]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/memcontrol.c
Merge tag 'ceph-for-5.3-rc1' of git://github.com/ceph/ceph-client
[thirdparty/linux.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
61 #include "internal.h"
62 #include <net/sock.h>
63 #include <net/ip.h>
64 #include "slab.h"
65
66 #include <linux/uaccess.h>
67
68 #include <trace/events/vmscan.h>
69
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71 EXPORT_SYMBOL(memory_cgrp_subsys);
72
73 struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #define MEM_CGROUP_RECLAIM_RETRIES 5
76
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket;
79
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem;
82
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account 0
88 #endif
89
90 /* Whether legacy memory+swap accounting is active */
91 static bool do_memsw_account(void)
92 {
93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94 }
95
96 static const char *const mem_cgroup_lru_names[] = {
97 "inactive_anon",
98 "active_anon",
99 "inactive_file",
100 "active_file",
101 "unevictable",
102 };
103
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106 #define NUMAINFO_EVENTS_TARGET 1024
107
108 /*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113 struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129 };
130
131 /*
132 * cgroup_event represents events which userspace want to receive.
133 */
134 struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176 * Types of charges to be moved.
177 */
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194 } mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 enum charge_type {
207 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
208 MEM_CGROUP_CHARGE_TYPE_ANON,
209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
210 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
211 NR_CHARGE_TYPE,
212 };
213
214 /* for encoding cft->private value on file */
215 enum res_type {
216 _MEM,
217 _MEMSWAP,
218 _OOM_TYPE,
219 _KMEM,
220 _TCP,
221 };
222
223 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
224 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
225 #define MEMFILE_ATTR(val) ((val) & 0xffff)
226 /* Used for OOM nofiier */
227 #define OOM_CONTROL (0)
228
229 /*
230 * Iteration constructs for visiting all cgroups (under a tree). If
231 * loops are exited prematurely (break), mem_cgroup_iter_break() must
232 * be used for reference counting.
233 */
234 #define for_each_mem_cgroup_tree(iter, root) \
235 for (iter = mem_cgroup_iter(root, NULL, NULL); \
236 iter != NULL; \
237 iter = mem_cgroup_iter(root, iter, NULL))
238
239 #define for_each_mem_cgroup(iter) \
240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(NULL, iter, NULL))
243
244 static inline bool should_force_charge(void)
245 {
246 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
247 (current->flags & PF_EXITING);
248 }
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 #ifdef CONFIG_MEMCG_KMEM
264 /*
265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
266 * The main reason for not using cgroup id for this:
267 * this works better in sparse environments, where we have a lot of memcgs,
268 * but only a few kmem-limited. Or also, if we have, for instance, 200
269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
270 * 200 entry array for that.
271 *
272 * The current size of the caches array is stored in memcg_nr_cache_ids. It
273 * will double each time we have to increase it.
274 */
275 static DEFINE_IDA(memcg_cache_ida);
276 int memcg_nr_cache_ids;
277
278 /* Protects memcg_nr_cache_ids */
279 static DECLARE_RWSEM(memcg_cache_ids_sem);
280
281 void memcg_get_cache_ids(void)
282 {
283 down_read(&memcg_cache_ids_sem);
284 }
285
286 void memcg_put_cache_ids(void)
287 {
288 up_read(&memcg_cache_ids_sem);
289 }
290
291 /*
292 * MIN_SIZE is different than 1, because we would like to avoid going through
293 * the alloc/free process all the time. In a small machine, 4 kmem-limited
294 * cgroups is a reasonable guess. In the future, it could be a parameter or
295 * tunable, but that is strictly not necessary.
296 *
297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
298 * this constant directly from cgroup, but it is understandable that this is
299 * better kept as an internal representation in cgroup.c. In any case, the
300 * cgrp_id space is not getting any smaller, and we don't have to necessarily
301 * increase ours as well if it increases.
302 */
303 #define MEMCG_CACHES_MIN_SIZE 4
304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
305
306 /*
307 * A lot of the calls to the cache allocation functions are expected to be
308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309 * conditional to this static branch, we'll have to allow modules that does
310 * kmem_cache_alloc and the such to see this symbol as well
311 */
312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
313 EXPORT_SYMBOL(memcg_kmem_enabled_key);
314
315 struct workqueue_struct *memcg_kmem_cache_wq;
316
317 static int memcg_shrinker_map_size;
318 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319
320 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321 {
322 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
323 }
324
325 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
326 int size, int old_size)
327 {
328 struct memcg_shrinker_map *new, *old;
329 int nid;
330
331 lockdep_assert_held(&memcg_shrinker_map_mutex);
332
333 for_each_node(nid) {
334 old = rcu_dereference_protected(
335 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
336 /* Not yet online memcg */
337 if (!old)
338 return 0;
339
340 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 if (!new)
342 return -ENOMEM;
343
344 /* Set all old bits, clear all new bits */
345 memset(new->map, (int)0xff, old_size);
346 memset((void *)new->map + old_size, 0, size - old_size);
347
348 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
349 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
350 }
351
352 return 0;
353 }
354
355 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356 {
357 struct mem_cgroup_per_node *pn;
358 struct memcg_shrinker_map *map;
359 int nid;
360
361 if (mem_cgroup_is_root(memcg))
362 return;
363
364 for_each_node(nid) {
365 pn = mem_cgroup_nodeinfo(memcg, nid);
366 map = rcu_dereference_protected(pn->shrinker_map, true);
367 if (map)
368 kvfree(map);
369 rcu_assign_pointer(pn->shrinker_map, NULL);
370 }
371 }
372
373 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374 {
375 struct memcg_shrinker_map *map;
376 int nid, size, ret = 0;
377
378 if (mem_cgroup_is_root(memcg))
379 return 0;
380
381 mutex_lock(&memcg_shrinker_map_mutex);
382 size = memcg_shrinker_map_size;
383 for_each_node(nid) {
384 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 if (!map) {
386 memcg_free_shrinker_maps(memcg);
387 ret = -ENOMEM;
388 break;
389 }
390 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 }
392 mutex_unlock(&memcg_shrinker_map_mutex);
393
394 return ret;
395 }
396
397 int memcg_expand_shrinker_maps(int new_id)
398 {
399 int size, old_size, ret = 0;
400 struct mem_cgroup *memcg;
401
402 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
403 old_size = memcg_shrinker_map_size;
404 if (size <= old_size)
405 return 0;
406
407 mutex_lock(&memcg_shrinker_map_mutex);
408 if (!root_mem_cgroup)
409 goto unlock;
410
411 for_each_mem_cgroup(memcg) {
412 if (mem_cgroup_is_root(memcg))
413 continue;
414 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
415 if (ret)
416 goto unlock;
417 }
418 unlock:
419 if (!ret)
420 memcg_shrinker_map_size = size;
421 mutex_unlock(&memcg_shrinker_map_mutex);
422 return ret;
423 }
424
425 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 {
427 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
428 struct memcg_shrinker_map *map;
429
430 rcu_read_lock();
431 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
432 /* Pairs with smp mb in shrink_slab() */
433 smp_mb__before_atomic();
434 set_bit(shrinker_id, map->map);
435 rcu_read_unlock();
436 }
437 }
438
439 #else /* CONFIG_MEMCG_KMEM */
440 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
441 {
442 return 0;
443 }
444 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
445 #endif /* CONFIG_MEMCG_KMEM */
446
447 /**
448 * mem_cgroup_css_from_page - css of the memcg associated with a page
449 * @page: page of interest
450 *
451 * If memcg is bound to the default hierarchy, css of the memcg associated
452 * with @page is returned. The returned css remains associated with @page
453 * until it is released.
454 *
455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456 * is returned.
457 */
458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459 {
460 struct mem_cgroup *memcg;
461
462 memcg = page->mem_cgroup;
463
464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
465 memcg = root_mem_cgroup;
466
467 return &memcg->css;
468 }
469
470 /**
471 * page_cgroup_ino - return inode number of the memcg a page is charged to
472 * @page: the page
473 *
474 * Look up the closest online ancestor of the memory cgroup @page is charged to
475 * and return its inode number or 0 if @page is not charged to any cgroup. It
476 * is safe to call this function without holding a reference to @page.
477 *
478 * Note, this function is inherently racy, because there is nothing to prevent
479 * the cgroup inode from getting torn down and potentially reallocated a moment
480 * after page_cgroup_ino() returns, so it only should be used by callers that
481 * do not care (such as procfs interfaces).
482 */
483 ino_t page_cgroup_ino(struct page *page)
484 {
485 struct mem_cgroup *memcg;
486 unsigned long ino = 0;
487
488 rcu_read_lock();
489 if (PageHead(page) && PageSlab(page))
490 memcg = memcg_from_slab_page(page);
491 else
492 memcg = READ_ONCE(page->mem_cgroup);
493 while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 memcg = parent_mem_cgroup(memcg);
495 if (memcg)
496 ino = cgroup_ino(memcg->css.cgroup);
497 rcu_read_unlock();
498 return ino;
499 }
500
501 static struct mem_cgroup_per_node *
502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 int nid = page_to_nid(page);
505
506 return memcg->nodeinfo[nid];
507 }
508
509 static struct mem_cgroup_tree_per_node *
510 soft_limit_tree_node(int nid)
511 {
512 return soft_limit_tree.rb_tree_per_node[nid];
513 }
514
515 static struct mem_cgroup_tree_per_node *
516 soft_limit_tree_from_page(struct page *page)
517 {
518 int nid = page_to_nid(page);
519
520 return soft_limit_tree.rb_tree_per_node[nid];
521 }
522
523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 struct mem_cgroup_tree_per_node *mctz,
525 unsigned long new_usage_in_excess)
526 {
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_node *mz_node;
530 bool rightmost = true;
531
532 if (mz->on_tree)
533 return;
534
535 mz->usage_in_excess = new_usage_in_excess;
536 if (!mz->usage_in_excess)
537 return;
538 while (*p) {
539 parent = *p;
540 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
541 tree_node);
542 if (mz->usage_in_excess < mz_node->usage_in_excess) {
543 p = &(*p)->rb_left;
544 rightmost = false;
545 }
546
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
554
555 if (rightmost)
556 mctz->rb_rightmost = &mz->tree_node;
557
558 rb_link_node(&mz->tree_node, parent, p);
559 rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 mz->on_tree = true;
561 }
562
563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 struct mem_cgroup_tree_per_node *mctz)
565 {
566 if (!mz->on_tree)
567 return;
568
569 if (&mz->tree_node == mctz->rb_rightmost)
570 mctz->rb_rightmost = rb_prev(&mz->tree_node);
571
572 rb_erase(&mz->tree_node, &mctz->rb_root);
573 mz->on_tree = false;
574 }
575
576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 struct mem_cgroup_tree_per_node *mctz)
578 {
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
582 __mem_cgroup_remove_exceeded(mz, mctz);
583 spin_unlock_irqrestore(&mctz->lock, flags);
584 }
585
586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587 {
588 unsigned long nr_pages = page_counter_read(&memcg->memory);
589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
590 unsigned long excess = 0;
591
592 if (nr_pages > soft_limit)
593 excess = nr_pages - soft_limit;
594
595 return excess;
596 }
597
598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599 {
600 unsigned long excess;
601 struct mem_cgroup_per_node *mz;
602 struct mem_cgroup_tree_per_node *mctz;
603
604 mctz = soft_limit_tree_from_page(page);
605 if (!mctz)
606 return;
607 /*
608 * Necessary to update all ancestors when hierarchy is used.
609 * because their event counter is not touched.
610 */
611 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
612 mz = mem_cgroup_page_nodeinfo(memcg, page);
613 excess = soft_limit_excess(memcg);
614 /*
615 * We have to update the tree if mz is on RB-tree or
616 * mem is over its softlimit.
617 */
618 if (excess || mz->on_tree) {
619 unsigned long flags;
620
621 spin_lock_irqsave(&mctz->lock, flags);
622 /* if on-tree, remove it */
623 if (mz->on_tree)
624 __mem_cgroup_remove_exceeded(mz, mctz);
625 /*
626 * Insert again. mz->usage_in_excess will be updated.
627 * If excess is 0, no tree ops.
628 */
629 __mem_cgroup_insert_exceeded(mz, mctz, excess);
630 spin_unlock_irqrestore(&mctz->lock, flags);
631 }
632 }
633 }
634
635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636 {
637 struct mem_cgroup_tree_per_node *mctz;
638 struct mem_cgroup_per_node *mz;
639 int nid;
640
641 for_each_node(nid) {
642 mz = mem_cgroup_nodeinfo(memcg, nid);
643 mctz = soft_limit_tree_node(nid);
644 if (mctz)
645 mem_cgroup_remove_exceeded(mz, mctz);
646 }
647 }
648
649 static struct mem_cgroup_per_node *
650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
651 {
652 struct mem_cgroup_per_node *mz;
653
654 retry:
655 mz = NULL;
656 if (!mctz->rb_rightmost)
657 goto done; /* Nothing to reclaim from */
658
659 mz = rb_entry(mctz->rb_rightmost,
660 struct mem_cgroup_per_node, tree_node);
661 /*
662 * Remove the node now but someone else can add it back,
663 * we will to add it back at the end of reclaim to its correct
664 * position in the tree.
665 */
666 __mem_cgroup_remove_exceeded(mz, mctz);
667 if (!soft_limit_excess(mz->memcg) ||
668 !css_tryget_online(&mz->memcg->css))
669 goto retry;
670 done:
671 return mz;
672 }
673
674 static struct mem_cgroup_per_node *
675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
676 {
677 struct mem_cgroup_per_node *mz;
678
679 spin_lock_irq(&mctz->lock);
680 mz = __mem_cgroup_largest_soft_limit_node(mctz);
681 spin_unlock_irq(&mctz->lock);
682 return mz;
683 }
684
685 /**
686 * __mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
690 */
691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692 {
693 long x;
694
695 if (mem_cgroup_disabled())
696 return;
697
698 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
699 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
700 struct mem_cgroup *mi;
701
702 /*
703 * Batch local counters to keep them in sync with
704 * the hierarchical ones.
705 */
706 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
707 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
708 atomic_long_add(x, &mi->vmstats[idx]);
709 x = 0;
710 }
711 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
712 }
713
714 static struct mem_cgroup_per_node *
715 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
716 {
717 struct mem_cgroup *parent;
718
719 parent = parent_mem_cgroup(pn->memcg);
720 if (!parent)
721 return NULL;
722 return mem_cgroup_nodeinfo(parent, nid);
723 }
724
725 /**
726 * __mod_lruvec_state - update lruvec memory statistics
727 * @lruvec: the lruvec
728 * @idx: the stat item
729 * @val: delta to add to the counter, can be negative
730 *
731 * The lruvec is the intersection of the NUMA node and a cgroup. This
732 * function updates the all three counters that are affected by a
733 * change of state at this level: per-node, per-cgroup, per-lruvec.
734 */
735 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 int val)
737 {
738 pg_data_t *pgdat = lruvec_pgdat(lruvec);
739 struct mem_cgroup_per_node *pn;
740 struct mem_cgroup *memcg;
741 long x;
742
743 /* Update node */
744 __mod_node_page_state(pgdat, idx, val);
745
746 if (mem_cgroup_disabled())
747 return;
748
749 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
750 memcg = pn->memcg;
751
752 /* Update memcg */
753 __mod_memcg_state(memcg, idx, val);
754
755 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
756 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
757 struct mem_cgroup_per_node *pi;
758
759 /*
760 * Batch local counters to keep them in sync with
761 * the hierarchical ones.
762 */
763 __this_cpu_add(pn->lruvec_stat_local->count[idx], x);
764 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
765 atomic_long_add(x, &pi->lruvec_stat[idx]);
766 x = 0;
767 }
768 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
769 }
770
771 /**
772 * __count_memcg_events - account VM events in a cgroup
773 * @memcg: the memory cgroup
774 * @idx: the event item
775 * @count: the number of events that occured
776 */
777 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
778 unsigned long count)
779 {
780 unsigned long x;
781
782 if (mem_cgroup_disabled())
783 return;
784
785 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
786 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
787 struct mem_cgroup *mi;
788
789 /*
790 * Batch local counters to keep them in sync with
791 * the hierarchical ones.
792 */
793 __this_cpu_add(memcg->vmstats_local->events[idx], x);
794 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
795 atomic_long_add(x, &mi->vmevents[idx]);
796 x = 0;
797 }
798 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
799 }
800
801 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
802 {
803 return atomic_long_read(&memcg->vmevents[event]);
804 }
805
806 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
807 {
808 long x = 0;
809 int cpu;
810
811 for_each_possible_cpu(cpu)
812 x += per_cpu(memcg->vmstats_local->events[event], cpu);
813 return x;
814 }
815
816 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
817 struct page *page,
818 bool compound, int nr_pages)
819 {
820 /*
821 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
822 * counted as CACHE even if it's on ANON LRU.
823 */
824 if (PageAnon(page))
825 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
826 else {
827 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
828 if (PageSwapBacked(page))
829 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
830 }
831
832 if (compound) {
833 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
834 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
835 }
836
837 /* pagein of a big page is an event. So, ignore page size */
838 if (nr_pages > 0)
839 __count_memcg_events(memcg, PGPGIN, 1);
840 else {
841 __count_memcg_events(memcg, PGPGOUT, 1);
842 nr_pages = -nr_pages; /* for event */
843 }
844
845 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
846 }
847
848 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
849 enum mem_cgroup_events_target target)
850 {
851 unsigned long val, next;
852
853 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
854 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
855 /* from time_after() in jiffies.h */
856 if ((long)(next - val) < 0) {
857 switch (target) {
858 case MEM_CGROUP_TARGET_THRESH:
859 next = val + THRESHOLDS_EVENTS_TARGET;
860 break;
861 case MEM_CGROUP_TARGET_SOFTLIMIT:
862 next = val + SOFTLIMIT_EVENTS_TARGET;
863 break;
864 case MEM_CGROUP_TARGET_NUMAINFO:
865 next = val + NUMAINFO_EVENTS_TARGET;
866 break;
867 default:
868 break;
869 }
870 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
871 return true;
872 }
873 return false;
874 }
875
876 /*
877 * Check events in order.
878 *
879 */
880 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
881 {
882 /* threshold event is triggered in finer grain than soft limit */
883 if (unlikely(mem_cgroup_event_ratelimit(memcg,
884 MEM_CGROUP_TARGET_THRESH))) {
885 bool do_softlimit;
886 bool do_numainfo __maybe_unused;
887
888 do_softlimit = mem_cgroup_event_ratelimit(memcg,
889 MEM_CGROUP_TARGET_SOFTLIMIT);
890 #if MAX_NUMNODES > 1
891 do_numainfo = mem_cgroup_event_ratelimit(memcg,
892 MEM_CGROUP_TARGET_NUMAINFO);
893 #endif
894 mem_cgroup_threshold(memcg);
895 if (unlikely(do_softlimit))
896 mem_cgroup_update_tree(memcg, page);
897 #if MAX_NUMNODES > 1
898 if (unlikely(do_numainfo))
899 atomic_inc(&memcg->numainfo_events);
900 #endif
901 }
902 }
903
904 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
905 {
906 /*
907 * mm_update_next_owner() may clear mm->owner to NULL
908 * if it races with swapoff, page migration, etc.
909 * So this can be called with p == NULL.
910 */
911 if (unlikely(!p))
912 return NULL;
913
914 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
915 }
916 EXPORT_SYMBOL(mem_cgroup_from_task);
917
918 /**
919 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
920 * @mm: mm from which memcg should be extracted. It can be NULL.
921 *
922 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
923 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
924 * returned.
925 */
926 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
927 {
928 struct mem_cgroup *memcg;
929
930 if (mem_cgroup_disabled())
931 return NULL;
932
933 rcu_read_lock();
934 do {
935 /*
936 * Page cache insertions can happen withou an
937 * actual mm context, e.g. during disk probing
938 * on boot, loopback IO, acct() writes etc.
939 */
940 if (unlikely(!mm))
941 memcg = root_mem_cgroup;
942 else {
943 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
944 if (unlikely(!memcg))
945 memcg = root_mem_cgroup;
946 }
947 } while (!css_tryget_online(&memcg->css));
948 rcu_read_unlock();
949 return memcg;
950 }
951 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
952
953 /**
954 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
955 * @page: page from which memcg should be extracted.
956 *
957 * Obtain a reference on page->memcg and returns it if successful. Otherwise
958 * root_mem_cgroup is returned.
959 */
960 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
961 {
962 struct mem_cgroup *memcg = page->mem_cgroup;
963
964 if (mem_cgroup_disabled())
965 return NULL;
966
967 rcu_read_lock();
968 if (!memcg || !css_tryget_online(&memcg->css))
969 memcg = root_mem_cgroup;
970 rcu_read_unlock();
971 return memcg;
972 }
973 EXPORT_SYMBOL(get_mem_cgroup_from_page);
974
975 /**
976 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
977 */
978 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
979 {
980 if (unlikely(current->active_memcg)) {
981 struct mem_cgroup *memcg = root_mem_cgroup;
982
983 rcu_read_lock();
984 if (css_tryget_online(&current->active_memcg->css))
985 memcg = current->active_memcg;
986 rcu_read_unlock();
987 return memcg;
988 }
989 return get_mem_cgroup_from_mm(current->mm);
990 }
991
992 /**
993 * mem_cgroup_iter - iterate over memory cgroup hierarchy
994 * @root: hierarchy root
995 * @prev: previously returned memcg, NULL on first invocation
996 * @reclaim: cookie for shared reclaim walks, NULL for full walks
997 *
998 * Returns references to children of the hierarchy below @root, or
999 * @root itself, or %NULL after a full round-trip.
1000 *
1001 * Caller must pass the return value in @prev on subsequent
1002 * invocations for reference counting, or use mem_cgroup_iter_break()
1003 * to cancel a hierarchy walk before the round-trip is complete.
1004 *
1005 * Reclaimers can specify a node and a priority level in @reclaim to
1006 * divide up the memcgs in the hierarchy among all concurrent
1007 * reclaimers operating on the same node and priority.
1008 */
1009 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1010 struct mem_cgroup *prev,
1011 struct mem_cgroup_reclaim_cookie *reclaim)
1012 {
1013 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1014 struct cgroup_subsys_state *css = NULL;
1015 struct mem_cgroup *memcg = NULL;
1016 struct mem_cgroup *pos = NULL;
1017
1018 if (mem_cgroup_disabled())
1019 return NULL;
1020
1021 if (!root)
1022 root = root_mem_cgroup;
1023
1024 if (prev && !reclaim)
1025 pos = prev;
1026
1027 if (!root->use_hierarchy && root != root_mem_cgroup) {
1028 if (prev)
1029 goto out;
1030 return root;
1031 }
1032
1033 rcu_read_lock();
1034
1035 if (reclaim) {
1036 struct mem_cgroup_per_node *mz;
1037
1038 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1039 iter = &mz->iter[reclaim->priority];
1040
1041 if (prev && reclaim->generation != iter->generation)
1042 goto out_unlock;
1043
1044 while (1) {
1045 pos = READ_ONCE(iter->position);
1046 if (!pos || css_tryget(&pos->css))
1047 break;
1048 /*
1049 * css reference reached zero, so iter->position will
1050 * be cleared by ->css_released. However, we should not
1051 * rely on this happening soon, because ->css_released
1052 * is called from a work queue, and by busy-waiting we
1053 * might block it. So we clear iter->position right
1054 * away.
1055 */
1056 (void)cmpxchg(&iter->position, pos, NULL);
1057 }
1058 }
1059
1060 if (pos)
1061 css = &pos->css;
1062
1063 for (;;) {
1064 css = css_next_descendant_pre(css, &root->css);
1065 if (!css) {
1066 /*
1067 * Reclaimers share the hierarchy walk, and a
1068 * new one might jump in right at the end of
1069 * the hierarchy - make sure they see at least
1070 * one group and restart from the beginning.
1071 */
1072 if (!prev)
1073 continue;
1074 break;
1075 }
1076
1077 /*
1078 * Verify the css and acquire a reference. The root
1079 * is provided by the caller, so we know it's alive
1080 * and kicking, and don't take an extra reference.
1081 */
1082 memcg = mem_cgroup_from_css(css);
1083
1084 if (css == &root->css)
1085 break;
1086
1087 if (css_tryget(css))
1088 break;
1089
1090 memcg = NULL;
1091 }
1092
1093 if (reclaim) {
1094 /*
1095 * The position could have already been updated by a competing
1096 * thread, so check that the value hasn't changed since we read
1097 * it to avoid reclaiming from the same cgroup twice.
1098 */
1099 (void)cmpxchg(&iter->position, pos, memcg);
1100
1101 if (pos)
1102 css_put(&pos->css);
1103
1104 if (!memcg)
1105 iter->generation++;
1106 else if (!prev)
1107 reclaim->generation = iter->generation;
1108 }
1109
1110 out_unlock:
1111 rcu_read_unlock();
1112 out:
1113 if (prev && prev != root)
1114 css_put(&prev->css);
1115
1116 return memcg;
1117 }
1118
1119 /**
1120 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1121 * @root: hierarchy root
1122 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1123 */
1124 void mem_cgroup_iter_break(struct mem_cgroup *root,
1125 struct mem_cgroup *prev)
1126 {
1127 if (!root)
1128 root = root_mem_cgroup;
1129 if (prev && prev != root)
1130 css_put(&prev->css);
1131 }
1132
1133 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1134 {
1135 struct mem_cgroup *memcg = dead_memcg;
1136 struct mem_cgroup_reclaim_iter *iter;
1137 struct mem_cgroup_per_node *mz;
1138 int nid;
1139 int i;
1140
1141 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1142 for_each_node(nid) {
1143 mz = mem_cgroup_nodeinfo(memcg, nid);
1144 for (i = 0; i <= DEF_PRIORITY; i++) {
1145 iter = &mz->iter[i];
1146 cmpxchg(&iter->position,
1147 dead_memcg, NULL);
1148 }
1149 }
1150 }
1151 }
1152
1153 /**
1154 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1155 * @memcg: hierarchy root
1156 * @fn: function to call for each task
1157 * @arg: argument passed to @fn
1158 *
1159 * This function iterates over tasks attached to @memcg or to any of its
1160 * descendants and calls @fn for each task. If @fn returns a non-zero
1161 * value, the function breaks the iteration loop and returns the value.
1162 * Otherwise, it will iterate over all tasks and return 0.
1163 *
1164 * This function must not be called for the root memory cgroup.
1165 */
1166 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1167 int (*fn)(struct task_struct *, void *), void *arg)
1168 {
1169 struct mem_cgroup *iter;
1170 int ret = 0;
1171
1172 BUG_ON(memcg == root_mem_cgroup);
1173
1174 for_each_mem_cgroup_tree(iter, memcg) {
1175 struct css_task_iter it;
1176 struct task_struct *task;
1177
1178 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1179 while (!ret && (task = css_task_iter_next(&it)))
1180 ret = fn(task, arg);
1181 css_task_iter_end(&it);
1182 if (ret) {
1183 mem_cgroup_iter_break(memcg, iter);
1184 break;
1185 }
1186 }
1187 return ret;
1188 }
1189
1190 /**
1191 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1192 * @page: the page
1193 * @pgdat: pgdat of the page
1194 *
1195 * This function is only safe when following the LRU page isolation
1196 * and putback protocol: the LRU lock must be held, and the page must
1197 * either be PageLRU() or the caller must have isolated/allocated it.
1198 */
1199 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1200 {
1201 struct mem_cgroup_per_node *mz;
1202 struct mem_cgroup *memcg;
1203 struct lruvec *lruvec;
1204
1205 if (mem_cgroup_disabled()) {
1206 lruvec = &pgdat->lruvec;
1207 goto out;
1208 }
1209
1210 memcg = page->mem_cgroup;
1211 /*
1212 * Swapcache readahead pages are added to the LRU - and
1213 * possibly migrated - before they are charged.
1214 */
1215 if (!memcg)
1216 memcg = root_mem_cgroup;
1217
1218 mz = mem_cgroup_page_nodeinfo(memcg, page);
1219 lruvec = &mz->lruvec;
1220 out:
1221 /*
1222 * Since a node can be onlined after the mem_cgroup was created,
1223 * we have to be prepared to initialize lruvec->zone here;
1224 * and if offlined then reonlined, we need to reinitialize it.
1225 */
1226 if (unlikely(lruvec->pgdat != pgdat))
1227 lruvec->pgdat = pgdat;
1228 return lruvec;
1229 }
1230
1231 /**
1232 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1233 * @lruvec: mem_cgroup per zone lru vector
1234 * @lru: index of lru list the page is sitting on
1235 * @zid: zone id of the accounted pages
1236 * @nr_pages: positive when adding or negative when removing
1237 *
1238 * This function must be called under lru_lock, just before a page is added
1239 * to or just after a page is removed from an lru list (that ordering being
1240 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1241 */
1242 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1243 int zid, int nr_pages)
1244 {
1245 struct mem_cgroup_per_node *mz;
1246 unsigned long *lru_size;
1247 long size;
1248
1249 if (mem_cgroup_disabled())
1250 return;
1251
1252 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1253 lru_size = &mz->lru_zone_size[zid][lru];
1254
1255 if (nr_pages < 0)
1256 *lru_size += nr_pages;
1257
1258 size = *lru_size;
1259 if (WARN_ONCE(size < 0,
1260 "%s(%p, %d, %d): lru_size %ld\n",
1261 __func__, lruvec, lru, nr_pages, size)) {
1262 VM_BUG_ON(1);
1263 *lru_size = 0;
1264 }
1265
1266 if (nr_pages > 0)
1267 *lru_size += nr_pages;
1268 }
1269
1270 /**
1271 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1272 * @memcg: the memory cgroup
1273 *
1274 * Returns the maximum amount of memory @mem can be charged with, in
1275 * pages.
1276 */
1277 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1278 {
1279 unsigned long margin = 0;
1280 unsigned long count;
1281 unsigned long limit;
1282
1283 count = page_counter_read(&memcg->memory);
1284 limit = READ_ONCE(memcg->memory.max);
1285 if (count < limit)
1286 margin = limit - count;
1287
1288 if (do_memsw_account()) {
1289 count = page_counter_read(&memcg->memsw);
1290 limit = READ_ONCE(memcg->memsw.max);
1291 if (count <= limit)
1292 margin = min(margin, limit - count);
1293 else
1294 margin = 0;
1295 }
1296
1297 return margin;
1298 }
1299
1300 /*
1301 * A routine for checking "mem" is under move_account() or not.
1302 *
1303 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1304 * moving cgroups. This is for waiting at high-memory pressure
1305 * caused by "move".
1306 */
1307 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1308 {
1309 struct mem_cgroup *from;
1310 struct mem_cgroup *to;
1311 bool ret = false;
1312 /*
1313 * Unlike task_move routines, we access mc.to, mc.from not under
1314 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1315 */
1316 spin_lock(&mc.lock);
1317 from = mc.from;
1318 to = mc.to;
1319 if (!from)
1320 goto unlock;
1321
1322 ret = mem_cgroup_is_descendant(from, memcg) ||
1323 mem_cgroup_is_descendant(to, memcg);
1324 unlock:
1325 spin_unlock(&mc.lock);
1326 return ret;
1327 }
1328
1329 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1330 {
1331 if (mc.moving_task && current != mc.moving_task) {
1332 if (mem_cgroup_under_move(memcg)) {
1333 DEFINE_WAIT(wait);
1334 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1335 /* moving charge context might have finished. */
1336 if (mc.moving_task)
1337 schedule();
1338 finish_wait(&mc.waitq, &wait);
1339 return true;
1340 }
1341 }
1342 return false;
1343 }
1344
1345 static char *memory_stat_format(struct mem_cgroup *memcg)
1346 {
1347 struct seq_buf s;
1348 int i;
1349
1350 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1351 if (!s.buffer)
1352 return NULL;
1353
1354 /*
1355 * Provide statistics on the state of the memory subsystem as
1356 * well as cumulative event counters that show past behavior.
1357 *
1358 * This list is ordered following a combination of these gradients:
1359 * 1) generic big picture -> specifics and details
1360 * 2) reflecting userspace activity -> reflecting kernel heuristics
1361 *
1362 * Current memory state:
1363 */
1364
1365 seq_buf_printf(&s, "anon %llu\n",
1366 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1367 PAGE_SIZE);
1368 seq_buf_printf(&s, "file %llu\n",
1369 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1370 PAGE_SIZE);
1371 seq_buf_printf(&s, "kernel_stack %llu\n",
1372 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1373 1024);
1374 seq_buf_printf(&s, "slab %llu\n",
1375 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1376 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1377 PAGE_SIZE);
1378 seq_buf_printf(&s, "sock %llu\n",
1379 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1380 PAGE_SIZE);
1381
1382 seq_buf_printf(&s, "shmem %llu\n",
1383 (u64)memcg_page_state(memcg, NR_SHMEM) *
1384 PAGE_SIZE);
1385 seq_buf_printf(&s, "file_mapped %llu\n",
1386 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1387 PAGE_SIZE);
1388 seq_buf_printf(&s, "file_dirty %llu\n",
1389 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1390 PAGE_SIZE);
1391 seq_buf_printf(&s, "file_writeback %llu\n",
1392 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1393 PAGE_SIZE);
1394
1395 /*
1396 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1397 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1398 * arse because it requires migrating the work out of rmap to a place
1399 * where the page->mem_cgroup is set up and stable.
1400 */
1401 seq_buf_printf(&s, "anon_thp %llu\n",
1402 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1403 PAGE_SIZE);
1404
1405 for (i = 0; i < NR_LRU_LISTS; i++)
1406 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1407 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1408 PAGE_SIZE);
1409
1410 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1411 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1412 PAGE_SIZE);
1413 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1414 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1415 PAGE_SIZE);
1416
1417 /* Accumulated memory events */
1418
1419 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1420 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1421
1422 seq_buf_printf(&s, "workingset_refault %lu\n",
1423 memcg_page_state(memcg, WORKINGSET_REFAULT));
1424 seq_buf_printf(&s, "workingset_activate %lu\n",
1425 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1426 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1427 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1428
1429 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1430 seq_buf_printf(&s, "pgscan %lu\n",
1431 memcg_events(memcg, PGSCAN_KSWAPD) +
1432 memcg_events(memcg, PGSCAN_DIRECT));
1433 seq_buf_printf(&s, "pgsteal %lu\n",
1434 memcg_events(memcg, PGSTEAL_KSWAPD) +
1435 memcg_events(memcg, PGSTEAL_DIRECT));
1436 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1437 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1438 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1439 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1440
1441 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1442 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1443 memcg_events(memcg, THP_FAULT_ALLOC));
1444 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1445 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1446 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1447
1448 /* The above should easily fit into one page */
1449 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1450
1451 return s.buffer;
1452 }
1453
1454 #define K(x) ((x) << (PAGE_SHIFT-10))
1455 /**
1456 * mem_cgroup_print_oom_context: Print OOM information relevant to
1457 * memory controller.
1458 * @memcg: The memory cgroup that went over limit
1459 * @p: Task that is going to be killed
1460 *
1461 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1462 * enabled
1463 */
1464 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1465 {
1466 rcu_read_lock();
1467
1468 if (memcg) {
1469 pr_cont(",oom_memcg=");
1470 pr_cont_cgroup_path(memcg->css.cgroup);
1471 } else
1472 pr_cont(",global_oom");
1473 if (p) {
1474 pr_cont(",task_memcg=");
1475 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1476 }
1477 rcu_read_unlock();
1478 }
1479
1480 /**
1481 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1482 * memory controller.
1483 * @memcg: The memory cgroup that went over limit
1484 */
1485 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1486 {
1487 char *buf;
1488
1489 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->memory)),
1491 K((u64)memcg->memory.max), memcg->memory.failcnt);
1492 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1493 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1494 K((u64)page_counter_read(&memcg->swap)),
1495 K((u64)memcg->swap.max), memcg->swap.failcnt);
1496 else {
1497 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1498 K((u64)page_counter_read(&memcg->memsw)),
1499 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1500 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1501 K((u64)page_counter_read(&memcg->kmem)),
1502 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1503 }
1504
1505 pr_info("Memory cgroup stats for ");
1506 pr_cont_cgroup_path(memcg->css.cgroup);
1507 pr_cont(":");
1508 buf = memory_stat_format(memcg);
1509 if (!buf)
1510 return;
1511 pr_info("%s", buf);
1512 kfree(buf);
1513 }
1514
1515 /*
1516 * Return the memory (and swap, if configured) limit for a memcg.
1517 */
1518 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1519 {
1520 unsigned long max;
1521
1522 max = memcg->memory.max;
1523 if (mem_cgroup_swappiness(memcg)) {
1524 unsigned long memsw_max;
1525 unsigned long swap_max;
1526
1527 memsw_max = memcg->memsw.max;
1528 swap_max = memcg->swap.max;
1529 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1530 max = min(max + swap_max, memsw_max);
1531 }
1532 return max;
1533 }
1534
1535 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1536 int order)
1537 {
1538 struct oom_control oc = {
1539 .zonelist = NULL,
1540 .nodemask = NULL,
1541 .memcg = memcg,
1542 .gfp_mask = gfp_mask,
1543 .order = order,
1544 };
1545 bool ret;
1546
1547 if (mutex_lock_killable(&oom_lock))
1548 return true;
1549 /*
1550 * A few threads which were not waiting at mutex_lock_killable() can
1551 * fail to bail out. Therefore, check again after holding oom_lock.
1552 */
1553 ret = should_force_charge() || out_of_memory(&oc);
1554 mutex_unlock(&oom_lock);
1555 return ret;
1556 }
1557
1558 #if MAX_NUMNODES > 1
1559
1560 /**
1561 * test_mem_cgroup_node_reclaimable
1562 * @memcg: the target memcg
1563 * @nid: the node ID to be checked.
1564 * @noswap : specify true here if the user wants flle only information.
1565 *
1566 * This function returns whether the specified memcg contains any
1567 * reclaimable pages on a node. Returns true if there are any reclaimable
1568 * pages in the node.
1569 */
1570 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1571 int nid, bool noswap)
1572 {
1573 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1574
1575 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1576 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1577 return true;
1578 if (noswap || !total_swap_pages)
1579 return false;
1580 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1581 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1582 return true;
1583 return false;
1584
1585 }
1586
1587 /*
1588 * Always updating the nodemask is not very good - even if we have an empty
1589 * list or the wrong list here, we can start from some node and traverse all
1590 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1591 *
1592 */
1593 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1594 {
1595 int nid;
1596 /*
1597 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1598 * pagein/pageout changes since the last update.
1599 */
1600 if (!atomic_read(&memcg->numainfo_events))
1601 return;
1602 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1603 return;
1604
1605 /* make a nodemask where this memcg uses memory from */
1606 memcg->scan_nodes = node_states[N_MEMORY];
1607
1608 for_each_node_mask(nid, node_states[N_MEMORY]) {
1609
1610 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1611 node_clear(nid, memcg->scan_nodes);
1612 }
1613
1614 atomic_set(&memcg->numainfo_events, 0);
1615 atomic_set(&memcg->numainfo_updating, 0);
1616 }
1617
1618 /*
1619 * Selecting a node where we start reclaim from. Because what we need is just
1620 * reducing usage counter, start from anywhere is O,K. Considering
1621 * memory reclaim from current node, there are pros. and cons.
1622 *
1623 * Freeing memory from current node means freeing memory from a node which
1624 * we'll use or we've used. So, it may make LRU bad. And if several threads
1625 * hit limits, it will see a contention on a node. But freeing from remote
1626 * node means more costs for memory reclaim because of memory latency.
1627 *
1628 * Now, we use round-robin. Better algorithm is welcomed.
1629 */
1630 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1631 {
1632 int node;
1633
1634 mem_cgroup_may_update_nodemask(memcg);
1635 node = memcg->last_scanned_node;
1636
1637 node = next_node_in(node, memcg->scan_nodes);
1638 /*
1639 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1640 * last time it really checked all the LRUs due to rate limiting.
1641 * Fallback to the current node in that case for simplicity.
1642 */
1643 if (unlikely(node == MAX_NUMNODES))
1644 node = numa_node_id();
1645
1646 memcg->last_scanned_node = node;
1647 return node;
1648 }
1649 #else
1650 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1651 {
1652 return 0;
1653 }
1654 #endif
1655
1656 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1657 pg_data_t *pgdat,
1658 gfp_t gfp_mask,
1659 unsigned long *total_scanned)
1660 {
1661 struct mem_cgroup *victim = NULL;
1662 int total = 0;
1663 int loop = 0;
1664 unsigned long excess;
1665 unsigned long nr_scanned;
1666 struct mem_cgroup_reclaim_cookie reclaim = {
1667 .pgdat = pgdat,
1668 .priority = 0,
1669 };
1670
1671 excess = soft_limit_excess(root_memcg);
1672
1673 while (1) {
1674 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1675 if (!victim) {
1676 loop++;
1677 if (loop >= 2) {
1678 /*
1679 * If we have not been able to reclaim
1680 * anything, it might because there are
1681 * no reclaimable pages under this hierarchy
1682 */
1683 if (!total)
1684 break;
1685 /*
1686 * We want to do more targeted reclaim.
1687 * excess >> 2 is not to excessive so as to
1688 * reclaim too much, nor too less that we keep
1689 * coming back to reclaim from this cgroup
1690 */
1691 if (total >= (excess >> 2) ||
1692 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1693 break;
1694 }
1695 continue;
1696 }
1697 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1698 pgdat, &nr_scanned);
1699 *total_scanned += nr_scanned;
1700 if (!soft_limit_excess(root_memcg))
1701 break;
1702 }
1703 mem_cgroup_iter_break(root_memcg, victim);
1704 return total;
1705 }
1706
1707 #ifdef CONFIG_LOCKDEP
1708 static struct lockdep_map memcg_oom_lock_dep_map = {
1709 .name = "memcg_oom_lock",
1710 };
1711 #endif
1712
1713 static DEFINE_SPINLOCK(memcg_oom_lock);
1714
1715 /*
1716 * Check OOM-Killer is already running under our hierarchy.
1717 * If someone is running, return false.
1718 */
1719 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1720 {
1721 struct mem_cgroup *iter, *failed = NULL;
1722
1723 spin_lock(&memcg_oom_lock);
1724
1725 for_each_mem_cgroup_tree(iter, memcg) {
1726 if (iter->oom_lock) {
1727 /*
1728 * this subtree of our hierarchy is already locked
1729 * so we cannot give a lock.
1730 */
1731 failed = iter;
1732 mem_cgroup_iter_break(memcg, iter);
1733 break;
1734 } else
1735 iter->oom_lock = true;
1736 }
1737
1738 if (failed) {
1739 /*
1740 * OK, we failed to lock the whole subtree so we have
1741 * to clean up what we set up to the failing subtree
1742 */
1743 for_each_mem_cgroup_tree(iter, memcg) {
1744 if (iter == failed) {
1745 mem_cgroup_iter_break(memcg, iter);
1746 break;
1747 }
1748 iter->oom_lock = false;
1749 }
1750 } else
1751 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1752
1753 spin_unlock(&memcg_oom_lock);
1754
1755 return !failed;
1756 }
1757
1758 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1759 {
1760 struct mem_cgroup *iter;
1761
1762 spin_lock(&memcg_oom_lock);
1763 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1764 for_each_mem_cgroup_tree(iter, memcg)
1765 iter->oom_lock = false;
1766 spin_unlock(&memcg_oom_lock);
1767 }
1768
1769 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1770 {
1771 struct mem_cgroup *iter;
1772
1773 spin_lock(&memcg_oom_lock);
1774 for_each_mem_cgroup_tree(iter, memcg)
1775 iter->under_oom++;
1776 spin_unlock(&memcg_oom_lock);
1777 }
1778
1779 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1780 {
1781 struct mem_cgroup *iter;
1782
1783 /*
1784 * When a new child is created while the hierarchy is under oom,
1785 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1786 */
1787 spin_lock(&memcg_oom_lock);
1788 for_each_mem_cgroup_tree(iter, memcg)
1789 if (iter->under_oom > 0)
1790 iter->under_oom--;
1791 spin_unlock(&memcg_oom_lock);
1792 }
1793
1794 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1795
1796 struct oom_wait_info {
1797 struct mem_cgroup *memcg;
1798 wait_queue_entry_t wait;
1799 };
1800
1801 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1802 unsigned mode, int sync, void *arg)
1803 {
1804 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1805 struct mem_cgroup *oom_wait_memcg;
1806 struct oom_wait_info *oom_wait_info;
1807
1808 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1809 oom_wait_memcg = oom_wait_info->memcg;
1810
1811 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1812 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1813 return 0;
1814 return autoremove_wake_function(wait, mode, sync, arg);
1815 }
1816
1817 static void memcg_oom_recover(struct mem_cgroup *memcg)
1818 {
1819 /*
1820 * For the following lockless ->under_oom test, the only required
1821 * guarantee is that it must see the state asserted by an OOM when
1822 * this function is called as a result of userland actions
1823 * triggered by the notification of the OOM. This is trivially
1824 * achieved by invoking mem_cgroup_mark_under_oom() before
1825 * triggering notification.
1826 */
1827 if (memcg && memcg->under_oom)
1828 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1829 }
1830
1831 enum oom_status {
1832 OOM_SUCCESS,
1833 OOM_FAILED,
1834 OOM_ASYNC,
1835 OOM_SKIPPED
1836 };
1837
1838 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1839 {
1840 enum oom_status ret;
1841 bool locked;
1842
1843 if (order > PAGE_ALLOC_COSTLY_ORDER)
1844 return OOM_SKIPPED;
1845
1846 memcg_memory_event(memcg, MEMCG_OOM);
1847
1848 /*
1849 * We are in the middle of the charge context here, so we
1850 * don't want to block when potentially sitting on a callstack
1851 * that holds all kinds of filesystem and mm locks.
1852 *
1853 * cgroup1 allows disabling the OOM killer and waiting for outside
1854 * handling until the charge can succeed; remember the context and put
1855 * the task to sleep at the end of the page fault when all locks are
1856 * released.
1857 *
1858 * On the other hand, in-kernel OOM killer allows for an async victim
1859 * memory reclaim (oom_reaper) and that means that we are not solely
1860 * relying on the oom victim to make a forward progress and we can
1861 * invoke the oom killer here.
1862 *
1863 * Please note that mem_cgroup_out_of_memory might fail to find a
1864 * victim and then we have to bail out from the charge path.
1865 */
1866 if (memcg->oom_kill_disable) {
1867 if (!current->in_user_fault)
1868 return OOM_SKIPPED;
1869 css_get(&memcg->css);
1870 current->memcg_in_oom = memcg;
1871 current->memcg_oom_gfp_mask = mask;
1872 current->memcg_oom_order = order;
1873
1874 return OOM_ASYNC;
1875 }
1876
1877 mem_cgroup_mark_under_oom(memcg);
1878
1879 locked = mem_cgroup_oom_trylock(memcg);
1880
1881 if (locked)
1882 mem_cgroup_oom_notify(memcg);
1883
1884 mem_cgroup_unmark_under_oom(memcg);
1885 if (mem_cgroup_out_of_memory(memcg, mask, order))
1886 ret = OOM_SUCCESS;
1887 else
1888 ret = OOM_FAILED;
1889
1890 if (locked)
1891 mem_cgroup_oom_unlock(memcg);
1892
1893 return ret;
1894 }
1895
1896 /**
1897 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1898 * @handle: actually kill/wait or just clean up the OOM state
1899 *
1900 * This has to be called at the end of a page fault if the memcg OOM
1901 * handler was enabled.
1902 *
1903 * Memcg supports userspace OOM handling where failed allocations must
1904 * sleep on a waitqueue until the userspace task resolves the
1905 * situation. Sleeping directly in the charge context with all kinds
1906 * of locks held is not a good idea, instead we remember an OOM state
1907 * in the task and mem_cgroup_oom_synchronize() has to be called at
1908 * the end of the page fault to complete the OOM handling.
1909 *
1910 * Returns %true if an ongoing memcg OOM situation was detected and
1911 * completed, %false otherwise.
1912 */
1913 bool mem_cgroup_oom_synchronize(bool handle)
1914 {
1915 struct mem_cgroup *memcg = current->memcg_in_oom;
1916 struct oom_wait_info owait;
1917 bool locked;
1918
1919 /* OOM is global, do not handle */
1920 if (!memcg)
1921 return false;
1922
1923 if (!handle)
1924 goto cleanup;
1925
1926 owait.memcg = memcg;
1927 owait.wait.flags = 0;
1928 owait.wait.func = memcg_oom_wake_function;
1929 owait.wait.private = current;
1930 INIT_LIST_HEAD(&owait.wait.entry);
1931
1932 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1933 mem_cgroup_mark_under_oom(memcg);
1934
1935 locked = mem_cgroup_oom_trylock(memcg);
1936
1937 if (locked)
1938 mem_cgroup_oom_notify(memcg);
1939
1940 if (locked && !memcg->oom_kill_disable) {
1941 mem_cgroup_unmark_under_oom(memcg);
1942 finish_wait(&memcg_oom_waitq, &owait.wait);
1943 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1944 current->memcg_oom_order);
1945 } else {
1946 schedule();
1947 mem_cgroup_unmark_under_oom(memcg);
1948 finish_wait(&memcg_oom_waitq, &owait.wait);
1949 }
1950
1951 if (locked) {
1952 mem_cgroup_oom_unlock(memcg);
1953 /*
1954 * There is no guarantee that an OOM-lock contender
1955 * sees the wakeups triggered by the OOM kill
1956 * uncharges. Wake any sleepers explicitely.
1957 */
1958 memcg_oom_recover(memcg);
1959 }
1960 cleanup:
1961 current->memcg_in_oom = NULL;
1962 css_put(&memcg->css);
1963 return true;
1964 }
1965
1966 /**
1967 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1968 * @victim: task to be killed by the OOM killer
1969 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1970 *
1971 * Returns a pointer to a memory cgroup, which has to be cleaned up
1972 * by killing all belonging OOM-killable tasks.
1973 *
1974 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1975 */
1976 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1977 struct mem_cgroup *oom_domain)
1978 {
1979 struct mem_cgroup *oom_group = NULL;
1980 struct mem_cgroup *memcg;
1981
1982 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1983 return NULL;
1984
1985 if (!oom_domain)
1986 oom_domain = root_mem_cgroup;
1987
1988 rcu_read_lock();
1989
1990 memcg = mem_cgroup_from_task(victim);
1991 if (memcg == root_mem_cgroup)
1992 goto out;
1993
1994 /*
1995 * Traverse the memory cgroup hierarchy from the victim task's
1996 * cgroup up to the OOMing cgroup (or root) to find the
1997 * highest-level memory cgroup with oom.group set.
1998 */
1999 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2000 if (memcg->oom_group)
2001 oom_group = memcg;
2002
2003 if (memcg == oom_domain)
2004 break;
2005 }
2006
2007 if (oom_group)
2008 css_get(&oom_group->css);
2009 out:
2010 rcu_read_unlock();
2011
2012 return oom_group;
2013 }
2014
2015 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2016 {
2017 pr_info("Tasks in ");
2018 pr_cont_cgroup_path(memcg->css.cgroup);
2019 pr_cont(" are going to be killed due to memory.oom.group set\n");
2020 }
2021
2022 /**
2023 * lock_page_memcg - lock a page->mem_cgroup binding
2024 * @page: the page
2025 *
2026 * This function protects unlocked LRU pages from being moved to
2027 * another cgroup.
2028 *
2029 * It ensures lifetime of the returned memcg. Caller is responsible
2030 * for the lifetime of the page; __unlock_page_memcg() is available
2031 * when @page might get freed inside the locked section.
2032 */
2033 struct mem_cgroup *lock_page_memcg(struct page *page)
2034 {
2035 struct mem_cgroup *memcg;
2036 unsigned long flags;
2037
2038 /*
2039 * The RCU lock is held throughout the transaction. The fast
2040 * path can get away without acquiring the memcg->move_lock
2041 * because page moving starts with an RCU grace period.
2042 *
2043 * The RCU lock also protects the memcg from being freed when
2044 * the page state that is going to change is the only thing
2045 * preventing the page itself from being freed. E.g. writeback
2046 * doesn't hold a page reference and relies on PG_writeback to
2047 * keep off truncation, migration and so forth.
2048 */
2049 rcu_read_lock();
2050
2051 if (mem_cgroup_disabled())
2052 return NULL;
2053 again:
2054 memcg = page->mem_cgroup;
2055 if (unlikely(!memcg))
2056 return NULL;
2057
2058 if (atomic_read(&memcg->moving_account) <= 0)
2059 return memcg;
2060
2061 spin_lock_irqsave(&memcg->move_lock, flags);
2062 if (memcg != page->mem_cgroup) {
2063 spin_unlock_irqrestore(&memcg->move_lock, flags);
2064 goto again;
2065 }
2066
2067 /*
2068 * When charge migration first begins, we can have locked and
2069 * unlocked page stat updates happening concurrently. Track
2070 * the task who has the lock for unlock_page_memcg().
2071 */
2072 memcg->move_lock_task = current;
2073 memcg->move_lock_flags = flags;
2074
2075 return memcg;
2076 }
2077 EXPORT_SYMBOL(lock_page_memcg);
2078
2079 /**
2080 * __unlock_page_memcg - unlock and unpin a memcg
2081 * @memcg: the memcg
2082 *
2083 * Unlock and unpin a memcg returned by lock_page_memcg().
2084 */
2085 void __unlock_page_memcg(struct mem_cgroup *memcg)
2086 {
2087 if (memcg && memcg->move_lock_task == current) {
2088 unsigned long flags = memcg->move_lock_flags;
2089
2090 memcg->move_lock_task = NULL;
2091 memcg->move_lock_flags = 0;
2092
2093 spin_unlock_irqrestore(&memcg->move_lock, flags);
2094 }
2095
2096 rcu_read_unlock();
2097 }
2098
2099 /**
2100 * unlock_page_memcg - unlock a page->mem_cgroup binding
2101 * @page: the page
2102 */
2103 void unlock_page_memcg(struct page *page)
2104 {
2105 __unlock_page_memcg(page->mem_cgroup);
2106 }
2107 EXPORT_SYMBOL(unlock_page_memcg);
2108
2109 struct memcg_stock_pcp {
2110 struct mem_cgroup *cached; /* this never be root cgroup */
2111 unsigned int nr_pages;
2112 struct work_struct work;
2113 unsigned long flags;
2114 #define FLUSHING_CACHED_CHARGE 0
2115 };
2116 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2117 static DEFINE_MUTEX(percpu_charge_mutex);
2118
2119 /**
2120 * consume_stock: Try to consume stocked charge on this cpu.
2121 * @memcg: memcg to consume from.
2122 * @nr_pages: how many pages to charge.
2123 *
2124 * The charges will only happen if @memcg matches the current cpu's memcg
2125 * stock, and at least @nr_pages are available in that stock. Failure to
2126 * service an allocation will refill the stock.
2127 *
2128 * returns true if successful, false otherwise.
2129 */
2130 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2131 {
2132 struct memcg_stock_pcp *stock;
2133 unsigned long flags;
2134 bool ret = false;
2135
2136 if (nr_pages > MEMCG_CHARGE_BATCH)
2137 return ret;
2138
2139 local_irq_save(flags);
2140
2141 stock = this_cpu_ptr(&memcg_stock);
2142 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2143 stock->nr_pages -= nr_pages;
2144 ret = true;
2145 }
2146
2147 local_irq_restore(flags);
2148
2149 return ret;
2150 }
2151
2152 /*
2153 * Returns stocks cached in percpu and reset cached information.
2154 */
2155 static void drain_stock(struct memcg_stock_pcp *stock)
2156 {
2157 struct mem_cgroup *old = stock->cached;
2158
2159 if (stock->nr_pages) {
2160 page_counter_uncharge(&old->memory, stock->nr_pages);
2161 if (do_memsw_account())
2162 page_counter_uncharge(&old->memsw, stock->nr_pages);
2163 css_put_many(&old->css, stock->nr_pages);
2164 stock->nr_pages = 0;
2165 }
2166 stock->cached = NULL;
2167 }
2168
2169 static void drain_local_stock(struct work_struct *dummy)
2170 {
2171 struct memcg_stock_pcp *stock;
2172 unsigned long flags;
2173
2174 /*
2175 * The only protection from memory hotplug vs. drain_stock races is
2176 * that we always operate on local CPU stock here with IRQ disabled
2177 */
2178 local_irq_save(flags);
2179
2180 stock = this_cpu_ptr(&memcg_stock);
2181 drain_stock(stock);
2182 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2183
2184 local_irq_restore(flags);
2185 }
2186
2187 /*
2188 * Cache charges(val) to local per_cpu area.
2189 * This will be consumed by consume_stock() function, later.
2190 */
2191 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2192 {
2193 struct memcg_stock_pcp *stock;
2194 unsigned long flags;
2195
2196 local_irq_save(flags);
2197
2198 stock = this_cpu_ptr(&memcg_stock);
2199 if (stock->cached != memcg) { /* reset if necessary */
2200 drain_stock(stock);
2201 stock->cached = memcg;
2202 }
2203 stock->nr_pages += nr_pages;
2204
2205 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2206 drain_stock(stock);
2207
2208 local_irq_restore(flags);
2209 }
2210
2211 /*
2212 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2213 * of the hierarchy under it.
2214 */
2215 static void drain_all_stock(struct mem_cgroup *root_memcg)
2216 {
2217 int cpu, curcpu;
2218
2219 /* If someone's already draining, avoid adding running more workers. */
2220 if (!mutex_trylock(&percpu_charge_mutex))
2221 return;
2222 /*
2223 * Notify other cpus that system-wide "drain" is running
2224 * We do not care about races with the cpu hotplug because cpu down
2225 * as well as workers from this path always operate on the local
2226 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2227 */
2228 curcpu = get_cpu();
2229 for_each_online_cpu(cpu) {
2230 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2231 struct mem_cgroup *memcg;
2232
2233 memcg = stock->cached;
2234 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2235 continue;
2236 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2237 css_put(&memcg->css);
2238 continue;
2239 }
2240 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2241 if (cpu == curcpu)
2242 drain_local_stock(&stock->work);
2243 else
2244 schedule_work_on(cpu, &stock->work);
2245 }
2246 css_put(&memcg->css);
2247 }
2248 put_cpu();
2249 mutex_unlock(&percpu_charge_mutex);
2250 }
2251
2252 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2253 {
2254 struct memcg_stock_pcp *stock;
2255 struct mem_cgroup *memcg, *mi;
2256
2257 stock = &per_cpu(memcg_stock, cpu);
2258 drain_stock(stock);
2259
2260 for_each_mem_cgroup(memcg) {
2261 int i;
2262
2263 for (i = 0; i < MEMCG_NR_STAT; i++) {
2264 int nid;
2265 long x;
2266
2267 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2268 if (x)
2269 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2270 atomic_long_add(x, &memcg->vmstats[i]);
2271
2272 if (i >= NR_VM_NODE_STAT_ITEMS)
2273 continue;
2274
2275 for_each_node(nid) {
2276 struct mem_cgroup_per_node *pn;
2277
2278 pn = mem_cgroup_nodeinfo(memcg, nid);
2279 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2280 if (x)
2281 do {
2282 atomic_long_add(x, &pn->lruvec_stat[i]);
2283 } while ((pn = parent_nodeinfo(pn, nid)));
2284 }
2285 }
2286
2287 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2288 long x;
2289
2290 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2291 if (x)
2292 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2293 atomic_long_add(x, &memcg->vmevents[i]);
2294 }
2295 }
2296
2297 return 0;
2298 }
2299
2300 static void reclaim_high(struct mem_cgroup *memcg,
2301 unsigned int nr_pages,
2302 gfp_t gfp_mask)
2303 {
2304 do {
2305 if (page_counter_read(&memcg->memory) <= memcg->high)
2306 continue;
2307 memcg_memory_event(memcg, MEMCG_HIGH);
2308 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2309 } while ((memcg = parent_mem_cgroup(memcg)));
2310 }
2311
2312 static void high_work_func(struct work_struct *work)
2313 {
2314 struct mem_cgroup *memcg;
2315
2316 memcg = container_of(work, struct mem_cgroup, high_work);
2317 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2318 }
2319
2320 /*
2321 * Scheduled by try_charge() to be executed from the userland return path
2322 * and reclaims memory over the high limit.
2323 */
2324 void mem_cgroup_handle_over_high(void)
2325 {
2326 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2327 struct mem_cgroup *memcg;
2328
2329 if (likely(!nr_pages))
2330 return;
2331
2332 memcg = get_mem_cgroup_from_mm(current->mm);
2333 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2334 css_put(&memcg->css);
2335 current->memcg_nr_pages_over_high = 0;
2336 }
2337
2338 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2339 unsigned int nr_pages)
2340 {
2341 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2342 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2343 struct mem_cgroup *mem_over_limit;
2344 struct page_counter *counter;
2345 unsigned long nr_reclaimed;
2346 bool may_swap = true;
2347 bool drained = false;
2348 enum oom_status oom_status;
2349
2350 if (mem_cgroup_is_root(memcg))
2351 return 0;
2352 retry:
2353 if (consume_stock(memcg, nr_pages))
2354 return 0;
2355
2356 if (!do_memsw_account() ||
2357 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2358 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2359 goto done_restock;
2360 if (do_memsw_account())
2361 page_counter_uncharge(&memcg->memsw, batch);
2362 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2363 } else {
2364 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2365 may_swap = false;
2366 }
2367
2368 if (batch > nr_pages) {
2369 batch = nr_pages;
2370 goto retry;
2371 }
2372
2373 /*
2374 * Unlike in global OOM situations, memcg is not in a physical
2375 * memory shortage. Allow dying and OOM-killed tasks to
2376 * bypass the last charges so that they can exit quickly and
2377 * free their memory.
2378 */
2379 if (unlikely(should_force_charge()))
2380 goto force;
2381
2382 /*
2383 * Prevent unbounded recursion when reclaim operations need to
2384 * allocate memory. This might exceed the limits temporarily,
2385 * but we prefer facilitating memory reclaim and getting back
2386 * under the limit over triggering OOM kills in these cases.
2387 */
2388 if (unlikely(current->flags & PF_MEMALLOC))
2389 goto force;
2390
2391 if (unlikely(task_in_memcg_oom(current)))
2392 goto nomem;
2393
2394 if (!gfpflags_allow_blocking(gfp_mask))
2395 goto nomem;
2396
2397 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2398
2399 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2400 gfp_mask, may_swap);
2401
2402 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2403 goto retry;
2404
2405 if (!drained) {
2406 drain_all_stock(mem_over_limit);
2407 drained = true;
2408 goto retry;
2409 }
2410
2411 if (gfp_mask & __GFP_NORETRY)
2412 goto nomem;
2413 /*
2414 * Even though the limit is exceeded at this point, reclaim
2415 * may have been able to free some pages. Retry the charge
2416 * before killing the task.
2417 *
2418 * Only for regular pages, though: huge pages are rather
2419 * unlikely to succeed so close to the limit, and we fall back
2420 * to regular pages anyway in case of failure.
2421 */
2422 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2423 goto retry;
2424 /*
2425 * At task move, charge accounts can be doubly counted. So, it's
2426 * better to wait until the end of task_move if something is going on.
2427 */
2428 if (mem_cgroup_wait_acct_move(mem_over_limit))
2429 goto retry;
2430
2431 if (nr_retries--)
2432 goto retry;
2433
2434 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2435 goto nomem;
2436
2437 if (gfp_mask & __GFP_NOFAIL)
2438 goto force;
2439
2440 if (fatal_signal_pending(current))
2441 goto force;
2442
2443 /*
2444 * keep retrying as long as the memcg oom killer is able to make
2445 * a forward progress or bypass the charge if the oom killer
2446 * couldn't make any progress.
2447 */
2448 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2449 get_order(nr_pages * PAGE_SIZE));
2450 switch (oom_status) {
2451 case OOM_SUCCESS:
2452 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2453 goto retry;
2454 case OOM_FAILED:
2455 goto force;
2456 default:
2457 goto nomem;
2458 }
2459 nomem:
2460 if (!(gfp_mask & __GFP_NOFAIL))
2461 return -ENOMEM;
2462 force:
2463 /*
2464 * The allocation either can't fail or will lead to more memory
2465 * being freed very soon. Allow memory usage go over the limit
2466 * temporarily by force charging it.
2467 */
2468 page_counter_charge(&memcg->memory, nr_pages);
2469 if (do_memsw_account())
2470 page_counter_charge(&memcg->memsw, nr_pages);
2471 css_get_many(&memcg->css, nr_pages);
2472
2473 return 0;
2474
2475 done_restock:
2476 css_get_many(&memcg->css, batch);
2477 if (batch > nr_pages)
2478 refill_stock(memcg, batch - nr_pages);
2479
2480 /*
2481 * If the hierarchy is above the normal consumption range, schedule
2482 * reclaim on returning to userland. We can perform reclaim here
2483 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2484 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2485 * not recorded as it most likely matches current's and won't
2486 * change in the meantime. As high limit is checked again before
2487 * reclaim, the cost of mismatch is negligible.
2488 */
2489 do {
2490 if (page_counter_read(&memcg->memory) > memcg->high) {
2491 /* Don't bother a random interrupted task */
2492 if (in_interrupt()) {
2493 schedule_work(&memcg->high_work);
2494 break;
2495 }
2496 current->memcg_nr_pages_over_high += batch;
2497 set_notify_resume(current);
2498 break;
2499 }
2500 } while ((memcg = parent_mem_cgroup(memcg)));
2501
2502 return 0;
2503 }
2504
2505 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2506 {
2507 if (mem_cgroup_is_root(memcg))
2508 return;
2509
2510 page_counter_uncharge(&memcg->memory, nr_pages);
2511 if (do_memsw_account())
2512 page_counter_uncharge(&memcg->memsw, nr_pages);
2513
2514 css_put_many(&memcg->css, nr_pages);
2515 }
2516
2517 static void lock_page_lru(struct page *page, int *isolated)
2518 {
2519 pg_data_t *pgdat = page_pgdat(page);
2520
2521 spin_lock_irq(&pgdat->lru_lock);
2522 if (PageLRU(page)) {
2523 struct lruvec *lruvec;
2524
2525 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2526 ClearPageLRU(page);
2527 del_page_from_lru_list(page, lruvec, page_lru(page));
2528 *isolated = 1;
2529 } else
2530 *isolated = 0;
2531 }
2532
2533 static void unlock_page_lru(struct page *page, int isolated)
2534 {
2535 pg_data_t *pgdat = page_pgdat(page);
2536
2537 if (isolated) {
2538 struct lruvec *lruvec;
2539
2540 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2541 VM_BUG_ON_PAGE(PageLRU(page), page);
2542 SetPageLRU(page);
2543 add_page_to_lru_list(page, lruvec, page_lru(page));
2544 }
2545 spin_unlock_irq(&pgdat->lru_lock);
2546 }
2547
2548 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2549 bool lrucare)
2550 {
2551 int isolated;
2552
2553 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2554
2555 /*
2556 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2557 * may already be on some other mem_cgroup's LRU. Take care of it.
2558 */
2559 if (lrucare)
2560 lock_page_lru(page, &isolated);
2561
2562 /*
2563 * Nobody should be changing or seriously looking at
2564 * page->mem_cgroup at this point:
2565 *
2566 * - the page is uncharged
2567 *
2568 * - the page is off-LRU
2569 *
2570 * - an anonymous fault has exclusive page access, except for
2571 * a locked page table
2572 *
2573 * - a page cache insertion, a swapin fault, or a migration
2574 * have the page locked
2575 */
2576 page->mem_cgroup = memcg;
2577
2578 if (lrucare)
2579 unlock_page_lru(page, isolated);
2580 }
2581
2582 #ifdef CONFIG_MEMCG_KMEM
2583 static int memcg_alloc_cache_id(void)
2584 {
2585 int id, size;
2586 int err;
2587
2588 id = ida_simple_get(&memcg_cache_ida,
2589 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2590 if (id < 0)
2591 return id;
2592
2593 if (id < memcg_nr_cache_ids)
2594 return id;
2595
2596 /*
2597 * There's no space for the new id in memcg_caches arrays,
2598 * so we have to grow them.
2599 */
2600 down_write(&memcg_cache_ids_sem);
2601
2602 size = 2 * (id + 1);
2603 if (size < MEMCG_CACHES_MIN_SIZE)
2604 size = MEMCG_CACHES_MIN_SIZE;
2605 else if (size > MEMCG_CACHES_MAX_SIZE)
2606 size = MEMCG_CACHES_MAX_SIZE;
2607
2608 err = memcg_update_all_caches(size);
2609 if (!err)
2610 err = memcg_update_all_list_lrus(size);
2611 if (!err)
2612 memcg_nr_cache_ids = size;
2613
2614 up_write(&memcg_cache_ids_sem);
2615
2616 if (err) {
2617 ida_simple_remove(&memcg_cache_ida, id);
2618 return err;
2619 }
2620 return id;
2621 }
2622
2623 static void memcg_free_cache_id(int id)
2624 {
2625 ida_simple_remove(&memcg_cache_ida, id);
2626 }
2627
2628 struct memcg_kmem_cache_create_work {
2629 struct mem_cgroup *memcg;
2630 struct kmem_cache *cachep;
2631 struct work_struct work;
2632 };
2633
2634 static void memcg_kmem_cache_create_func(struct work_struct *w)
2635 {
2636 struct memcg_kmem_cache_create_work *cw =
2637 container_of(w, struct memcg_kmem_cache_create_work, work);
2638 struct mem_cgroup *memcg = cw->memcg;
2639 struct kmem_cache *cachep = cw->cachep;
2640
2641 memcg_create_kmem_cache(memcg, cachep);
2642
2643 css_put(&memcg->css);
2644 kfree(cw);
2645 }
2646
2647 /*
2648 * Enqueue the creation of a per-memcg kmem_cache.
2649 */
2650 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2651 struct kmem_cache *cachep)
2652 {
2653 struct memcg_kmem_cache_create_work *cw;
2654
2655 if (!css_tryget_online(&memcg->css))
2656 return;
2657
2658 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2659 if (!cw)
2660 return;
2661
2662 cw->memcg = memcg;
2663 cw->cachep = cachep;
2664 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2665
2666 queue_work(memcg_kmem_cache_wq, &cw->work);
2667 }
2668
2669 static inline bool memcg_kmem_bypass(void)
2670 {
2671 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2672 return true;
2673 return false;
2674 }
2675
2676 /**
2677 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2678 * @cachep: the original global kmem cache
2679 *
2680 * Return the kmem_cache we're supposed to use for a slab allocation.
2681 * We try to use the current memcg's version of the cache.
2682 *
2683 * If the cache does not exist yet, if we are the first user of it, we
2684 * create it asynchronously in a workqueue and let the current allocation
2685 * go through with the original cache.
2686 *
2687 * This function takes a reference to the cache it returns to assure it
2688 * won't get destroyed while we are working with it. Once the caller is
2689 * done with it, memcg_kmem_put_cache() must be called to release the
2690 * reference.
2691 */
2692 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2693 {
2694 struct mem_cgroup *memcg;
2695 struct kmem_cache *memcg_cachep;
2696 struct memcg_cache_array *arr;
2697 int kmemcg_id;
2698
2699 VM_BUG_ON(!is_root_cache(cachep));
2700
2701 if (memcg_kmem_bypass())
2702 return cachep;
2703
2704 rcu_read_lock();
2705
2706 if (unlikely(current->active_memcg))
2707 memcg = current->active_memcg;
2708 else
2709 memcg = mem_cgroup_from_task(current);
2710
2711 if (!memcg || memcg == root_mem_cgroup)
2712 goto out_unlock;
2713
2714 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2715 if (kmemcg_id < 0)
2716 goto out_unlock;
2717
2718 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2719
2720 /*
2721 * Make sure we will access the up-to-date value. The code updating
2722 * memcg_caches issues a write barrier to match the data dependency
2723 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2724 */
2725 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2726
2727 /*
2728 * If we are in a safe context (can wait, and not in interrupt
2729 * context), we could be be predictable and return right away.
2730 * This would guarantee that the allocation being performed
2731 * already belongs in the new cache.
2732 *
2733 * However, there are some clashes that can arrive from locking.
2734 * For instance, because we acquire the slab_mutex while doing
2735 * memcg_create_kmem_cache, this means no further allocation
2736 * could happen with the slab_mutex held. So it's better to
2737 * defer everything.
2738 *
2739 * If the memcg is dying or memcg_cache is about to be released,
2740 * don't bother creating new kmem_caches. Because memcg_cachep
2741 * is ZEROed as the fist step of kmem offlining, we don't need
2742 * percpu_ref_tryget_live() here. css_tryget_online() check in
2743 * memcg_schedule_kmem_cache_create() will prevent us from
2744 * creation of a new kmem_cache.
2745 */
2746 if (unlikely(!memcg_cachep))
2747 memcg_schedule_kmem_cache_create(memcg, cachep);
2748 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2749 cachep = memcg_cachep;
2750 out_unlock:
2751 rcu_read_unlock();
2752 return cachep;
2753 }
2754
2755 /**
2756 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2757 * @cachep: the cache returned by memcg_kmem_get_cache
2758 */
2759 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2760 {
2761 if (!is_root_cache(cachep))
2762 percpu_ref_put(&cachep->memcg_params.refcnt);
2763 }
2764
2765 /**
2766 * __memcg_kmem_charge_memcg: charge a kmem page
2767 * @page: page to charge
2768 * @gfp: reclaim mode
2769 * @order: allocation order
2770 * @memcg: memory cgroup to charge
2771 *
2772 * Returns 0 on success, an error code on failure.
2773 */
2774 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2775 struct mem_cgroup *memcg)
2776 {
2777 unsigned int nr_pages = 1 << order;
2778 struct page_counter *counter;
2779 int ret;
2780
2781 ret = try_charge(memcg, gfp, nr_pages);
2782 if (ret)
2783 return ret;
2784
2785 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2786 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2787 cancel_charge(memcg, nr_pages);
2788 return -ENOMEM;
2789 }
2790 return 0;
2791 }
2792
2793 /**
2794 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2795 * @page: page to charge
2796 * @gfp: reclaim mode
2797 * @order: allocation order
2798 *
2799 * Returns 0 on success, an error code on failure.
2800 */
2801 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2802 {
2803 struct mem_cgroup *memcg;
2804 int ret = 0;
2805
2806 if (memcg_kmem_bypass())
2807 return 0;
2808
2809 memcg = get_mem_cgroup_from_current();
2810 if (!mem_cgroup_is_root(memcg)) {
2811 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2812 if (!ret) {
2813 page->mem_cgroup = memcg;
2814 __SetPageKmemcg(page);
2815 }
2816 }
2817 css_put(&memcg->css);
2818 return ret;
2819 }
2820
2821 /**
2822 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2823 * @memcg: memcg to uncharge
2824 * @nr_pages: number of pages to uncharge
2825 */
2826 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2827 unsigned int nr_pages)
2828 {
2829 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2830 page_counter_uncharge(&memcg->kmem, nr_pages);
2831
2832 page_counter_uncharge(&memcg->memory, nr_pages);
2833 if (do_memsw_account())
2834 page_counter_uncharge(&memcg->memsw, nr_pages);
2835 }
2836 /**
2837 * __memcg_kmem_uncharge: uncharge a kmem page
2838 * @page: page to uncharge
2839 * @order: allocation order
2840 */
2841 void __memcg_kmem_uncharge(struct page *page, int order)
2842 {
2843 struct mem_cgroup *memcg = page->mem_cgroup;
2844 unsigned int nr_pages = 1 << order;
2845
2846 if (!memcg)
2847 return;
2848
2849 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2850 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2851 page->mem_cgroup = NULL;
2852
2853 /* slab pages do not have PageKmemcg flag set */
2854 if (PageKmemcg(page))
2855 __ClearPageKmemcg(page);
2856
2857 css_put_many(&memcg->css, nr_pages);
2858 }
2859 #endif /* CONFIG_MEMCG_KMEM */
2860
2861 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2862
2863 /*
2864 * Because tail pages are not marked as "used", set it. We're under
2865 * pgdat->lru_lock and migration entries setup in all page mappings.
2866 */
2867 void mem_cgroup_split_huge_fixup(struct page *head)
2868 {
2869 int i;
2870
2871 if (mem_cgroup_disabled())
2872 return;
2873
2874 for (i = 1; i < HPAGE_PMD_NR; i++)
2875 head[i].mem_cgroup = head->mem_cgroup;
2876
2877 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2878 }
2879 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2880
2881 #ifdef CONFIG_MEMCG_SWAP
2882 /**
2883 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2884 * @entry: swap entry to be moved
2885 * @from: mem_cgroup which the entry is moved from
2886 * @to: mem_cgroup which the entry is moved to
2887 *
2888 * It succeeds only when the swap_cgroup's record for this entry is the same
2889 * as the mem_cgroup's id of @from.
2890 *
2891 * Returns 0 on success, -EINVAL on failure.
2892 *
2893 * The caller must have charged to @to, IOW, called page_counter_charge() about
2894 * both res and memsw, and called css_get().
2895 */
2896 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2897 struct mem_cgroup *from, struct mem_cgroup *to)
2898 {
2899 unsigned short old_id, new_id;
2900
2901 old_id = mem_cgroup_id(from);
2902 new_id = mem_cgroup_id(to);
2903
2904 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2905 mod_memcg_state(from, MEMCG_SWAP, -1);
2906 mod_memcg_state(to, MEMCG_SWAP, 1);
2907 return 0;
2908 }
2909 return -EINVAL;
2910 }
2911 #else
2912 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2913 struct mem_cgroup *from, struct mem_cgroup *to)
2914 {
2915 return -EINVAL;
2916 }
2917 #endif
2918
2919 static DEFINE_MUTEX(memcg_max_mutex);
2920
2921 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2922 unsigned long max, bool memsw)
2923 {
2924 bool enlarge = false;
2925 bool drained = false;
2926 int ret;
2927 bool limits_invariant;
2928 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2929
2930 do {
2931 if (signal_pending(current)) {
2932 ret = -EINTR;
2933 break;
2934 }
2935
2936 mutex_lock(&memcg_max_mutex);
2937 /*
2938 * Make sure that the new limit (memsw or memory limit) doesn't
2939 * break our basic invariant rule memory.max <= memsw.max.
2940 */
2941 limits_invariant = memsw ? max >= memcg->memory.max :
2942 max <= memcg->memsw.max;
2943 if (!limits_invariant) {
2944 mutex_unlock(&memcg_max_mutex);
2945 ret = -EINVAL;
2946 break;
2947 }
2948 if (max > counter->max)
2949 enlarge = true;
2950 ret = page_counter_set_max(counter, max);
2951 mutex_unlock(&memcg_max_mutex);
2952
2953 if (!ret)
2954 break;
2955
2956 if (!drained) {
2957 drain_all_stock(memcg);
2958 drained = true;
2959 continue;
2960 }
2961
2962 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2963 GFP_KERNEL, !memsw)) {
2964 ret = -EBUSY;
2965 break;
2966 }
2967 } while (true);
2968
2969 if (!ret && enlarge)
2970 memcg_oom_recover(memcg);
2971
2972 return ret;
2973 }
2974
2975 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2976 gfp_t gfp_mask,
2977 unsigned long *total_scanned)
2978 {
2979 unsigned long nr_reclaimed = 0;
2980 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2981 unsigned long reclaimed;
2982 int loop = 0;
2983 struct mem_cgroup_tree_per_node *mctz;
2984 unsigned long excess;
2985 unsigned long nr_scanned;
2986
2987 if (order > 0)
2988 return 0;
2989
2990 mctz = soft_limit_tree_node(pgdat->node_id);
2991
2992 /*
2993 * Do not even bother to check the largest node if the root
2994 * is empty. Do it lockless to prevent lock bouncing. Races
2995 * are acceptable as soft limit is best effort anyway.
2996 */
2997 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2998 return 0;
2999
3000 /*
3001 * This loop can run a while, specially if mem_cgroup's continuously
3002 * keep exceeding their soft limit and putting the system under
3003 * pressure
3004 */
3005 do {
3006 if (next_mz)
3007 mz = next_mz;
3008 else
3009 mz = mem_cgroup_largest_soft_limit_node(mctz);
3010 if (!mz)
3011 break;
3012
3013 nr_scanned = 0;
3014 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3015 gfp_mask, &nr_scanned);
3016 nr_reclaimed += reclaimed;
3017 *total_scanned += nr_scanned;
3018 spin_lock_irq(&mctz->lock);
3019 __mem_cgroup_remove_exceeded(mz, mctz);
3020
3021 /*
3022 * If we failed to reclaim anything from this memory cgroup
3023 * it is time to move on to the next cgroup
3024 */
3025 next_mz = NULL;
3026 if (!reclaimed)
3027 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3028
3029 excess = soft_limit_excess(mz->memcg);
3030 /*
3031 * One school of thought says that we should not add
3032 * back the node to the tree if reclaim returns 0.
3033 * But our reclaim could return 0, simply because due
3034 * to priority we are exposing a smaller subset of
3035 * memory to reclaim from. Consider this as a longer
3036 * term TODO.
3037 */
3038 /* If excess == 0, no tree ops */
3039 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3040 spin_unlock_irq(&mctz->lock);
3041 css_put(&mz->memcg->css);
3042 loop++;
3043 /*
3044 * Could not reclaim anything and there are no more
3045 * mem cgroups to try or we seem to be looping without
3046 * reclaiming anything.
3047 */
3048 if (!nr_reclaimed &&
3049 (next_mz == NULL ||
3050 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3051 break;
3052 } while (!nr_reclaimed);
3053 if (next_mz)
3054 css_put(&next_mz->memcg->css);
3055 return nr_reclaimed;
3056 }
3057
3058 /*
3059 * Test whether @memcg has children, dead or alive. Note that this
3060 * function doesn't care whether @memcg has use_hierarchy enabled and
3061 * returns %true if there are child csses according to the cgroup
3062 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3063 */
3064 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3065 {
3066 bool ret;
3067
3068 rcu_read_lock();
3069 ret = css_next_child(NULL, &memcg->css);
3070 rcu_read_unlock();
3071 return ret;
3072 }
3073
3074 /*
3075 * Reclaims as many pages from the given memcg as possible.
3076 *
3077 * Caller is responsible for holding css reference for memcg.
3078 */
3079 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3080 {
3081 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3082
3083 /* we call try-to-free pages for make this cgroup empty */
3084 lru_add_drain_all();
3085
3086 drain_all_stock(memcg);
3087
3088 /* try to free all pages in this cgroup */
3089 while (nr_retries && page_counter_read(&memcg->memory)) {
3090 int progress;
3091
3092 if (signal_pending(current))
3093 return -EINTR;
3094
3095 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3096 GFP_KERNEL, true);
3097 if (!progress) {
3098 nr_retries--;
3099 /* maybe some writeback is necessary */
3100 congestion_wait(BLK_RW_ASYNC, HZ/10);
3101 }
3102
3103 }
3104
3105 return 0;
3106 }
3107
3108 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3109 char *buf, size_t nbytes,
3110 loff_t off)
3111 {
3112 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3113
3114 if (mem_cgroup_is_root(memcg))
3115 return -EINVAL;
3116 return mem_cgroup_force_empty(memcg) ?: nbytes;
3117 }
3118
3119 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3120 struct cftype *cft)
3121 {
3122 return mem_cgroup_from_css(css)->use_hierarchy;
3123 }
3124
3125 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3126 struct cftype *cft, u64 val)
3127 {
3128 int retval = 0;
3129 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3130 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3131
3132 if (memcg->use_hierarchy == val)
3133 return 0;
3134
3135 /*
3136 * If parent's use_hierarchy is set, we can't make any modifications
3137 * in the child subtrees. If it is unset, then the change can
3138 * occur, provided the current cgroup has no children.
3139 *
3140 * For the root cgroup, parent_mem is NULL, we allow value to be
3141 * set if there are no children.
3142 */
3143 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3144 (val == 1 || val == 0)) {
3145 if (!memcg_has_children(memcg))
3146 memcg->use_hierarchy = val;
3147 else
3148 retval = -EBUSY;
3149 } else
3150 retval = -EINVAL;
3151
3152 return retval;
3153 }
3154
3155 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3156 {
3157 unsigned long val;
3158
3159 if (mem_cgroup_is_root(memcg)) {
3160 val = memcg_page_state(memcg, MEMCG_CACHE) +
3161 memcg_page_state(memcg, MEMCG_RSS);
3162 if (swap)
3163 val += memcg_page_state(memcg, MEMCG_SWAP);
3164 } else {
3165 if (!swap)
3166 val = page_counter_read(&memcg->memory);
3167 else
3168 val = page_counter_read(&memcg->memsw);
3169 }
3170 return val;
3171 }
3172
3173 enum {
3174 RES_USAGE,
3175 RES_LIMIT,
3176 RES_MAX_USAGE,
3177 RES_FAILCNT,
3178 RES_SOFT_LIMIT,
3179 };
3180
3181 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3182 struct cftype *cft)
3183 {
3184 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3185 struct page_counter *counter;
3186
3187 switch (MEMFILE_TYPE(cft->private)) {
3188 case _MEM:
3189 counter = &memcg->memory;
3190 break;
3191 case _MEMSWAP:
3192 counter = &memcg->memsw;
3193 break;
3194 case _KMEM:
3195 counter = &memcg->kmem;
3196 break;
3197 case _TCP:
3198 counter = &memcg->tcpmem;
3199 break;
3200 default:
3201 BUG();
3202 }
3203
3204 switch (MEMFILE_ATTR(cft->private)) {
3205 case RES_USAGE:
3206 if (counter == &memcg->memory)
3207 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3208 if (counter == &memcg->memsw)
3209 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3210 return (u64)page_counter_read(counter) * PAGE_SIZE;
3211 case RES_LIMIT:
3212 return (u64)counter->max * PAGE_SIZE;
3213 case RES_MAX_USAGE:
3214 return (u64)counter->watermark * PAGE_SIZE;
3215 case RES_FAILCNT:
3216 return counter->failcnt;
3217 case RES_SOFT_LIMIT:
3218 return (u64)memcg->soft_limit * PAGE_SIZE;
3219 default:
3220 BUG();
3221 }
3222 }
3223
3224 #ifdef CONFIG_MEMCG_KMEM
3225 static int memcg_online_kmem(struct mem_cgroup *memcg)
3226 {
3227 int memcg_id;
3228
3229 if (cgroup_memory_nokmem)
3230 return 0;
3231
3232 BUG_ON(memcg->kmemcg_id >= 0);
3233 BUG_ON(memcg->kmem_state);
3234
3235 memcg_id = memcg_alloc_cache_id();
3236 if (memcg_id < 0)
3237 return memcg_id;
3238
3239 static_branch_inc(&memcg_kmem_enabled_key);
3240 /*
3241 * A memory cgroup is considered kmem-online as soon as it gets
3242 * kmemcg_id. Setting the id after enabling static branching will
3243 * guarantee no one starts accounting before all call sites are
3244 * patched.
3245 */
3246 memcg->kmemcg_id = memcg_id;
3247 memcg->kmem_state = KMEM_ONLINE;
3248 INIT_LIST_HEAD(&memcg->kmem_caches);
3249
3250 return 0;
3251 }
3252
3253 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3254 {
3255 struct cgroup_subsys_state *css;
3256 struct mem_cgroup *parent, *child;
3257 int kmemcg_id;
3258
3259 if (memcg->kmem_state != KMEM_ONLINE)
3260 return;
3261 /*
3262 * Clear the online state before clearing memcg_caches array
3263 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3264 * guarantees that no cache will be created for this cgroup
3265 * after we are done (see memcg_create_kmem_cache()).
3266 */
3267 memcg->kmem_state = KMEM_ALLOCATED;
3268
3269 parent = parent_mem_cgroup(memcg);
3270 if (!parent)
3271 parent = root_mem_cgroup;
3272
3273 memcg_deactivate_kmem_caches(memcg, parent);
3274
3275 kmemcg_id = memcg->kmemcg_id;
3276 BUG_ON(kmemcg_id < 0);
3277
3278 /*
3279 * Change kmemcg_id of this cgroup and all its descendants to the
3280 * parent's id, and then move all entries from this cgroup's list_lrus
3281 * to ones of the parent. After we have finished, all list_lrus
3282 * corresponding to this cgroup are guaranteed to remain empty. The
3283 * ordering is imposed by list_lru_node->lock taken by
3284 * memcg_drain_all_list_lrus().
3285 */
3286 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3287 css_for_each_descendant_pre(css, &memcg->css) {
3288 child = mem_cgroup_from_css(css);
3289 BUG_ON(child->kmemcg_id != kmemcg_id);
3290 child->kmemcg_id = parent->kmemcg_id;
3291 if (!memcg->use_hierarchy)
3292 break;
3293 }
3294 rcu_read_unlock();
3295
3296 memcg_drain_all_list_lrus(kmemcg_id, parent);
3297
3298 memcg_free_cache_id(kmemcg_id);
3299 }
3300
3301 static void memcg_free_kmem(struct mem_cgroup *memcg)
3302 {
3303 /* css_alloc() failed, offlining didn't happen */
3304 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3305 memcg_offline_kmem(memcg);
3306
3307 if (memcg->kmem_state == KMEM_ALLOCATED) {
3308 WARN_ON(!list_empty(&memcg->kmem_caches));
3309 static_branch_dec(&memcg_kmem_enabled_key);
3310 }
3311 }
3312 #else
3313 static int memcg_online_kmem(struct mem_cgroup *memcg)
3314 {
3315 return 0;
3316 }
3317 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3318 {
3319 }
3320 static void memcg_free_kmem(struct mem_cgroup *memcg)
3321 {
3322 }
3323 #endif /* CONFIG_MEMCG_KMEM */
3324
3325 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3326 unsigned long max)
3327 {
3328 int ret;
3329
3330 mutex_lock(&memcg_max_mutex);
3331 ret = page_counter_set_max(&memcg->kmem, max);
3332 mutex_unlock(&memcg_max_mutex);
3333 return ret;
3334 }
3335
3336 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3337 {
3338 int ret;
3339
3340 mutex_lock(&memcg_max_mutex);
3341
3342 ret = page_counter_set_max(&memcg->tcpmem, max);
3343 if (ret)
3344 goto out;
3345
3346 if (!memcg->tcpmem_active) {
3347 /*
3348 * The active flag needs to be written after the static_key
3349 * update. This is what guarantees that the socket activation
3350 * function is the last one to run. See mem_cgroup_sk_alloc()
3351 * for details, and note that we don't mark any socket as
3352 * belonging to this memcg until that flag is up.
3353 *
3354 * We need to do this, because static_keys will span multiple
3355 * sites, but we can't control their order. If we mark a socket
3356 * as accounted, but the accounting functions are not patched in
3357 * yet, we'll lose accounting.
3358 *
3359 * We never race with the readers in mem_cgroup_sk_alloc(),
3360 * because when this value change, the code to process it is not
3361 * patched in yet.
3362 */
3363 static_branch_inc(&memcg_sockets_enabled_key);
3364 memcg->tcpmem_active = true;
3365 }
3366 out:
3367 mutex_unlock(&memcg_max_mutex);
3368 return ret;
3369 }
3370
3371 /*
3372 * The user of this function is...
3373 * RES_LIMIT.
3374 */
3375 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3376 char *buf, size_t nbytes, loff_t off)
3377 {
3378 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3379 unsigned long nr_pages;
3380 int ret;
3381
3382 buf = strstrip(buf);
3383 ret = page_counter_memparse(buf, "-1", &nr_pages);
3384 if (ret)
3385 return ret;
3386
3387 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3388 case RES_LIMIT:
3389 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3390 ret = -EINVAL;
3391 break;
3392 }
3393 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3394 case _MEM:
3395 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3396 break;
3397 case _MEMSWAP:
3398 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3399 break;
3400 case _KMEM:
3401 ret = memcg_update_kmem_max(memcg, nr_pages);
3402 break;
3403 case _TCP:
3404 ret = memcg_update_tcp_max(memcg, nr_pages);
3405 break;
3406 }
3407 break;
3408 case RES_SOFT_LIMIT:
3409 memcg->soft_limit = nr_pages;
3410 ret = 0;
3411 break;
3412 }
3413 return ret ?: nbytes;
3414 }
3415
3416 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3417 size_t nbytes, loff_t off)
3418 {
3419 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3420 struct page_counter *counter;
3421
3422 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3423 case _MEM:
3424 counter = &memcg->memory;
3425 break;
3426 case _MEMSWAP:
3427 counter = &memcg->memsw;
3428 break;
3429 case _KMEM:
3430 counter = &memcg->kmem;
3431 break;
3432 case _TCP:
3433 counter = &memcg->tcpmem;
3434 break;
3435 default:
3436 BUG();
3437 }
3438
3439 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3440 case RES_MAX_USAGE:
3441 page_counter_reset_watermark(counter);
3442 break;
3443 case RES_FAILCNT:
3444 counter->failcnt = 0;
3445 break;
3446 default:
3447 BUG();
3448 }
3449
3450 return nbytes;
3451 }
3452
3453 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3454 struct cftype *cft)
3455 {
3456 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3457 }
3458
3459 #ifdef CONFIG_MMU
3460 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3461 struct cftype *cft, u64 val)
3462 {
3463 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3464
3465 if (val & ~MOVE_MASK)
3466 return -EINVAL;
3467
3468 /*
3469 * No kind of locking is needed in here, because ->can_attach() will
3470 * check this value once in the beginning of the process, and then carry
3471 * on with stale data. This means that changes to this value will only
3472 * affect task migrations starting after the change.
3473 */
3474 memcg->move_charge_at_immigrate = val;
3475 return 0;
3476 }
3477 #else
3478 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3479 struct cftype *cft, u64 val)
3480 {
3481 return -ENOSYS;
3482 }
3483 #endif
3484
3485 #ifdef CONFIG_NUMA
3486
3487 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3488 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3489 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3490
3491 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3492 int nid, unsigned int lru_mask)
3493 {
3494 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3495 unsigned long nr = 0;
3496 enum lru_list lru;
3497
3498 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3499
3500 for_each_lru(lru) {
3501 if (!(BIT(lru) & lru_mask))
3502 continue;
3503 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3504 }
3505 return nr;
3506 }
3507
3508 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3509 unsigned int lru_mask)
3510 {
3511 unsigned long nr = 0;
3512 enum lru_list lru;
3513
3514 for_each_lru(lru) {
3515 if (!(BIT(lru) & lru_mask))
3516 continue;
3517 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3518 }
3519 return nr;
3520 }
3521
3522 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3523 {
3524 struct numa_stat {
3525 const char *name;
3526 unsigned int lru_mask;
3527 };
3528
3529 static const struct numa_stat stats[] = {
3530 { "total", LRU_ALL },
3531 { "file", LRU_ALL_FILE },
3532 { "anon", LRU_ALL_ANON },
3533 { "unevictable", BIT(LRU_UNEVICTABLE) },
3534 };
3535 const struct numa_stat *stat;
3536 int nid;
3537 unsigned long nr;
3538 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3539
3540 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3541 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3542 seq_printf(m, "%s=%lu", stat->name, nr);
3543 for_each_node_state(nid, N_MEMORY) {
3544 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3545 stat->lru_mask);
3546 seq_printf(m, " N%d=%lu", nid, nr);
3547 }
3548 seq_putc(m, '\n');
3549 }
3550
3551 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3552 struct mem_cgroup *iter;
3553
3554 nr = 0;
3555 for_each_mem_cgroup_tree(iter, memcg)
3556 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3557 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3558 for_each_node_state(nid, N_MEMORY) {
3559 nr = 0;
3560 for_each_mem_cgroup_tree(iter, memcg)
3561 nr += mem_cgroup_node_nr_lru_pages(
3562 iter, nid, stat->lru_mask);
3563 seq_printf(m, " N%d=%lu", nid, nr);
3564 }
3565 seq_putc(m, '\n');
3566 }
3567
3568 return 0;
3569 }
3570 #endif /* CONFIG_NUMA */
3571
3572 static const unsigned int memcg1_stats[] = {
3573 MEMCG_CACHE,
3574 MEMCG_RSS,
3575 MEMCG_RSS_HUGE,
3576 NR_SHMEM,
3577 NR_FILE_MAPPED,
3578 NR_FILE_DIRTY,
3579 NR_WRITEBACK,
3580 MEMCG_SWAP,
3581 };
3582
3583 static const char *const memcg1_stat_names[] = {
3584 "cache",
3585 "rss",
3586 "rss_huge",
3587 "shmem",
3588 "mapped_file",
3589 "dirty",
3590 "writeback",
3591 "swap",
3592 };
3593
3594 /* Universal VM events cgroup1 shows, original sort order */
3595 static const unsigned int memcg1_events[] = {
3596 PGPGIN,
3597 PGPGOUT,
3598 PGFAULT,
3599 PGMAJFAULT,
3600 };
3601
3602 static const char *const memcg1_event_names[] = {
3603 "pgpgin",
3604 "pgpgout",
3605 "pgfault",
3606 "pgmajfault",
3607 };
3608
3609 static int memcg_stat_show(struct seq_file *m, void *v)
3610 {
3611 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3612 unsigned long memory, memsw;
3613 struct mem_cgroup *mi;
3614 unsigned int i;
3615
3616 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3617 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3618
3619 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3620 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3621 continue;
3622 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3623 memcg_page_state_local(memcg, memcg1_stats[i]) *
3624 PAGE_SIZE);
3625 }
3626
3627 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3628 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3629 memcg_events_local(memcg, memcg1_events[i]));
3630
3631 for (i = 0; i < NR_LRU_LISTS; i++)
3632 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3633 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3634 PAGE_SIZE);
3635
3636 /* Hierarchical information */
3637 memory = memsw = PAGE_COUNTER_MAX;
3638 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3639 memory = min(memory, mi->memory.max);
3640 memsw = min(memsw, mi->memsw.max);
3641 }
3642 seq_printf(m, "hierarchical_memory_limit %llu\n",
3643 (u64)memory * PAGE_SIZE);
3644 if (do_memsw_account())
3645 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3646 (u64)memsw * PAGE_SIZE);
3647
3648 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3649 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3650 continue;
3651 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3652 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3653 PAGE_SIZE);
3654 }
3655
3656 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3657 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3658 (u64)memcg_events(memcg, memcg1_events[i]));
3659
3660 for (i = 0; i < NR_LRU_LISTS; i++)
3661 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3662 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3663 PAGE_SIZE);
3664
3665 #ifdef CONFIG_DEBUG_VM
3666 {
3667 pg_data_t *pgdat;
3668 struct mem_cgroup_per_node *mz;
3669 struct zone_reclaim_stat *rstat;
3670 unsigned long recent_rotated[2] = {0, 0};
3671 unsigned long recent_scanned[2] = {0, 0};
3672
3673 for_each_online_pgdat(pgdat) {
3674 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3675 rstat = &mz->lruvec.reclaim_stat;
3676
3677 recent_rotated[0] += rstat->recent_rotated[0];
3678 recent_rotated[1] += rstat->recent_rotated[1];
3679 recent_scanned[0] += rstat->recent_scanned[0];
3680 recent_scanned[1] += rstat->recent_scanned[1];
3681 }
3682 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3683 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3684 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3685 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3686 }
3687 #endif
3688
3689 return 0;
3690 }
3691
3692 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3693 struct cftype *cft)
3694 {
3695 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3696
3697 return mem_cgroup_swappiness(memcg);
3698 }
3699
3700 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3701 struct cftype *cft, u64 val)
3702 {
3703 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3704
3705 if (val > 100)
3706 return -EINVAL;
3707
3708 if (css->parent)
3709 memcg->swappiness = val;
3710 else
3711 vm_swappiness = val;
3712
3713 return 0;
3714 }
3715
3716 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3717 {
3718 struct mem_cgroup_threshold_ary *t;
3719 unsigned long usage;
3720 int i;
3721
3722 rcu_read_lock();
3723 if (!swap)
3724 t = rcu_dereference(memcg->thresholds.primary);
3725 else
3726 t = rcu_dereference(memcg->memsw_thresholds.primary);
3727
3728 if (!t)
3729 goto unlock;
3730
3731 usage = mem_cgroup_usage(memcg, swap);
3732
3733 /*
3734 * current_threshold points to threshold just below or equal to usage.
3735 * If it's not true, a threshold was crossed after last
3736 * call of __mem_cgroup_threshold().
3737 */
3738 i = t->current_threshold;
3739
3740 /*
3741 * Iterate backward over array of thresholds starting from
3742 * current_threshold and check if a threshold is crossed.
3743 * If none of thresholds below usage is crossed, we read
3744 * only one element of the array here.
3745 */
3746 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3747 eventfd_signal(t->entries[i].eventfd, 1);
3748
3749 /* i = current_threshold + 1 */
3750 i++;
3751
3752 /*
3753 * Iterate forward over array of thresholds starting from
3754 * current_threshold+1 and check if a threshold is crossed.
3755 * If none of thresholds above usage is crossed, we read
3756 * only one element of the array here.
3757 */
3758 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3759 eventfd_signal(t->entries[i].eventfd, 1);
3760
3761 /* Update current_threshold */
3762 t->current_threshold = i - 1;
3763 unlock:
3764 rcu_read_unlock();
3765 }
3766
3767 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3768 {
3769 while (memcg) {
3770 __mem_cgroup_threshold(memcg, false);
3771 if (do_memsw_account())
3772 __mem_cgroup_threshold(memcg, true);
3773
3774 memcg = parent_mem_cgroup(memcg);
3775 }
3776 }
3777
3778 static int compare_thresholds(const void *a, const void *b)
3779 {
3780 const struct mem_cgroup_threshold *_a = a;
3781 const struct mem_cgroup_threshold *_b = b;
3782
3783 if (_a->threshold > _b->threshold)
3784 return 1;
3785
3786 if (_a->threshold < _b->threshold)
3787 return -1;
3788
3789 return 0;
3790 }
3791
3792 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3793 {
3794 struct mem_cgroup_eventfd_list *ev;
3795
3796 spin_lock(&memcg_oom_lock);
3797
3798 list_for_each_entry(ev, &memcg->oom_notify, list)
3799 eventfd_signal(ev->eventfd, 1);
3800
3801 spin_unlock(&memcg_oom_lock);
3802 return 0;
3803 }
3804
3805 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3806 {
3807 struct mem_cgroup *iter;
3808
3809 for_each_mem_cgroup_tree(iter, memcg)
3810 mem_cgroup_oom_notify_cb(iter);
3811 }
3812
3813 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3814 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3815 {
3816 struct mem_cgroup_thresholds *thresholds;
3817 struct mem_cgroup_threshold_ary *new;
3818 unsigned long threshold;
3819 unsigned long usage;
3820 int i, size, ret;
3821
3822 ret = page_counter_memparse(args, "-1", &threshold);
3823 if (ret)
3824 return ret;
3825
3826 mutex_lock(&memcg->thresholds_lock);
3827
3828 if (type == _MEM) {
3829 thresholds = &memcg->thresholds;
3830 usage = mem_cgroup_usage(memcg, false);
3831 } else if (type == _MEMSWAP) {
3832 thresholds = &memcg->memsw_thresholds;
3833 usage = mem_cgroup_usage(memcg, true);
3834 } else
3835 BUG();
3836
3837 /* Check if a threshold crossed before adding a new one */
3838 if (thresholds->primary)
3839 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3840
3841 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3842
3843 /* Allocate memory for new array of thresholds */
3844 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3845 if (!new) {
3846 ret = -ENOMEM;
3847 goto unlock;
3848 }
3849 new->size = size;
3850
3851 /* Copy thresholds (if any) to new array */
3852 if (thresholds->primary) {
3853 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3854 sizeof(struct mem_cgroup_threshold));
3855 }
3856
3857 /* Add new threshold */
3858 new->entries[size - 1].eventfd = eventfd;
3859 new->entries[size - 1].threshold = threshold;
3860
3861 /* Sort thresholds. Registering of new threshold isn't time-critical */
3862 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3863 compare_thresholds, NULL);
3864
3865 /* Find current threshold */
3866 new->current_threshold = -1;
3867 for (i = 0; i < size; i++) {
3868 if (new->entries[i].threshold <= usage) {
3869 /*
3870 * new->current_threshold will not be used until
3871 * rcu_assign_pointer(), so it's safe to increment
3872 * it here.
3873 */
3874 ++new->current_threshold;
3875 } else
3876 break;
3877 }
3878
3879 /* Free old spare buffer and save old primary buffer as spare */
3880 kfree(thresholds->spare);
3881 thresholds->spare = thresholds->primary;
3882
3883 rcu_assign_pointer(thresholds->primary, new);
3884
3885 /* To be sure that nobody uses thresholds */
3886 synchronize_rcu();
3887
3888 unlock:
3889 mutex_unlock(&memcg->thresholds_lock);
3890
3891 return ret;
3892 }
3893
3894 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3895 struct eventfd_ctx *eventfd, const char *args)
3896 {
3897 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3898 }
3899
3900 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3901 struct eventfd_ctx *eventfd, const char *args)
3902 {
3903 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3904 }
3905
3906 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3907 struct eventfd_ctx *eventfd, enum res_type type)
3908 {
3909 struct mem_cgroup_thresholds *thresholds;
3910 struct mem_cgroup_threshold_ary *new;
3911 unsigned long usage;
3912 int i, j, size;
3913
3914 mutex_lock(&memcg->thresholds_lock);
3915
3916 if (type == _MEM) {
3917 thresholds = &memcg->thresholds;
3918 usage = mem_cgroup_usage(memcg, false);
3919 } else if (type == _MEMSWAP) {
3920 thresholds = &memcg->memsw_thresholds;
3921 usage = mem_cgroup_usage(memcg, true);
3922 } else
3923 BUG();
3924
3925 if (!thresholds->primary)
3926 goto unlock;
3927
3928 /* Check if a threshold crossed before removing */
3929 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3930
3931 /* Calculate new number of threshold */
3932 size = 0;
3933 for (i = 0; i < thresholds->primary->size; i++) {
3934 if (thresholds->primary->entries[i].eventfd != eventfd)
3935 size++;
3936 }
3937
3938 new = thresholds->spare;
3939
3940 /* Set thresholds array to NULL if we don't have thresholds */
3941 if (!size) {
3942 kfree(new);
3943 new = NULL;
3944 goto swap_buffers;
3945 }
3946
3947 new->size = size;
3948
3949 /* Copy thresholds and find current threshold */
3950 new->current_threshold = -1;
3951 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3952 if (thresholds->primary->entries[i].eventfd == eventfd)
3953 continue;
3954
3955 new->entries[j] = thresholds->primary->entries[i];
3956 if (new->entries[j].threshold <= usage) {
3957 /*
3958 * new->current_threshold will not be used
3959 * until rcu_assign_pointer(), so it's safe to increment
3960 * it here.
3961 */
3962 ++new->current_threshold;
3963 }
3964 j++;
3965 }
3966
3967 swap_buffers:
3968 /* Swap primary and spare array */
3969 thresholds->spare = thresholds->primary;
3970
3971 rcu_assign_pointer(thresholds->primary, new);
3972
3973 /* To be sure that nobody uses thresholds */
3974 synchronize_rcu();
3975
3976 /* If all events are unregistered, free the spare array */
3977 if (!new) {
3978 kfree(thresholds->spare);
3979 thresholds->spare = NULL;
3980 }
3981 unlock:
3982 mutex_unlock(&memcg->thresholds_lock);
3983 }
3984
3985 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3986 struct eventfd_ctx *eventfd)
3987 {
3988 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3989 }
3990
3991 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3992 struct eventfd_ctx *eventfd)
3993 {
3994 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3995 }
3996
3997 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3998 struct eventfd_ctx *eventfd, const char *args)
3999 {
4000 struct mem_cgroup_eventfd_list *event;
4001
4002 event = kmalloc(sizeof(*event), GFP_KERNEL);
4003 if (!event)
4004 return -ENOMEM;
4005
4006 spin_lock(&memcg_oom_lock);
4007
4008 event->eventfd = eventfd;
4009 list_add(&event->list, &memcg->oom_notify);
4010
4011 /* already in OOM ? */
4012 if (memcg->under_oom)
4013 eventfd_signal(eventfd, 1);
4014 spin_unlock(&memcg_oom_lock);
4015
4016 return 0;
4017 }
4018
4019 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4020 struct eventfd_ctx *eventfd)
4021 {
4022 struct mem_cgroup_eventfd_list *ev, *tmp;
4023
4024 spin_lock(&memcg_oom_lock);
4025
4026 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4027 if (ev->eventfd == eventfd) {
4028 list_del(&ev->list);
4029 kfree(ev);
4030 }
4031 }
4032
4033 spin_unlock(&memcg_oom_lock);
4034 }
4035
4036 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4037 {
4038 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4039
4040 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4041 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4042 seq_printf(sf, "oom_kill %lu\n",
4043 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4044 return 0;
4045 }
4046
4047 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4048 struct cftype *cft, u64 val)
4049 {
4050 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4051
4052 /* cannot set to root cgroup and only 0 and 1 are allowed */
4053 if (!css->parent || !((val == 0) || (val == 1)))
4054 return -EINVAL;
4055
4056 memcg->oom_kill_disable = val;
4057 if (!val)
4058 memcg_oom_recover(memcg);
4059
4060 return 0;
4061 }
4062
4063 #ifdef CONFIG_CGROUP_WRITEBACK
4064
4065 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4066 {
4067 return wb_domain_init(&memcg->cgwb_domain, gfp);
4068 }
4069
4070 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4071 {
4072 wb_domain_exit(&memcg->cgwb_domain);
4073 }
4074
4075 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4076 {
4077 wb_domain_size_changed(&memcg->cgwb_domain);
4078 }
4079
4080 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4081 {
4082 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4083
4084 if (!memcg->css.parent)
4085 return NULL;
4086
4087 return &memcg->cgwb_domain;
4088 }
4089
4090 /*
4091 * idx can be of type enum memcg_stat_item or node_stat_item.
4092 * Keep in sync with memcg_exact_page().
4093 */
4094 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4095 {
4096 long x = atomic_long_read(&memcg->vmstats[idx]);
4097 int cpu;
4098
4099 for_each_online_cpu(cpu)
4100 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4101 if (x < 0)
4102 x = 0;
4103 return x;
4104 }
4105
4106 /**
4107 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4108 * @wb: bdi_writeback in question
4109 * @pfilepages: out parameter for number of file pages
4110 * @pheadroom: out parameter for number of allocatable pages according to memcg
4111 * @pdirty: out parameter for number of dirty pages
4112 * @pwriteback: out parameter for number of pages under writeback
4113 *
4114 * Determine the numbers of file, headroom, dirty, and writeback pages in
4115 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4116 * is a bit more involved.
4117 *
4118 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4119 * headroom is calculated as the lowest headroom of itself and the
4120 * ancestors. Note that this doesn't consider the actual amount of
4121 * available memory in the system. The caller should further cap
4122 * *@pheadroom accordingly.
4123 */
4124 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4125 unsigned long *pheadroom, unsigned long *pdirty,
4126 unsigned long *pwriteback)
4127 {
4128 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4129 struct mem_cgroup *parent;
4130
4131 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4132
4133 /* this should eventually include NR_UNSTABLE_NFS */
4134 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4135 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4136 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4137 *pheadroom = PAGE_COUNTER_MAX;
4138
4139 while ((parent = parent_mem_cgroup(memcg))) {
4140 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4141 unsigned long used = page_counter_read(&memcg->memory);
4142
4143 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4144 memcg = parent;
4145 }
4146 }
4147
4148 #else /* CONFIG_CGROUP_WRITEBACK */
4149
4150 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4151 {
4152 return 0;
4153 }
4154
4155 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4156 {
4157 }
4158
4159 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4160 {
4161 }
4162
4163 #endif /* CONFIG_CGROUP_WRITEBACK */
4164
4165 /*
4166 * DO NOT USE IN NEW FILES.
4167 *
4168 * "cgroup.event_control" implementation.
4169 *
4170 * This is way over-engineered. It tries to support fully configurable
4171 * events for each user. Such level of flexibility is completely
4172 * unnecessary especially in the light of the planned unified hierarchy.
4173 *
4174 * Please deprecate this and replace with something simpler if at all
4175 * possible.
4176 */
4177
4178 /*
4179 * Unregister event and free resources.
4180 *
4181 * Gets called from workqueue.
4182 */
4183 static void memcg_event_remove(struct work_struct *work)
4184 {
4185 struct mem_cgroup_event *event =
4186 container_of(work, struct mem_cgroup_event, remove);
4187 struct mem_cgroup *memcg = event->memcg;
4188
4189 remove_wait_queue(event->wqh, &event->wait);
4190
4191 event->unregister_event(memcg, event->eventfd);
4192
4193 /* Notify userspace the event is going away. */
4194 eventfd_signal(event->eventfd, 1);
4195
4196 eventfd_ctx_put(event->eventfd);
4197 kfree(event);
4198 css_put(&memcg->css);
4199 }
4200
4201 /*
4202 * Gets called on EPOLLHUP on eventfd when user closes it.
4203 *
4204 * Called with wqh->lock held and interrupts disabled.
4205 */
4206 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4207 int sync, void *key)
4208 {
4209 struct mem_cgroup_event *event =
4210 container_of(wait, struct mem_cgroup_event, wait);
4211 struct mem_cgroup *memcg = event->memcg;
4212 __poll_t flags = key_to_poll(key);
4213
4214 if (flags & EPOLLHUP) {
4215 /*
4216 * If the event has been detached at cgroup removal, we
4217 * can simply return knowing the other side will cleanup
4218 * for us.
4219 *
4220 * We can't race against event freeing since the other
4221 * side will require wqh->lock via remove_wait_queue(),
4222 * which we hold.
4223 */
4224 spin_lock(&memcg->event_list_lock);
4225 if (!list_empty(&event->list)) {
4226 list_del_init(&event->list);
4227 /*
4228 * We are in atomic context, but cgroup_event_remove()
4229 * may sleep, so we have to call it in workqueue.
4230 */
4231 schedule_work(&event->remove);
4232 }
4233 spin_unlock(&memcg->event_list_lock);
4234 }
4235
4236 return 0;
4237 }
4238
4239 static void memcg_event_ptable_queue_proc(struct file *file,
4240 wait_queue_head_t *wqh, poll_table *pt)
4241 {
4242 struct mem_cgroup_event *event =
4243 container_of(pt, struct mem_cgroup_event, pt);
4244
4245 event->wqh = wqh;
4246 add_wait_queue(wqh, &event->wait);
4247 }
4248
4249 /*
4250 * DO NOT USE IN NEW FILES.
4251 *
4252 * Parse input and register new cgroup event handler.
4253 *
4254 * Input must be in format '<event_fd> <control_fd> <args>'.
4255 * Interpretation of args is defined by control file implementation.
4256 */
4257 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4258 char *buf, size_t nbytes, loff_t off)
4259 {
4260 struct cgroup_subsys_state *css = of_css(of);
4261 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4262 struct mem_cgroup_event *event;
4263 struct cgroup_subsys_state *cfile_css;
4264 unsigned int efd, cfd;
4265 struct fd efile;
4266 struct fd cfile;
4267 const char *name;
4268 char *endp;
4269 int ret;
4270
4271 buf = strstrip(buf);
4272
4273 efd = simple_strtoul(buf, &endp, 10);
4274 if (*endp != ' ')
4275 return -EINVAL;
4276 buf = endp + 1;
4277
4278 cfd = simple_strtoul(buf, &endp, 10);
4279 if ((*endp != ' ') && (*endp != '\0'))
4280 return -EINVAL;
4281 buf = endp + 1;
4282
4283 event = kzalloc(sizeof(*event), GFP_KERNEL);
4284 if (!event)
4285 return -ENOMEM;
4286
4287 event->memcg = memcg;
4288 INIT_LIST_HEAD(&event->list);
4289 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4290 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4291 INIT_WORK(&event->remove, memcg_event_remove);
4292
4293 efile = fdget(efd);
4294 if (!efile.file) {
4295 ret = -EBADF;
4296 goto out_kfree;
4297 }
4298
4299 event->eventfd = eventfd_ctx_fileget(efile.file);
4300 if (IS_ERR(event->eventfd)) {
4301 ret = PTR_ERR(event->eventfd);
4302 goto out_put_efile;
4303 }
4304
4305 cfile = fdget(cfd);
4306 if (!cfile.file) {
4307 ret = -EBADF;
4308 goto out_put_eventfd;
4309 }
4310
4311 /* the process need read permission on control file */
4312 /* AV: shouldn't we check that it's been opened for read instead? */
4313 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4314 if (ret < 0)
4315 goto out_put_cfile;
4316
4317 /*
4318 * Determine the event callbacks and set them in @event. This used
4319 * to be done via struct cftype but cgroup core no longer knows
4320 * about these events. The following is crude but the whole thing
4321 * is for compatibility anyway.
4322 *
4323 * DO NOT ADD NEW FILES.
4324 */
4325 name = cfile.file->f_path.dentry->d_name.name;
4326
4327 if (!strcmp(name, "memory.usage_in_bytes")) {
4328 event->register_event = mem_cgroup_usage_register_event;
4329 event->unregister_event = mem_cgroup_usage_unregister_event;
4330 } else if (!strcmp(name, "memory.oom_control")) {
4331 event->register_event = mem_cgroup_oom_register_event;
4332 event->unregister_event = mem_cgroup_oom_unregister_event;
4333 } else if (!strcmp(name, "memory.pressure_level")) {
4334 event->register_event = vmpressure_register_event;
4335 event->unregister_event = vmpressure_unregister_event;
4336 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4337 event->register_event = memsw_cgroup_usage_register_event;
4338 event->unregister_event = memsw_cgroup_usage_unregister_event;
4339 } else {
4340 ret = -EINVAL;
4341 goto out_put_cfile;
4342 }
4343
4344 /*
4345 * Verify @cfile should belong to @css. Also, remaining events are
4346 * automatically removed on cgroup destruction but the removal is
4347 * asynchronous, so take an extra ref on @css.
4348 */
4349 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4350 &memory_cgrp_subsys);
4351 ret = -EINVAL;
4352 if (IS_ERR(cfile_css))
4353 goto out_put_cfile;
4354 if (cfile_css != css) {
4355 css_put(cfile_css);
4356 goto out_put_cfile;
4357 }
4358
4359 ret = event->register_event(memcg, event->eventfd, buf);
4360 if (ret)
4361 goto out_put_css;
4362
4363 vfs_poll(efile.file, &event->pt);
4364
4365 spin_lock(&memcg->event_list_lock);
4366 list_add(&event->list, &memcg->event_list);
4367 spin_unlock(&memcg->event_list_lock);
4368
4369 fdput(cfile);
4370 fdput(efile);
4371
4372 return nbytes;
4373
4374 out_put_css:
4375 css_put(css);
4376 out_put_cfile:
4377 fdput(cfile);
4378 out_put_eventfd:
4379 eventfd_ctx_put(event->eventfd);
4380 out_put_efile:
4381 fdput(efile);
4382 out_kfree:
4383 kfree(event);
4384
4385 return ret;
4386 }
4387
4388 static struct cftype mem_cgroup_legacy_files[] = {
4389 {
4390 .name = "usage_in_bytes",
4391 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4392 .read_u64 = mem_cgroup_read_u64,
4393 },
4394 {
4395 .name = "max_usage_in_bytes",
4396 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4397 .write = mem_cgroup_reset,
4398 .read_u64 = mem_cgroup_read_u64,
4399 },
4400 {
4401 .name = "limit_in_bytes",
4402 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4403 .write = mem_cgroup_write,
4404 .read_u64 = mem_cgroup_read_u64,
4405 },
4406 {
4407 .name = "soft_limit_in_bytes",
4408 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4409 .write = mem_cgroup_write,
4410 .read_u64 = mem_cgroup_read_u64,
4411 },
4412 {
4413 .name = "failcnt",
4414 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4415 .write = mem_cgroup_reset,
4416 .read_u64 = mem_cgroup_read_u64,
4417 },
4418 {
4419 .name = "stat",
4420 .seq_show = memcg_stat_show,
4421 },
4422 {
4423 .name = "force_empty",
4424 .write = mem_cgroup_force_empty_write,
4425 },
4426 {
4427 .name = "use_hierarchy",
4428 .write_u64 = mem_cgroup_hierarchy_write,
4429 .read_u64 = mem_cgroup_hierarchy_read,
4430 },
4431 {
4432 .name = "cgroup.event_control", /* XXX: for compat */
4433 .write = memcg_write_event_control,
4434 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4435 },
4436 {
4437 .name = "swappiness",
4438 .read_u64 = mem_cgroup_swappiness_read,
4439 .write_u64 = mem_cgroup_swappiness_write,
4440 },
4441 {
4442 .name = "move_charge_at_immigrate",
4443 .read_u64 = mem_cgroup_move_charge_read,
4444 .write_u64 = mem_cgroup_move_charge_write,
4445 },
4446 {
4447 .name = "oom_control",
4448 .seq_show = mem_cgroup_oom_control_read,
4449 .write_u64 = mem_cgroup_oom_control_write,
4450 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4451 },
4452 {
4453 .name = "pressure_level",
4454 },
4455 #ifdef CONFIG_NUMA
4456 {
4457 .name = "numa_stat",
4458 .seq_show = memcg_numa_stat_show,
4459 },
4460 #endif
4461 {
4462 .name = "kmem.limit_in_bytes",
4463 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4464 .write = mem_cgroup_write,
4465 .read_u64 = mem_cgroup_read_u64,
4466 },
4467 {
4468 .name = "kmem.usage_in_bytes",
4469 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4470 .read_u64 = mem_cgroup_read_u64,
4471 },
4472 {
4473 .name = "kmem.failcnt",
4474 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4475 .write = mem_cgroup_reset,
4476 .read_u64 = mem_cgroup_read_u64,
4477 },
4478 {
4479 .name = "kmem.max_usage_in_bytes",
4480 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4481 .write = mem_cgroup_reset,
4482 .read_u64 = mem_cgroup_read_u64,
4483 },
4484 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4485 {
4486 .name = "kmem.slabinfo",
4487 .seq_start = memcg_slab_start,
4488 .seq_next = memcg_slab_next,
4489 .seq_stop = memcg_slab_stop,
4490 .seq_show = memcg_slab_show,
4491 },
4492 #endif
4493 {
4494 .name = "kmem.tcp.limit_in_bytes",
4495 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4496 .write = mem_cgroup_write,
4497 .read_u64 = mem_cgroup_read_u64,
4498 },
4499 {
4500 .name = "kmem.tcp.usage_in_bytes",
4501 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4502 .read_u64 = mem_cgroup_read_u64,
4503 },
4504 {
4505 .name = "kmem.tcp.failcnt",
4506 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4507 .write = mem_cgroup_reset,
4508 .read_u64 = mem_cgroup_read_u64,
4509 },
4510 {
4511 .name = "kmem.tcp.max_usage_in_bytes",
4512 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4513 .write = mem_cgroup_reset,
4514 .read_u64 = mem_cgroup_read_u64,
4515 },
4516 { }, /* terminate */
4517 };
4518
4519 /*
4520 * Private memory cgroup IDR
4521 *
4522 * Swap-out records and page cache shadow entries need to store memcg
4523 * references in constrained space, so we maintain an ID space that is
4524 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4525 * memory-controlled cgroups to 64k.
4526 *
4527 * However, there usually are many references to the oflline CSS after
4528 * the cgroup has been destroyed, such as page cache or reclaimable
4529 * slab objects, that don't need to hang on to the ID. We want to keep
4530 * those dead CSS from occupying IDs, or we might quickly exhaust the
4531 * relatively small ID space and prevent the creation of new cgroups
4532 * even when there are much fewer than 64k cgroups - possibly none.
4533 *
4534 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4535 * be freed and recycled when it's no longer needed, which is usually
4536 * when the CSS is offlined.
4537 *
4538 * The only exception to that are records of swapped out tmpfs/shmem
4539 * pages that need to be attributed to live ancestors on swapin. But
4540 * those references are manageable from userspace.
4541 */
4542
4543 static DEFINE_IDR(mem_cgroup_idr);
4544
4545 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4546 {
4547 if (memcg->id.id > 0) {
4548 idr_remove(&mem_cgroup_idr, memcg->id.id);
4549 memcg->id.id = 0;
4550 }
4551 }
4552
4553 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4554 {
4555 refcount_add(n, &memcg->id.ref);
4556 }
4557
4558 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4559 {
4560 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4561 mem_cgroup_id_remove(memcg);
4562
4563 /* Memcg ID pins CSS */
4564 css_put(&memcg->css);
4565 }
4566 }
4567
4568 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4569 {
4570 mem_cgroup_id_get_many(memcg, 1);
4571 }
4572
4573 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4574 {
4575 mem_cgroup_id_put_many(memcg, 1);
4576 }
4577
4578 /**
4579 * mem_cgroup_from_id - look up a memcg from a memcg id
4580 * @id: the memcg id to look up
4581 *
4582 * Caller must hold rcu_read_lock().
4583 */
4584 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4585 {
4586 WARN_ON_ONCE(!rcu_read_lock_held());
4587 return idr_find(&mem_cgroup_idr, id);
4588 }
4589
4590 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4591 {
4592 struct mem_cgroup_per_node *pn;
4593 int tmp = node;
4594 /*
4595 * This routine is called against possible nodes.
4596 * But it's BUG to call kmalloc() against offline node.
4597 *
4598 * TODO: this routine can waste much memory for nodes which will
4599 * never be onlined. It's better to use memory hotplug callback
4600 * function.
4601 */
4602 if (!node_state(node, N_NORMAL_MEMORY))
4603 tmp = -1;
4604 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4605 if (!pn)
4606 return 1;
4607
4608 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4609 if (!pn->lruvec_stat_local) {
4610 kfree(pn);
4611 return 1;
4612 }
4613
4614 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4615 if (!pn->lruvec_stat_cpu) {
4616 free_percpu(pn->lruvec_stat_local);
4617 kfree(pn);
4618 return 1;
4619 }
4620
4621 lruvec_init(&pn->lruvec);
4622 pn->usage_in_excess = 0;
4623 pn->on_tree = false;
4624 pn->memcg = memcg;
4625
4626 memcg->nodeinfo[node] = pn;
4627 return 0;
4628 }
4629
4630 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4631 {
4632 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4633
4634 if (!pn)
4635 return;
4636
4637 free_percpu(pn->lruvec_stat_cpu);
4638 free_percpu(pn->lruvec_stat_local);
4639 kfree(pn);
4640 }
4641
4642 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4643 {
4644 int node;
4645
4646 for_each_node(node)
4647 free_mem_cgroup_per_node_info(memcg, node);
4648 free_percpu(memcg->vmstats_percpu);
4649 free_percpu(memcg->vmstats_local);
4650 kfree(memcg);
4651 }
4652
4653 static void mem_cgroup_free(struct mem_cgroup *memcg)
4654 {
4655 memcg_wb_domain_exit(memcg);
4656 __mem_cgroup_free(memcg);
4657 }
4658
4659 static struct mem_cgroup *mem_cgroup_alloc(void)
4660 {
4661 struct mem_cgroup *memcg;
4662 unsigned int size;
4663 int node;
4664
4665 size = sizeof(struct mem_cgroup);
4666 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4667
4668 memcg = kzalloc(size, GFP_KERNEL);
4669 if (!memcg)
4670 return NULL;
4671
4672 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4673 1, MEM_CGROUP_ID_MAX,
4674 GFP_KERNEL);
4675 if (memcg->id.id < 0)
4676 goto fail;
4677
4678 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4679 if (!memcg->vmstats_local)
4680 goto fail;
4681
4682 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4683 if (!memcg->vmstats_percpu)
4684 goto fail;
4685
4686 for_each_node(node)
4687 if (alloc_mem_cgroup_per_node_info(memcg, node))
4688 goto fail;
4689
4690 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4691 goto fail;
4692
4693 INIT_WORK(&memcg->high_work, high_work_func);
4694 memcg->last_scanned_node = MAX_NUMNODES;
4695 INIT_LIST_HEAD(&memcg->oom_notify);
4696 mutex_init(&memcg->thresholds_lock);
4697 spin_lock_init(&memcg->move_lock);
4698 vmpressure_init(&memcg->vmpressure);
4699 INIT_LIST_HEAD(&memcg->event_list);
4700 spin_lock_init(&memcg->event_list_lock);
4701 memcg->socket_pressure = jiffies;
4702 #ifdef CONFIG_MEMCG_KMEM
4703 memcg->kmemcg_id = -1;
4704 #endif
4705 #ifdef CONFIG_CGROUP_WRITEBACK
4706 INIT_LIST_HEAD(&memcg->cgwb_list);
4707 #endif
4708 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4709 return memcg;
4710 fail:
4711 mem_cgroup_id_remove(memcg);
4712 __mem_cgroup_free(memcg);
4713 return NULL;
4714 }
4715
4716 static struct cgroup_subsys_state * __ref
4717 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4718 {
4719 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4720 struct mem_cgroup *memcg;
4721 long error = -ENOMEM;
4722
4723 memcg = mem_cgroup_alloc();
4724 if (!memcg)
4725 return ERR_PTR(error);
4726
4727 memcg->high = PAGE_COUNTER_MAX;
4728 memcg->soft_limit = PAGE_COUNTER_MAX;
4729 if (parent) {
4730 memcg->swappiness = mem_cgroup_swappiness(parent);
4731 memcg->oom_kill_disable = parent->oom_kill_disable;
4732 }
4733 if (parent && parent->use_hierarchy) {
4734 memcg->use_hierarchy = true;
4735 page_counter_init(&memcg->memory, &parent->memory);
4736 page_counter_init(&memcg->swap, &parent->swap);
4737 page_counter_init(&memcg->memsw, &parent->memsw);
4738 page_counter_init(&memcg->kmem, &parent->kmem);
4739 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4740 } else {
4741 page_counter_init(&memcg->memory, NULL);
4742 page_counter_init(&memcg->swap, NULL);
4743 page_counter_init(&memcg->memsw, NULL);
4744 page_counter_init(&memcg->kmem, NULL);
4745 page_counter_init(&memcg->tcpmem, NULL);
4746 /*
4747 * Deeper hierachy with use_hierarchy == false doesn't make
4748 * much sense so let cgroup subsystem know about this
4749 * unfortunate state in our controller.
4750 */
4751 if (parent != root_mem_cgroup)
4752 memory_cgrp_subsys.broken_hierarchy = true;
4753 }
4754
4755 /* The following stuff does not apply to the root */
4756 if (!parent) {
4757 #ifdef CONFIG_MEMCG_KMEM
4758 INIT_LIST_HEAD(&memcg->kmem_caches);
4759 #endif
4760 root_mem_cgroup = memcg;
4761 return &memcg->css;
4762 }
4763
4764 error = memcg_online_kmem(memcg);
4765 if (error)
4766 goto fail;
4767
4768 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4769 static_branch_inc(&memcg_sockets_enabled_key);
4770
4771 return &memcg->css;
4772 fail:
4773 mem_cgroup_id_remove(memcg);
4774 mem_cgroup_free(memcg);
4775 return ERR_PTR(-ENOMEM);
4776 }
4777
4778 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4779 {
4780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4781
4782 /*
4783 * A memcg must be visible for memcg_expand_shrinker_maps()
4784 * by the time the maps are allocated. So, we allocate maps
4785 * here, when for_each_mem_cgroup() can't skip it.
4786 */
4787 if (memcg_alloc_shrinker_maps(memcg)) {
4788 mem_cgroup_id_remove(memcg);
4789 return -ENOMEM;
4790 }
4791
4792 /* Online state pins memcg ID, memcg ID pins CSS */
4793 refcount_set(&memcg->id.ref, 1);
4794 css_get(css);
4795 return 0;
4796 }
4797
4798 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4799 {
4800 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4801 struct mem_cgroup_event *event, *tmp;
4802
4803 /*
4804 * Unregister events and notify userspace.
4805 * Notify userspace about cgroup removing only after rmdir of cgroup
4806 * directory to avoid race between userspace and kernelspace.
4807 */
4808 spin_lock(&memcg->event_list_lock);
4809 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4810 list_del_init(&event->list);
4811 schedule_work(&event->remove);
4812 }
4813 spin_unlock(&memcg->event_list_lock);
4814
4815 page_counter_set_min(&memcg->memory, 0);
4816 page_counter_set_low(&memcg->memory, 0);
4817
4818 memcg_offline_kmem(memcg);
4819 wb_memcg_offline(memcg);
4820
4821 drain_all_stock(memcg);
4822
4823 mem_cgroup_id_put(memcg);
4824 }
4825
4826 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4827 {
4828 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4829
4830 invalidate_reclaim_iterators(memcg);
4831 }
4832
4833 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4834 {
4835 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4836
4837 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4838 static_branch_dec(&memcg_sockets_enabled_key);
4839
4840 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4841 static_branch_dec(&memcg_sockets_enabled_key);
4842
4843 vmpressure_cleanup(&memcg->vmpressure);
4844 cancel_work_sync(&memcg->high_work);
4845 mem_cgroup_remove_from_trees(memcg);
4846 memcg_free_shrinker_maps(memcg);
4847 memcg_free_kmem(memcg);
4848 mem_cgroup_free(memcg);
4849 }
4850
4851 /**
4852 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4853 * @css: the target css
4854 *
4855 * Reset the states of the mem_cgroup associated with @css. This is
4856 * invoked when the userland requests disabling on the default hierarchy
4857 * but the memcg is pinned through dependency. The memcg should stop
4858 * applying policies and should revert to the vanilla state as it may be
4859 * made visible again.
4860 *
4861 * The current implementation only resets the essential configurations.
4862 * This needs to be expanded to cover all the visible parts.
4863 */
4864 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4865 {
4866 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4867
4868 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4869 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4870 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4871 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4872 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4873 page_counter_set_min(&memcg->memory, 0);
4874 page_counter_set_low(&memcg->memory, 0);
4875 memcg->high = PAGE_COUNTER_MAX;
4876 memcg->soft_limit = PAGE_COUNTER_MAX;
4877 memcg_wb_domain_size_changed(memcg);
4878 }
4879
4880 #ifdef CONFIG_MMU
4881 /* Handlers for move charge at task migration. */
4882 static int mem_cgroup_do_precharge(unsigned long count)
4883 {
4884 int ret;
4885
4886 /* Try a single bulk charge without reclaim first, kswapd may wake */
4887 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4888 if (!ret) {
4889 mc.precharge += count;
4890 return ret;
4891 }
4892
4893 /* Try charges one by one with reclaim, but do not retry */
4894 while (count--) {
4895 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4896 if (ret)
4897 return ret;
4898 mc.precharge++;
4899 cond_resched();
4900 }
4901 return 0;
4902 }
4903
4904 union mc_target {
4905 struct page *page;
4906 swp_entry_t ent;
4907 };
4908
4909 enum mc_target_type {
4910 MC_TARGET_NONE = 0,
4911 MC_TARGET_PAGE,
4912 MC_TARGET_SWAP,
4913 MC_TARGET_DEVICE,
4914 };
4915
4916 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4917 unsigned long addr, pte_t ptent)
4918 {
4919 struct page *page = vm_normal_page(vma, addr, ptent);
4920
4921 if (!page || !page_mapped(page))
4922 return NULL;
4923 if (PageAnon(page)) {
4924 if (!(mc.flags & MOVE_ANON))
4925 return NULL;
4926 } else {
4927 if (!(mc.flags & MOVE_FILE))
4928 return NULL;
4929 }
4930 if (!get_page_unless_zero(page))
4931 return NULL;
4932
4933 return page;
4934 }
4935
4936 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4937 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4938 pte_t ptent, swp_entry_t *entry)
4939 {
4940 struct page *page = NULL;
4941 swp_entry_t ent = pte_to_swp_entry(ptent);
4942
4943 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4944 return NULL;
4945
4946 /*
4947 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4948 * a device and because they are not accessible by CPU they are store
4949 * as special swap entry in the CPU page table.
4950 */
4951 if (is_device_private_entry(ent)) {
4952 page = device_private_entry_to_page(ent);
4953 /*
4954 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4955 * a refcount of 1 when free (unlike normal page)
4956 */
4957 if (!page_ref_add_unless(page, 1, 1))
4958 return NULL;
4959 return page;
4960 }
4961
4962 /*
4963 * Because lookup_swap_cache() updates some statistics counter,
4964 * we call find_get_page() with swapper_space directly.
4965 */
4966 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4967 if (do_memsw_account())
4968 entry->val = ent.val;
4969
4970 return page;
4971 }
4972 #else
4973 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4974 pte_t ptent, swp_entry_t *entry)
4975 {
4976 return NULL;
4977 }
4978 #endif
4979
4980 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4981 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4982 {
4983 struct page *page = NULL;
4984 struct address_space *mapping;
4985 pgoff_t pgoff;
4986
4987 if (!vma->vm_file) /* anonymous vma */
4988 return NULL;
4989 if (!(mc.flags & MOVE_FILE))
4990 return NULL;
4991
4992 mapping = vma->vm_file->f_mapping;
4993 pgoff = linear_page_index(vma, addr);
4994
4995 /* page is moved even if it's not RSS of this task(page-faulted). */
4996 #ifdef CONFIG_SWAP
4997 /* shmem/tmpfs may report page out on swap: account for that too. */
4998 if (shmem_mapping(mapping)) {
4999 page = find_get_entry(mapping, pgoff);
5000 if (xa_is_value(page)) {
5001 swp_entry_t swp = radix_to_swp_entry(page);
5002 if (do_memsw_account())
5003 *entry = swp;
5004 page = find_get_page(swap_address_space(swp),
5005 swp_offset(swp));
5006 }
5007 } else
5008 page = find_get_page(mapping, pgoff);
5009 #else
5010 page = find_get_page(mapping, pgoff);
5011 #endif
5012 return page;
5013 }
5014
5015 /**
5016 * mem_cgroup_move_account - move account of the page
5017 * @page: the page
5018 * @compound: charge the page as compound or small page
5019 * @from: mem_cgroup which the page is moved from.
5020 * @to: mem_cgroup which the page is moved to. @from != @to.
5021 *
5022 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5023 *
5024 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5025 * from old cgroup.
5026 */
5027 static int mem_cgroup_move_account(struct page *page,
5028 bool compound,
5029 struct mem_cgroup *from,
5030 struct mem_cgroup *to)
5031 {
5032 unsigned long flags;
5033 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5034 int ret;
5035 bool anon;
5036
5037 VM_BUG_ON(from == to);
5038 VM_BUG_ON_PAGE(PageLRU(page), page);
5039 VM_BUG_ON(compound && !PageTransHuge(page));
5040
5041 /*
5042 * Prevent mem_cgroup_migrate() from looking at
5043 * page->mem_cgroup of its source page while we change it.
5044 */
5045 ret = -EBUSY;
5046 if (!trylock_page(page))
5047 goto out;
5048
5049 ret = -EINVAL;
5050 if (page->mem_cgroup != from)
5051 goto out_unlock;
5052
5053 anon = PageAnon(page);
5054
5055 spin_lock_irqsave(&from->move_lock, flags);
5056
5057 if (!anon && page_mapped(page)) {
5058 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5059 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5060 }
5061
5062 /*
5063 * move_lock grabbed above and caller set from->moving_account, so
5064 * mod_memcg_page_state will serialize updates to PageDirty.
5065 * So mapping should be stable for dirty pages.
5066 */
5067 if (!anon && PageDirty(page)) {
5068 struct address_space *mapping = page_mapping(page);
5069
5070 if (mapping_cap_account_dirty(mapping)) {
5071 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5072 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5073 }
5074 }
5075
5076 if (PageWriteback(page)) {
5077 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5078 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5079 }
5080
5081 /*
5082 * It is safe to change page->mem_cgroup here because the page
5083 * is referenced, charged, and isolated - we can't race with
5084 * uncharging, charging, migration, or LRU putback.
5085 */
5086
5087 /* caller should have done css_get */
5088 page->mem_cgroup = to;
5089 spin_unlock_irqrestore(&from->move_lock, flags);
5090
5091 ret = 0;
5092
5093 local_irq_disable();
5094 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5095 memcg_check_events(to, page);
5096 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5097 memcg_check_events(from, page);
5098 local_irq_enable();
5099 out_unlock:
5100 unlock_page(page);
5101 out:
5102 return ret;
5103 }
5104
5105 /**
5106 * get_mctgt_type - get target type of moving charge
5107 * @vma: the vma the pte to be checked belongs
5108 * @addr: the address corresponding to the pte to be checked
5109 * @ptent: the pte to be checked
5110 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5111 *
5112 * Returns
5113 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5114 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5115 * move charge. if @target is not NULL, the page is stored in target->page
5116 * with extra refcnt got(Callers should handle it).
5117 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5118 * target for charge migration. if @target is not NULL, the entry is stored
5119 * in target->ent.
5120 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5121 * (so ZONE_DEVICE page and thus not on the lru).
5122 * For now we such page is charge like a regular page would be as for all
5123 * intent and purposes it is just special memory taking the place of a
5124 * regular page.
5125 *
5126 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5127 *
5128 * Called with pte lock held.
5129 */
5130
5131 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5132 unsigned long addr, pte_t ptent, union mc_target *target)
5133 {
5134 struct page *page = NULL;
5135 enum mc_target_type ret = MC_TARGET_NONE;
5136 swp_entry_t ent = { .val = 0 };
5137
5138 if (pte_present(ptent))
5139 page = mc_handle_present_pte(vma, addr, ptent);
5140 else if (is_swap_pte(ptent))
5141 page = mc_handle_swap_pte(vma, ptent, &ent);
5142 else if (pte_none(ptent))
5143 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5144
5145 if (!page && !ent.val)
5146 return ret;
5147 if (page) {
5148 /*
5149 * Do only loose check w/o serialization.
5150 * mem_cgroup_move_account() checks the page is valid or
5151 * not under LRU exclusion.
5152 */
5153 if (page->mem_cgroup == mc.from) {
5154 ret = MC_TARGET_PAGE;
5155 if (is_device_private_page(page))
5156 ret = MC_TARGET_DEVICE;
5157 if (target)
5158 target->page = page;
5159 }
5160 if (!ret || !target)
5161 put_page(page);
5162 }
5163 /*
5164 * There is a swap entry and a page doesn't exist or isn't charged.
5165 * But we cannot move a tail-page in a THP.
5166 */
5167 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5168 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5169 ret = MC_TARGET_SWAP;
5170 if (target)
5171 target->ent = ent;
5172 }
5173 return ret;
5174 }
5175
5176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5177 /*
5178 * We don't consider PMD mapped swapping or file mapped pages because THP does
5179 * not support them for now.
5180 * Caller should make sure that pmd_trans_huge(pmd) is true.
5181 */
5182 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5183 unsigned long addr, pmd_t pmd, union mc_target *target)
5184 {
5185 struct page *page = NULL;
5186 enum mc_target_type ret = MC_TARGET_NONE;
5187
5188 if (unlikely(is_swap_pmd(pmd))) {
5189 VM_BUG_ON(thp_migration_supported() &&
5190 !is_pmd_migration_entry(pmd));
5191 return ret;
5192 }
5193 page = pmd_page(pmd);
5194 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5195 if (!(mc.flags & MOVE_ANON))
5196 return ret;
5197 if (page->mem_cgroup == mc.from) {
5198 ret = MC_TARGET_PAGE;
5199 if (target) {
5200 get_page(page);
5201 target->page = page;
5202 }
5203 }
5204 return ret;
5205 }
5206 #else
5207 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5208 unsigned long addr, pmd_t pmd, union mc_target *target)
5209 {
5210 return MC_TARGET_NONE;
5211 }
5212 #endif
5213
5214 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5215 unsigned long addr, unsigned long end,
5216 struct mm_walk *walk)
5217 {
5218 struct vm_area_struct *vma = walk->vma;
5219 pte_t *pte;
5220 spinlock_t *ptl;
5221
5222 ptl = pmd_trans_huge_lock(pmd, vma);
5223 if (ptl) {
5224 /*
5225 * Note their can not be MC_TARGET_DEVICE for now as we do not
5226 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5227 * this might change.
5228 */
5229 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5230 mc.precharge += HPAGE_PMD_NR;
5231 spin_unlock(ptl);
5232 return 0;
5233 }
5234
5235 if (pmd_trans_unstable(pmd))
5236 return 0;
5237 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5238 for (; addr != end; pte++, addr += PAGE_SIZE)
5239 if (get_mctgt_type(vma, addr, *pte, NULL))
5240 mc.precharge++; /* increment precharge temporarily */
5241 pte_unmap_unlock(pte - 1, ptl);
5242 cond_resched();
5243
5244 return 0;
5245 }
5246
5247 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5248 {
5249 unsigned long precharge;
5250
5251 struct mm_walk mem_cgroup_count_precharge_walk = {
5252 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5253 .mm = mm,
5254 };
5255 down_read(&mm->mmap_sem);
5256 walk_page_range(0, mm->highest_vm_end,
5257 &mem_cgroup_count_precharge_walk);
5258 up_read(&mm->mmap_sem);
5259
5260 precharge = mc.precharge;
5261 mc.precharge = 0;
5262
5263 return precharge;
5264 }
5265
5266 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5267 {
5268 unsigned long precharge = mem_cgroup_count_precharge(mm);
5269
5270 VM_BUG_ON(mc.moving_task);
5271 mc.moving_task = current;
5272 return mem_cgroup_do_precharge(precharge);
5273 }
5274
5275 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5276 static void __mem_cgroup_clear_mc(void)
5277 {
5278 struct mem_cgroup *from = mc.from;
5279 struct mem_cgroup *to = mc.to;
5280
5281 /* we must uncharge all the leftover precharges from mc.to */
5282 if (mc.precharge) {
5283 cancel_charge(mc.to, mc.precharge);
5284 mc.precharge = 0;
5285 }
5286 /*
5287 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5288 * we must uncharge here.
5289 */
5290 if (mc.moved_charge) {
5291 cancel_charge(mc.from, mc.moved_charge);
5292 mc.moved_charge = 0;
5293 }
5294 /* we must fixup refcnts and charges */
5295 if (mc.moved_swap) {
5296 /* uncharge swap account from the old cgroup */
5297 if (!mem_cgroup_is_root(mc.from))
5298 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5299
5300 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5301
5302 /*
5303 * we charged both to->memory and to->memsw, so we
5304 * should uncharge to->memory.
5305 */
5306 if (!mem_cgroup_is_root(mc.to))
5307 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5308
5309 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5310 css_put_many(&mc.to->css, mc.moved_swap);
5311
5312 mc.moved_swap = 0;
5313 }
5314 memcg_oom_recover(from);
5315 memcg_oom_recover(to);
5316 wake_up_all(&mc.waitq);
5317 }
5318
5319 static void mem_cgroup_clear_mc(void)
5320 {
5321 struct mm_struct *mm = mc.mm;
5322
5323 /*
5324 * we must clear moving_task before waking up waiters at the end of
5325 * task migration.
5326 */
5327 mc.moving_task = NULL;
5328 __mem_cgroup_clear_mc();
5329 spin_lock(&mc.lock);
5330 mc.from = NULL;
5331 mc.to = NULL;
5332 mc.mm = NULL;
5333 spin_unlock(&mc.lock);
5334
5335 mmput(mm);
5336 }
5337
5338 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5339 {
5340 struct cgroup_subsys_state *css;
5341 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5342 struct mem_cgroup *from;
5343 struct task_struct *leader, *p;
5344 struct mm_struct *mm;
5345 unsigned long move_flags;
5346 int ret = 0;
5347
5348 /* charge immigration isn't supported on the default hierarchy */
5349 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5350 return 0;
5351
5352 /*
5353 * Multi-process migrations only happen on the default hierarchy
5354 * where charge immigration is not used. Perform charge
5355 * immigration if @tset contains a leader and whine if there are
5356 * multiple.
5357 */
5358 p = NULL;
5359 cgroup_taskset_for_each_leader(leader, css, tset) {
5360 WARN_ON_ONCE(p);
5361 p = leader;
5362 memcg = mem_cgroup_from_css(css);
5363 }
5364 if (!p)
5365 return 0;
5366
5367 /*
5368 * We are now commited to this value whatever it is. Changes in this
5369 * tunable will only affect upcoming migrations, not the current one.
5370 * So we need to save it, and keep it going.
5371 */
5372 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5373 if (!move_flags)
5374 return 0;
5375
5376 from = mem_cgroup_from_task(p);
5377
5378 VM_BUG_ON(from == memcg);
5379
5380 mm = get_task_mm(p);
5381 if (!mm)
5382 return 0;
5383 /* We move charges only when we move a owner of the mm */
5384 if (mm->owner == p) {
5385 VM_BUG_ON(mc.from);
5386 VM_BUG_ON(mc.to);
5387 VM_BUG_ON(mc.precharge);
5388 VM_BUG_ON(mc.moved_charge);
5389 VM_BUG_ON(mc.moved_swap);
5390
5391 spin_lock(&mc.lock);
5392 mc.mm = mm;
5393 mc.from = from;
5394 mc.to = memcg;
5395 mc.flags = move_flags;
5396 spin_unlock(&mc.lock);
5397 /* We set mc.moving_task later */
5398
5399 ret = mem_cgroup_precharge_mc(mm);
5400 if (ret)
5401 mem_cgroup_clear_mc();
5402 } else {
5403 mmput(mm);
5404 }
5405 return ret;
5406 }
5407
5408 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5409 {
5410 if (mc.to)
5411 mem_cgroup_clear_mc();
5412 }
5413
5414 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5415 unsigned long addr, unsigned long end,
5416 struct mm_walk *walk)
5417 {
5418 int ret = 0;
5419 struct vm_area_struct *vma = walk->vma;
5420 pte_t *pte;
5421 spinlock_t *ptl;
5422 enum mc_target_type target_type;
5423 union mc_target target;
5424 struct page *page;
5425
5426 ptl = pmd_trans_huge_lock(pmd, vma);
5427 if (ptl) {
5428 if (mc.precharge < HPAGE_PMD_NR) {
5429 spin_unlock(ptl);
5430 return 0;
5431 }
5432 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5433 if (target_type == MC_TARGET_PAGE) {
5434 page = target.page;
5435 if (!isolate_lru_page(page)) {
5436 if (!mem_cgroup_move_account(page, true,
5437 mc.from, mc.to)) {
5438 mc.precharge -= HPAGE_PMD_NR;
5439 mc.moved_charge += HPAGE_PMD_NR;
5440 }
5441 putback_lru_page(page);
5442 }
5443 put_page(page);
5444 } else if (target_type == MC_TARGET_DEVICE) {
5445 page = target.page;
5446 if (!mem_cgroup_move_account(page, true,
5447 mc.from, mc.to)) {
5448 mc.precharge -= HPAGE_PMD_NR;
5449 mc.moved_charge += HPAGE_PMD_NR;
5450 }
5451 put_page(page);
5452 }
5453 spin_unlock(ptl);
5454 return 0;
5455 }
5456
5457 if (pmd_trans_unstable(pmd))
5458 return 0;
5459 retry:
5460 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5461 for (; addr != end; addr += PAGE_SIZE) {
5462 pte_t ptent = *(pte++);
5463 bool device = false;
5464 swp_entry_t ent;
5465
5466 if (!mc.precharge)
5467 break;
5468
5469 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5470 case MC_TARGET_DEVICE:
5471 device = true;
5472 /* fall through */
5473 case MC_TARGET_PAGE:
5474 page = target.page;
5475 /*
5476 * We can have a part of the split pmd here. Moving it
5477 * can be done but it would be too convoluted so simply
5478 * ignore such a partial THP and keep it in original
5479 * memcg. There should be somebody mapping the head.
5480 */
5481 if (PageTransCompound(page))
5482 goto put;
5483 if (!device && isolate_lru_page(page))
5484 goto put;
5485 if (!mem_cgroup_move_account(page, false,
5486 mc.from, mc.to)) {
5487 mc.precharge--;
5488 /* we uncharge from mc.from later. */
5489 mc.moved_charge++;
5490 }
5491 if (!device)
5492 putback_lru_page(page);
5493 put: /* get_mctgt_type() gets the page */
5494 put_page(page);
5495 break;
5496 case MC_TARGET_SWAP:
5497 ent = target.ent;
5498 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5499 mc.precharge--;
5500 /* we fixup refcnts and charges later. */
5501 mc.moved_swap++;
5502 }
5503 break;
5504 default:
5505 break;
5506 }
5507 }
5508 pte_unmap_unlock(pte - 1, ptl);
5509 cond_resched();
5510
5511 if (addr != end) {
5512 /*
5513 * We have consumed all precharges we got in can_attach().
5514 * We try charge one by one, but don't do any additional
5515 * charges to mc.to if we have failed in charge once in attach()
5516 * phase.
5517 */
5518 ret = mem_cgroup_do_precharge(1);
5519 if (!ret)
5520 goto retry;
5521 }
5522
5523 return ret;
5524 }
5525
5526 static void mem_cgroup_move_charge(void)
5527 {
5528 struct mm_walk mem_cgroup_move_charge_walk = {
5529 .pmd_entry = mem_cgroup_move_charge_pte_range,
5530 .mm = mc.mm,
5531 };
5532
5533 lru_add_drain_all();
5534 /*
5535 * Signal lock_page_memcg() to take the memcg's move_lock
5536 * while we're moving its pages to another memcg. Then wait
5537 * for already started RCU-only updates to finish.
5538 */
5539 atomic_inc(&mc.from->moving_account);
5540 synchronize_rcu();
5541 retry:
5542 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5543 /*
5544 * Someone who are holding the mmap_sem might be waiting in
5545 * waitq. So we cancel all extra charges, wake up all waiters,
5546 * and retry. Because we cancel precharges, we might not be able
5547 * to move enough charges, but moving charge is a best-effort
5548 * feature anyway, so it wouldn't be a big problem.
5549 */
5550 __mem_cgroup_clear_mc();
5551 cond_resched();
5552 goto retry;
5553 }
5554 /*
5555 * When we have consumed all precharges and failed in doing
5556 * additional charge, the page walk just aborts.
5557 */
5558 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5559
5560 up_read(&mc.mm->mmap_sem);
5561 atomic_dec(&mc.from->moving_account);
5562 }
5563
5564 static void mem_cgroup_move_task(void)
5565 {
5566 if (mc.to) {
5567 mem_cgroup_move_charge();
5568 mem_cgroup_clear_mc();
5569 }
5570 }
5571 #else /* !CONFIG_MMU */
5572 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5573 {
5574 return 0;
5575 }
5576 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5577 {
5578 }
5579 static void mem_cgroup_move_task(void)
5580 {
5581 }
5582 #endif
5583
5584 /*
5585 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5586 * to verify whether we're attached to the default hierarchy on each mount
5587 * attempt.
5588 */
5589 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5590 {
5591 /*
5592 * use_hierarchy is forced on the default hierarchy. cgroup core
5593 * guarantees that @root doesn't have any children, so turning it
5594 * on for the root memcg is enough.
5595 */
5596 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5597 root_mem_cgroup->use_hierarchy = true;
5598 else
5599 root_mem_cgroup->use_hierarchy = false;
5600 }
5601
5602 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5603 {
5604 if (value == PAGE_COUNTER_MAX)
5605 seq_puts(m, "max\n");
5606 else
5607 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5608
5609 return 0;
5610 }
5611
5612 static u64 memory_current_read(struct cgroup_subsys_state *css,
5613 struct cftype *cft)
5614 {
5615 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5616
5617 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5618 }
5619
5620 static int memory_min_show(struct seq_file *m, void *v)
5621 {
5622 return seq_puts_memcg_tunable(m,
5623 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5624 }
5625
5626 static ssize_t memory_min_write(struct kernfs_open_file *of,
5627 char *buf, size_t nbytes, loff_t off)
5628 {
5629 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5630 unsigned long min;
5631 int err;
5632
5633 buf = strstrip(buf);
5634 err = page_counter_memparse(buf, "max", &min);
5635 if (err)
5636 return err;
5637
5638 page_counter_set_min(&memcg->memory, min);
5639
5640 return nbytes;
5641 }
5642
5643 static int memory_low_show(struct seq_file *m, void *v)
5644 {
5645 return seq_puts_memcg_tunable(m,
5646 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5647 }
5648
5649 static ssize_t memory_low_write(struct kernfs_open_file *of,
5650 char *buf, size_t nbytes, loff_t off)
5651 {
5652 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5653 unsigned long low;
5654 int err;
5655
5656 buf = strstrip(buf);
5657 err = page_counter_memparse(buf, "max", &low);
5658 if (err)
5659 return err;
5660
5661 page_counter_set_low(&memcg->memory, low);
5662
5663 return nbytes;
5664 }
5665
5666 static int memory_high_show(struct seq_file *m, void *v)
5667 {
5668 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5669 }
5670
5671 static ssize_t memory_high_write(struct kernfs_open_file *of,
5672 char *buf, size_t nbytes, loff_t off)
5673 {
5674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5675 unsigned long nr_pages;
5676 unsigned long high;
5677 int err;
5678
5679 buf = strstrip(buf);
5680 err = page_counter_memparse(buf, "max", &high);
5681 if (err)
5682 return err;
5683
5684 memcg->high = high;
5685
5686 nr_pages = page_counter_read(&memcg->memory);
5687 if (nr_pages > high)
5688 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5689 GFP_KERNEL, true);
5690
5691 memcg_wb_domain_size_changed(memcg);
5692 return nbytes;
5693 }
5694
5695 static int memory_max_show(struct seq_file *m, void *v)
5696 {
5697 return seq_puts_memcg_tunable(m,
5698 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5699 }
5700
5701 static ssize_t memory_max_write(struct kernfs_open_file *of,
5702 char *buf, size_t nbytes, loff_t off)
5703 {
5704 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5705 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5706 bool drained = false;
5707 unsigned long max;
5708 int err;
5709
5710 buf = strstrip(buf);
5711 err = page_counter_memparse(buf, "max", &max);
5712 if (err)
5713 return err;
5714
5715 xchg(&memcg->memory.max, max);
5716
5717 for (;;) {
5718 unsigned long nr_pages = page_counter_read(&memcg->memory);
5719
5720 if (nr_pages <= max)
5721 break;
5722
5723 if (signal_pending(current)) {
5724 err = -EINTR;
5725 break;
5726 }
5727
5728 if (!drained) {
5729 drain_all_stock(memcg);
5730 drained = true;
5731 continue;
5732 }
5733
5734 if (nr_reclaims) {
5735 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5736 GFP_KERNEL, true))
5737 nr_reclaims--;
5738 continue;
5739 }
5740
5741 memcg_memory_event(memcg, MEMCG_OOM);
5742 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5743 break;
5744 }
5745
5746 memcg_wb_domain_size_changed(memcg);
5747 return nbytes;
5748 }
5749
5750 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5751 {
5752 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5753 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5754 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5755 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5756 seq_printf(m, "oom_kill %lu\n",
5757 atomic_long_read(&events[MEMCG_OOM_KILL]));
5758 }
5759
5760 static int memory_events_show(struct seq_file *m, void *v)
5761 {
5762 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5763
5764 __memory_events_show(m, memcg->memory_events);
5765 return 0;
5766 }
5767
5768 static int memory_events_local_show(struct seq_file *m, void *v)
5769 {
5770 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5771
5772 __memory_events_show(m, memcg->memory_events_local);
5773 return 0;
5774 }
5775
5776 static int memory_stat_show(struct seq_file *m, void *v)
5777 {
5778 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5779 char *buf;
5780
5781 buf = memory_stat_format(memcg);
5782 if (!buf)
5783 return -ENOMEM;
5784 seq_puts(m, buf);
5785 kfree(buf);
5786 return 0;
5787 }
5788
5789 static int memory_oom_group_show(struct seq_file *m, void *v)
5790 {
5791 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5792
5793 seq_printf(m, "%d\n", memcg->oom_group);
5794
5795 return 0;
5796 }
5797
5798 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5799 char *buf, size_t nbytes, loff_t off)
5800 {
5801 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5802 int ret, oom_group;
5803
5804 buf = strstrip(buf);
5805 if (!buf)
5806 return -EINVAL;
5807
5808 ret = kstrtoint(buf, 0, &oom_group);
5809 if (ret)
5810 return ret;
5811
5812 if (oom_group != 0 && oom_group != 1)
5813 return -EINVAL;
5814
5815 memcg->oom_group = oom_group;
5816
5817 return nbytes;
5818 }
5819
5820 static struct cftype memory_files[] = {
5821 {
5822 .name = "current",
5823 .flags = CFTYPE_NOT_ON_ROOT,
5824 .read_u64 = memory_current_read,
5825 },
5826 {
5827 .name = "min",
5828 .flags = CFTYPE_NOT_ON_ROOT,
5829 .seq_show = memory_min_show,
5830 .write = memory_min_write,
5831 },
5832 {
5833 .name = "low",
5834 .flags = CFTYPE_NOT_ON_ROOT,
5835 .seq_show = memory_low_show,
5836 .write = memory_low_write,
5837 },
5838 {
5839 .name = "high",
5840 .flags = CFTYPE_NOT_ON_ROOT,
5841 .seq_show = memory_high_show,
5842 .write = memory_high_write,
5843 },
5844 {
5845 .name = "max",
5846 .flags = CFTYPE_NOT_ON_ROOT,
5847 .seq_show = memory_max_show,
5848 .write = memory_max_write,
5849 },
5850 {
5851 .name = "events",
5852 .flags = CFTYPE_NOT_ON_ROOT,
5853 .file_offset = offsetof(struct mem_cgroup, events_file),
5854 .seq_show = memory_events_show,
5855 },
5856 {
5857 .name = "events.local",
5858 .flags = CFTYPE_NOT_ON_ROOT,
5859 .file_offset = offsetof(struct mem_cgroup, events_local_file),
5860 .seq_show = memory_events_local_show,
5861 },
5862 {
5863 .name = "stat",
5864 .flags = CFTYPE_NOT_ON_ROOT,
5865 .seq_show = memory_stat_show,
5866 },
5867 {
5868 .name = "oom.group",
5869 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5870 .seq_show = memory_oom_group_show,
5871 .write = memory_oom_group_write,
5872 },
5873 { } /* terminate */
5874 };
5875
5876 struct cgroup_subsys memory_cgrp_subsys = {
5877 .css_alloc = mem_cgroup_css_alloc,
5878 .css_online = mem_cgroup_css_online,
5879 .css_offline = mem_cgroup_css_offline,
5880 .css_released = mem_cgroup_css_released,
5881 .css_free = mem_cgroup_css_free,
5882 .css_reset = mem_cgroup_css_reset,
5883 .can_attach = mem_cgroup_can_attach,
5884 .cancel_attach = mem_cgroup_cancel_attach,
5885 .post_attach = mem_cgroup_move_task,
5886 .bind = mem_cgroup_bind,
5887 .dfl_cftypes = memory_files,
5888 .legacy_cftypes = mem_cgroup_legacy_files,
5889 .early_init = 0,
5890 };
5891
5892 /**
5893 * mem_cgroup_protected - check if memory consumption is in the normal range
5894 * @root: the top ancestor of the sub-tree being checked
5895 * @memcg: the memory cgroup to check
5896 *
5897 * WARNING: This function is not stateless! It can only be used as part
5898 * of a top-down tree iteration, not for isolated queries.
5899 *
5900 * Returns one of the following:
5901 * MEMCG_PROT_NONE: cgroup memory is not protected
5902 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5903 * an unprotected supply of reclaimable memory from other cgroups.
5904 * MEMCG_PROT_MIN: cgroup memory is protected
5905 *
5906 * @root is exclusive; it is never protected when looked at directly
5907 *
5908 * To provide a proper hierarchical behavior, effective memory.min/low values
5909 * are used. Below is the description of how effective memory.low is calculated.
5910 * Effective memory.min values is calculated in the same way.
5911 *
5912 * Effective memory.low is always equal or less than the original memory.low.
5913 * If there is no memory.low overcommittment (which is always true for
5914 * top-level memory cgroups), these two values are equal.
5915 * Otherwise, it's a part of parent's effective memory.low,
5916 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5917 * memory.low usages, where memory.low usage is the size of actually
5918 * protected memory.
5919 *
5920 * low_usage
5921 * elow = min( memory.low, parent->elow * ------------------ ),
5922 * siblings_low_usage
5923 *
5924 * | memory.current, if memory.current < memory.low
5925 * low_usage = |
5926 * | 0, otherwise.
5927 *
5928 *
5929 * Such definition of the effective memory.low provides the expected
5930 * hierarchical behavior: parent's memory.low value is limiting
5931 * children, unprotected memory is reclaimed first and cgroups,
5932 * which are not using their guarantee do not affect actual memory
5933 * distribution.
5934 *
5935 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5936 *
5937 * A A/memory.low = 2G, A/memory.current = 6G
5938 * //\\
5939 * BC DE B/memory.low = 3G B/memory.current = 2G
5940 * C/memory.low = 1G C/memory.current = 2G
5941 * D/memory.low = 0 D/memory.current = 2G
5942 * E/memory.low = 10G E/memory.current = 0
5943 *
5944 * and the memory pressure is applied, the following memory distribution
5945 * is expected (approximately):
5946 *
5947 * A/memory.current = 2G
5948 *
5949 * B/memory.current = 1.3G
5950 * C/memory.current = 0.6G
5951 * D/memory.current = 0
5952 * E/memory.current = 0
5953 *
5954 * These calculations require constant tracking of the actual low usages
5955 * (see propagate_protected_usage()), as well as recursive calculation of
5956 * effective memory.low values. But as we do call mem_cgroup_protected()
5957 * path for each memory cgroup top-down from the reclaim,
5958 * it's possible to optimize this part, and save calculated elow
5959 * for next usage. This part is intentionally racy, but it's ok,
5960 * as memory.low is a best-effort mechanism.
5961 */
5962 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5963 struct mem_cgroup *memcg)
5964 {
5965 struct mem_cgroup *parent;
5966 unsigned long emin, parent_emin;
5967 unsigned long elow, parent_elow;
5968 unsigned long usage;
5969
5970 if (mem_cgroup_disabled())
5971 return MEMCG_PROT_NONE;
5972
5973 if (!root)
5974 root = root_mem_cgroup;
5975 if (memcg == root)
5976 return MEMCG_PROT_NONE;
5977
5978 usage = page_counter_read(&memcg->memory);
5979 if (!usage)
5980 return MEMCG_PROT_NONE;
5981
5982 emin = memcg->memory.min;
5983 elow = memcg->memory.low;
5984
5985 parent = parent_mem_cgroup(memcg);
5986 /* No parent means a non-hierarchical mode on v1 memcg */
5987 if (!parent)
5988 return MEMCG_PROT_NONE;
5989
5990 if (parent == root)
5991 goto exit;
5992
5993 parent_emin = READ_ONCE(parent->memory.emin);
5994 emin = min(emin, parent_emin);
5995 if (emin && parent_emin) {
5996 unsigned long min_usage, siblings_min_usage;
5997
5998 min_usage = min(usage, memcg->memory.min);
5999 siblings_min_usage = atomic_long_read(
6000 &parent->memory.children_min_usage);
6001
6002 if (min_usage && siblings_min_usage)
6003 emin = min(emin, parent_emin * min_usage /
6004 siblings_min_usage);
6005 }
6006
6007 parent_elow = READ_ONCE(parent->memory.elow);
6008 elow = min(elow, parent_elow);
6009 if (elow && parent_elow) {
6010 unsigned long low_usage, siblings_low_usage;
6011
6012 low_usage = min(usage, memcg->memory.low);
6013 siblings_low_usage = atomic_long_read(
6014 &parent->memory.children_low_usage);
6015
6016 if (low_usage && siblings_low_usage)
6017 elow = min(elow, parent_elow * low_usage /
6018 siblings_low_usage);
6019 }
6020
6021 exit:
6022 memcg->memory.emin = emin;
6023 memcg->memory.elow = elow;
6024
6025 if (usage <= emin)
6026 return MEMCG_PROT_MIN;
6027 else if (usage <= elow)
6028 return MEMCG_PROT_LOW;
6029 else
6030 return MEMCG_PROT_NONE;
6031 }
6032
6033 /**
6034 * mem_cgroup_try_charge - try charging a page
6035 * @page: page to charge
6036 * @mm: mm context of the victim
6037 * @gfp_mask: reclaim mode
6038 * @memcgp: charged memcg return
6039 * @compound: charge the page as compound or small page
6040 *
6041 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6042 * pages according to @gfp_mask if necessary.
6043 *
6044 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6045 * Otherwise, an error code is returned.
6046 *
6047 * After page->mapping has been set up, the caller must finalize the
6048 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6049 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6050 */
6051 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6052 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6053 bool compound)
6054 {
6055 struct mem_cgroup *memcg = NULL;
6056 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6057 int ret = 0;
6058
6059 if (mem_cgroup_disabled())
6060 goto out;
6061
6062 if (PageSwapCache(page)) {
6063 /*
6064 * Every swap fault against a single page tries to charge the
6065 * page, bail as early as possible. shmem_unuse() encounters
6066 * already charged pages, too. The USED bit is protected by
6067 * the page lock, which serializes swap cache removal, which
6068 * in turn serializes uncharging.
6069 */
6070 VM_BUG_ON_PAGE(!PageLocked(page), page);
6071 if (compound_head(page)->mem_cgroup)
6072 goto out;
6073
6074 if (do_swap_account) {
6075 swp_entry_t ent = { .val = page_private(page), };
6076 unsigned short id = lookup_swap_cgroup_id(ent);
6077
6078 rcu_read_lock();
6079 memcg = mem_cgroup_from_id(id);
6080 if (memcg && !css_tryget_online(&memcg->css))
6081 memcg = NULL;
6082 rcu_read_unlock();
6083 }
6084 }
6085
6086 if (!memcg)
6087 memcg = get_mem_cgroup_from_mm(mm);
6088
6089 ret = try_charge(memcg, gfp_mask, nr_pages);
6090
6091 css_put(&memcg->css);
6092 out:
6093 *memcgp = memcg;
6094 return ret;
6095 }
6096
6097 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6098 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6099 bool compound)
6100 {
6101 struct mem_cgroup *memcg;
6102 int ret;
6103
6104 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6105 memcg = *memcgp;
6106 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6107 return ret;
6108 }
6109
6110 /**
6111 * mem_cgroup_commit_charge - commit a page charge
6112 * @page: page to charge
6113 * @memcg: memcg to charge the page to
6114 * @lrucare: page might be on LRU already
6115 * @compound: charge the page as compound or small page
6116 *
6117 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6118 * after page->mapping has been set up. This must happen atomically
6119 * as part of the page instantiation, i.e. under the page table lock
6120 * for anonymous pages, under the page lock for page and swap cache.
6121 *
6122 * In addition, the page must not be on the LRU during the commit, to
6123 * prevent racing with task migration. If it might be, use @lrucare.
6124 *
6125 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6126 */
6127 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6128 bool lrucare, bool compound)
6129 {
6130 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6131
6132 VM_BUG_ON_PAGE(!page->mapping, page);
6133 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6134
6135 if (mem_cgroup_disabled())
6136 return;
6137 /*
6138 * Swap faults will attempt to charge the same page multiple
6139 * times. But reuse_swap_page() might have removed the page
6140 * from swapcache already, so we can't check PageSwapCache().
6141 */
6142 if (!memcg)
6143 return;
6144
6145 commit_charge(page, memcg, lrucare);
6146
6147 local_irq_disable();
6148 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6149 memcg_check_events(memcg, page);
6150 local_irq_enable();
6151
6152 if (do_memsw_account() && PageSwapCache(page)) {
6153 swp_entry_t entry = { .val = page_private(page) };
6154 /*
6155 * The swap entry might not get freed for a long time,
6156 * let's not wait for it. The page already received a
6157 * memory+swap charge, drop the swap entry duplicate.
6158 */
6159 mem_cgroup_uncharge_swap(entry, nr_pages);
6160 }
6161 }
6162
6163 /**
6164 * mem_cgroup_cancel_charge - cancel a page charge
6165 * @page: page to charge
6166 * @memcg: memcg to charge the page to
6167 * @compound: charge the page as compound or small page
6168 *
6169 * Cancel a charge transaction started by mem_cgroup_try_charge().
6170 */
6171 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6172 bool compound)
6173 {
6174 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6175
6176 if (mem_cgroup_disabled())
6177 return;
6178 /*
6179 * Swap faults will attempt to charge the same page multiple
6180 * times. But reuse_swap_page() might have removed the page
6181 * from swapcache already, so we can't check PageSwapCache().
6182 */
6183 if (!memcg)
6184 return;
6185
6186 cancel_charge(memcg, nr_pages);
6187 }
6188
6189 struct uncharge_gather {
6190 struct mem_cgroup *memcg;
6191 unsigned long pgpgout;
6192 unsigned long nr_anon;
6193 unsigned long nr_file;
6194 unsigned long nr_kmem;
6195 unsigned long nr_huge;
6196 unsigned long nr_shmem;
6197 struct page *dummy_page;
6198 };
6199
6200 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6201 {
6202 memset(ug, 0, sizeof(*ug));
6203 }
6204
6205 static void uncharge_batch(const struct uncharge_gather *ug)
6206 {
6207 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6208 unsigned long flags;
6209
6210 if (!mem_cgroup_is_root(ug->memcg)) {
6211 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6212 if (do_memsw_account())
6213 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6214 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6215 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6216 memcg_oom_recover(ug->memcg);
6217 }
6218
6219 local_irq_save(flags);
6220 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6221 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6222 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6223 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6224 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6225 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6226 memcg_check_events(ug->memcg, ug->dummy_page);
6227 local_irq_restore(flags);
6228
6229 if (!mem_cgroup_is_root(ug->memcg))
6230 css_put_many(&ug->memcg->css, nr_pages);
6231 }
6232
6233 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6234 {
6235 VM_BUG_ON_PAGE(PageLRU(page), page);
6236 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6237 !PageHWPoison(page) , page);
6238
6239 if (!page->mem_cgroup)
6240 return;
6241
6242 /*
6243 * Nobody should be changing or seriously looking at
6244 * page->mem_cgroup at this point, we have fully
6245 * exclusive access to the page.
6246 */
6247
6248 if (ug->memcg != page->mem_cgroup) {
6249 if (ug->memcg) {
6250 uncharge_batch(ug);
6251 uncharge_gather_clear(ug);
6252 }
6253 ug->memcg = page->mem_cgroup;
6254 }
6255
6256 if (!PageKmemcg(page)) {
6257 unsigned int nr_pages = 1;
6258
6259 if (PageTransHuge(page)) {
6260 nr_pages <<= compound_order(page);
6261 ug->nr_huge += nr_pages;
6262 }
6263 if (PageAnon(page))
6264 ug->nr_anon += nr_pages;
6265 else {
6266 ug->nr_file += nr_pages;
6267 if (PageSwapBacked(page))
6268 ug->nr_shmem += nr_pages;
6269 }
6270 ug->pgpgout++;
6271 } else {
6272 ug->nr_kmem += 1 << compound_order(page);
6273 __ClearPageKmemcg(page);
6274 }
6275
6276 ug->dummy_page = page;
6277 page->mem_cgroup = NULL;
6278 }
6279
6280 static void uncharge_list(struct list_head *page_list)
6281 {
6282 struct uncharge_gather ug;
6283 struct list_head *next;
6284
6285 uncharge_gather_clear(&ug);
6286
6287 /*
6288 * Note that the list can be a single page->lru; hence the
6289 * do-while loop instead of a simple list_for_each_entry().
6290 */
6291 next = page_list->next;
6292 do {
6293 struct page *page;
6294
6295 page = list_entry(next, struct page, lru);
6296 next = page->lru.next;
6297
6298 uncharge_page(page, &ug);
6299 } while (next != page_list);
6300
6301 if (ug.memcg)
6302 uncharge_batch(&ug);
6303 }
6304
6305 /**
6306 * mem_cgroup_uncharge - uncharge a page
6307 * @page: page to uncharge
6308 *
6309 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6310 * mem_cgroup_commit_charge().
6311 */
6312 void mem_cgroup_uncharge(struct page *page)
6313 {
6314 struct uncharge_gather ug;
6315
6316 if (mem_cgroup_disabled())
6317 return;
6318
6319 /* Don't touch page->lru of any random page, pre-check: */
6320 if (!page->mem_cgroup)
6321 return;
6322
6323 uncharge_gather_clear(&ug);
6324 uncharge_page(page, &ug);
6325 uncharge_batch(&ug);
6326 }
6327
6328 /**
6329 * mem_cgroup_uncharge_list - uncharge a list of page
6330 * @page_list: list of pages to uncharge
6331 *
6332 * Uncharge a list of pages previously charged with
6333 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6334 */
6335 void mem_cgroup_uncharge_list(struct list_head *page_list)
6336 {
6337 if (mem_cgroup_disabled())
6338 return;
6339
6340 if (!list_empty(page_list))
6341 uncharge_list(page_list);
6342 }
6343
6344 /**
6345 * mem_cgroup_migrate - charge a page's replacement
6346 * @oldpage: currently circulating page
6347 * @newpage: replacement page
6348 *
6349 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6350 * be uncharged upon free.
6351 *
6352 * Both pages must be locked, @newpage->mapping must be set up.
6353 */
6354 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6355 {
6356 struct mem_cgroup *memcg;
6357 unsigned int nr_pages;
6358 bool compound;
6359 unsigned long flags;
6360
6361 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6362 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6363 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6364 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6365 newpage);
6366
6367 if (mem_cgroup_disabled())
6368 return;
6369
6370 /* Page cache replacement: new page already charged? */
6371 if (newpage->mem_cgroup)
6372 return;
6373
6374 /* Swapcache readahead pages can get replaced before being charged */
6375 memcg = oldpage->mem_cgroup;
6376 if (!memcg)
6377 return;
6378
6379 /* Force-charge the new page. The old one will be freed soon */
6380 compound = PageTransHuge(newpage);
6381 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6382
6383 page_counter_charge(&memcg->memory, nr_pages);
6384 if (do_memsw_account())
6385 page_counter_charge(&memcg->memsw, nr_pages);
6386 css_get_many(&memcg->css, nr_pages);
6387
6388 commit_charge(newpage, memcg, false);
6389
6390 local_irq_save(flags);
6391 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6392 memcg_check_events(memcg, newpage);
6393 local_irq_restore(flags);
6394 }
6395
6396 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6397 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6398
6399 void mem_cgroup_sk_alloc(struct sock *sk)
6400 {
6401 struct mem_cgroup *memcg;
6402
6403 if (!mem_cgroup_sockets_enabled)
6404 return;
6405
6406 /*
6407 * Socket cloning can throw us here with sk_memcg already
6408 * filled. It won't however, necessarily happen from
6409 * process context. So the test for root memcg given
6410 * the current task's memcg won't help us in this case.
6411 *
6412 * Respecting the original socket's memcg is a better
6413 * decision in this case.
6414 */
6415 if (sk->sk_memcg) {
6416 css_get(&sk->sk_memcg->css);
6417 return;
6418 }
6419
6420 rcu_read_lock();
6421 memcg = mem_cgroup_from_task(current);
6422 if (memcg == root_mem_cgroup)
6423 goto out;
6424 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6425 goto out;
6426 if (css_tryget_online(&memcg->css))
6427 sk->sk_memcg = memcg;
6428 out:
6429 rcu_read_unlock();
6430 }
6431
6432 void mem_cgroup_sk_free(struct sock *sk)
6433 {
6434 if (sk->sk_memcg)
6435 css_put(&sk->sk_memcg->css);
6436 }
6437
6438 /**
6439 * mem_cgroup_charge_skmem - charge socket memory
6440 * @memcg: memcg to charge
6441 * @nr_pages: number of pages to charge
6442 *
6443 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6444 * @memcg's configured limit, %false if the charge had to be forced.
6445 */
6446 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6447 {
6448 gfp_t gfp_mask = GFP_KERNEL;
6449
6450 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6451 struct page_counter *fail;
6452
6453 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6454 memcg->tcpmem_pressure = 0;
6455 return true;
6456 }
6457 page_counter_charge(&memcg->tcpmem, nr_pages);
6458 memcg->tcpmem_pressure = 1;
6459 return false;
6460 }
6461
6462 /* Don't block in the packet receive path */
6463 if (in_softirq())
6464 gfp_mask = GFP_NOWAIT;
6465
6466 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6467
6468 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6469 return true;
6470
6471 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6472 return false;
6473 }
6474
6475 /**
6476 * mem_cgroup_uncharge_skmem - uncharge socket memory
6477 * @memcg: memcg to uncharge
6478 * @nr_pages: number of pages to uncharge
6479 */
6480 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6481 {
6482 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6483 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6484 return;
6485 }
6486
6487 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6488
6489 refill_stock(memcg, nr_pages);
6490 }
6491
6492 static int __init cgroup_memory(char *s)
6493 {
6494 char *token;
6495
6496 while ((token = strsep(&s, ",")) != NULL) {
6497 if (!*token)
6498 continue;
6499 if (!strcmp(token, "nosocket"))
6500 cgroup_memory_nosocket = true;
6501 if (!strcmp(token, "nokmem"))
6502 cgroup_memory_nokmem = true;
6503 }
6504 return 0;
6505 }
6506 __setup("cgroup.memory=", cgroup_memory);
6507
6508 /*
6509 * subsys_initcall() for memory controller.
6510 *
6511 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6512 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6513 * basically everything that doesn't depend on a specific mem_cgroup structure
6514 * should be initialized from here.
6515 */
6516 static int __init mem_cgroup_init(void)
6517 {
6518 int cpu, node;
6519
6520 #ifdef CONFIG_MEMCG_KMEM
6521 /*
6522 * Kmem cache creation is mostly done with the slab_mutex held,
6523 * so use a workqueue with limited concurrency to avoid stalling
6524 * all worker threads in case lots of cgroups are created and
6525 * destroyed simultaneously.
6526 */
6527 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6528 BUG_ON(!memcg_kmem_cache_wq);
6529 #endif
6530
6531 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6532 memcg_hotplug_cpu_dead);
6533
6534 for_each_possible_cpu(cpu)
6535 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6536 drain_local_stock);
6537
6538 for_each_node(node) {
6539 struct mem_cgroup_tree_per_node *rtpn;
6540
6541 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6542 node_online(node) ? node : NUMA_NO_NODE);
6543
6544 rtpn->rb_root = RB_ROOT;
6545 rtpn->rb_rightmost = NULL;
6546 spin_lock_init(&rtpn->lock);
6547 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6548 }
6549
6550 return 0;
6551 }
6552 subsys_initcall(mem_cgroup_init);
6553
6554 #ifdef CONFIG_MEMCG_SWAP
6555 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6556 {
6557 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6558 /*
6559 * The root cgroup cannot be destroyed, so it's refcount must
6560 * always be >= 1.
6561 */
6562 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6563 VM_BUG_ON(1);
6564 break;
6565 }
6566 memcg = parent_mem_cgroup(memcg);
6567 if (!memcg)
6568 memcg = root_mem_cgroup;
6569 }
6570 return memcg;
6571 }
6572
6573 /**
6574 * mem_cgroup_swapout - transfer a memsw charge to swap
6575 * @page: page whose memsw charge to transfer
6576 * @entry: swap entry to move the charge to
6577 *
6578 * Transfer the memsw charge of @page to @entry.
6579 */
6580 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6581 {
6582 struct mem_cgroup *memcg, *swap_memcg;
6583 unsigned int nr_entries;
6584 unsigned short oldid;
6585
6586 VM_BUG_ON_PAGE(PageLRU(page), page);
6587 VM_BUG_ON_PAGE(page_count(page), page);
6588
6589 if (!do_memsw_account())
6590 return;
6591
6592 memcg = page->mem_cgroup;
6593
6594 /* Readahead page, never charged */
6595 if (!memcg)
6596 return;
6597
6598 /*
6599 * In case the memcg owning these pages has been offlined and doesn't
6600 * have an ID allocated to it anymore, charge the closest online
6601 * ancestor for the swap instead and transfer the memory+swap charge.
6602 */
6603 swap_memcg = mem_cgroup_id_get_online(memcg);
6604 nr_entries = hpage_nr_pages(page);
6605 /* Get references for the tail pages, too */
6606 if (nr_entries > 1)
6607 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6608 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6609 nr_entries);
6610 VM_BUG_ON_PAGE(oldid, page);
6611 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6612
6613 page->mem_cgroup = NULL;
6614
6615 if (!mem_cgroup_is_root(memcg))
6616 page_counter_uncharge(&memcg->memory, nr_entries);
6617
6618 if (memcg != swap_memcg) {
6619 if (!mem_cgroup_is_root(swap_memcg))
6620 page_counter_charge(&swap_memcg->memsw, nr_entries);
6621 page_counter_uncharge(&memcg->memsw, nr_entries);
6622 }
6623
6624 /*
6625 * Interrupts should be disabled here because the caller holds the
6626 * i_pages lock which is taken with interrupts-off. It is
6627 * important here to have the interrupts disabled because it is the
6628 * only synchronisation we have for updating the per-CPU variables.
6629 */
6630 VM_BUG_ON(!irqs_disabled());
6631 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6632 -nr_entries);
6633 memcg_check_events(memcg, page);
6634
6635 if (!mem_cgroup_is_root(memcg))
6636 css_put_many(&memcg->css, nr_entries);
6637 }
6638
6639 /**
6640 * mem_cgroup_try_charge_swap - try charging swap space for a page
6641 * @page: page being added to swap
6642 * @entry: swap entry to charge
6643 *
6644 * Try to charge @page's memcg for the swap space at @entry.
6645 *
6646 * Returns 0 on success, -ENOMEM on failure.
6647 */
6648 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6649 {
6650 unsigned int nr_pages = hpage_nr_pages(page);
6651 struct page_counter *counter;
6652 struct mem_cgroup *memcg;
6653 unsigned short oldid;
6654
6655 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6656 return 0;
6657
6658 memcg = page->mem_cgroup;
6659
6660 /* Readahead page, never charged */
6661 if (!memcg)
6662 return 0;
6663
6664 if (!entry.val) {
6665 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6666 return 0;
6667 }
6668
6669 memcg = mem_cgroup_id_get_online(memcg);
6670
6671 if (!mem_cgroup_is_root(memcg) &&
6672 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6673 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6674 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6675 mem_cgroup_id_put(memcg);
6676 return -ENOMEM;
6677 }
6678
6679 /* Get references for the tail pages, too */
6680 if (nr_pages > 1)
6681 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6682 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6683 VM_BUG_ON_PAGE(oldid, page);
6684 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6685
6686 return 0;
6687 }
6688
6689 /**
6690 * mem_cgroup_uncharge_swap - uncharge swap space
6691 * @entry: swap entry to uncharge
6692 * @nr_pages: the amount of swap space to uncharge
6693 */
6694 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6695 {
6696 struct mem_cgroup *memcg;
6697 unsigned short id;
6698
6699 if (!do_swap_account)
6700 return;
6701
6702 id = swap_cgroup_record(entry, 0, nr_pages);
6703 rcu_read_lock();
6704 memcg = mem_cgroup_from_id(id);
6705 if (memcg) {
6706 if (!mem_cgroup_is_root(memcg)) {
6707 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6708 page_counter_uncharge(&memcg->swap, nr_pages);
6709 else
6710 page_counter_uncharge(&memcg->memsw, nr_pages);
6711 }
6712 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6713 mem_cgroup_id_put_many(memcg, nr_pages);
6714 }
6715 rcu_read_unlock();
6716 }
6717
6718 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6719 {
6720 long nr_swap_pages = get_nr_swap_pages();
6721
6722 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6723 return nr_swap_pages;
6724 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6725 nr_swap_pages = min_t(long, nr_swap_pages,
6726 READ_ONCE(memcg->swap.max) -
6727 page_counter_read(&memcg->swap));
6728 return nr_swap_pages;
6729 }
6730
6731 bool mem_cgroup_swap_full(struct page *page)
6732 {
6733 struct mem_cgroup *memcg;
6734
6735 VM_BUG_ON_PAGE(!PageLocked(page), page);
6736
6737 if (vm_swap_full())
6738 return true;
6739 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6740 return false;
6741
6742 memcg = page->mem_cgroup;
6743 if (!memcg)
6744 return false;
6745
6746 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6747 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6748 return true;
6749
6750 return false;
6751 }
6752
6753 /* for remember boot option*/
6754 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6755 static int really_do_swap_account __initdata = 1;
6756 #else
6757 static int really_do_swap_account __initdata;
6758 #endif
6759
6760 static int __init enable_swap_account(char *s)
6761 {
6762 if (!strcmp(s, "1"))
6763 really_do_swap_account = 1;
6764 else if (!strcmp(s, "0"))
6765 really_do_swap_account = 0;
6766 return 1;
6767 }
6768 __setup("swapaccount=", enable_swap_account);
6769
6770 static u64 swap_current_read(struct cgroup_subsys_state *css,
6771 struct cftype *cft)
6772 {
6773 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6774
6775 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6776 }
6777
6778 static int swap_max_show(struct seq_file *m, void *v)
6779 {
6780 return seq_puts_memcg_tunable(m,
6781 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6782 }
6783
6784 static ssize_t swap_max_write(struct kernfs_open_file *of,
6785 char *buf, size_t nbytes, loff_t off)
6786 {
6787 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6788 unsigned long max;
6789 int err;
6790
6791 buf = strstrip(buf);
6792 err = page_counter_memparse(buf, "max", &max);
6793 if (err)
6794 return err;
6795
6796 xchg(&memcg->swap.max, max);
6797
6798 return nbytes;
6799 }
6800
6801 static int swap_events_show(struct seq_file *m, void *v)
6802 {
6803 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6804
6805 seq_printf(m, "max %lu\n",
6806 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6807 seq_printf(m, "fail %lu\n",
6808 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6809
6810 return 0;
6811 }
6812
6813 static struct cftype swap_files[] = {
6814 {
6815 .name = "swap.current",
6816 .flags = CFTYPE_NOT_ON_ROOT,
6817 .read_u64 = swap_current_read,
6818 },
6819 {
6820 .name = "swap.max",
6821 .flags = CFTYPE_NOT_ON_ROOT,
6822 .seq_show = swap_max_show,
6823 .write = swap_max_write,
6824 },
6825 {
6826 .name = "swap.events",
6827 .flags = CFTYPE_NOT_ON_ROOT,
6828 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6829 .seq_show = swap_events_show,
6830 },
6831 { } /* terminate */
6832 };
6833
6834 static struct cftype memsw_cgroup_files[] = {
6835 {
6836 .name = "memsw.usage_in_bytes",
6837 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6838 .read_u64 = mem_cgroup_read_u64,
6839 },
6840 {
6841 .name = "memsw.max_usage_in_bytes",
6842 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6843 .write = mem_cgroup_reset,
6844 .read_u64 = mem_cgroup_read_u64,
6845 },
6846 {
6847 .name = "memsw.limit_in_bytes",
6848 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6849 .write = mem_cgroup_write,
6850 .read_u64 = mem_cgroup_read_u64,
6851 },
6852 {
6853 .name = "memsw.failcnt",
6854 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6855 .write = mem_cgroup_reset,
6856 .read_u64 = mem_cgroup_read_u64,
6857 },
6858 { }, /* terminate */
6859 };
6860
6861 static int __init mem_cgroup_swap_init(void)
6862 {
6863 if (!mem_cgroup_disabled() && really_do_swap_account) {
6864 do_swap_account = 1;
6865 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6866 swap_files));
6867 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6868 memsw_cgroup_files));
6869 }
6870 return 0;
6871 }
6872 subsys_initcall(mem_cgroup_swap_init);
6873
6874 #endif /* CONFIG_MEMCG_SWAP */