]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/madvise.c
Merge branch 'nvme-5.7' of git://git.infradead.org/nvme into block-5.7
[thirdparty/linux.git] / mm / madvise.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/madvise.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
7 */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
30
31 #include <asm/tlb.h>
32
33 #include "internal.h"
34
35 struct madvise_walk_private {
36 struct mmu_gather *tlb;
37 bool pageout;
38 };
39
40 /*
41 * Any behaviour which results in changes to the vma->vm_flags needs to
42 * take mmap_sem for writing. Others, which simply traverse vmas, need
43 * to only take it for reading.
44 */
45 static int madvise_need_mmap_write(int behavior)
46 {
47 switch (behavior) {
48 case MADV_REMOVE:
49 case MADV_WILLNEED:
50 case MADV_DONTNEED:
51 case MADV_COLD:
52 case MADV_PAGEOUT:
53 case MADV_FREE:
54 return 0;
55 default:
56 /* be safe, default to 1. list exceptions explicitly */
57 return 1;
58 }
59 }
60
61 /*
62 * We can potentially split a vm area into separate
63 * areas, each area with its own behavior.
64 */
65 static long madvise_behavior(struct vm_area_struct *vma,
66 struct vm_area_struct **prev,
67 unsigned long start, unsigned long end, int behavior)
68 {
69 struct mm_struct *mm = vma->vm_mm;
70 int error = 0;
71 pgoff_t pgoff;
72 unsigned long new_flags = vma->vm_flags;
73
74 switch (behavior) {
75 case MADV_NORMAL:
76 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
77 break;
78 case MADV_SEQUENTIAL:
79 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
80 break;
81 case MADV_RANDOM:
82 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
83 break;
84 case MADV_DONTFORK:
85 new_flags |= VM_DONTCOPY;
86 break;
87 case MADV_DOFORK:
88 if (vma->vm_flags & VM_IO) {
89 error = -EINVAL;
90 goto out;
91 }
92 new_flags &= ~VM_DONTCOPY;
93 break;
94 case MADV_WIPEONFORK:
95 /* MADV_WIPEONFORK is only supported on anonymous memory. */
96 if (vma->vm_file || vma->vm_flags & VM_SHARED) {
97 error = -EINVAL;
98 goto out;
99 }
100 new_flags |= VM_WIPEONFORK;
101 break;
102 case MADV_KEEPONFORK:
103 new_flags &= ~VM_WIPEONFORK;
104 break;
105 case MADV_DONTDUMP:
106 new_flags |= VM_DONTDUMP;
107 break;
108 case MADV_DODUMP:
109 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
110 error = -EINVAL;
111 goto out;
112 }
113 new_flags &= ~VM_DONTDUMP;
114 break;
115 case MADV_MERGEABLE:
116 case MADV_UNMERGEABLE:
117 error = ksm_madvise(vma, start, end, behavior, &new_flags);
118 if (error)
119 goto out_convert_errno;
120 break;
121 case MADV_HUGEPAGE:
122 case MADV_NOHUGEPAGE:
123 error = hugepage_madvise(vma, &new_flags, behavior);
124 if (error)
125 goto out_convert_errno;
126 break;
127 }
128
129 if (new_flags == vma->vm_flags) {
130 *prev = vma;
131 goto out;
132 }
133
134 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
135 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
136 vma->vm_file, pgoff, vma_policy(vma),
137 vma->vm_userfaultfd_ctx);
138 if (*prev) {
139 vma = *prev;
140 goto success;
141 }
142
143 *prev = vma;
144
145 if (start != vma->vm_start) {
146 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
147 error = -ENOMEM;
148 goto out;
149 }
150 error = __split_vma(mm, vma, start, 1);
151 if (error)
152 goto out_convert_errno;
153 }
154
155 if (end != vma->vm_end) {
156 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
157 error = -ENOMEM;
158 goto out;
159 }
160 error = __split_vma(mm, vma, end, 0);
161 if (error)
162 goto out_convert_errno;
163 }
164
165 success:
166 /*
167 * vm_flags is protected by the mmap_sem held in write mode.
168 */
169 vma->vm_flags = new_flags;
170
171 out_convert_errno:
172 /*
173 * madvise() returns EAGAIN if kernel resources, such as
174 * slab, are temporarily unavailable.
175 */
176 if (error == -ENOMEM)
177 error = -EAGAIN;
178 out:
179 return error;
180 }
181
182 #ifdef CONFIG_SWAP
183 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
184 unsigned long end, struct mm_walk *walk)
185 {
186 pte_t *orig_pte;
187 struct vm_area_struct *vma = walk->private;
188 unsigned long index;
189
190 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
191 return 0;
192
193 for (index = start; index != end; index += PAGE_SIZE) {
194 pte_t pte;
195 swp_entry_t entry;
196 struct page *page;
197 spinlock_t *ptl;
198
199 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
200 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
201 pte_unmap_unlock(orig_pte, ptl);
202
203 if (pte_present(pte) || pte_none(pte))
204 continue;
205 entry = pte_to_swp_entry(pte);
206 if (unlikely(non_swap_entry(entry)))
207 continue;
208
209 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
210 vma, index, false);
211 if (page)
212 put_page(page);
213 }
214
215 return 0;
216 }
217
218 static const struct mm_walk_ops swapin_walk_ops = {
219 .pmd_entry = swapin_walk_pmd_entry,
220 };
221
222 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
223 unsigned long start, unsigned long end,
224 struct address_space *mapping)
225 {
226 pgoff_t index;
227 struct page *page;
228 swp_entry_t swap;
229
230 for (; start < end; start += PAGE_SIZE) {
231 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
232
233 page = find_get_entry(mapping, index);
234 if (!xa_is_value(page)) {
235 if (page)
236 put_page(page);
237 continue;
238 }
239 swap = radix_to_swp_entry(page);
240 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
241 NULL, 0, false);
242 if (page)
243 put_page(page);
244 }
245
246 lru_add_drain(); /* Push any new pages onto the LRU now */
247 }
248 #endif /* CONFIG_SWAP */
249
250 /*
251 * Schedule all required I/O operations. Do not wait for completion.
252 */
253 static long madvise_willneed(struct vm_area_struct *vma,
254 struct vm_area_struct **prev,
255 unsigned long start, unsigned long end)
256 {
257 struct file *file = vma->vm_file;
258 loff_t offset;
259
260 *prev = vma;
261 #ifdef CONFIG_SWAP
262 if (!file) {
263 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
264 lru_add_drain(); /* Push any new pages onto the LRU now */
265 return 0;
266 }
267
268 if (shmem_mapping(file->f_mapping)) {
269 force_shm_swapin_readahead(vma, start, end,
270 file->f_mapping);
271 return 0;
272 }
273 #else
274 if (!file)
275 return -EBADF;
276 #endif
277
278 if (IS_DAX(file_inode(file))) {
279 /* no bad return value, but ignore advice */
280 return 0;
281 }
282
283 /*
284 * Filesystem's fadvise may need to take various locks. We need to
285 * explicitly grab a reference because the vma (and hence the
286 * vma's reference to the file) can go away as soon as we drop
287 * mmap_sem.
288 */
289 *prev = NULL; /* tell sys_madvise we drop mmap_sem */
290 get_file(file);
291 up_read(&current->mm->mmap_sem);
292 offset = (loff_t)(start - vma->vm_start)
293 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
294 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
295 fput(file);
296 down_read(&current->mm->mmap_sem);
297 return 0;
298 }
299
300 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
301 unsigned long addr, unsigned long end,
302 struct mm_walk *walk)
303 {
304 struct madvise_walk_private *private = walk->private;
305 struct mmu_gather *tlb = private->tlb;
306 bool pageout = private->pageout;
307 struct mm_struct *mm = tlb->mm;
308 struct vm_area_struct *vma = walk->vma;
309 pte_t *orig_pte, *pte, ptent;
310 spinlock_t *ptl;
311 struct page *page = NULL;
312 LIST_HEAD(page_list);
313
314 if (fatal_signal_pending(current))
315 return -EINTR;
316
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 if (pmd_trans_huge(*pmd)) {
319 pmd_t orig_pmd;
320 unsigned long next = pmd_addr_end(addr, end);
321
322 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
323 ptl = pmd_trans_huge_lock(pmd, vma);
324 if (!ptl)
325 return 0;
326
327 orig_pmd = *pmd;
328 if (is_huge_zero_pmd(orig_pmd))
329 goto huge_unlock;
330
331 if (unlikely(!pmd_present(orig_pmd))) {
332 VM_BUG_ON(thp_migration_supported() &&
333 !is_pmd_migration_entry(orig_pmd));
334 goto huge_unlock;
335 }
336
337 page = pmd_page(orig_pmd);
338
339 /* Do not interfere with other mappings of this page */
340 if (page_mapcount(page) != 1)
341 goto huge_unlock;
342
343 if (next - addr != HPAGE_PMD_SIZE) {
344 int err;
345
346 get_page(page);
347 spin_unlock(ptl);
348 lock_page(page);
349 err = split_huge_page(page);
350 unlock_page(page);
351 put_page(page);
352 if (!err)
353 goto regular_page;
354 return 0;
355 }
356
357 if (pmd_young(orig_pmd)) {
358 pmdp_invalidate(vma, addr, pmd);
359 orig_pmd = pmd_mkold(orig_pmd);
360
361 set_pmd_at(mm, addr, pmd, orig_pmd);
362 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
363 }
364
365 ClearPageReferenced(page);
366 test_and_clear_page_young(page);
367 if (pageout) {
368 if (!isolate_lru_page(page)) {
369 if (PageUnevictable(page))
370 putback_lru_page(page);
371 else
372 list_add(&page->lru, &page_list);
373 }
374 } else
375 deactivate_page(page);
376 huge_unlock:
377 spin_unlock(ptl);
378 if (pageout)
379 reclaim_pages(&page_list);
380 return 0;
381 }
382
383 if (pmd_trans_unstable(pmd))
384 return 0;
385 regular_page:
386 #endif
387 tlb_change_page_size(tlb, PAGE_SIZE);
388 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
389 flush_tlb_batched_pending(mm);
390 arch_enter_lazy_mmu_mode();
391 for (; addr < end; pte++, addr += PAGE_SIZE) {
392 ptent = *pte;
393
394 if (pte_none(ptent))
395 continue;
396
397 if (!pte_present(ptent))
398 continue;
399
400 page = vm_normal_page(vma, addr, ptent);
401 if (!page)
402 continue;
403
404 /*
405 * Creating a THP page is expensive so split it only if we
406 * are sure it's worth. Split it if we are only owner.
407 */
408 if (PageTransCompound(page)) {
409 if (page_mapcount(page) != 1)
410 break;
411 get_page(page);
412 if (!trylock_page(page)) {
413 put_page(page);
414 break;
415 }
416 pte_unmap_unlock(orig_pte, ptl);
417 if (split_huge_page(page)) {
418 unlock_page(page);
419 put_page(page);
420 pte_offset_map_lock(mm, pmd, addr, &ptl);
421 break;
422 }
423 unlock_page(page);
424 put_page(page);
425 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
426 pte--;
427 addr -= PAGE_SIZE;
428 continue;
429 }
430
431 /* Do not interfere with other mappings of this page */
432 if (page_mapcount(page) != 1)
433 continue;
434
435 VM_BUG_ON_PAGE(PageTransCompound(page), page);
436
437 if (pte_young(ptent)) {
438 ptent = ptep_get_and_clear_full(mm, addr, pte,
439 tlb->fullmm);
440 ptent = pte_mkold(ptent);
441 set_pte_at(mm, addr, pte, ptent);
442 tlb_remove_tlb_entry(tlb, pte, addr);
443 }
444
445 /*
446 * We are deactivating a page for accelerating reclaiming.
447 * VM couldn't reclaim the page unless we clear PG_young.
448 * As a side effect, it makes confuse idle-page tracking
449 * because they will miss recent referenced history.
450 */
451 ClearPageReferenced(page);
452 test_and_clear_page_young(page);
453 if (pageout) {
454 if (!isolate_lru_page(page)) {
455 if (PageUnevictable(page))
456 putback_lru_page(page);
457 else
458 list_add(&page->lru, &page_list);
459 }
460 } else
461 deactivate_page(page);
462 }
463
464 arch_leave_lazy_mmu_mode();
465 pte_unmap_unlock(orig_pte, ptl);
466 if (pageout)
467 reclaim_pages(&page_list);
468 cond_resched();
469
470 return 0;
471 }
472
473 static const struct mm_walk_ops cold_walk_ops = {
474 .pmd_entry = madvise_cold_or_pageout_pte_range,
475 };
476
477 static void madvise_cold_page_range(struct mmu_gather *tlb,
478 struct vm_area_struct *vma,
479 unsigned long addr, unsigned long end)
480 {
481 struct madvise_walk_private walk_private = {
482 .pageout = false,
483 .tlb = tlb,
484 };
485
486 tlb_start_vma(tlb, vma);
487 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
488 tlb_end_vma(tlb, vma);
489 }
490
491 static long madvise_cold(struct vm_area_struct *vma,
492 struct vm_area_struct **prev,
493 unsigned long start_addr, unsigned long end_addr)
494 {
495 struct mm_struct *mm = vma->vm_mm;
496 struct mmu_gather tlb;
497
498 *prev = vma;
499 if (!can_madv_lru_vma(vma))
500 return -EINVAL;
501
502 lru_add_drain();
503 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
504 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
505 tlb_finish_mmu(&tlb, start_addr, end_addr);
506
507 return 0;
508 }
509
510 static void madvise_pageout_page_range(struct mmu_gather *tlb,
511 struct vm_area_struct *vma,
512 unsigned long addr, unsigned long end)
513 {
514 struct madvise_walk_private walk_private = {
515 .pageout = true,
516 .tlb = tlb,
517 };
518
519 tlb_start_vma(tlb, vma);
520 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
521 tlb_end_vma(tlb, vma);
522 }
523
524 static inline bool can_do_pageout(struct vm_area_struct *vma)
525 {
526 if (vma_is_anonymous(vma))
527 return true;
528 if (!vma->vm_file)
529 return false;
530 /*
531 * paging out pagecache only for non-anonymous mappings that correspond
532 * to the files the calling process could (if tried) open for writing;
533 * otherwise we'd be including shared non-exclusive mappings, which
534 * opens a side channel.
535 */
536 return inode_owner_or_capable(file_inode(vma->vm_file)) ||
537 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
538 }
539
540 static long madvise_pageout(struct vm_area_struct *vma,
541 struct vm_area_struct **prev,
542 unsigned long start_addr, unsigned long end_addr)
543 {
544 struct mm_struct *mm = vma->vm_mm;
545 struct mmu_gather tlb;
546
547 *prev = vma;
548 if (!can_madv_lru_vma(vma))
549 return -EINVAL;
550
551 if (!can_do_pageout(vma))
552 return 0;
553
554 lru_add_drain();
555 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
556 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
557 tlb_finish_mmu(&tlb, start_addr, end_addr);
558
559 return 0;
560 }
561
562 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
563 unsigned long end, struct mm_walk *walk)
564
565 {
566 struct mmu_gather *tlb = walk->private;
567 struct mm_struct *mm = tlb->mm;
568 struct vm_area_struct *vma = walk->vma;
569 spinlock_t *ptl;
570 pte_t *orig_pte, *pte, ptent;
571 struct page *page;
572 int nr_swap = 0;
573 unsigned long next;
574
575 next = pmd_addr_end(addr, end);
576 if (pmd_trans_huge(*pmd))
577 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
578 goto next;
579
580 if (pmd_trans_unstable(pmd))
581 return 0;
582
583 tlb_change_page_size(tlb, PAGE_SIZE);
584 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
585 flush_tlb_batched_pending(mm);
586 arch_enter_lazy_mmu_mode();
587 for (; addr != end; pte++, addr += PAGE_SIZE) {
588 ptent = *pte;
589
590 if (pte_none(ptent))
591 continue;
592 /*
593 * If the pte has swp_entry, just clear page table to
594 * prevent swap-in which is more expensive rather than
595 * (page allocation + zeroing).
596 */
597 if (!pte_present(ptent)) {
598 swp_entry_t entry;
599
600 entry = pte_to_swp_entry(ptent);
601 if (non_swap_entry(entry))
602 continue;
603 nr_swap--;
604 free_swap_and_cache(entry);
605 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
606 continue;
607 }
608
609 page = vm_normal_page(vma, addr, ptent);
610 if (!page)
611 continue;
612
613 /*
614 * If pmd isn't transhuge but the page is THP and
615 * is owned by only this process, split it and
616 * deactivate all pages.
617 */
618 if (PageTransCompound(page)) {
619 if (page_mapcount(page) != 1)
620 goto out;
621 get_page(page);
622 if (!trylock_page(page)) {
623 put_page(page);
624 goto out;
625 }
626 pte_unmap_unlock(orig_pte, ptl);
627 if (split_huge_page(page)) {
628 unlock_page(page);
629 put_page(page);
630 pte_offset_map_lock(mm, pmd, addr, &ptl);
631 goto out;
632 }
633 unlock_page(page);
634 put_page(page);
635 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
636 pte--;
637 addr -= PAGE_SIZE;
638 continue;
639 }
640
641 VM_BUG_ON_PAGE(PageTransCompound(page), page);
642
643 if (PageSwapCache(page) || PageDirty(page)) {
644 if (!trylock_page(page))
645 continue;
646 /*
647 * If page is shared with others, we couldn't clear
648 * PG_dirty of the page.
649 */
650 if (page_mapcount(page) != 1) {
651 unlock_page(page);
652 continue;
653 }
654
655 if (PageSwapCache(page) && !try_to_free_swap(page)) {
656 unlock_page(page);
657 continue;
658 }
659
660 ClearPageDirty(page);
661 unlock_page(page);
662 }
663
664 if (pte_young(ptent) || pte_dirty(ptent)) {
665 /*
666 * Some of architecture(ex, PPC) don't update TLB
667 * with set_pte_at and tlb_remove_tlb_entry so for
668 * the portability, remap the pte with old|clean
669 * after pte clearing.
670 */
671 ptent = ptep_get_and_clear_full(mm, addr, pte,
672 tlb->fullmm);
673
674 ptent = pte_mkold(ptent);
675 ptent = pte_mkclean(ptent);
676 set_pte_at(mm, addr, pte, ptent);
677 tlb_remove_tlb_entry(tlb, pte, addr);
678 }
679 mark_page_lazyfree(page);
680 }
681 out:
682 if (nr_swap) {
683 if (current->mm == mm)
684 sync_mm_rss(mm);
685
686 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
687 }
688 arch_leave_lazy_mmu_mode();
689 pte_unmap_unlock(orig_pte, ptl);
690 cond_resched();
691 next:
692 return 0;
693 }
694
695 static const struct mm_walk_ops madvise_free_walk_ops = {
696 .pmd_entry = madvise_free_pte_range,
697 };
698
699 static int madvise_free_single_vma(struct vm_area_struct *vma,
700 unsigned long start_addr, unsigned long end_addr)
701 {
702 struct mm_struct *mm = vma->vm_mm;
703 struct mmu_notifier_range range;
704 struct mmu_gather tlb;
705
706 /* MADV_FREE works for only anon vma at the moment */
707 if (!vma_is_anonymous(vma))
708 return -EINVAL;
709
710 range.start = max(vma->vm_start, start_addr);
711 if (range.start >= vma->vm_end)
712 return -EINVAL;
713 range.end = min(vma->vm_end, end_addr);
714 if (range.end <= vma->vm_start)
715 return -EINVAL;
716 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
717 range.start, range.end);
718
719 lru_add_drain();
720 tlb_gather_mmu(&tlb, mm, range.start, range.end);
721 update_hiwater_rss(mm);
722
723 mmu_notifier_invalidate_range_start(&range);
724 tlb_start_vma(&tlb, vma);
725 walk_page_range(vma->vm_mm, range.start, range.end,
726 &madvise_free_walk_ops, &tlb);
727 tlb_end_vma(&tlb, vma);
728 mmu_notifier_invalidate_range_end(&range);
729 tlb_finish_mmu(&tlb, range.start, range.end);
730
731 return 0;
732 }
733
734 /*
735 * Application no longer needs these pages. If the pages are dirty,
736 * it's OK to just throw them away. The app will be more careful about
737 * data it wants to keep. Be sure to free swap resources too. The
738 * zap_page_range call sets things up for shrink_active_list to actually free
739 * these pages later if no one else has touched them in the meantime,
740 * although we could add these pages to a global reuse list for
741 * shrink_active_list to pick up before reclaiming other pages.
742 *
743 * NB: This interface discards data rather than pushes it out to swap,
744 * as some implementations do. This has performance implications for
745 * applications like large transactional databases which want to discard
746 * pages in anonymous maps after committing to backing store the data
747 * that was kept in them. There is no reason to write this data out to
748 * the swap area if the application is discarding it.
749 *
750 * An interface that causes the system to free clean pages and flush
751 * dirty pages is already available as msync(MS_INVALIDATE).
752 */
753 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
754 unsigned long start, unsigned long end)
755 {
756 zap_page_range(vma, start, end - start);
757 return 0;
758 }
759
760 static long madvise_dontneed_free(struct vm_area_struct *vma,
761 struct vm_area_struct **prev,
762 unsigned long start, unsigned long end,
763 int behavior)
764 {
765 *prev = vma;
766 if (!can_madv_lru_vma(vma))
767 return -EINVAL;
768
769 if (!userfaultfd_remove(vma, start, end)) {
770 *prev = NULL; /* mmap_sem has been dropped, prev is stale */
771
772 down_read(&current->mm->mmap_sem);
773 vma = find_vma(current->mm, start);
774 if (!vma)
775 return -ENOMEM;
776 if (start < vma->vm_start) {
777 /*
778 * This "vma" under revalidation is the one
779 * with the lowest vma->vm_start where start
780 * is also < vma->vm_end. If start <
781 * vma->vm_start it means an hole materialized
782 * in the user address space within the
783 * virtual range passed to MADV_DONTNEED
784 * or MADV_FREE.
785 */
786 return -ENOMEM;
787 }
788 if (!can_madv_lru_vma(vma))
789 return -EINVAL;
790 if (end > vma->vm_end) {
791 /*
792 * Don't fail if end > vma->vm_end. If the old
793 * vma was splitted while the mmap_sem was
794 * released the effect of the concurrent
795 * operation may not cause madvise() to
796 * have an undefined result. There may be an
797 * adjacent next vma that we'll walk
798 * next. userfaultfd_remove() will generate an
799 * UFFD_EVENT_REMOVE repetition on the
800 * end-vma->vm_end range, but the manager can
801 * handle a repetition fine.
802 */
803 end = vma->vm_end;
804 }
805 VM_WARN_ON(start >= end);
806 }
807
808 if (behavior == MADV_DONTNEED)
809 return madvise_dontneed_single_vma(vma, start, end);
810 else if (behavior == MADV_FREE)
811 return madvise_free_single_vma(vma, start, end);
812 else
813 return -EINVAL;
814 }
815
816 /*
817 * Application wants to free up the pages and associated backing store.
818 * This is effectively punching a hole into the middle of a file.
819 */
820 static long madvise_remove(struct vm_area_struct *vma,
821 struct vm_area_struct **prev,
822 unsigned long start, unsigned long end)
823 {
824 loff_t offset;
825 int error;
826 struct file *f;
827
828 *prev = NULL; /* tell sys_madvise we drop mmap_sem */
829
830 if (vma->vm_flags & VM_LOCKED)
831 return -EINVAL;
832
833 f = vma->vm_file;
834
835 if (!f || !f->f_mapping || !f->f_mapping->host) {
836 return -EINVAL;
837 }
838
839 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
840 return -EACCES;
841
842 offset = (loff_t)(start - vma->vm_start)
843 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
844
845 /*
846 * Filesystem's fallocate may need to take i_mutex. We need to
847 * explicitly grab a reference because the vma (and hence the
848 * vma's reference to the file) can go away as soon as we drop
849 * mmap_sem.
850 */
851 get_file(f);
852 if (userfaultfd_remove(vma, start, end)) {
853 /* mmap_sem was not released by userfaultfd_remove() */
854 up_read(&current->mm->mmap_sem);
855 }
856 error = vfs_fallocate(f,
857 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
858 offset, end - start);
859 fput(f);
860 down_read(&current->mm->mmap_sem);
861 return error;
862 }
863
864 #ifdef CONFIG_MEMORY_FAILURE
865 /*
866 * Error injection support for memory error handling.
867 */
868 static int madvise_inject_error(int behavior,
869 unsigned long start, unsigned long end)
870 {
871 struct page *page;
872 struct zone *zone;
873 unsigned long size;
874
875 if (!capable(CAP_SYS_ADMIN))
876 return -EPERM;
877
878
879 for (; start < end; start += size) {
880 unsigned long pfn;
881 int ret;
882
883 ret = get_user_pages_fast(start, 1, 0, &page);
884 if (ret != 1)
885 return ret;
886 pfn = page_to_pfn(page);
887
888 /*
889 * When soft offlining hugepages, after migrating the page
890 * we dissolve it, therefore in the second loop "page" will
891 * no longer be a compound page.
892 */
893 size = page_size(compound_head(page));
894
895 if (PageHWPoison(page)) {
896 put_page(page);
897 continue;
898 }
899
900 if (behavior == MADV_SOFT_OFFLINE) {
901 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
902 pfn, start);
903
904 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
905 if (ret)
906 return ret;
907 continue;
908 }
909
910 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
911 pfn, start);
912
913 /*
914 * Drop the page reference taken by get_user_pages_fast(). In
915 * the absence of MF_COUNT_INCREASED the memory_failure()
916 * routine is responsible for pinning the page to prevent it
917 * from being released back to the page allocator.
918 */
919 put_page(page);
920 ret = memory_failure(pfn, 0);
921 if (ret)
922 return ret;
923 }
924
925 /* Ensure that all poisoned pages are removed from per-cpu lists */
926 for_each_populated_zone(zone)
927 drain_all_pages(zone);
928
929 return 0;
930 }
931 #endif
932
933 static long
934 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
935 unsigned long start, unsigned long end, int behavior)
936 {
937 switch (behavior) {
938 case MADV_REMOVE:
939 return madvise_remove(vma, prev, start, end);
940 case MADV_WILLNEED:
941 return madvise_willneed(vma, prev, start, end);
942 case MADV_COLD:
943 return madvise_cold(vma, prev, start, end);
944 case MADV_PAGEOUT:
945 return madvise_pageout(vma, prev, start, end);
946 case MADV_FREE:
947 case MADV_DONTNEED:
948 return madvise_dontneed_free(vma, prev, start, end, behavior);
949 default:
950 return madvise_behavior(vma, prev, start, end, behavior);
951 }
952 }
953
954 static bool
955 madvise_behavior_valid(int behavior)
956 {
957 switch (behavior) {
958 case MADV_DOFORK:
959 case MADV_DONTFORK:
960 case MADV_NORMAL:
961 case MADV_SEQUENTIAL:
962 case MADV_RANDOM:
963 case MADV_REMOVE:
964 case MADV_WILLNEED:
965 case MADV_DONTNEED:
966 case MADV_FREE:
967 case MADV_COLD:
968 case MADV_PAGEOUT:
969 #ifdef CONFIG_KSM
970 case MADV_MERGEABLE:
971 case MADV_UNMERGEABLE:
972 #endif
973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
974 case MADV_HUGEPAGE:
975 case MADV_NOHUGEPAGE:
976 #endif
977 case MADV_DONTDUMP:
978 case MADV_DODUMP:
979 case MADV_WIPEONFORK:
980 case MADV_KEEPONFORK:
981 #ifdef CONFIG_MEMORY_FAILURE
982 case MADV_SOFT_OFFLINE:
983 case MADV_HWPOISON:
984 #endif
985 return true;
986
987 default:
988 return false;
989 }
990 }
991
992 /*
993 * The madvise(2) system call.
994 *
995 * Applications can use madvise() to advise the kernel how it should
996 * handle paging I/O in this VM area. The idea is to help the kernel
997 * use appropriate read-ahead and caching techniques. The information
998 * provided is advisory only, and can be safely disregarded by the
999 * kernel without affecting the correct operation of the application.
1000 *
1001 * behavior values:
1002 * MADV_NORMAL - the default behavior is to read clusters. This
1003 * results in some read-ahead and read-behind.
1004 * MADV_RANDOM - the system should read the minimum amount of data
1005 * on any access, since it is unlikely that the appli-
1006 * cation will need more than what it asks for.
1007 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1008 * once, so they can be aggressively read ahead, and
1009 * can be freed soon after they are accessed.
1010 * MADV_WILLNEED - the application is notifying the system to read
1011 * some pages ahead.
1012 * MADV_DONTNEED - the application is finished with the given range,
1013 * so the kernel can free resources associated with it.
1014 * MADV_FREE - the application marks pages in the given range as lazy free,
1015 * where actual purges are postponed until memory pressure happens.
1016 * MADV_REMOVE - the application wants to free up the given range of
1017 * pages and associated backing store.
1018 * MADV_DONTFORK - omit this area from child's address space when forking:
1019 * typically, to avoid COWing pages pinned by get_user_pages().
1020 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1021 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1022 * range after a fork.
1023 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1024 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1025 * were corrupted by unrecoverable hardware memory failure.
1026 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1027 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1028 * this area with pages of identical content from other such areas.
1029 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1030 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1031 * huge pages in the future. Existing pages might be coalesced and
1032 * new pages might be allocated as THP.
1033 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1034 * transparent huge pages so the existing pages will not be
1035 * coalesced into THP and new pages will not be allocated as THP.
1036 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1037 * from being included in its core dump.
1038 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1039 *
1040 * return values:
1041 * zero - success
1042 * -EINVAL - start + len < 0, start is not page-aligned,
1043 * "behavior" is not a valid value, or application
1044 * is attempting to release locked or shared pages,
1045 * or the specified address range includes file, Huge TLB,
1046 * MAP_SHARED or VMPFNMAP range.
1047 * -ENOMEM - addresses in the specified range are not currently
1048 * mapped, or are outside the AS of the process.
1049 * -EIO - an I/O error occurred while paging in data.
1050 * -EBADF - map exists, but area maps something that isn't a file.
1051 * -EAGAIN - a kernel resource was temporarily unavailable.
1052 */
1053 int do_madvise(unsigned long start, size_t len_in, int behavior)
1054 {
1055 unsigned long end, tmp;
1056 struct vm_area_struct *vma, *prev;
1057 int unmapped_error = 0;
1058 int error = -EINVAL;
1059 int write;
1060 size_t len;
1061 struct blk_plug plug;
1062
1063 start = untagged_addr(start);
1064
1065 if (!madvise_behavior_valid(behavior))
1066 return error;
1067
1068 if (!PAGE_ALIGNED(start))
1069 return error;
1070 len = PAGE_ALIGN(len_in);
1071
1072 /* Check to see whether len was rounded up from small -ve to zero */
1073 if (len_in && !len)
1074 return error;
1075
1076 end = start + len;
1077 if (end < start)
1078 return error;
1079
1080 error = 0;
1081 if (end == start)
1082 return error;
1083
1084 #ifdef CONFIG_MEMORY_FAILURE
1085 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1086 return madvise_inject_error(behavior, start, start + len_in);
1087 #endif
1088
1089 write = madvise_need_mmap_write(behavior);
1090 if (write) {
1091 if (down_write_killable(&current->mm->mmap_sem))
1092 return -EINTR;
1093 } else {
1094 down_read(&current->mm->mmap_sem);
1095 }
1096
1097 /*
1098 * If the interval [start,end) covers some unmapped address
1099 * ranges, just ignore them, but return -ENOMEM at the end.
1100 * - different from the way of handling in mlock etc.
1101 */
1102 vma = find_vma_prev(current->mm, start, &prev);
1103 if (vma && start > vma->vm_start)
1104 prev = vma;
1105
1106 blk_start_plug(&plug);
1107 for (;;) {
1108 /* Still start < end. */
1109 error = -ENOMEM;
1110 if (!vma)
1111 goto out;
1112
1113 /* Here start < (end|vma->vm_end). */
1114 if (start < vma->vm_start) {
1115 unmapped_error = -ENOMEM;
1116 start = vma->vm_start;
1117 if (start >= end)
1118 goto out;
1119 }
1120
1121 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1122 tmp = vma->vm_end;
1123 if (end < tmp)
1124 tmp = end;
1125
1126 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1127 error = madvise_vma(vma, &prev, start, tmp, behavior);
1128 if (error)
1129 goto out;
1130 start = tmp;
1131 if (prev && start < prev->vm_end)
1132 start = prev->vm_end;
1133 error = unmapped_error;
1134 if (start >= end)
1135 goto out;
1136 if (prev)
1137 vma = prev->vm_next;
1138 else /* madvise_remove dropped mmap_sem */
1139 vma = find_vma(current->mm, start);
1140 }
1141 out:
1142 blk_finish_plug(&plug);
1143 if (write)
1144 up_write(&current->mm->mmap_sem);
1145 else
1146 up_read(&current->mm->mmap_sem);
1147
1148 return error;
1149 }
1150
1151 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1152 {
1153 return do_madvise(start, len_in, behavior);
1154 }