]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/memblock.c
drm/amdgpu: differentiate external rev id for gfx 11.5.0
[thirdparty/kernel/stable.git] / mm / memblock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34 #endif
35
36 /**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
54 *
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
69 *
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
77 *
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
85 *
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
90 *
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
93 *
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
97 */
98
99 #ifndef CONFIG_NUMA
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
102 #endif
103
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
108
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 #endif
114
115 struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
120
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
124 .reserved.name = "reserved",
125
126 .bottom_up = false,
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
128 };
129
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
135 .name = "physmem",
136 };
137 #endif
138
139 /*
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
144 */
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146
147 #define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
151
152 #define memblock_dbg(fmt, ...) \
153 do { \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
156 } while (0)
157
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
163
164 bool __init_memblock memblock_has_mirror(void)
165 {
166 return system_has_some_mirror;
167 }
168
169 static enum memblock_flags __init_memblock choose_memblock_flags(void)
170 {
171 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
172 }
173
174 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
175 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
176 {
177 return *size = min(*size, PHYS_ADDR_MAX - base);
178 }
179
180 /*
181 * Address comparison utilities
182 */
183 unsigned long __init_memblock
184 memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
185 phys_addr_t size2)
186 {
187 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
188 }
189
190 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
191 phys_addr_t base, phys_addr_t size)
192 {
193 unsigned long i;
194
195 memblock_cap_size(base, &size);
196
197 for (i = 0; i < type->cnt; i++)
198 if (memblock_addrs_overlap(base, size, type->regions[i].base,
199 type->regions[i].size))
200 break;
201 return i < type->cnt;
202 }
203
204 /**
205 * __memblock_find_range_bottom_up - find free area utility in bottom-up
206 * @start: start of candidate range
207 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
208 * %MEMBLOCK_ALLOC_ACCESSIBLE
209 * @size: size of free area to find
210 * @align: alignment of free area to find
211 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
212 * @flags: pick from blocks based on memory attributes
213 *
214 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
215 *
216 * Return:
217 * Found address on success, 0 on failure.
218 */
219 static phys_addr_t __init_memblock
220 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
221 phys_addr_t size, phys_addr_t align, int nid,
222 enum memblock_flags flags)
223 {
224 phys_addr_t this_start, this_end, cand;
225 u64 i;
226
227 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
228 this_start = clamp(this_start, start, end);
229 this_end = clamp(this_end, start, end);
230
231 cand = round_up(this_start, align);
232 if (cand < this_end && this_end - cand >= size)
233 return cand;
234 }
235
236 return 0;
237 }
238
239 /**
240 * __memblock_find_range_top_down - find free area utility, in top-down
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
243 * %MEMBLOCK_ALLOC_ACCESSIBLE
244 * @size: size of free area to find
245 * @align: alignment of free area to find
246 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
247 * @flags: pick from blocks based on memory attributes
248 *
249 * Utility called from memblock_find_in_range_node(), find free area top-down.
250 *
251 * Return:
252 * Found address on success, 0 on failure.
253 */
254 static phys_addr_t __init_memblock
255 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
256 phys_addr_t size, phys_addr_t align, int nid,
257 enum memblock_flags flags)
258 {
259 phys_addr_t this_start, this_end, cand;
260 u64 i;
261
262 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
263 NULL) {
264 this_start = clamp(this_start, start, end);
265 this_end = clamp(this_end, start, end);
266
267 if (this_end < size)
268 continue;
269
270 cand = round_down(this_end - size, align);
271 if (cand >= this_start)
272 return cand;
273 }
274
275 return 0;
276 }
277
278 /**
279 * memblock_find_in_range_node - find free area in given range and node
280 * @size: size of free area to find
281 * @align: alignment of free area to find
282 * @start: start of candidate range
283 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
284 * %MEMBLOCK_ALLOC_ACCESSIBLE
285 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
286 * @flags: pick from blocks based on memory attributes
287 *
288 * Find @size free area aligned to @align in the specified range and node.
289 *
290 * Return:
291 * Found address on success, 0 on failure.
292 */
293 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
294 phys_addr_t align, phys_addr_t start,
295 phys_addr_t end, int nid,
296 enum memblock_flags flags)
297 {
298 /* pump up @end */
299 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
300 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
301 end = memblock.current_limit;
302
303 /* avoid allocating the first page */
304 start = max_t(phys_addr_t, start, PAGE_SIZE);
305 end = max(start, end);
306
307 if (memblock_bottom_up())
308 return __memblock_find_range_bottom_up(start, end, size, align,
309 nid, flags);
310 else
311 return __memblock_find_range_top_down(start, end, size, align,
312 nid, flags);
313 }
314
315 /**
316 * memblock_find_in_range - find free area in given range
317 * @start: start of candidate range
318 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
319 * %MEMBLOCK_ALLOC_ACCESSIBLE
320 * @size: size of free area to find
321 * @align: alignment of free area to find
322 *
323 * Find @size free area aligned to @align in the specified range.
324 *
325 * Return:
326 * Found address on success, 0 on failure.
327 */
328 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
329 phys_addr_t end, phys_addr_t size,
330 phys_addr_t align)
331 {
332 phys_addr_t ret;
333 enum memblock_flags flags = choose_memblock_flags();
334
335 again:
336 ret = memblock_find_in_range_node(size, align, start, end,
337 NUMA_NO_NODE, flags);
338
339 if (!ret && (flags & MEMBLOCK_MIRROR)) {
340 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
341 &size);
342 flags &= ~MEMBLOCK_MIRROR;
343 goto again;
344 }
345
346 return ret;
347 }
348
349 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
350 {
351 type->total_size -= type->regions[r].size;
352 memmove(&type->regions[r], &type->regions[r + 1],
353 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
354 type->cnt--;
355
356 /* Special case for empty arrays */
357 if (type->cnt == 0) {
358 WARN_ON(type->total_size != 0);
359 type->cnt = 1;
360 type->regions[0].base = 0;
361 type->regions[0].size = 0;
362 type->regions[0].flags = 0;
363 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
364 }
365 }
366
367 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
368 /**
369 * memblock_discard - discard memory and reserved arrays if they were allocated
370 */
371 void __init memblock_discard(void)
372 {
373 phys_addr_t addr, size;
374
375 if (memblock.reserved.regions != memblock_reserved_init_regions) {
376 addr = __pa(memblock.reserved.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.reserved.max);
379 if (memblock_reserved_in_slab)
380 kfree(memblock.reserved.regions);
381 else
382 memblock_free_late(addr, size);
383 }
384
385 if (memblock.memory.regions != memblock_memory_init_regions) {
386 addr = __pa(memblock.memory.regions);
387 size = PAGE_ALIGN(sizeof(struct memblock_region) *
388 memblock.memory.max);
389 if (memblock_memory_in_slab)
390 kfree(memblock.memory.regions);
391 else
392 memblock_free_late(addr, size);
393 }
394
395 memblock_memory = NULL;
396 }
397 #endif
398
399 /**
400 * memblock_double_array - double the size of the memblock regions array
401 * @type: memblock type of the regions array being doubled
402 * @new_area_start: starting address of memory range to avoid overlap with
403 * @new_area_size: size of memory range to avoid overlap with
404 *
405 * Double the size of the @type regions array. If memblock is being used to
406 * allocate memory for a new reserved regions array and there is a previously
407 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
408 * waiting to be reserved, ensure the memory used by the new array does
409 * not overlap.
410 *
411 * Return:
412 * 0 on success, -1 on failure.
413 */
414 static int __init_memblock memblock_double_array(struct memblock_type *type,
415 phys_addr_t new_area_start,
416 phys_addr_t new_area_size)
417 {
418 struct memblock_region *new_array, *old_array;
419 phys_addr_t old_alloc_size, new_alloc_size;
420 phys_addr_t old_size, new_size, addr, new_end;
421 int use_slab = slab_is_available();
422 int *in_slab;
423
424 /* We don't allow resizing until we know about the reserved regions
425 * of memory that aren't suitable for allocation
426 */
427 if (!memblock_can_resize)
428 panic("memblock: cannot resize %s array\n", type->name);
429
430 /* Calculate new doubled size */
431 old_size = type->max * sizeof(struct memblock_region);
432 new_size = old_size << 1;
433 /*
434 * We need to allocated new one align to PAGE_SIZE,
435 * so we can free them completely later.
436 */
437 old_alloc_size = PAGE_ALIGN(old_size);
438 new_alloc_size = PAGE_ALIGN(new_size);
439
440 /* Retrieve the slab flag */
441 if (type == &memblock.memory)
442 in_slab = &memblock_memory_in_slab;
443 else
444 in_slab = &memblock_reserved_in_slab;
445
446 /* Try to find some space for it */
447 if (use_slab) {
448 new_array = kmalloc(new_size, GFP_KERNEL);
449 addr = new_array ? __pa(new_array) : 0;
450 } else {
451 /* only exclude range when trying to double reserved.regions */
452 if (type != &memblock.reserved)
453 new_area_start = new_area_size = 0;
454
455 addr = memblock_find_in_range(new_area_start + new_area_size,
456 memblock.current_limit,
457 new_alloc_size, PAGE_SIZE);
458 if (!addr && new_area_size)
459 addr = memblock_find_in_range(0,
460 min(new_area_start, memblock.current_limit),
461 new_alloc_size, PAGE_SIZE);
462
463 new_array = addr ? __va(addr) : NULL;
464 }
465 if (!addr) {
466 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
467 type->name, type->max, type->max * 2);
468 return -1;
469 }
470
471 new_end = addr + new_size - 1;
472 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
473 type->name, type->max * 2, &addr, &new_end);
474
475 /*
476 * Found space, we now need to move the array over before we add the
477 * reserved region since it may be our reserved array itself that is
478 * full.
479 */
480 memcpy(new_array, type->regions, old_size);
481 memset(new_array + type->max, 0, old_size);
482 old_array = type->regions;
483 type->regions = new_array;
484 type->max <<= 1;
485
486 /* Free old array. We needn't free it if the array is the static one */
487 if (*in_slab)
488 kfree(old_array);
489 else if (old_array != memblock_memory_init_regions &&
490 old_array != memblock_reserved_init_regions)
491 memblock_free(old_array, old_alloc_size);
492
493 /*
494 * Reserve the new array if that comes from the memblock. Otherwise, we
495 * needn't do it
496 */
497 if (!use_slab)
498 BUG_ON(memblock_reserve(addr, new_alloc_size));
499
500 /* Update slab flag */
501 *in_slab = use_slab;
502
503 return 0;
504 }
505
506 /**
507 * memblock_merge_regions - merge neighboring compatible regions
508 * @type: memblock type to scan
509 * @start_rgn: start scanning from (@start_rgn - 1)
510 * @end_rgn: end scanning at (@end_rgn - 1)
511 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
512 */
513 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
514 unsigned long start_rgn,
515 unsigned long end_rgn)
516 {
517 int i = 0;
518 if (start_rgn)
519 i = start_rgn - 1;
520 end_rgn = min(end_rgn, type->cnt - 1);
521 while (i < end_rgn) {
522 struct memblock_region *this = &type->regions[i];
523 struct memblock_region *next = &type->regions[i + 1];
524
525 if (this->base + this->size != next->base ||
526 memblock_get_region_node(this) !=
527 memblock_get_region_node(next) ||
528 this->flags != next->flags) {
529 BUG_ON(this->base + this->size > next->base);
530 i++;
531 continue;
532 }
533
534 this->size += next->size;
535 /* move forward from next + 1, index of which is i + 2 */
536 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
537 type->cnt--;
538 end_rgn--;
539 }
540 }
541
542 /**
543 * memblock_insert_region - insert new memblock region
544 * @type: memblock type to insert into
545 * @idx: index for the insertion point
546 * @base: base address of the new region
547 * @size: size of the new region
548 * @nid: node id of the new region
549 * @flags: flags of the new region
550 *
551 * Insert new memblock region [@base, @base + @size) into @type at @idx.
552 * @type must already have extra room to accommodate the new region.
553 */
554 static void __init_memblock memblock_insert_region(struct memblock_type *type,
555 int idx, phys_addr_t base,
556 phys_addr_t size,
557 int nid,
558 enum memblock_flags flags)
559 {
560 struct memblock_region *rgn = &type->regions[idx];
561
562 BUG_ON(type->cnt >= type->max);
563 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
564 rgn->base = base;
565 rgn->size = size;
566 rgn->flags = flags;
567 memblock_set_region_node(rgn, nid);
568 type->cnt++;
569 type->total_size += size;
570 }
571
572 /**
573 * memblock_add_range - add new memblock region
574 * @type: memblock type to add new region into
575 * @base: base address of the new region
576 * @size: size of the new region
577 * @nid: nid of the new region
578 * @flags: flags of the new region
579 *
580 * Add new memblock region [@base, @base + @size) into @type. The new region
581 * is allowed to overlap with existing ones - overlaps don't affect already
582 * existing regions. @type is guaranteed to be minimal (all neighbouring
583 * compatible regions are merged) after the addition.
584 *
585 * Return:
586 * 0 on success, -errno on failure.
587 */
588 static int __init_memblock memblock_add_range(struct memblock_type *type,
589 phys_addr_t base, phys_addr_t size,
590 int nid, enum memblock_flags flags)
591 {
592 bool insert = false;
593 phys_addr_t obase = base;
594 phys_addr_t end = base + memblock_cap_size(base, &size);
595 int idx, nr_new, start_rgn = -1, end_rgn;
596 struct memblock_region *rgn;
597
598 if (!size)
599 return 0;
600
601 /* special case for empty array */
602 if (type->regions[0].size == 0) {
603 WARN_ON(type->cnt != 1 || type->total_size);
604 type->regions[0].base = base;
605 type->regions[0].size = size;
606 type->regions[0].flags = flags;
607 memblock_set_region_node(&type->regions[0], nid);
608 type->total_size = size;
609 return 0;
610 }
611
612 /*
613 * The worst case is when new range overlaps all existing regions,
614 * then we'll need type->cnt + 1 empty regions in @type. So if
615 * type->cnt * 2 + 1 is less than or equal to type->max, we know
616 * that there is enough empty regions in @type, and we can insert
617 * regions directly.
618 */
619 if (type->cnt * 2 + 1 <= type->max)
620 insert = true;
621
622 repeat:
623 /*
624 * The following is executed twice. Once with %false @insert and
625 * then with %true. The first counts the number of regions needed
626 * to accommodate the new area. The second actually inserts them.
627 */
628 base = obase;
629 nr_new = 0;
630
631 for_each_memblock_type(idx, type, rgn) {
632 phys_addr_t rbase = rgn->base;
633 phys_addr_t rend = rbase + rgn->size;
634
635 if (rbase >= end)
636 break;
637 if (rend <= base)
638 continue;
639 /*
640 * @rgn overlaps. If it separates the lower part of new
641 * area, insert that portion.
642 */
643 if (rbase > base) {
644 #ifdef CONFIG_NUMA
645 WARN_ON(nid != memblock_get_region_node(rgn));
646 #endif
647 WARN_ON(flags != rgn->flags);
648 nr_new++;
649 if (insert) {
650 if (start_rgn == -1)
651 start_rgn = idx;
652 end_rgn = idx + 1;
653 memblock_insert_region(type, idx++, base,
654 rbase - base, nid,
655 flags);
656 }
657 }
658 /* area below @rend is dealt with, forget about it */
659 base = min(rend, end);
660 }
661
662 /* insert the remaining portion */
663 if (base < end) {
664 nr_new++;
665 if (insert) {
666 if (start_rgn == -1)
667 start_rgn = idx;
668 end_rgn = idx + 1;
669 memblock_insert_region(type, idx, base, end - base,
670 nid, flags);
671 }
672 }
673
674 if (!nr_new)
675 return 0;
676
677 /*
678 * If this was the first round, resize array and repeat for actual
679 * insertions; otherwise, merge and return.
680 */
681 if (!insert) {
682 while (type->cnt + nr_new > type->max)
683 if (memblock_double_array(type, obase, size) < 0)
684 return -ENOMEM;
685 insert = true;
686 goto repeat;
687 } else {
688 memblock_merge_regions(type, start_rgn, end_rgn);
689 return 0;
690 }
691 }
692
693 /**
694 * memblock_add_node - add new memblock region within a NUMA node
695 * @base: base address of the new region
696 * @size: size of the new region
697 * @nid: nid of the new region
698 * @flags: flags of the new region
699 *
700 * Add new memblock region [@base, @base + @size) to the "memory"
701 * type. See memblock_add_range() description for mode details
702 *
703 * Return:
704 * 0 on success, -errno on failure.
705 */
706 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
707 int nid, enum memblock_flags flags)
708 {
709 phys_addr_t end = base + size - 1;
710
711 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
712 &base, &end, nid, flags, (void *)_RET_IP_);
713
714 return memblock_add_range(&memblock.memory, base, size, nid, flags);
715 }
716
717 /**
718 * memblock_add - add new memblock region
719 * @base: base address of the new region
720 * @size: size of the new region
721 *
722 * Add new memblock region [@base, @base + @size) to the "memory"
723 * type. See memblock_add_range() description for mode details
724 *
725 * Return:
726 * 0 on success, -errno on failure.
727 */
728 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
729 {
730 phys_addr_t end = base + size - 1;
731
732 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
733 &base, &end, (void *)_RET_IP_);
734
735 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
736 }
737
738 /**
739 * memblock_validate_numa_coverage - check if amount of memory with
740 * no node ID assigned is less than a threshold
741 * @threshold_bytes: maximal number of pages that can have unassigned node
742 * ID (in bytes).
743 *
744 * A buggy firmware may report memory that does not belong to any node.
745 * Check if amount of such memory is below @threshold_bytes.
746 *
747 * Return: true on success, false on failure.
748 */
749 bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
750 {
751 unsigned long nr_pages = 0;
752 unsigned long start_pfn, end_pfn, mem_size_mb;
753 int nid, i;
754
755 /* calculate lose page */
756 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
757 if (nid == NUMA_NO_NODE)
758 nr_pages += end_pfn - start_pfn;
759 }
760
761 if ((nr_pages << PAGE_SHIFT) >= threshold_bytes) {
762 mem_size_mb = memblock_phys_mem_size() >> 20;
763 pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
764 (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
765 return false;
766 }
767
768 return true;
769 }
770
771
772 /**
773 * memblock_isolate_range - isolate given range into disjoint memblocks
774 * @type: memblock type to isolate range for
775 * @base: base of range to isolate
776 * @size: size of range to isolate
777 * @start_rgn: out parameter for the start of isolated region
778 * @end_rgn: out parameter for the end of isolated region
779 *
780 * Walk @type and ensure that regions don't cross the boundaries defined by
781 * [@base, @base + @size). Crossing regions are split at the boundaries,
782 * which may create at most two more regions. The index of the first
783 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
784 *
785 * Return:
786 * 0 on success, -errno on failure.
787 */
788 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
789 phys_addr_t base, phys_addr_t size,
790 int *start_rgn, int *end_rgn)
791 {
792 phys_addr_t end = base + memblock_cap_size(base, &size);
793 int idx;
794 struct memblock_region *rgn;
795
796 *start_rgn = *end_rgn = 0;
797
798 if (!size)
799 return 0;
800
801 /* we'll create at most two more regions */
802 while (type->cnt + 2 > type->max)
803 if (memblock_double_array(type, base, size) < 0)
804 return -ENOMEM;
805
806 for_each_memblock_type(idx, type, rgn) {
807 phys_addr_t rbase = rgn->base;
808 phys_addr_t rend = rbase + rgn->size;
809
810 if (rbase >= end)
811 break;
812 if (rend <= base)
813 continue;
814
815 if (rbase < base) {
816 /*
817 * @rgn intersects from below. Split and continue
818 * to process the next region - the new top half.
819 */
820 rgn->base = base;
821 rgn->size -= base - rbase;
822 type->total_size -= base - rbase;
823 memblock_insert_region(type, idx, rbase, base - rbase,
824 memblock_get_region_node(rgn),
825 rgn->flags);
826 } else if (rend > end) {
827 /*
828 * @rgn intersects from above. Split and redo the
829 * current region - the new bottom half.
830 */
831 rgn->base = end;
832 rgn->size -= end - rbase;
833 type->total_size -= end - rbase;
834 memblock_insert_region(type, idx--, rbase, end - rbase,
835 memblock_get_region_node(rgn),
836 rgn->flags);
837 } else {
838 /* @rgn is fully contained, record it */
839 if (!*end_rgn)
840 *start_rgn = idx;
841 *end_rgn = idx + 1;
842 }
843 }
844
845 return 0;
846 }
847
848 static int __init_memblock memblock_remove_range(struct memblock_type *type,
849 phys_addr_t base, phys_addr_t size)
850 {
851 int start_rgn, end_rgn;
852 int i, ret;
853
854 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
855 if (ret)
856 return ret;
857
858 for (i = end_rgn - 1; i >= start_rgn; i--)
859 memblock_remove_region(type, i);
860 return 0;
861 }
862
863 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
864 {
865 phys_addr_t end = base + size - 1;
866
867 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
868 &base, &end, (void *)_RET_IP_);
869
870 return memblock_remove_range(&memblock.memory, base, size);
871 }
872
873 /**
874 * memblock_free - free boot memory allocation
875 * @ptr: starting address of the boot memory allocation
876 * @size: size of the boot memory block in bytes
877 *
878 * Free boot memory block previously allocated by memblock_alloc_xx() API.
879 * The freeing memory will not be released to the buddy allocator.
880 */
881 void __init_memblock memblock_free(void *ptr, size_t size)
882 {
883 if (ptr)
884 memblock_phys_free(__pa(ptr), size);
885 }
886
887 /**
888 * memblock_phys_free - free boot memory block
889 * @base: phys starting address of the boot memory block
890 * @size: size of the boot memory block in bytes
891 *
892 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
893 * The freeing memory will not be released to the buddy allocator.
894 */
895 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
896 {
897 phys_addr_t end = base + size - 1;
898
899 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
900 &base, &end, (void *)_RET_IP_);
901
902 kmemleak_free_part_phys(base, size);
903 return memblock_remove_range(&memblock.reserved, base, size);
904 }
905
906 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
907 {
908 phys_addr_t end = base + size - 1;
909
910 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
911 &base, &end, (void *)_RET_IP_);
912
913 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
914 }
915
916 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
917 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
918 {
919 phys_addr_t end = base + size - 1;
920
921 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
922 &base, &end, (void *)_RET_IP_);
923
924 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
925 }
926 #endif
927
928 /**
929 * memblock_setclr_flag - set or clear flag for a memory region
930 * @type: memblock type to set/clear flag for
931 * @base: base address of the region
932 * @size: size of the region
933 * @set: set or clear the flag
934 * @flag: the flag to update
935 *
936 * This function isolates region [@base, @base + @size), and sets/clears flag
937 *
938 * Return: 0 on success, -errno on failure.
939 */
940 static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
941 phys_addr_t base, phys_addr_t size, int set, int flag)
942 {
943 int i, ret, start_rgn, end_rgn;
944
945 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
946 if (ret)
947 return ret;
948
949 for (i = start_rgn; i < end_rgn; i++) {
950 struct memblock_region *r = &type->regions[i];
951
952 if (set)
953 r->flags |= flag;
954 else
955 r->flags &= ~flag;
956 }
957
958 memblock_merge_regions(type, start_rgn, end_rgn);
959 return 0;
960 }
961
962 /**
963 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
964 * @base: the base phys addr of the region
965 * @size: the size of the region
966 *
967 * Return: 0 on success, -errno on failure.
968 */
969 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
970 {
971 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
972 }
973
974 /**
975 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
976 * @base: the base phys addr of the region
977 * @size: the size of the region
978 *
979 * Return: 0 on success, -errno on failure.
980 */
981 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
982 {
983 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
984 }
985
986 /**
987 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
988 * @base: the base phys addr of the region
989 * @size: the size of the region
990 *
991 * Return: 0 on success, -errno on failure.
992 */
993 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
994 {
995 if (!mirrored_kernelcore)
996 return 0;
997
998 system_has_some_mirror = true;
999
1000 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1001 }
1002
1003 /**
1004 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1005 * @base: the base phys addr of the region
1006 * @size: the size of the region
1007 *
1008 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1009 * direct mapping of the physical memory. These regions will still be
1010 * covered by the memory map. The struct page representing NOMAP memory
1011 * frames in the memory map will be PageReserved()
1012 *
1013 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1014 * memblock, the caller must inform kmemleak to ignore that memory
1015 *
1016 * Return: 0 on success, -errno on failure.
1017 */
1018 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1019 {
1020 return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1021 }
1022
1023 /**
1024 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1025 * @base: the base phys addr of the region
1026 * @size: the size of the region
1027 *
1028 * Return: 0 on success, -errno on failure.
1029 */
1030 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
1031 {
1032 return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1033 }
1034
1035 /**
1036 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1037 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1038 * for this region.
1039 * @base: the base phys addr of the region
1040 * @size: the size of the region
1041 *
1042 * struct pages will not be initialized for reserved memory regions marked with
1043 * %MEMBLOCK_RSRV_NOINIT.
1044 *
1045 * Return: 0 on success, -errno on failure.
1046 */
1047 int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1048 {
1049 return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1050 MEMBLOCK_RSRV_NOINIT);
1051 }
1052
1053 static bool should_skip_region(struct memblock_type *type,
1054 struct memblock_region *m,
1055 int nid, int flags)
1056 {
1057 int m_nid = memblock_get_region_node(m);
1058
1059 /* we never skip regions when iterating memblock.reserved or physmem */
1060 if (type != memblock_memory)
1061 return false;
1062
1063 /* only memory regions are associated with nodes, check it */
1064 if (nid != NUMA_NO_NODE && nid != m_nid)
1065 return true;
1066
1067 /* skip hotpluggable memory regions if needed */
1068 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1069 !(flags & MEMBLOCK_HOTPLUG))
1070 return true;
1071
1072 /* if we want mirror memory skip non-mirror memory regions */
1073 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1074 return true;
1075
1076 /* skip nomap memory unless we were asked for it explicitly */
1077 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1078 return true;
1079
1080 /* skip driver-managed memory unless we were asked for it explicitly */
1081 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1082 return true;
1083
1084 return false;
1085 }
1086
1087 /**
1088 * __next_mem_range - next function for for_each_free_mem_range() etc.
1089 * @idx: pointer to u64 loop variable
1090 * @nid: node selector, %NUMA_NO_NODE for all nodes
1091 * @flags: pick from blocks based on memory attributes
1092 * @type_a: pointer to memblock_type from where the range is taken
1093 * @type_b: pointer to memblock_type which excludes memory from being taken
1094 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1095 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1096 * @out_nid: ptr to int for nid of the range, can be %NULL
1097 *
1098 * Find the first area from *@idx which matches @nid, fill the out
1099 * parameters, and update *@idx for the next iteration. The lower 32bit of
1100 * *@idx contains index into type_a and the upper 32bit indexes the
1101 * areas before each region in type_b. For example, if type_b regions
1102 * look like the following,
1103 *
1104 * 0:[0-16), 1:[32-48), 2:[128-130)
1105 *
1106 * The upper 32bit indexes the following regions.
1107 *
1108 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1109 *
1110 * As both region arrays are sorted, the function advances the two indices
1111 * in lockstep and returns each intersection.
1112 */
1113 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1114 struct memblock_type *type_a,
1115 struct memblock_type *type_b, phys_addr_t *out_start,
1116 phys_addr_t *out_end, int *out_nid)
1117 {
1118 int idx_a = *idx & 0xffffffff;
1119 int idx_b = *idx >> 32;
1120
1121 if (WARN_ONCE(nid == MAX_NUMNODES,
1122 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1123 nid = NUMA_NO_NODE;
1124
1125 for (; idx_a < type_a->cnt; idx_a++) {
1126 struct memblock_region *m = &type_a->regions[idx_a];
1127
1128 phys_addr_t m_start = m->base;
1129 phys_addr_t m_end = m->base + m->size;
1130 int m_nid = memblock_get_region_node(m);
1131
1132 if (should_skip_region(type_a, m, nid, flags))
1133 continue;
1134
1135 if (!type_b) {
1136 if (out_start)
1137 *out_start = m_start;
1138 if (out_end)
1139 *out_end = m_end;
1140 if (out_nid)
1141 *out_nid = m_nid;
1142 idx_a++;
1143 *idx = (u32)idx_a | (u64)idx_b << 32;
1144 return;
1145 }
1146
1147 /* scan areas before each reservation */
1148 for (; idx_b < type_b->cnt + 1; idx_b++) {
1149 struct memblock_region *r;
1150 phys_addr_t r_start;
1151 phys_addr_t r_end;
1152
1153 r = &type_b->regions[idx_b];
1154 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1155 r_end = idx_b < type_b->cnt ?
1156 r->base : PHYS_ADDR_MAX;
1157
1158 /*
1159 * if idx_b advanced past idx_a,
1160 * break out to advance idx_a
1161 */
1162 if (r_start >= m_end)
1163 break;
1164 /* if the two regions intersect, we're done */
1165 if (m_start < r_end) {
1166 if (out_start)
1167 *out_start =
1168 max(m_start, r_start);
1169 if (out_end)
1170 *out_end = min(m_end, r_end);
1171 if (out_nid)
1172 *out_nid = m_nid;
1173 /*
1174 * The region which ends first is
1175 * advanced for the next iteration.
1176 */
1177 if (m_end <= r_end)
1178 idx_a++;
1179 else
1180 idx_b++;
1181 *idx = (u32)idx_a | (u64)idx_b << 32;
1182 return;
1183 }
1184 }
1185 }
1186
1187 /* signal end of iteration */
1188 *idx = ULLONG_MAX;
1189 }
1190
1191 /**
1192 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1193 *
1194 * @idx: pointer to u64 loop variable
1195 * @nid: node selector, %NUMA_NO_NODE for all nodes
1196 * @flags: pick from blocks based on memory attributes
1197 * @type_a: pointer to memblock_type from where the range is taken
1198 * @type_b: pointer to memblock_type which excludes memory from being taken
1199 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1200 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1201 * @out_nid: ptr to int for nid of the range, can be %NULL
1202 *
1203 * Finds the next range from type_a which is not marked as unsuitable
1204 * in type_b.
1205 *
1206 * Reverse of __next_mem_range().
1207 */
1208 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1209 enum memblock_flags flags,
1210 struct memblock_type *type_a,
1211 struct memblock_type *type_b,
1212 phys_addr_t *out_start,
1213 phys_addr_t *out_end, int *out_nid)
1214 {
1215 int idx_a = *idx & 0xffffffff;
1216 int idx_b = *idx >> 32;
1217
1218 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1219 nid = NUMA_NO_NODE;
1220
1221 if (*idx == (u64)ULLONG_MAX) {
1222 idx_a = type_a->cnt - 1;
1223 if (type_b != NULL)
1224 idx_b = type_b->cnt;
1225 else
1226 idx_b = 0;
1227 }
1228
1229 for (; idx_a >= 0; idx_a--) {
1230 struct memblock_region *m = &type_a->regions[idx_a];
1231
1232 phys_addr_t m_start = m->base;
1233 phys_addr_t m_end = m->base + m->size;
1234 int m_nid = memblock_get_region_node(m);
1235
1236 if (should_skip_region(type_a, m, nid, flags))
1237 continue;
1238
1239 if (!type_b) {
1240 if (out_start)
1241 *out_start = m_start;
1242 if (out_end)
1243 *out_end = m_end;
1244 if (out_nid)
1245 *out_nid = m_nid;
1246 idx_a--;
1247 *idx = (u32)idx_a | (u64)idx_b << 32;
1248 return;
1249 }
1250
1251 /* scan areas before each reservation */
1252 for (; idx_b >= 0; idx_b--) {
1253 struct memblock_region *r;
1254 phys_addr_t r_start;
1255 phys_addr_t r_end;
1256
1257 r = &type_b->regions[idx_b];
1258 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1259 r_end = idx_b < type_b->cnt ?
1260 r->base : PHYS_ADDR_MAX;
1261 /*
1262 * if idx_b advanced past idx_a,
1263 * break out to advance idx_a
1264 */
1265
1266 if (r_end <= m_start)
1267 break;
1268 /* if the two regions intersect, we're done */
1269 if (m_end > r_start) {
1270 if (out_start)
1271 *out_start = max(m_start, r_start);
1272 if (out_end)
1273 *out_end = min(m_end, r_end);
1274 if (out_nid)
1275 *out_nid = m_nid;
1276 if (m_start >= r_start)
1277 idx_a--;
1278 else
1279 idx_b--;
1280 *idx = (u32)idx_a | (u64)idx_b << 32;
1281 return;
1282 }
1283 }
1284 }
1285 /* signal end of iteration */
1286 *idx = ULLONG_MAX;
1287 }
1288
1289 /*
1290 * Common iterator interface used to define for_each_mem_pfn_range().
1291 */
1292 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1293 unsigned long *out_start_pfn,
1294 unsigned long *out_end_pfn, int *out_nid)
1295 {
1296 struct memblock_type *type = &memblock.memory;
1297 struct memblock_region *r;
1298 int r_nid;
1299
1300 while (++*idx < type->cnt) {
1301 r = &type->regions[*idx];
1302 r_nid = memblock_get_region_node(r);
1303
1304 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1305 continue;
1306 if (nid == MAX_NUMNODES || nid == r_nid)
1307 break;
1308 }
1309 if (*idx >= type->cnt) {
1310 *idx = -1;
1311 return;
1312 }
1313
1314 if (out_start_pfn)
1315 *out_start_pfn = PFN_UP(r->base);
1316 if (out_end_pfn)
1317 *out_end_pfn = PFN_DOWN(r->base + r->size);
1318 if (out_nid)
1319 *out_nid = r_nid;
1320 }
1321
1322 /**
1323 * memblock_set_node - set node ID on memblock regions
1324 * @base: base of area to set node ID for
1325 * @size: size of area to set node ID for
1326 * @type: memblock type to set node ID for
1327 * @nid: node ID to set
1328 *
1329 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1330 * Regions which cross the area boundaries are split as necessary.
1331 *
1332 * Return:
1333 * 0 on success, -errno on failure.
1334 */
1335 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1336 struct memblock_type *type, int nid)
1337 {
1338 #ifdef CONFIG_NUMA
1339 int start_rgn, end_rgn;
1340 int i, ret;
1341
1342 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1343 if (ret)
1344 return ret;
1345
1346 for (i = start_rgn; i < end_rgn; i++)
1347 memblock_set_region_node(&type->regions[i], nid);
1348
1349 memblock_merge_regions(type, start_rgn, end_rgn);
1350 #endif
1351 return 0;
1352 }
1353
1354 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1355 /**
1356 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1357 *
1358 * @idx: pointer to u64 loop variable
1359 * @zone: zone in which all of the memory blocks reside
1360 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1361 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1362 *
1363 * This function is meant to be a zone/pfn specific wrapper for the
1364 * for_each_mem_range type iterators. Specifically they are used in the
1365 * deferred memory init routines and as such we were duplicating much of
1366 * this logic throughout the code. So instead of having it in multiple
1367 * locations it seemed like it would make more sense to centralize this to
1368 * one new iterator that does everything they need.
1369 */
1370 void __init_memblock
1371 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1372 unsigned long *out_spfn, unsigned long *out_epfn)
1373 {
1374 int zone_nid = zone_to_nid(zone);
1375 phys_addr_t spa, epa;
1376
1377 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1378 &memblock.memory, &memblock.reserved,
1379 &spa, &epa, NULL);
1380
1381 while (*idx != U64_MAX) {
1382 unsigned long epfn = PFN_DOWN(epa);
1383 unsigned long spfn = PFN_UP(spa);
1384
1385 /*
1386 * Verify the end is at least past the start of the zone and
1387 * that we have at least one PFN to initialize.
1388 */
1389 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1390 /* if we went too far just stop searching */
1391 if (zone_end_pfn(zone) <= spfn) {
1392 *idx = U64_MAX;
1393 break;
1394 }
1395
1396 if (out_spfn)
1397 *out_spfn = max(zone->zone_start_pfn, spfn);
1398 if (out_epfn)
1399 *out_epfn = min(zone_end_pfn(zone), epfn);
1400
1401 return;
1402 }
1403
1404 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1405 &memblock.memory, &memblock.reserved,
1406 &spa, &epa, NULL);
1407 }
1408
1409 /* signal end of iteration */
1410 if (out_spfn)
1411 *out_spfn = ULONG_MAX;
1412 if (out_epfn)
1413 *out_epfn = 0;
1414 }
1415
1416 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1417
1418 /**
1419 * memblock_alloc_range_nid - allocate boot memory block
1420 * @size: size of memory block to be allocated in bytes
1421 * @align: alignment of the region and block's size
1422 * @start: the lower bound of the memory region to allocate (phys address)
1423 * @end: the upper bound of the memory region to allocate (phys address)
1424 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1425 * @exact_nid: control the allocation fall back to other nodes
1426 *
1427 * The allocation is performed from memory region limited by
1428 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1429 *
1430 * If the specified node can not hold the requested memory and @exact_nid
1431 * is false, the allocation falls back to any node in the system.
1432 *
1433 * For systems with memory mirroring, the allocation is attempted first
1434 * from the regions with mirroring enabled and then retried from any
1435 * memory region.
1436 *
1437 * In addition, function using kmemleak_alloc_phys for allocated boot
1438 * memory block, it is never reported as leaks.
1439 *
1440 * Return:
1441 * Physical address of allocated memory block on success, %0 on failure.
1442 */
1443 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1444 phys_addr_t align, phys_addr_t start,
1445 phys_addr_t end, int nid,
1446 bool exact_nid)
1447 {
1448 enum memblock_flags flags = choose_memblock_flags();
1449 phys_addr_t found;
1450
1451 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1452 nid = NUMA_NO_NODE;
1453
1454 if (!align) {
1455 /* Can't use WARNs this early in boot on powerpc */
1456 dump_stack();
1457 align = SMP_CACHE_BYTES;
1458 }
1459
1460 again:
1461 found = memblock_find_in_range_node(size, align, start, end, nid,
1462 flags);
1463 if (found && !memblock_reserve(found, size))
1464 goto done;
1465
1466 if (nid != NUMA_NO_NODE && !exact_nid) {
1467 found = memblock_find_in_range_node(size, align, start,
1468 end, NUMA_NO_NODE,
1469 flags);
1470 if (found && !memblock_reserve(found, size))
1471 goto done;
1472 }
1473
1474 if (flags & MEMBLOCK_MIRROR) {
1475 flags &= ~MEMBLOCK_MIRROR;
1476 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1477 &size);
1478 goto again;
1479 }
1480
1481 return 0;
1482
1483 done:
1484 /*
1485 * Skip kmemleak for those places like kasan_init() and
1486 * early_pgtable_alloc() due to high volume.
1487 */
1488 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1489 /*
1490 * Memblock allocated blocks are never reported as
1491 * leaks. This is because many of these blocks are
1492 * only referred via the physical address which is
1493 * not looked up by kmemleak.
1494 */
1495 kmemleak_alloc_phys(found, size, 0);
1496
1497 /*
1498 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1499 * require memory to be accepted before it can be used by the
1500 * guest.
1501 *
1502 * Accept the memory of the allocated buffer.
1503 */
1504 accept_memory(found, found + size);
1505
1506 return found;
1507 }
1508
1509 /**
1510 * memblock_phys_alloc_range - allocate a memory block inside specified range
1511 * @size: size of memory block to be allocated in bytes
1512 * @align: alignment of the region and block's size
1513 * @start: the lower bound of the memory region to allocate (physical address)
1514 * @end: the upper bound of the memory region to allocate (physical address)
1515 *
1516 * Allocate @size bytes in the between @start and @end.
1517 *
1518 * Return: physical address of the allocated memory block on success,
1519 * %0 on failure.
1520 */
1521 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1522 phys_addr_t align,
1523 phys_addr_t start,
1524 phys_addr_t end)
1525 {
1526 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1527 __func__, (u64)size, (u64)align, &start, &end,
1528 (void *)_RET_IP_);
1529 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1530 false);
1531 }
1532
1533 /**
1534 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1535 * @size: size of memory block to be allocated in bytes
1536 * @align: alignment of the region and block's size
1537 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1538 *
1539 * Allocates memory block from the specified NUMA node. If the node
1540 * has no available memory, attempts to allocated from any node in the
1541 * system.
1542 *
1543 * Return: physical address of the allocated memory block on success,
1544 * %0 on failure.
1545 */
1546 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1547 {
1548 return memblock_alloc_range_nid(size, align, 0,
1549 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1550 }
1551
1552 /**
1553 * memblock_alloc_internal - allocate boot memory block
1554 * @size: size of memory block to be allocated in bytes
1555 * @align: alignment of the region and block's size
1556 * @min_addr: the lower bound of the memory region to allocate (phys address)
1557 * @max_addr: the upper bound of the memory region to allocate (phys address)
1558 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1559 * @exact_nid: control the allocation fall back to other nodes
1560 *
1561 * Allocates memory block using memblock_alloc_range_nid() and
1562 * converts the returned physical address to virtual.
1563 *
1564 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1565 * will fall back to memory below @min_addr. Other constraints, such
1566 * as node and mirrored memory will be handled again in
1567 * memblock_alloc_range_nid().
1568 *
1569 * Return:
1570 * Virtual address of allocated memory block on success, NULL on failure.
1571 */
1572 static void * __init memblock_alloc_internal(
1573 phys_addr_t size, phys_addr_t align,
1574 phys_addr_t min_addr, phys_addr_t max_addr,
1575 int nid, bool exact_nid)
1576 {
1577 phys_addr_t alloc;
1578
1579 /*
1580 * Detect any accidental use of these APIs after slab is ready, as at
1581 * this moment memblock may be deinitialized already and its
1582 * internal data may be destroyed (after execution of memblock_free_all)
1583 */
1584 if (WARN_ON_ONCE(slab_is_available()))
1585 return kzalloc_node(size, GFP_NOWAIT, nid);
1586
1587 if (max_addr > memblock.current_limit)
1588 max_addr = memblock.current_limit;
1589
1590 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1591 exact_nid);
1592
1593 /* retry allocation without lower limit */
1594 if (!alloc && min_addr)
1595 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1596 exact_nid);
1597
1598 if (!alloc)
1599 return NULL;
1600
1601 return phys_to_virt(alloc);
1602 }
1603
1604 /**
1605 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1606 * without zeroing memory
1607 * @size: size of memory block to be allocated in bytes
1608 * @align: alignment of the region and block's size
1609 * @min_addr: the lower bound of the memory region from where the allocation
1610 * is preferred (phys address)
1611 * @max_addr: the upper bound of the memory region from where the allocation
1612 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1613 * allocate only from memory limited by memblock.current_limit value
1614 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1615 *
1616 * Public function, provides additional debug information (including caller
1617 * info), if enabled. Does not zero allocated memory.
1618 *
1619 * Return:
1620 * Virtual address of allocated memory block on success, NULL on failure.
1621 */
1622 void * __init memblock_alloc_exact_nid_raw(
1623 phys_addr_t size, phys_addr_t align,
1624 phys_addr_t min_addr, phys_addr_t max_addr,
1625 int nid)
1626 {
1627 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1628 __func__, (u64)size, (u64)align, nid, &min_addr,
1629 &max_addr, (void *)_RET_IP_);
1630
1631 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1632 true);
1633 }
1634
1635 /**
1636 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1637 * memory and without panicking
1638 * @size: size of memory block to be allocated in bytes
1639 * @align: alignment of the region and block's size
1640 * @min_addr: the lower bound of the memory region from where the allocation
1641 * is preferred (phys address)
1642 * @max_addr: the upper bound of the memory region from where the allocation
1643 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1644 * allocate only from memory limited by memblock.current_limit value
1645 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1646 *
1647 * Public function, provides additional debug information (including caller
1648 * info), if enabled. Does not zero allocated memory, does not panic if request
1649 * cannot be satisfied.
1650 *
1651 * Return:
1652 * Virtual address of allocated memory block on success, NULL on failure.
1653 */
1654 void * __init memblock_alloc_try_nid_raw(
1655 phys_addr_t size, phys_addr_t align,
1656 phys_addr_t min_addr, phys_addr_t max_addr,
1657 int nid)
1658 {
1659 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1660 __func__, (u64)size, (u64)align, nid, &min_addr,
1661 &max_addr, (void *)_RET_IP_);
1662
1663 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1664 false);
1665 }
1666
1667 /**
1668 * memblock_alloc_try_nid - allocate boot memory block
1669 * @size: size of memory block to be allocated in bytes
1670 * @align: alignment of the region and block's size
1671 * @min_addr: the lower bound of the memory region from where the allocation
1672 * is preferred (phys address)
1673 * @max_addr: the upper bound of the memory region from where the allocation
1674 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1675 * allocate only from memory limited by memblock.current_limit value
1676 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1677 *
1678 * Public function, provides additional debug information (including caller
1679 * info), if enabled. This function zeroes the allocated memory.
1680 *
1681 * Return:
1682 * Virtual address of allocated memory block on success, NULL on failure.
1683 */
1684 void * __init memblock_alloc_try_nid(
1685 phys_addr_t size, phys_addr_t align,
1686 phys_addr_t min_addr, phys_addr_t max_addr,
1687 int nid)
1688 {
1689 void *ptr;
1690
1691 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1692 __func__, (u64)size, (u64)align, nid, &min_addr,
1693 &max_addr, (void *)_RET_IP_);
1694 ptr = memblock_alloc_internal(size, align,
1695 min_addr, max_addr, nid, false);
1696 if (ptr)
1697 memset(ptr, 0, size);
1698
1699 return ptr;
1700 }
1701
1702 /**
1703 * memblock_free_late - free pages directly to buddy allocator
1704 * @base: phys starting address of the boot memory block
1705 * @size: size of the boot memory block in bytes
1706 *
1707 * This is only useful when the memblock allocator has already been torn
1708 * down, but we are still initializing the system. Pages are released directly
1709 * to the buddy allocator.
1710 */
1711 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1712 {
1713 phys_addr_t cursor, end;
1714
1715 end = base + size - 1;
1716 memblock_dbg("%s: [%pa-%pa] %pS\n",
1717 __func__, &base, &end, (void *)_RET_IP_);
1718 kmemleak_free_part_phys(base, size);
1719 cursor = PFN_UP(base);
1720 end = PFN_DOWN(base + size);
1721
1722 for (; cursor < end; cursor++) {
1723 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1724 totalram_pages_inc();
1725 }
1726 }
1727
1728 /*
1729 * Remaining API functions
1730 */
1731
1732 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1733 {
1734 return memblock.memory.total_size;
1735 }
1736
1737 phys_addr_t __init_memblock memblock_reserved_size(void)
1738 {
1739 return memblock.reserved.total_size;
1740 }
1741
1742 /* lowest address */
1743 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1744 {
1745 return memblock.memory.regions[0].base;
1746 }
1747
1748 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1749 {
1750 int idx = memblock.memory.cnt - 1;
1751
1752 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1753 }
1754
1755 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1756 {
1757 phys_addr_t max_addr = PHYS_ADDR_MAX;
1758 struct memblock_region *r;
1759
1760 /*
1761 * translate the memory @limit size into the max address within one of
1762 * the memory memblock regions, if the @limit exceeds the total size
1763 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1764 */
1765 for_each_mem_region(r) {
1766 if (limit <= r->size) {
1767 max_addr = r->base + limit;
1768 break;
1769 }
1770 limit -= r->size;
1771 }
1772
1773 return max_addr;
1774 }
1775
1776 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1777 {
1778 phys_addr_t max_addr;
1779
1780 if (!limit)
1781 return;
1782
1783 max_addr = __find_max_addr(limit);
1784
1785 /* @limit exceeds the total size of the memory, do nothing */
1786 if (max_addr == PHYS_ADDR_MAX)
1787 return;
1788
1789 /* truncate both memory and reserved regions */
1790 memblock_remove_range(&memblock.memory, max_addr,
1791 PHYS_ADDR_MAX);
1792 memblock_remove_range(&memblock.reserved, max_addr,
1793 PHYS_ADDR_MAX);
1794 }
1795
1796 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1797 {
1798 int start_rgn, end_rgn;
1799 int i, ret;
1800
1801 if (!size)
1802 return;
1803
1804 if (!memblock_memory->total_size) {
1805 pr_warn("%s: No memory registered yet\n", __func__);
1806 return;
1807 }
1808
1809 ret = memblock_isolate_range(&memblock.memory, base, size,
1810 &start_rgn, &end_rgn);
1811 if (ret)
1812 return;
1813
1814 /* remove all the MAP regions */
1815 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1816 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1817 memblock_remove_region(&memblock.memory, i);
1818
1819 for (i = start_rgn - 1; i >= 0; i--)
1820 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1821 memblock_remove_region(&memblock.memory, i);
1822
1823 /* truncate the reserved regions */
1824 memblock_remove_range(&memblock.reserved, 0, base);
1825 memblock_remove_range(&memblock.reserved,
1826 base + size, PHYS_ADDR_MAX);
1827 }
1828
1829 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1830 {
1831 phys_addr_t max_addr;
1832
1833 if (!limit)
1834 return;
1835
1836 max_addr = __find_max_addr(limit);
1837
1838 /* @limit exceeds the total size of the memory, do nothing */
1839 if (max_addr == PHYS_ADDR_MAX)
1840 return;
1841
1842 memblock_cap_memory_range(0, max_addr);
1843 }
1844
1845 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1846 {
1847 unsigned int left = 0, right = type->cnt;
1848
1849 do {
1850 unsigned int mid = (right + left) / 2;
1851
1852 if (addr < type->regions[mid].base)
1853 right = mid;
1854 else if (addr >= (type->regions[mid].base +
1855 type->regions[mid].size))
1856 left = mid + 1;
1857 else
1858 return mid;
1859 } while (left < right);
1860 return -1;
1861 }
1862
1863 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1864 {
1865 return memblock_search(&memblock.reserved, addr) != -1;
1866 }
1867
1868 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1869 {
1870 return memblock_search(&memblock.memory, addr) != -1;
1871 }
1872
1873 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1874 {
1875 int i = memblock_search(&memblock.memory, addr);
1876
1877 if (i == -1)
1878 return false;
1879 return !memblock_is_nomap(&memblock.memory.regions[i]);
1880 }
1881
1882 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1883 unsigned long *start_pfn, unsigned long *end_pfn)
1884 {
1885 struct memblock_type *type = &memblock.memory;
1886 int mid = memblock_search(type, PFN_PHYS(pfn));
1887
1888 if (mid == -1)
1889 return NUMA_NO_NODE;
1890
1891 *start_pfn = PFN_DOWN(type->regions[mid].base);
1892 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1893
1894 return memblock_get_region_node(&type->regions[mid]);
1895 }
1896
1897 /**
1898 * memblock_is_region_memory - check if a region is a subset of memory
1899 * @base: base of region to check
1900 * @size: size of region to check
1901 *
1902 * Check if the region [@base, @base + @size) is a subset of a memory block.
1903 *
1904 * Return:
1905 * 0 if false, non-zero if true
1906 */
1907 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1908 {
1909 int idx = memblock_search(&memblock.memory, base);
1910 phys_addr_t end = base + memblock_cap_size(base, &size);
1911
1912 if (idx == -1)
1913 return false;
1914 return (memblock.memory.regions[idx].base +
1915 memblock.memory.regions[idx].size) >= end;
1916 }
1917
1918 /**
1919 * memblock_is_region_reserved - check if a region intersects reserved memory
1920 * @base: base of region to check
1921 * @size: size of region to check
1922 *
1923 * Check if the region [@base, @base + @size) intersects a reserved
1924 * memory block.
1925 *
1926 * Return:
1927 * True if they intersect, false if not.
1928 */
1929 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1930 {
1931 return memblock_overlaps_region(&memblock.reserved, base, size);
1932 }
1933
1934 void __init_memblock memblock_trim_memory(phys_addr_t align)
1935 {
1936 phys_addr_t start, end, orig_start, orig_end;
1937 struct memblock_region *r;
1938
1939 for_each_mem_region(r) {
1940 orig_start = r->base;
1941 orig_end = r->base + r->size;
1942 start = round_up(orig_start, align);
1943 end = round_down(orig_end, align);
1944
1945 if (start == orig_start && end == orig_end)
1946 continue;
1947
1948 if (start < end) {
1949 r->base = start;
1950 r->size = end - start;
1951 } else {
1952 memblock_remove_region(&memblock.memory,
1953 r - memblock.memory.regions);
1954 r--;
1955 }
1956 }
1957 }
1958
1959 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1960 {
1961 memblock.current_limit = limit;
1962 }
1963
1964 phys_addr_t __init_memblock memblock_get_current_limit(void)
1965 {
1966 return memblock.current_limit;
1967 }
1968
1969 static void __init_memblock memblock_dump(struct memblock_type *type)
1970 {
1971 phys_addr_t base, end, size;
1972 enum memblock_flags flags;
1973 int idx;
1974 struct memblock_region *rgn;
1975
1976 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1977
1978 for_each_memblock_type(idx, type, rgn) {
1979 char nid_buf[32] = "";
1980
1981 base = rgn->base;
1982 size = rgn->size;
1983 end = base + size - 1;
1984 flags = rgn->flags;
1985 #ifdef CONFIG_NUMA
1986 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1987 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1988 memblock_get_region_node(rgn));
1989 #endif
1990 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1991 type->name, idx, &base, &end, &size, nid_buf, flags);
1992 }
1993 }
1994
1995 static void __init_memblock __memblock_dump_all(void)
1996 {
1997 pr_info("MEMBLOCK configuration:\n");
1998 pr_info(" memory size = %pa reserved size = %pa\n",
1999 &memblock.memory.total_size,
2000 &memblock.reserved.total_size);
2001
2002 memblock_dump(&memblock.memory);
2003 memblock_dump(&memblock.reserved);
2004 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2005 memblock_dump(&physmem);
2006 #endif
2007 }
2008
2009 void __init_memblock memblock_dump_all(void)
2010 {
2011 if (memblock_debug)
2012 __memblock_dump_all();
2013 }
2014
2015 void __init memblock_allow_resize(void)
2016 {
2017 memblock_can_resize = 1;
2018 }
2019
2020 static int __init early_memblock(char *p)
2021 {
2022 if (p && strstr(p, "debug"))
2023 memblock_debug = 1;
2024 return 0;
2025 }
2026 early_param("memblock", early_memblock);
2027
2028 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2029 {
2030 struct page *start_pg, *end_pg;
2031 phys_addr_t pg, pgend;
2032
2033 /*
2034 * Convert start_pfn/end_pfn to a struct page pointer.
2035 */
2036 start_pg = pfn_to_page(start_pfn - 1) + 1;
2037 end_pg = pfn_to_page(end_pfn - 1) + 1;
2038
2039 /*
2040 * Convert to physical addresses, and round start upwards and end
2041 * downwards.
2042 */
2043 pg = PAGE_ALIGN(__pa(start_pg));
2044 pgend = __pa(end_pg) & PAGE_MASK;
2045
2046 /*
2047 * If there are free pages between these, free the section of the
2048 * memmap array.
2049 */
2050 if (pg < pgend)
2051 memblock_phys_free(pg, pgend - pg);
2052 }
2053
2054 /*
2055 * The mem_map array can get very big. Free the unused area of the memory map.
2056 */
2057 static void __init free_unused_memmap(void)
2058 {
2059 unsigned long start, end, prev_end = 0;
2060 int i;
2061
2062 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2063 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2064 return;
2065
2066 /*
2067 * This relies on each bank being in address order.
2068 * The banks are sorted previously in bootmem_init().
2069 */
2070 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2071 #ifdef CONFIG_SPARSEMEM
2072 /*
2073 * Take care not to free memmap entries that don't exist
2074 * due to SPARSEMEM sections which aren't present.
2075 */
2076 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2077 #endif
2078 /*
2079 * Align down here since many operations in VM subsystem
2080 * presume that there are no holes in the memory map inside
2081 * a pageblock
2082 */
2083 start = pageblock_start_pfn(start);
2084
2085 /*
2086 * If we had a previous bank, and there is a space
2087 * between the current bank and the previous, free it.
2088 */
2089 if (prev_end && prev_end < start)
2090 free_memmap(prev_end, start);
2091
2092 /*
2093 * Align up here since many operations in VM subsystem
2094 * presume that there are no holes in the memory map inside
2095 * a pageblock
2096 */
2097 prev_end = pageblock_align(end);
2098 }
2099
2100 #ifdef CONFIG_SPARSEMEM
2101 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2102 prev_end = pageblock_align(end);
2103 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2104 }
2105 #endif
2106 }
2107
2108 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2109 {
2110 int order;
2111
2112 while (start < end) {
2113 /*
2114 * Free the pages in the largest chunks alignment allows.
2115 *
2116 * __ffs() behaviour is undefined for 0. start == 0 is
2117 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2118 * the case.
2119 */
2120 if (start)
2121 order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2122 else
2123 order = MAX_PAGE_ORDER;
2124
2125 while (start + (1UL << order) > end)
2126 order--;
2127
2128 memblock_free_pages(pfn_to_page(start), start, order);
2129
2130 start += (1UL << order);
2131 }
2132 }
2133
2134 static unsigned long __init __free_memory_core(phys_addr_t start,
2135 phys_addr_t end)
2136 {
2137 unsigned long start_pfn = PFN_UP(start);
2138 unsigned long end_pfn = min_t(unsigned long,
2139 PFN_DOWN(end), max_low_pfn);
2140
2141 if (start_pfn >= end_pfn)
2142 return 0;
2143
2144 __free_pages_memory(start_pfn, end_pfn);
2145
2146 return end_pfn - start_pfn;
2147 }
2148
2149 static void __init memmap_init_reserved_pages(void)
2150 {
2151 struct memblock_region *region;
2152 phys_addr_t start, end;
2153 int nid;
2154
2155 /*
2156 * set nid on all reserved pages and also treat struct
2157 * pages for the NOMAP regions as PageReserved
2158 */
2159 for_each_mem_region(region) {
2160 nid = memblock_get_region_node(region);
2161 start = region->base;
2162 end = start + region->size;
2163
2164 if (memblock_is_nomap(region))
2165 reserve_bootmem_region(start, end, nid);
2166
2167 memblock_set_node(start, end, &memblock.reserved, nid);
2168 }
2169
2170 /*
2171 * initialize struct pages for reserved regions that don't have
2172 * the MEMBLOCK_RSRV_NOINIT flag set
2173 */
2174 for_each_reserved_mem_region(region) {
2175 if (!memblock_is_reserved_noinit(region)) {
2176 nid = memblock_get_region_node(region);
2177 start = region->base;
2178 end = start + region->size;
2179
2180 if (nid == NUMA_NO_NODE || nid >= MAX_NUMNODES)
2181 nid = early_pfn_to_nid(PFN_DOWN(start));
2182
2183 reserve_bootmem_region(start, end, nid);
2184 }
2185 }
2186 }
2187
2188 static unsigned long __init free_low_memory_core_early(void)
2189 {
2190 unsigned long count = 0;
2191 phys_addr_t start, end;
2192 u64 i;
2193
2194 memblock_clear_hotplug(0, -1);
2195
2196 memmap_init_reserved_pages();
2197
2198 /*
2199 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2200 * because in some case like Node0 doesn't have RAM installed
2201 * low ram will be on Node1
2202 */
2203 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2204 NULL)
2205 count += __free_memory_core(start, end);
2206
2207 return count;
2208 }
2209
2210 static int reset_managed_pages_done __initdata;
2211
2212 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2213 {
2214 struct zone *z;
2215
2216 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2217 atomic_long_set(&z->managed_pages, 0);
2218 }
2219
2220 void __init reset_all_zones_managed_pages(void)
2221 {
2222 struct pglist_data *pgdat;
2223
2224 if (reset_managed_pages_done)
2225 return;
2226
2227 for_each_online_pgdat(pgdat)
2228 reset_node_managed_pages(pgdat);
2229
2230 reset_managed_pages_done = 1;
2231 }
2232
2233 /**
2234 * memblock_free_all - release free pages to the buddy allocator
2235 */
2236 void __init memblock_free_all(void)
2237 {
2238 unsigned long pages;
2239
2240 free_unused_memmap();
2241 reset_all_zones_managed_pages();
2242
2243 pages = free_low_memory_core_early();
2244 totalram_pages_add(pages);
2245 }
2246
2247 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2248 static const char * const flagname[] = {
2249 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2250 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2251 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2252 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2253 [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2254 };
2255
2256 static int memblock_debug_show(struct seq_file *m, void *private)
2257 {
2258 struct memblock_type *type = m->private;
2259 struct memblock_region *reg;
2260 int i, j, nid;
2261 unsigned int count = ARRAY_SIZE(flagname);
2262 phys_addr_t end;
2263
2264 for (i = 0; i < type->cnt; i++) {
2265 reg = &type->regions[i];
2266 end = reg->base + reg->size - 1;
2267 nid = memblock_get_region_node(reg);
2268
2269 seq_printf(m, "%4d: ", i);
2270 seq_printf(m, "%pa..%pa ", &reg->base, &end);
2271 if (nid != MAX_NUMNODES)
2272 seq_printf(m, "%4d ", nid);
2273 else
2274 seq_printf(m, "%4c ", 'x');
2275 if (reg->flags) {
2276 for (j = 0; j < count; j++) {
2277 if (reg->flags & (1U << j)) {
2278 seq_printf(m, "%s\n", flagname[j]);
2279 break;
2280 }
2281 }
2282 if (j == count)
2283 seq_printf(m, "%s\n", "UNKNOWN");
2284 } else {
2285 seq_printf(m, "%s\n", "NONE");
2286 }
2287 }
2288 return 0;
2289 }
2290 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2291
2292 static int __init memblock_init_debugfs(void)
2293 {
2294 struct dentry *root = debugfs_create_dir("memblock", NULL);
2295
2296 debugfs_create_file("memory", 0444, root,
2297 &memblock.memory, &memblock_debug_fops);
2298 debugfs_create_file("reserved", 0444, root,
2299 &memblock.reserved, &memblock_debug_fops);
2300 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2301 debugfs_create_file("physmem", 0444, root, &physmem,
2302 &memblock_debug_fops);
2303 #endif
2304
2305 return 0;
2306 }
2307 __initcall(memblock_init_debugfs);
2308
2309 #endif /* CONFIG_DEBUG_FS */