]> git.ipfire.org Git - people/ms/linux.git/blob - mm/kmemleak.c
Merge tag 'gvt-fixes-2022-08-22' of https://github.com/intel/gvt-linux into drm-intel...
[people/ms/linux.git] / mm / kmemleak.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17 * accesses to the object_tree_root (or object_phys_tree_root). The
18 * object_list is the main list holding the metadata (struct kmemleak_object)
19 * for the allocated memory blocks. The object_tree_root and object_phys_tree_root
20 * are red black trees used to look-up metadata based on a pointer to the
21 * corresponding memory block. The object_phys_tree_root is for objects
22 * allocated with physical address. The kmemleak_object structures are
23 * added to the object_list and object_tree_root (or object_phys_tree_root)
24 * in the create_object() function called from the kmemleak_alloc() (or
25 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
26 * the kmemleak_free() callback
27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
28 * Accesses to the metadata (e.g. count) are protected by this lock. Note
29 * that some members of this structure may be protected by other means
30 * (atomic or kmemleak_lock). This lock is also held when scanning the
31 * corresponding memory block to avoid the kernel freeing it via the
32 * kmemleak_free() callback. This is less heavyweight than holding a global
33 * lock like kmemleak_lock during scanning.
34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
35 * unreferenced objects at a time. The gray_list contains the objects which
36 * are already referenced or marked as false positives and need to be
37 * scanned. This list is only modified during a scanning episode when the
38 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
39 * Note that the kmemleak_object.use_count is incremented when an object is
40 * added to the gray_list and therefore cannot be freed. This mutex also
41 * prevents multiple users of the "kmemleak" debugfs file together with
42 * modifications to the memory scanning parameters including the scan_thread
43 * pointer
44 *
45 * Locks and mutexes are acquired/nested in the following order:
46 *
47 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
48 *
49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50 * regions.
51 *
52 * The kmemleak_object structures have a use_count incremented or decremented
53 * using the get_object()/put_object() functions. When the use_count becomes
54 * 0, this count can no longer be incremented and put_object() schedules the
55 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
56 * function must be protected by rcu_read_lock() to avoid accessing a freed
57 * structure.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/init.h>
63 #include <linux/kernel.h>
64 #include <linux/list.h>
65 #include <linux/sched/signal.h>
66 #include <linux/sched/task.h>
67 #include <linux/sched/task_stack.h>
68 #include <linux/jiffies.h>
69 #include <linux/delay.h>
70 #include <linux/export.h>
71 #include <linux/kthread.h>
72 #include <linux/rbtree.h>
73 #include <linux/fs.h>
74 #include <linux/debugfs.h>
75 #include <linux/seq_file.h>
76 #include <linux/cpumask.h>
77 #include <linux/spinlock.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/rcupdate.h>
81 #include <linux/stacktrace.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105
106 /*
107 * Kmemleak configuration and common defines.
108 */
109 #define MAX_TRACE 16 /* stack trace length */
110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
114
115 #define BYTES_PER_POINTER sizeof(void *)
116
117 /* GFP bitmask for kmemleak internal allocations */
118 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119 __GFP_NOLOCKDEP)) | \
120 __GFP_NORETRY | __GFP_NOMEMALLOC | \
121 __GFP_NOWARN)
122
123 /* scanning area inside a memory block */
124 struct kmemleak_scan_area {
125 struct hlist_node node;
126 unsigned long start;
127 size_t size;
128 };
129
130 #define KMEMLEAK_GREY 0
131 #define KMEMLEAK_BLACK -1
132
133 /*
134 * Structure holding the metadata for each allocated memory block.
135 * Modifications to such objects should be made while holding the
136 * object->lock. Insertions or deletions from object_list, gray_list or
137 * rb_node are already protected by the corresponding locks or mutex (see
138 * the notes on locking above). These objects are reference-counted
139 * (use_count) and freed using the RCU mechanism.
140 */
141 struct kmemleak_object {
142 raw_spinlock_t lock;
143 unsigned int flags; /* object status flags */
144 struct list_head object_list;
145 struct list_head gray_list;
146 struct rb_node rb_node;
147 struct rcu_head rcu; /* object_list lockless traversal */
148 /* object usage count; object freed when use_count == 0 */
149 atomic_t use_count;
150 unsigned long pointer;
151 size_t size;
152 /* pass surplus references to this pointer */
153 unsigned long excess_ref;
154 /* minimum number of a pointers found before it is considered leak */
155 int min_count;
156 /* the total number of pointers found pointing to this object */
157 int count;
158 /* checksum for detecting modified objects */
159 u32 checksum;
160 /* memory ranges to be scanned inside an object (empty for all) */
161 struct hlist_head area_list;
162 unsigned long trace[MAX_TRACE];
163 unsigned int trace_len;
164 unsigned long jiffies; /* creation timestamp */
165 pid_t pid; /* pid of the current task */
166 char comm[TASK_COMM_LEN]; /* executable name */
167 };
168
169 /* flag representing the memory block allocation status */
170 #define OBJECT_ALLOCATED (1 << 0)
171 /* flag set after the first reporting of an unreference object */
172 #define OBJECT_REPORTED (1 << 1)
173 /* flag set to not scan the object */
174 #define OBJECT_NO_SCAN (1 << 2)
175 /* flag set to fully scan the object when scan_area allocation failed */
176 #define OBJECT_FULL_SCAN (1 << 3)
177 /* flag set for object allocated with physical address */
178 #define OBJECT_PHYS (1 << 4)
179
180 #define HEX_PREFIX " "
181 /* number of bytes to print per line; must be 16 or 32 */
182 #define HEX_ROW_SIZE 16
183 /* number of bytes to print at a time (1, 2, 4, 8) */
184 #define HEX_GROUP_SIZE 1
185 /* include ASCII after the hex output */
186 #define HEX_ASCII 1
187 /* max number of lines to be printed */
188 #define HEX_MAX_LINES 2
189
190 /* the list of all allocated objects */
191 static LIST_HEAD(object_list);
192 /* the list of gray-colored objects (see color_gray comment below) */
193 static LIST_HEAD(gray_list);
194 /* memory pool allocation */
195 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
196 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
197 static LIST_HEAD(mem_pool_free_list);
198 /* search tree for object boundaries */
199 static struct rb_root object_tree_root = RB_ROOT;
200 /* search tree for object (with OBJECT_PHYS flag) boundaries */
201 static struct rb_root object_phys_tree_root = RB_ROOT;
202 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
203 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
204
205 /* allocation caches for kmemleak internal data */
206 static struct kmem_cache *object_cache;
207 static struct kmem_cache *scan_area_cache;
208
209 /* set if tracing memory operations is enabled */
210 static int kmemleak_enabled = 1;
211 /* same as above but only for the kmemleak_free() callback */
212 static int kmemleak_free_enabled = 1;
213 /* set in the late_initcall if there were no errors */
214 static int kmemleak_initialized;
215 /* set if a kmemleak warning was issued */
216 static int kmemleak_warning;
217 /* set if a fatal kmemleak error has occurred */
218 static int kmemleak_error;
219
220 /* minimum and maximum address that may be valid pointers */
221 static unsigned long min_addr = ULONG_MAX;
222 static unsigned long max_addr;
223
224 static struct task_struct *scan_thread;
225 /* used to avoid reporting of recently allocated objects */
226 static unsigned long jiffies_min_age;
227 static unsigned long jiffies_last_scan;
228 /* delay between automatic memory scannings */
229 static unsigned long jiffies_scan_wait;
230 /* enables or disables the task stacks scanning */
231 static int kmemleak_stack_scan = 1;
232 /* protects the memory scanning, parameters and debug/kmemleak file access */
233 static DEFINE_MUTEX(scan_mutex);
234 /* setting kmemleak=on, will set this var, skipping the disable */
235 static int kmemleak_skip_disable;
236 /* If there are leaks that can be reported */
237 static bool kmemleak_found_leaks;
238
239 static bool kmemleak_verbose;
240 module_param_named(verbose, kmemleak_verbose, bool, 0600);
241
242 static void kmemleak_disable(void);
243
244 /*
245 * Print a warning and dump the stack trace.
246 */
247 #define kmemleak_warn(x...) do { \
248 pr_warn(x); \
249 dump_stack(); \
250 kmemleak_warning = 1; \
251 } while (0)
252
253 /*
254 * Macro invoked when a serious kmemleak condition occurred and cannot be
255 * recovered from. Kmemleak will be disabled and further allocation/freeing
256 * tracing no longer available.
257 */
258 #define kmemleak_stop(x...) do { \
259 kmemleak_warn(x); \
260 kmemleak_disable(); \
261 } while (0)
262
263 #define warn_or_seq_printf(seq, fmt, ...) do { \
264 if (seq) \
265 seq_printf(seq, fmt, ##__VA_ARGS__); \
266 else \
267 pr_warn(fmt, ##__VA_ARGS__); \
268 } while (0)
269
270 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
271 int rowsize, int groupsize, const void *buf,
272 size_t len, bool ascii)
273 {
274 if (seq)
275 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
276 buf, len, ascii);
277 else
278 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
279 rowsize, groupsize, buf, len, ascii);
280 }
281
282 /*
283 * Printing of the objects hex dump to the seq file. The number of lines to be
284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
286 * with the object->lock held.
287 */
288 static void hex_dump_object(struct seq_file *seq,
289 struct kmemleak_object *object)
290 {
291 const u8 *ptr = (const u8 *)object->pointer;
292 size_t len;
293
294 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
295 return;
296
297 /* limit the number of lines to HEX_MAX_LINES */
298 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
299
300 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
301 kasan_disable_current();
302 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
303 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
304 kasan_enable_current();
305 }
306
307 /*
308 * Object colors, encoded with count and min_count:
309 * - white - orphan object, not enough references to it (count < min_count)
310 * - gray - not orphan, not marked as false positive (min_count == 0) or
311 * sufficient references to it (count >= min_count)
312 * - black - ignore, it doesn't contain references (e.g. text section)
313 * (min_count == -1). No function defined for this color.
314 * Newly created objects don't have any color assigned (object->count == -1)
315 * before the next memory scan when they become white.
316 */
317 static bool color_white(const struct kmemleak_object *object)
318 {
319 return object->count != KMEMLEAK_BLACK &&
320 object->count < object->min_count;
321 }
322
323 static bool color_gray(const struct kmemleak_object *object)
324 {
325 return object->min_count != KMEMLEAK_BLACK &&
326 object->count >= object->min_count;
327 }
328
329 /*
330 * Objects are considered unreferenced only if their color is white, they have
331 * not be deleted and have a minimum age to avoid false positives caused by
332 * pointers temporarily stored in CPU registers.
333 */
334 static bool unreferenced_object(struct kmemleak_object *object)
335 {
336 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
337 time_before_eq(object->jiffies + jiffies_min_age,
338 jiffies_last_scan);
339 }
340
341 /*
342 * Printing of the unreferenced objects information to the seq file. The
343 * print_unreferenced function must be called with the object->lock held.
344 */
345 static void print_unreferenced(struct seq_file *seq,
346 struct kmemleak_object *object)
347 {
348 int i;
349 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
350
351 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
352 object->pointer, object->size);
353 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
354 object->comm, object->pid, object->jiffies,
355 msecs_age / 1000, msecs_age % 1000);
356 hex_dump_object(seq, object);
357 warn_or_seq_printf(seq, " backtrace:\n");
358
359 for (i = 0; i < object->trace_len; i++) {
360 void *ptr = (void *)object->trace[i];
361 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
362 }
363 }
364
365 /*
366 * Print the kmemleak_object information. This function is used mainly for
367 * debugging special cases when kmemleak operations. It must be called with
368 * the object->lock held.
369 */
370 static void dump_object_info(struct kmemleak_object *object)
371 {
372 pr_notice("Object 0x%08lx (size %zu):\n",
373 object->pointer, object->size);
374 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
375 object->comm, object->pid, object->jiffies);
376 pr_notice(" min_count = %d\n", object->min_count);
377 pr_notice(" count = %d\n", object->count);
378 pr_notice(" flags = 0x%x\n", object->flags);
379 pr_notice(" checksum = %u\n", object->checksum);
380 pr_notice(" backtrace:\n");
381 stack_trace_print(object->trace, object->trace_len, 4);
382 }
383
384 /*
385 * Look-up a memory block metadata (kmemleak_object) in the object search
386 * tree based on a pointer value. If alias is 0, only values pointing to the
387 * beginning of the memory block are allowed. The kmemleak_lock must be held
388 * when calling this function.
389 */
390 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
391 bool is_phys)
392 {
393 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
394 object_tree_root.rb_node;
395 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
396
397 while (rb) {
398 struct kmemleak_object *object;
399 unsigned long untagged_objp;
400
401 object = rb_entry(rb, struct kmemleak_object, rb_node);
402 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
403
404 if (untagged_ptr < untagged_objp)
405 rb = object->rb_node.rb_left;
406 else if (untagged_objp + object->size <= untagged_ptr)
407 rb = object->rb_node.rb_right;
408 else if (untagged_objp == untagged_ptr || alias)
409 return object;
410 else {
411 kmemleak_warn("Found object by alias at 0x%08lx\n",
412 ptr);
413 dump_object_info(object);
414 break;
415 }
416 }
417 return NULL;
418 }
419
420 /* Look-up a kmemleak object which allocated with virtual address. */
421 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
422 {
423 return __lookup_object(ptr, alias, false);
424 }
425
426 /*
427 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428 * that once an object's use_count reached 0, the RCU freeing was already
429 * registered and the object should no longer be used. This function must be
430 * called under the protection of rcu_read_lock().
431 */
432 static int get_object(struct kmemleak_object *object)
433 {
434 return atomic_inc_not_zero(&object->use_count);
435 }
436
437 /*
438 * Memory pool allocation and freeing. kmemleak_lock must not be held.
439 */
440 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
441 {
442 unsigned long flags;
443 struct kmemleak_object *object;
444
445 /* try the slab allocator first */
446 if (object_cache) {
447 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
448 if (object)
449 return object;
450 }
451
452 /* slab allocation failed, try the memory pool */
453 raw_spin_lock_irqsave(&kmemleak_lock, flags);
454 object = list_first_entry_or_null(&mem_pool_free_list,
455 typeof(*object), object_list);
456 if (object)
457 list_del(&object->object_list);
458 else if (mem_pool_free_count)
459 object = &mem_pool[--mem_pool_free_count];
460 else
461 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
462 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
463
464 return object;
465 }
466
467 /*
468 * Return the object to either the slab allocator or the memory pool.
469 */
470 static void mem_pool_free(struct kmemleak_object *object)
471 {
472 unsigned long flags;
473
474 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
475 kmem_cache_free(object_cache, object);
476 return;
477 }
478
479 /* add the object to the memory pool free list */
480 raw_spin_lock_irqsave(&kmemleak_lock, flags);
481 list_add(&object->object_list, &mem_pool_free_list);
482 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
483 }
484
485 /*
486 * RCU callback to free a kmemleak_object.
487 */
488 static void free_object_rcu(struct rcu_head *rcu)
489 {
490 struct hlist_node *tmp;
491 struct kmemleak_scan_area *area;
492 struct kmemleak_object *object =
493 container_of(rcu, struct kmemleak_object, rcu);
494
495 /*
496 * Once use_count is 0 (guaranteed by put_object), there is no other
497 * code accessing this object, hence no need for locking.
498 */
499 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
500 hlist_del(&area->node);
501 kmem_cache_free(scan_area_cache, area);
502 }
503 mem_pool_free(object);
504 }
505
506 /*
507 * Decrement the object use_count. Once the count is 0, free the object using
508 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
509 * delete_object() path, the delayed RCU freeing ensures that there is no
510 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
511 * is also possible.
512 */
513 static void put_object(struct kmemleak_object *object)
514 {
515 if (!atomic_dec_and_test(&object->use_count))
516 return;
517
518 /* should only get here after delete_object was called */
519 WARN_ON(object->flags & OBJECT_ALLOCATED);
520
521 /*
522 * It may be too early for the RCU callbacks, however, there is no
523 * concurrent object_list traversal when !object_cache and all objects
524 * came from the memory pool. Free the object directly.
525 */
526 if (object_cache)
527 call_rcu(&object->rcu, free_object_rcu);
528 else
529 free_object_rcu(&object->rcu);
530 }
531
532 /*
533 * Look up an object in the object search tree and increase its use_count.
534 */
535 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
536 bool is_phys)
537 {
538 unsigned long flags;
539 struct kmemleak_object *object;
540
541 rcu_read_lock();
542 raw_spin_lock_irqsave(&kmemleak_lock, flags);
543 object = __lookup_object(ptr, alias, is_phys);
544 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
545
546 /* check whether the object is still available */
547 if (object && !get_object(object))
548 object = NULL;
549 rcu_read_unlock();
550
551 return object;
552 }
553
554 /* Look up and get an object which allocated with virtual address. */
555 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
556 {
557 return __find_and_get_object(ptr, alias, false);
558 }
559
560 /*
561 * Remove an object from the object_tree_root (or object_phys_tree_root)
562 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
563 * is still enabled.
564 */
565 static void __remove_object(struct kmemleak_object *object)
566 {
567 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
568 &object_phys_tree_root :
569 &object_tree_root);
570 list_del_rcu(&object->object_list);
571 }
572
573 /*
574 * Look up an object in the object search tree and remove it from both
575 * object_tree_root (or object_phys_tree_root) and object_list. The
576 * returned object's use_count should be at least 1, as initially set
577 * by create_object().
578 */
579 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
580 bool is_phys)
581 {
582 unsigned long flags;
583 struct kmemleak_object *object;
584
585 raw_spin_lock_irqsave(&kmemleak_lock, flags);
586 object = __lookup_object(ptr, alias, is_phys);
587 if (object)
588 __remove_object(object);
589 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
590
591 return object;
592 }
593
594 /*
595 * Save stack trace to the given array of MAX_TRACE size.
596 */
597 static int __save_stack_trace(unsigned long *trace)
598 {
599 return stack_trace_save(trace, MAX_TRACE, 2);
600 }
601
602 /*
603 * Create the metadata (struct kmemleak_object) corresponding to an allocated
604 * memory block and add it to the object_list and object_tree_root (or
605 * object_phys_tree_root).
606 */
607 static struct kmemleak_object *__create_object(unsigned long ptr, size_t size,
608 int min_count, gfp_t gfp,
609 bool is_phys)
610 {
611 unsigned long flags;
612 struct kmemleak_object *object, *parent;
613 struct rb_node **link, *rb_parent;
614 unsigned long untagged_ptr;
615 unsigned long untagged_objp;
616
617 object = mem_pool_alloc(gfp);
618 if (!object) {
619 pr_warn("Cannot allocate a kmemleak_object structure\n");
620 kmemleak_disable();
621 return NULL;
622 }
623
624 INIT_LIST_HEAD(&object->object_list);
625 INIT_LIST_HEAD(&object->gray_list);
626 INIT_HLIST_HEAD(&object->area_list);
627 raw_spin_lock_init(&object->lock);
628 atomic_set(&object->use_count, 1);
629 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
630 object->pointer = ptr;
631 object->size = kfence_ksize((void *)ptr) ?: size;
632 object->excess_ref = 0;
633 object->min_count = min_count;
634 object->count = 0; /* white color initially */
635 object->jiffies = jiffies;
636 object->checksum = 0;
637
638 /* task information */
639 if (in_hardirq()) {
640 object->pid = 0;
641 strncpy(object->comm, "hardirq", sizeof(object->comm));
642 } else if (in_serving_softirq()) {
643 object->pid = 0;
644 strncpy(object->comm, "softirq", sizeof(object->comm));
645 } else {
646 object->pid = current->pid;
647 /*
648 * There is a small chance of a race with set_task_comm(),
649 * however using get_task_comm() here may cause locking
650 * dependency issues with current->alloc_lock. In the worst
651 * case, the command line is not correct.
652 */
653 strncpy(object->comm, current->comm, sizeof(object->comm));
654 }
655
656 /* kernel backtrace */
657 object->trace_len = __save_stack_trace(object->trace);
658
659 raw_spin_lock_irqsave(&kmemleak_lock, flags);
660
661 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
662 /*
663 * Only update min_addr and max_addr with object
664 * storing virtual address.
665 */
666 if (!is_phys) {
667 min_addr = min(min_addr, untagged_ptr);
668 max_addr = max(max_addr, untagged_ptr + size);
669 }
670 link = is_phys ? &object_phys_tree_root.rb_node :
671 &object_tree_root.rb_node;
672 rb_parent = NULL;
673 while (*link) {
674 rb_parent = *link;
675 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
676 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
677 if (untagged_ptr + size <= untagged_objp)
678 link = &parent->rb_node.rb_left;
679 else if (untagged_objp + parent->size <= untagged_ptr)
680 link = &parent->rb_node.rb_right;
681 else {
682 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
683 ptr);
684 /*
685 * No need for parent->lock here since "parent" cannot
686 * be freed while the kmemleak_lock is held.
687 */
688 dump_object_info(parent);
689 kmem_cache_free(object_cache, object);
690 object = NULL;
691 goto out;
692 }
693 }
694 rb_link_node(&object->rb_node, rb_parent, link);
695 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
696 &object_tree_root);
697
698 list_add_tail_rcu(&object->object_list, &object_list);
699 out:
700 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
701 return object;
702 }
703
704 /* Create kmemleak object which allocated with virtual address. */
705 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
706 int min_count, gfp_t gfp)
707 {
708 return __create_object(ptr, size, min_count, gfp, false);
709 }
710
711 /* Create kmemleak object which allocated with physical address. */
712 static struct kmemleak_object *create_object_phys(unsigned long ptr, size_t size,
713 int min_count, gfp_t gfp)
714 {
715 return __create_object(ptr, size, min_count, gfp, true);
716 }
717
718 /*
719 * Mark the object as not allocated and schedule RCU freeing via put_object().
720 */
721 static void __delete_object(struct kmemleak_object *object)
722 {
723 unsigned long flags;
724
725 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
726 WARN_ON(atomic_read(&object->use_count) < 1);
727
728 /*
729 * Locking here also ensures that the corresponding memory block
730 * cannot be freed when it is being scanned.
731 */
732 raw_spin_lock_irqsave(&object->lock, flags);
733 object->flags &= ~OBJECT_ALLOCATED;
734 raw_spin_unlock_irqrestore(&object->lock, flags);
735 put_object(object);
736 }
737
738 /*
739 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
740 * delete it.
741 */
742 static void delete_object_full(unsigned long ptr)
743 {
744 struct kmemleak_object *object;
745
746 object = find_and_remove_object(ptr, 0, false);
747 if (!object) {
748 #ifdef DEBUG
749 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
750 ptr);
751 #endif
752 return;
753 }
754 __delete_object(object);
755 }
756
757 /*
758 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
759 * delete it. If the memory block is partially freed, the function may create
760 * additional metadata for the remaining parts of the block.
761 */
762 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
763 {
764 struct kmemleak_object *object;
765 unsigned long start, end;
766
767 object = find_and_remove_object(ptr, 1, is_phys);
768 if (!object) {
769 #ifdef DEBUG
770 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
771 ptr, size);
772 #endif
773 return;
774 }
775
776 /*
777 * Create one or two objects that may result from the memory block
778 * split. Note that partial freeing is only done by free_bootmem() and
779 * this happens before kmemleak_init() is called.
780 */
781 start = object->pointer;
782 end = object->pointer + object->size;
783 if (ptr > start)
784 __create_object(start, ptr - start, object->min_count,
785 GFP_KERNEL, is_phys);
786 if (ptr + size < end)
787 __create_object(ptr + size, end - ptr - size, object->min_count,
788 GFP_KERNEL, is_phys);
789
790 __delete_object(object);
791 }
792
793 static void __paint_it(struct kmemleak_object *object, int color)
794 {
795 object->min_count = color;
796 if (color == KMEMLEAK_BLACK)
797 object->flags |= OBJECT_NO_SCAN;
798 }
799
800 static void paint_it(struct kmemleak_object *object, int color)
801 {
802 unsigned long flags;
803
804 raw_spin_lock_irqsave(&object->lock, flags);
805 __paint_it(object, color);
806 raw_spin_unlock_irqrestore(&object->lock, flags);
807 }
808
809 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
810 {
811 struct kmemleak_object *object;
812
813 object = __find_and_get_object(ptr, 0, is_phys);
814 if (!object) {
815 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
816 ptr,
817 (color == KMEMLEAK_GREY) ? "Grey" :
818 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
819 return;
820 }
821 paint_it(object, color);
822 put_object(object);
823 }
824
825 /*
826 * Mark an object permanently as gray-colored so that it can no longer be
827 * reported as a leak. This is used in general to mark a false positive.
828 */
829 static void make_gray_object(unsigned long ptr)
830 {
831 paint_ptr(ptr, KMEMLEAK_GREY, false);
832 }
833
834 /*
835 * Mark the object as black-colored so that it is ignored from scans and
836 * reporting.
837 */
838 static void make_black_object(unsigned long ptr, bool is_phys)
839 {
840 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
841 }
842
843 /*
844 * Add a scanning area to the object. If at least one such area is added,
845 * kmemleak will only scan these ranges rather than the whole memory block.
846 */
847 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
848 {
849 unsigned long flags;
850 struct kmemleak_object *object;
851 struct kmemleak_scan_area *area = NULL;
852 unsigned long untagged_ptr;
853 unsigned long untagged_objp;
854
855 object = find_and_get_object(ptr, 1);
856 if (!object) {
857 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
858 ptr);
859 return;
860 }
861
862 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
863 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
864
865 if (scan_area_cache)
866 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
867
868 raw_spin_lock_irqsave(&object->lock, flags);
869 if (!area) {
870 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
871 /* mark the object for full scan to avoid false positives */
872 object->flags |= OBJECT_FULL_SCAN;
873 goto out_unlock;
874 }
875 if (size == SIZE_MAX) {
876 size = untagged_objp + object->size - untagged_ptr;
877 } else if (untagged_ptr + size > untagged_objp + object->size) {
878 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
879 dump_object_info(object);
880 kmem_cache_free(scan_area_cache, area);
881 goto out_unlock;
882 }
883
884 INIT_HLIST_NODE(&area->node);
885 area->start = ptr;
886 area->size = size;
887
888 hlist_add_head(&area->node, &object->area_list);
889 out_unlock:
890 raw_spin_unlock_irqrestore(&object->lock, flags);
891 put_object(object);
892 }
893
894 /*
895 * Any surplus references (object already gray) to 'ptr' are passed to
896 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
897 * vm_struct may be used as an alternative reference to the vmalloc'ed object
898 * (see free_thread_stack()).
899 */
900 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
901 {
902 unsigned long flags;
903 struct kmemleak_object *object;
904
905 object = find_and_get_object(ptr, 0);
906 if (!object) {
907 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
908 ptr);
909 return;
910 }
911
912 raw_spin_lock_irqsave(&object->lock, flags);
913 object->excess_ref = excess_ref;
914 raw_spin_unlock_irqrestore(&object->lock, flags);
915 put_object(object);
916 }
917
918 /*
919 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
920 * pointer. Such object will not be scanned by kmemleak but references to it
921 * are searched.
922 */
923 static void object_no_scan(unsigned long ptr)
924 {
925 unsigned long flags;
926 struct kmemleak_object *object;
927
928 object = find_and_get_object(ptr, 0);
929 if (!object) {
930 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
931 return;
932 }
933
934 raw_spin_lock_irqsave(&object->lock, flags);
935 object->flags |= OBJECT_NO_SCAN;
936 raw_spin_unlock_irqrestore(&object->lock, flags);
937 put_object(object);
938 }
939
940 /**
941 * kmemleak_alloc - register a newly allocated object
942 * @ptr: pointer to beginning of the object
943 * @size: size of the object
944 * @min_count: minimum number of references to this object. If during memory
945 * scanning a number of references less than @min_count is found,
946 * the object is reported as a memory leak. If @min_count is 0,
947 * the object is never reported as a leak. If @min_count is -1,
948 * the object is ignored (not scanned and not reported as a leak)
949 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
950 *
951 * This function is called from the kernel allocators when a new object
952 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
953 */
954 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
955 gfp_t gfp)
956 {
957 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
958
959 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
960 create_object((unsigned long)ptr, size, min_count, gfp);
961 }
962 EXPORT_SYMBOL_GPL(kmemleak_alloc);
963
964 /**
965 * kmemleak_alloc_percpu - register a newly allocated __percpu object
966 * @ptr: __percpu pointer to beginning of the object
967 * @size: size of the object
968 * @gfp: flags used for kmemleak internal memory allocations
969 *
970 * This function is called from the kernel percpu allocator when a new object
971 * (memory block) is allocated (alloc_percpu).
972 */
973 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
974 gfp_t gfp)
975 {
976 unsigned int cpu;
977
978 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
979
980 /*
981 * Percpu allocations are only scanned and not reported as leaks
982 * (min_count is set to 0).
983 */
984 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
985 for_each_possible_cpu(cpu)
986 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
987 size, 0, gfp);
988 }
989 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
990
991 /**
992 * kmemleak_vmalloc - register a newly vmalloc'ed object
993 * @area: pointer to vm_struct
994 * @size: size of the object
995 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
996 *
997 * This function is called from the vmalloc() kernel allocator when a new
998 * object (memory block) is allocated.
999 */
1000 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1001 {
1002 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1003
1004 /*
1005 * A min_count = 2 is needed because vm_struct contains a reference to
1006 * the virtual address of the vmalloc'ed block.
1007 */
1008 if (kmemleak_enabled) {
1009 create_object((unsigned long)area->addr, size, 2, gfp);
1010 object_set_excess_ref((unsigned long)area,
1011 (unsigned long)area->addr);
1012 }
1013 }
1014 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1015
1016 /**
1017 * kmemleak_free - unregister a previously registered object
1018 * @ptr: pointer to beginning of the object
1019 *
1020 * This function is called from the kernel allocators when an object (memory
1021 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1022 */
1023 void __ref kmemleak_free(const void *ptr)
1024 {
1025 pr_debug("%s(0x%p)\n", __func__, ptr);
1026
1027 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1028 delete_object_full((unsigned long)ptr);
1029 }
1030 EXPORT_SYMBOL_GPL(kmemleak_free);
1031
1032 /**
1033 * kmemleak_free_part - partially unregister a previously registered object
1034 * @ptr: pointer to the beginning or inside the object. This also
1035 * represents the start of the range to be freed
1036 * @size: size to be unregistered
1037 *
1038 * This function is called when only a part of a memory block is freed
1039 * (usually from the bootmem allocator).
1040 */
1041 void __ref kmemleak_free_part(const void *ptr, size_t size)
1042 {
1043 pr_debug("%s(0x%p)\n", __func__, ptr);
1044
1045 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1046 delete_object_part((unsigned long)ptr, size, false);
1047 }
1048 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1049
1050 /**
1051 * kmemleak_free_percpu - unregister a previously registered __percpu object
1052 * @ptr: __percpu pointer to beginning of the object
1053 *
1054 * This function is called from the kernel percpu allocator when an object
1055 * (memory block) is freed (free_percpu).
1056 */
1057 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1058 {
1059 unsigned int cpu;
1060
1061 pr_debug("%s(0x%p)\n", __func__, ptr);
1062
1063 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1064 for_each_possible_cpu(cpu)
1065 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1066 cpu));
1067 }
1068 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1069
1070 /**
1071 * kmemleak_update_trace - update object allocation stack trace
1072 * @ptr: pointer to beginning of the object
1073 *
1074 * Override the object allocation stack trace for cases where the actual
1075 * allocation place is not always useful.
1076 */
1077 void __ref kmemleak_update_trace(const void *ptr)
1078 {
1079 struct kmemleak_object *object;
1080 unsigned long flags;
1081
1082 pr_debug("%s(0x%p)\n", __func__, ptr);
1083
1084 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1085 return;
1086
1087 object = find_and_get_object((unsigned long)ptr, 1);
1088 if (!object) {
1089 #ifdef DEBUG
1090 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1091 ptr);
1092 #endif
1093 return;
1094 }
1095
1096 raw_spin_lock_irqsave(&object->lock, flags);
1097 object->trace_len = __save_stack_trace(object->trace);
1098 raw_spin_unlock_irqrestore(&object->lock, flags);
1099
1100 put_object(object);
1101 }
1102 EXPORT_SYMBOL(kmemleak_update_trace);
1103
1104 /**
1105 * kmemleak_not_leak - mark an allocated object as false positive
1106 * @ptr: pointer to beginning of the object
1107 *
1108 * Calling this function on an object will cause the memory block to no longer
1109 * be reported as leak and always be scanned.
1110 */
1111 void __ref kmemleak_not_leak(const void *ptr)
1112 {
1113 pr_debug("%s(0x%p)\n", __func__, ptr);
1114
1115 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1116 make_gray_object((unsigned long)ptr);
1117 }
1118 EXPORT_SYMBOL(kmemleak_not_leak);
1119
1120 /**
1121 * kmemleak_ignore - ignore an allocated object
1122 * @ptr: pointer to beginning of the object
1123 *
1124 * Calling this function on an object will cause the memory block to be
1125 * ignored (not scanned and not reported as a leak). This is usually done when
1126 * it is known that the corresponding block is not a leak and does not contain
1127 * any references to other allocated memory blocks.
1128 */
1129 void __ref kmemleak_ignore(const void *ptr)
1130 {
1131 pr_debug("%s(0x%p)\n", __func__, ptr);
1132
1133 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1134 make_black_object((unsigned long)ptr, false);
1135 }
1136 EXPORT_SYMBOL(kmemleak_ignore);
1137
1138 /**
1139 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1140 * @ptr: pointer to beginning or inside the object. This also
1141 * represents the start of the scan area
1142 * @size: size of the scan area
1143 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1144 *
1145 * This function is used when it is known that only certain parts of an object
1146 * contain references to other objects. Kmemleak will only scan these areas
1147 * reducing the number false negatives.
1148 */
1149 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1150 {
1151 pr_debug("%s(0x%p)\n", __func__, ptr);
1152
1153 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1154 add_scan_area((unsigned long)ptr, size, gfp);
1155 }
1156 EXPORT_SYMBOL(kmemleak_scan_area);
1157
1158 /**
1159 * kmemleak_no_scan - do not scan an allocated object
1160 * @ptr: pointer to beginning of the object
1161 *
1162 * This function notifies kmemleak not to scan the given memory block. Useful
1163 * in situations where it is known that the given object does not contain any
1164 * references to other objects. Kmemleak will not scan such objects reducing
1165 * the number of false negatives.
1166 */
1167 void __ref kmemleak_no_scan(const void *ptr)
1168 {
1169 pr_debug("%s(0x%p)\n", __func__, ptr);
1170
1171 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1172 object_no_scan((unsigned long)ptr);
1173 }
1174 EXPORT_SYMBOL(kmemleak_no_scan);
1175
1176 /**
1177 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1178 * address argument
1179 * @phys: physical address of the object
1180 * @size: size of the object
1181 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1182 */
1183 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1184 {
1185 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1186
1187 if (kmemleak_enabled)
1188 /*
1189 * Create object with OBJECT_PHYS flag and
1190 * assume min_count 0.
1191 */
1192 create_object_phys((unsigned long)phys, size, 0, gfp);
1193 }
1194 EXPORT_SYMBOL(kmemleak_alloc_phys);
1195
1196 /**
1197 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1198 * physical address argument
1199 * @phys: physical address if the beginning or inside an object. This
1200 * also represents the start of the range to be freed
1201 * @size: size to be unregistered
1202 */
1203 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1204 {
1205 pr_debug("%s(0x%pa)\n", __func__, &phys);
1206
1207 if (kmemleak_enabled)
1208 delete_object_part((unsigned long)phys, size, true);
1209 }
1210 EXPORT_SYMBOL(kmemleak_free_part_phys);
1211
1212 /**
1213 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1214 * address argument
1215 * @phys: physical address of the object
1216 */
1217 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1218 {
1219 pr_debug("%s(0x%pa)\n", __func__, &phys);
1220
1221 if (kmemleak_enabled)
1222 make_black_object((unsigned long)phys, true);
1223 }
1224 EXPORT_SYMBOL(kmemleak_ignore_phys);
1225
1226 /*
1227 * Update an object's checksum and return true if it was modified.
1228 */
1229 static bool update_checksum(struct kmemleak_object *object)
1230 {
1231 u32 old_csum = object->checksum;
1232
1233 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1234 return false;
1235
1236 kasan_disable_current();
1237 kcsan_disable_current();
1238 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1239 kasan_enable_current();
1240 kcsan_enable_current();
1241
1242 return object->checksum != old_csum;
1243 }
1244
1245 /*
1246 * Update an object's references. object->lock must be held by the caller.
1247 */
1248 static void update_refs(struct kmemleak_object *object)
1249 {
1250 if (!color_white(object)) {
1251 /* non-orphan, ignored or new */
1252 return;
1253 }
1254
1255 /*
1256 * Increase the object's reference count (number of pointers to the
1257 * memory block). If this count reaches the required minimum, the
1258 * object's color will become gray and it will be added to the
1259 * gray_list.
1260 */
1261 object->count++;
1262 if (color_gray(object)) {
1263 /* put_object() called when removing from gray_list */
1264 WARN_ON(!get_object(object));
1265 list_add_tail(&object->gray_list, &gray_list);
1266 }
1267 }
1268
1269 /*
1270 * Memory scanning is a long process and it needs to be interruptible. This
1271 * function checks whether such interrupt condition occurred.
1272 */
1273 static int scan_should_stop(void)
1274 {
1275 if (!kmemleak_enabled)
1276 return 1;
1277
1278 /*
1279 * This function may be called from either process or kthread context,
1280 * hence the need to check for both stop conditions.
1281 */
1282 if (current->mm)
1283 return signal_pending(current);
1284 else
1285 return kthread_should_stop();
1286
1287 return 0;
1288 }
1289
1290 /*
1291 * Scan a memory block (exclusive range) for valid pointers and add those
1292 * found to the gray list.
1293 */
1294 static void scan_block(void *_start, void *_end,
1295 struct kmemleak_object *scanned)
1296 {
1297 unsigned long *ptr;
1298 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1299 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1300 unsigned long flags;
1301 unsigned long untagged_ptr;
1302
1303 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1304 for (ptr = start; ptr < end; ptr++) {
1305 struct kmemleak_object *object;
1306 unsigned long pointer;
1307 unsigned long excess_ref;
1308
1309 if (scan_should_stop())
1310 break;
1311
1312 kasan_disable_current();
1313 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1314 kasan_enable_current();
1315
1316 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1317 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1318 continue;
1319
1320 /*
1321 * No need for get_object() here since we hold kmemleak_lock.
1322 * object->use_count cannot be dropped to 0 while the object
1323 * is still present in object_tree_root and object_list
1324 * (with updates protected by kmemleak_lock).
1325 */
1326 object = lookup_object(pointer, 1);
1327 if (!object)
1328 continue;
1329 if (object == scanned)
1330 /* self referenced, ignore */
1331 continue;
1332
1333 /*
1334 * Avoid the lockdep recursive warning on object->lock being
1335 * previously acquired in scan_object(). These locks are
1336 * enclosed by scan_mutex.
1337 */
1338 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1339 /* only pass surplus references (object already gray) */
1340 if (color_gray(object)) {
1341 excess_ref = object->excess_ref;
1342 /* no need for update_refs() if object already gray */
1343 } else {
1344 excess_ref = 0;
1345 update_refs(object);
1346 }
1347 raw_spin_unlock(&object->lock);
1348
1349 if (excess_ref) {
1350 object = lookup_object(excess_ref, 0);
1351 if (!object)
1352 continue;
1353 if (object == scanned)
1354 /* circular reference, ignore */
1355 continue;
1356 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1357 update_refs(object);
1358 raw_spin_unlock(&object->lock);
1359 }
1360 }
1361 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1362 }
1363
1364 /*
1365 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1366 */
1367 #ifdef CONFIG_SMP
1368 static void scan_large_block(void *start, void *end)
1369 {
1370 void *next;
1371
1372 while (start < end) {
1373 next = min(start + MAX_SCAN_SIZE, end);
1374 scan_block(start, next, NULL);
1375 start = next;
1376 cond_resched();
1377 }
1378 }
1379 #endif
1380
1381 /*
1382 * Scan a memory block corresponding to a kmemleak_object. A condition is
1383 * that object->use_count >= 1.
1384 */
1385 static void scan_object(struct kmemleak_object *object)
1386 {
1387 struct kmemleak_scan_area *area;
1388 unsigned long flags;
1389 void *obj_ptr;
1390
1391 /*
1392 * Once the object->lock is acquired, the corresponding memory block
1393 * cannot be freed (the same lock is acquired in delete_object).
1394 */
1395 raw_spin_lock_irqsave(&object->lock, flags);
1396 if (object->flags & OBJECT_NO_SCAN)
1397 goto out;
1398 if (!(object->flags & OBJECT_ALLOCATED))
1399 /* already freed object */
1400 goto out;
1401
1402 obj_ptr = object->flags & OBJECT_PHYS ?
1403 __va((phys_addr_t)object->pointer) :
1404 (void *)object->pointer;
1405
1406 if (hlist_empty(&object->area_list) ||
1407 object->flags & OBJECT_FULL_SCAN) {
1408 void *start = obj_ptr;
1409 void *end = obj_ptr + object->size;
1410 void *next;
1411
1412 do {
1413 next = min(start + MAX_SCAN_SIZE, end);
1414 scan_block(start, next, object);
1415
1416 start = next;
1417 if (start >= end)
1418 break;
1419
1420 raw_spin_unlock_irqrestore(&object->lock, flags);
1421 cond_resched();
1422 raw_spin_lock_irqsave(&object->lock, flags);
1423 } while (object->flags & OBJECT_ALLOCATED);
1424 } else
1425 hlist_for_each_entry(area, &object->area_list, node)
1426 scan_block((void *)area->start,
1427 (void *)(area->start + area->size),
1428 object);
1429 out:
1430 raw_spin_unlock_irqrestore(&object->lock, flags);
1431 }
1432
1433 /*
1434 * Scan the objects already referenced (gray objects). More objects will be
1435 * referenced and, if there are no memory leaks, all the objects are scanned.
1436 */
1437 static void scan_gray_list(void)
1438 {
1439 struct kmemleak_object *object, *tmp;
1440
1441 /*
1442 * The list traversal is safe for both tail additions and removals
1443 * from inside the loop. The kmemleak objects cannot be freed from
1444 * outside the loop because their use_count was incremented.
1445 */
1446 object = list_entry(gray_list.next, typeof(*object), gray_list);
1447 while (&object->gray_list != &gray_list) {
1448 cond_resched();
1449
1450 /* may add new objects to the list */
1451 if (!scan_should_stop())
1452 scan_object(object);
1453
1454 tmp = list_entry(object->gray_list.next, typeof(*object),
1455 gray_list);
1456
1457 /* remove the object from the list and release it */
1458 list_del(&object->gray_list);
1459 put_object(object);
1460
1461 object = tmp;
1462 }
1463 WARN_ON(!list_empty(&gray_list));
1464 }
1465
1466 /*
1467 * Scan data sections and all the referenced memory blocks allocated via the
1468 * kernel's standard allocators. This function must be called with the
1469 * scan_mutex held.
1470 */
1471 static void kmemleak_scan(void)
1472 {
1473 struct kmemleak_object *object;
1474 struct zone *zone;
1475 int __maybe_unused i;
1476 int new_leaks = 0;
1477 int loop1_cnt = 0;
1478
1479 jiffies_last_scan = jiffies;
1480
1481 /* prepare the kmemleak_object's */
1482 rcu_read_lock();
1483 list_for_each_entry_rcu(object, &object_list, object_list) {
1484 bool obj_pinned = false;
1485
1486 loop1_cnt++;
1487 raw_spin_lock_irq(&object->lock);
1488 #ifdef DEBUG
1489 /*
1490 * With a few exceptions there should be a maximum of
1491 * 1 reference to any object at this point.
1492 */
1493 if (atomic_read(&object->use_count) > 1) {
1494 pr_debug("object->use_count = %d\n",
1495 atomic_read(&object->use_count));
1496 dump_object_info(object);
1497 }
1498 #endif
1499
1500 /* ignore objects outside lowmem (paint them black) */
1501 if ((object->flags & OBJECT_PHYS) &&
1502 !(object->flags & OBJECT_NO_SCAN)) {
1503 unsigned long phys = object->pointer;
1504
1505 if (PHYS_PFN(phys) < min_low_pfn ||
1506 PHYS_PFN(phys + object->size) >= max_low_pfn)
1507 __paint_it(object, KMEMLEAK_BLACK);
1508 }
1509
1510 /* reset the reference count (whiten the object) */
1511 object->count = 0;
1512 if (color_gray(object) && get_object(object)) {
1513 list_add_tail(&object->gray_list, &gray_list);
1514 obj_pinned = true;
1515 }
1516
1517 raw_spin_unlock_irq(&object->lock);
1518
1519 /*
1520 * Do a cond_resched() to avoid soft lockup every 64k objects.
1521 * Make sure a reference has been taken so that the object
1522 * won't go away without RCU read lock.
1523 */
1524 if (!(loop1_cnt & 0xffff)) {
1525 if (!obj_pinned && !get_object(object)) {
1526 /* Try the next object instead */
1527 loop1_cnt--;
1528 continue;
1529 }
1530
1531 rcu_read_unlock();
1532 cond_resched();
1533 rcu_read_lock();
1534
1535 if (!obj_pinned)
1536 put_object(object);
1537 }
1538 }
1539 rcu_read_unlock();
1540
1541 #ifdef CONFIG_SMP
1542 /* per-cpu sections scanning */
1543 for_each_possible_cpu(i)
1544 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1545 __per_cpu_end + per_cpu_offset(i));
1546 #endif
1547
1548 /*
1549 * Struct page scanning for each node.
1550 */
1551 get_online_mems();
1552 for_each_populated_zone(zone) {
1553 unsigned long start_pfn = zone->zone_start_pfn;
1554 unsigned long end_pfn = zone_end_pfn(zone);
1555 unsigned long pfn;
1556
1557 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1558 struct page *page = pfn_to_online_page(pfn);
1559
1560 if (!page)
1561 continue;
1562
1563 /* only scan pages belonging to this zone */
1564 if (page_zone(page) != zone)
1565 continue;
1566 /* only scan if page is in use */
1567 if (page_count(page) == 0)
1568 continue;
1569 scan_block(page, page + 1, NULL);
1570 if (!(pfn & 63))
1571 cond_resched();
1572 }
1573 }
1574 put_online_mems();
1575
1576 /*
1577 * Scanning the task stacks (may introduce false negatives).
1578 */
1579 if (kmemleak_stack_scan) {
1580 struct task_struct *p, *g;
1581
1582 rcu_read_lock();
1583 for_each_process_thread(g, p) {
1584 void *stack = try_get_task_stack(p);
1585 if (stack) {
1586 scan_block(stack, stack + THREAD_SIZE, NULL);
1587 put_task_stack(p);
1588 }
1589 }
1590 rcu_read_unlock();
1591 }
1592
1593 /*
1594 * Scan the objects already referenced from the sections scanned
1595 * above.
1596 */
1597 scan_gray_list();
1598
1599 /*
1600 * Check for new or unreferenced objects modified since the previous
1601 * scan and color them gray until the next scan.
1602 */
1603 rcu_read_lock();
1604 list_for_each_entry_rcu(object, &object_list, object_list) {
1605 /*
1606 * This is racy but we can save the overhead of lock/unlock
1607 * calls. The missed objects, if any, should be caught in
1608 * the next scan.
1609 */
1610 if (!color_white(object))
1611 continue;
1612 raw_spin_lock_irq(&object->lock);
1613 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1614 && update_checksum(object) && get_object(object)) {
1615 /* color it gray temporarily */
1616 object->count = object->min_count;
1617 list_add_tail(&object->gray_list, &gray_list);
1618 }
1619 raw_spin_unlock_irq(&object->lock);
1620 }
1621 rcu_read_unlock();
1622
1623 /*
1624 * Re-scan the gray list for modified unreferenced objects.
1625 */
1626 scan_gray_list();
1627
1628 /*
1629 * If scanning was stopped do not report any new unreferenced objects.
1630 */
1631 if (scan_should_stop())
1632 return;
1633
1634 /*
1635 * Scanning result reporting.
1636 */
1637 rcu_read_lock();
1638 list_for_each_entry_rcu(object, &object_list, object_list) {
1639 /*
1640 * This is racy but we can save the overhead of lock/unlock
1641 * calls. The missed objects, if any, should be caught in
1642 * the next scan.
1643 */
1644 if (!color_white(object))
1645 continue;
1646 raw_spin_lock_irq(&object->lock);
1647 if (unreferenced_object(object) &&
1648 !(object->flags & OBJECT_REPORTED)) {
1649 object->flags |= OBJECT_REPORTED;
1650
1651 if (kmemleak_verbose)
1652 print_unreferenced(NULL, object);
1653
1654 new_leaks++;
1655 }
1656 raw_spin_unlock_irq(&object->lock);
1657 }
1658 rcu_read_unlock();
1659
1660 if (new_leaks) {
1661 kmemleak_found_leaks = true;
1662
1663 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1664 new_leaks);
1665 }
1666
1667 }
1668
1669 /*
1670 * Thread function performing automatic memory scanning. Unreferenced objects
1671 * at the end of a memory scan are reported but only the first time.
1672 */
1673 static int kmemleak_scan_thread(void *arg)
1674 {
1675 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1676
1677 pr_info("Automatic memory scanning thread started\n");
1678 set_user_nice(current, 10);
1679
1680 /*
1681 * Wait before the first scan to allow the system to fully initialize.
1682 */
1683 if (first_run) {
1684 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1685 first_run = 0;
1686 while (timeout && !kthread_should_stop())
1687 timeout = schedule_timeout_interruptible(timeout);
1688 }
1689
1690 while (!kthread_should_stop()) {
1691 signed long timeout = READ_ONCE(jiffies_scan_wait);
1692
1693 mutex_lock(&scan_mutex);
1694 kmemleak_scan();
1695 mutex_unlock(&scan_mutex);
1696
1697 /* wait before the next scan */
1698 while (timeout && !kthread_should_stop())
1699 timeout = schedule_timeout_interruptible(timeout);
1700 }
1701
1702 pr_info("Automatic memory scanning thread ended\n");
1703
1704 return 0;
1705 }
1706
1707 /*
1708 * Start the automatic memory scanning thread. This function must be called
1709 * with the scan_mutex held.
1710 */
1711 static void start_scan_thread(void)
1712 {
1713 if (scan_thread)
1714 return;
1715 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1716 if (IS_ERR(scan_thread)) {
1717 pr_warn("Failed to create the scan thread\n");
1718 scan_thread = NULL;
1719 }
1720 }
1721
1722 /*
1723 * Stop the automatic memory scanning thread.
1724 */
1725 static void stop_scan_thread(void)
1726 {
1727 if (scan_thread) {
1728 kthread_stop(scan_thread);
1729 scan_thread = NULL;
1730 }
1731 }
1732
1733 /*
1734 * Iterate over the object_list and return the first valid object at or after
1735 * the required position with its use_count incremented. The function triggers
1736 * a memory scanning when the pos argument points to the first position.
1737 */
1738 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1739 {
1740 struct kmemleak_object *object;
1741 loff_t n = *pos;
1742 int err;
1743
1744 err = mutex_lock_interruptible(&scan_mutex);
1745 if (err < 0)
1746 return ERR_PTR(err);
1747
1748 rcu_read_lock();
1749 list_for_each_entry_rcu(object, &object_list, object_list) {
1750 if (n-- > 0)
1751 continue;
1752 if (get_object(object))
1753 goto out;
1754 }
1755 object = NULL;
1756 out:
1757 return object;
1758 }
1759
1760 /*
1761 * Return the next object in the object_list. The function decrements the
1762 * use_count of the previous object and increases that of the next one.
1763 */
1764 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1765 {
1766 struct kmemleak_object *prev_obj = v;
1767 struct kmemleak_object *next_obj = NULL;
1768 struct kmemleak_object *obj = prev_obj;
1769
1770 ++(*pos);
1771
1772 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1773 if (get_object(obj)) {
1774 next_obj = obj;
1775 break;
1776 }
1777 }
1778
1779 put_object(prev_obj);
1780 return next_obj;
1781 }
1782
1783 /*
1784 * Decrement the use_count of the last object required, if any.
1785 */
1786 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1787 {
1788 if (!IS_ERR(v)) {
1789 /*
1790 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1791 * waiting was interrupted, so only release it if !IS_ERR.
1792 */
1793 rcu_read_unlock();
1794 mutex_unlock(&scan_mutex);
1795 if (v)
1796 put_object(v);
1797 }
1798 }
1799
1800 /*
1801 * Print the information for an unreferenced object to the seq file.
1802 */
1803 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1804 {
1805 struct kmemleak_object *object = v;
1806 unsigned long flags;
1807
1808 raw_spin_lock_irqsave(&object->lock, flags);
1809 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1810 print_unreferenced(seq, object);
1811 raw_spin_unlock_irqrestore(&object->lock, flags);
1812 return 0;
1813 }
1814
1815 static const struct seq_operations kmemleak_seq_ops = {
1816 .start = kmemleak_seq_start,
1817 .next = kmemleak_seq_next,
1818 .stop = kmemleak_seq_stop,
1819 .show = kmemleak_seq_show,
1820 };
1821
1822 static int kmemleak_open(struct inode *inode, struct file *file)
1823 {
1824 return seq_open(file, &kmemleak_seq_ops);
1825 }
1826
1827 static int dump_str_object_info(const char *str)
1828 {
1829 unsigned long flags;
1830 struct kmemleak_object *object;
1831 unsigned long addr;
1832
1833 if (kstrtoul(str, 0, &addr))
1834 return -EINVAL;
1835 object = find_and_get_object(addr, 0);
1836 if (!object) {
1837 pr_info("Unknown object at 0x%08lx\n", addr);
1838 return -EINVAL;
1839 }
1840
1841 raw_spin_lock_irqsave(&object->lock, flags);
1842 dump_object_info(object);
1843 raw_spin_unlock_irqrestore(&object->lock, flags);
1844
1845 put_object(object);
1846 return 0;
1847 }
1848
1849 /*
1850 * We use grey instead of black to ensure we can do future scans on the same
1851 * objects. If we did not do future scans these black objects could
1852 * potentially contain references to newly allocated objects in the future and
1853 * we'd end up with false positives.
1854 */
1855 static void kmemleak_clear(void)
1856 {
1857 struct kmemleak_object *object;
1858
1859 rcu_read_lock();
1860 list_for_each_entry_rcu(object, &object_list, object_list) {
1861 raw_spin_lock_irq(&object->lock);
1862 if ((object->flags & OBJECT_REPORTED) &&
1863 unreferenced_object(object))
1864 __paint_it(object, KMEMLEAK_GREY);
1865 raw_spin_unlock_irq(&object->lock);
1866 }
1867 rcu_read_unlock();
1868
1869 kmemleak_found_leaks = false;
1870 }
1871
1872 static void __kmemleak_do_cleanup(void);
1873
1874 /*
1875 * File write operation to configure kmemleak at run-time. The following
1876 * commands can be written to the /sys/kernel/debug/kmemleak file:
1877 * off - disable kmemleak (irreversible)
1878 * stack=on - enable the task stacks scanning
1879 * stack=off - disable the tasks stacks scanning
1880 * scan=on - start the automatic memory scanning thread
1881 * scan=off - stop the automatic memory scanning thread
1882 * scan=... - set the automatic memory scanning period in seconds (0 to
1883 * disable it)
1884 * scan - trigger a memory scan
1885 * clear - mark all current reported unreferenced kmemleak objects as
1886 * grey to ignore printing them, or free all kmemleak objects
1887 * if kmemleak has been disabled.
1888 * dump=... - dump information about the object found at the given address
1889 */
1890 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1891 size_t size, loff_t *ppos)
1892 {
1893 char buf[64];
1894 int buf_size;
1895 int ret;
1896
1897 buf_size = min(size, (sizeof(buf) - 1));
1898 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1899 return -EFAULT;
1900 buf[buf_size] = 0;
1901
1902 ret = mutex_lock_interruptible(&scan_mutex);
1903 if (ret < 0)
1904 return ret;
1905
1906 if (strncmp(buf, "clear", 5) == 0) {
1907 if (kmemleak_enabled)
1908 kmemleak_clear();
1909 else
1910 __kmemleak_do_cleanup();
1911 goto out;
1912 }
1913
1914 if (!kmemleak_enabled) {
1915 ret = -EPERM;
1916 goto out;
1917 }
1918
1919 if (strncmp(buf, "off", 3) == 0)
1920 kmemleak_disable();
1921 else if (strncmp(buf, "stack=on", 8) == 0)
1922 kmemleak_stack_scan = 1;
1923 else if (strncmp(buf, "stack=off", 9) == 0)
1924 kmemleak_stack_scan = 0;
1925 else if (strncmp(buf, "scan=on", 7) == 0)
1926 start_scan_thread();
1927 else if (strncmp(buf, "scan=off", 8) == 0)
1928 stop_scan_thread();
1929 else if (strncmp(buf, "scan=", 5) == 0) {
1930 unsigned secs;
1931 unsigned long msecs;
1932
1933 ret = kstrtouint(buf + 5, 0, &secs);
1934 if (ret < 0)
1935 goto out;
1936
1937 msecs = secs * MSEC_PER_SEC;
1938 if (msecs > UINT_MAX)
1939 msecs = UINT_MAX;
1940
1941 stop_scan_thread();
1942 if (msecs) {
1943 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1944 start_scan_thread();
1945 }
1946 } else if (strncmp(buf, "scan", 4) == 0)
1947 kmemleak_scan();
1948 else if (strncmp(buf, "dump=", 5) == 0)
1949 ret = dump_str_object_info(buf + 5);
1950 else
1951 ret = -EINVAL;
1952
1953 out:
1954 mutex_unlock(&scan_mutex);
1955 if (ret < 0)
1956 return ret;
1957
1958 /* ignore the rest of the buffer, only one command at a time */
1959 *ppos += size;
1960 return size;
1961 }
1962
1963 static const struct file_operations kmemleak_fops = {
1964 .owner = THIS_MODULE,
1965 .open = kmemleak_open,
1966 .read = seq_read,
1967 .write = kmemleak_write,
1968 .llseek = seq_lseek,
1969 .release = seq_release,
1970 };
1971
1972 static void __kmemleak_do_cleanup(void)
1973 {
1974 struct kmemleak_object *object, *tmp;
1975
1976 /*
1977 * Kmemleak has already been disabled, no need for RCU list traversal
1978 * or kmemleak_lock held.
1979 */
1980 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1981 __remove_object(object);
1982 __delete_object(object);
1983 }
1984 }
1985
1986 /*
1987 * Stop the memory scanning thread and free the kmemleak internal objects if
1988 * no previous scan thread (otherwise, kmemleak may still have some useful
1989 * information on memory leaks).
1990 */
1991 static void kmemleak_do_cleanup(struct work_struct *work)
1992 {
1993 stop_scan_thread();
1994
1995 mutex_lock(&scan_mutex);
1996 /*
1997 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1998 * longer track object freeing. Ordering of the scan thread stopping and
1999 * the memory accesses below is guaranteed by the kthread_stop()
2000 * function.
2001 */
2002 kmemleak_free_enabled = 0;
2003 mutex_unlock(&scan_mutex);
2004
2005 if (!kmemleak_found_leaks)
2006 __kmemleak_do_cleanup();
2007 else
2008 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2009 }
2010
2011 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2012
2013 /*
2014 * Disable kmemleak. No memory allocation/freeing will be traced once this
2015 * function is called. Disabling kmemleak is an irreversible operation.
2016 */
2017 static void kmemleak_disable(void)
2018 {
2019 /* atomically check whether it was already invoked */
2020 if (cmpxchg(&kmemleak_error, 0, 1))
2021 return;
2022
2023 /* stop any memory operation tracing */
2024 kmemleak_enabled = 0;
2025
2026 /* check whether it is too early for a kernel thread */
2027 if (kmemleak_initialized)
2028 schedule_work(&cleanup_work);
2029 else
2030 kmemleak_free_enabled = 0;
2031
2032 pr_info("Kernel memory leak detector disabled\n");
2033 }
2034
2035 /*
2036 * Allow boot-time kmemleak disabling (enabled by default).
2037 */
2038 static int __init kmemleak_boot_config(char *str)
2039 {
2040 if (!str)
2041 return -EINVAL;
2042 if (strcmp(str, "off") == 0)
2043 kmemleak_disable();
2044 else if (strcmp(str, "on") == 0)
2045 kmemleak_skip_disable = 1;
2046 else
2047 return -EINVAL;
2048 return 0;
2049 }
2050 early_param("kmemleak", kmemleak_boot_config);
2051
2052 /*
2053 * Kmemleak initialization.
2054 */
2055 void __init kmemleak_init(void)
2056 {
2057 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2058 if (!kmemleak_skip_disable) {
2059 kmemleak_disable();
2060 return;
2061 }
2062 #endif
2063
2064 if (kmemleak_error)
2065 return;
2066
2067 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2068 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2069
2070 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2071 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2072
2073 /* register the data/bss sections */
2074 create_object((unsigned long)_sdata, _edata - _sdata,
2075 KMEMLEAK_GREY, GFP_ATOMIC);
2076 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2077 KMEMLEAK_GREY, GFP_ATOMIC);
2078 /* only register .data..ro_after_init if not within .data */
2079 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2080 create_object((unsigned long)__start_ro_after_init,
2081 __end_ro_after_init - __start_ro_after_init,
2082 KMEMLEAK_GREY, GFP_ATOMIC);
2083 }
2084
2085 /*
2086 * Late initialization function.
2087 */
2088 static int __init kmemleak_late_init(void)
2089 {
2090 kmemleak_initialized = 1;
2091
2092 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2093
2094 if (kmemleak_error) {
2095 /*
2096 * Some error occurred and kmemleak was disabled. There is a
2097 * small chance that kmemleak_disable() was called immediately
2098 * after setting kmemleak_initialized and we may end up with
2099 * two clean-up threads but serialized by scan_mutex.
2100 */
2101 schedule_work(&cleanup_work);
2102 return -ENOMEM;
2103 }
2104
2105 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2106 mutex_lock(&scan_mutex);
2107 start_scan_thread();
2108 mutex_unlock(&scan_mutex);
2109 }
2110
2111 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2112 mem_pool_free_count);
2113
2114 return 0;
2115 }
2116 late_initcall(kmemleak_late_init);