]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/memblock.c
Merge tag 'memblock-v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt...
[thirdparty/linux.git] / mm / memblock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 #ifndef INIT_MEMBLOCK_MEMORY_REGIONS
33 #define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
34 #endif
35
36 /**
37 * DOC: memblock overview
38 *
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
41 * running.
42 *
43 * Memblock views the system memory as collections of contiguous
44 * regions. There are several types of these collections:
45 *
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
49 * ``mem=`` command line parameter
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
53 * the ``physmem`` type is only available on some architectures.
54 *
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
60 * wrapped with struct memblock. This structure is statically
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
65 * The memblock_allow_resize() enables automatic resizing of the region
66 * arrays during addition of new regions. This feature should be used
67 * with care so that memory allocated for the region array will not
68 * overlap with areas that should be reserved, for example initrd.
69 *
70 * The early architecture setup should tell memblock what the physical
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
73 * node and it is appropriate for UMA systems. Yet, it is possible to
74 * use it on NUMA systems as well and assign the region to a NUMA node
75 * later in the setup process using memblock_set_node(). The
76 * memblock_add_node() performs such an assignment directly.
77 *
78 * Once memblock is setup the memory can be allocated using one of the
79 * API variants:
80 *
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
85 *
86 * Note, that both API variants use implicit assumptions about allowed
87 * memory ranges and the fallback methods. Consult the documentation
88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
89 * functions for more elaborate description.
90 *
91 * As the system boot progresses, the architecture specific mem_init()
92 * function frees all the memory to the buddy page allocator.
93 *
94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
95 * memblock data structures (except "physmem") will be discarded after the
96 * system initialization completes.
97 */
98
99 #ifndef CONFIG_NUMA
100 struct pglist_data __refdata contig_page_data;
101 EXPORT_SYMBOL(contig_page_data);
102 #endif
103
104 unsigned long max_low_pfn;
105 unsigned long min_low_pfn;
106 unsigned long max_pfn;
107 unsigned long long max_possible_pfn;
108
109 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
110 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
113 #endif
114
115 struct memblock memblock __initdata_memblock = {
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
120
121 .reserved.regions = memblock_reserved_init_regions,
122 .reserved.cnt = 1, /* empty dummy entry */
123 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
124 .reserved.name = "reserved",
125
126 .bottom_up = false,
127 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
128 };
129
130 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
131 struct memblock_type physmem = {
132 .regions = memblock_physmem_init_regions,
133 .cnt = 1, /* empty dummy entry */
134 .max = INIT_PHYSMEM_REGIONS,
135 .name = "physmem",
136 };
137 #endif
138
139 /*
140 * keep a pointer to &memblock.memory in the text section to use it in
141 * __next_mem_range() and its helpers.
142 * For architectures that do not keep memblock data after init, this
143 * pointer will be reset to NULL at memblock_discard()
144 */
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
146
147 #define for_each_memblock_type(i, memblock_type, rgn) \
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
151
152 #define memblock_dbg(fmt, ...) \
153 do { \
154 if (memblock_debug) \
155 pr_info(fmt, ##__VA_ARGS__); \
156 } while (0)
157
158 static int memblock_debug __initdata_memblock;
159 static bool system_has_some_mirror __initdata_memblock;
160 static int memblock_can_resize __initdata_memblock;
161 static int memblock_memory_in_slab __initdata_memblock;
162 static int memblock_reserved_in_slab __initdata_memblock;
163
164 static enum memblock_flags __init_memblock choose_memblock_flags(void)
165 {
166 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
167 }
168
169 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
170 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
171 {
172 return *size = min(*size, PHYS_ADDR_MAX - base);
173 }
174
175 /*
176 * Address comparison utilities
177 */
178 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
179 phys_addr_t base2, phys_addr_t size2)
180 {
181 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
182 }
183
184 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
185 phys_addr_t base, phys_addr_t size)
186 {
187 unsigned long i;
188
189 memblock_cap_size(base, &size);
190
191 for (i = 0; i < type->cnt; i++)
192 if (memblock_addrs_overlap(base, size, type->regions[i].base,
193 type->regions[i].size))
194 break;
195 return i < type->cnt;
196 }
197
198 /**
199 * __memblock_find_range_bottom_up - find free area utility in bottom-up
200 * @start: start of candidate range
201 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
202 * %MEMBLOCK_ALLOC_ACCESSIBLE
203 * @size: size of free area to find
204 * @align: alignment of free area to find
205 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
206 * @flags: pick from blocks based on memory attributes
207 *
208 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
209 *
210 * Return:
211 * Found address on success, 0 on failure.
212 */
213 static phys_addr_t __init_memblock
214 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
215 phys_addr_t size, phys_addr_t align, int nid,
216 enum memblock_flags flags)
217 {
218 phys_addr_t this_start, this_end, cand;
219 u64 i;
220
221 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
222 this_start = clamp(this_start, start, end);
223 this_end = clamp(this_end, start, end);
224
225 cand = round_up(this_start, align);
226 if (cand < this_end && this_end - cand >= size)
227 return cand;
228 }
229
230 return 0;
231 }
232
233 /**
234 * __memblock_find_range_top_down - find free area utility, in top-down
235 * @start: start of candidate range
236 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
237 * %MEMBLOCK_ALLOC_ACCESSIBLE
238 * @size: size of free area to find
239 * @align: alignment of free area to find
240 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
241 * @flags: pick from blocks based on memory attributes
242 *
243 * Utility called from memblock_find_in_range_node(), find free area top-down.
244 *
245 * Return:
246 * Found address on success, 0 on failure.
247 */
248 static phys_addr_t __init_memblock
249 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
250 phys_addr_t size, phys_addr_t align, int nid,
251 enum memblock_flags flags)
252 {
253 phys_addr_t this_start, this_end, cand;
254 u64 i;
255
256 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
257 NULL) {
258 this_start = clamp(this_start, start, end);
259 this_end = clamp(this_end, start, end);
260
261 if (this_end < size)
262 continue;
263
264 cand = round_down(this_end - size, align);
265 if (cand >= this_start)
266 return cand;
267 }
268
269 return 0;
270 }
271
272 /**
273 * memblock_find_in_range_node - find free area in given range and node
274 * @size: size of free area to find
275 * @align: alignment of free area to find
276 * @start: start of candidate range
277 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
278 * %MEMBLOCK_ALLOC_ACCESSIBLE
279 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
280 * @flags: pick from blocks based on memory attributes
281 *
282 * Find @size free area aligned to @align in the specified range and node.
283 *
284 * Return:
285 * Found address on success, 0 on failure.
286 */
287 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
288 phys_addr_t align, phys_addr_t start,
289 phys_addr_t end, int nid,
290 enum memblock_flags flags)
291 {
292 /* pump up @end */
293 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
294 end == MEMBLOCK_ALLOC_NOLEAKTRACE)
295 end = memblock.current_limit;
296
297 /* avoid allocating the first page */
298 start = max_t(phys_addr_t, start, PAGE_SIZE);
299 end = max(start, end);
300
301 if (memblock_bottom_up())
302 return __memblock_find_range_bottom_up(start, end, size, align,
303 nid, flags);
304 else
305 return __memblock_find_range_top_down(start, end, size, align,
306 nid, flags);
307 }
308
309 /**
310 * memblock_find_in_range - find free area in given range
311 * @start: start of candidate range
312 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
313 * %MEMBLOCK_ALLOC_ACCESSIBLE
314 * @size: size of free area to find
315 * @align: alignment of free area to find
316 *
317 * Find @size free area aligned to @align in the specified range.
318 *
319 * Return:
320 * Found address on success, 0 on failure.
321 */
322 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
323 phys_addr_t end, phys_addr_t size,
324 phys_addr_t align)
325 {
326 phys_addr_t ret;
327 enum memblock_flags flags = choose_memblock_flags();
328
329 again:
330 ret = memblock_find_in_range_node(size, align, start, end,
331 NUMA_NO_NODE, flags);
332
333 if (!ret && (flags & MEMBLOCK_MIRROR)) {
334 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
335 &size);
336 flags &= ~MEMBLOCK_MIRROR;
337 goto again;
338 }
339
340 return ret;
341 }
342
343 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
344 {
345 type->total_size -= type->regions[r].size;
346 memmove(&type->regions[r], &type->regions[r + 1],
347 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
348 type->cnt--;
349
350 /* Special case for empty arrays */
351 if (type->cnt == 0) {
352 WARN_ON(type->total_size != 0);
353 type->cnt = 1;
354 type->regions[0].base = 0;
355 type->regions[0].size = 0;
356 type->regions[0].flags = 0;
357 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
358 }
359 }
360
361 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
362 /**
363 * memblock_discard - discard memory and reserved arrays if they were allocated
364 */
365 void __init memblock_discard(void)
366 {
367 phys_addr_t addr, size;
368
369 if (memblock.reserved.regions != memblock_reserved_init_regions) {
370 addr = __pa(memblock.reserved.regions);
371 size = PAGE_ALIGN(sizeof(struct memblock_region) *
372 memblock.reserved.max);
373 if (memblock_reserved_in_slab)
374 kfree(memblock.reserved.regions);
375 else
376 memblock_free_late(addr, size);
377 }
378
379 if (memblock.memory.regions != memblock_memory_init_regions) {
380 addr = __pa(memblock.memory.regions);
381 size = PAGE_ALIGN(sizeof(struct memblock_region) *
382 memblock.memory.max);
383 if (memblock_memory_in_slab)
384 kfree(memblock.memory.regions);
385 else
386 memblock_free_late(addr, size);
387 }
388
389 memblock_memory = NULL;
390 }
391 #endif
392
393 /**
394 * memblock_double_array - double the size of the memblock regions array
395 * @type: memblock type of the regions array being doubled
396 * @new_area_start: starting address of memory range to avoid overlap with
397 * @new_area_size: size of memory range to avoid overlap with
398 *
399 * Double the size of the @type regions array. If memblock is being used to
400 * allocate memory for a new reserved regions array and there is a previously
401 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
402 * waiting to be reserved, ensure the memory used by the new array does
403 * not overlap.
404 *
405 * Return:
406 * 0 on success, -1 on failure.
407 */
408 static int __init_memblock memblock_double_array(struct memblock_type *type,
409 phys_addr_t new_area_start,
410 phys_addr_t new_area_size)
411 {
412 struct memblock_region *new_array, *old_array;
413 phys_addr_t old_alloc_size, new_alloc_size;
414 phys_addr_t old_size, new_size, addr, new_end;
415 int use_slab = slab_is_available();
416 int *in_slab;
417
418 /* We don't allow resizing until we know about the reserved regions
419 * of memory that aren't suitable for allocation
420 */
421 if (!memblock_can_resize)
422 return -1;
423
424 /* Calculate new doubled size */
425 old_size = type->max * sizeof(struct memblock_region);
426 new_size = old_size << 1;
427 /*
428 * We need to allocated new one align to PAGE_SIZE,
429 * so we can free them completely later.
430 */
431 old_alloc_size = PAGE_ALIGN(old_size);
432 new_alloc_size = PAGE_ALIGN(new_size);
433
434 /* Retrieve the slab flag */
435 if (type == &memblock.memory)
436 in_slab = &memblock_memory_in_slab;
437 else
438 in_slab = &memblock_reserved_in_slab;
439
440 /* Try to find some space for it */
441 if (use_slab) {
442 new_array = kmalloc(new_size, GFP_KERNEL);
443 addr = new_array ? __pa(new_array) : 0;
444 } else {
445 /* only exclude range when trying to double reserved.regions */
446 if (type != &memblock.reserved)
447 new_area_start = new_area_size = 0;
448
449 addr = memblock_find_in_range(new_area_start + new_area_size,
450 memblock.current_limit,
451 new_alloc_size, PAGE_SIZE);
452 if (!addr && new_area_size)
453 addr = memblock_find_in_range(0,
454 min(new_area_start, memblock.current_limit),
455 new_alloc_size, PAGE_SIZE);
456
457 new_array = addr ? __va(addr) : NULL;
458 }
459 if (!addr) {
460 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
461 type->name, type->max, type->max * 2);
462 return -1;
463 }
464
465 new_end = addr + new_size - 1;
466 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
467 type->name, type->max * 2, &addr, &new_end);
468
469 /*
470 * Found space, we now need to move the array over before we add the
471 * reserved region since it may be our reserved array itself that is
472 * full.
473 */
474 memcpy(new_array, type->regions, old_size);
475 memset(new_array + type->max, 0, old_size);
476 old_array = type->regions;
477 type->regions = new_array;
478 type->max <<= 1;
479
480 /* Free old array. We needn't free it if the array is the static one */
481 if (*in_slab)
482 kfree(old_array);
483 else if (old_array != memblock_memory_init_regions &&
484 old_array != memblock_reserved_init_regions)
485 memblock_free(old_array, old_alloc_size);
486
487 /*
488 * Reserve the new array if that comes from the memblock. Otherwise, we
489 * needn't do it
490 */
491 if (!use_slab)
492 BUG_ON(memblock_reserve(addr, new_alloc_size));
493
494 /* Update slab flag */
495 *in_slab = use_slab;
496
497 return 0;
498 }
499
500 /**
501 * memblock_merge_regions - merge neighboring compatible regions
502 * @type: memblock type to scan
503 * @start_rgn: start scanning from (@start_rgn - 1)
504 * @end_rgn: end scanning at (@end_rgn - 1)
505 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
506 */
507 static void __init_memblock memblock_merge_regions(struct memblock_type *type,
508 unsigned long start_rgn,
509 unsigned long end_rgn)
510 {
511 int i = 0;
512 if (start_rgn)
513 i = start_rgn - 1;
514 end_rgn = min(end_rgn, type->cnt - 1);
515 while (i < end_rgn) {
516 struct memblock_region *this = &type->regions[i];
517 struct memblock_region *next = &type->regions[i + 1];
518
519 if (this->base + this->size != next->base ||
520 memblock_get_region_node(this) !=
521 memblock_get_region_node(next) ||
522 this->flags != next->flags) {
523 BUG_ON(this->base + this->size > next->base);
524 i++;
525 continue;
526 }
527
528 this->size += next->size;
529 /* move forward from next + 1, index of which is i + 2 */
530 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
531 type->cnt--;
532 end_rgn--;
533 }
534 }
535
536 /**
537 * memblock_insert_region - insert new memblock region
538 * @type: memblock type to insert into
539 * @idx: index for the insertion point
540 * @base: base address of the new region
541 * @size: size of the new region
542 * @nid: node id of the new region
543 * @flags: flags of the new region
544 *
545 * Insert new memblock region [@base, @base + @size) into @type at @idx.
546 * @type must already have extra room to accommodate the new region.
547 */
548 static void __init_memblock memblock_insert_region(struct memblock_type *type,
549 int idx, phys_addr_t base,
550 phys_addr_t size,
551 int nid,
552 enum memblock_flags flags)
553 {
554 struct memblock_region *rgn = &type->regions[idx];
555
556 BUG_ON(type->cnt >= type->max);
557 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
558 rgn->base = base;
559 rgn->size = size;
560 rgn->flags = flags;
561 memblock_set_region_node(rgn, nid);
562 type->cnt++;
563 type->total_size += size;
564 }
565
566 /**
567 * memblock_add_range - add new memblock region
568 * @type: memblock type to add new region into
569 * @base: base address of the new region
570 * @size: size of the new region
571 * @nid: nid of the new region
572 * @flags: flags of the new region
573 *
574 * Add new memblock region [@base, @base + @size) into @type. The new region
575 * is allowed to overlap with existing ones - overlaps don't affect already
576 * existing regions. @type is guaranteed to be minimal (all neighbouring
577 * compatible regions are merged) after the addition.
578 *
579 * Return:
580 * 0 on success, -errno on failure.
581 */
582 static int __init_memblock memblock_add_range(struct memblock_type *type,
583 phys_addr_t base, phys_addr_t size,
584 int nid, enum memblock_flags flags)
585 {
586 bool insert = false;
587 phys_addr_t obase = base;
588 phys_addr_t end = base + memblock_cap_size(base, &size);
589 int idx, nr_new, start_rgn = -1, end_rgn;
590 struct memblock_region *rgn;
591
592 if (!size)
593 return 0;
594
595 /* special case for empty array */
596 if (type->regions[0].size == 0) {
597 WARN_ON(type->cnt != 1 || type->total_size);
598 type->regions[0].base = base;
599 type->regions[0].size = size;
600 type->regions[0].flags = flags;
601 memblock_set_region_node(&type->regions[0], nid);
602 type->total_size = size;
603 return 0;
604 }
605
606 /*
607 * The worst case is when new range overlaps all existing regions,
608 * then we'll need type->cnt + 1 empty regions in @type. So if
609 * type->cnt * 2 + 1 is less than or equal to type->max, we know
610 * that there is enough empty regions in @type, and we can insert
611 * regions directly.
612 */
613 if (type->cnt * 2 + 1 <= type->max)
614 insert = true;
615
616 repeat:
617 /*
618 * The following is executed twice. Once with %false @insert and
619 * then with %true. The first counts the number of regions needed
620 * to accommodate the new area. The second actually inserts them.
621 */
622 base = obase;
623 nr_new = 0;
624
625 for_each_memblock_type(idx, type, rgn) {
626 phys_addr_t rbase = rgn->base;
627 phys_addr_t rend = rbase + rgn->size;
628
629 if (rbase >= end)
630 break;
631 if (rend <= base)
632 continue;
633 /*
634 * @rgn overlaps. If it separates the lower part of new
635 * area, insert that portion.
636 */
637 if (rbase > base) {
638 #ifdef CONFIG_NUMA
639 WARN_ON(nid != memblock_get_region_node(rgn));
640 #endif
641 WARN_ON(flags != rgn->flags);
642 nr_new++;
643 if (insert) {
644 if (start_rgn == -1)
645 start_rgn = idx;
646 end_rgn = idx + 1;
647 memblock_insert_region(type, idx++, base,
648 rbase - base, nid,
649 flags);
650 }
651 }
652 /* area below @rend is dealt with, forget about it */
653 base = min(rend, end);
654 }
655
656 /* insert the remaining portion */
657 if (base < end) {
658 nr_new++;
659 if (insert) {
660 if (start_rgn == -1)
661 start_rgn = idx;
662 end_rgn = idx + 1;
663 memblock_insert_region(type, idx, base, end - base,
664 nid, flags);
665 }
666 }
667
668 if (!nr_new)
669 return 0;
670
671 /*
672 * If this was the first round, resize array and repeat for actual
673 * insertions; otherwise, merge and return.
674 */
675 if (!insert) {
676 while (type->cnt + nr_new > type->max)
677 if (memblock_double_array(type, obase, size) < 0)
678 return -ENOMEM;
679 insert = true;
680 goto repeat;
681 } else {
682 memblock_merge_regions(type, start_rgn, end_rgn);
683 return 0;
684 }
685 }
686
687 /**
688 * memblock_add_node - add new memblock region within a NUMA node
689 * @base: base address of the new region
690 * @size: size of the new region
691 * @nid: nid of the new region
692 * @flags: flags of the new region
693 *
694 * Add new memblock region [@base, @base + @size) to the "memory"
695 * type. See memblock_add_range() description for mode details
696 *
697 * Return:
698 * 0 on success, -errno on failure.
699 */
700 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
701 int nid, enum memblock_flags flags)
702 {
703 phys_addr_t end = base + size - 1;
704
705 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
706 &base, &end, nid, flags, (void *)_RET_IP_);
707
708 return memblock_add_range(&memblock.memory, base, size, nid, flags);
709 }
710
711 /**
712 * memblock_add - add new memblock region
713 * @base: base address of the new region
714 * @size: size of the new region
715 *
716 * Add new memblock region [@base, @base + @size) to the "memory"
717 * type. See memblock_add_range() description for mode details
718 *
719 * Return:
720 * 0 on success, -errno on failure.
721 */
722 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
723 {
724 phys_addr_t end = base + size - 1;
725
726 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
727 &base, &end, (void *)_RET_IP_);
728
729 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
730 }
731
732 /**
733 * memblock_isolate_range - isolate given range into disjoint memblocks
734 * @type: memblock type to isolate range for
735 * @base: base of range to isolate
736 * @size: size of range to isolate
737 * @start_rgn: out parameter for the start of isolated region
738 * @end_rgn: out parameter for the end of isolated region
739 *
740 * Walk @type and ensure that regions don't cross the boundaries defined by
741 * [@base, @base + @size). Crossing regions are split at the boundaries,
742 * which may create at most two more regions. The index of the first
743 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
744 *
745 * Return:
746 * 0 on success, -errno on failure.
747 */
748 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
749 phys_addr_t base, phys_addr_t size,
750 int *start_rgn, int *end_rgn)
751 {
752 phys_addr_t end = base + memblock_cap_size(base, &size);
753 int idx;
754 struct memblock_region *rgn;
755
756 *start_rgn = *end_rgn = 0;
757
758 if (!size)
759 return 0;
760
761 /* we'll create at most two more regions */
762 while (type->cnt + 2 > type->max)
763 if (memblock_double_array(type, base, size) < 0)
764 return -ENOMEM;
765
766 for_each_memblock_type(idx, type, rgn) {
767 phys_addr_t rbase = rgn->base;
768 phys_addr_t rend = rbase + rgn->size;
769
770 if (rbase >= end)
771 break;
772 if (rend <= base)
773 continue;
774
775 if (rbase < base) {
776 /*
777 * @rgn intersects from below. Split and continue
778 * to process the next region - the new top half.
779 */
780 rgn->base = base;
781 rgn->size -= base - rbase;
782 type->total_size -= base - rbase;
783 memblock_insert_region(type, idx, rbase, base - rbase,
784 memblock_get_region_node(rgn),
785 rgn->flags);
786 } else if (rend > end) {
787 /*
788 * @rgn intersects from above. Split and redo the
789 * current region - the new bottom half.
790 */
791 rgn->base = end;
792 rgn->size -= end - rbase;
793 type->total_size -= end - rbase;
794 memblock_insert_region(type, idx--, rbase, end - rbase,
795 memblock_get_region_node(rgn),
796 rgn->flags);
797 } else {
798 /* @rgn is fully contained, record it */
799 if (!*end_rgn)
800 *start_rgn = idx;
801 *end_rgn = idx + 1;
802 }
803 }
804
805 return 0;
806 }
807
808 static int __init_memblock memblock_remove_range(struct memblock_type *type,
809 phys_addr_t base, phys_addr_t size)
810 {
811 int start_rgn, end_rgn;
812 int i, ret;
813
814 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
815 if (ret)
816 return ret;
817
818 for (i = end_rgn - 1; i >= start_rgn; i--)
819 memblock_remove_region(type, i);
820 return 0;
821 }
822
823 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
824 {
825 phys_addr_t end = base + size - 1;
826
827 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
828 &base, &end, (void *)_RET_IP_);
829
830 return memblock_remove_range(&memblock.memory, base, size);
831 }
832
833 /**
834 * memblock_free - free boot memory allocation
835 * @ptr: starting address of the boot memory allocation
836 * @size: size of the boot memory block in bytes
837 *
838 * Free boot memory block previously allocated by memblock_alloc_xx() API.
839 * The freeing memory will not be released to the buddy allocator.
840 */
841 void __init_memblock memblock_free(void *ptr, size_t size)
842 {
843 if (ptr)
844 memblock_phys_free(__pa(ptr), size);
845 }
846
847 /**
848 * memblock_phys_free - free boot memory block
849 * @base: phys starting address of the boot memory block
850 * @size: size of the boot memory block in bytes
851 *
852 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
853 * The freeing memory will not be released to the buddy allocator.
854 */
855 int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
856 {
857 phys_addr_t end = base + size - 1;
858
859 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
860 &base, &end, (void *)_RET_IP_);
861
862 kmemleak_free_part_phys(base, size);
863 return memblock_remove_range(&memblock.reserved, base, size);
864 }
865
866 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
867 {
868 phys_addr_t end = base + size - 1;
869
870 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
871 &base, &end, (void *)_RET_IP_);
872
873 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
874 }
875
876 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
877 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
878 {
879 phys_addr_t end = base + size - 1;
880
881 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
882 &base, &end, (void *)_RET_IP_);
883
884 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
885 }
886 #endif
887
888 /**
889 * memblock_setclr_flag - set or clear flag for a memory region
890 * @base: base address of the region
891 * @size: size of the region
892 * @set: set or clear the flag
893 * @flag: the flag to update
894 *
895 * This function isolates region [@base, @base + @size), and sets/clears flag
896 *
897 * Return: 0 on success, -errno on failure.
898 */
899 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
900 phys_addr_t size, int set, int flag)
901 {
902 struct memblock_type *type = &memblock.memory;
903 int i, ret, start_rgn, end_rgn;
904
905 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
906 if (ret)
907 return ret;
908
909 for (i = start_rgn; i < end_rgn; i++) {
910 struct memblock_region *r = &type->regions[i];
911
912 if (set)
913 r->flags |= flag;
914 else
915 r->flags &= ~flag;
916 }
917
918 memblock_merge_regions(type, start_rgn, end_rgn);
919 return 0;
920 }
921
922 /**
923 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
924 * @base: the base phys addr of the region
925 * @size: the size of the region
926 *
927 * Return: 0 on success, -errno on failure.
928 */
929 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
930 {
931 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
932 }
933
934 /**
935 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
936 * @base: the base phys addr of the region
937 * @size: the size of the region
938 *
939 * Return: 0 on success, -errno on failure.
940 */
941 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
942 {
943 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
944 }
945
946 /**
947 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
948 * @base: the base phys addr of the region
949 * @size: the size of the region
950 *
951 * Return: 0 on success, -errno on failure.
952 */
953 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
954 {
955 if (!mirrored_kernelcore)
956 return 0;
957
958 system_has_some_mirror = true;
959
960 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
961 }
962
963 /**
964 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
965 * @base: the base phys addr of the region
966 * @size: the size of the region
967 *
968 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
969 * direct mapping of the physical memory. These regions will still be
970 * covered by the memory map. The struct page representing NOMAP memory
971 * frames in the memory map will be PageReserved()
972 *
973 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
974 * memblock, the caller must inform kmemleak to ignore that memory
975 *
976 * Return: 0 on success, -errno on failure.
977 */
978 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
979 {
980 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
981 }
982
983 /**
984 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
985 * @base: the base phys addr of the region
986 * @size: the size of the region
987 *
988 * Return: 0 on success, -errno on failure.
989 */
990 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
991 {
992 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
993 }
994
995 static bool should_skip_region(struct memblock_type *type,
996 struct memblock_region *m,
997 int nid, int flags)
998 {
999 int m_nid = memblock_get_region_node(m);
1000
1001 /* we never skip regions when iterating memblock.reserved or physmem */
1002 if (type != memblock_memory)
1003 return false;
1004
1005 /* only memory regions are associated with nodes, check it */
1006 if (nid != NUMA_NO_NODE && nid != m_nid)
1007 return true;
1008
1009 /* skip hotpluggable memory regions if needed */
1010 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1011 !(flags & MEMBLOCK_HOTPLUG))
1012 return true;
1013
1014 /* if we want mirror memory skip non-mirror memory regions */
1015 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1016 return true;
1017
1018 /* skip nomap memory unless we were asked for it explicitly */
1019 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1020 return true;
1021
1022 /* skip driver-managed memory unless we were asked for it explicitly */
1023 if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1024 return true;
1025
1026 return false;
1027 }
1028
1029 /**
1030 * __next_mem_range - next function for for_each_free_mem_range() etc.
1031 * @idx: pointer to u64 loop variable
1032 * @nid: node selector, %NUMA_NO_NODE for all nodes
1033 * @flags: pick from blocks based on memory attributes
1034 * @type_a: pointer to memblock_type from where the range is taken
1035 * @type_b: pointer to memblock_type which excludes memory from being taken
1036 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1037 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1038 * @out_nid: ptr to int for nid of the range, can be %NULL
1039 *
1040 * Find the first area from *@idx which matches @nid, fill the out
1041 * parameters, and update *@idx for the next iteration. The lower 32bit of
1042 * *@idx contains index into type_a and the upper 32bit indexes the
1043 * areas before each region in type_b. For example, if type_b regions
1044 * look like the following,
1045 *
1046 * 0:[0-16), 1:[32-48), 2:[128-130)
1047 *
1048 * The upper 32bit indexes the following regions.
1049 *
1050 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1051 *
1052 * As both region arrays are sorted, the function advances the two indices
1053 * in lockstep and returns each intersection.
1054 */
1055 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1056 struct memblock_type *type_a,
1057 struct memblock_type *type_b, phys_addr_t *out_start,
1058 phys_addr_t *out_end, int *out_nid)
1059 {
1060 int idx_a = *idx & 0xffffffff;
1061 int idx_b = *idx >> 32;
1062
1063 if (WARN_ONCE(nid == MAX_NUMNODES,
1064 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1065 nid = NUMA_NO_NODE;
1066
1067 for (; idx_a < type_a->cnt; idx_a++) {
1068 struct memblock_region *m = &type_a->regions[idx_a];
1069
1070 phys_addr_t m_start = m->base;
1071 phys_addr_t m_end = m->base + m->size;
1072 int m_nid = memblock_get_region_node(m);
1073
1074 if (should_skip_region(type_a, m, nid, flags))
1075 continue;
1076
1077 if (!type_b) {
1078 if (out_start)
1079 *out_start = m_start;
1080 if (out_end)
1081 *out_end = m_end;
1082 if (out_nid)
1083 *out_nid = m_nid;
1084 idx_a++;
1085 *idx = (u32)idx_a | (u64)idx_b << 32;
1086 return;
1087 }
1088
1089 /* scan areas before each reservation */
1090 for (; idx_b < type_b->cnt + 1; idx_b++) {
1091 struct memblock_region *r;
1092 phys_addr_t r_start;
1093 phys_addr_t r_end;
1094
1095 r = &type_b->regions[idx_b];
1096 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1097 r_end = idx_b < type_b->cnt ?
1098 r->base : PHYS_ADDR_MAX;
1099
1100 /*
1101 * if idx_b advanced past idx_a,
1102 * break out to advance idx_a
1103 */
1104 if (r_start >= m_end)
1105 break;
1106 /* if the two regions intersect, we're done */
1107 if (m_start < r_end) {
1108 if (out_start)
1109 *out_start =
1110 max(m_start, r_start);
1111 if (out_end)
1112 *out_end = min(m_end, r_end);
1113 if (out_nid)
1114 *out_nid = m_nid;
1115 /*
1116 * The region which ends first is
1117 * advanced for the next iteration.
1118 */
1119 if (m_end <= r_end)
1120 idx_a++;
1121 else
1122 idx_b++;
1123 *idx = (u32)idx_a | (u64)idx_b << 32;
1124 return;
1125 }
1126 }
1127 }
1128
1129 /* signal end of iteration */
1130 *idx = ULLONG_MAX;
1131 }
1132
1133 /**
1134 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1135 *
1136 * @idx: pointer to u64 loop variable
1137 * @nid: node selector, %NUMA_NO_NODE for all nodes
1138 * @flags: pick from blocks based on memory attributes
1139 * @type_a: pointer to memblock_type from where the range is taken
1140 * @type_b: pointer to memblock_type which excludes memory from being taken
1141 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1142 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1143 * @out_nid: ptr to int for nid of the range, can be %NULL
1144 *
1145 * Finds the next range from type_a which is not marked as unsuitable
1146 * in type_b.
1147 *
1148 * Reverse of __next_mem_range().
1149 */
1150 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1151 enum memblock_flags flags,
1152 struct memblock_type *type_a,
1153 struct memblock_type *type_b,
1154 phys_addr_t *out_start,
1155 phys_addr_t *out_end, int *out_nid)
1156 {
1157 int idx_a = *idx & 0xffffffff;
1158 int idx_b = *idx >> 32;
1159
1160 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1161 nid = NUMA_NO_NODE;
1162
1163 if (*idx == (u64)ULLONG_MAX) {
1164 idx_a = type_a->cnt - 1;
1165 if (type_b != NULL)
1166 idx_b = type_b->cnt;
1167 else
1168 idx_b = 0;
1169 }
1170
1171 for (; idx_a >= 0; idx_a--) {
1172 struct memblock_region *m = &type_a->regions[idx_a];
1173
1174 phys_addr_t m_start = m->base;
1175 phys_addr_t m_end = m->base + m->size;
1176 int m_nid = memblock_get_region_node(m);
1177
1178 if (should_skip_region(type_a, m, nid, flags))
1179 continue;
1180
1181 if (!type_b) {
1182 if (out_start)
1183 *out_start = m_start;
1184 if (out_end)
1185 *out_end = m_end;
1186 if (out_nid)
1187 *out_nid = m_nid;
1188 idx_a--;
1189 *idx = (u32)idx_a | (u64)idx_b << 32;
1190 return;
1191 }
1192
1193 /* scan areas before each reservation */
1194 for (; idx_b >= 0; idx_b--) {
1195 struct memblock_region *r;
1196 phys_addr_t r_start;
1197 phys_addr_t r_end;
1198
1199 r = &type_b->regions[idx_b];
1200 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1201 r_end = idx_b < type_b->cnt ?
1202 r->base : PHYS_ADDR_MAX;
1203 /*
1204 * if idx_b advanced past idx_a,
1205 * break out to advance idx_a
1206 */
1207
1208 if (r_end <= m_start)
1209 break;
1210 /* if the two regions intersect, we're done */
1211 if (m_end > r_start) {
1212 if (out_start)
1213 *out_start = max(m_start, r_start);
1214 if (out_end)
1215 *out_end = min(m_end, r_end);
1216 if (out_nid)
1217 *out_nid = m_nid;
1218 if (m_start >= r_start)
1219 idx_a--;
1220 else
1221 idx_b--;
1222 *idx = (u32)idx_a | (u64)idx_b << 32;
1223 return;
1224 }
1225 }
1226 }
1227 /* signal end of iteration */
1228 *idx = ULLONG_MAX;
1229 }
1230
1231 /*
1232 * Common iterator interface used to define for_each_mem_pfn_range().
1233 */
1234 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1235 unsigned long *out_start_pfn,
1236 unsigned long *out_end_pfn, int *out_nid)
1237 {
1238 struct memblock_type *type = &memblock.memory;
1239 struct memblock_region *r;
1240 int r_nid;
1241
1242 while (++*idx < type->cnt) {
1243 r = &type->regions[*idx];
1244 r_nid = memblock_get_region_node(r);
1245
1246 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1247 continue;
1248 if (nid == MAX_NUMNODES || nid == r_nid)
1249 break;
1250 }
1251 if (*idx >= type->cnt) {
1252 *idx = -1;
1253 return;
1254 }
1255
1256 if (out_start_pfn)
1257 *out_start_pfn = PFN_UP(r->base);
1258 if (out_end_pfn)
1259 *out_end_pfn = PFN_DOWN(r->base + r->size);
1260 if (out_nid)
1261 *out_nid = r_nid;
1262 }
1263
1264 /**
1265 * memblock_set_node - set node ID on memblock regions
1266 * @base: base of area to set node ID for
1267 * @size: size of area to set node ID for
1268 * @type: memblock type to set node ID for
1269 * @nid: node ID to set
1270 *
1271 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1272 * Regions which cross the area boundaries are split as necessary.
1273 *
1274 * Return:
1275 * 0 on success, -errno on failure.
1276 */
1277 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1278 struct memblock_type *type, int nid)
1279 {
1280 #ifdef CONFIG_NUMA
1281 int start_rgn, end_rgn;
1282 int i, ret;
1283
1284 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1285 if (ret)
1286 return ret;
1287
1288 for (i = start_rgn; i < end_rgn; i++)
1289 memblock_set_region_node(&type->regions[i], nid);
1290
1291 memblock_merge_regions(type, start_rgn, end_rgn);
1292 #endif
1293 return 0;
1294 }
1295
1296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1297 /**
1298 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1299 *
1300 * @idx: pointer to u64 loop variable
1301 * @zone: zone in which all of the memory blocks reside
1302 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1303 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1304 *
1305 * This function is meant to be a zone/pfn specific wrapper for the
1306 * for_each_mem_range type iterators. Specifically they are used in the
1307 * deferred memory init routines and as such we were duplicating much of
1308 * this logic throughout the code. So instead of having it in multiple
1309 * locations it seemed like it would make more sense to centralize this to
1310 * one new iterator that does everything they need.
1311 */
1312 void __init_memblock
1313 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1314 unsigned long *out_spfn, unsigned long *out_epfn)
1315 {
1316 int zone_nid = zone_to_nid(zone);
1317 phys_addr_t spa, epa;
1318
1319 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1320 &memblock.memory, &memblock.reserved,
1321 &spa, &epa, NULL);
1322
1323 while (*idx != U64_MAX) {
1324 unsigned long epfn = PFN_DOWN(epa);
1325 unsigned long spfn = PFN_UP(spa);
1326
1327 /*
1328 * Verify the end is at least past the start of the zone and
1329 * that we have at least one PFN to initialize.
1330 */
1331 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1332 /* if we went too far just stop searching */
1333 if (zone_end_pfn(zone) <= spfn) {
1334 *idx = U64_MAX;
1335 break;
1336 }
1337
1338 if (out_spfn)
1339 *out_spfn = max(zone->zone_start_pfn, spfn);
1340 if (out_epfn)
1341 *out_epfn = min(zone_end_pfn(zone), epfn);
1342
1343 return;
1344 }
1345
1346 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1347 &memblock.memory, &memblock.reserved,
1348 &spa, &epa, NULL);
1349 }
1350
1351 /* signal end of iteration */
1352 if (out_spfn)
1353 *out_spfn = ULONG_MAX;
1354 if (out_epfn)
1355 *out_epfn = 0;
1356 }
1357
1358 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1359
1360 /**
1361 * memblock_alloc_range_nid - allocate boot memory block
1362 * @size: size of memory block to be allocated in bytes
1363 * @align: alignment of the region and block's size
1364 * @start: the lower bound of the memory region to allocate (phys address)
1365 * @end: the upper bound of the memory region to allocate (phys address)
1366 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1367 * @exact_nid: control the allocation fall back to other nodes
1368 *
1369 * The allocation is performed from memory region limited by
1370 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1371 *
1372 * If the specified node can not hold the requested memory and @exact_nid
1373 * is false, the allocation falls back to any node in the system.
1374 *
1375 * For systems with memory mirroring, the allocation is attempted first
1376 * from the regions with mirroring enabled and then retried from any
1377 * memory region.
1378 *
1379 * In addition, function using kmemleak_alloc_phys for allocated boot
1380 * memory block, it is never reported as leaks.
1381 *
1382 * Return:
1383 * Physical address of allocated memory block on success, %0 on failure.
1384 */
1385 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1386 phys_addr_t align, phys_addr_t start,
1387 phys_addr_t end, int nid,
1388 bool exact_nid)
1389 {
1390 enum memblock_flags flags = choose_memblock_flags();
1391 phys_addr_t found;
1392
1393 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1394 nid = NUMA_NO_NODE;
1395
1396 if (!align) {
1397 /* Can't use WARNs this early in boot on powerpc */
1398 dump_stack();
1399 align = SMP_CACHE_BYTES;
1400 }
1401
1402 again:
1403 found = memblock_find_in_range_node(size, align, start, end, nid,
1404 flags);
1405 if (found && !memblock_reserve(found, size))
1406 goto done;
1407
1408 if (nid != NUMA_NO_NODE && !exact_nid) {
1409 found = memblock_find_in_range_node(size, align, start,
1410 end, NUMA_NO_NODE,
1411 flags);
1412 if (found && !memblock_reserve(found, size))
1413 goto done;
1414 }
1415
1416 if (flags & MEMBLOCK_MIRROR) {
1417 flags &= ~MEMBLOCK_MIRROR;
1418 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1419 &size);
1420 goto again;
1421 }
1422
1423 return 0;
1424
1425 done:
1426 /*
1427 * Skip kmemleak for those places like kasan_init() and
1428 * early_pgtable_alloc() due to high volume.
1429 */
1430 if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1431 /*
1432 * Memblock allocated blocks are never reported as
1433 * leaks. This is because many of these blocks are
1434 * only referred via the physical address which is
1435 * not looked up by kmemleak.
1436 */
1437 kmemleak_alloc_phys(found, size, 0);
1438
1439 /*
1440 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1441 * require memory to be accepted before it can be used by the
1442 * guest.
1443 *
1444 * Accept the memory of the allocated buffer.
1445 */
1446 accept_memory(found, found + size);
1447
1448 return found;
1449 }
1450
1451 /**
1452 * memblock_phys_alloc_range - allocate a memory block inside specified range
1453 * @size: size of memory block to be allocated in bytes
1454 * @align: alignment of the region and block's size
1455 * @start: the lower bound of the memory region to allocate (physical address)
1456 * @end: the upper bound of the memory region to allocate (physical address)
1457 *
1458 * Allocate @size bytes in the between @start and @end.
1459 *
1460 * Return: physical address of the allocated memory block on success,
1461 * %0 on failure.
1462 */
1463 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1464 phys_addr_t align,
1465 phys_addr_t start,
1466 phys_addr_t end)
1467 {
1468 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1469 __func__, (u64)size, (u64)align, &start, &end,
1470 (void *)_RET_IP_);
1471 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1472 false);
1473 }
1474
1475 /**
1476 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1477 * @size: size of memory block to be allocated in bytes
1478 * @align: alignment of the region and block's size
1479 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1480 *
1481 * Allocates memory block from the specified NUMA node. If the node
1482 * has no available memory, attempts to allocated from any node in the
1483 * system.
1484 *
1485 * Return: physical address of the allocated memory block on success,
1486 * %0 on failure.
1487 */
1488 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1489 {
1490 return memblock_alloc_range_nid(size, align, 0,
1491 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1492 }
1493
1494 /**
1495 * memblock_alloc_internal - allocate boot memory block
1496 * @size: size of memory block to be allocated in bytes
1497 * @align: alignment of the region and block's size
1498 * @min_addr: the lower bound of the memory region to allocate (phys address)
1499 * @max_addr: the upper bound of the memory region to allocate (phys address)
1500 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1501 * @exact_nid: control the allocation fall back to other nodes
1502 *
1503 * Allocates memory block using memblock_alloc_range_nid() and
1504 * converts the returned physical address to virtual.
1505 *
1506 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1507 * will fall back to memory below @min_addr. Other constraints, such
1508 * as node and mirrored memory will be handled again in
1509 * memblock_alloc_range_nid().
1510 *
1511 * Return:
1512 * Virtual address of allocated memory block on success, NULL on failure.
1513 */
1514 static void * __init memblock_alloc_internal(
1515 phys_addr_t size, phys_addr_t align,
1516 phys_addr_t min_addr, phys_addr_t max_addr,
1517 int nid, bool exact_nid)
1518 {
1519 phys_addr_t alloc;
1520
1521 /*
1522 * Detect any accidental use of these APIs after slab is ready, as at
1523 * this moment memblock may be deinitialized already and its
1524 * internal data may be destroyed (after execution of memblock_free_all)
1525 */
1526 if (WARN_ON_ONCE(slab_is_available()))
1527 return kzalloc_node(size, GFP_NOWAIT, nid);
1528
1529 if (max_addr > memblock.current_limit)
1530 max_addr = memblock.current_limit;
1531
1532 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1533 exact_nid);
1534
1535 /* retry allocation without lower limit */
1536 if (!alloc && min_addr)
1537 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1538 exact_nid);
1539
1540 if (!alloc)
1541 return NULL;
1542
1543 return phys_to_virt(alloc);
1544 }
1545
1546 /**
1547 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1548 * without zeroing memory
1549 * @size: size of memory block to be allocated in bytes
1550 * @align: alignment of the region and block's size
1551 * @min_addr: the lower bound of the memory region from where the allocation
1552 * is preferred (phys address)
1553 * @max_addr: the upper bound of the memory region from where the allocation
1554 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1555 * allocate only from memory limited by memblock.current_limit value
1556 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1557 *
1558 * Public function, provides additional debug information (including caller
1559 * info), if enabled. Does not zero allocated memory.
1560 *
1561 * Return:
1562 * Virtual address of allocated memory block on success, NULL on failure.
1563 */
1564 void * __init memblock_alloc_exact_nid_raw(
1565 phys_addr_t size, phys_addr_t align,
1566 phys_addr_t min_addr, phys_addr_t max_addr,
1567 int nid)
1568 {
1569 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1570 __func__, (u64)size, (u64)align, nid, &min_addr,
1571 &max_addr, (void *)_RET_IP_);
1572
1573 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1574 true);
1575 }
1576
1577 /**
1578 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1579 * memory and without panicking
1580 * @size: size of memory block to be allocated in bytes
1581 * @align: alignment of the region and block's size
1582 * @min_addr: the lower bound of the memory region from where the allocation
1583 * is preferred (phys address)
1584 * @max_addr: the upper bound of the memory region from where the allocation
1585 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1586 * allocate only from memory limited by memblock.current_limit value
1587 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1588 *
1589 * Public function, provides additional debug information (including caller
1590 * info), if enabled. Does not zero allocated memory, does not panic if request
1591 * cannot be satisfied.
1592 *
1593 * Return:
1594 * Virtual address of allocated memory block on success, NULL on failure.
1595 */
1596 void * __init memblock_alloc_try_nid_raw(
1597 phys_addr_t size, phys_addr_t align,
1598 phys_addr_t min_addr, phys_addr_t max_addr,
1599 int nid)
1600 {
1601 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1602 __func__, (u64)size, (u64)align, nid, &min_addr,
1603 &max_addr, (void *)_RET_IP_);
1604
1605 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1606 false);
1607 }
1608
1609 /**
1610 * memblock_alloc_try_nid - allocate boot memory block
1611 * @size: size of memory block to be allocated in bytes
1612 * @align: alignment of the region and block's size
1613 * @min_addr: the lower bound of the memory region from where the allocation
1614 * is preferred (phys address)
1615 * @max_addr: the upper bound of the memory region from where the allocation
1616 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1617 * allocate only from memory limited by memblock.current_limit value
1618 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1619 *
1620 * Public function, provides additional debug information (including caller
1621 * info), if enabled. This function zeroes the allocated memory.
1622 *
1623 * Return:
1624 * Virtual address of allocated memory block on success, NULL on failure.
1625 */
1626 void * __init memblock_alloc_try_nid(
1627 phys_addr_t size, phys_addr_t align,
1628 phys_addr_t min_addr, phys_addr_t max_addr,
1629 int nid)
1630 {
1631 void *ptr;
1632
1633 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1634 __func__, (u64)size, (u64)align, nid, &min_addr,
1635 &max_addr, (void *)_RET_IP_);
1636 ptr = memblock_alloc_internal(size, align,
1637 min_addr, max_addr, nid, false);
1638 if (ptr)
1639 memset(ptr, 0, size);
1640
1641 return ptr;
1642 }
1643
1644 /**
1645 * memblock_free_late - free pages directly to buddy allocator
1646 * @base: phys starting address of the boot memory block
1647 * @size: size of the boot memory block in bytes
1648 *
1649 * This is only useful when the memblock allocator has already been torn
1650 * down, but we are still initializing the system. Pages are released directly
1651 * to the buddy allocator.
1652 */
1653 void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1654 {
1655 phys_addr_t cursor, end;
1656
1657 end = base + size - 1;
1658 memblock_dbg("%s: [%pa-%pa] %pS\n",
1659 __func__, &base, &end, (void *)_RET_IP_);
1660 kmemleak_free_part_phys(base, size);
1661 cursor = PFN_UP(base);
1662 end = PFN_DOWN(base + size);
1663
1664 for (; cursor < end; cursor++) {
1665 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1666 totalram_pages_inc();
1667 }
1668 }
1669
1670 /*
1671 * Remaining API functions
1672 */
1673
1674 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1675 {
1676 return memblock.memory.total_size;
1677 }
1678
1679 phys_addr_t __init_memblock memblock_reserved_size(void)
1680 {
1681 return memblock.reserved.total_size;
1682 }
1683
1684 /* lowest address */
1685 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1686 {
1687 return memblock.memory.regions[0].base;
1688 }
1689
1690 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1691 {
1692 int idx = memblock.memory.cnt - 1;
1693
1694 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1695 }
1696
1697 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1698 {
1699 phys_addr_t max_addr = PHYS_ADDR_MAX;
1700 struct memblock_region *r;
1701
1702 /*
1703 * translate the memory @limit size into the max address within one of
1704 * the memory memblock regions, if the @limit exceeds the total size
1705 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1706 */
1707 for_each_mem_region(r) {
1708 if (limit <= r->size) {
1709 max_addr = r->base + limit;
1710 break;
1711 }
1712 limit -= r->size;
1713 }
1714
1715 return max_addr;
1716 }
1717
1718 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1719 {
1720 phys_addr_t max_addr;
1721
1722 if (!limit)
1723 return;
1724
1725 max_addr = __find_max_addr(limit);
1726
1727 /* @limit exceeds the total size of the memory, do nothing */
1728 if (max_addr == PHYS_ADDR_MAX)
1729 return;
1730
1731 /* truncate both memory and reserved regions */
1732 memblock_remove_range(&memblock.memory, max_addr,
1733 PHYS_ADDR_MAX);
1734 memblock_remove_range(&memblock.reserved, max_addr,
1735 PHYS_ADDR_MAX);
1736 }
1737
1738 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1739 {
1740 int start_rgn, end_rgn;
1741 int i, ret;
1742
1743 if (!size)
1744 return;
1745
1746 if (!memblock_memory->total_size) {
1747 pr_warn("%s: No memory registered yet\n", __func__);
1748 return;
1749 }
1750
1751 ret = memblock_isolate_range(&memblock.memory, base, size,
1752 &start_rgn, &end_rgn);
1753 if (ret)
1754 return;
1755
1756 /* remove all the MAP regions */
1757 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1758 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1759 memblock_remove_region(&memblock.memory, i);
1760
1761 for (i = start_rgn - 1; i >= 0; i--)
1762 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1763 memblock_remove_region(&memblock.memory, i);
1764
1765 /* truncate the reserved regions */
1766 memblock_remove_range(&memblock.reserved, 0, base);
1767 memblock_remove_range(&memblock.reserved,
1768 base + size, PHYS_ADDR_MAX);
1769 }
1770
1771 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1772 {
1773 phys_addr_t max_addr;
1774
1775 if (!limit)
1776 return;
1777
1778 max_addr = __find_max_addr(limit);
1779
1780 /* @limit exceeds the total size of the memory, do nothing */
1781 if (max_addr == PHYS_ADDR_MAX)
1782 return;
1783
1784 memblock_cap_memory_range(0, max_addr);
1785 }
1786
1787 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1788 {
1789 unsigned int left = 0, right = type->cnt;
1790
1791 do {
1792 unsigned int mid = (right + left) / 2;
1793
1794 if (addr < type->regions[mid].base)
1795 right = mid;
1796 else if (addr >= (type->regions[mid].base +
1797 type->regions[mid].size))
1798 left = mid + 1;
1799 else
1800 return mid;
1801 } while (left < right);
1802 return -1;
1803 }
1804
1805 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1806 {
1807 return memblock_search(&memblock.reserved, addr) != -1;
1808 }
1809
1810 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1811 {
1812 return memblock_search(&memblock.memory, addr) != -1;
1813 }
1814
1815 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1816 {
1817 int i = memblock_search(&memblock.memory, addr);
1818
1819 if (i == -1)
1820 return false;
1821 return !memblock_is_nomap(&memblock.memory.regions[i]);
1822 }
1823
1824 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1825 unsigned long *start_pfn, unsigned long *end_pfn)
1826 {
1827 struct memblock_type *type = &memblock.memory;
1828 int mid = memblock_search(type, PFN_PHYS(pfn));
1829
1830 if (mid == -1)
1831 return -1;
1832
1833 *start_pfn = PFN_DOWN(type->regions[mid].base);
1834 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1835
1836 return memblock_get_region_node(&type->regions[mid]);
1837 }
1838
1839 /**
1840 * memblock_is_region_memory - check if a region is a subset of memory
1841 * @base: base of region to check
1842 * @size: size of region to check
1843 *
1844 * Check if the region [@base, @base + @size) is a subset of a memory block.
1845 *
1846 * Return:
1847 * 0 if false, non-zero if true
1848 */
1849 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1850 {
1851 int idx = memblock_search(&memblock.memory, base);
1852 phys_addr_t end = base + memblock_cap_size(base, &size);
1853
1854 if (idx == -1)
1855 return false;
1856 return (memblock.memory.regions[idx].base +
1857 memblock.memory.regions[idx].size) >= end;
1858 }
1859
1860 /**
1861 * memblock_is_region_reserved - check if a region intersects reserved memory
1862 * @base: base of region to check
1863 * @size: size of region to check
1864 *
1865 * Check if the region [@base, @base + @size) intersects a reserved
1866 * memory block.
1867 *
1868 * Return:
1869 * True if they intersect, false if not.
1870 */
1871 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1872 {
1873 return memblock_overlaps_region(&memblock.reserved, base, size);
1874 }
1875
1876 void __init_memblock memblock_trim_memory(phys_addr_t align)
1877 {
1878 phys_addr_t start, end, orig_start, orig_end;
1879 struct memblock_region *r;
1880
1881 for_each_mem_region(r) {
1882 orig_start = r->base;
1883 orig_end = r->base + r->size;
1884 start = round_up(orig_start, align);
1885 end = round_down(orig_end, align);
1886
1887 if (start == orig_start && end == orig_end)
1888 continue;
1889
1890 if (start < end) {
1891 r->base = start;
1892 r->size = end - start;
1893 } else {
1894 memblock_remove_region(&memblock.memory,
1895 r - memblock.memory.regions);
1896 r--;
1897 }
1898 }
1899 }
1900
1901 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1902 {
1903 memblock.current_limit = limit;
1904 }
1905
1906 phys_addr_t __init_memblock memblock_get_current_limit(void)
1907 {
1908 return memblock.current_limit;
1909 }
1910
1911 static void __init_memblock memblock_dump(struct memblock_type *type)
1912 {
1913 phys_addr_t base, end, size;
1914 enum memblock_flags flags;
1915 int idx;
1916 struct memblock_region *rgn;
1917
1918 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1919
1920 for_each_memblock_type(idx, type, rgn) {
1921 char nid_buf[32] = "";
1922
1923 base = rgn->base;
1924 size = rgn->size;
1925 end = base + size - 1;
1926 flags = rgn->flags;
1927 #ifdef CONFIG_NUMA
1928 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1929 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1930 memblock_get_region_node(rgn));
1931 #endif
1932 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1933 type->name, idx, &base, &end, &size, nid_buf, flags);
1934 }
1935 }
1936
1937 static void __init_memblock __memblock_dump_all(void)
1938 {
1939 pr_info("MEMBLOCK configuration:\n");
1940 pr_info(" memory size = %pa reserved size = %pa\n",
1941 &memblock.memory.total_size,
1942 &memblock.reserved.total_size);
1943
1944 memblock_dump(&memblock.memory);
1945 memblock_dump(&memblock.reserved);
1946 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1947 memblock_dump(&physmem);
1948 #endif
1949 }
1950
1951 void __init_memblock memblock_dump_all(void)
1952 {
1953 if (memblock_debug)
1954 __memblock_dump_all();
1955 }
1956
1957 void __init memblock_allow_resize(void)
1958 {
1959 memblock_can_resize = 1;
1960 }
1961
1962 static int __init early_memblock(char *p)
1963 {
1964 if (p && strstr(p, "debug"))
1965 memblock_debug = 1;
1966 return 0;
1967 }
1968 early_param("memblock", early_memblock);
1969
1970 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1971 {
1972 struct page *start_pg, *end_pg;
1973 phys_addr_t pg, pgend;
1974
1975 /*
1976 * Convert start_pfn/end_pfn to a struct page pointer.
1977 */
1978 start_pg = pfn_to_page(start_pfn - 1) + 1;
1979 end_pg = pfn_to_page(end_pfn - 1) + 1;
1980
1981 /*
1982 * Convert to physical addresses, and round start upwards and end
1983 * downwards.
1984 */
1985 pg = PAGE_ALIGN(__pa(start_pg));
1986 pgend = __pa(end_pg) & PAGE_MASK;
1987
1988 /*
1989 * If there are free pages between these, free the section of the
1990 * memmap array.
1991 */
1992 if (pg < pgend)
1993 memblock_phys_free(pg, pgend - pg);
1994 }
1995
1996 /*
1997 * The mem_map array can get very big. Free the unused area of the memory map.
1998 */
1999 static void __init free_unused_memmap(void)
2000 {
2001 unsigned long start, end, prev_end = 0;
2002 int i;
2003
2004 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2005 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2006 return;
2007
2008 /*
2009 * This relies on each bank being in address order.
2010 * The banks are sorted previously in bootmem_init().
2011 */
2012 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2013 #ifdef CONFIG_SPARSEMEM
2014 /*
2015 * Take care not to free memmap entries that don't exist
2016 * due to SPARSEMEM sections which aren't present.
2017 */
2018 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2019 #endif
2020 /*
2021 * Align down here since many operations in VM subsystem
2022 * presume that there are no holes in the memory map inside
2023 * a pageblock
2024 */
2025 start = pageblock_start_pfn(start);
2026
2027 /*
2028 * If we had a previous bank, and there is a space
2029 * between the current bank and the previous, free it.
2030 */
2031 if (prev_end && prev_end < start)
2032 free_memmap(prev_end, start);
2033
2034 /*
2035 * Align up here since many operations in VM subsystem
2036 * presume that there are no holes in the memory map inside
2037 * a pageblock
2038 */
2039 prev_end = pageblock_align(end);
2040 }
2041
2042 #ifdef CONFIG_SPARSEMEM
2043 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2044 prev_end = pageblock_align(end);
2045 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2046 }
2047 #endif
2048 }
2049
2050 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2051 {
2052 int order;
2053
2054 while (start < end) {
2055 /*
2056 * Free the pages in the largest chunks alignment allows.
2057 *
2058 * __ffs() behaviour is undefined for 0. start == 0 is
2059 * MAX_ORDER-aligned, set order to MAX_ORDER for the case.
2060 */
2061 if (start)
2062 order = min_t(int, MAX_ORDER, __ffs(start));
2063 else
2064 order = MAX_ORDER;
2065
2066 while (start + (1UL << order) > end)
2067 order--;
2068
2069 memblock_free_pages(pfn_to_page(start), start, order);
2070
2071 start += (1UL << order);
2072 }
2073 }
2074
2075 static unsigned long __init __free_memory_core(phys_addr_t start,
2076 phys_addr_t end)
2077 {
2078 unsigned long start_pfn = PFN_UP(start);
2079 unsigned long end_pfn = min_t(unsigned long,
2080 PFN_DOWN(end), max_low_pfn);
2081
2082 if (start_pfn >= end_pfn)
2083 return 0;
2084
2085 __free_pages_memory(start_pfn, end_pfn);
2086
2087 return end_pfn - start_pfn;
2088 }
2089
2090 static void __init memmap_init_reserved_pages(void)
2091 {
2092 struct memblock_region *region;
2093 phys_addr_t start, end;
2094 int nid;
2095
2096 /*
2097 * set nid on all reserved pages and also treat struct
2098 * pages for the NOMAP regions as PageReserved
2099 */
2100 for_each_mem_region(region) {
2101 nid = memblock_get_region_node(region);
2102 start = region->base;
2103 end = start + region->size;
2104
2105 if (memblock_is_nomap(region))
2106 reserve_bootmem_region(start, end, nid);
2107
2108 memblock_set_node(start, end, &memblock.reserved, nid);
2109 }
2110
2111 /* initialize struct pages for the reserved regions */
2112 for_each_reserved_mem_region(region) {
2113 nid = memblock_get_region_node(region);
2114 start = region->base;
2115 end = start + region->size;
2116
2117 reserve_bootmem_region(start, end, nid);
2118 }
2119 }
2120
2121 static unsigned long __init free_low_memory_core_early(void)
2122 {
2123 unsigned long count = 0;
2124 phys_addr_t start, end;
2125 u64 i;
2126
2127 memblock_clear_hotplug(0, -1);
2128
2129 memmap_init_reserved_pages();
2130
2131 /*
2132 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2133 * because in some case like Node0 doesn't have RAM installed
2134 * low ram will be on Node1
2135 */
2136 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2137 NULL)
2138 count += __free_memory_core(start, end);
2139
2140 return count;
2141 }
2142
2143 static int reset_managed_pages_done __initdata;
2144
2145 static void __init reset_node_managed_pages(pg_data_t *pgdat)
2146 {
2147 struct zone *z;
2148
2149 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2150 atomic_long_set(&z->managed_pages, 0);
2151 }
2152
2153 void __init reset_all_zones_managed_pages(void)
2154 {
2155 struct pglist_data *pgdat;
2156
2157 if (reset_managed_pages_done)
2158 return;
2159
2160 for_each_online_pgdat(pgdat)
2161 reset_node_managed_pages(pgdat);
2162
2163 reset_managed_pages_done = 1;
2164 }
2165
2166 /**
2167 * memblock_free_all - release free pages to the buddy allocator
2168 */
2169 void __init memblock_free_all(void)
2170 {
2171 unsigned long pages;
2172
2173 free_unused_memmap();
2174 reset_all_zones_managed_pages();
2175
2176 pages = free_low_memory_core_early();
2177 totalram_pages_add(pages);
2178 }
2179
2180 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2181 static const char * const flagname[] = {
2182 [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2183 [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2184 [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2185 [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2186 };
2187
2188 static int memblock_debug_show(struct seq_file *m, void *private)
2189 {
2190 struct memblock_type *type = m->private;
2191 struct memblock_region *reg;
2192 int i, j, nid;
2193 unsigned int count = ARRAY_SIZE(flagname);
2194 phys_addr_t end;
2195
2196 for (i = 0; i < type->cnt; i++) {
2197 reg = &type->regions[i];
2198 end = reg->base + reg->size - 1;
2199 nid = memblock_get_region_node(reg);
2200
2201 seq_printf(m, "%4d: ", i);
2202 seq_printf(m, "%pa..%pa ", &reg->base, &end);
2203 if (nid != MAX_NUMNODES)
2204 seq_printf(m, "%4d ", nid);
2205 else
2206 seq_printf(m, "%4c ", 'x');
2207 if (reg->flags) {
2208 for (j = 0; j < count; j++) {
2209 if (reg->flags & (1U << j)) {
2210 seq_printf(m, "%s\n", flagname[j]);
2211 break;
2212 }
2213 }
2214 if (j == count)
2215 seq_printf(m, "%s\n", "UNKNOWN");
2216 } else {
2217 seq_printf(m, "%s\n", "NONE");
2218 }
2219 }
2220 return 0;
2221 }
2222 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2223
2224 static int __init memblock_init_debugfs(void)
2225 {
2226 struct dentry *root = debugfs_create_dir("memblock", NULL);
2227
2228 debugfs_create_file("memory", 0444, root,
2229 &memblock.memory, &memblock_debug_fops);
2230 debugfs_create_file("reserved", 0444, root,
2231 &memblock.reserved, &memblock_debug_fops);
2232 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2233 debugfs_create_file("physmem", 0444, root, &physmem,
2234 &memblock_debug_fops);
2235 #endif
2236
2237 return 0;
2238 }
2239 __initcall(memblock_init_debugfs);
2240
2241 #endif /* CONFIG_DEBUG_FS */