 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1244 * address argument
1245 * @phys: physical address of the object
1246 */
1247 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1248 {
1249 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1250 kmemleak_not_leak(__va(phys));
1251 }
1252 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1253
1254 /**
1255 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1256 * address argument
1257 * @phys: physical address of the object
1258 */
1259 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1260 {
1261 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1262 kmemleak_ignore(__va(phys));
1263 }
1264 EXPORT_SYMBOL(kmemleak_ignore_phys);
1265
1266 /*
1267 * Update an object's checksum and return true if it was modified.
1268 */
1269 static bool update_checksum(struct kmemleak_object *object)
1270 {
1271 u32 old_csum = object->checksum;
1272
1273 kasan_disable_current();
1274 object->checksum = crc32(0, (void *)object->pointer, object->size);
1275 kasan_enable_current();
1276
1277 return object->checksum != old_csum;
1278 }
1279
1280 /*
1281 * Update an object's references. object->lock must be held by the caller.
1282 */
1283 static void update_refs(struct kmemleak_object *object)
1284 {
1285 if (!color_white(object)) {
1286 /* non-orphan, ignored or new */
1287 return;
1288 }
1289
1290 /*
1291 * Increase the object's reference count (number of pointers to the
1292 * memory block). If this count reaches the required minimum, the
1293 * object's color will become gray and it will be added to the
1294 * gray_list.
1295 */
1296 object->count++;
1297 if (color_gray(object)) {
1298 /* put_object() called when removing from gray_list */
1299 WARN_ON(!get_object(object));
1300 list_add_tail(&object->gray_list, &gray_list);
1301 }
1302 }
1303
1304 /*
1305 * Memory scanning is a long process and it needs to be interruptable. This
1306 * function checks whether such interrupt condition occurred.
1307 */
1308 static int scan_should_stop(void)
1309 {
1310 if (!kmemleak_enabled)
1311 return 1;
1312
1313 /*
1314 * This function may be called from either process or kthread context,
1315 * hence the need to check for both stop conditions.
1316 */
1317 if (current->mm)
1318 return signal_pending(current);
1319 else
1320 return kthread_should_stop();
1321
1322 return 0;
1323 }
1324
1325 /*
1326 * Scan a memory block (exclusive range) for valid pointers and add those
1327 * found to the gray list.
1328 */
1329 static void scan_block(void *_start, void *_end,
1330 struct kmemleak_object *scanned)
1331 {
1332 unsigned long *ptr;
1333 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1334 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1335 unsigned long flags;
1336
1337 read_lock_irqsave(&kmemleak_lock, flags);
1338 for (ptr = start; ptr < end; ptr++) {
1339 struct kmemleak_object *object;
1340 unsigned long pointer;
1341 unsigned long excess_ref;
1342
1343 if (scan_should_stop())
1344 break;
1345
1346 kasan_disable_current();
1347 pointer = *ptr;
1348 kasan_enable_current();
1349
1350 if (pointer < min_addr || pointer >= max_addr)
1351 continue;
1352
1353 /*
1354 * No need for get_object() here since we hold kmemleak_lock.
1355 * object->use_count cannot be dropped to 0 while the object
1356 * is still present in object_tree_root and object_list
1357 * (with updates protected by kmemleak_lock).
1358 */
1359 object = lookup_object(pointer, 1);
1360 if (!object)
1361 continue;
1362 if (object == scanned)
1363 /* self referenced, ignore */
1364 continue;
1365
1366 /*
1367 * Avoid the lockdep recursive warning on object->lock being
1368 * previously acquired in scan_object(). These locks are
1369 * enclosed by scan_mutex.
1370 */
1371 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1372 /* only pass surplus references (object already gray) */
1373 if (color_gray(object)) {
1374 excess_ref = object->excess_ref;
1375 /* no need for update_refs() if object already gray */
1376 } else {
1377 excess_ref = 0;
1378 update_refs(object);
1379 }
1380 spin_unlock(&object->lock);
1381
1382 if (excess_ref) {
1383 object = lookup_object(excess_ref, 0);
1384 if (!object)
1385 continue;
1386 if (object == scanned)
1387 /* circular reference, ignore */
1388 continue;
1389 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1390 update_refs(object);
1391 spin_unlock(&object->lock);
1392 }
1393 }
1394 read_unlock_irqrestore(&kmemleak_lock, flags);
1395 }
1396
1397 /*
1398 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1399 */
1400 static void scan_large_block(void *start, void *end)
1401 {
1402 void *next;
1403
1404 while (start < end) {
1405 next = min(start + MAX_SCAN_SIZE, end);
1406 scan_block(start, next, NULL);
1407 start = next;
1408 cond_resched();
1409 }
1410 }
1411
1412 /*
1413 * Scan a memory block corresponding to a kmemleak_object. A condition is
1414 * that object->use_count >= 1.
1415 */
1416 static void scan_object(struct kmemleak_object *object)
1417 {
1418 struct kmemleak_scan_area *area;
1419 unsigned long flags;
1420
1421 /*
1422 * Once the object->lock is acquired, the corresponding memory block
1423 * cannot be freed (the same lock is acquired in delete_object).
1424 */
1425 spin_lock_irqsave(&object->lock, flags);
1426 if (object->flags & OBJECT_NO_SCAN)
1427 goto out;
1428 if (!(object->flags & OBJECT_ALLOCATED))
1429 /* already freed object */
1430 goto out;
1431 if (hlist_empty(&object->area_list)) {
1432 void *start = (void *)object->pointer;
1433 void *end = (void *)(object->pointer + object->size);
1434 void *next;
1435
1436 do {
1437 next = min(start + MAX_SCAN_SIZE, end);
1438 scan_block(start, next, object);
1439
1440 start = next;
1441 if (start >= end)
1442 break;
1443
1444 spin_unlock_irqrestore(&object->lock, flags);
1445 cond_resched();
1446 spin_lock_irqsave(&object->lock, flags);
1447 } while (object->flags & OBJECT_ALLOCATED);
1448 } else
1449 hlist_for_each_entry(area, &object->area_list, node)
1450 scan_block((void *)area->start,
1451 (void *)(area->start + area->size),
1452 object);
1453 out:
1454 spin_unlock_irqrestore(&object->lock, flags);
1455 }
1456
1457 /*
1458 * Scan the objects already referenced (gray objects). More objects will be
1459 * referenced and, if there are no memory leaks, all the objects are scanned.
1460 */
1461 static void scan_gray_list(void)
1462 {
1463 struct kmemleak_object *object, *tmp;
1464
1465 /*
1466 * The list traversal is safe for both tail additions and removals
1467 * from inside the loop. The kmemleak objects cannot be freed from
1468 * outside the loop because their use_count was incremented.
1469 */
1470 object = list_entry(gray_list.next, typeof(*object), gray_list);
1471 while (&object->gray_list != &gray_list) {
1472 cond_resched();
1473
1474 /* may add new objects to the list */
1475 if (!scan_should_stop())
1476 scan_object(object);
1477
1478 tmp = list_entry(object->gray_list.next, typeof(*object),
1479 gray_list);
1480
1481 /* remove the object from the list and release it */
1482 list_del(&object->gray_list);
1483 put_object(object);
1484
1485 object = tmp;
1486 }
1487 WARN_ON(!list_empty(&gray_list));
1488 }
1489
1490 /*
1491 * Scan data sections and all the referenced memory blocks allocated via the
1492 * kernel's standard allocators. This function must be called with the
1493 * scan_mutex held.
1494 */
1495 static void kmemleak_scan(void)
1496 {
1497 unsigned long flags;
1498 struct kmemleak_object *object;
1499 int i;
1500 int new_leaks = 0;
1501
1502 jiffies_last_scan = jiffies;
1503
1504 /* prepare the kmemleak_object's */
1505 rcu_read_lock();
1506 list_for_each_entry_rcu(object, &object_list, object_list) {
1507 spin_lock_irqsave(&object->lock, flags);
1508 #ifdef DEBUG
1509 /*
1510 * With a few exceptions there should be a maximum of
1511 * 1 reference to any object at this point.
1512 */
1513 if (atomic_read(&object->use_count) > 1) {
1514 pr_debug("object->use_count = %d\n",
1515 atomic_read(&object->use_count));
1516 dump_object_info(object);
1517 }
1518 #endif
1519 /* reset the reference count (whiten the object) */
1520 object->count = 0;
1521 if (color_gray(object) && get_object(object))
1522 list_add_tail(&object->gray_list, &gray_list);
1523
1524 spin_unlock_irqrestore(&object->lock, flags);
1525 }
1526 rcu_read_unlock();
1527
1528 /* data/bss scanning */
1529 scan_large_block(_sdata, _edata);
1530 scan_large_block(__bss_start, __bss_stop);
1531 scan_large_block(__start_ro_after_init, __end_ro_after_init);
1532
1533 #ifdef CONFIG_SMP
1534 /* per-cpu sections scanning */
1535 for_each_possible_cpu(i)
1536 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1537 __per_cpu_end + per_cpu_offset(i));
1538 #endif
1539
1540 /*
1541 * Struct page scanning for each node.
1542 */
1543 get_online_mems();
1544 for_each_online_node(i) {
1545 unsigned long start_pfn = node_start_pfn(i);
1546 unsigned long end_pfn = node_end_pfn(i);
1547 unsigned long pfn;
1548
1549 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1550 struct page *page = pfn_to_online_page(pfn);
1551
1552 if (!page)
1553 continue;
1554
1555 /* only scan pages belonging to this node */
1556 if (page_to_nid(page) != i)
1557 continue;
1558 /* only scan if page is in use */
1559 if (page_count(page) == 0)
1560 continue;
1561 scan_block(page, page + 1, NULL);
1562 if (!(pfn & 63))
1563 cond_resched();
1564 }
1565 }
1566 put_online_mems();
1567
1568 /*
1569 * Scanning the task stacks (may introduce false negatives).
1570 */
1571 if (kmemleak_stack_scan) {
1572 struct task_struct *p, *g;
1573
1574 read_lock(&tasklist_lock);
1575 do_each_thread(g, p) {
1576 void *stack = try_get_task_stack(p);
1577 if (stack) {
1578 scan_block(stack, stack + THREAD_SIZE, NULL);
1579 put_task_stack(p);
1580 }
1581 } while_each_thread(g, p);
1582 read_unlock(&tasklist_lock);
1583 }
1584
1585 /*
1586 * Scan the objects already referenced from the sections scanned
1587 * above.
1588 */
1589 scan_gray_list();
1590
1591 /*
1592 * Check for new or unreferenced objects modified since the previous
1593 * scan and color them gray until the next scan.
1594 */
1595 rcu_read_lock();
1596 list_for_each_entry_rcu(object, &object_list, object_list) {
1597 spin_lock_irqsave(&object->lock, flags);
1598 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1599 && update_checksum(object) && get_object(object)) {
1600 /* color it gray temporarily */
1601 object->count = object->min_count;
1602 list_add_tail(&object->gray_list, &gray_list);
1603 }
1604 spin_unlock_irqrestore(&object->lock, flags);
1605 }
1606 rcu_read_unlock();
1607
1608 /*
1609 * Re-scan the gray list for modified unreferenced objects.
1610 */
1611 scan_gray_list();
1612
1613 /*
1614 * If scanning was stopped do not report any new unreferenced objects.
1615 */
1616 if (scan_should_stop())
1617 return;
1618
1619 /*
1620 * Scanning result reporting.
1621 */
1622 rcu_read_lock();
1623 list_for_each_entry_rcu(object, &object_list, object_list) {
1624 spin_lock_irqsave(&object->lock, flags);
1625 if (unreferenced_object(object) &&
1626 !(object->flags & OBJECT_REPORTED)) {
1627 object->flags |= OBJECT_REPORTED;
1628
1629 if (kmemleak_verbose)
1630 print_unreferenced(NULL, object);
1631
1632 new_leaks++;
1633 }
1634 spin_unlock_irqrestore(&object->lock, flags);
1635 }
1636 rcu_read_unlock();
1637
1638 if (new_leaks) {
1639 kmemleak_found_leaks = true;
1640
1641 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1642 new_leaks);
1643 }
1644
1645 }
1646
1647 /*
1648 * Thread function performing automatic memory scanning. Unreferenced objects
1649 * at the end of a memory scan are reported but only the first time.
1650 */
1651 static int kmemleak_scan_thread(void *arg)
1652 {
1653 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1654
1655 pr_info("Automatic memory scanning thread started\n");
1656 set_user_nice(current, 10);
1657
1658 /*
1659 * Wait before the first scan to allow the system to fully initialize.
1660 */
1661 if (first_run) {
1662 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1663 first_run = 0;
1664 while (timeout && !kthread_should_stop())
1665 timeout = schedule_timeout_interruptible(timeout);
1666 }
1667
1668 while (!kthread_should_stop()) {
1669 signed long timeout = jiffies_scan_wait;
1670
1671 mutex_lock(&scan_mutex);
1672 kmemleak_scan();
1673 mutex_unlock(&scan_mutex);
1674
1675 /* wait before the next scan */
1676 while (timeout && !kthread_should_stop())
1677 timeout = schedule_timeout_interruptible(timeout);
1678 }
1679
1680 pr_info("Automatic memory scanning thread ended\n");
1681
1682 return 0;
1683 }
1684
1685 /*
1686 * Start the automatic memory scanning thread. This function must be called
1687 * with the scan_mutex held.
1688 */
1689 static void start_scan_thread(void)
1690 {
1691 if (scan_thread)
1692 return;
1693 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1694 if (IS_ERR(scan_thread)) {
1695 pr_warn("Failed to create the scan thread\n");
1696 scan_thread = NULL;
1697 }
1698 }
1699
1700 /*
1701 * Stop the automatic memory scanning thread.
1702 */
1703 static void stop_scan_thread(void)
1704 {
1705 if (scan_thread) {
1706 kthread_stop(scan_thread);
1707 scan_thread = NULL;
1708 }
1709 }
1710
1711 /*
1712 * Iterate over the object_list and return the first valid object at or after
1713 * the required position with its use_count incremented. The function triggers
1714 * a memory scanning when the pos argument points to the first position.
1715 */
1716 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1717 {
1718 struct kmemleak_object *object;
1719 loff_t n = *pos;
1720 int err;
1721
1722 err = mutex_lock_interruptible(&scan_mutex);
1723 if (err < 0)
1724 return ERR_PTR(err);
1725
1726 rcu_read_lock();
1727 list_for_each_entry_rcu(object, &object_list, object_list) {
1728 if (n-- > 0)
1729 continue;
1730 if (get_object(object))
1731 goto out;
1732 }
1733 object = NULL;
1734 out:
1735 return object;
1736 }
1737
1738 /*
1739 * Return the next object in the object_list. The function decrements the
1740 * use_count of the previous object and increases that of the next one.
1741 */
1742 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1743 {
1744 struct kmemleak_object *prev_obj = v;
1745 struct kmemleak_object *next_obj = NULL;
1746 struct kmemleak_object *obj = prev_obj;
1747
1748 ++(*pos);
1749
1750 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1751 if (get_object(obj)) {
1752 next_obj = obj;
1753 break;
1754 }
1755 }
1756
1757 put_object(prev_obj);
1758 return next_obj;
1759 }
1760
1761 /*
1762 * Decrement the use_count of the last object required, if any.
1763 */
1764 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1765 {
1766 if (!IS_ERR(v)) {
1767 /*
1768 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1769 * waiting was interrupted, so only release it if !IS_ERR.
1770 */
1771 rcu_read_unlock();
1772 mutex_unlock(&scan_mutex);
1773 if (v)
1774 put_object(v);
1775 }
1776 }
1777
1778 /*
1779 * Print the information for an unreferenced object to the seq file.
1780 */
1781 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1782 {
1783 struct kmemleak_object *object = v;
1784 unsigned long flags;
1785
1786 spin_lock_irqsave(&object->lock, flags);
1787 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1788 print_unreferenced(seq, object);
1789 spin_unlock_irqrestore(&object->lock, flags);
1790 return 0;
1791 }
1792
1793 static const struct seq_operations kmemleak_seq_ops = {
1794 .start = kmemleak_seq_start,
1795 .next = kmemleak_seq_next,
1796 .stop = kmemleak_seq_stop,
1797 .show = kmemleak_seq_show,
1798 };
1799
1800 static int kmemleak_open(struct inode *inode, struct file *file)
1801 {
1802 return seq_open(file, &kmemleak_seq_ops);
1803 }
1804
1805 static int dump_str_object_info(const char *str)
1806 {
1807 unsigned long flags;
1808 struct kmemleak_object *object;
1809 unsigned long addr;
1810
1811 if (kstrtoul(str, 0, &addr))
1812 return -EINVAL;
1813 object = find_and_get_object(addr, 0);
1814 if (!object) {
1815 pr_info("Unknown object at 0x%08lx\n", addr);
1816 return -EINVAL;
1817 }
1818
1819 spin_lock_irqsave(&object->lock, flags);
1820 dump_object_info(object);
1821 spin_unlock_irqrestore(&object->lock, flags);
1822
1823 put_object(object);
1824 return 0;
1825 }
1826
1827 /*
1828 * We use grey instead of black to ensure we can do future scans on the same
1829 * objects. If we did not do future scans these black objects could
1830 * potentially contain references to newly allocated objects in the future and
1831 * we'd end up with false positives.
1832 */
1833 static void kmemleak_clear(void)
1834 {
1835 struct kmemleak_object *object;
1836 unsigned long flags;
1837
1838 rcu_read_lock();
1839 list_for_each_entry_rcu(object, &object_list, object_list) {
1840 spin_lock_irqsave(&object->lock, flags);
1841 if ((object->flags & OBJECT_REPORTED) &&
1842 unreferenced_object(object))
1843 __paint_it(object, KMEMLEAK_GREY);
1844 spin_unlock_irqrestore(&object->lock, flags);
1845 }
1846 rcu_read_unlock();
1847
1848 kmemleak_found_leaks = false;
1849 }
1850
1851 static void __kmemleak_do_cleanup(void);
1852
1853 /*
1854 * File write operation to configure kmemleak at run-time. The following
1855 * commands can be written to the /sys/kernel/debug/kmemleak file:
1856 * off - disable kmemleak (irreversible)
1857 * stack=on - enable the task stacks scanning
1858 * stack=off - disable the tasks stacks scanning
1859 * scan=on - start the automatic memory scanning thread
1860 * scan=off - stop the automatic memory scanning thread
1861 * scan=... - set the automatic memory scanning period in seconds (0 to
1862 * disable it)
1863 * scan - trigger a memory scan
1864 * clear - mark all current reported unreferenced kmemleak objects as
1865 * grey to ignore printing them, or free all kmemleak objects
1866 * if kmemleak has been disabled.
1867 * dump=... - dump information about the object found at the given address
1868 */
1869 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1870 size_t size, loff_t *ppos)
1871 {
1872 char buf[64];
1873 int buf_size;
1874 int ret;
1875
1876 buf_size = min(size, (sizeof(buf) - 1));
1877 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1878 return -EFAULT;
1879 buf[buf_size] = 0;
1880
1881 ret = mutex_lock_interruptible(&scan_mutex);
1882 if (ret < 0)
1883 return ret;
1884
1885 if (strncmp(buf, "clear", 5) == 0) {
1886 if (kmemleak_enabled)
1887 kmemleak_clear();
1888 else
1889 __kmemleak_do_cleanup();
1890 goto out;
1891 }
1892
1893 if (!kmemleak_enabled) {
1894 ret = -EBUSY;
1895 goto out;
1896 }
1897
1898 if (strncmp(buf, "off", 3) == 0)
1899 kmemleak_disable();
1900 else if (strncmp(buf, "stack=on", 8) == 0)
1901 kmemleak_stack_scan = 1;
1902 else if (strncmp(buf, "stack=off", 9) == 0)
1903 kmemleak_stack_scan = 0;
1904 else if (strncmp(buf, "scan=on", 7) == 0)
1905 start_scan_thread();
1906 else if (strncmp(buf, "scan=off", 8) == 0)
1907 stop_scan_thread();
1908 else if (strncmp(buf, "scan=", 5) == 0) {
1909 unsigned long secs;
1910
1911 ret = kstrtoul(buf + 5, 0, &secs);
1912 if (ret < 0)
1913 goto out;
1914 stop_scan_thread();
1915 if (secs) {
1916 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1917 start_scan_thread();
1918 }
1919 } else if (strncmp(buf, "scan", 4) == 0)
1920 kmemleak_scan();
1921 else if (strncmp(buf, "dump=", 5) == 0)
1922 ret = dump_str_object_info(buf + 5);
1923 else
1924 ret = -EINVAL;
1925
1926 out:
1927 mutex_unlock(&scan_mutex);
1928 if (ret < 0)
1929 return ret;
1930
1931 /* ignore the rest of the buffer, only one command at a time */
1932 *ppos += size;
1933 return size;
1934 }
1935
1936 static const struct file_operations kmemleak_fops = {
1937 .owner = THIS_MODULE,
1938 .open = kmemleak_open,
1939 .read = seq_read,
1940 .write = kmemleak_write,
1941 .llseek = seq_lseek,
1942 .release = seq_release,
1943 };
1944
1945 static void __kmemleak_do_cleanup(void)
1946 {
1947 struct kmemleak_object *object;
1948
1949 rcu_read_lock();
1950 list_for_each_entry_rcu(object, &object_list, object_list)
1951 delete_object_full(object->pointer);
1952 rcu_read_unlock();
1953 }
1954
1955 /*
1956 * Stop the memory scanning thread and free the kmemleak internal objects if
1957 * no previous scan thread (otherwise, kmemleak may still have some useful
1958 * information on memory leaks).
1959 */
1960 static void kmemleak_do_cleanup(struct work_struct *work)
1961 {
1962 stop_scan_thread();
1963
1964 mutex_lock(&scan_mutex);
1965 /*
1966 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1967 * longer track object freeing. Ordering of the scan thread stopping and
1968 * the memory accesses below is guaranteed by the kthread_stop()
1969 * function.
1970 */
1971 kmemleak_free_enabled = 0;
1972 mutex_unlock(&scan_mutex);
1973
1974 if (!kmemleak_found_leaks)
1975 __kmemleak_do_cleanup();
1976 else
1977 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1978 }
1979
1980 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1981
1982 /*
1983 * Disable kmemleak. No memory allocation/freeing will be traced once this
1984 * function is called. Disabling kmemleak is an irreversible operation.
1985 */
1986 static void kmemleak_disable(void)
1987 {
1988 /* atomically check whether it was already invoked */
1989 if (cmpxchg(&kmemleak_error, 0, 1))
1990 return;
1991
1992 /* stop any memory operation tracing */
1993 kmemleak_enabled = 0;
1994
1995 /* check whether it is too early for a kernel thread */
1996 if (kmemleak_initialized)
1997 schedule_work(&cleanup_work);
1998 else
1999 kmemleak_free_enabled = 0;
2000
2001 pr_info("Kernel memory leak detector disabled\n");
2002 }
2003
2004 /*
2005 * Allow boot-time kmemleak disabling (enabled by default).
2006 */
2007 static int __init kmemleak_boot_config(char *str)
2008 {
2009 if (!str)
2010 return -EINVAL;
2011 if (strcmp(str, "off") == 0)
2012 kmemleak_disable();
2013 else if (strcmp(str, "on") == 0)
2014 kmemleak_skip_disable = 1;
2015 else
2016 return -EINVAL;
2017 return 0;
2018 }
2019 early_param("kmemleak", kmemleak_boot_config);
2020
2021 static void __init print_log_trace(struct early_log *log)
2022 {
2023 struct stack_trace trace;
2024
2025 trace.nr_entries = log->trace_len;
2026 trace.entries = log->trace;
2027
2028 pr_notice("Early log backtrace:\n");
2029 print_stack_trace(&trace, 2);
2030 }
2031
2032 /*
2033 * Kmemleak initialization.
2034 */
2035 void __init kmemleak_init(void)
2036 {
2037 int i;
2038 unsigned long flags;
2039
2040 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2041 if (!kmemleak_skip_disable) {
2042 kmemleak_early_log = 0;
2043 kmemleak_disable();
2044 return;
2045 }
2046 #endif
2047
2048 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2049 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2050
2051 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2052 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2053
2054 if (crt_early_log > ARRAY_SIZE(early_log))
2055 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2056 crt_early_log);
2057
2058 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2059 local_irq_save(flags);
2060 kmemleak_early_log = 0;
2061 if (kmemleak_error) {
2062 local_irq_restore(flags);
2063 return;
2064 } else {
2065 kmemleak_enabled = 1;
2066 kmemleak_free_enabled = 1;
2067 }
2068 local_irq_restore(flags);
2069
2070 /*
2071 * This is the point where tracking allocations is safe. Automatic
2072 * scanning is started during the late initcall. Add the early logged
2073 * callbacks to the kmemleak infrastructure.
2074 */
2075 for (i = 0; i < crt_early_log; i++) {
2076 struct early_log *log = &early_log[i];
2077
2078 switch (log->op_type) {
2079 case KMEMLEAK_ALLOC:
2080 early_alloc(log);
2081 break;
2082 case KMEMLEAK_ALLOC_PERCPU:
2083 early_alloc_percpu(log);
2084 break;
2085 case KMEMLEAK_FREE:
2086 kmemleak_free(log->ptr);
2087 break;
2088 case KMEMLEAK_FREE_PART:
2089 kmemleak_free_part(log->ptr, log->size);
2090 break;
2091 case KMEMLEAK_FREE_PERCPU:
2092 kmemleak_free_percpu(log->ptr);
2093 break;
2094 case KMEMLEAK_NOT_LEAK:
2095 kmemleak_not_leak(log->ptr);
2096 break;
2097 case KMEMLEAK_IGNORE:
2098 kmemleak_ignore(log->ptr);
2099 break;
2100 case KMEMLEAK_SCAN_AREA:
2101 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2102 break;
2103 case KMEMLEAK_NO_SCAN:
2104 kmemleak_no_scan(log->ptr);
2105 break;
2106 case KMEMLEAK_SET_EXCESS_REF:
2107 object_set_excess_ref((unsigned long)log->ptr,
2108 log->excess_ref);
2109 break;
2110 default:
2111 kmemleak_warn("Unknown early log operation: %d\n",
2112 log->op_type);
2113 }
2114
2115 if (kmemleak_warning) {
2116 print_log_trace(log);
2117 kmemleak_warning = 0;
2118 }
2119 }
2120 }
2121
2122 /*
2123 * Late initialization function.
2124 */
2125 static int __init kmemleak_late_init(void)
2126 {
2127 struct dentry *dentry;
2128
2129 kmemleak_initialized = 1;
2130
2131 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2132 &kmemleak_fops);
2133 if (!dentry)
2134 pr_warn("Failed to create the debugfs kmemleak file\n");
2135
2136 if (kmemleak_error) {
2137 /*
2138 * Some error occurred and kmemleak was disabled. There is a
2139 * small chance that kmemleak_disable() was called immediately
2140 * after setting kmemleak_initialized and we may end up with
2141 * two clean-up threads but serialized by scan_mutex.
2142 */
2143 schedule_work(&cleanup_work);
2144 return -ENOMEM;
2145 }
2146
2147 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2148 mutex_lock(&scan_mutex);
2149 start_scan_thread();
2150 mutex_unlock(&scan_mutex);
2151 }
2152
2153 pr_info("Kernel memory leak detector initialized\n");
2154
2155 return 0;
2156 }
2157 late_initcall(kmemleak_late_init);