]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/memcontrol.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
77
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account 0
89 #endif
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103
104 /*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
113 };
114
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125 };
126
127 /*
128 * cgroup_event represents events which userspace want to receive.
129 */
130 struct mem_cgroup_event {
131 /*
132 * memcg which the event belongs to.
133 */
134 struct mem_cgroup *memcg;
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170 /* Stuffs for move charges at task migration. */
171 /*
172 * Types of charges to be moved.
173 */
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
177
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190 } mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194
195 /*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202 enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
207 NR_CHARGE_TYPE,
208 };
209
210 /* for encoding cft->private value on file */
211 enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
215 _KMEM,
216 _TCP,
217 };
218
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
224
225 /*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
240 static inline bool should_force_charge(void)
241 {
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244 }
245
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252 }
253
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
267 *
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
270 */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277 void memcg_get_cache_ids(void)
278 {
279 down_read(&memcg_cache_ids_sem);
280 }
281
282 void memcg_put_cache_ids(void)
283 {
284 up_read(&memcg_cache_ids_sem);
285 }
286
287 /*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
298 */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301
302 /*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324 {
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350 }
351
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368 }
369
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392 }
393
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
414 goto unlock;
415 }
416 }
417 unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422 }
423
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436 }
437
438 /**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
448 */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 struct mem_cgroup *memcg;
452
453 memcg = page->mem_cgroup;
454
455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 memcg = root_mem_cgroup;
457
458 return &memcg->css;
459 }
460
461 /**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
480 if (PageSlab(page) && !PageTail(page))
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490 }
491
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 int nid = page_to_nid(page);
496
497 return memcg->nodeinfo[nid];
498 }
499
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 return soft_limit_tree.rb_tree_per_node[nid];
504 }
505
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 int nid = page_to_nid(page);
510
511 return soft_limit_tree.rb_tree_per_node[nid];
512 }
513
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
516 unsigned long new_usage_in_excess)
517 {
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
520 struct mem_cgroup_per_node *mz_node;
521 bool rightmost = true;
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 tree_node);
533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 p = &(*p)->rb_left;
535 rightmost = false;
536 }
537
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552 }
553
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
556 {
557 if (!mz->on_tree)
558 return;
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565 }
566
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
569 {
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587 }
588
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 unsigned long excess;
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
594
595 mctz = soft_limit_tree_from_page(page);
596 if (!mctz)
597 return;
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 mz = mem_cgroup_page_nodeinfo(memcg, page);
604 excess = soft_limit_excess(memcg);
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
613 /* if on-tree, remove it */
614 if (mz->on_tree)
615 __mem_cgroup_remove_exceeded(mz, mctz);
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
621 spin_unlock_irqrestore(&mctz->lock, flags);
622 }
623 }
624 }
625
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
631
632 for_each_node(nid) {
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
637 }
638 }
639
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 struct mem_cgroup_per_node *mz;
644
645 retry:
646 mz = NULL;
647 if (!mctz->rb_rightmost)
648 goto done; /* Nothing to reclaim from */
649
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
657 __mem_cgroup_remove_exceeded(mz, mctz);
658 if (!soft_limit_excess(mz->memcg) ||
659 !css_tryget(&mz->memcg->css))
660 goto retry;
661 done:
662 return mz;
663 }
664
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 struct mem_cgroup_per_node *mz;
669
670 spin_lock_irq(&mctz->lock);
671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 spin_unlock_irq(&mctz->lock);
673 return mz;
674 }
675
676 /**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 struct mem_cgroup *mi;
692
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714 }
715
716 /**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728 {
729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 long x;
733
734 /* Update node */
735 __mod_node_page_state(pgdat, idx, val);
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 memcg = pn->memcg;
742
743 /* Update memcg */
744 __mod_memcg_state(memcg, idx, val);
745
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 struct mem_cgroup_per_node *pi;
752
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
767 memcg = mem_cgroup_from_obj(p);
768
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777 }
778
779 void mod_memcg_obj_state(void *p, int idx, int val)
780 {
781 struct mem_cgroup *memcg;
782
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
788 }
789
790 /**
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
795 */
796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
798 {
799 unsigned long x;
800
801 if (mem_cgroup_disabled())
802 return;
803
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 struct mem_cgroup *mi;
807
808 /*
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
811 */
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
815 x = 0;
816 }
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818 }
819
820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821 {
822 return atomic_long_read(&memcg->vmevents[event]);
823 }
824
825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826 {
827 long x = 0;
828 int cpu;
829
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
833 }
834
835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836 struct page *page,
837 bool compound, int nr_pages)
838 {
839 /*
840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
841 * counted as CACHE even if it's on ANON LRU.
842 */
843 if (PageAnon(page))
844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
845 else {
846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
847 if (PageSwapBacked(page))
848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
849 }
850
851 if (compound) {
852 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
854 }
855
856 /* pagein of a big page is an event. So, ignore page size */
857 if (nr_pages > 0)
858 __count_memcg_events(memcg, PGPGIN, 1);
859 else {
860 __count_memcg_events(memcg, PGPGOUT, 1);
861 nr_pages = -nr_pages; /* for event */
862 }
863
864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
865 }
866
867 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
868 enum mem_cgroup_events_target target)
869 {
870 unsigned long val, next;
871
872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
874 /* from time_after() in jiffies.h */
875 if ((long)(next - val) < 0) {
876 switch (target) {
877 case MEM_CGROUP_TARGET_THRESH:
878 next = val + THRESHOLDS_EVENTS_TARGET;
879 break;
880 case MEM_CGROUP_TARGET_SOFTLIMIT:
881 next = val + SOFTLIMIT_EVENTS_TARGET;
882 break;
883 default:
884 break;
885 }
886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
887 return true;
888 }
889 return false;
890 }
891
892 /*
893 * Check events in order.
894 *
895 */
896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
897 {
898 /* threshold event is triggered in finer grain than soft limit */
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
901 bool do_softlimit;
902
903 do_softlimit = mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_SOFTLIMIT);
905 mem_cgroup_threshold(memcg);
906 if (unlikely(do_softlimit))
907 mem_cgroup_update_tree(memcg, page);
908 }
909 }
910
911 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
912 {
913 /*
914 * mm_update_next_owner() may clear mm->owner to NULL
915 * if it races with swapoff, page migration, etc.
916 * So this can be called with p == NULL.
917 */
918 if (unlikely(!p))
919 return NULL;
920
921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
922 }
923 EXPORT_SYMBOL(mem_cgroup_from_task);
924
925 /**
926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
927 * @mm: mm from which memcg should be extracted. It can be NULL.
928 *
929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
931 * returned.
932 */
933 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
934 {
935 struct mem_cgroup *memcg;
936
937 if (mem_cgroup_disabled())
938 return NULL;
939
940 rcu_read_lock();
941 do {
942 /*
943 * Page cache insertions can happen withou an
944 * actual mm context, e.g. during disk probing
945 * on boot, loopback IO, acct() writes etc.
946 */
947 if (unlikely(!mm))
948 memcg = root_mem_cgroup;
949 else {
950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
951 if (unlikely(!memcg))
952 memcg = root_mem_cgroup;
953 }
954 } while (!css_tryget(&memcg->css));
955 rcu_read_unlock();
956 return memcg;
957 }
958 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
959
960 /**
961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
962 * @page: page from which memcg should be extracted.
963 *
964 * Obtain a reference on page->memcg and returns it if successful. Otherwise
965 * root_mem_cgroup is returned.
966 */
967 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
968 {
969 struct mem_cgroup *memcg = page->mem_cgroup;
970
971 if (mem_cgroup_disabled())
972 return NULL;
973
974 rcu_read_lock();
975 /* Page should not get uncharged and freed memcg under us. */
976 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
977 memcg = root_mem_cgroup;
978 rcu_read_unlock();
979 return memcg;
980 }
981 EXPORT_SYMBOL(get_mem_cgroup_from_page);
982
983 /**
984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
985 */
986 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
987 {
988 if (unlikely(current->active_memcg)) {
989 struct mem_cgroup *memcg;
990
991 rcu_read_lock();
992 /* current->active_memcg must hold a ref. */
993 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
994 memcg = root_mem_cgroup;
995 else
996 memcg = current->active_memcg;
997 rcu_read_unlock();
998 return memcg;
999 }
1000 return get_mem_cgroup_from_mm(current->mm);
1001 }
1002
1003 /**
1004 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1005 * @root: hierarchy root
1006 * @prev: previously returned memcg, NULL on first invocation
1007 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1008 *
1009 * Returns references to children of the hierarchy below @root, or
1010 * @root itself, or %NULL after a full round-trip.
1011 *
1012 * Caller must pass the return value in @prev on subsequent
1013 * invocations for reference counting, or use mem_cgroup_iter_break()
1014 * to cancel a hierarchy walk before the round-trip is complete.
1015 *
1016 * Reclaimers can specify a node and a priority level in @reclaim to
1017 * divide up the memcgs in the hierarchy among all concurrent
1018 * reclaimers operating on the same node and priority.
1019 */
1020 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1021 struct mem_cgroup *prev,
1022 struct mem_cgroup_reclaim_cookie *reclaim)
1023 {
1024 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1025 struct cgroup_subsys_state *css = NULL;
1026 struct mem_cgroup *memcg = NULL;
1027 struct mem_cgroup *pos = NULL;
1028
1029 if (mem_cgroup_disabled())
1030 return NULL;
1031
1032 if (!root)
1033 root = root_mem_cgroup;
1034
1035 if (prev && !reclaim)
1036 pos = prev;
1037
1038 if (!root->use_hierarchy && root != root_mem_cgroup) {
1039 if (prev)
1040 goto out;
1041 return root;
1042 }
1043
1044 rcu_read_lock();
1045
1046 if (reclaim) {
1047 struct mem_cgroup_per_node *mz;
1048
1049 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1050 iter = &mz->iter;
1051
1052 if (prev && reclaim->generation != iter->generation)
1053 goto out_unlock;
1054
1055 while (1) {
1056 pos = READ_ONCE(iter->position);
1057 if (!pos || css_tryget(&pos->css))
1058 break;
1059 /*
1060 * css reference reached zero, so iter->position will
1061 * be cleared by ->css_released. However, we should not
1062 * rely on this happening soon, because ->css_released
1063 * is called from a work queue, and by busy-waiting we
1064 * might block it. So we clear iter->position right
1065 * away.
1066 */
1067 (void)cmpxchg(&iter->position, pos, NULL);
1068 }
1069 }
1070
1071 if (pos)
1072 css = &pos->css;
1073
1074 for (;;) {
1075 css = css_next_descendant_pre(css, &root->css);
1076 if (!css) {
1077 /*
1078 * Reclaimers share the hierarchy walk, and a
1079 * new one might jump in right at the end of
1080 * the hierarchy - make sure they see at least
1081 * one group and restart from the beginning.
1082 */
1083 if (!prev)
1084 continue;
1085 break;
1086 }
1087
1088 /*
1089 * Verify the css and acquire a reference. The root
1090 * is provided by the caller, so we know it's alive
1091 * and kicking, and don't take an extra reference.
1092 */
1093 memcg = mem_cgroup_from_css(css);
1094
1095 if (css == &root->css)
1096 break;
1097
1098 if (css_tryget(css))
1099 break;
1100
1101 memcg = NULL;
1102 }
1103
1104 if (reclaim) {
1105 /*
1106 * The position could have already been updated by a competing
1107 * thread, so check that the value hasn't changed since we read
1108 * it to avoid reclaiming from the same cgroup twice.
1109 */
1110 (void)cmpxchg(&iter->position, pos, memcg);
1111
1112 if (pos)
1113 css_put(&pos->css);
1114
1115 if (!memcg)
1116 iter->generation++;
1117 else if (!prev)
1118 reclaim->generation = iter->generation;
1119 }
1120
1121 out_unlock:
1122 rcu_read_unlock();
1123 out:
1124 if (prev && prev != root)
1125 css_put(&prev->css);
1126
1127 return memcg;
1128 }
1129
1130 /**
1131 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1132 * @root: hierarchy root
1133 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1134 */
1135 void mem_cgroup_iter_break(struct mem_cgroup *root,
1136 struct mem_cgroup *prev)
1137 {
1138 if (!root)
1139 root = root_mem_cgroup;
1140 if (prev && prev != root)
1141 css_put(&prev->css);
1142 }
1143
1144 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1145 struct mem_cgroup *dead_memcg)
1146 {
1147 struct mem_cgroup_reclaim_iter *iter;
1148 struct mem_cgroup_per_node *mz;
1149 int nid;
1150
1151 for_each_node(nid) {
1152 mz = mem_cgroup_nodeinfo(from, nid);
1153 iter = &mz->iter;
1154 cmpxchg(&iter->position, dead_memcg, NULL);
1155 }
1156 }
1157
1158 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1159 {
1160 struct mem_cgroup *memcg = dead_memcg;
1161 struct mem_cgroup *last;
1162
1163 do {
1164 __invalidate_reclaim_iterators(memcg, dead_memcg);
1165 last = memcg;
1166 } while ((memcg = parent_mem_cgroup(memcg)));
1167
1168 /*
1169 * When cgruop1 non-hierarchy mode is used,
1170 * parent_mem_cgroup() does not walk all the way up to the
1171 * cgroup root (root_mem_cgroup). So we have to handle
1172 * dead_memcg from cgroup root separately.
1173 */
1174 if (last != root_mem_cgroup)
1175 __invalidate_reclaim_iterators(root_mem_cgroup,
1176 dead_memcg);
1177 }
1178
1179 /**
1180 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1181 * @memcg: hierarchy root
1182 * @fn: function to call for each task
1183 * @arg: argument passed to @fn
1184 *
1185 * This function iterates over tasks attached to @memcg or to any of its
1186 * descendants and calls @fn for each task. If @fn returns a non-zero
1187 * value, the function breaks the iteration loop and returns the value.
1188 * Otherwise, it will iterate over all tasks and return 0.
1189 *
1190 * This function must not be called for the root memory cgroup.
1191 */
1192 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1193 int (*fn)(struct task_struct *, void *), void *arg)
1194 {
1195 struct mem_cgroup *iter;
1196 int ret = 0;
1197
1198 BUG_ON(memcg == root_mem_cgroup);
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
1201 struct css_task_iter it;
1202 struct task_struct *task;
1203
1204 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1205 while (!ret && (task = css_task_iter_next(&it)))
1206 ret = fn(task, arg);
1207 css_task_iter_end(&it);
1208 if (ret) {
1209 mem_cgroup_iter_break(memcg, iter);
1210 break;
1211 }
1212 }
1213 return ret;
1214 }
1215
1216 /**
1217 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1218 * @page: the page
1219 * @pgdat: pgdat of the page
1220 *
1221 * This function is only safe when following the LRU page isolation
1222 * and putback protocol: the LRU lock must be held, and the page must
1223 * either be PageLRU() or the caller must have isolated/allocated it.
1224 */
1225 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1226 {
1227 struct mem_cgroup_per_node *mz;
1228 struct mem_cgroup *memcg;
1229 struct lruvec *lruvec;
1230
1231 if (mem_cgroup_disabled()) {
1232 lruvec = &pgdat->__lruvec;
1233 goto out;
1234 }
1235
1236 memcg = page->mem_cgroup;
1237 /*
1238 * Swapcache readahead pages are added to the LRU - and
1239 * possibly migrated - before they are charged.
1240 */
1241 if (!memcg)
1242 memcg = root_mem_cgroup;
1243
1244 mz = mem_cgroup_page_nodeinfo(memcg, page);
1245 lruvec = &mz->lruvec;
1246 out:
1247 /*
1248 * Since a node can be onlined after the mem_cgroup was created,
1249 * we have to be prepared to initialize lruvec->zone here;
1250 * and if offlined then reonlined, we need to reinitialize it.
1251 */
1252 if (unlikely(lruvec->pgdat != pgdat))
1253 lruvec->pgdat = pgdat;
1254 return lruvec;
1255 }
1256
1257 /**
1258 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1259 * @lruvec: mem_cgroup per zone lru vector
1260 * @lru: index of lru list the page is sitting on
1261 * @zid: zone id of the accounted pages
1262 * @nr_pages: positive when adding or negative when removing
1263 *
1264 * This function must be called under lru_lock, just before a page is added
1265 * to or just after a page is removed from an lru list (that ordering being
1266 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1267 */
1268 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1269 int zid, int nr_pages)
1270 {
1271 struct mem_cgroup_per_node *mz;
1272 unsigned long *lru_size;
1273 long size;
1274
1275 if (mem_cgroup_disabled())
1276 return;
1277
1278 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1279 lru_size = &mz->lru_zone_size[zid][lru];
1280
1281 if (nr_pages < 0)
1282 *lru_size += nr_pages;
1283
1284 size = *lru_size;
1285 if (WARN_ONCE(size < 0,
1286 "%s(%p, %d, %d): lru_size %ld\n",
1287 __func__, lruvec, lru, nr_pages, size)) {
1288 VM_BUG_ON(1);
1289 *lru_size = 0;
1290 }
1291
1292 if (nr_pages > 0)
1293 *lru_size += nr_pages;
1294 }
1295
1296 /**
1297 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1298 * @memcg: the memory cgroup
1299 *
1300 * Returns the maximum amount of memory @mem can be charged with, in
1301 * pages.
1302 */
1303 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1304 {
1305 unsigned long margin = 0;
1306 unsigned long count;
1307 unsigned long limit;
1308
1309 count = page_counter_read(&memcg->memory);
1310 limit = READ_ONCE(memcg->memory.max);
1311 if (count < limit)
1312 margin = limit - count;
1313
1314 if (do_memsw_account()) {
1315 count = page_counter_read(&memcg->memsw);
1316 limit = READ_ONCE(memcg->memsw.max);
1317 if (count <= limit)
1318 margin = min(margin, limit - count);
1319 else
1320 margin = 0;
1321 }
1322
1323 return margin;
1324 }
1325
1326 /*
1327 * A routine for checking "mem" is under move_account() or not.
1328 *
1329 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1330 * moving cgroups. This is for waiting at high-memory pressure
1331 * caused by "move".
1332 */
1333 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1334 {
1335 struct mem_cgroup *from;
1336 struct mem_cgroup *to;
1337 bool ret = false;
1338 /*
1339 * Unlike task_move routines, we access mc.to, mc.from not under
1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1341 */
1342 spin_lock(&mc.lock);
1343 from = mc.from;
1344 to = mc.to;
1345 if (!from)
1346 goto unlock;
1347
1348 ret = mem_cgroup_is_descendant(from, memcg) ||
1349 mem_cgroup_is_descendant(to, memcg);
1350 unlock:
1351 spin_unlock(&mc.lock);
1352 return ret;
1353 }
1354
1355 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1356 {
1357 if (mc.moving_task && current != mc.moving_task) {
1358 if (mem_cgroup_under_move(memcg)) {
1359 DEFINE_WAIT(wait);
1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1361 /* moving charge context might have finished. */
1362 if (mc.moving_task)
1363 schedule();
1364 finish_wait(&mc.waitq, &wait);
1365 return true;
1366 }
1367 }
1368 return false;
1369 }
1370
1371 static char *memory_stat_format(struct mem_cgroup *memcg)
1372 {
1373 struct seq_buf s;
1374 int i;
1375
1376 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1377 if (!s.buffer)
1378 return NULL;
1379
1380 /*
1381 * Provide statistics on the state of the memory subsystem as
1382 * well as cumulative event counters that show past behavior.
1383 *
1384 * This list is ordered following a combination of these gradients:
1385 * 1) generic big picture -> specifics and details
1386 * 2) reflecting userspace activity -> reflecting kernel heuristics
1387 *
1388 * Current memory state:
1389 */
1390
1391 seq_buf_printf(&s, "anon %llu\n",
1392 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1393 PAGE_SIZE);
1394 seq_buf_printf(&s, "file %llu\n",
1395 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1396 PAGE_SIZE);
1397 seq_buf_printf(&s, "kernel_stack %llu\n",
1398 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1399 1024);
1400 seq_buf_printf(&s, "slab %llu\n",
1401 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1402 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1403 PAGE_SIZE);
1404 seq_buf_printf(&s, "sock %llu\n",
1405 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1406 PAGE_SIZE);
1407
1408 seq_buf_printf(&s, "shmem %llu\n",
1409 (u64)memcg_page_state(memcg, NR_SHMEM) *
1410 PAGE_SIZE);
1411 seq_buf_printf(&s, "file_mapped %llu\n",
1412 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1413 PAGE_SIZE);
1414 seq_buf_printf(&s, "file_dirty %llu\n",
1415 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "file_writeback %llu\n",
1418 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1419 PAGE_SIZE);
1420
1421 /*
1422 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1423 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1424 * arse because it requires migrating the work out of rmap to a place
1425 * where the page->mem_cgroup is set up and stable.
1426 */
1427 seq_buf_printf(&s, "anon_thp %llu\n",
1428 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1429 PAGE_SIZE);
1430
1431 for (i = 0; i < NR_LRU_LISTS; i++)
1432 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1433 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1434 PAGE_SIZE);
1435
1436 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1437 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1438 PAGE_SIZE);
1439 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1440 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1441 PAGE_SIZE);
1442
1443 /* Accumulated memory events */
1444
1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1446 memcg_events(memcg, PGFAULT));
1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1448 memcg_events(memcg, PGMAJFAULT));
1449
1450 seq_buf_printf(&s, "workingset_refault %lu\n",
1451 memcg_page_state(memcg, WORKINGSET_REFAULT));
1452 seq_buf_printf(&s, "workingset_activate %lu\n",
1453 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1454 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1455 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1456
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1458 memcg_events(memcg, PGREFILL));
1459 seq_buf_printf(&s, "pgscan %lu\n",
1460 memcg_events(memcg, PGSCAN_KSWAPD) +
1461 memcg_events(memcg, PGSCAN_DIRECT));
1462 seq_buf_printf(&s, "pgsteal %lu\n",
1463 memcg_events(memcg, PGSTEAL_KSWAPD) +
1464 memcg_events(memcg, PGSTEAL_DIRECT));
1465 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1466 memcg_events(memcg, PGACTIVATE));
1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1468 memcg_events(memcg, PGDEACTIVATE));
1469 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1470 memcg_events(memcg, PGLAZYFREE));
1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1472 memcg_events(memcg, PGLAZYFREED));
1473
1474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1475 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1476 memcg_events(memcg, THP_FAULT_ALLOC));
1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1478 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1479 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1480
1481 /* The above should easily fit into one page */
1482 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1483
1484 return s.buffer;
1485 }
1486
1487 #define K(x) ((x) << (PAGE_SHIFT-10))
1488 /**
1489 * mem_cgroup_print_oom_context: Print OOM information relevant to
1490 * memory controller.
1491 * @memcg: The memory cgroup that went over limit
1492 * @p: Task that is going to be killed
1493 *
1494 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1495 * enabled
1496 */
1497 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1498 {
1499 rcu_read_lock();
1500
1501 if (memcg) {
1502 pr_cont(",oom_memcg=");
1503 pr_cont_cgroup_path(memcg->css.cgroup);
1504 } else
1505 pr_cont(",global_oom");
1506 if (p) {
1507 pr_cont(",task_memcg=");
1508 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1509 }
1510 rcu_read_unlock();
1511 }
1512
1513 /**
1514 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1515 * memory controller.
1516 * @memcg: The memory cgroup that went over limit
1517 */
1518 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1519 {
1520 char *buf;
1521
1522 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1523 K((u64)page_counter_read(&memcg->memory)),
1524 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1525 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1526 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1527 K((u64)page_counter_read(&memcg->swap)),
1528 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1529 else {
1530 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->memsw)),
1532 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1533 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1534 K((u64)page_counter_read(&memcg->kmem)),
1535 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1536 }
1537
1538 pr_info("Memory cgroup stats for ");
1539 pr_cont_cgroup_path(memcg->css.cgroup);
1540 pr_cont(":");
1541 buf = memory_stat_format(memcg);
1542 if (!buf)
1543 return;
1544 pr_info("%s", buf);
1545 kfree(buf);
1546 }
1547
1548 /*
1549 * Return the memory (and swap, if configured) limit for a memcg.
1550 */
1551 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1552 {
1553 unsigned long max;
1554
1555 max = READ_ONCE(memcg->memory.max);
1556 if (mem_cgroup_swappiness(memcg)) {
1557 unsigned long memsw_max;
1558 unsigned long swap_max;
1559
1560 memsw_max = memcg->memsw.max;
1561 swap_max = READ_ONCE(memcg->swap.max);
1562 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1563 max = min(max + swap_max, memsw_max);
1564 }
1565 return max;
1566 }
1567
1568 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1569 {
1570 return page_counter_read(&memcg->memory);
1571 }
1572
1573 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1574 int order)
1575 {
1576 struct oom_control oc = {
1577 .zonelist = NULL,
1578 .nodemask = NULL,
1579 .memcg = memcg,
1580 .gfp_mask = gfp_mask,
1581 .order = order,
1582 };
1583 bool ret;
1584
1585 if (mutex_lock_killable(&oom_lock))
1586 return true;
1587 /*
1588 * A few threads which were not waiting at mutex_lock_killable() can
1589 * fail to bail out. Therefore, check again after holding oom_lock.
1590 */
1591 ret = should_force_charge() || out_of_memory(&oc);
1592 mutex_unlock(&oom_lock);
1593 return ret;
1594 }
1595
1596 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1597 pg_data_t *pgdat,
1598 gfp_t gfp_mask,
1599 unsigned long *total_scanned)
1600 {
1601 struct mem_cgroup *victim = NULL;
1602 int total = 0;
1603 int loop = 0;
1604 unsigned long excess;
1605 unsigned long nr_scanned;
1606 struct mem_cgroup_reclaim_cookie reclaim = {
1607 .pgdat = pgdat,
1608 };
1609
1610 excess = soft_limit_excess(root_memcg);
1611
1612 while (1) {
1613 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1614 if (!victim) {
1615 loop++;
1616 if (loop >= 2) {
1617 /*
1618 * If we have not been able to reclaim
1619 * anything, it might because there are
1620 * no reclaimable pages under this hierarchy
1621 */
1622 if (!total)
1623 break;
1624 /*
1625 * We want to do more targeted reclaim.
1626 * excess >> 2 is not to excessive so as to
1627 * reclaim too much, nor too less that we keep
1628 * coming back to reclaim from this cgroup
1629 */
1630 if (total >= (excess >> 2) ||
1631 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1632 break;
1633 }
1634 continue;
1635 }
1636 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1637 pgdat, &nr_scanned);
1638 *total_scanned += nr_scanned;
1639 if (!soft_limit_excess(root_memcg))
1640 break;
1641 }
1642 mem_cgroup_iter_break(root_memcg, victim);
1643 return total;
1644 }
1645
1646 #ifdef CONFIG_LOCKDEP
1647 static struct lockdep_map memcg_oom_lock_dep_map = {
1648 .name = "memcg_oom_lock",
1649 };
1650 #endif
1651
1652 static DEFINE_SPINLOCK(memcg_oom_lock);
1653
1654 /*
1655 * Check OOM-Killer is already running under our hierarchy.
1656 * If someone is running, return false.
1657 */
1658 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1659 {
1660 struct mem_cgroup *iter, *failed = NULL;
1661
1662 spin_lock(&memcg_oom_lock);
1663
1664 for_each_mem_cgroup_tree(iter, memcg) {
1665 if (iter->oom_lock) {
1666 /*
1667 * this subtree of our hierarchy is already locked
1668 * so we cannot give a lock.
1669 */
1670 failed = iter;
1671 mem_cgroup_iter_break(memcg, iter);
1672 break;
1673 } else
1674 iter->oom_lock = true;
1675 }
1676
1677 if (failed) {
1678 /*
1679 * OK, we failed to lock the whole subtree so we have
1680 * to clean up what we set up to the failing subtree
1681 */
1682 for_each_mem_cgroup_tree(iter, memcg) {
1683 if (iter == failed) {
1684 mem_cgroup_iter_break(memcg, iter);
1685 break;
1686 }
1687 iter->oom_lock = false;
1688 }
1689 } else
1690 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1691
1692 spin_unlock(&memcg_oom_lock);
1693
1694 return !failed;
1695 }
1696
1697 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1698 {
1699 struct mem_cgroup *iter;
1700
1701 spin_lock(&memcg_oom_lock);
1702 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1703 for_each_mem_cgroup_tree(iter, memcg)
1704 iter->oom_lock = false;
1705 spin_unlock(&memcg_oom_lock);
1706 }
1707
1708 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1709 {
1710 struct mem_cgroup *iter;
1711
1712 spin_lock(&memcg_oom_lock);
1713 for_each_mem_cgroup_tree(iter, memcg)
1714 iter->under_oom++;
1715 spin_unlock(&memcg_oom_lock);
1716 }
1717
1718 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1719 {
1720 struct mem_cgroup *iter;
1721
1722 /*
1723 * When a new child is created while the hierarchy is under oom,
1724 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1725 */
1726 spin_lock(&memcg_oom_lock);
1727 for_each_mem_cgroup_tree(iter, memcg)
1728 if (iter->under_oom > 0)
1729 iter->under_oom--;
1730 spin_unlock(&memcg_oom_lock);
1731 }
1732
1733 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1734
1735 struct oom_wait_info {
1736 struct mem_cgroup *memcg;
1737 wait_queue_entry_t wait;
1738 };
1739
1740 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1741 unsigned mode, int sync, void *arg)
1742 {
1743 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1744 struct mem_cgroup *oom_wait_memcg;
1745 struct oom_wait_info *oom_wait_info;
1746
1747 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1748 oom_wait_memcg = oom_wait_info->memcg;
1749
1750 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1751 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1752 return 0;
1753 return autoremove_wake_function(wait, mode, sync, arg);
1754 }
1755
1756 static void memcg_oom_recover(struct mem_cgroup *memcg)
1757 {
1758 /*
1759 * For the following lockless ->under_oom test, the only required
1760 * guarantee is that it must see the state asserted by an OOM when
1761 * this function is called as a result of userland actions
1762 * triggered by the notification of the OOM. This is trivially
1763 * achieved by invoking mem_cgroup_mark_under_oom() before
1764 * triggering notification.
1765 */
1766 if (memcg && memcg->under_oom)
1767 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1768 }
1769
1770 enum oom_status {
1771 OOM_SUCCESS,
1772 OOM_FAILED,
1773 OOM_ASYNC,
1774 OOM_SKIPPED
1775 };
1776
1777 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1778 {
1779 enum oom_status ret;
1780 bool locked;
1781
1782 if (order > PAGE_ALLOC_COSTLY_ORDER)
1783 return OOM_SKIPPED;
1784
1785 memcg_memory_event(memcg, MEMCG_OOM);
1786
1787 /*
1788 * We are in the middle of the charge context here, so we
1789 * don't want to block when potentially sitting on a callstack
1790 * that holds all kinds of filesystem and mm locks.
1791 *
1792 * cgroup1 allows disabling the OOM killer and waiting for outside
1793 * handling until the charge can succeed; remember the context and put
1794 * the task to sleep at the end of the page fault when all locks are
1795 * released.
1796 *
1797 * On the other hand, in-kernel OOM killer allows for an async victim
1798 * memory reclaim (oom_reaper) and that means that we are not solely
1799 * relying on the oom victim to make a forward progress and we can
1800 * invoke the oom killer here.
1801 *
1802 * Please note that mem_cgroup_out_of_memory might fail to find a
1803 * victim and then we have to bail out from the charge path.
1804 */
1805 if (memcg->oom_kill_disable) {
1806 if (!current->in_user_fault)
1807 return OOM_SKIPPED;
1808 css_get(&memcg->css);
1809 current->memcg_in_oom = memcg;
1810 current->memcg_oom_gfp_mask = mask;
1811 current->memcg_oom_order = order;
1812
1813 return OOM_ASYNC;
1814 }
1815
1816 mem_cgroup_mark_under_oom(memcg);
1817
1818 locked = mem_cgroup_oom_trylock(memcg);
1819
1820 if (locked)
1821 mem_cgroup_oom_notify(memcg);
1822
1823 mem_cgroup_unmark_under_oom(memcg);
1824 if (mem_cgroup_out_of_memory(memcg, mask, order))
1825 ret = OOM_SUCCESS;
1826 else
1827 ret = OOM_FAILED;
1828
1829 if (locked)
1830 mem_cgroup_oom_unlock(memcg);
1831
1832 return ret;
1833 }
1834
1835 /**
1836 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1837 * @handle: actually kill/wait or just clean up the OOM state
1838 *
1839 * This has to be called at the end of a page fault if the memcg OOM
1840 * handler was enabled.
1841 *
1842 * Memcg supports userspace OOM handling where failed allocations must
1843 * sleep on a waitqueue until the userspace task resolves the
1844 * situation. Sleeping directly in the charge context with all kinds
1845 * of locks held is not a good idea, instead we remember an OOM state
1846 * in the task and mem_cgroup_oom_synchronize() has to be called at
1847 * the end of the page fault to complete the OOM handling.
1848 *
1849 * Returns %true if an ongoing memcg OOM situation was detected and
1850 * completed, %false otherwise.
1851 */
1852 bool mem_cgroup_oom_synchronize(bool handle)
1853 {
1854 struct mem_cgroup *memcg = current->memcg_in_oom;
1855 struct oom_wait_info owait;
1856 bool locked;
1857
1858 /* OOM is global, do not handle */
1859 if (!memcg)
1860 return false;
1861
1862 if (!handle)
1863 goto cleanup;
1864
1865 owait.memcg = memcg;
1866 owait.wait.flags = 0;
1867 owait.wait.func = memcg_oom_wake_function;
1868 owait.wait.private = current;
1869 INIT_LIST_HEAD(&owait.wait.entry);
1870
1871 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1872 mem_cgroup_mark_under_oom(memcg);
1873
1874 locked = mem_cgroup_oom_trylock(memcg);
1875
1876 if (locked)
1877 mem_cgroup_oom_notify(memcg);
1878
1879 if (locked && !memcg->oom_kill_disable) {
1880 mem_cgroup_unmark_under_oom(memcg);
1881 finish_wait(&memcg_oom_waitq, &owait.wait);
1882 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1883 current->memcg_oom_order);
1884 } else {
1885 schedule();
1886 mem_cgroup_unmark_under_oom(memcg);
1887 finish_wait(&memcg_oom_waitq, &owait.wait);
1888 }
1889
1890 if (locked) {
1891 mem_cgroup_oom_unlock(memcg);
1892 /*
1893 * There is no guarantee that an OOM-lock contender
1894 * sees the wakeups triggered by the OOM kill
1895 * uncharges. Wake any sleepers explicitely.
1896 */
1897 memcg_oom_recover(memcg);
1898 }
1899 cleanup:
1900 current->memcg_in_oom = NULL;
1901 css_put(&memcg->css);
1902 return true;
1903 }
1904
1905 /**
1906 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1907 * @victim: task to be killed by the OOM killer
1908 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1909 *
1910 * Returns a pointer to a memory cgroup, which has to be cleaned up
1911 * by killing all belonging OOM-killable tasks.
1912 *
1913 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1914 */
1915 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1916 struct mem_cgroup *oom_domain)
1917 {
1918 struct mem_cgroup *oom_group = NULL;
1919 struct mem_cgroup *memcg;
1920
1921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1922 return NULL;
1923
1924 if (!oom_domain)
1925 oom_domain = root_mem_cgroup;
1926
1927 rcu_read_lock();
1928
1929 memcg = mem_cgroup_from_task(victim);
1930 if (memcg == root_mem_cgroup)
1931 goto out;
1932
1933 /*
1934 * If the victim task has been asynchronously moved to a different
1935 * memory cgroup, we might end up killing tasks outside oom_domain.
1936 * In this case it's better to ignore memory.group.oom.
1937 */
1938 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1939 goto out;
1940
1941 /*
1942 * Traverse the memory cgroup hierarchy from the victim task's
1943 * cgroup up to the OOMing cgroup (or root) to find the
1944 * highest-level memory cgroup with oom.group set.
1945 */
1946 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1947 if (memcg->oom_group)
1948 oom_group = memcg;
1949
1950 if (memcg == oom_domain)
1951 break;
1952 }
1953
1954 if (oom_group)
1955 css_get(&oom_group->css);
1956 out:
1957 rcu_read_unlock();
1958
1959 return oom_group;
1960 }
1961
1962 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1963 {
1964 pr_info("Tasks in ");
1965 pr_cont_cgroup_path(memcg->css.cgroup);
1966 pr_cont(" are going to be killed due to memory.oom.group set\n");
1967 }
1968
1969 /**
1970 * lock_page_memcg - lock a page->mem_cgroup binding
1971 * @page: the page
1972 *
1973 * This function protects unlocked LRU pages from being moved to
1974 * another cgroup.
1975 *
1976 * It ensures lifetime of the returned memcg. Caller is responsible
1977 * for the lifetime of the page; __unlock_page_memcg() is available
1978 * when @page might get freed inside the locked section.
1979 */
1980 struct mem_cgroup *lock_page_memcg(struct page *page)
1981 {
1982 struct mem_cgroup *memcg;
1983 unsigned long flags;
1984
1985 /*
1986 * The RCU lock is held throughout the transaction. The fast
1987 * path can get away without acquiring the memcg->move_lock
1988 * because page moving starts with an RCU grace period.
1989 *
1990 * The RCU lock also protects the memcg from being freed when
1991 * the page state that is going to change is the only thing
1992 * preventing the page itself from being freed. E.g. writeback
1993 * doesn't hold a page reference and relies on PG_writeback to
1994 * keep off truncation, migration and so forth.
1995 */
1996 rcu_read_lock();
1997
1998 if (mem_cgroup_disabled())
1999 return NULL;
2000 again:
2001 memcg = page->mem_cgroup;
2002 if (unlikely(!memcg))
2003 return NULL;
2004
2005 if (atomic_read(&memcg->moving_account) <= 0)
2006 return memcg;
2007
2008 spin_lock_irqsave(&memcg->move_lock, flags);
2009 if (memcg != page->mem_cgroup) {
2010 spin_unlock_irqrestore(&memcg->move_lock, flags);
2011 goto again;
2012 }
2013
2014 /*
2015 * When charge migration first begins, we can have locked and
2016 * unlocked page stat updates happening concurrently. Track
2017 * the task who has the lock for unlock_page_memcg().
2018 */
2019 memcg->move_lock_task = current;
2020 memcg->move_lock_flags = flags;
2021
2022 return memcg;
2023 }
2024 EXPORT_SYMBOL(lock_page_memcg);
2025
2026 /**
2027 * __unlock_page_memcg - unlock and unpin a memcg
2028 * @memcg: the memcg
2029 *
2030 * Unlock and unpin a memcg returned by lock_page_memcg().
2031 */
2032 void __unlock_page_memcg(struct mem_cgroup *memcg)
2033 {
2034 if (memcg && memcg->move_lock_task == current) {
2035 unsigned long flags = memcg->move_lock_flags;
2036
2037 memcg->move_lock_task = NULL;
2038 memcg->move_lock_flags = 0;
2039
2040 spin_unlock_irqrestore(&memcg->move_lock, flags);
2041 }
2042
2043 rcu_read_unlock();
2044 }
2045
2046 /**
2047 * unlock_page_memcg - unlock a page->mem_cgroup binding
2048 * @page: the page
2049 */
2050 void unlock_page_memcg(struct page *page)
2051 {
2052 __unlock_page_memcg(page->mem_cgroup);
2053 }
2054 EXPORT_SYMBOL(unlock_page_memcg);
2055
2056 struct memcg_stock_pcp {
2057 struct mem_cgroup *cached; /* this never be root cgroup */
2058 unsigned int nr_pages;
2059 struct work_struct work;
2060 unsigned long flags;
2061 #define FLUSHING_CACHED_CHARGE 0
2062 };
2063 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2064 static DEFINE_MUTEX(percpu_charge_mutex);
2065
2066 /**
2067 * consume_stock: Try to consume stocked charge on this cpu.
2068 * @memcg: memcg to consume from.
2069 * @nr_pages: how many pages to charge.
2070 *
2071 * The charges will only happen if @memcg matches the current cpu's memcg
2072 * stock, and at least @nr_pages are available in that stock. Failure to
2073 * service an allocation will refill the stock.
2074 *
2075 * returns true if successful, false otherwise.
2076 */
2077 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2078 {
2079 struct memcg_stock_pcp *stock;
2080 unsigned long flags;
2081 bool ret = false;
2082
2083 if (nr_pages > MEMCG_CHARGE_BATCH)
2084 return ret;
2085
2086 local_irq_save(flags);
2087
2088 stock = this_cpu_ptr(&memcg_stock);
2089 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2090 stock->nr_pages -= nr_pages;
2091 ret = true;
2092 }
2093
2094 local_irq_restore(flags);
2095
2096 return ret;
2097 }
2098
2099 /*
2100 * Returns stocks cached in percpu and reset cached information.
2101 */
2102 static void drain_stock(struct memcg_stock_pcp *stock)
2103 {
2104 struct mem_cgroup *old = stock->cached;
2105
2106 if (stock->nr_pages) {
2107 page_counter_uncharge(&old->memory, stock->nr_pages);
2108 if (do_memsw_account())
2109 page_counter_uncharge(&old->memsw, stock->nr_pages);
2110 css_put_many(&old->css, stock->nr_pages);
2111 stock->nr_pages = 0;
2112 }
2113 stock->cached = NULL;
2114 }
2115
2116 static void drain_local_stock(struct work_struct *dummy)
2117 {
2118 struct memcg_stock_pcp *stock;
2119 unsigned long flags;
2120
2121 /*
2122 * The only protection from memory hotplug vs. drain_stock races is
2123 * that we always operate on local CPU stock here with IRQ disabled
2124 */
2125 local_irq_save(flags);
2126
2127 stock = this_cpu_ptr(&memcg_stock);
2128 drain_stock(stock);
2129 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2130
2131 local_irq_restore(flags);
2132 }
2133
2134 /*
2135 * Cache charges(val) to local per_cpu area.
2136 * This will be consumed by consume_stock() function, later.
2137 */
2138 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2139 {
2140 struct memcg_stock_pcp *stock;
2141 unsigned long flags;
2142
2143 local_irq_save(flags);
2144
2145 stock = this_cpu_ptr(&memcg_stock);
2146 if (stock->cached != memcg) { /* reset if necessary */
2147 drain_stock(stock);
2148 stock->cached = memcg;
2149 }
2150 stock->nr_pages += nr_pages;
2151
2152 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2153 drain_stock(stock);
2154
2155 local_irq_restore(flags);
2156 }
2157
2158 /*
2159 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2160 * of the hierarchy under it.
2161 */
2162 static void drain_all_stock(struct mem_cgroup *root_memcg)
2163 {
2164 int cpu, curcpu;
2165
2166 /* If someone's already draining, avoid adding running more workers. */
2167 if (!mutex_trylock(&percpu_charge_mutex))
2168 return;
2169 /*
2170 * Notify other cpus that system-wide "drain" is running
2171 * We do not care about races with the cpu hotplug because cpu down
2172 * as well as workers from this path always operate on the local
2173 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2174 */
2175 curcpu = get_cpu();
2176 for_each_online_cpu(cpu) {
2177 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2178 struct mem_cgroup *memcg;
2179 bool flush = false;
2180
2181 rcu_read_lock();
2182 memcg = stock->cached;
2183 if (memcg && stock->nr_pages &&
2184 mem_cgroup_is_descendant(memcg, root_memcg))
2185 flush = true;
2186 rcu_read_unlock();
2187
2188 if (flush &&
2189 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2190 if (cpu == curcpu)
2191 drain_local_stock(&stock->work);
2192 else
2193 schedule_work_on(cpu, &stock->work);
2194 }
2195 }
2196 put_cpu();
2197 mutex_unlock(&percpu_charge_mutex);
2198 }
2199
2200 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2201 {
2202 struct memcg_stock_pcp *stock;
2203 struct mem_cgroup *memcg, *mi;
2204
2205 stock = &per_cpu(memcg_stock, cpu);
2206 drain_stock(stock);
2207
2208 for_each_mem_cgroup(memcg) {
2209 int i;
2210
2211 for (i = 0; i < MEMCG_NR_STAT; i++) {
2212 int nid;
2213 long x;
2214
2215 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2216 if (x)
2217 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2218 atomic_long_add(x, &memcg->vmstats[i]);
2219
2220 if (i >= NR_VM_NODE_STAT_ITEMS)
2221 continue;
2222
2223 for_each_node(nid) {
2224 struct mem_cgroup_per_node *pn;
2225
2226 pn = mem_cgroup_nodeinfo(memcg, nid);
2227 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2228 if (x)
2229 do {
2230 atomic_long_add(x, &pn->lruvec_stat[i]);
2231 } while ((pn = parent_nodeinfo(pn, nid)));
2232 }
2233 }
2234
2235 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2236 long x;
2237
2238 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2239 if (x)
2240 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2241 atomic_long_add(x, &memcg->vmevents[i]);
2242 }
2243 }
2244
2245 return 0;
2246 }
2247
2248 static void reclaim_high(struct mem_cgroup *memcg,
2249 unsigned int nr_pages,
2250 gfp_t gfp_mask)
2251 {
2252 do {
2253 if (page_counter_read(&memcg->memory) <= READ_ONCE(memcg->high))
2254 continue;
2255 memcg_memory_event(memcg, MEMCG_HIGH);
2256 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2257 } while ((memcg = parent_mem_cgroup(memcg)) &&
2258 !mem_cgroup_is_root(memcg));
2259 }
2260
2261 static void high_work_func(struct work_struct *work)
2262 {
2263 struct mem_cgroup *memcg;
2264
2265 memcg = container_of(work, struct mem_cgroup, high_work);
2266 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2267 }
2268
2269 /*
2270 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2271 * enough to still cause a significant slowdown in most cases, while still
2272 * allowing diagnostics and tracing to proceed without becoming stuck.
2273 */
2274 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2275
2276 /*
2277 * When calculating the delay, we use these either side of the exponentiation to
2278 * maintain precision and scale to a reasonable number of jiffies (see the table
2279 * below.
2280 *
2281 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2282 * overage ratio to a delay.
2283 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2284 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2285 * to produce a reasonable delay curve.
2286 *
2287 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2288 * reasonable delay curve compared to precision-adjusted overage, not
2289 * penalising heavily at first, but still making sure that growth beyond the
2290 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2291 * example, with a high of 100 megabytes:
2292 *
2293 * +-------+------------------------+
2294 * | usage | time to allocate in ms |
2295 * +-------+------------------------+
2296 * | 100M | 0 |
2297 * | 101M | 6 |
2298 * | 102M | 25 |
2299 * | 103M | 57 |
2300 * | 104M | 102 |
2301 * | 105M | 159 |
2302 * | 106M | 230 |
2303 * | 107M | 313 |
2304 * | 108M | 409 |
2305 * | 109M | 518 |
2306 * | 110M | 639 |
2307 * | 111M | 774 |
2308 * | 112M | 921 |
2309 * | 113M | 1081 |
2310 * | 114M | 1254 |
2311 * | 115M | 1439 |
2312 * | 116M | 1638 |
2313 * | 117M | 1849 |
2314 * | 118M | 2000 |
2315 * | 119M | 2000 |
2316 * | 120M | 2000 |
2317 * +-------+------------------------+
2318 */
2319 #define MEMCG_DELAY_PRECISION_SHIFT 20
2320 #define MEMCG_DELAY_SCALING_SHIFT 14
2321
2322 /*
2323 * Get the number of jiffies that we should penalise a mischievous cgroup which
2324 * is exceeding its memory.high by checking both it and its ancestors.
2325 */
2326 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2327 unsigned int nr_pages)
2328 {
2329 unsigned long penalty_jiffies;
2330 u64 max_overage = 0;
2331
2332 do {
2333 unsigned long usage, high;
2334 u64 overage;
2335
2336 usage = page_counter_read(&memcg->memory);
2337 high = READ_ONCE(memcg->high);
2338
2339 if (usage <= high)
2340 continue;
2341
2342 /*
2343 * Prevent division by 0 in overage calculation by acting as if
2344 * it was a threshold of 1 page
2345 */
2346 high = max(high, 1UL);
2347
2348 overage = usage - high;
2349 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2350 overage = div64_u64(overage, high);
2351
2352 if (overage > max_overage)
2353 max_overage = overage;
2354 } while ((memcg = parent_mem_cgroup(memcg)) &&
2355 !mem_cgroup_is_root(memcg));
2356
2357 if (!max_overage)
2358 return 0;
2359
2360 /*
2361 * We use overage compared to memory.high to calculate the number of
2362 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2363 * fairly lenient on small overages, and increasingly harsh when the
2364 * memcg in question makes it clear that it has no intention of stopping
2365 * its crazy behaviour, so we exponentially increase the delay based on
2366 * overage amount.
2367 */
2368 penalty_jiffies = max_overage * max_overage * HZ;
2369 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2370 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2371
2372 /*
2373 * Factor in the task's own contribution to the overage, such that four
2374 * N-sized allocations are throttled approximately the same as one
2375 * 4N-sized allocation.
2376 *
2377 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2378 * larger the current charge patch is than that.
2379 */
2380 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2381
2382 /*
2383 * Clamp the max delay per usermode return so as to still keep the
2384 * application moving forwards and also permit diagnostics, albeit
2385 * extremely slowly.
2386 */
2387 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2388 }
2389
2390 /*
2391 * Scheduled by try_charge() to be executed from the userland return path
2392 * and reclaims memory over the high limit.
2393 */
2394 void mem_cgroup_handle_over_high(void)
2395 {
2396 unsigned long penalty_jiffies;
2397 unsigned long pflags;
2398 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2399 struct mem_cgroup *memcg;
2400
2401 if (likely(!nr_pages))
2402 return;
2403
2404 memcg = get_mem_cgroup_from_mm(current->mm);
2405 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2406 current->memcg_nr_pages_over_high = 0;
2407
2408 /*
2409 * memory.high is breached and reclaim is unable to keep up. Throttle
2410 * allocators proactively to slow down excessive growth.
2411 */
2412 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2413
2414 /*
2415 * Don't sleep if the amount of jiffies this memcg owes us is so low
2416 * that it's not even worth doing, in an attempt to be nice to those who
2417 * go only a small amount over their memory.high value and maybe haven't
2418 * been aggressively reclaimed enough yet.
2419 */
2420 if (penalty_jiffies <= HZ / 100)
2421 goto out;
2422
2423 /*
2424 * If we exit early, we're guaranteed to die (since
2425 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2426 * need to account for any ill-begotten jiffies to pay them off later.
2427 */
2428 psi_memstall_enter(&pflags);
2429 schedule_timeout_killable(penalty_jiffies);
2430 psi_memstall_leave(&pflags);
2431
2432 out:
2433 css_put(&memcg->css);
2434 }
2435
2436 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2437 unsigned int nr_pages)
2438 {
2439 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2440 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2441 struct mem_cgroup *mem_over_limit;
2442 struct page_counter *counter;
2443 unsigned long nr_reclaimed;
2444 bool may_swap = true;
2445 bool drained = false;
2446 enum oom_status oom_status;
2447
2448 if (mem_cgroup_is_root(memcg))
2449 return 0;
2450 retry:
2451 if (consume_stock(memcg, nr_pages))
2452 return 0;
2453
2454 if (!do_memsw_account() ||
2455 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2456 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2457 goto done_restock;
2458 if (do_memsw_account())
2459 page_counter_uncharge(&memcg->memsw, batch);
2460 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2461 } else {
2462 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2463 may_swap = false;
2464 }
2465
2466 if (batch > nr_pages) {
2467 batch = nr_pages;
2468 goto retry;
2469 }
2470
2471 /*
2472 * Memcg doesn't have a dedicated reserve for atomic
2473 * allocations. But like the global atomic pool, we need to
2474 * put the burden of reclaim on regular allocation requests
2475 * and let these go through as privileged allocations.
2476 */
2477 if (gfp_mask & __GFP_ATOMIC)
2478 goto force;
2479
2480 /*
2481 * Unlike in global OOM situations, memcg is not in a physical
2482 * memory shortage. Allow dying and OOM-killed tasks to
2483 * bypass the last charges so that they can exit quickly and
2484 * free their memory.
2485 */
2486 if (unlikely(should_force_charge()))
2487 goto force;
2488
2489 /*
2490 * Prevent unbounded recursion when reclaim operations need to
2491 * allocate memory. This might exceed the limits temporarily,
2492 * but we prefer facilitating memory reclaim and getting back
2493 * under the limit over triggering OOM kills in these cases.
2494 */
2495 if (unlikely(current->flags & PF_MEMALLOC))
2496 goto force;
2497
2498 if (unlikely(task_in_memcg_oom(current)))
2499 goto nomem;
2500
2501 if (!gfpflags_allow_blocking(gfp_mask))
2502 goto nomem;
2503
2504 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2505
2506 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2507 gfp_mask, may_swap);
2508
2509 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2510 goto retry;
2511
2512 if (!drained) {
2513 drain_all_stock(mem_over_limit);
2514 drained = true;
2515 goto retry;
2516 }
2517
2518 if (gfp_mask & __GFP_NORETRY)
2519 goto nomem;
2520 /*
2521 * Even though the limit is exceeded at this point, reclaim
2522 * may have been able to free some pages. Retry the charge
2523 * before killing the task.
2524 *
2525 * Only for regular pages, though: huge pages are rather
2526 * unlikely to succeed so close to the limit, and we fall back
2527 * to regular pages anyway in case of failure.
2528 */
2529 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2530 goto retry;
2531 /*
2532 * At task move, charge accounts can be doubly counted. So, it's
2533 * better to wait until the end of task_move if something is going on.
2534 */
2535 if (mem_cgroup_wait_acct_move(mem_over_limit))
2536 goto retry;
2537
2538 if (nr_retries--)
2539 goto retry;
2540
2541 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2542 goto nomem;
2543
2544 if (gfp_mask & __GFP_NOFAIL)
2545 goto force;
2546
2547 if (fatal_signal_pending(current))
2548 goto force;
2549
2550 /*
2551 * keep retrying as long as the memcg oom killer is able to make
2552 * a forward progress or bypass the charge if the oom killer
2553 * couldn't make any progress.
2554 */
2555 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2556 get_order(nr_pages * PAGE_SIZE));
2557 switch (oom_status) {
2558 case OOM_SUCCESS:
2559 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2560 goto retry;
2561 case OOM_FAILED:
2562 goto force;
2563 default:
2564 goto nomem;
2565 }
2566 nomem:
2567 if (!(gfp_mask & __GFP_NOFAIL))
2568 return -ENOMEM;
2569 force:
2570 /*
2571 * The allocation either can't fail or will lead to more memory
2572 * being freed very soon. Allow memory usage go over the limit
2573 * temporarily by force charging it.
2574 */
2575 page_counter_charge(&memcg->memory, nr_pages);
2576 if (do_memsw_account())
2577 page_counter_charge(&memcg->memsw, nr_pages);
2578 css_get_many(&memcg->css, nr_pages);
2579
2580 return 0;
2581
2582 done_restock:
2583 css_get_many(&memcg->css, batch);
2584 if (batch > nr_pages)
2585 refill_stock(memcg, batch - nr_pages);
2586
2587 /*
2588 * If the hierarchy is above the normal consumption range, schedule
2589 * reclaim on returning to userland. We can perform reclaim here
2590 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2591 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2592 * not recorded as it most likely matches current's and won't
2593 * change in the meantime. As high limit is checked again before
2594 * reclaim, the cost of mismatch is negligible.
2595 */
2596 do {
2597 if (page_counter_read(&memcg->memory) > READ_ONCE(memcg->high)) {
2598 /* Don't bother a random interrupted task */
2599 if (in_interrupt()) {
2600 schedule_work(&memcg->high_work);
2601 break;
2602 }
2603 current->memcg_nr_pages_over_high += batch;
2604 set_notify_resume(current);
2605 break;
2606 }
2607 } while ((memcg = parent_mem_cgroup(memcg)));
2608
2609 return 0;
2610 }
2611
2612 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2613 {
2614 if (mem_cgroup_is_root(memcg))
2615 return;
2616
2617 page_counter_uncharge(&memcg->memory, nr_pages);
2618 if (do_memsw_account())
2619 page_counter_uncharge(&memcg->memsw, nr_pages);
2620
2621 css_put_many(&memcg->css, nr_pages);
2622 }
2623
2624 static void lock_page_lru(struct page *page, int *isolated)
2625 {
2626 pg_data_t *pgdat = page_pgdat(page);
2627
2628 spin_lock_irq(&pgdat->lru_lock);
2629 if (PageLRU(page)) {
2630 struct lruvec *lruvec;
2631
2632 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2633 ClearPageLRU(page);
2634 del_page_from_lru_list(page, lruvec, page_lru(page));
2635 *isolated = 1;
2636 } else
2637 *isolated = 0;
2638 }
2639
2640 static void unlock_page_lru(struct page *page, int isolated)
2641 {
2642 pg_data_t *pgdat = page_pgdat(page);
2643
2644 if (isolated) {
2645 struct lruvec *lruvec;
2646
2647 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2648 VM_BUG_ON_PAGE(PageLRU(page), page);
2649 SetPageLRU(page);
2650 add_page_to_lru_list(page, lruvec, page_lru(page));
2651 }
2652 spin_unlock_irq(&pgdat->lru_lock);
2653 }
2654
2655 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2656 bool lrucare)
2657 {
2658 int isolated;
2659
2660 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2661
2662 /*
2663 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2664 * may already be on some other mem_cgroup's LRU. Take care of it.
2665 */
2666 if (lrucare)
2667 lock_page_lru(page, &isolated);
2668
2669 /*
2670 * Nobody should be changing or seriously looking at
2671 * page->mem_cgroup at this point:
2672 *
2673 * - the page is uncharged
2674 *
2675 * - the page is off-LRU
2676 *
2677 * - an anonymous fault has exclusive page access, except for
2678 * a locked page table
2679 *
2680 * - a page cache insertion, a swapin fault, or a migration
2681 * have the page locked
2682 */
2683 page->mem_cgroup = memcg;
2684
2685 if (lrucare)
2686 unlock_page_lru(page, isolated);
2687 }
2688
2689 #ifdef CONFIG_MEMCG_KMEM
2690 /*
2691 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2692 *
2693 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2694 * cgroup_mutex, etc.
2695 */
2696 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2697 {
2698 struct page *page;
2699
2700 if (mem_cgroup_disabled())
2701 return NULL;
2702
2703 page = virt_to_head_page(p);
2704
2705 /*
2706 * Slab pages don't have page->mem_cgroup set because corresponding
2707 * kmem caches can be reparented during the lifetime. That's why
2708 * memcg_from_slab_page() should be used instead.
2709 */
2710 if (PageSlab(page))
2711 return memcg_from_slab_page(page);
2712
2713 /* All other pages use page->mem_cgroup */
2714 return page->mem_cgroup;
2715 }
2716
2717 static int memcg_alloc_cache_id(void)
2718 {
2719 int id, size;
2720 int err;
2721
2722 id = ida_simple_get(&memcg_cache_ida,
2723 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2724 if (id < 0)
2725 return id;
2726
2727 if (id < memcg_nr_cache_ids)
2728 return id;
2729
2730 /*
2731 * There's no space for the new id in memcg_caches arrays,
2732 * so we have to grow them.
2733 */
2734 down_write(&memcg_cache_ids_sem);
2735
2736 size = 2 * (id + 1);
2737 if (size < MEMCG_CACHES_MIN_SIZE)
2738 size = MEMCG_CACHES_MIN_SIZE;
2739 else if (size > MEMCG_CACHES_MAX_SIZE)
2740 size = MEMCG_CACHES_MAX_SIZE;
2741
2742 err = memcg_update_all_caches(size);
2743 if (!err)
2744 err = memcg_update_all_list_lrus(size);
2745 if (!err)
2746 memcg_nr_cache_ids = size;
2747
2748 up_write(&memcg_cache_ids_sem);
2749
2750 if (err) {
2751 ida_simple_remove(&memcg_cache_ida, id);
2752 return err;
2753 }
2754 return id;
2755 }
2756
2757 static void memcg_free_cache_id(int id)
2758 {
2759 ida_simple_remove(&memcg_cache_ida, id);
2760 }
2761
2762 struct memcg_kmem_cache_create_work {
2763 struct mem_cgroup *memcg;
2764 struct kmem_cache *cachep;
2765 struct work_struct work;
2766 };
2767
2768 static void memcg_kmem_cache_create_func(struct work_struct *w)
2769 {
2770 struct memcg_kmem_cache_create_work *cw =
2771 container_of(w, struct memcg_kmem_cache_create_work, work);
2772 struct mem_cgroup *memcg = cw->memcg;
2773 struct kmem_cache *cachep = cw->cachep;
2774
2775 memcg_create_kmem_cache(memcg, cachep);
2776
2777 css_put(&memcg->css);
2778 kfree(cw);
2779 }
2780
2781 /*
2782 * Enqueue the creation of a per-memcg kmem_cache.
2783 */
2784 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2785 struct kmem_cache *cachep)
2786 {
2787 struct memcg_kmem_cache_create_work *cw;
2788
2789 if (!css_tryget_online(&memcg->css))
2790 return;
2791
2792 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2793 if (!cw)
2794 return;
2795
2796 cw->memcg = memcg;
2797 cw->cachep = cachep;
2798 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2799
2800 queue_work(memcg_kmem_cache_wq, &cw->work);
2801 }
2802
2803 static inline bool memcg_kmem_bypass(void)
2804 {
2805 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2806 return true;
2807 return false;
2808 }
2809
2810 /**
2811 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2812 * @cachep: the original global kmem cache
2813 *
2814 * Return the kmem_cache we're supposed to use for a slab allocation.
2815 * We try to use the current memcg's version of the cache.
2816 *
2817 * If the cache does not exist yet, if we are the first user of it, we
2818 * create it asynchronously in a workqueue and let the current allocation
2819 * go through with the original cache.
2820 *
2821 * This function takes a reference to the cache it returns to assure it
2822 * won't get destroyed while we are working with it. Once the caller is
2823 * done with it, memcg_kmem_put_cache() must be called to release the
2824 * reference.
2825 */
2826 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2827 {
2828 struct mem_cgroup *memcg;
2829 struct kmem_cache *memcg_cachep;
2830 struct memcg_cache_array *arr;
2831 int kmemcg_id;
2832
2833 VM_BUG_ON(!is_root_cache(cachep));
2834
2835 if (memcg_kmem_bypass())
2836 return cachep;
2837
2838 rcu_read_lock();
2839
2840 if (unlikely(current->active_memcg))
2841 memcg = current->active_memcg;
2842 else
2843 memcg = mem_cgroup_from_task(current);
2844
2845 if (!memcg || memcg == root_mem_cgroup)
2846 goto out_unlock;
2847
2848 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2849 if (kmemcg_id < 0)
2850 goto out_unlock;
2851
2852 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2853
2854 /*
2855 * Make sure we will access the up-to-date value. The code updating
2856 * memcg_caches issues a write barrier to match the data dependency
2857 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2858 */
2859 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2860
2861 /*
2862 * If we are in a safe context (can wait, and not in interrupt
2863 * context), we could be be predictable and return right away.
2864 * This would guarantee that the allocation being performed
2865 * already belongs in the new cache.
2866 *
2867 * However, there are some clashes that can arrive from locking.
2868 * For instance, because we acquire the slab_mutex while doing
2869 * memcg_create_kmem_cache, this means no further allocation
2870 * could happen with the slab_mutex held. So it's better to
2871 * defer everything.
2872 *
2873 * If the memcg is dying or memcg_cache is about to be released,
2874 * don't bother creating new kmem_caches. Because memcg_cachep
2875 * is ZEROed as the fist step of kmem offlining, we don't need
2876 * percpu_ref_tryget_live() here. css_tryget_online() check in
2877 * memcg_schedule_kmem_cache_create() will prevent us from
2878 * creation of a new kmem_cache.
2879 */
2880 if (unlikely(!memcg_cachep))
2881 memcg_schedule_kmem_cache_create(memcg, cachep);
2882 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2883 cachep = memcg_cachep;
2884 out_unlock:
2885 rcu_read_unlock();
2886 return cachep;
2887 }
2888
2889 /**
2890 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2891 * @cachep: the cache returned by memcg_kmem_get_cache
2892 */
2893 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2894 {
2895 if (!is_root_cache(cachep))
2896 percpu_ref_put(&cachep->memcg_params.refcnt);
2897 }
2898
2899 /**
2900 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2901 * @memcg: memory cgroup to charge
2902 * @gfp: reclaim mode
2903 * @nr_pages: number of pages to charge
2904 *
2905 * Returns 0 on success, an error code on failure.
2906 */
2907 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2908 unsigned int nr_pages)
2909 {
2910 struct page_counter *counter;
2911 int ret;
2912
2913 ret = try_charge(memcg, gfp, nr_pages);
2914 if (ret)
2915 return ret;
2916
2917 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2918 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2919
2920 /*
2921 * Enforce __GFP_NOFAIL allocation because callers are not
2922 * prepared to see failures and likely do not have any failure
2923 * handling code.
2924 */
2925 if (gfp & __GFP_NOFAIL) {
2926 page_counter_charge(&memcg->kmem, nr_pages);
2927 return 0;
2928 }
2929 cancel_charge(memcg, nr_pages);
2930 return -ENOMEM;
2931 }
2932 return 0;
2933 }
2934
2935 /**
2936 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2937 * @memcg: memcg to uncharge
2938 * @nr_pages: number of pages to uncharge
2939 */
2940 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2941 {
2942 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2943 page_counter_uncharge(&memcg->kmem, nr_pages);
2944
2945 page_counter_uncharge(&memcg->memory, nr_pages);
2946 if (do_memsw_account())
2947 page_counter_uncharge(&memcg->memsw, nr_pages);
2948 }
2949
2950 /**
2951 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2952 * @page: page to charge
2953 * @gfp: reclaim mode
2954 * @order: allocation order
2955 *
2956 * Returns 0 on success, an error code on failure.
2957 */
2958 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2959 {
2960 struct mem_cgroup *memcg;
2961 int ret = 0;
2962
2963 if (memcg_kmem_bypass())
2964 return 0;
2965
2966 memcg = get_mem_cgroup_from_current();
2967 if (!mem_cgroup_is_root(memcg)) {
2968 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2969 if (!ret) {
2970 page->mem_cgroup = memcg;
2971 __SetPageKmemcg(page);
2972 }
2973 }
2974 css_put(&memcg->css);
2975 return ret;
2976 }
2977
2978 /**
2979 * __memcg_kmem_uncharge_page: uncharge a kmem page
2980 * @page: page to uncharge
2981 * @order: allocation order
2982 */
2983 void __memcg_kmem_uncharge_page(struct page *page, int order)
2984 {
2985 struct mem_cgroup *memcg = page->mem_cgroup;
2986 unsigned int nr_pages = 1 << order;
2987
2988 if (!memcg)
2989 return;
2990
2991 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2992 __memcg_kmem_uncharge(memcg, nr_pages);
2993 page->mem_cgroup = NULL;
2994
2995 /* slab pages do not have PageKmemcg flag set */
2996 if (PageKmemcg(page))
2997 __ClearPageKmemcg(page);
2998
2999 css_put_many(&memcg->css, nr_pages);
3000 }
3001 #endif /* CONFIG_MEMCG_KMEM */
3002
3003 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3004
3005 /*
3006 * Because tail pages are not marked as "used", set it. We're under
3007 * pgdat->lru_lock and migration entries setup in all page mappings.
3008 */
3009 void mem_cgroup_split_huge_fixup(struct page *head)
3010 {
3011 int i;
3012
3013 if (mem_cgroup_disabled())
3014 return;
3015
3016 for (i = 1; i < HPAGE_PMD_NR; i++)
3017 head[i].mem_cgroup = head->mem_cgroup;
3018
3019 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3020 }
3021 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3022
3023 #ifdef CONFIG_MEMCG_SWAP
3024 /**
3025 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3026 * @entry: swap entry to be moved
3027 * @from: mem_cgroup which the entry is moved from
3028 * @to: mem_cgroup which the entry is moved to
3029 *
3030 * It succeeds only when the swap_cgroup's record for this entry is the same
3031 * as the mem_cgroup's id of @from.
3032 *
3033 * Returns 0 on success, -EINVAL on failure.
3034 *
3035 * The caller must have charged to @to, IOW, called page_counter_charge() about
3036 * both res and memsw, and called css_get().
3037 */
3038 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3039 struct mem_cgroup *from, struct mem_cgroup *to)
3040 {
3041 unsigned short old_id, new_id;
3042
3043 old_id = mem_cgroup_id(from);
3044 new_id = mem_cgroup_id(to);
3045
3046 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3047 mod_memcg_state(from, MEMCG_SWAP, -1);
3048 mod_memcg_state(to, MEMCG_SWAP, 1);
3049 return 0;
3050 }
3051 return -EINVAL;
3052 }
3053 #else
3054 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3055 struct mem_cgroup *from, struct mem_cgroup *to)
3056 {
3057 return -EINVAL;
3058 }
3059 #endif
3060
3061 static DEFINE_MUTEX(memcg_max_mutex);
3062
3063 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3064 unsigned long max, bool memsw)
3065 {
3066 bool enlarge = false;
3067 bool drained = false;
3068 int ret;
3069 bool limits_invariant;
3070 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3071
3072 do {
3073 if (signal_pending(current)) {
3074 ret = -EINTR;
3075 break;
3076 }
3077
3078 mutex_lock(&memcg_max_mutex);
3079 /*
3080 * Make sure that the new limit (memsw or memory limit) doesn't
3081 * break our basic invariant rule memory.max <= memsw.max.
3082 */
3083 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3084 max <= memcg->memsw.max;
3085 if (!limits_invariant) {
3086 mutex_unlock(&memcg_max_mutex);
3087 ret = -EINVAL;
3088 break;
3089 }
3090 if (max > counter->max)
3091 enlarge = true;
3092 ret = page_counter_set_max(counter, max);
3093 mutex_unlock(&memcg_max_mutex);
3094
3095 if (!ret)
3096 break;
3097
3098 if (!drained) {
3099 drain_all_stock(memcg);
3100 drained = true;
3101 continue;
3102 }
3103
3104 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3105 GFP_KERNEL, !memsw)) {
3106 ret = -EBUSY;
3107 break;
3108 }
3109 } while (true);
3110
3111 if (!ret && enlarge)
3112 memcg_oom_recover(memcg);
3113
3114 return ret;
3115 }
3116
3117 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3118 gfp_t gfp_mask,
3119 unsigned long *total_scanned)
3120 {
3121 unsigned long nr_reclaimed = 0;
3122 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3123 unsigned long reclaimed;
3124 int loop = 0;
3125 struct mem_cgroup_tree_per_node *mctz;
3126 unsigned long excess;
3127 unsigned long nr_scanned;
3128
3129 if (order > 0)
3130 return 0;
3131
3132 mctz = soft_limit_tree_node(pgdat->node_id);
3133
3134 /*
3135 * Do not even bother to check the largest node if the root
3136 * is empty. Do it lockless to prevent lock bouncing. Races
3137 * are acceptable as soft limit is best effort anyway.
3138 */
3139 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3140 return 0;
3141
3142 /*
3143 * This loop can run a while, specially if mem_cgroup's continuously
3144 * keep exceeding their soft limit and putting the system under
3145 * pressure
3146 */
3147 do {
3148 if (next_mz)
3149 mz = next_mz;
3150 else
3151 mz = mem_cgroup_largest_soft_limit_node(mctz);
3152 if (!mz)
3153 break;
3154
3155 nr_scanned = 0;
3156 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3157 gfp_mask, &nr_scanned);
3158 nr_reclaimed += reclaimed;
3159 *total_scanned += nr_scanned;
3160 spin_lock_irq(&mctz->lock);
3161 __mem_cgroup_remove_exceeded(mz, mctz);
3162
3163 /*
3164 * If we failed to reclaim anything from this memory cgroup
3165 * it is time to move on to the next cgroup
3166 */
3167 next_mz = NULL;
3168 if (!reclaimed)
3169 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3170
3171 excess = soft_limit_excess(mz->memcg);
3172 /*
3173 * One school of thought says that we should not add
3174 * back the node to the tree if reclaim returns 0.
3175 * But our reclaim could return 0, simply because due
3176 * to priority we are exposing a smaller subset of
3177 * memory to reclaim from. Consider this as a longer
3178 * term TODO.
3179 */
3180 /* If excess == 0, no tree ops */
3181 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3182 spin_unlock_irq(&mctz->lock);
3183 css_put(&mz->memcg->css);
3184 loop++;
3185 /*
3186 * Could not reclaim anything and there are no more
3187 * mem cgroups to try or we seem to be looping without
3188 * reclaiming anything.
3189 */
3190 if (!nr_reclaimed &&
3191 (next_mz == NULL ||
3192 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3193 break;
3194 } while (!nr_reclaimed);
3195 if (next_mz)
3196 css_put(&next_mz->memcg->css);
3197 return nr_reclaimed;
3198 }
3199
3200 /*
3201 * Test whether @memcg has children, dead or alive. Note that this
3202 * function doesn't care whether @memcg has use_hierarchy enabled and
3203 * returns %true if there are child csses according to the cgroup
3204 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3205 */
3206 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3207 {
3208 bool ret;
3209
3210 rcu_read_lock();
3211 ret = css_next_child(NULL, &memcg->css);
3212 rcu_read_unlock();
3213 return ret;
3214 }
3215
3216 /*
3217 * Reclaims as many pages from the given memcg as possible.
3218 *
3219 * Caller is responsible for holding css reference for memcg.
3220 */
3221 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3222 {
3223 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3224
3225 /* we call try-to-free pages for make this cgroup empty */
3226 lru_add_drain_all();
3227
3228 drain_all_stock(memcg);
3229
3230 /* try to free all pages in this cgroup */
3231 while (nr_retries && page_counter_read(&memcg->memory)) {
3232 int progress;
3233
3234 if (signal_pending(current))
3235 return -EINTR;
3236
3237 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3238 GFP_KERNEL, true);
3239 if (!progress) {
3240 nr_retries--;
3241 /* maybe some writeback is necessary */
3242 congestion_wait(BLK_RW_ASYNC, HZ/10);
3243 }
3244
3245 }
3246
3247 return 0;
3248 }
3249
3250 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3251 char *buf, size_t nbytes,
3252 loff_t off)
3253 {
3254 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3255
3256 if (mem_cgroup_is_root(memcg))
3257 return -EINVAL;
3258 return mem_cgroup_force_empty(memcg) ?: nbytes;
3259 }
3260
3261 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3262 struct cftype *cft)
3263 {
3264 return mem_cgroup_from_css(css)->use_hierarchy;
3265 }
3266
3267 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3268 struct cftype *cft, u64 val)
3269 {
3270 int retval = 0;
3271 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3272 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3273
3274 if (memcg->use_hierarchy == val)
3275 return 0;
3276
3277 /*
3278 * If parent's use_hierarchy is set, we can't make any modifications
3279 * in the child subtrees. If it is unset, then the change can
3280 * occur, provided the current cgroup has no children.
3281 *
3282 * For the root cgroup, parent_mem is NULL, we allow value to be
3283 * set if there are no children.
3284 */
3285 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3286 (val == 1 || val == 0)) {
3287 if (!memcg_has_children(memcg))
3288 memcg->use_hierarchy = val;
3289 else
3290 retval = -EBUSY;
3291 } else
3292 retval = -EINVAL;
3293
3294 return retval;
3295 }
3296
3297 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3298 {
3299 unsigned long val;
3300
3301 if (mem_cgroup_is_root(memcg)) {
3302 val = memcg_page_state(memcg, MEMCG_CACHE) +
3303 memcg_page_state(memcg, MEMCG_RSS);
3304 if (swap)
3305 val += memcg_page_state(memcg, MEMCG_SWAP);
3306 } else {
3307 if (!swap)
3308 val = page_counter_read(&memcg->memory);
3309 else
3310 val = page_counter_read(&memcg->memsw);
3311 }
3312 return val;
3313 }
3314
3315 enum {
3316 RES_USAGE,
3317 RES_LIMIT,
3318 RES_MAX_USAGE,
3319 RES_FAILCNT,
3320 RES_SOFT_LIMIT,
3321 };
3322
3323 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3324 struct cftype *cft)
3325 {
3326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3327 struct page_counter *counter;
3328
3329 switch (MEMFILE_TYPE(cft->private)) {
3330 case _MEM:
3331 counter = &memcg->memory;
3332 break;
3333 case _MEMSWAP:
3334 counter = &memcg->memsw;
3335 break;
3336 case _KMEM:
3337 counter = &memcg->kmem;
3338 break;
3339 case _TCP:
3340 counter = &memcg->tcpmem;
3341 break;
3342 default:
3343 BUG();
3344 }
3345
3346 switch (MEMFILE_ATTR(cft->private)) {
3347 case RES_USAGE:
3348 if (counter == &memcg->memory)
3349 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3350 if (counter == &memcg->memsw)
3351 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3352 return (u64)page_counter_read(counter) * PAGE_SIZE;
3353 case RES_LIMIT:
3354 return (u64)counter->max * PAGE_SIZE;
3355 case RES_MAX_USAGE:
3356 return (u64)counter->watermark * PAGE_SIZE;
3357 case RES_FAILCNT:
3358 return counter->failcnt;
3359 case RES_SOFT_LIMIT:
3360 return (u64)memcg->soft_limit * PAGE_SIZE;
3361 default:
3362 BUG();
3363 }
3364 }
3365
3366 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3367 {
3368 unsigned long stat[MEMCG_NR_STAT] = {0};
3369 struct mem_cgroup *mi;
3370 int node, cpu, i;
3371
3372 for_each_online_cpu(cpu)
3373 for (i = 0; i < MEMCG_NR_STAT; i++)
3374 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3375
3376 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3377 for (i = 0; i < MEMCG_NR_STAT; i++)
3378 atomic_long_add(stat[i], &mi->vmstats[i]);
3379
3380 for_each_node(node) {
3381 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3382 struct mem_cgroup_per_node *pi;
3383
3384 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3385 stat[i] = 0;
3386
3387 for_each_online_cpu(cpu)
3388 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3389 stat[i] += per_cpu(
3390 pn->lruvec_stat_cpu->count[i], cpu);
3391
3392 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3393 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3394 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3395 }
3396 }
3397
3398 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3399 {
3400 unsigned long events[NR_VM_EVENT_ITEMS];
3401 struct mem_cgroup *mi;
3402 int cpu, i;
3403
3404 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3405 events[i] = 0;
3406
3407 for_each_online_cpu(cpu)
3408 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3409 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3410 cpu);
3411
3412 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3413 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3414 atomic_long_add(events[i], &mi->vmevents[i]);
3415 }
3416
3417 #ifdef CONFIG_MEMCG_KMEM
3418 static int memcg_online_kmem(struct mem_cgroup *memcg)
3419 {
3420 int memcg_id;
3421
3422 if (cgroup_memory_nokmem)
3423 return 0;
3424
3425 BUG_ON(memcg->kmemcg_id >= 0);
3426 BUG_ON(memcg->kmem_state);
3427
3428 memcg_id = memcg_alloc_cache_id();
3429 if (memcg_id < 0)
3430 return memcg_id;
3431
3432 static_branch_inc(&memcg_kmem_enabled_key);
3433 /*
3434 * A memory cgroup is considered kmem-online as soon as it gets
3435 * kmemcg_id. Setting the id after enabling static branching will
3436 * guarantee no one starts accounting before all call sites are
3437 * patched.
3438 */
3439 memcg->kmemcg_id = memcg_id;
3440 memcg->kmem_state = KMEM_ONLINE;
3441 INIT_LIST_HEAD(&memcg->kmem_caches);
3442
3443 return 0;
3444 }
3445
3446 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3447 {
3448 struct cgroup_subsys_state *css;
3449 struct mem_cgroup *parent, *child;
3450 int kmemcg_id;
3451
3452 if (memcg->kmem_state != KMEM_ONLINE)
3453 return;
3454 /*
3455 * Clear the online state before clearing memcg_caches array
3456 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3457 * guarantees that no cache will be created for this cgroup
3458 * after we are done (see memcg_create_kmem_cache()).
3459 */
3460 memcg->kmem_state = KMEM_ALLOCATED;
3461
3462 parent = parent_mem_cgroup(memcg);
3463 if (!parent)
3464 parent = root_mem_cgroup;
3465
3466 /*
3467 * Deactivate and reparent kmem_caches.
3468 */
3469 memcg_deactivate_kmem_caches(memcg, parent);
3470
3471 kmemcg_id = memcg->kmemcg_id;
3472 BUG_ON(kmemcg_id < 0);
3473
3474 /*
3475 * Change kmemcg_id of this cgroup and all its descendants to the
3476 * parent's id, and then move all entries from this cgroup's list_lrus
3477 * to ones of the parent. After we have finished, all list_lrus
3478 * corresponding to this cgroup are guaranteed to remain empty. The
3479 * ordering is imposed by list_lru_node->lock taken by
3480 * memcg_drain_all_list_lrus().
3481 */
3482 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3483 css_for_each_descendant_pre(css, &memcg->css) {
3484 child = mem_cgroup_from_css(css);
3485 BUG_ON(child->kmemcg_id != kmemcg_id);
3486 child->kmemcg_id = parent->kmemcg_id;
3487 if (!memcg->use_hierarchy)
3488 break;
3489 }
3490 rcu_read_unlock();
3491
3492 memcg_drain_all_list_lrus(kmemcg_id, parent);
3493
3494 memcg_free_cache_id(kmemcg_id);
3495 }
3496
3497 static void memcg_free_kmem(struct mem_cgroup *memcg)
3498 {
3499 /* css_alloc() failed, offlining didn't happen */
3500 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3501 memcg_offline_kmem(memcg);
3502
3503 if (memcg->kmem_state == KMEM_ALLOCATED) {
3504 WARN_ON(!list_empty(&memcg->kmem_caches));
3505 static_branch_dec(&memcg_kmem_enabled_key);
3506 }
3507 }
3508 #else
3509 static int memcg_online_kmem(struct mem_cgroup *memcg)
3510 {
3511 return 0;
3512 }
3513 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3514 {
3515 }
3516 static void memcg_free_kmem(struct mem_cgroup *memcg)
3517 {
3518 }
3519 #endif /* CONFIG_MEMCG_KMEM */
3520
3521 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3522 unsigned long max)
3523 {
3524 int ret;
3525
3526 mutex_lock(&memcg_max_mutex);
3527 ret = page_counter_set_max(&memcg->kmem, max);
3528 mutex_unlock(&memcg_max_mutex);
3529 return ret;
3530 }
3531
3532 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3533 {
3534 int ret;
3535
3536 mutex_lock(&memcg_max_mutex);
3537
3538 ret = page_counter_set_max(&memcg->tcpmem, max);
3539 if (ret)
3540 goto out;
3541
3542 if (!memcg->tcpmem_active) {
3543 /*
3544 * The active flag needs to be written after the static_key
3545 * update. This is what guarantees that the socket activation
3546 * function is the last one to run. See mem_cgroup_sk_alloc()
3547 * for details, and note that we don't mark any socket as
3548 * belonging to this memcg until that flag is up.
3549 *
3550 * We need to do this, because static_keys will span multiple
3551 * sites, but we can't control their order. If we mark a socket
3552 * as accounted, but the accounting functions are not patched in
3553 * yet, we'll lose accounting.
3554 *
3555 * We never race with the readers in mem_cgroup_sk_alloc(),
3556 * because when this value change, the code to process it is not
3557 * patched in yet.
3558 */
3559 static_branch_inc(&memcg_sockets_enabled_key);
3560 memcg->tcpmem_active = true;
3561 }
3562 out:
3563 mutex_unlock(&memcg_max_mutex);
3564 return ret;
3565 }
3566
3567 /*
3568 * The user of this function is...
3569 * RES_LIMIT.
3570 */
3571 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3572 char *buf, size_t nbytes, loff_t off)
3573 {
3574 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3575 unsigned long nr_pages;
3576 int ret;
3577
3578 buf = strstrip(buf);
3579 ret = page_counter_memparse(buf, "-1", &nr_pages);
3580 if (ret)
3581 return ret;
3582
3583 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3584 case RES_LIMIT:
3585 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3586 ret = -EINVAL;
3587 break;
3588 }
3589 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3590 case _MEM:
3591 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3592 break;
3593 case _MEMSWAP:
3594 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3595 break;
3596 case _KMEM:
3597 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3598 "Please report your usecase to linux-mm@kvack.org if you "
3599 "depend on this functionality.\n");
3600 ret = memcg_update_kmem_max(memcg, nr_pages);
3601 break;
3602 case _TCP:
3603 ret = memcg_update_tcp_max(memcg, nr_pages);
3604 break;
3605 }
3606 break;
3607 case RES_SOFT_LIMIT:
3608 memcg->soft_limit = nr_pages;
3609 ret = 0;
3610 break;
3611 }
3612 return ret ?: nbytes;
3613 }
3614
3615 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3616 size_t nbytes, loff_t off)
3617 {
3618 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3619 struct page_counter *counter;
3620
3621 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3622 case _MEM:
3623 counter = &memcg->memory;
3624 break;
3625 case _MEMSWAP:
3626 counter = &memcg->memsw;
3627 break;
3628 case _KMEM:
3629 counter = &memcg->kmem;
3630 break;
3631 case _TCP:
3632 counter = &memcg->tcpmem;
3633 break;
3634 default:
3635 BUG();
3636 }
3637
3638 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3639 case RES_MAX_USAGE:
3640 page_counter_reset_watermark(counter);
3641 break;
3642 case RES_FAILCNT:
3643 counter->failcnt = 0;
3644 break;
3645 default:
3646 BUG();
3647 }
3648
3649 return nbytes;
3650 }
3651
3652 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3653 struct cftype *cft)
3654 {
3655 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3656 }
3657
3658 #ifdef CONFIG_MMU
3659 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3660 struct cftype *cft, u64 val)
3661 {
3662 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3663
3664 if (val & ~MOVE_MASK)
3665 return -EINVAL;
3666
3667 /*
3668 * No kind of locking is needed in here, because ->can_attach() will
3669 * check this value once in the beginning of the process, and then carry
3670 * on with stale data. This means that changes to this value will only
3671 * affect task migrations starting after the change.
3672 */
3673 memcg->move_charge_at_immigrate = val;
3674 return 0;
3675 }
3676 #else
3677 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3678 struct cftype *cft, u64 val)
3679 {
3680 return -ENOSYS;
3681 }
3682 #endif
3683
3684 #ifdef CONFIG_NUMA
3685
3686 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3687 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3688 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3689
3690 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3691 int nid, unsigned int lru_mask)
3692 {
3693 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3694 unsigned long nr = 0;
3695 enum lru_list lru;
3696
3697 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3698
3699 for_each_lru(lru) {
3700 if (!(BIT(lru) & lru_mask))
3701 continue;
3702 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3703 }
3704 return nr;
3705 }
3706
3707 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3708 unsigned int lru_mask)
3709 {
3710 unsigned long nr = 0;
3711 enum lru_list lru;
3712
3713 for_each_lru(lru) {
3714 if (!(BIT(lru) & lru_mask))
3715 continue;
3716 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3717 }
3718 return nr;
3719 }
3720
3721 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3722 {
3723 struct numa_stat {
3724 const char *name;
3725 unsigned int lru_mask;
3726 };
3727
3728 static const struct numa_stat stats[] = {
3729 { "total", LRU_ALL },
3730 { "file", LRU_ALL_FILE },
3731 { "anon", LRU_ALL_ANON },
3732 { "unevictable", BIT(LRU_UNEVICTABLE) },
3733 };
3734 const struct numa_stat *stat;
3735 int nid;
3736 unsigned long nr;
3737 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3738
3739 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3740 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3741 seq_printf(m, "%s=%lu", stat->name, nr);
3742 for_each_node_state(nid, N_MEMORY) {
3743 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3744 stat->lru_mask);
3745 seq_printf(m, " N%d=%lu", nid, nr);
3746 }
3747 seq_putc(m, '\n');
3748 }
3749
3750 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3751 struct mem_cgroup *iter;
3752
3753 nr = 0;
3754 for_each_mem_cgroup_tree(iter, memcg)
3755 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3756 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3757 for_each_node_state(nid, N_MEMORY) {
3758 nr = 0;
3759 for_each_mem_cgroup_tree(iter, memcg)
3760 nr += mem_cgroup_node_nr_lru_pages(
3761 iter, nid, stat->lru_mask);
3762 seq_printf(m, " N%d=%lu", nid, nr);
3763 }
3764 seq_putc(m, '\n');
3765 }
3766
3767 return 0;
3768 }
3769 #endif /* CONFIG_NUMA */
3770
3771 static const unsigned int memcg1_stats[] = {
3772 MEMCG_CACHE,
3773 MEMCG_RSS,
3774 MEMCG_RSS_HUGE,
3775 NR_SHMEM,
3776 NR_FILE_MAPPED,
3777 NR_FILE_DIRTY,
3778 NR_WRITEBACK,
3779 MEMCG_SWAP,
3780 };
3781
3782 static const char *const memcg1_stat_names[] = {
3783 "cache",
3784 "rss",
3785 "rss_huge",
3786 "shmem",
3787 "mapped_file",
3788 "dirty",
3789 "writeback",
3790 "swap",
3791 };
3792
3793 /* Universal VM events cgroup1 shows, original sort order */
3794 static const unsigned int memcg1_events[] = {
3795 PGPGIN,
3796 PGPGOUT,
3797 PGFAULT,
3798 PGMAJFAULT,
3799 };
3800
3801 static int memcg_stat_show(struct seq_file *m, void *v)
3802 {
3803 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3804 unsigned long memory, memsw;
3805 struct mem_cgroup *mi;
3806 unsigned int i;
3807
3808 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3809
3810 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3811 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3812 continue;
3813 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3814 memcg_page_state_local(memcg, memcg1_stats[i]) *
3815 PAGE_SIZE);
3816 }
3817
3818 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3819 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3820 memcg_events_local(memcg, memcg1_events[i]));
3821
3822 for (i = 0; i < NR_LRU_LISTS; i++)
3823 seq_printf(m, "%s %lu\n", lru_list_name(i),
3824 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3825 PAGE_SIZE);
3826
3827 /* Hierarchical information */
3828 memory = memsw = PAGE_COUNTER_MAX;
3829 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3830 memory = min(memory, READ_ONCE(mi->memory.max));
3831 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3832 }
3833 seq_printf(m, "hierarchical_memory_limit %llu\n",
3834 (u64)memory * PAGE_SIZE);
3835 if (do_memsw_account())
3836 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3837 (u64)memsw * PAGE_SIZE);
3838
3839 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3840 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3841 continue;
3842 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3843 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3844 PAGE_SIZE);
3845 }
3846
3847 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3848 seq_printf(m, "total_%s %llu\n",
3849 vm_event_name(memcg1_events[i]),
3850 (u64)memcg_events(memcg, memcg1_events[i]));
3851
3852 for (i = 0; i < NR_LRU_LISTS; i++)
3853 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3854 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3855 PAGE_SIZE);
3856
3857 #ifdef CONFIG_DEBUG_VM
3858 {
3859 pg_data_t *pgdat;
3860 struct mem_cgroup_per_node *mz;
3861 struct zone_reclaim_stat *rstat;
3862 unsigned long recent_rotated[2] = {0, 0};
3863 unsigned long recent_scanned[2] = {0, 0};
3864
3865 for_each_online_pgdat(pgdat) {
3866 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3867 rstat = &mz->lruvec.reclaim_stat;
3868
3869 recent_rotated[0] += rstat->recent_rotated[0];
3870 recent_rotated[1] += rstat->recent_rotated[1];
3871 recent_scanned[0] += rstat->recent_scanned[0];
3872 recent_scanned[1] += rstat->recent_scanned[1];
3873 }
3874 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3875 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3876 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3877 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3878 }
3879 #endif
3880
3881 return 0;
3882 }
3883
3884 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3885 struct cftype *cft)
3886 {
3887 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3888
3889 return mem_cgroup_swappiness(memcg);
3890 }
3891
3892 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3893 struct cftype *cft, u64 val)
3894 {
3895 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3896
3897 if (val > 100)
3898 return -EINVAL;
3899
3900 if (css->parent)
3901 memcg->swappiness = val;
3902 else
3903 vm_swappiness = val;
3904
3905 return 0;
3906 }
3907
3908 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3909 {
3910 struct mem_cgroup_threshold_ary *t;
3911 unsigned long usage;
3912 int i;
3913
3914 rcu_read_lock();
3915 if (!swap)
3916 t = rcu_dereference(memcg->thresholds.primary);
3917 else
3918 t = rcu_dereference(memcg->memsw_thresholds.primary);
3919
3920 if (!t)
3921 goto unlock;
3922
3923 usage = mem_cgroup_usage(memcg, swap);
3924
3925 /*
3926 * current_threshold points to threshold just below or equal to usage.
3927 * If it's not true, a threshold was crossed after last
3928 * call of __mem_cgroup_threshold().
3929 */
3930 i = t->current_threshold;
3931
3932 /*
3933 * Iterate backward over array of thresholds starting from
3934 * current_threshold and check if a threshold is crossed.
3935 * If none of thresholds below usage is crossed, we read
3936 * only one element of the array here.
3937 */
3938 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3939 eventfd_signal(t->entries[i].eventfd, 1);
3940
3941 /* i = current_threshold + 1 */
3942 i++;
3943
3944 /*
3945 * Iterate forward over array of thresholds starting from
3946 * current_threshold+1 and check if a threshold is crossed.
3947 * If none of thresholds above usage is crossed, we read
3948 * only one element of the array here.
3949 */
3950 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3951 eventfd_signal(t->entries[i].eventfd, 1);
3952
3953 /* Update current_threshold */
3954 t->current_threshold = i - 1;
3955 unlock:
3956 rcu_read_unlock();
3957 }
3958
3959 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3960 {
3961 while (memcg) {
3962 __mem_cgroup_threshold(memcg, false);
3963 if (do_memsw_account())
3964 __mem_cgroup_threshold(memcg, true);
3965
3966 memcg = parent_mem_cgroup(memcg);
3967 }
3968 }
3969
3970 static int compare_thresholds(const void *a, const void *b)
3971 {
3972 const struct mem_cgroup_threshold *_a = a;
3973 const struct mem_cgroup_threshold *_b = b;
3974
3975 if (_a->threshold > _b->threshold)
3976 return 1;
3977
3978 if (_a->threshold < _b->threshold)
3979 return -1;
3980
3981 return 0;
3982 }
3983
3984 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3985 {
3986 struct mem_cgroup_eventfd_list *ev;
3987
3988 spin_lock(&memcg_oom_lock);
3989
3990 list_for_each_entry(ev, &memcg->oom_notify, list)
3991 eventfd_signal(ev->eventfd, 1);
3992
3993 spin_unlock(&memcg_oom_lock);
3994 return 0;
3995 }
3996
3997 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3998 {
3999 struct mem_cgroup *iter;
4000
4001 for_each_mem_cgroup_tree(iter, memcg)
4002 mem_cgroup_oom_notify_cb(iter);
4003 }
4004
4005 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4006 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4007 {
4008 struct mem_cgroup_thresholds *thresholds;
4009 struct mem_cgroup_threshold_ary *new;
4010 unsigned long threshold;
4011 unsigned long usage;
4012 int i, size, ret;
4013
4014 ret = page_counter_memparse(args, "-1", &threshold);
4015 if (ret)
4016 return ret;
4017
4018 mutex_lock(&memcg->thresholds_lock);
4019
4020 if (type == _MEM) {
4021 thresholds = &memcg->thresholds;
4022 usage = mem_cgroup_usage(memcg, false);
4023 } else if (type == _MEMSWAP) {
4024 thresholds = &memcg->memsw_thresholds;
4025 usage = mem_cgroup_usage(memcg, true);
4026 } else
4027 BUG();
4028
4029 /* Check if a threshold crossed before adding a new one */
4030 if (thresholds->primary)
4031 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4032
4033 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4034
4035 /* Allocate memory for new array of thresholds */
4036 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4037 if (!new) {
4038 ret = -ENOMEM;
4039 goto unlock;
4040 }
4041 new->size = size;
4042
4043 /* Copy thresholds (if any) to new array */
4044 if (thresholds->primary) {
4045 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4046 sizeof(struct mem_cgroup_threshold));
4047 }
4048
4049 /* Add new threshold */
4050 new->entries[size - 1].eventfd = eventfd;
4051 new->entries[size - 1].threshold = threshold;
4052
4053 /* Sort thresholds. Registering of new threshold isn't time-critical */
4054 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4055 compare_thresholds, NULL);
4056
4057 /* Find current threshold */
4058 new->current_threshold = -1;
4059 for (i = 0; i < size; i++) {
4060 if (new->entries[i].threshold <= usage) {
4061 /*
4062 * new->current_threshold will not be used until
4063 * rcu_assign_pointer(), so it's safe to increment
4064 * it here.
4065 */
4066 ++new->current_threshold;
4067 } else
4068 break;
4069 }
4070
4071 /* Free old spare buffer and save old primary buffer as spare */
4072 kfree(thresholds->spare);
4073 thresholds->spare = thresholds->primary;
4074
4075 rcu_assign_pointer(thresholds->primary, new);
4076
4077 /* To be sure that nobody uses thresholds */
4078 synchronize_rcu();
4079
4080 unlock:
4081 mutex_unlock(&memcg->thresholds_lock);
4082
4083 return ret;
4084 }
4085
4086 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4087 struct eventfd_ctx *eventfd, const char *args)
4088 {
4089 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4090 }
4091
4092 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4093 struct eventfd_ctx *eventfd, const char *args)
4094 {
4095 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4096 }
4097
4098 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4099 struct eventfd_ctx *eventfd, enum res_type type)
4100 {
4101 struct mem_cgroup_thresholds *thresholds;
4102 struct mem_cgroup_threshold_ary *new;
4103 unsigned long usage;
4104 int i, j, size, entries;
4105
4106 mutex_lock(&memcg->thresholds_lock);
4107
4108 if (type == _MEM) {
4109 thresholds = &memcg->thresholds;
4110 usage = mem_cgroup_usage(memcg, false);
4111 } else if (type == _MEMSWAP) {
4112 thresholds = &memcg->memsw_thresholds;
4113 usage = mem_cgroup_usage(memcg, true);
4114 } else
4115 BUG();
4116
4117 if (!thresholds->primary)
4118 goto unlock;
4119
4120 /* Check if a threshold crossed before removing */
4121 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4122
4123 /* Calculate new number of threshold */
4124 size = entries = 0;
4125 for (i = 0; i < thresholds->primary->size; i++) {
4126 if (thresholds->primary->entries[i].eventfd != eventfd)
4127 size++;
4128 else
4129 entries++;
4130 }
4131
4132 new = thresholds->spare;
4133
4134 /* If no items related to eventfd have been cleared, nothing to do */
4135 if (!entries)
4136 goto unlock;
4137
4138 /* Set thresholds array to NULL if we don't have thresholds */
4139 if (!size) {
4140 kfree(new);
4141 new = NULL;
4142 goto swap_buffers;
4143 }
4144
4145 new->size = size;
4146
4147 /* Copy thresholds and find current threshold */
4148 new->current_threshold = -1;
4149 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4150 if (thresholds->primary->entries[i].eventfd == eventfd)
4151 continue;
4152
4153 new->entries[j] = thresholds->primary->entries[i];
4154 if (new->entries[j].threshold <= usage) {
4155 /*
4156 * new->current_threshold will not be used
4157 * until rcu_assign_pointer(), so it's safe to increment
4158 * it here.
4159 */
4160 ++new->current_threshold;
4161 }
4162 j++;
4163 }
4164
4165 swap_buffers:
4166 /* Swap primary and spare array */
4167 thresholds->spare = thresholds->primary;
4168
4169 rcu_assign_pointer(thresholds->primary, new);
4170
4171 /* To be sure that nobody uses thresholds */
4172 synchronize_rcu();
4173
4174 /* If all events are unregistered, free the spare array */
4175 if (!new) {
4176 kfree(thresholds->spare);
4177 thresholds->spare = NULL;
4178 }
4179 unlock:
4180 mutex_unlock(&memcg->thresholds_lock);
4181 }
4182
4183 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4184 struct eventfd_ctx *eventfd)
4185 {
4186 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4187 }
4188
4189 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4190 struct eventfd_ctx *eventfd)
4191 {
4192 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4193 }
4194
4195 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4196 struct eventfd_ctx *eventfd, const char *args)
4197 {
4198 struct mem_cgroup_eventfd_list *event;
4199
4200 event = kmalloc(sizeof(*event), GFP_KERNEL);
4201 if (!event)
4202 return -ENOMEM;
4203
4204 spin_lock(&memcg_oom_lock);
4205
4206 event->eventfd = eventfd;
4207 list_add(&event->list, &memcg->oom_notify);
4208
4209 /* already in OOM ? */
4210 if (memcg->under_oom)
4211 eventfd_signal(eventfd, 1);
4212 spin_unlock(&memcg_oom_lock);
4213
4214 return 0;
4215 }
4216
4217 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4218 struct eventfd_ctx *eventfd)
4219 {
4220 struct mem_cgroup_eventfd_list *ev, *tmp;
4221
4222 spin_lock(&memcg_oom_lock);
4223
4224 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4225 if (ev->eventfd == eventfd) {
4226 list_del(&ev->list);
4227 kfree(ev);
4228 }
4229 }
4230
4231 spin_unlock(&memcg_oom_lock);
4232 }
4233
4234 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4235 {
4236 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4237
4238 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4239 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4240 seq_printf(sf, "oom_kill %lu\n",
4241 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4242 return 0;
4243 }
4244
4245 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4246 struct cftype *cft, u64 val)
4247 {
4248 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4249
4250 /* cannot set to root cgroup and only 0 and 1 are allowed */
4251 if (!css->parent || !((val == 0) || (val == 1)))
4252 return -EINVAL;
4253
4254 memcg->oom_kill_disable = val;
4255 if (!val)
4256 memcg_oom_recover(memcg);
4257
4258 return 0;
4259 }
4260
4261 #ifdef CONFIG_CGROUP_WRITEBACK
4262
4263 #include <trace/events/writeback.h>
4264
4265 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4266 {
4267 return wb_domain_init(&memcg->cgwb_domain, gfp);
4268 }
4269
4270 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4271 {
4272 wb_domain_exit(&memcg->cgwb_domain);
4273 }
4274
4275 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4276 {
4277 wb_domain_size_changed(&memcg->cgwb_domain);
4278 }
4279
4280 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4281 {
4282 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4283
4284 if (!memcg->css.parent)
4285 return NULL;
4286
4287 return &memcg->cgwb_domain;
4288 }
4289
4290 /*
4291 * idx can be of type enum memcg_stat_item or node_stat_item.
4292 * Keep in sync with memcg_exact_page().
4293 */
4294 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4295 {
4296 long x = atomic_long_read(&memcg->vmstats[idx]);
4297 int cpu;
4298
4299 for_each_online_cpu(cpu)
4300 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4301 if (x < 0)
4302 x = 0;
4303 return x;
4304 }
4305
4306 /**
4307 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4308 * @wb: bdi_writeback in question
4309 * @pfilepages: out parameter for number of file pages
4310 * @pheadroom: out parameter for number of allocatable pages according to memcg
4311 * @pdirty: out parameter for number of dirty pages
4312 * @pwriteback: out parameter for number of pages under writeback
4313 *
4314 * Determine the numbers of file, headroom, dirty, and writeback pages in
4315 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4316 * is a bit more involved.
4317 *
4318 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4319 * headroom is calculated as the lowest headroom of itself and the
4320 * ancestors. Note that this doesn't consider the actual amount of
4321 * available memory in the system. The caller should further cap
4322 * *@pheadroom accordingly.
4323 */
4324 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4325 unsigned long *pheadroom, unsigned long *pdirty,
4326 unsigned long *pwriteback)
4327 {
4328 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4329 struct mem_cgroup *parent;
4330
4331 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4332
4333 /* this should eventually include NR_UNSTABLE_NFS */
4334 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4335 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4336 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4337 *pheadroom = PAGE_COUNTER_MAX;
4338
4339 while ((parent = parent_mem_cgroup(memcg))) {
4340 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4341 READ_ONCE(memcg->high));
4342 unsigned long used = page_counter_read(&memcg->memory);
4343
4344 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4345 memcg = parent;
4346 }
4347 }
4348
4349 /*
4350 * Foreign dirty flushing
4351 *
4352 * There's an inherent mismatch between memcg and writeback. The former
4353 * trackes ownership per-page while the latter per-inode. This was a
4354 * deliberate design decision because honoring per-page ownership in the
4355 * writeback path is complicated, may lead to higher CPU and IO overheads
4356 * and deemed unnecessary given that write-sharing an inode across
4357 * different cgroups isn't a common use-case.
4358 *
4359 * Combined with inode majority-writer ownership switching, this works well
4360 * enough in most cases but there are some pathological cases. For
4361 * example, let's say there are two cgroups A and B which keep writing to
4362 * different but confined parts of the same inode. B owns the inode and
4363 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4364 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4365 * triggering background writeback. A will be slowed down without a way to
4366 * make writeback of the dirty pages happen.
4367 *
4368 * Conditions like the above can lead to a cgroup getting repatedly and
4369 * severely throttled after making some progress after each
4370 * dirty_expire_interval while the underyling IO device is almost
4371 * completely idle.
4372 *
4373 * Solving this problem completely requires matching the ownership tracking
4374 * granularities between memcg and writeback in either direction. However,
4375 * the more egregious behaviors can be avoided by simply remembering the
4376 * most recent foreign dirtying events and initiating remote flushes on
4377 * them when local writeback isn't enough to keep the memory clean enough.
4378 *
4379 * The following two functions implement such mechanism. When a foreign
4380 * page - a page whose memcg and writeback ownerships don't match - is
4381 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4382 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4383 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4384 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4385 * foreign bdi_writebacks which haven't expired. Both the numbers of
4386 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4387 * limited to MEMCG_CGWB_FRN_CNT.
4388 *
4389 * The mechanism only remembers IDs and doesn't hold any object references.
4390 * As being wrong occasionally doesn't matter, updates and accesses to the
4391 * records are lockless and racy.
4392 */
4393 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4394 struct bdi_writeback *wb)
4395 {
4396 struct mem_cgroup *memcg = page->mem_cgroup;
4397 struct memcg_cgwb_frn *frn;
4398 u64 now = get_jiffies_64();
4399 u64 oldest_at = now;
4400 int oldest = -1;
4401 int i;
4402
4403 trace_track_foreign_dirty(page, wb);
4404
4405 /*
4406 * Pick the slot to use. If there is already a slot for @wb, keep
4407 * using it. If not replace the oldest one which isn't being
4408 * written out.
4409 */
4410 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4411 frn = &memcg->cgwb_frn[i];
4412 if (frn->bdi_id == wb->bdi->id &&
4413 frn->memcg_id == wb->memcg_css->id)
4414 break;
4415 if (time_before64(frn->at, oldest_at) &&
4416 atomic_read(&frn->done.cnt) == 1) {
4417 oldest = i;
4418 oldest_at = frn->at;
4419 }
4420 }
4421
4422 if (i < MEMCG_CGWB_FRN_CNT) {
4423 /*
4424 * Re-using an existing one. Update timestamp lazily to
4425 * avoid making the cacheline hot. We want them to be
4426 * reasonably up-to-date and significantly shorter than
4427 * dirty_expire_interval as that's what expires the record.
4428 * Use the shorter of 1s and dirty_expire_interval / 8.
4429 */
4430 unsigned long update_intv =
4431 min_t(unsigned long, HZ,
4432 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4433
4434 if (time_before64(frn->at, now - update_intv))
4435 frn->at = now;
4436 } else if (oldest >= 0) {
4437 /* replace the oldest free one */
4438 frn = &memcg->cgwb_frn[oldest];
4439 frn->bdi_id = wb->bdi->id;
4440 frn->memcg_id = wb->memcg_css->id;
4441 frn->at = now;
4442 }
4443 }
4444
4445 /* issue foreign writeback flushes for recorded foreign dirtying events */
4446 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4447 {
4448 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4449 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4450 u64 now = jiffies_64;
4451 int i;
4452
4453 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4454 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4455
4456 /*
4457 * If the record is older than dirty_expire_interval,
4458 * writeback on it has already started. No need to kick it
4459 * off again. Also, don't start a new one if there's
4460 * already one in flight.
4461 */
4462 if (time_after64(frn->at, now - intv) &&
4463 atomic_read(&frn->done.cnt) == 1) {
4464 frn->at = 0;
4465 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4466 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4467 WB_REASON_FOREIGN_FLUSH,
4468 &frn->done);
4469 }
4470 }
4471 }
4472
4473 #else /* CONFIG_CGROUP_WRITEBACK */
4474
4475 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4476 {
4477 return 0;
4478 }
4479
4480 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4481 {
4482 }
4483
4484 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4485 {
4486 }
4487
4488 #endif /* CONFIG_CGROUP_WRITEBACK */
4489
4490 /*
4491 * DO NOT USE IN NEW FILES.
4492 *
4493 * "cgroup.event_control" implementation.
4494 *
4495 * This is way over-engineered. It tries to support fully configurable
4496 * events for each user. Such level of flexibility is completely
4497 * unnecessary especially in the light of the planned unified hierarchy.
4498 *
4499 * Please deprecate this and replace with something simpler if at all
4500 * possible.
4501 */
4502
4503 /*
4504 * Unregister event and free resources.
4505 *
4506 * Gets called from workqueue.
4507 */
4508 static void memcg_event_remove(struct work_struct *work)
4509 {
4510 struct mem_cgroup_event *event =
4511 container_of(work, struct mem_cgroup_event, remove);
4512 struct mem_cgroup *memcg = event->memcg;
4513
4514 remove_wait_queue(event->wqh, &event->wait);
4515
4516 event->unregister_event(memcg, event->eventfd);
4517
4518 /* Notify userspace the event is going away. */
4519 eventfd_signal(event->eventfd, 1);
4520
4521 eventfd_ctx_put(event->eventfd);
4522 kfree(event);
4523 css_put(&memcg->css);
4524 }
4525
4526 /*
4527 * Gets called on EPOLLHUP on eventfd when user closes it.
4528 *
4529 * Called with wqh->lock held and interrupts disabled.
4530 */
4531 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4532 int sync, void *key)
4533 {
4534 struct mem_cgroup_event *event =
4535 container_of(wait, struct mem_cgroup_event, wait);
4536 struct mem_cgroup *memcg = event->memcg;
4537 __poll_t flags = key_to_poll(key);
4538
4539 if (flags & EPOLLHUP) {
4540 /*
4541 * If the event has been detached at cgroup removal, we
4542 * can simply return knowing the other side will cleanup
4543 * for us.
4544 *
4545 * We can't race against event freeing since the other
4546 * side will require wqh->lock via remove_wait_queue(),
4547 * which we hold.
4548 */
4549 spin_lock(&memcg->event_list_lock);
4550 if (!list_empty(&event->list)) {
4551 list_del_init(&event->list);
4552 /*
4553 * We are in atomic context, but cgroup_event_remove()
4554 * may sleep, so we have to call it in workqueue.
4555 */
4556 schedule_work(&event->remove);
4557 }
4558 spin_unlock(&memcg->event_list_lock);
4559 }
4560
4561 return 0;
4562 }
4563
4564 static void memcg_event_ptable_queue_proc(struct file *file,
4565 wait_queue_head_t *wqh, poll_table *pt)
4566 {
4567 struct mem_cgroup_event *event =
4568 container_of(pt, struct mem_cgroup_event, pt);
4569
4570 event->wqh = wqh;
4571 add_wait_queue(wqh, &event->wait);
4572 }
4573
4574 /*
4575 * DO NOT USE IN NEW FILES.
4576 *
4577 * Parse input and register new cgroup event handler.
4578 *
4579 * Input must be in format '<event_fd> <control_fd> <args>'.
4580 * Interpretation of args is defined by control file implementation.
4581 */
4582 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4583 char *buf, size_t nbytes, loff_t off)
4584 {
4585 struct cgroup_subsys_state *css = of_css(of);
4586 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4587 struct mem_cgroup_event *event;
4588 struct cgroup_subsys_state *cfile_css;
4589 unsigned int efd, cfd;
4590 struct fd efile;
4591 struct fd cfile;
4592 const char *name;
4593 char *endp;
4594 int ret;
4595
4596 buf = strstrip(buf);
4597
4598 efd = simple_strtoul(buf, &endp, 10);
4599 if (*endp != ' ')
4600 return -EINVAL;
4601 buf = endp + 1;
4602
4603 cfd = simple_strtoul(buf, &endp, 10);
4604 if ((*endp != ' ') && (*endp != '\0'))
4605 return -EINVAL;
4606 buf = endp + 1;
4607
4608 event = kzalloc(sizeof(*event), GFP_KERNEL);
4609 if (!event)
4610 return -ENOMEM;
4611
4612 event->memcg = memcg;
4613 INIT_LIST_HEAD(&event->list);
4614 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4615 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4616 INIT_WORK(&event->remove, memcg_event_remove);
4617
4618 efile = fdget(efd);
4619 if (!efile.file) {
4620 ret = -EBADF;
4621 goto out_kfree;
4622 }
4623
4624 event->eventfd = eventfd_ctx_fileget(efile.file);
4625 if (IS_ERR(event->eventfd)) {
4626 ret = PTR_ERR(event->eventfd);
4627 goto out_put_efile;
4628 }
4629
4630 cfile = fdget(cfd);
4631 if (!cfile.file) {
4632 ret = -EBADF;
4633 goto out_put_eventfd;
4634 }
4635
4636 /* the process need read permission on control file */
4637 /* AV: shouldn't we check that it's been opened for read instead? */
4638 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4639 if (ret < 0)
4640 goto out_put_cfile;
4641
4642 /*
4643 * Determine the event callbacks and set them in @event. This used
4644 * to be done via struct cftype but cgroup core no longer knows
4645 * about these events. The following is crude but the whole thing
4646 * is for compatibility anyway.
4647 *
4648 * DO NOT ADD NEW FILES.
4649 */
4650 name = cfile.file->f_path.dentry->d_name.name;
4651
4652 if (!strcmp(name, "memory.usage_in_bytes")) {
4653 event->register_event = mem_cgroup_usage_register_event;
4654 event->unregister_event = mem_cgroup_usage_unregister_event;
4655 } else if (!strcmp(name, "memory.oom_control")) {
4656 event->register_event = mem_cgroup_oom_register_event;
4657 event->unregister_event = mem_cgroup_oom_unregister_event;
4658 } else if (!strcmp(name, "memory.pressure_level")) {
4659 event->register_event = vmpressure_register_event;
4660 event->unregister_event = vmpressure_unregister_event;
4661 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4662 event->register_event = memsw_cgroup_usage_register_event;
4663 event->unregister_event = memsw_cgroup_usage_unregister_event;
4664 } else {
4665 ret = -EINVAL;
4666 goto out_put_cfile;
4667 }
4668
4669 /*
4670 * Verify @cfile should belong to @css. Also, remaining events are
4671 * automatically removed on cgroup destruction but the removal is
4672 * asynchronous, so take an extra ref on @css.
4673 */
4674 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4675 &memory_cgrp_subsys);
4676 ret = -EINVAL;
4677 if (IS_ERR(cfile_css))
4678 goto out_put_cfile;
4679 if (cfile_css != css) {
4680 css_put(cfile_css);
4681 goto out_put_cfile;
4682 }
4683
4684 ret = event->register_event(memcg, event->eventfd, buf);
4685 if (ret)
4686 goto out_put_css;
4687
4688 vfs_poll(efile.file, &event->pt);
4689
4690 spin_lock(&memcg->event_list_lock);
4691 list_add(&event->list, &memcg->event_list);
4692 spin_unlock(&memcg->event_list_lock);
4693
4694 fdput(cfile);
4695 fdput(efile);
4696
4697 return nbytes;
4698
4699 out_put_css:
4700 css_put(css);
4701 out_put_cfile:
4702 fdput(cfile);
4703 out_put_eventfd:
4704 eventfd_ctx_put(event->eventfd);
4705 out_put_efile:
4706 fdput(efile);
4707 out_kfree:
4708 kfree(event);
4709
4710 return ret;
4711 }
4712
4713 static struct cftype mem_cgroup_legacy_files[] = {
4714 {
4715 .name = "usage_in_bytes",
4716 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4717 .read_u64 = mem_cgroup_read_u64,
4718 },
4719 {
4720 .name = "max_usage_in_bytes",
4721 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4722 .write = mem_cgroup_reset,
4723 .read_u64 = mem_cgroup_read_u64,
4724 },
4725 {
4726 .name = "limit_in_bytes",
4727 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4728 .write = mem_cgroup_write,
4729 .read_u64 = mem_cgroup_read_u64,
4730 },
4731 {
4732 .name = "soft_limit_in_bytes",
4733 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4734 .write = mem_cgroup_write,
4735 .read_u64 = mem_cgroup_read_u64,
4736 },
4737 {
4738 .name = "failcnt",
4739 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4740 .write = mem_cgroup_reset,
4741 .read_u64 = mem_cgroup_read_u64,
4742 },
4743 {
4744 .name = "stat",
4745 .seq_show = memcg_stat_show,
4746 },
4747 {
4748 .name = "force_empty",
4749 .write = mem_cgroup_force_empty_write,
4750 },
4751 {
4752 .name = "use_hierarchy",
4753 .write_u64 = mem_cgroup_hierarchy_write,
4754 .read_u64 = mem_cgroup_hierarchy_read,
4755 },
4756 {
4757 .name = "cgroup.event_control", /* XXX: for compat */
4758 .write = memcg_write_event_control,
4759 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4760 },
4761 {
4762 .name = "swappiness",
4763 .read_u64 = mem_cgroup_swappiness_read,
4764 .write_u64 = mem_cgroup_swappiness_write,
4765 },
4766 {
4767 .name = "move_charge_at_immigrate",
4768 .read_u64 = mem_cgroup_move_charge_read,
4769 .write_u64 = mem_cgroup_move_charge_write,
4770 },
4771 {
4772 .name = "oom_control",
4773 .seq_show = mem_cgroup_oom_control_read,
4774 .write_u64 = mem_cgroup_oom_control_write,
4775 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4776 },
4777 {
4778 .name = "pressure_level",
4779 },
4780 #ifdef CONFIG_NUMA
4781 {
4782 .name = "numa_stat",
4783 .seq_show = memcg_numa_stat_show,
4784 },
4785 #endif
4786 {
4787 .name = "kmem.limit_in_bytes",
4788 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4789 .write = mem_cgroup_write,
4790 .read_u64 = mem_cgroup_read_u64,
4791 },
4792 {
4793 .name = "kmem.usage_in_bytes",
4794 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4795 .read_u64 = mem_cgroup_read_u64,
4796 },
4797 {
4798 .name = "kmem.failcnt",
4799 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4800 .write = mem_cgroup_reset,
4801 .read_u64 = mem_cgroup_read_u64,
4802 },
4803 {
4804 .name = "kmem.max_usage_in_bytes",
4805 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4806 .write = mem_cgroup_reset,
4807 .read_u64 = mem_cgroup_read_u64,
4808 },
4809 #if defined(CONFIG_MEMCG_KMEM) && \
4810 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4811 {
4812 .name = "kmem.slabinfo",
4813 .seq_start = memcg_slab_start,
4814 .seq_next = memcg_slab_next,
4815 .seq_stop = memcg_slab_stop,
4816 .seq_show = memcg_slab_show,
4817 },
4818 #endif
4819 {
4820 .name = "kmem.tcp.limit_in_bytes",
4821 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4822 .write = mem_cgroup_write,
4823 .read_u64 = mem_cgroup_read_u64,
4824 },
4825 {
4826 .name = "kmem.tcp.usage_in_bytes",
4827 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4828 .read_u64 = mem_cgroup_read_u64,
4829 },
4830 {
4831 .name = "kmem.tcp.failcnt",
4832 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4833 .write = mem_cgroup_reset,
4834 .read_u64 = mem_cgroup_read_u64,
4835 },
4836 {
4837 .name = "kmem.tcp.max_usage_in_bytes",
4838 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4839 .write = mem_cgroup_reset,
4840 .read_u64 = mem_cgroup_read_u64,
4841 },
4842 { }, /* terminate */
4843 };
4844
4845 /*
4846 * Private memory cgroup IDR
4847 *
4848 * Swap-out records and page cache shadow entries need to store memcg
4849 * references in constrained space, so we maintain an ID space that is
4850 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4851 * memory-controlled cgroups to 64k.
4852 *
4853 * However, there usually are many references to the oflline CSS after
4854 * the cgroup has been destroyed, such as page cache or reclaimable
4855 * slab objects, that don't need to hang on to the ID. We want to keep
4856 * those dead CSS from occupying IDs, or we might quickly exhaust the
4857 * relatively small ID space and prevent the creation of new cgroups
4858 * even when there are much fewer than 64k cgroups - possibly none.
4859 *
4860 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4861 * be freed and recycled when it's no longer needed, which is usually
4862 * when the CSS is offlined.
4863 *
4864 * The only exception to that are records of swapped out tmpfs/shmem
4865 * pages that need to be attributed to live ancestors on swapin. But
4866 * those references are manageable from userspace.
4867 */
4868
4869 static DEFINE_IDR(mem_cgroup_idr);
4870
4871 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4872 {
4873 if (memcg->id.id > 0) {
4874 idr_remove(&mem_cgroup_idr, memcg->id.id);
4875 memcg->id.id = 0;
4876 }
4877 }
4878
4879 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4880 unsigned int n)
4881 {
4882 refcount_add(n, &memcg->id.ref);
4883 }
4884
4885 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4886 {
4887 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4888 mem_cgroup_id_remove(memcg);
4889
4890 /* Memcg ID pins CSS */
4891 css_put(&memcg->css);
4892 }
4893 }
4894
4895 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4896 {
4897 mem_cgroup_id_put_many(memcg, 1);
4898 }
4899
4900 /**
4901 * mem_cgroup_from_id - look up a memcg from a memcg id
4902 * @id: the memcg id to look up
4903 *
4904 * Caller must hold rcu_read_lock().
4905 */
4906 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4907 {
4908 WARN_ON_ONCE(!rcu_read_lock_held());
4909 return idr_find(&mem_cgroup_idr, id);
4910 }
4911
4912 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4913 {
4914 struct mem_cgroup_per_node *pn;
4915 int tmp = node;
4916 /*
4917 * This routine is called against possible nodes.
4918 * But it's BUG to call kmalloc() against offline node.
4919 *
4920 * TODO: this routine can waste much memory for nodes which will
4921 * never be onlined. It's better to use memory hotplug callback
4922 * function.
4923 */
4924 if (!node_state(node, N_NORMAL_MEMORY))
4925 tmp = -1;
4926 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4927 if (!pn)
4928 return 1;
4929
4930 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4931 if (!pn->lruvec_stat_local) {
4932 kfree(pn);
4933 return 1;
4934 }
4935
4936 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4937 if (!pn->lruvec_stat_cpu) {
4938 free_percpu(pn->lruvec_stat_local);
4939 kfree(pn);
4940 return 1;
4941 }
4942
4943 lruvec_init(&pn->lruvec);
4944 pn->usage_in_excess = 0;
4945 pn->on_tree = false;
4946 pn->memcg = memcg;
4947
4948 memcg->nodeinfo[node] = pn;
4949 return 0;
4950 }
4951
4952 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4953 {
4954 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4955
4956 if (!pn)
4957 return;
4958
4959 free_percpu(pn->lruvec_stat_cpu);
4960 free_percpu(pn->lruvec_stat_local);
4961 kfree(pn);
4962 }
4963
4964 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4965 {
4966 int node;
4967
4968 for_each_node(node)
4969 free_mem_cgroup_per_node_info(memcg, node);
4970 free_percpu(memcg->vmstats_percpu);
4971 free_percpu(memcg->vmstats_local);
4972 kfree(memcg);
4973 }
4974
4975 static void mem_cgroup_free(struct mem_cgroup *memcg)
4976 {
4977 memcg_wb_domain_exit(memcg);
4978 /*
4979 * Flush percpu vmstats and vmevents to guarantee the value correctness
4980 * on parent's and all ancestor levels.
4981 */
4982 memcg_flush_percpu_vmstats(memcg);
4983 memcg_flush_percpu_vmevents(memcg);
4984 __mem_cgroup_free(memcg);
4985 }
4986
4987 static struct mem_cgroup *mem_cgroup_alloc(void)
4988 {
4989 struct mem_cgroup *memcg;
4990 unsigned int size;
4991 int node;
4992 int __maybe_unused i;
4993
4994 size = sizeof(struct mem_cgroup);
4995 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4996
4997 memcg = kzalloc(size, GFP_KERNEL);
4998 if (!memcg)
4999 return NULL;
5000
5001 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5002 1, MEM_CGROUP_ID_MAX,
5003 GFP_KERNEL);
5004 if (memcg->id.id < 0)
5005 goto fail;
5006
5007 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5008 if (!memcg->vmstats_local)
5009 goto fail;
5010
5011 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5012 if (!memcg->vmstats_percpu)
5013 goto fail;
5014
5015 for_each_node(node)
5016 if (alloc_mem_cgroup_per_node_info(memcg, node))
5017 goto fail;
5018
5019 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5020 goto fail;
5021
5022 INIT_WORK(&memcg->high_work, high_work_func);
5023 INIT_LIST_HEAD(&memcg->oom_notify);
5024 mutex_init(&memcg->thresholds_lock);
5025 spin_lock_init(&memcg->move_lock);
5026 vmpressure_init(&memcg->vmpressure);
5027 INIT_LIST_HEAD(&memcg->event_list);
5028 spin_lock_init(&memcg->event_list_lock);
5029 memcg->socket_pressure = jiffies;
5030 #ifdef CONFIG_MEMCG_KMEM
5031 memcg->kmemcg_id = -1;
5032 #endif
5033 #ifdef CONFIG_CGROUP_WRITEBACK
5034 INIT_LIST_HEAD(&memcg->cgwb_list);
5035 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5036 memcg->cgwb_frn[i].done =
5037 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5038 #endif
5039 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5040 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5041 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5042 memcg->deferred_split_queue.split_queue_len = 0;
5043 #endif
5044 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5045 return memcg;
5046 fail:
5047 mem_cgroup_id_remove(memcg);
5048 __mem_cgroup_free(memcg);
5049 return NULL;
5050 }
5051
5052 static struct cgroup_subsys_state * __ref
5053 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5054 {
5055 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5056 struct mem_cgroup *memcg;
5057 long error = -ENOMEM;
5058
5059 memcg = mem_cgroup_alloc();
5060 if (!memcg)
5061 return ERR_PTR(error);
5062
5063 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
5064 memcg->soft_limit = PAGE_COUNTER_MAX;
5065 if (parent) {
5066 memcg->swappiness = mem_cgroup_swappiness(parent);
5067 memcg->oom_kill_disable = parent->oom_kill_disable;
5068 }
5069 if (parent && parent->use_hierarchy) {
5070 memcg->use_hierarchy = true;
5071 page_counter_init(&memcg->memory, &parent->memory);
5072 page_counter_init(&memcg->swap, &parent->swap);
5073 page_counter_init(&memcg->memsw, &parent->memsw);
5074 page_counter_init(&memcg->kmem, &parent->kmem);
5075 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5076 } else {
5077 page_counter_init(&memcg->memory, NULL);
5078 page_counter_init(&memcg->swap, NULL);
5079 page_counter_init(&memcg->memsw, NULL);
5080 page_counter_init(&memcg->kmem, NULL);
5081 page_counter_init(&memcg->tcpmem, NULL);
5082 /*
5083 * Deeper hierachy with use_hierarchy == false doesn't make
5084 * much sense so let cgroup subsystem know about this
5085 * unfortunate state in our controller.
5086 */
5087 if (parent != root_mem_cgroup)
5088 memory_cgrp_subsys.broken_hierarchy = true;
5089 }
5090
5091 /* The following stuff does not apply to the root */
5092 if (!parent) {
5093 #ifdef CONFIG_MEMCG_KMEM
5094 INIT_LIST_HEAD(&memcg->kmem_caches);
5095 #endif
5096 root_mem_cgroup = memcg;
5097 return &memcg->css;
5098 }
5099
5100 error = memcg_online_kmem(memcg);
5101 if (error)
5102 goto fail;
5103
5104 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5105 static_branch_inc(&memcg_sockets_enabled_key);
5106
5107 return &memcg->css;
5108 fail:
5109 mem_cgroup_id_remove(memcg);
5110 mem_cgroup_free(memcg);
5111 return ERR_PTR(-ENOMEM);
5112 }
5113
5114 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5115 {
5116 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5117
5118 /*
5119 * A memcg must be visible for memcg_expand_shrinker_maps()
5120 * by the time the maps are allocated. So, we allocate maps
5121 * here, when for_each_mem_cgroup() can't skip it.
5122 */
5123 if (memcg_alloc_shrinker_maps(memcg)) {
5124 mem_cgroup_id_remove(memcg);
5125 return -ENOMEM;
5126 }
5127
5128 /* Online state pins memcg ID, memcg ID pins CSS */
5129 refcount_set(&memcg->id.ref, 1);
5130 css_get(css);
5131 return 0;
5132 }
5133
5134 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5135 {
5136 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5137 struct mem_cgroup_event *event, *tmp;
5138
5139 /*
5140 * Unregister events and notify userspace.
5141 * Notify userspace about cgroup removing only after rmdir of cgroup
5142 * directory to avoid race between userspace and kernelspace.
5143 */
5144 spin_lock(&memcg->event_list_lock);
5145 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5146 list_del_init(&event->list);
5147 schedule_work(&event->remove);
5148 }
5149 spin_unlock(&memcg->event_list_lock);
5150
5151 page_counter_set_min(&memcg->memory, 0);
5152 page_counter_set_low(&memcg->memory, 0);
5153
5154 memcg_offline_kmem(memcg);
5155 wb_memcg_offline(memcg);
5156
5157 drain_all_stock(memcg);
5158
5159 mem_cgroup_id_put(memcg);
5160 }
5161
5162 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5163 {
5164 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5165
5166 invalidate_reclaim_iterators(memcg);
5167 }
5168
5169 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5170 {
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5172 int __maybe_unused i;
5173
5174 #ifdef CONFIG_CGROUP_WRITEBACK
5175 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5176 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5177 #endif
5178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5179 static_branch_dec(&memcg_sockets_enabled_key);
5180
5181 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5182 static_branch_dec(&memcg_sockets_enabled_key);
5183
5184 vmpressure_cleanup(&memcg->vmpressure);
5185 cancel_work_sync(&memcg->high_work);
5186 mem_cgroup_remove_from_trees(memcg);
5187 memcg_free_shrinker_maps(memcg);
5188 memcg_free_kmem(memcg);
5189 mem_cgroup_free(memcg);
5190 }
5191
5192 /**
5193 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5194 * @css: the target css
5195 *
5196 * Reset the states of the mem_cgroup associated with @css. This is
5197 * invoked when the userland requests disabling on the default hierarchy
5198 * but the memcg is pinned through dependency. The memcg should stop
5199 * applying policies and should revert to the vanilla state as it may be
5200 * made visible again.
5201 *
5202 * The current implementation only resets the essential configurations.
5203 * This needs to be expanded to cover all the visible parts.
5204 */
5205 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5206 {
5207 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5208
5209 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5210 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5211 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5212 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5213 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5214 page_counter_set_min(&memcg->memory, 0);
5215 page_counter_set_low(&memcg->memory, 0);
5216 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
5217 memcg->soft_limit = PAGE_COUNTER_MAX;
5218 memcg_wb_domain_size_changed(memcg);
5219 }
5220
5221 #ifdef CONFIG_MMU
5222 /* Handlers for move charge at task migration. */
5223 static int mem_cgroup_do_precharge(unsigned long count)
5224 {
5225 int ret;
5226
5227 /* Try a single bulk charge without reclaim first, kswapd may wake */
5228 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5229 if (!ret) {
5230 mc.precharge += count;
5231 return ret;
5232 }
5233
5234 /* Try charges one by one with reclaim, but do not retry */
5235 while (count--) {
5236 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5237 if (ret)
5238 return ret;
5239 mc.precharge++;
5240 cond_resched();
5241 }
5242 return 0;
5243 }
5244
5245 union mc_target {
5246 struct page *page;
5247 swp_entry_t ent;
5248 };
5249
5250 enum mc_target_type {
5251 MC_TARGET_NONE = 0,
5252 MC_TARGET_PAGE,
5253 MC_TARGET_SWAP,
5254 MC_TARGET_DEVICE,
5255 };
5256
5257 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5258 unsigned long addr, pte_t ptent)
5259 {
5260 struct page *page = vm_normal_page(vma, addr, ptent);
5261
5262 if (!page || !page_mapped(page))
5263 return NULL;
5264 if (PageAnon(page)) {
5265 if (!(mc.flags & MOVE_ANON))
5266 return NULL;
5267 } else {
5268 if (!(mc.flags & MOVE_FILE))
5269 return NULL;
5270 }
5271 if (!get_page_unless_zero(page))
5272 return NULL;
5273
5274 return page;
5275 }
5276
5277 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5278 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5279 pte_t ptent, swp_entry_t *entry)
5280 {
5281 struct page *page = NULL;
5282 swp_entry_t ent = pte_to_swp_entry(ptent);
5283
5284 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5285 return NULL;
5286
5287 /*
5288 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5289 * a device and because they are not accessible by CPU they are store
5290 * as special swap entry in the CPU page table.
5291 */
5292 if (is_device_private_entry(ent)) {
5293 page = device_private_entry_to_page(ent);
5294 /*
5295 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5296 * a refcount of 1 when free (unlike normal page)
5297 */
5298 if (!page_ref_add_unless(page, 1, 1))
5299 return NULL;
5300 return page;
5301 }
5302
5303 /*
5304 * Because lookup_swap_cache() updates some statistics counter,
5305 * we call find_get_page() with swapper_space directly.
5306 */
5307 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5308 if (do_memsw_account())
5309 entry->val = ent.val;
5310
5311 return page;
5312 }
5313 #else
5314 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5315 pte_t ptent, swp_entry_t *entry)
5316 {
5317 return NULL;
5318 }
5319 #endif
5320
5321 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5322 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5323 {
5324 struct page *page = NULL;
5325 struct address_space *mapping;
5326 pgoff_t pgoff;
5327
5328 if (!vma->vm_file) /* anonymous vma */
5329 return NULL;
5330 if (!(mc.flags & MOVE_FILE))
5331 return NULL;
5332
5333 mapping = vma->vm_file->f_mapping;
5334 pgoff = linear_page_index(vma, addr);
5335
5336 /* page is moved even if it's not RSS of this task(page-faulted). */
5337 #ifdef CONFIG_SWAP
5338 /* shmem/tmpfs may report page out on swap: account for that too. */
5339 if (shmem_mapping(mapping)) {
5340 page = find_get_entry(mapping, pgoff);
5341 if (xa_is_value(page)) {
5342 swp_entry_t swp = radix_to_swp_entry(page);
5343 if (do_memsw_account())
5344 *entry = swp;
5345 page = find_get_page(swap_address_space(swp),
5346 swp_offset(swp));
5347 }
5348 } else
5349 page = find_get_page(mapping, pgoff);
5350 #else
5351 page = find_get_page(mapping, pgoff);
5352 #endif
5353 return page;
5354 }
5355
5356 /**
5357 * mem_cgroup_move_account - move account of the page
5358 * @page: the page
5359 * @compound: charge the page as compound or small page
5360 * @from: mem_cgroup which the page is moved from.
5361 * @to: mem_cgroup which the page is moved to. @from != @to.
5362 *
5363 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5364 *
5365 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5366 * from old cgroup.
5367 */
5368 static int mem_cgroup_move_account(struct page *page,
5369 bool compound,
5370 struct mem_cgroup *from,
5371 struct mem_cgroup *to)
5372 {
5373 struct lruvec *from_vec, *to_vec;
5374 struct pglist_data *pgdat;
5375 unsigned long flags;
5376 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5377 int ret;
5378 bool anon;
5379
5380 VM_BUG_ON(from == to);
5381 VM_BUG_ON_PAGE(PageLRU(page), page);
5382 VM_BUG_ON(compound && !PageTransHuge(page));
5383
5384 /*
5385 * Prevent mem_cgroup_migrate() from looking at
5386 * page->mem_cgroup of its source page while we change it.
5387 */
5388 ret = -EBUSY;
5389 if (!trylock_page(page))
5390 goto out;
5391
5392 ret = -EINVAL;
5393 if (page->mem_cgroup != from)
5394 goto out_unlock;
5395
5396 anon = PageAnon(page);
5397
5398 pgdat = page_pgdat(page);
5399 from_vec = mem_cgroup_lruvec(from, pgdat);
5400 to_vec = mem_cgroup_lruvec(to, pgdat);
5401
5402 spin_lock_irqsave(&from->move_lock, flags);
5403
5404 if (!anon && page_mapped(page)) {
5405 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5406 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5407 }
5408
5409 /*
5410 * move_lock grabbed above and caller set from->moving_account, so
5411 * mod_memcg_page_state will serialize updates to PageDirty.
5412 * So mapping should be stable for dirty pages.
5413 */
5414 if (!anon && PageDirty(page)) {
5415 struct address_space *mapping = page_mapping(page);
5416
5417 if (mapping_cap_account_dirty(mapping)) {
5418 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5419 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5420 }
5421 }
5422
5423 if (PageWriteback(page)) {
5424 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5425 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5426 }
5427
5428 /*
5429 * It is safe to change page->mem_cgroup here because the page
5430 * is referenced, charged, and isolated - we can't race with
5431 * uncharging, charging, migration, or LRU putback.
5432 */
5433
5434 /* caller should have done css_get */
5435 page->mem_cgroup = to;
5436
5437 spin_unlock_irqrestore(&from->move_lock, flags);
5438
5439 ret = 0;
5440
5441 local_irq_disable();
5442 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5443 memcg_check_events(to, page);
5444 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5445 memcg_check_events(from, page);
5446 local_irq_enable();
5447 out_unlock:
5448 unlock_page(page);
5449 out:
5450 return ret;
5451 }
5452
5453 /**
5454 * get_mctgt_type - get target type of moving charge
5455 * @vma: the vma the pte to be checked belongs
5456 * @addr: the address corresponding to the pte to be checked
5457 * @ptent: the pte to be checked
5458 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5459 *
5460 * Returns
5461 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5462 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5463 * move charge. if @target is not NULL, the page is stored in target->page
5464 * with extra refcnt got(Callers should handle it).
5465 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5466 * target for charge migration. if @target is not NULL, the entry is stored
5467 * in target->ent.
5468 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5469 * (so ZONE_DEVICE page and thus not on the lru).
5470 * For now we such page is charge like a regular page would be as for all
5471 * intent and purposes it is just special memory taking the place of a
5472 * regular page.
5473 *
5474 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5475 *
5476 * Called with pte lock held.
5477 */
5478
5479 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5480 unsigned long addr, pte_t ptent, union mc_target *target)
5481 {
5482 struct page *page = NULL;
5483 enum mc_target_type ret = MC_TARGET_NONE;
5484 swp_entry_t ent = { .val = 0 };
5485
5486 if (pte_present(ptent))
5487 page = mc_handle_present_pte(vma, addr, ptent);
5488 else if (is_swap_pte(ptent))
5489 page = mc_handle_swap_pte(vma, ptent, &ent);
5490 else if (pte_none(ptent))
5491 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5492
5493 if (!page && !ent.val)
5494 return ret;
5495 if (page) {
5496 /*
5497 * Do only loose check w/o serialization.
5498 * mem_cgroup_move_account() checks the page is valid or
5499 * not under LRU exclusion.
5500 */
5501 if (page->mem_cgroup == mc.from) {
5502 ret = MC_TARGET_PAGE;
5503 if (is_device_private_page(page))
5504 ret = MC_TARGET_DEVICE;
5505 if (target)
5506 target->page = page;
5507 }
5508 if (!ret || !target)
5509 put_page(page);
5510 }
5511 /*
5512 * There is a swap entry and a page doesn't exist or isn't charged.
5513 * But we cannot move a tail-page in a THP.
5514 */
5515 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5516 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5517 ret = MC_TARGET_SWAP;
5518 if (target)
5519 target->ent = ent;
5520 }
5521 return ret;
5522 }
5523
5524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5525 /*
5526 * We don't consider PMD mapped swapping or file mapped pages because THP does
5527 * not support them for now.
5528 * Caller should make sure that pmd_trans_huge(pmd) is true.
5529 */
5530 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5531 unsigned long addr, pmd_t pmd, union mc_target *target)
5532 {
5533 struct page *page = NULL;
5534 enum mc_target_type ret = MC_TARGET_NONE;
5535
5536 if (unlikely(is_swap_pmd(pmd))) {
5537 VM_BUG_ON(thp_migration_supported() &&
5538 !is_pmd_migration_entry(pmd));
5539 return ret;
5540 }
5541 page = pmd_page(pmd);
5542 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5543 if (!(mc.flags & MOVE_ANON))
5544 return ret;
5545 if (page->mem_cgroup == mc.from) {
5546 ret = MC_TARGET_PAGE;
5547 if (target) {
5548 get_page(page);
5549 target->page = page;
5550 }
5551 }
5552 return ret;
5553 }
5554 #else
5555 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5556 unsigned long addr, pmd_t pmd, union mc_target *target)
5557 {
5558 return MC_TARGET_NONE;
5559 }
5560 #endif
5561
5562 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5563 unsigned long addr, unsigned long end,
5564 struct mm_walk *walk)
5565 {
5566 struct vm_area_struct *vma = walk->vma;
5567 pte_t *pte;
5568 spinlock_t *ptl;
5569
5570 ptl = pmd_trans_huge_lock(pmd, vma);
5571 if (ptl) {
5572 /*
5573 * Note their can not be MC_TARGET_DEVICE for now as we do not
5574 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5575 * this might change.
5576 */
5577 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5578 mc.precharge += HPAGE_PMD_NR;
5579 spin_unlock(ptl);
5580 return 0;
5581 }
5582
5583 if (pmd_trans_unstable(pmd))
5584 return 0;
5585 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5586 for (; addr != end; pte++, addr += PAGE_SIZE)
5587 if (get_mctgt_type(vma, addr, *pte, NULL))
5588 mc.precharge++; /* increment precharge temporarily */
5589 pte_unmap_unlock(pte - 1, ptl);
5590 cond_resched();
5591
5592 return 0;
5593 }
5594
5595 static const struct mm_walk_ops precharge_walk_ops = {
5596 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5597 };
5598
5599 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5600 {
5601 unsigned long precharge;
5602
5603 down_read(&mm->mmap_sem);
5604 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5605 up_read(&mm->mmap_sem);
5606
5607 precharge = mc.precharge;
5608 mc.precharge = 0;
5609
5610 return precharge;
5611 }
5612
5613 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5614 {
5615 unsigned long precharge = mem_cgroup_count_precharge(mm);
5616
5617 VM_BUG_ON(mc.moving_task);
5618 mc.moving_task = current;
5619 return mem_cgroup_do_precharge(precharge);
5620 }
5621
5622 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5623 static void __mem_cgroup_clear_mc(void)
5624 {
5625 struct mem_cgroup *from = mc.from;
5626 struct mem_cgroup *to = mc.to;
5627
5628 /* we must uncharge all the leftover precharges from mc.to */
5629 if (mc.precharge) {
5630 cancel_charge(mc.to, mc.precharge);
5631 mc.precharge = 0;
5632 }
5633 /*
5634 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5635 * we must uncharge here.
5636 */
5637 if (mc.moved_charge) {
5638 cancel_charge(mc.from, mc.moved_charge);
5639 mc.moved_charge = 0;
5640 }
5641 /* we must fixup refcnts and charges */
5642 if (mc.moved_swap) {
5643 /* uncharge swap account from the old cgroup */
5644 if (!mem_cgroup_is_root(mc.from))
5645 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5646
5647 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5648
5649 /*
5650 * we charged both to->memory and to->memsw, so we
5651 * should uncharge to->memory.
5652 */
5653 if (!mem_cgroup_is_root(mc.to))
5654 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5655
5656 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5657 css_put_many(&mc.to->css, mc.moved_swap);
5658
5659 mc.moved_swap = 0;
5660 }
5661 memcg_oom_recover(from);
5662 memcg_oom_recover(to);
5663 wake_up_all(&mc.waitq);
5664 }
5665
5666 static void mem_cgroup_clear_mc(void)
5667 {
5668 struct mm_struct *mm = mc.mm;
5669
5670 /*
5671 * we must clear moving_task before waking up waiters at the end of
5672 * task migration.
5673 */
5674 mc.moving_task = NULL;
5675 __mem_cgroup_clear_mc();
5676 spin_lock(&mc.lock);
5677 mc.from = NULL;
5678 mc.to = NULL;
5679 mc.mm = NULL;
5680 spin_unlock(&mc.lock);
5681
5682 mmput(mm);
5683 }
5684
5685 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5686 {
5687 struct cgroup_subsys_state *css;
5688 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5689 struct mem_cgroup *from;
5690 struct task_struct *leader, *p;
5691 struct mm_struct *mm;
5692 unsigned long move_flags;
5693 int ret = 0;
5694
5695 /* charge immigration isn't supported on the default hierarchy */
5696 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5697 return 0;
5698
5699 /*
5700 * Multi-process migrations only happen on the default hierarchy
5701 * where charge immigration is not used. Perform charge
5702 * immigration if @tset contains a leader and whine if there are
5703 * multiple.
5704 */
5705 p = NULL;
5706 cgroup_taskset_for_each_leader(leader, css, tset) {
5707 WARN_ON_ONCE(p);
5708 p = leader;
5709 memcg = mem_cgroup_from_css(css);
5710 }
5711 if (!p)
5712 return 0;
5713
5714 /*
5715 * We are now commited to this value whatever it is. Changes in this
5716 * tunable will only affect upcoming migrations, not the current one.
5717 * So we need to save it, and keep it going.
5718 */
5719 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5720 if (!move_flags)
5721 return 0;
5722
5723 from = mem_cgroup_from_task(p);
5724
5725 VM_BUG_ON(from == memcg);
5726
5727 mm = get_task_mm(p);
5728 if (!mm)
5729 return 0;
5730 /* We move charges only when we move a owner of the mm */
5731 if (mm->owner == p) {
5732 VM_BUG_ON(mc.from);
5733 VM_BUG_ON(mc.to);
5734 VM_BUG_ON(mc.precharge);
5735 VM_BUG_ON(mc.moved_charge);
5736 VM_BUG_ON(mc.moved_swap);
5737
5738 spin_lock(&mc.lock);
5739 mc.mm = mm;
5740 mc.from = from;
5741 mc.to = memcg;
5742 mc.flags = move_flags;
5743 spin_unlock(&mc.lock);
5744 /* We set mc.moving_task later */
5745
5746 ret = mem_cgroup_precharge_mc(mm);
5747 if (ret)
5748 mem_cgroup_clear_mc();
5749 } else {
5750 mmput(mm);
5751 }
5752 return ret;
5753 }
5754
5755 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5756 {
5757 if (mc.to)
5758 mem_cgroup_clear_mc();
5759 }
5760
5761 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5762 unsigned long addr, unsigned long end,
5763 struct mm_walk *walk)
5764 {
5765 int ret = 0;
5766 struct vm_area_struct *vma = walk->vma;
5767 pte_t *pte;
5768 spinlock_t *ptl;
5769 enum mc_target_type target_type;
5770 union mc_target target;
5771 struct page *page;
5772
5773 ptl = pmd_trans_huge_lock(pmd, vma);
5774 if (ptl) {
5775 if (mc.precharge < HPAGE_PMD_NR) {
5776 spin_unlock(ptl);
5777 return 0;
5778 }
5779 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5780 if (target_type == MC_TARGET_PAGE) {
5781 page = target.page;
5782 if (!isolate_lru_page(page)) {
5783 if (!mem_cgroup_move_account(page, true,
5784 mc.from, mc.to)) {
5785 mc.precharge -= HPAGE_PMD_NR;
5786 mc.moved_charge += HPAGE_PMD_NR;
5787 }
5788 putback_lru_page(page);
5789 }
5790 put_page(page);
5791 } else if (target_type == MC_TARGET_DEVICE) {
5792 page = target.page;
5793 if (!mem_cgroup_move_account(page, true,
5794 mc.from, mc.to)) {
5795 mc.precharge -= HPAGE_PMD_NR;
5796 mc.moved_charge += HPAGE_PMD_NR;
5797 }
5798 put_page(page);
5799 }
5800 spin_unlock(ptl);
5801 return 0;
5802 }
5803
5804 if (pmd_trans_unstable(pmd))
5805 return 0;
5806 retry:
5807 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5808 for (; addr != end; addr += PAGE_SIZE) {
5809 pte_t ptent = *(pte++);
5810 bool device = false;
5811 swp_entry_t ent;
5812
5813 if (!mc.precharge)
5814 break;
5815
5816 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5817 case MC_TARGET_DEVICE:
5818 device = true;
5819 fallthrough;
5820 case MC_TARGET_PAGE:
5821 page = target.page;
5822 /*
5823 * We can have a part of the split pmd here. Moving it
5824 * can be done but it would be too convoluted so simply
5825 * ignore such a partial THP and keep it in original
5826 * memcg. There should be somebody mapping the head.
5827 */
5828 if (PageTransCompound(page))
5829 goto put;
5830 if (!device && isolate_lru_page(page))
5831 goto put;
5832 if (!mem_cgroup_move_account(page, false,
5833 mc.from, mc.to)) {
5834 mc.precharge--;
5835 /* we uncharge from mc.from later. */
5836 mc.moved_charge++;
5837 }
5838 if (!device)
5839 putback_lru_page(page);
5840 put: /* get_mctgt_type() gets the page */
5841 put_page(page);
5842 break;
5843 case MC_TARGET_SWAP:
5844 ent = target.ent;
5845 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5846 mc.precharge--;
5847 /* we fixup refcnts and charges later. */
5848 mc.moved_swap++;
5849 }
5850 break;
5851 default:
5852 break;
5853 }
5854 }
5855 pte_unmap_unlock(pte - 1, ptl);
5856 cond_resched();
5857
5858 if (addr != end) {
5859 /*
5860 * We have consumed all precharges we got in can_attach().
5861 * We try charge one by one, but don't do any additional
5862 * charges to mc.to if we have failed in charge once in attach()
5863 * phase.
5864 */
5865 ret = mem_cgroup_do_precharge(1);
5866 if (!ret)
5867 goto retry;
5868 }
5869
5870 return ret;
5871 }
5872
5873 static const struct mm_walk_ops charge_walk_ops = {
5874 .pmd_entry = mem_cgroup_move_charge_pte_range,
5875 };
5876
5877 static void mem_cgroup_move_charge(void)
5878 {
5879 lru_add_drain_all();
5880 /*
5881 * Signal lock_page_memcg() to take the memcg's move_lock
5882 * while we're moving its pages to another memcg. Then wait
5883 * for already started RCU-only updates to finish.
5884 */
5885 atomic_inc(&mc.from->moving_account);
5886 synchronize_rcu();
5887 retry:
5888 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5889 /*
5890 * Someone who are holding the mmap_sem might be waiting in
5891 * waitq. So we cancel all extra charges, wake up all waiters,
5892 * and retry. Because we cancel precharges, we might not be able
5893 * to move enough charges, but moving charge is a best-effort
5894 * feature anyway, so it wouldn't be a big problem.
5895 */
5896 __mem_cgroup_clear_mc();
5897 cond_resched();
5898 goto retry;
5899 }
5900 /*
5901 * When we have consumed all precharges and failed in doing
5902 * additional charge, the page walk just aborts.
5903 */
5904 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5905 NULL);
5906
5907 up_read(&mc.mm->mmap_sem);
5908 atomic_dec(&mc.from->moving_account);
5909 }
5910
5911 static void mem_cgroup_move_task(void)
5912 {
5913 if (mc.to) {
5914 mem_cgroup_move_charge();
5915 mem_cgroup_clear_mc();
5916 }
5917 }
5918 #else /* !CONFIG_MMU */
5919 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5920 {
5921 return 0;
5922 }
5923 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5924 {
5925 }
5926 static void mem_cgroup_move_task(void)
5927 {
5928 }
5929 #endif
5930
5931 /*
5932 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5933 * to verify whether we're attached to the default hierarchy on each mount
5934 * attempt.
5935 */
5936 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5937 {
5938 /*
5939 * use_hierarchy is forced on the default hierarchy. cgroup core
5940 * guarantees that @root doesn't have any children, so turning it
5941 * on for the root memcg is enough.
5942 */
5943 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5944 root_mem_cgroup->use_hierarchy = true;
5945 else
5946 root_mem_cgroup->use_hierarchy = false;
5947 }
5948
5949 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5950 {
5951 if (value == PAGE_COUNTER_MAX)
5952 seq_puts(m, "max\n");
5953 else
5954 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5955
5956 return 0;
5957 }
5958
5959 static u64 memory_current_read(struct cgroup_subsys_state *css,
5960 struct cftype *cft)
5961 {
5962 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5963
5964 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5965 }
5966
5967 static int memory_min_show(struct seq_file *m, void *v)
5968 {
5969 return seq_puts_memcg_tunable(m,
5970 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5971 }
5972
5973 static ssize_t memory_min_write(struct kernfs_open_file *of,
5974 char *buf, size_t nbytes, loff_t off)
5975 {
5976 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5977 unsigned long min;
5978 int err;
5979
5980 buf = strstrip(buf);
5981 err = page_counter_memparse(buf, "max", &min);
5982 if (err)
5983 return err;
5984
5985 page_counter_set_min(&memcg->memory, min);
5986
5987 return nbytes;
5988 }
5989
5990 static int memory_low_show(struct seq_file *m, void *v)
5991 {
5992 return seq_puts_memcg_tunable(m,
5993 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5994 }
5995
5996 static ssize_t memory_low_write(struct kernfs_open_file *of,
5997 char *buf, size_t nbytes, loff_t off)
5998 {
5999 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6000 unsigned long low;
6001 int err;
6002
6003 buf = strstrip(buf);
6004 err = page_counter_memparse(buf, "max", &low);
6005 if (err)
6006 return err;
6007
6008 page_counter_set_low(&memcg->memory, low);
6009
6010 return nbytes;
6011 }
6012
6013 static int memory_high_show(struct seq_file *m, void *v)
6014 {
6015 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6016 }
6017
6018 static ssize_t memory_high_write(struct kernfs_open_file *of,
6019 char *buf, size_t nbytes, loff_t off)
6020 {
6021 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6022 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6023 bool drained = false;
6024 unsigned long high;
6025 int err;
6026
6027 buf = strstrip(buf);
6028 err = page_counter_memparse(buf, "max", &high);
6029 if (err)
6030 return err;
6031
6032 WRITE_ONCE(memcg->high, high);
6033
6034 for (;;) {
6035 unsigned long nr_pages = page_counter_read(&memcg->memory);
6036 unsigned long reclaimed;
6037
6038 if (nr_pages <= high)
6039 break;
6040
6041 if (signal_pending(current))
6042 break;
6043
6044 if (!drained) {
6045 drain_all_stock(memcg);
6046 drained = true;
6047 continue;
6048 }
6049
6050 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6051 GFP_KERNEL, true);
6052
6053 if (!reclaimed && !nr_retries--)
6054 break;
6055 }
6056
6057 return nbytes;
6058 }
6059
6060 static int memory_max_show(struct seq_file *m, void *v)
6061 {
6062 return seq_puts_memcg_tunable(m,
6063 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6064 }
6065
6066 static ssize_t memory_max_write(struct kernfs_open_file *of,
6067 char *buf, size_t nbytes, loff_t off)
6068 {
6069 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6070 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6071 bool drained = false;
6072 unsigned long max;
6073 int err;
6074
6075 buf = strstrip(buf);
6076 err = page_counter_memparse(buf, "max", &max);
6077 if (err)
6078 return err;
6079
6080 xchg(&memcg->memory.max, max);
6081
6082 for (;;) {
6083 unsigned long nr_pages = page_counter_read(&memcg->memory);
6084
6085 if (nr_pages <= max)
6086 break;
6087
6088 if (signal_pending(current))
6089 break;
6090
6091 if (!drained) {
6092 drain_all_stock(memcg);
6093 drained = true;
6094 continue;
6095 }
6096
6097 if (nr_reclaims) {
6098 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6099 GFP_KERNEL, true))
6100 nr_reclaims--;
6101 continue;
6102 }
6103
6104 memcg_memory_event(memcg, MEMCG_OOM);
6105 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6106 break;
6107 }
6108
6109 memcg_wb_domain_size_changed(memcg);
6110 return nbytes;
6111 }
6112
6113 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6114 {
6115 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6116 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6117 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6118 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6119 seq_printf(m, "oom_kill %lu\n",
6120 atomic_long_read(&events[MEMCG_OOM_KILL]));
6121 }
6122
6123 static int memory_events_show(struct seq_file *m, void *v)
6124 {
6125 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6126
6127 __memory_events_show(m, memcg->memory_events);
6128 return 0;
6129 }
6130
6131 static int memory_events_local_show(struct seq_file *m, void *v)
6132 {
6133 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6134
6135 __memory_events_show(m, memcg->memory_events_local);
6136 return 0;
6137 }
6138
6139 static int memory_stat_show(struct seq_file *m, void *v)
6140 {
6141 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6142 char *buf;
6143
6144 buf = memory_stat_format(memcg);
6145 if (!buf)
6146 return -ENOMEM;
6147 seq_puts(m, buf);
6148 kfree(buf);
6149 return 0;
6150 }
6151
6152 static int memory_oom_group_show(struct seq_file *m, void *v)
6153 {
6154 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6155
6156 seq_printf(m, "%d\n", memcg->oom_group);
6157
6158 return 0;
6159 }
6160
6161 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6162 char *buf, size_t nbytes, loff_t off)
6163 {
6164 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6165 int ret, oom_group;
6166
6167 buf = strstrip(buf);
6168 if (!buf)
6169 return -EINVAL;
6170
6171 ret = kstrtoint(buf, 0, &oom_group);
6172 if (ret)
6173 return ret;
6174
6175 if (oom_group != 0 && oom_group != 1)
6176 return -EINVAL;
6177
6178 memcg->oom_group = oom_group;
6179
6180 return nbytes;
6181 }
6182
6183 static struct cftype memory_files[] = {
6184 {
6185 .name = "current",
6186 .flags = CFTYPE_NOT_ON_ROOT,
6187 .read_u64 = memory_current_read,
6188 },
6189 {
6190 .name = "min",
6191 .flags = CFTYPE_NOT_ON_ROOT,
6192 .seq_show = memory_min_show,
6193 .write = memory_min_write,
6194 },
6195 {
6196 .name = "low",
6197 .flags = CFTYPE_NOT_ON_ROOT,
6198 .seq_show = memory_low_show,
6199 .write = memory_low_write,
6200 },
6201 {
6202 .name = "high",
6203 .flags = CFTYPE_NOT_ON_ROOT,
6204 .seq_show = memory_high_show,
6205 .write = memory_high_write,
6206 },
6207 {
6208 .name = "max",
6209 .flags = CFTYPE_NOT_ON_ROOT,
6210 .seq_show = memory_max_show,
6211 .write = memory_max_write,
6212 },
6213 {
6214 .name = "events",
6215 .flags = CFTYPE_NOT_ON_ROOT,
6216 .file_offset = offsetof(struct mem_cgroup, events_file),
6217 .seq_show = memory_events_show,
6218 },
6219 {
6220 .name = "events.local",
6221 .flags = CFTYPE_NOT_ON_ROOT,
6222 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6223 .seq_show = memory_events_local_show,
6224 },
6225 {
6226 .name = "stat",
6227 .flags = CFTYPE_NOT_ON_ROOT,
6228 .seq_show = memory_stat_show,
6229 },
6230 {
6231 .name = "oom.group",
6232 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6233 .seq_show = memory_oom_group_show,
6234 .write = memory_oom_group_write,
6235 },
6236 { } /* terminate */
6237 };
6238
6239 struct cgroup_subsys memory_cgrp_subsys = {
6240 .css_alloc = mem_cgroup_css_alloc,
6241 .css_online = mem_cgroup_css_online,
6242 .css_offline = mem_cgroup_css_offline,
6243 .css_released = mem_cgroup_css_released,
6244 .css_free = mem_cgroup_css_free,
6245 .css_reset = mem_cgroup_css_reset,
6246 .can_attach = mem_cgroup_can_attach,
6247 .cancel_attach = mem_cgroup_cancel_attach,
6248 .post_attach = mem_cgroup_move_task,
6249 .bind = mem_cgroup_bind,
6250 .dfl_cftypes = memory_files,
6251 .legacy_cftypes = mem_cgroup_legacy_files,
6252 .early_init = 0,
6253 };
6254
6255 /*
6256 * This function calculates an individual cgroup's effective
6257 * protection which is derived from its own memory.min/low, its
6258 * parent's and siblings' settings, as well as the actual memory
6259 * distribution in the tree.
6260 *
6261 * The following rules apply to the effective protection values:
6262 *
6263 * 1. At the first level of reclaim, effective protection is equal to
6264 * the declared protection in memory.min and memory.low.
6265 *
6266 * 2. To enable safe delegation of the protection configuration, at
6267 * subsequent levels the effective protection is capped to the
6268 * parent's effective protection.
6269 *
6270 * 3. To make complex and dynamic subtrees easier to configure, the
6271 * user is allowed to overcommit the declared protection at a given
6272 * level. If that is the case, the parent's effective protection is
6273 * distributed to the children in proportion to how much protection
6274 * they have declared and how much of it they are utilizing.
6275 *
6276 * This makes distribution proportional, but also work-conserving:
6277 * if one cgroup claims much more protection than it uses memory,
6278 * the unused remainder is available to its siblings.
6279 *
6280 * 4. Conversely, when the declared protection is undercommitted at a
6281 * given level, the distribution of the larger parental protection
6282 * budget is NOT proportional. A cgroup's protection from a sibling
6283 * is capped to its own memory.min/low setting.
6284 *
6285 * 5. However, to allow protecting recursive subtrees from each other
6286 * without having to declare each individual cgroup's fixed share
6287 * of the ancestor's claim to protection, any unutilized -
6288 * "floating" - protection from up the tree is distributed in
6289 * proportion to each cgroup's *usage*. This makes the protection
6290 * neutral wrt sibling cgroups and lets them compete freely over
6291 * the shared parental protection budget, but it protects the
6292 * subtree as a whole from neighboring subtrees.
6293 *
6294 * Note that 4. and 5. are not in conflict: 4. is about protecting
6295 * against immediate siblings whereas 5. is about protecting against
6296 * neighboring subtrees.
6297 */
6298 static unsigned long effective_protection(unsigned long usage,
6299 unsigned long parent_usage,
6300 unsigned long setting,
6301 unsigned long parent_effective,
6302 unsigned long siblings_protected)
6303 {
6304 unsigned long protected;
6305 unsigned long ep;
6306
6307 protected = min(usage, setting);
6308 /*
6309 * If all cgroups at this level combined claim and use more
6310 * protection then what the parent affords them, distribute
6311 * shares in proportion to utilization.
6312 *
6313 * We are using actual utilization rather than the statically
6314 * claimed protection in order to be work-conserving: claimed
6315 * but unused protection is available to siblings that would
6316 * otherwise get a smaller chunk than what they claimed.
6317 */
6318 if (siblings_protected > parent_effective)
6319 return protected * parent_effective / siblings_protected;
6320
6321 /*
6322 * Ok, utilized protection of all children is within what the
6323 * parent affords them, so we know whatever this child claims
6324 * and utilizes is effectively protected.
6325 *
6326 * If there is unprotected usage beyond this value, reclaim
6327 * will apply pressure in proportion to that amount.
6328 *
6329 * If there is unutilized protection, the cgroup will be fully
6330 * shielded from reclaim, but we do return a smaller value for
6331 * protection than what the group could enjoy in theory. This
6332 * is okay. With the overcommit distribution above, effective
6333 * protection is always dependent on how memory is actually
6334 * consumed among the siblings anyway.
6335 */
6336 ep = protected;
6337
6338 /*
6339 * If the children aren't claiming (all of) the protection
6340 * afforded to them by the parent, distribute the remainder in
6341 * proportion to the (unprotected) memory of each cgroup. That
6342 * way, cgroups that aren't explicitly prioritized wrt each
6343 * other compete freely over the allowance, but they are
6344 * collectively protected from neighboring trees.
6345 *
6346 * We're using unprotected memory for the weight so that if
6347 * some cgroups DO claim explicit protection, we don't protect
6348 * the same bytes twice.
6349 */
6350 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6351 return ep;
6352
6353 if (parent_effective > siblings_protected && usage > protected) {
6354 unsigned long unclaimed;
6355
6356 unclaimed = parent_effective - siblings_protected;
6357 unclaimed *= usage - protected;
6358 unclaimed /= parent_usage - siblings_protected;
6359
6360 ep += unclaimed;
6361 }
6362
6363 return ep;
6364 }
6365
6366 /**
6367 * mem_cgroup_protected - check if memory consumption is in the normal range
6368 * @root: the top ancestor of the sub-tree being checked
6369 * @memcg: the memory cgroup to check
6370 *
6371 * WARNING: This function is not stateless! It can only be used as part
6372 * of a top-down tree iteration, not for isolated queries.
6373 *
6374 * Returns one of the following:
6375 * MEMCG_PROT_NONE: cgroup memory is not protected
6376 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6377 * an unprotected supply of reclaimable memory from other cgroups.
6378 * MEMCG_PROT_MIN: cgroup memory is protected
6379 */
6380 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6381 struct mem_cgroup *memcg)
6382 {
6383 unsigned long usage, parent_usage;
6384 struct mem_cgroup *parent;
6385
6386 if (mem_cgroup_disabled())
6387 return MEMCG_PROT_NONE;
6388
6389 if (!root)
6390 root = root_mem_cgroup;
6391 if (memcg == root)
6392 return MEMCG_PROT_NONE;
6393
6394 usage = page_counter_read(&memcg->memory);
6395 if (!usage)
6396 return MEMCG_PROT_NONE;
6397
6398 parent = parent_mem_cgroup(memcg);
6399 /* No parent means a non-hierarchical mode on v1 memcg */
6400 if (!parent)
6401 return MEMCG_PROT_NONE;
6402
6403 if (parent == root) {
6404 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6405 memcg->memory.elow = memcg->memory.low;
6406 goto out;
6407 }
6408
6409 parent_usage = page_counter_read(&parent->memory);
6410
6411 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6412 READ_ONCE(memcg->memory.min),
6413 READ_ONCE(parent->memory.emin),
6414 atomic_long_read(&parent->memory.children_min_usage)));
6415
6416 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6417 memcg->memory.low, READ_ONCE(parent->memory.elow),
6418 atomic_long_read(&parent->memory.children_low_usage)));
6419
6420 out:
6421 if (usage <= memcg->memory.emin)
6422 return MEMCG_PROT_MIN;
6423 else if (usage <= memcg->memory.elow)
6424 return MEMCG_PROT_LOW;
6425 else
6426 return MEMCG_PROT_NONE;
6427 }
6428
6429 /**
6430 * mem_cgroup_try_charge - try charging a page
6431 * @page: page to charge
6432 * @mm: mm context of the victim
6433 * @gfp_mask: reclaim mode
6434 * @memcgp: charged memcg return
6435 * @compound: charge the page as compound or small page
6436 *
6437 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6438 * pages according to @gfp_mask if necessary.
6439 *
6440 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6441 * Otherwise, an error code is returned.
6442 *
6443 * After page->mapping has been set up, the caller must finalize the
6444 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6445 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6446 */
6447 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6448 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6449 bool compound)
6450 {
6451 struct mem_cgroup *memcg = NULL;
6452 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6453 int ret = 0;
6454
6455 if (mem_cgroup_disabled())
6456 goto out;
6457
6458 if (PageSwapCache(page)) {
6459 /*
6460 * Every swap fault against a single page tries to charge the
6461 * page, bail as early as possible. shmem_unuse() encounters
6462 * already charged pages, too. The USED bit is protected by
6463 * the page lock, which serializes swap cache removal, which
6464 * in turn serializes uncharging.
6465 */
6466 VM_BUG_ON_PAGE(!PageLocked(page), page);
6467 if (compound_head(page)->mem_cgroup)
6468 goto out;
6469
6470 if (do_swap_account) {
6471 swp_entry_t ent = { .val = page_private(page), };
6472 unsigned short id = lookup_swap_cgroup_id(ent);
6473
6474 rcu_read_lock();
6475 memcg = mem_cgroup_from_id(id);
6476 if (memcg && !css_tryget_online(&memcg->css))
6477 memcg = NULL;
6478 rcu_read_unlock();
6479 }
6480 }
6481
6482 if (!memcg)
6483 memcg = get_mem_cgroup_from_mm(mm);
6484
6485 ret = try_charge(memcg, gfp_mask, nr_pages);
6486
6487 css_put(&memcg->css);
6488 out:
6489 *memcgp = memcg;
6490 return ret;
6491 }
6492
6493 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6494 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6495 bool compound)
6496 {
6497 struct mem_cgroup *memcg;
6498 int ret;
6499
6500 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6501 memcg = *memcgp;
6502 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6503 return ret;
6504 }
6505
6506 /**
6507 * mem_cgroup_commit_charge - commit a page charge
6508 * @page: page to charge
6509 * @memcg: memcg to charge the page to
6510 * @lrucare: page might be on LRU already
6511 * @compound: charge the page as compound or small page
6512 *
6513 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6514 * after page->mapping has been set up. This must happen atomically
6515 * as part of the page instantiation, i.e. under the page table lock
6516 * for anonymous pages, under the page lock for page and swap cache.
6517 *
6518 * In addition, the page must not be on the LRU during the commit, to
6519 * prevent racing with task migration. If it might be, use @lrucare.
6520 *
6521 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6522 */
6523 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6524 bool lrucare, bool compound)
6525 {
6526 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6527
6528 VM_BUG_ON_PAGE(!page->mapping, page);
6529 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6530
6531 if (mem_cgroup_disabled())
6532 return;
6533 /*
6534 * Swap faults will attempt to charge the same page multiple
6535 * times. But reuse_swap_page() might have removed the page
6536 * from swapcache already, so we can't check PageSwapCache().
6537 */
6538 if (!memcg)
6539 return;
6540
6541 commit_charge(page, memcg, lrucare);
6542
6543 local_irq_disable();
6544 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6545 memcg_check_events(memcg, page);
6546 local_irq_enable();
6547
6548 if (do_memsw_account() && PageSwapCache(page)) {
6549 swp_entry_t entry = { .val = page_private(page) };
6550 /*
6551 * The swap entry might not get freed for a long time,
6552 * let's not wait for it. The page already received a
6553 * memory+swap charge, drop the swap entry duplicate.
6554 */
6555 mem_cgroup_uncharge_swap(entry, nr_pages);
6556 }
6557 }
6558
6559 /**
6560 * mem_cgroup_cancel_charge - cancel a page charge
6561 * @page: page to charge
6562 * @memcg: memcg to charge the page to
6563 * @compound: charge the page as compound or small page
6564 *
6565 * Cancel a charge transaction started by mem_cgroup_try_charge().
6566 */
6567 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6568 bool compound)
6569 {
6570 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6571
6572 if (mem_cgroup_disabled())
6573 return;
6574 /*
6575 * Swap faults will attempt to charge the same page multiple
6576 * times. But reuse_swap_page() might have removed the page
6577 * from swapcache already, so we can't check PageSwapCache().
6578 */
6579 if (!memcg)
6580 return;
6581
6582 cancel_charge(memcg, nr_pages);
6583 }
6584
6585 struct uncharge_gather {
6586 struct mem_cgroup *memcg;
6587 unsigned long pgpgout;
6588 unsigned long nr_anon;
6589 unsigned long nr_file;
6590 unsigned long nr_kmem;
6591 unsigned long nr_huge;
6592 unsigned long nr_shmem;
6593 struct page *dummy_page;
6594 };
6595
6596 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6597 {
6598 memset(ug, 0, sizeof(*ug));
6599 }
6600
6601 static void uncharge_batch(const struct uncharge_gather *ug)
6602 {
6603 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6604 unsigned long flags;
6605
6606 if (!mem_cgroup_is_root(ug->memcg)) {
6607 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6608 if (do_memsw_account())
6609 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6610 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6611 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6612 memcg_oom_recover(ug->memcg);
6613 }
6614
6615 local_irq_save(flags);
6616 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6617 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6618 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6619 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6620 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6621 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6622 memcg_check_events(ug->memcg, ug->dummy_page);
6623 local_irq_restore(flags);
6624
6625 if (!mem_cgroup_is_root(ug->memcg))
6626 css_put_many(&ug->memcg->css, nr_pages);
6627 }
6628
6629 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6630 {
6631 VM_BUG_ON_PAGE(PageLRU(page), page);
6632 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6633 !PageHWPoison(page) , page);
6634
6635 if (!page->mem_cgroup)
6636 return;
6637
6638 /*
6639 * Nobody should be changing or seriously looking at
6640 * page->mem_cgroup at this point, we have fully
6641 * exclusive access to the page.
6642 */
6643
6644 if (ug->memcg != page->mem_cgroup) {
6645 if (ug->memcg) {
6646 uncharge_batch(ug);
6647 uncharge_gather_clear(ug);
6648 }
6649 ug->memcg = page->mem_cgroup;
6650 }
6651
6652 if (!PageKmemcg(page)) {
6653 unsigned int nr_pages = 1;
6654
6655 if (PageTransHuge(page)) {
6656 nr_pages = compound_nr(page);
6657 ug->nr_huge += nr_pages;
6658 }
6659 if (PageAnon(page))
6660 ug->nr_anon += nr_pages;
6661 else {
6662 ug->nr_file += nr_pages;
6663 if (PageSwapBacked(page))
6664 ug->nr_shmem += nr_pages;
6665 }
6666 ug->pgpgout++;
6667 } else {
6668 ug->nr_kmem += compound_nr(page);
6669 __ClearPageKmemcg(page);
6670 }
6671
6672 ug->dummy_page = page;
6673 page->mem_cgroup = NULL;
6674 }
6675
6676 static void uncharge_list(struct list_head *page_list)
6677 {
6678 struct uncharge_gather ug;
6679 struct list_head *next;
6680
6681 uncharge_gather_clear(&ug);
6682
6683 /*
6684 * Note that the list can be a single page->lru; hence the
6685 * do-while loop instead of a simple list_for_each_entry().
6686 */
6687 next = page_list->next;
6688 do {
6689 struct page *page;
6690
6691 page = list_entry(next, struct page, lru);
6692 next = page->lru.next;
6693
6694 uncharge_page(page, &ug);
6695 } while (next != page_list);
6696
6697 if (ug.memcg)
6698 uncharge_batch(&ug);
6699 }
6700
6701 /**
6702 * mem_cgroup_uncharge - uncharge a page
6703 * @page: page to uncharge
6704 *
6705 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6706 * mem_cgroup_commit_charge().
6707 */
6708 void mem_cgroup_uncharge(struct page *page)
6709 {
6710 struct uncharge_gather ug;
6711
6712 if (mem_cgroup_disabled())
6713 return;
6714
6715 /* Don't touch page->lru of any random page, pre-check: */
6716 if (!page->mem_cgroup)
6717 return;
6718
6719 uncharge_gather_clear(&ug);
6720 uncharge_page(page, &ug);
6721 uncharge_batch(&ug);
6722 }
6723
6724 /**
6725 * mem_cgroup_uncharge_list - uncharge a list of page
6726 * @page_list: list of pages to uncharge
6727 *
6728 * Uncharge a list of pages previously charged with
6729 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6730 */
6731 void mem_cgroup_uncharge_list(struct list_head *page_list)
6732 {
6733 if (mem_cgroup_disabled())
6734 return;
6735
6736 if (!list_empty(page_list))
6737 uncharge_list(page_list);
6738 }
6739
6740 /**
6741 * mem_cgroup_migrate - charge a page's replacement
6742 * @oldpage: currently circulating page
6743 * @newpage: replacement page
6744 *
6745 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6746 * be uncharged upon free.
6747 *
6748 * Both pages must be locked, @newpage->mapping must be set up.
6749 */
6750 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6751 {
6752 struct mem_cgroup *memcg;
6753 unsigned int nr_pages;
6754 unsigned long flags;
6755
6756 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6757 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6758 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6759 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6760 newpage);
6761
6762 if (mem_cgroup_disabled())
6763 return;
6764
6765 /* Page cache replacement: new page already charged? */
6766 if (newpage->mem_cgroup)
6767 return;
6768
6769 /* Swapcache readahead pages can get replaced before being charged */
6770 memcg = oldpage->mem_cgroup;
6771 if (!memcg)
6772 return;
6773
6774 /* Force-charge the new page. The old one will be freed soon */
6775 nr_pages = hpage_nr_pages(newpage);
6776
6777 page_counter_charge(&memcg->memory, nr_pages);
6778 if (do_memsw_account())
6779 page_counter_charge(&memcg->memsw, nr_pages);
6780 css_get_many(&memcg->css, nr_pages);
6781
6782 commit_charge(newpage, memcg, false);
6783
6784 local_irq_save(flags);
6785 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6786 nr_pages);
6787 memcg_check_events(memcg, newpage);
6788 local_irq_restore(flags);
6789 }
6790
6791 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6792 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6793
6794 void mem_cgroup_sk_alloc(struct sock *sk)
6795 {
6796 struct mem_cgroup *memcg;
6797
6798 if (!mem_cgroup_sockets_enabled)
6799 return;
6800
6801 /* Do not associate the sock with unrelated interrupted task's memcg. */
6802 if (in_interrupt())
6803 return;
6804
6805 rcu_read_lock();
6806 memcg = mem_cgroup_from_task(current);
6807 if (memcg == root_mem_cgroup)
6808 goto out;
6809 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6810 goto out;
6811 if (css_tryget(&memcg->css))
6812 sk->sk_memcg = memcg;
6813 out:
6814 rcu_read_unlock();
6815 }
6816
6817 void mem_cgroup_sk_free(struct sock *sk)
6818 {
6819 if (sk->sk_memcg)
6820 css_put(&sk->sk_memcg->css);
6821 }
6822
6823 /**
6824 * mem_cgroup_charge_skmem - charge socket memory
6825 * @memcg: memcg to charge
6826 * @nr_pages: number of pages to charge
6827 *
6828 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6829 * @memcg's configured limit, %false if the charge had to be forced.
6830 */
6831 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6832 {
6833 gfp_t gfp_mask = GFP_KERNEL;
6834
6835 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6836 struct page_counter *fail;
6837
6838 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6839 memcg->tcpmem_pressure = 0;
6840 return true;
6841 }
6842 page_counter_charge(&memcg->tcpmem, nr_pages);
6843 memcg->tcpmem_pressure = 1;
6844 return false;
6845 }
6846
6847 /* Don't block in the packet receive path */
6848 if (in_softirq())
6849 gfp_mask = GFP_NOWAIT;
6850
6851 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6852
6853 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6854 return true;
6855
6856 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6857 return false;
6858 }
6859
6860 /**
6861 * mem_cgroup_uncharge_skmem - uncharge socket memory
6862 * @memcg: memcg to uncharge
6863 * @nr_pages: number of pages to uncharge
6864 */
6865 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6866 {
6867 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6868 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6869 return;
6870 }
6871
6872 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6873
6874 refill_stock(memcg, nr_pages);
6875 }
6876
6877 static int __init cgroup_memory(char *s)
6878 {
6879 char *token;
6880
6881 while ((token = strsep(&s, ",")) != NULL) {
6882 if (!*token)
6883 continue;
6884 if (!strcmp(token, "nosocket"))
6885 cgroup_memory_nosocket = true;
6886 if (!strcmp(token, "nokmem"))
6887 cgroup_memory_nokmem = true;
6888 }
6889 return 0;
6890 }
6891 __setup("cgroup.memory=", cgroup_memory);
6892
6893 /*
6894 * subsys_initcall() for memory controller.
6895 *
6896 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6897 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6898 * basically everything that doesn't depend on a specific mem_cgroup structure
6899 * should be initialized from here.
6900 */
6901 static int __init mem_cgroup_init(void)
6902 {
6903 int cpu, node;
6904
6905 #ifdef CONFIG_MEMCG_KMEM
6906 /*
6907 * Kmem cache creation is mostly done with the slab_mutex held,
6908 * so use a workqueue with limited concurrency to avoid stalling
6909 * all worker threads in case lots of cgroups are created and
6910 * destroyed simultaneously.
6911 */
6912 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6913 BUG_ON(!memcg_kmem_cache_wq);
6914 #endif
6915
6916 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6917 memcg_hotplug_cpu_dead);
6918
6919 for_each_possible_cpu(cpu)
6920 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6921 drain_local_stock);
6922
6923 for_each_node(node) {
6924 struct mem_cgroup_tree_per_node *rtpn;
6925
6926 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6927 node_online(node) ? node : NUMA_NO_NODE);
6928
6929 rtpn->rb_root = RB_ROOT;
6930 rtpn->rb_rightmost = NULL;
6931 spin_lock_init(&rtpn->lock);
6932 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6933 }
6934
6935 return 0;
6936 }
6937 subsys_initcall(mem_cgroup_init);
6938
6939 #ifdef CONFIG_MEMCG_SWAP
6940 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6941 {
6942 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6943 /*
6944 * The root cgroup cannot be destroyed, so it's refcount must
6945 * always be >= 1.
6946 */
6947 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6948 VM_BUG_ON(1);
6949 break;
6950 }
6951 memcg = parent_mem_cgroup(memcg);
6952 if (!memcg)
6953 memcg = root_mem_cgroup;
6954 }
6955 return memcg;
6956 }
6957
6958 /**
6959 * mem_cgroup_swapout - transfer a memsw charge to swap
6960 * @page: page whose memsw charge to transfer
6961 * @entry: swap entry to move the charge to
6962 *
6963 * Transfer the memsw charge of @page to @entry.
6964 */
6965 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6966 {
6967 struct mem_cgroup *memcg, *swap_memcg;
6968 unsigned int nr_entries;
6969 unsigned short oldid;
6970
6971 VM_BUG_ON_PAGE(PageLRU(page), page);
6972 VM_BUG_ON_PAGE(page_count(page), page);
6973
6974 if (!do_memsw_account())
6975 return;
6976
6977 memcg = page->mem_cgroup;
6978
6979 /* Readahead page, never charged */
6980 if (!memcg)
6981 return;
6982
6983 /*
6984 * In case the memcg owning these pages has been offlined and doesn't
6985 * have an ID allocated to it anymore, charge the closest online
6986 * ancestor for the swap instead and transfer the memory+swap charge.
6987 */
6988 swap_memcg = mem_cgroup_id_get_online(memcg);
6989 nr_entries = hpage_nr_pages(page);
6990 /* Get references for the tail pages, too */
6991 if (nr_entries > 1)
6992 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6993 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6994 nr_entries);
6995 VM_BUG_ON_PAGE(oldid, page);
6996 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6997
6998 page->mem_cgroup = NULL;
6999
7000 if (!mem_cgroup_is_root(memcg))
7001 page_counter_uncharge(&memcg->memory, nr_entries);
7002
7003 if (memcg != swap_memcg) {
7004 if (!mem_cgroup_is_root(swap_memcg))
7005 page_counter_charge(&swap_memcg->memsw, nr_entries);
7006 page_counter_uncharge(&memcg->memsw, nr_entries);
7007 }
7008
7009 /*
7010 * Interrupts should be disabled here because the caller holds the
7011 * i_pages lock which is taken with interrupts-off. It is
7012 * important here to have the interrupts disabled because it is the
7013 * only synchronisation we have for updating the per-CPU variables.
7014 */
7015 VM_BUG_ON(!irqs_disabled());
7016 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7017 -nr_entries);
7018 memcg_check_events(memcg, page);
7019
7020 if (!mem_cgroup_is_root(memcg))
7021 css_put_many(&memcg->css, nr_entries);
7022 }
7023
7024 /**
7025 * mem_cgroup_try_charge_swap - try charging swap space for a page
7026 * @page: page being added to swap
7027 * @entry: swap entry to charge
7028 *
7029 * Try to charge @page's memcg for the swap space at @entry.
7030 *
7031 * Returns 0 on success, -ENOMEM on failure.
7032 */
7033 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7034 {
7035 unsigned int nr_pages = hpage_nr_pages(page);
7036 struct page_counter *counter;
7037 struct mem_cgroup *memcg;
7038 unsigned short oldid;
7039
7040 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7041 return 0;
7042
7043 memcg = page->mem_cgroup;
7044
7045 /* Readahead page, never charged */
7046 if (!memcg)
7047 return 0;
7048
7049 if (!entry.val) {
7050 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7051 return 0;
7052 }
7053
7054 memcg = mem_cgroup_id_get_online(memcg);
7055
7056 if (!mem_cgroup_is_root(memcg) &&
7057 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7058 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7059 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7060 mem_cgroup_id_put(memcg);
7061 return -ENOMEM;
7062 }
7063
7064 /* Get references for the tail pages, too */
7065 if (nr_pages > 1)
7066 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7067 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7068 VM_BUG_ON_PAGE(oldid, page);
7069 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7070
7071 return 0;
7072 }
7073
7074 /**
7075 * mem_cgroup_uncharge_swap - uncharge swap space
7076 * @entry: swap entry to uncharge
7077 * @nr_pages: the amount of swap space to uncharge
7078 */
7079 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7080 {
7081 struct mem_cgroup *memcg;
7082 unsigned short id;
7083
7084 if (!do_swap_account)
7085 return;
7086
7087 id = swap_cgroup_record(entry, 0, nr_pages);
7088 rcu_read_lock();
7089 memcg = mem_cgroup_from_id(id);
7090 if (memcg) {
7091 if (!mem_cgroup_is_root(memcg)) {
7092 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7093 page_counter_uncharge(&memcg->swap, nr_pages);
7094 else
7095 page_counter_uncharge(&memcg->memsw, nr_pages);
7096 }
7097 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7098 mem_cgroup_id_put_many(memcg, nr_pages);
7099 }
7100 rcu_read_unlock();
7101 }
7102
7103 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7104 {
7105 long nr_swap_pages = get_nr_swap_pages();
7106
7107 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7108 return nr_swap_pages;
7109 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7110 nr_swap_pages = min_t(long, nr_swap_pages,
7111 READ_ONCE(memcg->swap.max) -
7112 page_counter_read(&memcg->swap));
7113 return nr_swap_pages;
7114 }
7115
7116 bool mem_cgroup_swap_full(struct page *page)
7117 {
7118 struct mem_cgroup *memcg;
7119
7120 VM_BUG_ON_PAGE(!PageLocked(page), page);
7121
7122 if (vm_swap_full())
7123 return true;
7124 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7125 return false;
7126
7127 memcg = page->mem_cgroup;
7128 if (!memcg)
7129 return false;
7130
7131 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7132 if (page_counter_read(&memcg->swap) * 2 >=
7133 READ_ONCE(memcg->swap.max))
7134 return true;
7135
7136 return false;
7137 }
7138
7139 /* for remember boot option*/
7140 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7141 static int really_do_swap_account __initdata = 1;
7142 #else
7143 static int really_do_swap_account __initdata;
7144 #endif
7145
7146 static int __init enable_swap_account(char *s)
7147 {
7148 if (!strcmp(s, "1"))
7149 really_do_swap_account = 1;
7150 else if (!strcmp(s, "0"))
7151 really_do_swap_account = 0;
7152 return 1;
7153 }
7154 __setup("swapaccount=", enable_swap_account);
7155
7156 static u64 swap_current_read(struct cgroup_subsys_state *css,
7157 struct cftype *cft)
7158 {
7159 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7160
7161 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7162 }
7163
7164 static int swap_max_show(struct seq_file *m, void *v)
7165 {
7166 return seq_puts_memcg_tunable(m,
7167 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7168 }
7169
7170 static ssize_t swap_max_write(struct kernfs_open_file *of,
7171 char *buf, size_t nbytes, loff_t off)
7172 {
7173 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7174 unsigned long max;
7175 int err;
7176
7177 buf = strstrip(buf);
7178 err = page_counter_memparse(buf, "max", &max);
7179 if (err)
7180 return err;
7181
7182 xchg(&memcg->swap.max, max);
7183
7184 return nbytes;
7185 }
7186
7187 static int swap_events_show(struct seq_file *m, void *v)
7188 {
7189 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7190
7191 seq_printf(m, "max %lu\n",
7192 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7193 seq_printf(m, "fail %lu\n",
7194 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7195
7196 return 0;
7197 }
7198
7199 static struct cftype swap_files[] = {
7200 {
7201 .name = "swap.current",
7202 .flags = CFTYPE_NOT_ON_ROOT,
7203 .read_u64 = swap_current_read,
7204 },
7205 {
7206 .name = "swap.max",
7207 .flags = CFTYPE_NOT_ON_ROOT,
7208 .seq_show = swap_max_show,
7209 .write = swap_max_write,
7210 },
7211 {
7212 .name = "swap.events",
7213 .flags = CFTYPE_NOT_ON_ROOT,
7214 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7215 .seq_show = swap_events_show,
7216 },
7217 { } /* terminate */
7218 };
7219
7220 static struct cftype memsw_cgroup_files[] = {
7221 {
7222 .name = "memsw.usage_in_bytes",
7223 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7224 .read_u64 = mem_cgroup_read_u64,
7225 },
7226 {
7227 .name = "memsw.max_usage_in_bytes",
7228 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7229 .write = mem_cgroup_reset,
7230 .read_u64 = mem_cgroup_read_u64,
7231 },
7232 {
7233 .name = "memsw.limit_in_bytes",
7234 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7235 .write = mem_cgroup_write,
7236 .read_u64 = mem_cgroup_read_u64,
7237 },
7238 {
7239 .name = "memsw.failcnt",
7240 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7241 .write = mem_cgroup_reset,
7242 .read_u64 = mem_cgroup_read_u64,
7243 },
7244 { }, /* terminate */
7245 };
7246
7247 static int __init mem_cgroup_swap_init(void)
7248 {
7249 if (!mem_cgroup_disabled() && really_do_swap_account) {
7250 do_swap_account = 1;
7251 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7252 swap_files));
7253 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7254 memsw_cgroup_files));
7255 }
7256 return 0;
7257 }
7258 subsys_initcall(mem_cgroup_swap_init);
7259
7260 #endif /* CONFIG_MEMCG_SWAP */