]> git.ipfire.org Git - people/ms/linux.git/blob - mm/memcontrol.c
mm: memcg: remove unused node/section info from pc->flags
[people/ms/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account (0)
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS,
94 };
95
96 enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS,
103 };
104 /*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110 enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
113 MEM_CGROUP_TARGET_NUMAINFO,
114 MEM_CGROUP_NTARGETS,
115 };
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET (1024)
119
120 struct mem_cgroup_stat_cpu {
121 long count[MEM_CGROUP_STAT_NSTATS];
122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 unsigned long targets[MEM_CGROUP_NTARGETS];
124 };
125
126 struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
131 };
132
133 /*
134 * per-zone information in memory controller.
135 */
136 struct mem_cgroup_per_zone {
137 struct lruvec lruvec;
138 unsigned long count[NR_LRU_LISTS];
139
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
142 struct zone_reclaim_stat reclaim_stat;
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
149 };
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
152
153 struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155 };
156
157 struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159 };
160
161 /*
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
164 */
165
166 struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
168 spinlock_t lock;
169 };
170
171 struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173 };
174
175 struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177 };
178
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
181 struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
183 u64 threshold;
184 };
185
186 /* For threshold */
187 struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
189 int current_threshold;
190 /* Size of entries[] */
191 unsigned int size;
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
194 };
195
196 struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
199 /*
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
203 */
204 struct mem_cgroup_threshold_ary *spare;
205 };
206
207 /* for OOM */
208 struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
211 };
212
213 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215
216 /*
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
221 *
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
226 */
227 struct mem_cgroup {
228 struct cgroup_subsys_state css;
229 /*
230 * the counter to account for memory usage
231 */
232 struct res_counter res;
233 /*
234 * the counter to account for mem+swap usage.
235 */
236 struct res_counter memsw;
237 /*
238 * Per cgroup active and inactive list, similar to the
239 * per zone LRU lists.
240 */
241 struct mem_cgroup_lru_info info;
242 int last_scanned_node;
243 #if MAX_NUMNODES > 1
244 nodemask_t scan_nodes;
245 atomic_t numainfo_events;
246 atomic_t numainfo_updating;
247 #endif
248 /*
249 * Should the accounting and control be hierarchical, per subtree?
250 */
251 bool use_hierarchy;
252
253 bool oom_lock;
254 atomic_t under_oom;
255
256 atomic_t refcnt;
257
258 int swappiness;
259 /* OOM-Killer disable */
260 int oom_kill_disable;
261
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum;
264
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock;
267
268 /* thresholds for memory usage. RCU-protected */
269 struct mem_cgroup_thresholds thresholds;
270
271 /* thresholds for mem+swap usage. RCU-protected */
272 struct mem_cgroup_thresholds memsw_thresholds;
273
274 /* For oom notifier event fd */
275 struct list_head oom_notify;
276
277 /*
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
280 */
281 unsigned long move_charge_at_immigrate;
282 /*
283 * percpu counter.
284 */
285 struct mem_cgroup_stat_cpu *stat;
286 /*
287 * used when a cpu is offlined or other synchronizations
288 * See mem_cgroup_read_stat().
289 */
290 struct mem_cgroup_stat_cpu nocpu_base;
291 spinlock_t pcp_counter_lock;
292
293 #ifdef CONFIG_INET
294 struct tcp_memcontrol tcp_mem;
295 #endif
296 };
297
298 /* Stuffs for move charges at task migration. */
299 /*
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
302 */
303 enum move_type {
304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
306 NR_MOVE_TYPE,
307 };
308
309 /* "mc" and its members are protected by cgroup_mutex */
310 static struct move_charge_struct {
311 spinlock_t lock; /* for from, to */
312 struct mem_cgroup *from;
313 struct mem_cgroup *to;
314 unsigned long precharge;
315 unsigned long moved_charge;
316 unsigned long moved_swap;
317 struct task_struct *moving_task; /* a task moving charges */
318 wait_queue_head_t waitq; /* a waitq for other context */
319 } mc = {
320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322 };
323
324 static bool move_anon(void)
325 {
326 return test_bit(MOVE_CHARGE_TYPE_ANON,
327 &mc.to->move_charge_at_immigrate);
328 }
329
330 static bool move_file(void)
331 {
332 return test_bit(MOVE_CHARGE_TYPE_FILE,
333 &mc.to->move_charge_at_immigrate);
334 }
335
336 /*
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
339 */
340 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
341 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
342
343 enum charge_type {
344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 MEM_CGROUP_CHARGE_TYPE_MAPPED,
346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
350 NR_CHARGE_TYPE,
351 };
352
353 /* for encoding cft->private value on file */
354 #define _MEM (0)
355 #define _MEMSWAP (1)
356 #define _OOM_TYPE (2)
357 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
359 #define MEMFILE_ATTR(val) ((val) & 0xffff)
360 /* Used for OOM nofiier */
361 #define OOM_CONTROL (0)
362
363 /*
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 */
366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
367 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
369 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370
371 static void mem_cgroup_get(struct mem_cgroup *memcg);
372 static void mem_cgroup_put(struct mem_cgroup *memcg);
373
374 /* Writing them here to avoid exposing memcg's inner layout */
375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376 #ifdef CONFIG_INET
377 #include <net/sock.h>
378 #include <net/ip.h>
379
380 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
381 void sock_update_memcg(struct sock *sk)
382 {
383 if (static_branch(&memcg_socket_limit_enabled)) {
384 struct mem_cgroup *memcg;
385
386 BUG_ON(!sk->sk_prot->proto_cgroup);
387
388 /* Socket cloning can throw us here with sk_cgrp already
389 * filled. It won't however, necessarily happen from
390 * process context. So the test for root memcg given
391 * the current task's memcg won't help us in this case.
392 *
393 * Respecting the original socket's memcg is a better
394 * decision in this case.
395 */
396 if (sk->sk_cgrp) {
397 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
398 mem_cgroup_get(sk->sk_cgrp->memcg);
399 return;
400 }
401
402 rcu_read_lock();
403 memcg = mem_cgroup_from_task(current);
404 if (!mem_cgroup_is_root(memcg)) {
405 mem_cgroup_get(memcg);
406 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407 }
408 rcu_read_unlock();
409 }
410 }
411 EXPORT_SYMBOL(sock_update_memcg);
412
413 void sock_release_memcg(struct sock *sk)
414 {
415 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
416 struct mem_cgroup *memcg;
417 WARN_ON(!sk->sk_cgrp->memcg);
418 memcg = sk->sk_cgrp->memcg;
419 mem_cgroup_put(memcg);
420 }
421 }
422
423 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424 {
425 if (!memcg || mem_cgroup_is_root(memcg))
426 return NULL;
427
428 return &memcg->tcp_mem.cg_proto;
429 }
430 EXPORT_SYMBOL(tcp_proto_cgroup);
431 #endif /* CONFIG_INET */
432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433
434 static void drain_all_stock_async(struct mem_cgroup *memcg);
435
436 static struct mem_cgroup_per_zone *
437 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438 {
439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 }
441
442 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443 {
444 return &memcg->css;
445 }
446
447 static struct mem_cgroup_per_zone *
448 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449 {
450 int nid = page_to_nid(page);
451 int zid = page_zonenum(page);
452
453 return mem_cgroup_zoneinfo(memcg, nid, zid);
454 }
455
456 static struct mem_cgroup_tree_per_zone *
457 soft_limit_tree_node_zone(int nid, int zid)
458 {
459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460 }
461
462 static struct mem_cgroup_tree_per_zone *
463 soft_limit_tree_from_page(struct page *page)
464 {
465 int nid = page_to_nid(page);
466 int zid = page_zonenum(page);
467
468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469 }
470
471 static void
472 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473 struct mem_cgroup_per_zone *mz,
474 struct mem_cgroup_tree_per_zone *mctz,
475 unsigned long long new_usage_in_excess)
476 {
477 struct rb_node **p = &mctz->rb_root.rb_node;
478 struct rb_node *parent = NULL;
479 struct mem_cgroup_per_zone *mz_node;
480
481 if (mz->on_tree)
482 return;
483
484 mz->usage_in_excess = new_usage_in_excess;
485 if (!mz->usage_in_excess)
486 return;
487 while (*p) {
488 parent = *p;
489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 tree_node);
491 if (mz->usage_in_excess < mz_node->usage_in_excess)
492 p = &(*p)->rb_left;
493 /*
494 * We can't avoid mem cgroups that are over their soft
495 * limit by the same amount
496 */
497 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 p = &(*p)->rb_right;
499 }
500 rb_link_node(&mz->tree_node, parent, p);
501 rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 mz->on_tree = true;
503 }
504
505 static void
506 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 struct mem_cgroup_per_zone *mz,
508 struct mem_cgroup_tree_per_zone *mctz)
509 {
510 if (!mz->on_tree)
511 return;
512 rb_erase(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = false;
514 }
515
516 static void
517 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 struct mem_cgroup_per_zone *mz,
519 struct mem_cgroup_tree_per_zone *mctz)
520 {
521 spin_lock(&mctz->lock);
522 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 spin_unlock(&mctz->lock);
524 }
525
526
527 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528 {
529 unsigned long long excess;
530 struct mem_cgroup_per_zone *mz;
531 struct mem_cgroup_tree_per_zone *mctz;
532 int nid = page_to_nid(page);
533 int zid = page_zonenum(page);
534 mctz = soft_limit_tree_from_page(page);
535
536 /*
537 * Necessary to update all ancestors when hierarchy is used.
538 * because their event counter is not touched.
539 */
540 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 excess = res_counter_soft_limit_excess(&memcg->res);
543 /*
544 * We have to update the tree if mz is on RB-tree or
545 * mem is over its softlimit.
546 */
547 if (excess || mz->on_tree) {
548 spin_lock(&mctz->lock);
549 /* if on-tree, remove it */
550 if (mz->on_tree)
551 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
552 /*
553 * Insert again. mz->usage_in_excess will be updated.
554 * If excess is 0, no tree ops.
555 */
556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 spin_unlock(&mctz->lock);
558 }
559 }
560 }
561
562 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 {
564 int node, zone;
565 struct mem_cgroup_per_zone *mz;
566 struct mem_cgroup_tree_per_zone *mctz;
567
568 for_each_node_state(node, N_POSSIBLE) {
569 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570 mz = mem_cgroup_zoneinfo(memcg, node, zone);
571 mctz = soft_limit_tree_node_zone(node, zone);
572 mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 }
574 }
575 }
576
577 static struct mem_cgroup_per_zone *
578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579 {
580 struct rb_node *rightmost = NULL;
581 struct mem_cgroup_per_zone *mz;
582
583 retry:
584 mz = NULL;
585 rightmost = rb_last(&mctz->rb_root);
586 if (!rightmost)
587 goto done; /* Nothing to reclaim from */
588
589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590 /*
591 * Remove the node now but someone else can add it back,
592 * we will to add it back at the end of reclaim to its correct
593 * position in the tree.
594 */
595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 !css_tryget(&mz->mem->css))
598 goto retry;
599 done:
600 return mz;
601 }
602
603 static struct mem_cgroup_per_zone *
604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605 {
606 struct mem_cgroup_per_zone *mz;
607
608 spin_lock(&mctz->lock);
609 mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 spin_unlock(&mctz->lock);
611 return mz;
612 }
613
614 /*
615 * Implementation Note: reading percpu statistics for memcg.
616 *
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
621 *
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
627 *
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
632 */
633 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634 enum mem_cgroup_stat_index idx)
635 {
636 long val = 0;
637 int cpu;
638
639 get_online_cpus();
640 for_each_online_cpu(cpu)
641 val += per_cpu(memcg->stat->count[idx], cpu);
642 #ifdef CONFIG_HOTPLUG_CPU
643 spin_lock(&memcg->pcp_counter_lock);
644 val += memcg->nocpu_base.count[idx];
645 spin_unlock(&memcg->pcp_counter_lock);
646 #endif
647 put_online_cpus();
648 return val;
649 }
650
651 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 bool charge)
653 {
654 int val = (charge) ? 1 : -1;
655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 }
657
658 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
659 {
660 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
661 }
662
663 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
664 {
665 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
666 }
667
668 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
669 enum mem_cgroup_events_index idx)
670 {
671 unsigned long val = 0;
672 int cpu;
673
674 for_each_online_cpu(cpu)
675 val += per_cpu(memcg->stat->events[idx], cpu);
676 #ifdef CONFIG_HOTPLUG_CPU
677 spin_lock(&memcg->pcp_counter_lock);
678 val += memcg->nocpu_base.events[idx];
679 spin_unlock(&memcg->pcp_counter_lock);
680 #endif
681 return val;
682 }
683
684 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
685 bool file, int nr_pages)
686 {
687 preempt_disable();
688
689 if (file)
690 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
691 nr_pages);
692 else
693 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
694 nr_pages);
695
696 /* pagein of a big page is an event. So, ignore page size */
697 if (nr_pages > 0)
698 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
699 else {
700 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
701 nr_pages = -nr_pages; /* for event */
702 }
703
704 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
705
706 preempt_enable();
707 }
708
709 unsigned long
710 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
711 unsigned int lru_mask)
712 {
713 struct mem_cgroup_per_zone *mz;
714 enum lru_list l;
715 unsigned long ret = 0;
716
717 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
718
719 for_each_lru(l) {
720 if (BIT(l) & lru_mask)
721 ret += MEM_CGROUP_ZSTAT(mz, l);
722 }
723 return ret;
724 }
725
726 static unsigned long
727 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 int nid, unsigned int lru_mask)
729 {
730 u64 total = 0;
731 int zid;
732
733 for (zid = 0; zid < MAX_NR_ZONES; zid++)
734 total += mem_cgroup_zone_nr_lru_pages(memcg,
735 nid, zid, lru_mask);
736
737 return total;
738 }
739
740 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
741 unsigned int lru_mask)
742 {
743 int nid;
744 u64 total = 0;
745
746 for_each_node_state(nid, N_HIGH_MEMORY)
747 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
748 return total;
749 }
750
751 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
752 {
753 unsigned long val, next;
754
755 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
756 next = __this_cpu_read(memcg->stat->targets[target]);
757 /* from time_after() in jiffies.h */
758 return ((long)next - (long)val < 0);
759 }
760
761 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
762 {
763 unsigned long val, next;
764
765 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
766
767 switch (target) {
768 case MEM_CGROUP_TARGET_THRESH:
769 next = val + THRESHOLDS_EVENTS_TARGET;
770 break;
771 case MEM_CGROUP_TARGET_SOFTLIMIT:
772 next = val + SOFTLIMIT_EVENTS_TARGET;
773 break;
774 case MEM_CGROUP_TARGET_NUMAINFO:
775 next = val + NUMAINFO_EVENTS_TARGET;
776 break;
777 default:
778 return;
779 }
780
781 __this_cpu_write(memcg->stat->targets[target], next);
782 }
783
784 /*
785 * Check events in order.
786 *
787 */
788 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
789 {
790 preempt_disable();
791 /* threshold event is triggered in finer grain than soft limit */
792 if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
793 mem_cgroup_threshold(memcg);
794 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
795 if (unlikely(__memcg_event_check(memcg,
796 MEM_CGROUP_TARGET_SOFTLIMIT))) {
797 mem_cgroup_update_tree(memcg, page);
798 __mem_cgroup_target_update(memcg,
799 MEM_CGROUP_TARGET_SOFTLIMIT);
800 }
801 #if MAX_NUMNODES > 1
802 if (unlikely(__memcg_event_check(memcg,
803 MEM_CGROUP_TARGET_NUMAINFO))) {
804 atomic_inc(&memcg->numainfo_events);
805 __mem_cgroup_target_update(memcg,
806 MEM_CGROUP_TARGET_NUMAINFO);
807 }
808 #endif
809 }
810 preempt_enable();
811 }
812
813 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
814 {
815 return container_of(cgroup_subsys_state(cont,
816 mem_cgroup_subsys_id), struct mem_cgroup,
817 css);
818 }
819
820 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
821 {
822 /*
823 * mm_update_next_owner() may clear mm->owner to NULL
824 * if it races with swapoff, page migration, etc.
825 * So this can be called with p == NULL.
826 */
827 if (unlikely(!p))
828 return NULL;
829
830 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
831 struct mem_cgroup, css);
832 }
833
834 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
835 {
836 struct mem_cgroup *memcg = NULL;
837
838 if (!mm)
839 return NULL;
840 /*
841 * Because we have no locks, mm->owner's may be being moved to other
842 * cgroup. We use css_tryget() here even if this looks
843 * pessimistic (rather than adding locks here).
844 */
845 rcu_read_lock();
846 do {
847 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
848 if (unlikely(!memcg))
849 break;
850 } while (!css_tryget(&memcg->css));
851 rcu_read_unlock();
852 return memcg;
853 }
854
855 /**
856 * mem_cgroup_iter - iterate over memory cgroup hierarchy
857 * @root: hierarchy root
858 * @prev: previously returned memcg, NULL on first invocation
859 * @reclaim: cookie for shared reclaim walks, NULL for full walks
860 *
861 * Returns references to children of the hierarchy below @root, or
862 * @root itself, or %NULL after a full round-trip.
863 *
864 * Caller must pass the return value in @prev on subsequent
865 * invocations for reference counting, or use mem_cgroup_iter_break()
866 * to cancel a hierarchy walk before the round-trip is complete.
867 *
868 * Reclaimers can specify a zone and a priority level in @reclaim to
869 * divide up the memcgs in the hierarchy among all concurrent
870 * reclaimers operating on the same zone and priority.
871 */
872 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
873 struct mem_cgroup *prev,
874 struct mem_cgroup_reclaim_cookie *reclaim)
875 {
876 struct mem_cgroup *memcg = NULL;
877 int id = 0;
878
879 if (mem_cgroup_disabled())
880 return NULL;
881
882 if (!root)
883 root = root_mem_cgroup;
884
885 if (prev && !reclaim)
886 id = css_id(&prev->css);
887
888 if (prev && prev != root)
889 css_put(&prev->css);
890
891 if (!root->use_hierarchy && root != root_mem_cgroup) {
892 if (prev)
893 return NULL;
894 return root;
895 }
896
897 while (!memcg) {
898 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
899 struct cgroup_subsys_state *css;
900
901 if (reclaim) {
902 int nid = zone_to_nid(reclaim->zone);
903 int zid = zone_idx(reclaim->zone);
904 struct mem_cgroup_per_zone *mz;
905
906 mz = mem_cgroup_zoneinfo(root, nid, zid);
907 iter = &mz->reclaim_iter[reclaim->priority];
908 if (prev && reclaim->generation != iter->generation)
909 return NULL;
910 id = iter->position;
911 }
912
913 rcu_read_lock();
914 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
915 if (css) {
916 if (css == &root->css || css_tryget(css))
917 memcg = container_of(css,
918 struct mem_cgroup, css);
919 } else
920 id = 0;
921 rcu_read_unlock();
922
923 if (reclaim) {
924 iter->position = id;
925 if (!css)
926 iter->generation++;
927 else if (!prev && memcg)
928 reclaim->generation = iter->generation;
929 }
930
931 if (prev && !css)
932 return NULL;
933 }
934 return memcg;
935 }
936
937 /**
938 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
939 * @root: hierarchy root
940 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
941 */
942 void mem_cgroup_iter_break(struct mem_cgroup *root,
943 struct mem_cgroup *prev)
944 {
945 if (!root)
946 root = root_mem_cgroup;
947 if (prev && prev != root)
948 css_put(&prev->css);
949 }
950
951 /*
952 * Iteration constructs for visiting all cgroups (under a tree). If
953 * loops are exited prematurely (break), mem_cgroup_iter_break() must
954 * be used for reference counting.
955 */
956 #define for_each_mem_cgroup_tree(iter, root) \
957 for (iter = mem_cgroup_iter(root, NULL, NULL); \
958 iter != NULL; \
959 iter = mem_cgroup_iter(root, iter, NULL))
960
961 #define for_each_mem_cgroup(iter) \
962 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
963 iter != NULL; \
964 iter = mem_cgroup_iter(NULL, iter, NULL))
965
966 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
967 {
968 return (memcg == root_mem_cgroup);
969 }
970
971 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
972 {
973 struct mem_cgroup *memcg;
974
975 if (!mm)
976 return;
977
978 rcu_read_lock();
979 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
980 if (unlikely(!memcg))
981 goto out;
982
983 switch (idx) {
984 case PGMAJFAULT:
985 mem_cgroup_pgmajfault(memcg, 1);
986 break;
987 case PGFAULT:
988 mem_cgroup_pgfault(memcg, 1);
989 break;
990 default:
991 BUG();
992 }
993 out:
994 rcu_read_unlock();
995 }
996 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
997
998 /**
999 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1000 * @zone: zone of the wanted lruvec
1001 * @mem: memcg of the wanted lruvec
1002 *
1003 * Returns the lru list vector holding pages for the given @zone and
1004 * @mem. This can be the global zone lruvec, if the memory controller
1005 * is disabled.
1006 */
1007 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1008 struct mem_cgroup *memcg)
1009 {
1010 struct mem_cgroup_per_zone *mz;
1011
1012 if (mem_cgroup_disabled())
1013 return &zone->lruvec;
1014
1015 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1016 return &mz->lruvec;
1017 }
1018
1019 /*
1020 * Following LRU functions are allowed to be used without PCG_LOCK.
1021 * Operations are called by routine of global LRU independently from memcg.
1022 * What we have to take care of here is validness of pc->mem_cgroup.
1023 *
1024 * Changes to pc->mem_cgroup happens when
1025 * 1. charge
1026 * 2. moving account
1027 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1028 * It is added to LRU before charge.
1029 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1030 * When moving account, the page is not on LRU. It's isolated.
1031 */
1032
1033 /**
1034 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1035 * @zone: zone of the page
1036 * @page: the page
1037 * @lru: current lru
1038 *
1039 * This function accounts for @page being added to @lru, and returns
1040 * the lruvec for the given @zone and the memcg @page is charged to.
1041 *
1042 * The callsite is then responsible for physically linking the page to
1043 * the returned lruvec->lists[@lru].
1044 */
1045 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1046 enum lru_list lru)
1047 {
1048 struct mem_cgroup_per_zone *mz;
1049 struct mem_cgroup *memcg;
1050 struct page_cgroup *pc;
1051
1052 if (mem_cgroup_disabled())
1053 return &zone->lruvec;
1054
1055 pc = lookup_page_cgroup(page);
1056 VM_BUG_ON(PageCgroupAcctLRU(pc));
1057 /*
1058 * putback: charge:
1059 * SetPageLRU SetPageCgroupUsed
1060 * smp_mb smp_mb
1061 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1062 *
1063 * Ensure that one of the two sides adds the page to the memcg
1064 * LRU during a race.
1065 */
1066 smp_mb();
1067 /*
1068 * If the page is uncharged, it may be freed soon, but it
1069 * could also be swap cache (readahead, swapoff) that needs to
1070 * be reclaimable in the future. root_mem_cgroup will babysit
1071 * it for the time being.
1072 */
1073 if (PageCgroupUsed(pc)) {
1074 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1075 smp_rmb();
1076 memcg = pc->mem_cgroup;
1077 SetPageCgroupAcctLRU(pc);
1078 } else
1079 memcg = root_mem_cgroup;
1080 mz = page_cgroup_zoneinfo(memcg, page);
1081 /* compound_order() is stabilized through lru_lock */
1082 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1083 return &mz->lruvec;
1084 }
1085
1086 /**
1087 * mem_cgroup_lru_del_list - account for removing an lru page
1088 * @page: the page
1089 * @lru: target lru
1090 *
1091 * This function accounts for @page being removed from @lru.
1092 *
1093 * The callsite is then responsible for physically unlinking
1094 * @page->lru.
1095 */
1096 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1097 {
1098 struct mem_cgroup_per_zone *mz;
1099 struct mem_cgroup *memcg;
1100 struct page_cgroup *pc;
1101
1102 if (mem_cgroup_disabled())
1103 return;
1104
1105 pc = lookup_page_cgroup(page);
1106 /*
1107 * root_mem_cgroup babysits uncharged LRU pages, but
1108 * PageCgroupUsed is cleared when the page is about to get
1109 * freed. PageCgroupAcctLRU remembers whether the
1110 * LRU-accounting happened against pc->mem_cgroup or
1111 * root_mem_cgroup.
1112 */
1113 if (TestClearPageCgroupAcctLRU(pc)) {
1114 VM_BUG_ON(!pc->mem_cgroup);
1115 memcg = pc->mem_cgroup;
1116 } else
1117 memcg = root_mem_cgroup;
1118 mz = page_cgroup_zoneinfo(memcg, page);
1119 /* huge page split is done under lru_lock. so, we have no races. */
1120 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1121 }
1122
1123 void mem_cgroup_lru_del(struct page *page)
1124 {
1125 mem_cgroup_lru_del_list(page, page_lru(page));
1126 }
1127
1128 /**
1129 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1130 * @zone: zone of the page
1131 * @page: the page
1132 * @from: current lru
1133 * @to: target lru
1134 *
1135 * This function accounts for @page being moved between the lrus @from
1136 * and @to, and returns the lruvec for the given @zone and the memcg
1137 * @page is charged to.
1138 *
1139 * The callsite is then responsible for physically relinking
1140 * @page->lru to the returned lruvec->lists[@to].
1141 */
1142 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1143 struct page *page,
1144 enum lru_list from,
1145 enum lru_list to)
1146 {
1147 /* XXX: Optimize this, especially for @from == @to */
1148 mem_cgroup_lru_del_list(page, from);
1149 return mem_cgroup_lru_add_list(zone, page, to);
1150 }
1151
1152 /*
1153 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1154 * while it's linked to lru because the page may be reused after it's fully
1155 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1156 * It's done under lock_page and expected that zone->lru_lock isnever held.
1157 */
1158 static void mem_cgroup_lru_del_before_commit(struct page *page)
1159 {
1160 enum lru_list lru;
1161 unsigned long flags;
1162 struct zone *zone = page_zone(page);
1163 struct page_cgroup *pc = lookup_page_cgroup(page);
1164
1165 /*
1166 * Doing this check without taking ->lru_lock seems wrong but this
1167 * is safe. Because if page_cgroup's USED bit is unset, the page
1168 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1169 * set, the commit after this will fail, anyway.
1170 * This all charge/uncharge is done under some mutual execustion.
1171 * So, we don't need to taking care of changes in USED bit.
1172 */
1173 if (likely(!PageLRU(page)))
1174 return;
1175
1176 spin_lock_irqsave(&zone->lru_lock, flags);
1177 lru = page_lru(page);
1178 /*
1179 * The uncharged page could still be registered to the LRU of
1180 * the stale pc->mem_cgroup.
1181 *
1182 * As pc->mem_cgroup is about to get overwritten, the old LRU
1183 * accounting needs to be taken care of. Let root_mem_cgroup
1184 * babysit the page until the new memcg is responsible for it.
1185 *
1186 * The PCG_USED bit is guarded by lock_page() as the page is
1187 * swapcache/pagecache.
1188 */
1189 if (PageLRU(page) && PageCgroupAcctLRU(pc) && !PageCgroupUsed(pc)) {
1190 del_page_from_lru_list(zone, page, lru);
1191 add_page_to_lru_list(zone, page, lru);
1192 }
1193 spin_unlock_irqrestore(&zone->lru_lock, flags);
1194 }
1195
1196 static void mem_cgroup_lru_add_after_commit(struct page *page)
1197 {
1198 enum lru_list lru;
1199 unsigned long flags;
1200 struct zone *zone = page_zone(page);
1201 struct page_cgroup *pc = lookup_page_cgroup(page);
1202 /*
1203 * putback: charge:
1204 * SetPageLRU SetPageCgroupUsed
1205 * smp_mb smp_mb
1206 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1207 *
1208 * Ensure that one of the two sides adds the page to the memcg
1209 * LRU during a race.
1210 */
1211 smp_mb();
1212 /* taking care of that the page is added to LRU while we commit it */
1213 if (likely(!PageLRU(page)))
1214 return;
1215 spin_lock_irqsave(&zone->lru_lock, flags);
1216 lru = page_lru(page);
1217 /*
1218 * If the page is not on the LRU, someone will soon put it
1219 * there. If it is, and also already accounted for on the
1220 * memcg-side, it must be on the right lruvec as setting
1221 * pc->mem_cgroup and PageCgroupUsed is properly ordered.
1222 * Otherwise, root_mem_cgroup has been babysitting the page
1223 * during the charge. Move it to the new memcg now.
1224 */
1225 if (PageLRU(page) && !PageCgroupAcctLRU(pc)) {
1226 del_page_from_lru_list(zone, page, lru);
1227 add_page_to_lru_list(zone, page, lru);
1228 }
1229 spin_unlock_irqrestore(&zone->lru_lock, flags);
1230 }
1231
1232 /*
1233 * Checks whether given mem is same or in the root_mem_cgroup's
1234 * hierarchy subtree
1235 */
1236 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1237 struct mem_cgroup *memcg)
1238 {
1239 if (root_memcg != memcg) {
1240 return (root_memcg->use_hierarchy &&
1241 css_is_ancestor(&memcg->css, &root_memcg->css));
1242 }
1243
1244 return true;
1245 }
1246
1247 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1248 {
1249 int ret;
1250 struct mem_cgroup *curr = NULL;
1251 struct task_struct *p;
1252
1253 p = find_lock_task_mm(task);
1254 if (!p)
1255 return 0;
1256 curr = try_get_mem_cgroup_from_mm(p->mm);
1257 task_unlock(p);
1258 if (!curr)
1259 return 0;
1260 /*
1261 * We should check use_hierarchy of "memcg" not "curr". Because checking
1262 * use_hierarchy of "curr" here make this function true if hierarchy is
1263 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1264 * hierarchy(even if use_hierarchy is disabled in "memcg").
1265 */
1266 ret = mem_cgroup_same_or_subtree(memcg, curr);
1267 css_put(&curr->css);
1268 return ret;
1269 }
1270
1271 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1272 {
1273 unsigned long inactive_ratio;
1274 int nid = zone_to_nid(zone);
1275 int zid = zone_idx(zone);
1276 unsigned long inactive;
1277 unsigned long active;
1278 unsigned long gb;
1279
1280 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1281 BIT(LRU_INACTIVE_ANON));
1282 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1283 BIT(LRU_ACTIVE_ANON));
1284
1285 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1286 if (gb)
1287 inactive_ratio = int_sqrt(10 * gb);
1288 else
1289 inactive_ratio = 1;
1290
1291 return inactive * inactive_ratio < active;
1292 }
1293
1294 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1295 {
1296 unsigned long active;
1297 unsigned long inactive;
1298 int zid = zone_idx(zone);
1299 int nid = zone_to_nid(zone);
1300
1301 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1302 BIT(LRU_INACTIVE_FILE));
1303 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1304 BIT(LRU_ACTIVE_FILE));
1305
1306 return (active > inactive);
1307 }
1308
1309 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1310 struct zone *zone)
1311 {
1312 int nid = zone_to_nid(zone);
1313 int zid = zone_idx(zone);
1314 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1315
1316 return &mz->reclaim_stat;
1317 }
1318
1319 struct zone_reclaim_stat *
1320 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1321 {
1322 struct page_cgroup *pc;
1323 struct mem_cgroup_per_zone *mz;
1324
1325 if (mem_cgroup_disabled())
1326 return NULL;
1327
1328 pc = lookup_page_cgroup(page);
1329 if (!PageCgroupUsed(pc))
1330 return NULL;
1331 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1332 smp_rmb();
1333 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1334 return &mz->reclaim_stat;
1335 }
1336
1337 #define mem_cgroup_from_res_counter(counter, member) \
1338 container_of(counter, struct mem_cgroup, member)
1339
1340 /**
1341 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1342 * @mem: the memory cgroup
1343 *
1344 * Returns the maximum amount of memory @mem can be charged with, in
1345 * pages.
1346 */
1347 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1348 {
1349 unsigned long long margin;
1350
1351 margin = res_counter_margin(&memcg->res);
1352 if (do_swap_account)
1353 margin = min(margin, res_counter_margin(&memcg->memsw));
1354 return margin >> PAGE_SHIFT;
1355 }
1356
1357 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1358 {
1359 struct cgroup *cgrp = memcg->css.cgroup;
1360
1361 /* root ? */
1362 if (cgrp->parent == NULL)
1363 return vm_swappiness;
1364
1365 return memcg->swappiness;
1366 }
1367
1368 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1369 {
1370 int cpu;
1371
1372 get_online_cpus();
1373 spin_lock(&memcg->pcp_counter_lock);
1374 for_each_online_cpu(cpu)
1375 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1376 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1377 spin_unlock(&memcg->pcp_counter_lock);
1378 put_online_cpus();
1379
1380 synchronize_rcu();
1381 }
1382
1383 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1384 {
1385 int cpu;
1386
1387 if (!memcg)
1388 return;
1389 get_online_cpus();
1390 spin_lock(&memcg->pcp_counter_lock);
1391 for_each_online_cpu(cpu)
1392 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1393 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1394 spin_unlock(&memcg->pcp_counter_lock);
1395 put_online_cpus();
1396 }
1397 /*
1398 * 2 routines for checking "mem" is under move_account() or not.
1399 *
1400 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1401 * for avoiding race in accounting. If true,
1402 * pc->mem_cgroup may be overwritten.
1403 *
1404 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1405 * under hierarchy of moving cgroups. This is for
1406 * waiting at hith-memory prressure caused by "move".
1407 */
1408
1409 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1410 {
1411 VM_BUG_ON(!rcu_read_lock_held());
1412 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1413 }
1414
1415 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1416 {
1417 struct mem_cgroup *from;
1418 struct mem_cgroup *to;
1419 bool ret = false;
1420 /*
1421 * Unlike task_move routines, we access mc.to, mc.from not under
1422 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1423 */
1424 spin_lock(&mc.lock);
1425 from = mc.from;
1426 to = mc.to;
1427 if (!from)
1428 goto unlock;
1429
1430 ret = mem_cgroup_same_or_subtree(memcg, from)
1431 || mem_cgroup_same_or_subtree(memcg, to);
1432 unlock:
1433 spin_unlock(&mc.lock);
1434 return ret;
1435 }
1436
1437 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1438 {
1439 if (mc.moving_task && current != mc.moving_task) {
1440 if (mem_cgroup_under_move(memcg)) {
1441 DEFINE_WAIT(wait);
1442 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1443 /* moving charge context might have finished. */
1444 if (mc.moving_task)
1445 schedule();
1446 finish_wait(&mc.waitq, &wait);
1447 return true;
1448 }
1449 }
1450 return false;
1451 }
1452
1453 /**
1454 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1455 * @memcg: The memory cgroup that went over limit
1456 * @p: Task that is going to be killed
1457 *
1458 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1459 * enabled
1460 */
1461 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1462 {
1463 struct cgroup *task_cgrp;
1464 struct cgroup *mem_cgrp;
1465 /*
1466 * Need a buffer in BSS, can't rely on allocations. The code relies
1467 * on the assumption that OOM is serialized for memory controller.
1468 * If this assumption is broken, revisit this code.
1469 */
1470 static char memcg_name[PATH_MAX];
1471 int ret;
1472
1473 if (!memcg || !p)
1474 return;
1475
1476
1477 rcu_read_lock();
1478
1479 mem_cgrp = memcg->css.cgroup;
1480 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1481
1482 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1483 if (ret < 0) {
1484 /*
1485 * Unfortunately, we are unable to convert to a useful name
1486 * But we'll still print out the usage information
1487 */
1488 rcu_read_unlock();
1489 goto done;
1490 }
1491 rcu_read_unlock();
1492
1493 printk(KERN_INFO "Task in %s killed", memcg_name);
1494
1495 rcu_read_lock();
1496 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1497 if (ret < 0) {
1498 rcu_read_unlock();
1499 goto done;
1500 }
1501 rcu_read_unlock();
1502
1503 /*
1504 * Continues from above, so we don't need an KERN_ level
1505 */
1506 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1507 done:
1508
1509 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1510 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1511 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1512 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1513 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1514 "failcnt %llu\n",
1515 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1516 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1517 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1518 }
1519
1520 /*
1521 * This function returns the number of memcg under hierarchy tree. Returns
1522 * 1(self count) if no children.
1523 */
1524 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1525 {
1526 int num = 0;
1527 struct mem_cgroup *iter;
1528
1529 for_each_mem_cgroup_tree(iter, memcg)
1530 num++;
1531 return num;
1532 }
1533
1534 /*
1535 * Return the memory (and swap, if configured) limit for a memcg.
1536 */
1537 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1538 {
1539 u64 limit;
1540 u64 memsw;
1541
1542 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1543 limit += total_swap_pages << PAGE_SHIFT;
1544
1545 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1546 /*
1547 * If memsw is finite and limits the amount of swap space available
1548 * to this memcg, return that limit.
1549 */
1550 return min(limit, memsw);
1551 }
1552
1553 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1554 gfp_t gfp_mask,
1555 unsigned long flags)
1556 {
1557 unsigned long total = 0;
1558 bool noswap = false;
1559 int loop;
1560
1561 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1562 noswap = true;
1563 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1564 noswap = true;
1565
1566 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1567 if (loop)
1568 drain_all_stock_async(memcg);
1569 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1570 /*
1571 * Allow limit shrinkers, which are triggered directly
1572 * by userspace, to catch signals and stop reclaim
1573 * after minimal progress, regardless of the margin.
1574 */
1575 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1576 break;
1577 if (mem_cgroup_margin(memcg))
1578 break;
1579 /*
1580 * If nothing was reclaimed after two attempts, there
1581 * may be no reclaimable pages in this hierarchy.
1582 */
1583 if (loop && !total)
1584 break;
1585 }
1586 return total;
1587 }
1588
1589 /**
1590 * test_mem_cgroup_node_reclaimable
1591 * @mem: the target memcg
1592 * @nid: the node ID to be checked.
1593 * @noswap : specify true here if the user wants flle only information.
1594 *
1595 * This function returns whether the specified memcg contains any
1596 * reclaimable pages on a node. Returns true if there are any reclaimable
1597 * pages in the node.
1598 */
1599 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1600 int nid, bool noswap)
1601 {
1602 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1603 return true;
1604 if (noswap || !total_swap_pages)
1605 return false;
1606 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1607 return true;
1608 return false;
1609
1610 }
1611 #if MAX_NUMNODES > 1
1612
1613 /*
1614 * Always updating the nodemask is not very good - even if we have an empty
1615 * list or the wrong list here, we can start from some node and traverse all
1616 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1617 *
1618 */
1619 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1620 {
1621 int nid;
1622 /*
1623 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1624 * pagein/pageout changes since the last update.
1625 */
1626 if (!atomic_read(&memcg->numainfo_events))
1627 return;
1628 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1629 return;
1630
1631 /* make a nodemask where this memcg uses memory from */
1632 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1633
1634 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1635
1636 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1637 node_clear(nid, memcg->scan_nodes);
1638 }
1639
1640 atomic_set(&memcg->numainfo_events, 0);
1641 atomic_set(&memcg->numainfo_updating, 0);
1642 }
1643
1644 /*
1645 * Selecting a node where we start reclaim from. Because what we need is just
1646 * reducing usage counter, start from anywhere is O,K. Considering
1647 * memory reclaim from current node, there are pros. and cons.
1648 *
1649 * Freeing memory from current node means freeing memory from a node which
1650 * we'll use or we've used. So, it may make LRU bad. And if several threads
1651 * hit limits, it will see a contention on a node. But freeing from remote
1652 * node means more costs for memory reclaim because of memory latency.
1653 *
1654 * Now, we use round-robin. Better algorithm is welcomed.
1655 */
1656 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1657 {
1658 int node;
1659
1660 mem_cgroup_may_update_nodemask(memcg);
1661 node = memcg->last_scanned_node;
1662
1663 node = next_node(node, memcg->scan_nodes);
1664 if (node == MAX_NUMNODES)
1665 node = first_node(memcg->scan_nodes);
1666 /*
1667 * We call this when we hit limit, not when pages are added to LRU.
1668 * No LRU may hold pages because all pages are UNEVICTABLE or
1669 * memcg is too small and all pages are not on LRU. In that case,
1670 * we use curret node.
1671 */
1672 if (unlikely(node == MAX_NUMNODES))
1673 node = numa_node_id();
1674
1675 memcg->last_scanned_node = node;
1676 return node;
1677 }
1678
1679 /*
1680 * Check all nodes whether it contains reclaimable pages or not.
1681 * For quick scan, we make use of scan_nodes. This will allow us to skip
1682 * unused nodes. But scan_nodes is lazily updated and may not cotain
1683 * enough new information. We need to do double check.
1684 */
1685 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1686 {
1687 int nid;
1688
1689 /*
1690 * quick check...making use of scan_node.
1691 * We can skip unused nodes.
1692 */
1693 if (!nodes_empty(memcg->scan_nodes)) {
1694 for (nid = first_node(memcg->scan_nodes);
1695 nid < MAX_NUMNODES;
1696 nid = next_node(nid, memcg->scan_nodes)) {
1697
1698 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1699 return true;
1700 }
1701 }
1702 /*
1703 * Check rest of nodes.
1704 */
1705 for_each_node_state(nid, N_HIGH_MEMORY) {
1706 if (node_isset(nid, memcg->scan_nodes))
1707 continue;
1708 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1709 return true;
1710 }
1711 return false;
1712 }
1713
1714 #else
1715 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1716 {
1717 return 0;
1718 }
1719
1720 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1721 {
1722 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1723 }
1724 #endif
1725
1726 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1727 struct zone *zone,
1728 gfp_t gfp_mask,
1729 unsigned long *total_scanned)
1730 {
1731 struct mem_cgroup *victim = NULL;
1732 int total = 0;
1733 int loop = 0;
1734 unsigned long excess;
1735 unsigned long nr_scanned;
1736 struct mem_cgroup_reclaim_cookie reclaim = {
1737 .zone = zone,
1738 .priority = 0,
1739 };
1740
1741 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1742
1743 while (1) {
1744 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1745 if (!victim) {
1746 loop++;
1747 if (loop >= 2) {
1748 /*
1749 * If we have not been able to reclaim
1750 * anything, it might because there are
1751 * no reclaimable pages under this hierarchy
1752 */
1753 if (!total)
1754 break;
1755 /*
1756 * We want to do more targeted reclaim.
1757 * excess >> 2 is not to excessive so as to
1758 * reclaim too much, nor too less that we keep
1759 * coming back to reclaim from this cgroup
1760 */
1761 if (total >= (excess >> 2) ||
1762 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1763 break;
1764 }
1765 continue;
1766 }
1767 if (!mem_cgroup_reclaimable(victim, false))
1768 continue;
1769 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1770 zone, &nr_scanned);
1771 *total_scanned += nr_scanned;
1772 if (!res_counter_soft_limit_excess(&root_memcg->res))
1773 break;
1774 }
1775 mem_cgroup_iter_break(root_memcg, victim);
1776 return total;
1777 }
1778
1779 /*
1780 * Check OOM-Killer is already running under our hierarchy.
1781 * If someone is running, return false.
1782 * Has to be called with memcg_oom_lock
1783 */
1784 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1785 {
1786 struct mem_cgroup *iter, *failed = NULL;
1787
1788 for_each_mem_cgroup_tree(iter, memcg) {
1789 if (iter->oom_lock) {
1790 /*
1791 * this subtree of our hierarchy is already locked
1792 * so we cannot give a lock.
1793 */
1794 failed = iter;
1795 mem_cgroup_iter_break(memcg, iter);
1796 break;
1797 } else
1798 iter->oom_lock = true;
1799 }
1800
1801 if (!failed)
1802 return true;
1803
1804 /*
1805 * OK, we failed to lock the whole subtree so we have to clean up
1806 * what we set up to the failing subtree
1807 */
1808 for_each_mem_cgroup_tree(iter, memcg) {
1809 if (iter == failed) {
1810 mem_cgroup_iter_break(memcg, iter);
1811 break;
1812 }
1813 iter->oom_lock = false;
1814 }
1815 return false;
1816 }
1817
1818 /*
1819 * Has to be called with memcg_oom_lock
1820 */
1821 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1822 {
1823 struct mem_cgroup *iter;
1824
1825 for_each_mem_cgroup_tree(iter, memcg)
1826 iter->oom_lock = false;
1827 return 0;
1828 }
1829
1830 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1831 {
1832 struct mem_cgroup *iter;
1833
1834 for_each_mem_cgroup_tree(iter, memcg)
1835 atomic_inc(&iter->under_oom);
1836 }
1837
1838 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1839 {
1840 struct mem_cgroup *iter;
1841
1842 /*
1843 * When a new child is created while the hierarchy is under oom,
1844 * mem_cgroup_oom_lock() may not be called. We have to use
1845 * atomic_add_unless() here.
1846 */
1847 for_each_mem_cgroup_tree(iter, memcg)
1848 atomic_add_unless(&iter->under_oom, -1, 0);
1849 }
1850
1851 static DEFINE_SPINLOCK(memcg_oom_lock);
1852 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1853
1854 struct oom_wait_info {
1855 struct mem_cgroup *mem;
1856 wait_queue_t wait;
1857 };
1858
1859 static int memcg_oom_wake_function(wait_queue_t *wait,
1860 unsigned mode, int sync, void *arg)
1861 {
1862 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1863 *oom_wait_memcg;
1864 struct oom_wait_info *oom_wait_info;
1865
1866 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1867 oom_wait_memcg = oom_wait_info->mem;
1868
1869 /*
1870 * Both of oom_wait_info->mem and wake_mem are stable under us.
1871 * Then we can use css_is_ancestor without taking care of RCU.
1872 */
1873 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1874 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1875 return 0;
1876 return autoremove_wake_function(wait, mode, sync, arg);
1877 }
1878
1879 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1880 {
1881 /* for filtering, pass "memcg" as argument. */
1882 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1883 }
1884
1885 static void memcg_oom_recover(struct mem_cgroup *memcg)
1886 {
1887 if (memcg && atomic_read(&memcg->under_oom))
1888 memcg_wakeup_oom(memcg);
1889 }
1890
1891 /*
1892 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1893 */
1894 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1895 {
1896 struct oom_wait_info owait;
1897 bool locked, need_to_kill;
1898
1899 owait.mem = memcg;
1900 owait.wait.flags = 0;
1901 owait.wait.func = memcg_oom_wake_function;
1902 owait.wait.private = current;
1903 INIT_LIST_HEAD(&owait.wait.task_list);
1904 need_to_kill = true;
1905 mem_cgroup_mark_under_oom(memcg);
1906
1907 /* At first, try to OOM lock hierarchy under memcg.*/
1908 spin_lock(&memcg_oom_lock);
1909 locked = mem_cgroup_oom_lock(memcg);
1910 /*
1911 * Even if signal_pending(), we can't quit charge() loop without
1912 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1913 * under OOM is always welcomed, use TASK_KILLABLE here.
1914 */
1915 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1916 if (!locked || memcg->oom_kill_disable)
1917 need_to_kill = false;
1918 if (locked)
1919 mem_cgroup_oom_notify(memcg);
1920 spin_unlock(&memcg_oom_lock);
1921
1922 if (need_to_kill) {
1923 finish_wait(&memcg_oom_waitq, &owait.wait);
1924 mem_cgroup_out_of_memory(memcg, mask);
1925 } else {
1926 schedule();
1927 finish_wait(&memcg_oom_waitq, &owait.wait);
1928 }
1929 spin_lock(&memcg_oom_lock);
1930 if (locked)
1931 mem_cgroup_oom_unlock(memcg);
1932 memcg_wakeup_oom(memcg);
1933 spin_unlock(&memcg_oom_lock);
1934
1935 mem_cgroup_unmark_under_oom(memcg);
1936
1937 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1938 return false;
1939 /* Give chance to dying process */
1940 schedule_timeout_uninterruptible(1);
1941 return true;
1942 }
1943
1944 /*
1945 * Currently used to update mapped file statistics, but the routine can be
1946 * generalized to update other statistics as well.
1947 *
1948 * Notes: Race condition
1949 *
1950 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1951 * it tends to be costly. But considering some conditions, we doesn't need
1952 * to do so _always_.
1953 *
1954 * Considering "charge", lock_page_cgroup() is not required because all
1955 * file-stat operations happen after a page is attached to radix-tree. There
1956 * are no race with "charge".
1957 *
1958 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1959 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1960 * if there are race with "uncharge". Statistics itself is properly handled
1961 * by flags.
1962 *
1963 * Considering "move", this is an only case we see a race. To make the race
1964 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1965 * possibility of race condition. If there is, we take a lock.
1966 */
1967
1968 void mem_cgroup_update_page_stat(struct page *page,
1969 enum mem_cgroup_page_stat_item idx, int val)
1970 {
1971 struct mem_cgroup *memcg;
1972 struct page_cgroup *pc = lookup_page_cgroup(page);
1973 bool need_unlock = false;
1974 unsigned long uninitialized_var(flags);
1975
1976 if (unlikely(!pc))
1977 return;
1978
1979 rcu_read_lock();
1980 memcg = pc->mem_cgroup;
1981 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1982 goto out;
1983 /* pc->mem_cgroup is unstable ? */
1984 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1985 /* take a lock against to access pc->mem_cgroup */
1986 move_lock_page_cgroup(pc, &flags);
1987 need_unlock = true;
1988 memcg = pc->mem_cgroup;
1989 if (!memcg || !PageCgroupUsed(pc))
1990 goto out;
1991 }
1992
1993 switch (idx) {
1994 case MEMCG_NR_FILE_MAPPED:
1995 if (val > 0)
1996 SetPageCgroupFileMapped(pc);
1997 else if (!page_mapped(page))
1998 ClearPageCgroupFileMapped(pc);
1999 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2000 break;
2001 default:
2002 BUG();
2003 }
2004
2005 this_cpu_add(memcg->stat->count[idx], val);
2006
2007 out:
2008 if (unlikely(need_unlock))
2009 move_unlock_page_cgroup(pc, &flags);
2010 rcu_read_unlock();
2011 return;
2012 }
2013 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2014
2015 /*
2016 * size of first charge trial. "32" comes from vmscan.c's magic value.
2017 * TODO: maybe necessary to use big numbers in big irons.
2018 */
2019 #define CHARGE_BATCH 32U
2020 struct memcg_stock_pcp {
2021 struct mem_cgroup *cached; /* this never be root cgroup */
2022 unsigned int nr_pages;
2023 struct work_struct work;
2024 unsigned long flags;
2025 #define FLUSHING_CACHED_CHARGE (0)
2026 };
2027 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2028 static DEFINE_MUTEX(percpu_charge_mutex);
2029
2030 /*
2031 * Try to consume stocked charge on this cpu. If success, one page is consumed
2032 * from local stock and true is returned. If the stock is 0 or charges from a
2033 * cgroup which is not current target, returns false. This stock will be
2034 * refilled.
2035 */
2036 static bool consume_stock(struct mem_cgroup *memcg)
2037 {
2038 struct memcg_stock_pcp *stock;
2039 bool ret = true;
2040
2041 stock = &get_cpu_var(memcg_stock);
2042 if (memcg == stock->cached && stock->nr_pages)
2043 stock->nr_pages--;
2044 else /* need to call res_counter_charge */
2045 ret = false;
2046 put_cpu_var(memcg_stock);
2047 return ret;
2048 }
2049
2050 /*
2051 * Returns stocks cached in percpu to res_counter and reset cached information.
2052 */
2053 static void drain_stock(struct memcg_stock_pcp *stock)
2054 {
2055 struct mem_cgroup *old = stock->cached;
2056
2057 if (stock->nr_pages) {
2058 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2059
2060 res_counter_uncharge(&old->res, bytes);
2061 if (do_swap_account)
2062 res_counter_uncharge(&old->memsw, bytes);
2063 stock->nr_pages = 0;
2064 }
2065 stock->cached = NULL;
2066 }
2067
2068 /*
2069 * This must be called under preempt disabled or must be called by
2070 * a thread which is pinned to local cpu.
2071 */
2072 static void drain_local_stock(struct work_struct *dummy)
2073 {
2074 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2075 drain_stock(stock);
2076 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2077 }
2078
2079 /*
2080 * Cache charges(val) which is from res_counter, to local per_cpu area.
2081 * This will be consumed by consume_stock() function, later.
2082 */
2083 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2084 {
2085 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2086
2087 if (stock->cached != memcg) { /* reset if necessary */
2088 drain_stock(stock);
2089 stock->cached = memcg;
2090 }
2091 stock->nr_pages += nr_pages;
2092 put_cpu_var(memcg_stock);
2093 }
2094
2095 /*
2096 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2097 * of the hierarchy under it. sync flag says whether we should block
2098 * until the work is done.
2099 */
2100 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2101 {
2102 int cpu, curcpu;
2103
2104 /* Notify other cpus that system-wide "drain" is running */
2105 get_online_cpus();
2106 curcpu = get_cpu();
2107 for_each_online_cpu(cpu) {
2108 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2109 struct mem_cgroup *memcg;
2110
2111 memcg = stock->cached;
2112 if (!memcg || !stock->nr_pages)
2113 continue;
2114 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2115 continue;
2116 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2117 if (cpu == curcpu)
2118 drain_local_stock(&stock->work);
2119 else
2120 schedule_work_on(cpu, &stock->work);
2121 }
2122 }
2123 put_cpu();
2124
2125 if (!sync)
2126 goto out;
2127
2128 for_each_online_cpu(cpu) {
2129 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2130 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2131 flush_work(&stock->work);
2132 }
2133 out:
2134 put_online_cpus();
2135 }
2136
2137 /*
2138 * Tries to drain stocked charges in other cpus. This function is asynchronous
2139 * and just put a work per cpu for draining localy on each cpu. Caller can
2140 * expects some charges will be back to res_counter later but cannot wait for
2141 * it.
2142 */
2143 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2144 {
2145 /*
2146 * If someone calls draining, avoid adding more kworker runs.
2147 */
2148 if (!mutex_trylock(&percpu_charge_mutex))
2149 return;
2150 drain_all_stock(root_memcg, false);
2151 mutex_unlock(&percpu_charge_mutex);
2152 }
2153
2154 /* This is a synchronous drain interface. */
2155 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2156 {
2157 /* called when force_empty is called */
2158 mutex_lock(&percpu_charge_mutex);
2159 drain_all_stock(root_memcg, true);
2160 mutex_unlock(&percpu_charge_mutex);
2161 }
2162
2163 /*
2164 * This function drains percpu counter value from DEAD cpu and
2165 * move it to local cpu. Note that this function can be preempted.
2166 */
2167 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2168 {
2169 int i;
2170
2171 spin_lock(&memcg->pcp_counter_lock);
2172 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2173 long x = per_cpu(memcg->stat->count[i], cpu);
2174
2175 per_cpu(memcg->stat->count[i], cpu) = 0;
2176 memcg->nocpu_base.count[i] += x;
2177 }
2178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2179 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2180
2181 per_cpu(memcg->stat->events[i], cpu) = 0;
2182 memcg->nocpu_base.events[i] += x;
2183 }
2184 /* need to clear ON_MOVE value, works as a kind of lock. */
2185 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2186 spin_unlock(&memcg->pcp_counter_lock);
2187 }
2188
2189 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2190 {
2191 int idx = MEM_CGROUP_ON_MOVE;
2192
2193 spin_lock(&memcg->pcp_counter_lock);
2194 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2195 spin_unlock(&memcg->pcp_counter_lock);
2196 }
2197
2198 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2199 unsigned long action,
2200 void *hcpu)
2201 {
2202 int cpu = (unsigned long)hcpu;
2203 struct memcg_stock_pcp *stock;
2204 struct mem_cgroup *iter;
2205
2206 if ((action == CPU_ONLINE)) {
2207 for_each_mem_cgroup(iter)
2208 synchronize_mem_cgroup_on_move(iter, cpu);
2209 return NOTIFY_OK;
2210 }
2211
2212 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2213 return NOTIFY_OK;
2214
2215 for_each_mem_cgroup(iter)
2216 mem_cgroup_drain_pcp_counter(iter, cpu);
2217
2218 stock = &per_cpu(memcg_stock, cpu);
2219 drain_stock(stock);
2220 return NOTIFY_OK;
2221 }
2222
2223
2224 /* See __mem_cgroup_try_charge() for details */
2225 enum {
2226 CHARGE_OK, /* success */
2227 CHARGE_RETRY, /* need to retry but retry is not bad */
2228 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2229 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2230 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2231 };
2232
2233 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2234 unsigned int nr_pages, bool oom_check)
2235 {
2236 unsigned long csize = nr_pages * PAGE_SIZE;
2237 struct mem_cgroup *mem_over_limit;
2238 struct res_counter *fail_res;
2239 unsigned long flags = 0;
2240 int ret;
2241
2242 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2243
2244 if (likely(!ret)) {
2245 if (!do_swap_account)
2246 return CHARGE_OK;
2247 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2248 if (likely(!ret))
2249 return CHARGE_OK;
2250
2251 res_counter_uncharge(&memcg->res, csize);
2252 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2253 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2254 } else
2255 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2256 /*
2257 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2258 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2259 *
2260 * Never reclaim on behalf of optional batching, retry with a
2261 * single page instead.
2262 */
2263 if (nr_pages == CHARGE_BATCH)
2264 return CHARGE_RETRY;
2265
2266 if (!(gfp_mask & __GFP_WAIT))
2267 return CHARGE_WOULDBLOCK;
2268
2269 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2270 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2271 return CHARGE_RETRY;
2272 /*
2273 * Even though the limit is exceeded at this point, reclaim
2274 * may have been able to free some pages. Retry the charge
2275 * before killing the task.
2276 *
2277 * Only for regular pages, though: huge pages are rather
2278 * unlikely to succeed so close to the limit, and we fall back
2279 * to regular pages anyway in case of failure.
2280 */
2281 if (nr_pages == 1 && ret)
2282 return CHARGE_RETRY;
2283
2284 /*
2285 * At task move, charge accounts can be doubly counted. So, it's
2286 * better to wait until the end of task_move if something is going on.
2287 */
2288 if (mem_cgroup_wait_acct_move(mem_over_limit))
2289 return CHARGE_RETRY;
2290
2291 /* If we don't need to call oom-killer at el, return immediately */
2292 if (!oom_check)
2293 return CHARGE_NOMEM;
2294 /* check OOM */
2295 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2296 return CHARGE_OOM_DIE;
2297
2298 return CHARGE_RETRY;
2299 }
2300
2301 /*
2302 * Unlike exported interface, "oom" parameter is added. if oom==true,
2303 * oom-killer can be invoked.
2304 */
2305 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2306 gfp_t gfp_mask,
2307 unsigned int nr_pages,
2308 struct mem_cgroup **ptr,
2309 bool oom)
2310 {
2311 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2312 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2313 struct mem_cgroup *memcg = NULL;
2314 int ret;
2315
2316 /*
2317 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2318 * in system level. So, allow to go ahead dying process in addition to
2319 * MEMDIE process.
2320 */
2321 if (unlikely(test_thread_flag(TIF_MEMDIE)
2322 || fatal_signal_pending(current)))
2323 goto bypass;
2324
2325 /*
2326 * We always charge the cgroup the mm_struct belongs to.
2327 * The mm_struct's mem_cgroup changes on task migration if the
2328 * thread group leader migrates. It's possible that mm is not
2329 * set, if so charge the init_mm (happens for pagecache usage).
2330 */
2331 if (!*ptr && !mm)
2332 goto bypass;
2333 again:
2334 if (*ptr) { /* css should be a valid one */
2335 memcg = *ptr;
2336 VM_BUG_ON(css_is_removed(&memcg->css));
2337 if (mem_cgroup_is_root(memcg))
2338 goto done;
2339 if (nr_pages == 1 && consume_stock(memcg))
2340 goto done;
2341 css_get(&memcg->css);
2342 } else {
2343 struct task_struct *p;
2344
2345 rcu_read_lock();
2346 p = rcu_dereference(mm->owner);
2347 /*
2348 * Because we don't have task_lock(), "p" can exit.
2349 * In that case, "memcg" can point to root or p can be NULL with
2350 * race with swapoff. Then, we have small risk of mis-accouning.
2351 * But such kind of mis-account by race always happens because
2352 * we don't have cgroup_mutex(). It's overkill and we allo that
2353 * small race, here.
2354 * (*) swapoff at el will charge against mm-struct not against
2355 * task-struct. So, mm->owner can be NULL.
2356 */
2357 memcg = mem_cgroup_from_task(p);
2358 if (!memcg || mem_cgroup_is_root(memcg)) {
2359 rcu_read_unlock();
2360 goto done;
2361 }
2362 if (nr_pages == 1 && consume_stock(memcg)) {
2363 /*
2364 * It seems dagerous to access memcg without css_get().
2365 * But considering how consume_stok works, it's not
2366 * necessary. If consume_stock success, some charges
2367 * from this memcg are cached on this cpu. So, we
2368 * don't need to call css_get()/css_tryget() before
2369 * calling consume_stock().
2370 */
2371 rcu_read_unlock();
2372 goto done;
2373 }
2374 /* after here, we may be blocked. we need to get refcnt */
2375 if (!css_tryget(&memcg->css)) {
2376 rcu_read_unlock();
2377 goto again;
2378 }
2379 rcu_read_unlock();
2380 }
2381
2382 do {
2383 bool oom_check;
2384
2385 /* If killed, bypass charge */
2386 if (fatal_signal_pending(current)) {
2387 css_put(&memcg->css);
2388 goto bypass;
2389 }
2390
2391 oom_check = false;
2392 if (oom && !nr_oom_retries) {
2393 oom_check = true;
2394 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2395 }
2396
2397 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2398 switch (ret) {
2399 case CHARGE_OK:
2400 break;
2401 case CHARGE_RETRY: /* not in OOM situation but retry */
2402 batch = nr_pages;
2403 css_put(&memcg->css);
2404 memcg = NULL;
2405 goto again;
2406 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2407 css_put(&memcg->css);
2408 goto nomem;
2409 case CHARGE_NOMEM: /* OOM routine works */
2410 if (!oom) {
2411 css_put(&memcg->css);
2412 goto nomem;
2413 }
2414 /* If oom, we never return -ENOMEM */
2415 nr_oom_retries--;
2416 break;
2417 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2418 css_put(&memcg->css);
2419 goto bypass;
2420 }
2421 } while (ret != CHARGE_OK);
2422
2423 if (batch > nr_pages)
2424 refill_stock(memcg, batch - nr_pages);
2425 css_put(&memcg->css);
2426 done:
2427 *ptr = memcg;
2428 return 0;
2429 nomem:
2430 *ptr = NULL;
2431 return -ENOMEM;
2432 bypass:
2433 *ptr = NULL;
2434 return 0;
2435 }
2436
2437 /*
2438 * Somemtimes we have to undo a charge we got by try_charge().
2439 * This function is for that and do uncharge, put css's refcnt.
2440 * gotten by try_charge().
2441 */
2442 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2443 unsigned int nr_pages)
2444 {
2445 if (!mem_cgroup_is_root(memcg)) {
2446 unsigned long bytes = nr_pages * PAGE_SIZE;
2447
2448 res_counter_uncharge(&memcg->res, bytes);
2449 if (do_swap_account)
2450 res_counter_uncharge(&memcg->memsw, bytes);
2451 }
2452 }
2453
2454 /*
2455 * A helper function to get mem_cgroup from ID. must be called under
2456 * rcu_read_lock(). The caller must check css_is_removed() or some if
2457 * it's concern. (dropping refcnt from swap can be called against removed
2458 * memcg.)
2459 */
2460 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2461 {
2462 struct cgroup_subsys_state *css;
2463
2464 /* ID 0 is unused ID */
2465 if (!id)
2466 return NULL;
2467 css = css_lookup(&mem_cgroup_subsys, id);
2468 if (!css)
2469 return NULL;
2470 return container_of(css, struct mem_cgroup, css);
2471 }
2472
2473 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2474 {
2475 struct mem_cgroup *memcg = NULL;
2476 struct page_cgroup *pc;
2477 unsigned short id;
2478 swp_entry_t ent;
2479
2480 VM_BUG_ON(!PageLocked(page));
2481
2482 pc = lookup_page_cgroup(page);
2483 lock_page_cgroup(pc);
2484 if (PageCgroupUsed(pc)) {
2485 memcg = pc->mem_cgroup;
2486 if (memcg && !css_tryget(&memcg->css))
2487 memcg = NULL;
2488 } else if (PageSwapCache(page)) {
2489 ent.val = page_private(page);
2490 id = lookup_swap_cgroup(ent);
2491 rcu_read_lock();
2492 memcg = mem_cgroup_lookup(id);
2493 if (memcg && !css_tryget(&memcg->css))
2494 memcg = NULL;
2495 rcu_read_unlock();
2496 }
2497 unlock_page_cgroup(pc);
2498 return memcg;
2499 }
2500
2501 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2502 struct page *page,
2503 unsigned int nr_pages,
2504 struct page_cgroup *pc,
2505 enum charge_type ctype)
2506 {
2507 lock_page_cgroup(pc);
2508 if (unlikely(PageCgroupUsed(pc))) {
2509 unlock_page_cgroup(pc);
2510 __mem_cgroup_cancel_charge(memcg, nr_pages);
2511 return;
2512 }
2513 /*
2514 * we don't need page_cgroup_lock about tail pages, becase they are not
2515 * accessed by any other context at this point.
2516 */
2517 pc->mem_cgroup = memcg;
2518 /*
2519 * We access a page_cgroup asynchronously without lock_page_cgroup().
2520 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2521 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2522 * before USED bit, we need memory barrier here.
2523 * See mem_cgroup_add_lru_list(), etc.
2524 */
2525 smp_wmb();
2526 switch (ctype) {
2527 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2528 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2529 SetPageCgroupCache(pc);
2530 SetPageCgroupUsed(pc);
2531 break;
2532 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2533 ClearPageCgroupCache(pc);
2534 SetPageCgroupUsed(pc);
2535 break;
2536 default:
2537 break;
2538 }
2539
2540 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2541 unlock_page_cgroup(pc);
2542 /*
2543 * "charge_statistics" updated event counter. Then, check it.
2544 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2545 * if they exceeds softlimit.
2546 */
2547 memcg_check_events(memcg, page);
2548 }
2549
2550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2551
2552 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2553 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2554 /*
2555 * Because tail pages are not marked as "used", set it. We're under
2556 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2557 */
2558 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2559 {
2560 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2561 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2562 unsigned long flags;
2563
2564 if (mem_cgroup_disabled())
2565 return;
2566 /*
2567 * We have no races with charge/uncharge but will have races with
2568 * page state accounting.
2569 */
2570 move_lock_page_cgroup(head_pc, &flags);
2571
2572 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2573 smp_wmb(); /* see __commit_charge() */
2574 if (PageCgroupAcctLRU(head_pc)) {
2575 enum lru_list lru;
2576 struct mem_cgroup_per_zone *mz;
2577
2578 /*
2579 * LRU flags cannot be copied because we need to add tail
2580 *.page to LRU by generic call and our hook will be called.
2581 * We hold lru_lock, then, reduce counter directly.
2582 */
2583 lru = page_lru(head);
2584 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2585 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2586 }
2587 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2588 move_unlock_page_cgroup(head_pc, &flags);
2589 }
2590 #endif
2591
2592 /**
2593 * mem_cgroup_move_account - move account of the page
2594 * @page: the page
2595 * @nr_pages: number of regular pages (>1 for huge pages)
2596 * @pc: page_cgroup of the page.
2597 * @from: mem_cgroup which the page is moved from.
2598 * @to: mem_cgroup which the page is moved to. @from != @to.
2599 * @uncharge: whether we should call uncharge and css_put against @from.
2600 *
2601 * The caller must confirm following.
2602 * - page is not on LRU (isolate_page() is useful.)
2603 * - compound_lock is held when nr_pages > 1
2604 *
2605 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2606 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2607 * true, this function does "uncharge" from old cgroup, but it doesn't if
2608 * @uncharge is false, so a caller should do "uncharge".
2609 */
2610 static int mem_cgroup_move_account(struct page *page,
2611 unsigned int nr_pages,
2612 struct page_cgroup *pc,
2613 struct mem_cgroup *from,
2614 struct mem_cgroup *to,
2615 bool uncharge)
2616 {
2617 unsigned long flags;
2618 int ret;
2619
2620 VM_BUG_ON(from == to);
2621 VM_BUG_ON(PageLRU(page));
2622 /*
2623 * The page is isolated from LRU. So, collapse function
2624 * will not handle this page. But page splitting can happen.
2625 * Do this check under compound_page_lock(). The caller should
2626 * hold it.
2627 */
2628 ret = -EBUSY;
2629 if (nr_pages > 1 && !PageTransHuge(page))
2630 goto out;
2631
2632 lock_page_cgroup(pc);
2633
2634 ret = -EINVAL;
2635 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2636 goto unlock;
2637
2638 move_lock_page_cgroup(pc, &flags);
2639
2640 if (PageCgroupFileMapped(pc)) {
2641 /* Update mapped_file data for mem_cgroup */
2642 preempt_disable();
2643 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2644 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2645 preempt_enable();
2646 }
2647 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2648 if (uncharge)
2649 /* This is not "cancel", but cancel_charge does all we need. */
2650 __mem_cgroup_cancel_charge(from, nr_pages);
2651
2652 /* caller should have done css_get */
2653 pc->mem_cgroup = to;
2654 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2655 /*
2656 * We charges against "to" which may not have any tasks. Then, "to"
2657 * can be under rmdir(). But in current implementation, caller of
2658 * this function is just force_empty() and move charge, so it's
2659 * guaranteed that "to" is never removed. So, we don't check rmdir
2660 * status here.
2661 */
2662 move_unlock_page_cgroup(pc, &flags);
2663 ret = 0;
2664 unlock:
2665 unlock_page_cgroup(pc);
2666 /*
2667 * check events
2668 */
2669 memcg_check_events(to, page);
2670 memcg_check_events(from, page);
2671 out:
2672 return ret;
2673 }
2674
2675 /*
2676 * move charges to its parent.
2677 */
2678
2679 static int mem_cgroup_move_parent(struct page *page,
2680 struct page_cgroup *pc,
2681 struct mem_cgroup *child,
2682 gfp_t gfp_mask)
2683 {
2684 struct cgroup *cg = child->css.cgroup;
2685 struct cgroup *pcg = cg->parent;
2686 struct mem_cgroup *parent;
2687 unsigned int nr_pages;
2688 unsigned long uninitialized_var(flags);
2689 int ret;
2690
2691 /* Is ROOT ? */
2692 if (!pcg)
2693 return -EINVAL;
2694
2695 ret = -EBUSY;
2696 if (!get_page_unless_zero(page))
2697 goto out;
2698 if (isolate_lru_page(page))
2699 goto put;
2700
2701 nr_pages = hpage_nr_pages(page);
2702
2703 parent = mem_cgroup_from_cont(pcg);
2704 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2705 if (ret || !parent)
2706 goto put_back;
2707
2708 if (nr_pages > 1)
2709 flags = compound_lock_irqsave(page);
2710
2711 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2712 if (ret)
2713 __mem_cgroup_cancel_charge(parent, nr_pages);
2714
2715 if (nr_pages > 1)
2716 compound_unlock_irqrestore(page, flags);
2717 put_back:
2718 putback_lru_page(page);
2719 put:
2720 put_page(page);
2721 out:
2722 return ret;
2723 }
2724
2725 /*
2726 * Charge the memory controller for page usage.
2727 * Return
2728 * 0 if the charge was successful
2729 * < 0 if the cgroup is over its limit
2730 */
2731 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2732 gfp_t gfp_mask, enum charge_type ctype)
2733 {
2734 struct mem_cgroup *memcg = NULL;
2735 unsigned int nr_pages = 1;
2736 struct page_cgroup *pc;
2737 bool oom = true;
2738 int ret;
2739
2740 if (PageTransHuge(page)) {
2741 nr_pages <<= compound_order(page);
2742 VM_BUG_ON(!PageTransHuge(page));
2743 /*
2744 * Never OOM-kill a process for a huge page. The
2745 * fault handler will fall back to regular pages.
2746 */
2747 oom = false;
2748 }
2749
2750 pc = lookup_page_cgroup(page);
2751 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2752
2753 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2754 if (ret || !memcg)
2755 return ret;
2756
2757 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2758 return 0;
2759 }
2760
2761 int mem_cgroup_newpage_charge(struct page *page,
2762 struct mm_struct *mm, gfp_t gfp_mask)
2763 {
2764 if (mem_cgroup_disabled())
2765 return 0;
2766 /*
2767 * If already mapped, we don't have to account.
2768 * If page cache, page->mapping has address_space.
2769 * But page->mapping may have out-of-use anon_vma pointer,
2770 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2771 * is NULL.
2772 */
2773 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2774 return 0;
2775 if (unlikely(!mm))
2776 mm = &init_mm;
2777 return mem_cgroup_charge_common(page, mm, gfp_mask,
2778 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2779 }
2780
2781 static void
2782 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2783 enum charge_type ctype);
2784
2785 static void
2786 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2787 enum charge_type ctype)
2788 {
2789 struct page_cgroup *pc = lookup_page_cgroup(page);
2790 /*
2791 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2792 * is already on LRU. It means the page may on some other page_cgroup's
2793 * LRU. Take care of it.
2794 */
2795 mem_cgroup_lru_del_before_commit(page);
2796 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2797 mem_cgroup_lru_add_after_commit(page);
2798 return;
2799 }
2800
2801 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2802 gfp_t gfp_mask)
2803 {
2804 struct mem_cgroup *memcg = NULL;
2805 int ret;
2806
2807 if (mem_cgroup_disabled())
2808 return 0;
2809 if (PageCompound(page))
2810 return 0;
2811
2812 if (unlikely(!mm))
2813 mm = &init_mm;
2814
2815 if (page_is_file_cache(page)) {
2816 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2817 if (ret || !memcg)
2818 return ret;
2819
2820 /*
2821 * FUSE reuses pages without going through the final
2822 * put that would remove them from the LRU list, make
2823 * sure that they get relinked properly.
2824 */
2825 __mem_cgroup_commit_charge_lrucare(page, memcg,
2826 MEM_CGROUP_CHARGE_TYPE_CACHE);
2827 return ret;
2828 }
2829 /* shmem */
2830 if (PageSwapCache(page)) {
2831 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2832 if (!ret)
2833 __mem_cgroup_commit_charge_swapin(page, memcg,
2834 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2835 } else
2836 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2837 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2838
2839 return ret;
2840 }
2841
2842 /*
2843 * While swap-in, try_charge -> commit or cancel, the page is locked.
2844 * And when try_charge() successfully returns, one refcnt to memcg without
2845 * struct page_cgroup is acquired. This refcnt will be consumed by
2846 * "commit()" or removed by "cancel()"
2847 */
2848 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2849 struct page *page,
2850 gfp_t mask, struct mem_cgroup **ptr)
2851 {
2852 struct mem_cgroup *memcg;
2853 int ret;
2854
2855 *ptr = NULL;
2856
2857 if (mem_cgroup_disabled())
2858 return 0;
2859
2860 if (!do_swap_account)
2861 goto charge_cur_mm;
2862 /*
2863 * A racing thread's fault, or swapoff, may have already updated
2864 * the pte, and even removed page from swap cache: in those cases
2865 * do_swap_page()'s pte_same() test will fail; but there's also a
2866 * KSM case which does need to charge the page.
2867 */
2868 if (!PageSwapCache(page))
2869 goto charge_cur_mm;
2870 memcg = try_get_mem_cgroup_from_page(page);
2871 if (!memcg)
2872 goto charge_cur_mm;
2873 *ptr = memcg;
2874 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2875 css_put(&memcg->css);
2876 return ret;
2877 charge_cur_mm:
2878 if (unlikely(!mm))
2879 mm = &init_mm;
2880 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2881 }
2882
2883 static void
2884 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2885 enum charge_type ctype)
2886 {
2887 if (mem_cgroup_disabled())
2888 return;
2889 if (!ptr)
2890 return;
2891 cgroup_exclude_rmdir(&ptr->css);
2892
2893 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2894 /*
2895 * Now swap is on-memory. This means this page may be
2896 * counted both as mem and swap....double count.
2897 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2898 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2899 * may call delete_from_swap_cache() before reach here.
2900 */
2901 if (do_swap_account && PageSwapCache(page)) {
2902 swp_entry_t ent = {.val = page_private(page)};
2903 unsigned short id;
2904 struct mem_cgroup *memcg;
2905
2906 id = swap_cgroup_record(ent, 0);
2907 rcu_read_lock();
2908 memcg = mem_cgroup_lookup(id);
2909 if (memcg) {
2910 /*
2911 * This recorded memcg can be obsolete one. So, avoid
2912 * calling css_tryget
2913 */
2914 if (!mem_cgroup_is_root(memcg))
2915 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2916 mem_cgroup_swap_statistics(memcg, false);
2917 mem_cgroup_put(memcg);
2918 }
2919 rcu_read_unlock();
2920 }
2921 /*
2922 * At swapin, we may charge account against cgroup which has no tasks.
2923 * So, rmdir()->pre_destroy() can be called while we do this charge.
2924 * In that case, we need to call pre_destroy() again. check it here.
2925 */
2926 cgroup_release_and_wakeup_rmdir(&ptr->css);
2927 }
2928
2929 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2930 {
2931 __mem_cgroup_commit_charge_swapin(page, ptr,
2932 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2933 }
2934
2935 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2936 {
2937 if (mem_cgroup_disabled())
2938 return;
2939 if (!memcg)
2940 return;
2941 __mem_cgroup_cancel_charge(memcg, 1);
2942 }
2943
2944 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2945 unsigned int nr_pages,
2946 const enum charge_type ctype)
2947 {
2948 struct memcg_batch_info *batch = NULL;
2949 bool uncharge_memsw = true;
2950
2951 /* If swapout, usage of swap doesn't decrease */
2952 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2953 uncharge_memsw = false;
2954
2955 batch = &current->memcg_batch;
2956 /*
2957 * In usual, we do css_get() when we remember memcg pointer.
2958 * But in this case, we keep res->usage until end of a series of
2959 * uncharges. Then, it's ok to ignore memcg's refcnt.
2960 */
2961 if (!batch->memcg)
2962 batch->memcg = memcg;
2963 /*
2964 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2965 * In those cases, all pages freed continuously can be expected to be in
2966 * the same cgroup and we have chance to coalesce uncharges.
2967 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2968 * because we want to do uncharge as soon as possible.
2969 */
2970
2971 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2972 goto direct_uncharge;
2973
2974 if (nr_pages > 1)
2975 goto direct_uncharge;
2976
2977 /*
2978 * In typical case, batch->memcg == mem. This means we can
2979 * merge a series of uncharges to an uncharge of res_counter.
2980 * If not, we uncharge res_counter ony by one.
2981 */
2982 if (batch->memcg != memcg)
2983 goto direct_uncharge;
2984 /* remember freed charge and uncharge it later */
2985 batch->nr_pages++;
2986 if (uncharge_memsw)
2987 batch->memsw_nr_pages++;
2988 return;
2989 direct_uncharge:
2990 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2991 if (uncharge_memsw)
2992 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2993 if (unlikely(batch->memcg != memcg))
2994 memcg_oom_recover(memcg);
2995 return;
2996 }
2997
2998 /*
2999 * uncharge if !page_mapped(page)
3000 */
3001 static struct mem_cgroup *
3002 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3003 {
3004 struct mem_cgroup *memcg = NULL;
3005 unsigned int nr_pages = 1;
3006 struct page_cgroup *pc;
3007
3008 if (mem_cgroup_disabled())
3009 return NULL;
3010
3011 if (PageSwapCache(page))
3012 return NULL;
3013
3014 if (PageTransHuge(page)) {
3015 nr_pages <<= compound_order(page);
3016 VM_BUG_ON(!PageTransHuge(page));
3017 }
3018 /*
3019 * Check if our page_cgroup is valid
3020 */
3021 pc = lookup_page_cgroup(page);
3022 if (unlikely(!pc || !PageCgroupUsed(pc)))
3023 return NULL;
3024
3025 lock_page_cgroup(pc);
3026
3027 memcg = pc->mem_cgroup;
3028
3029 if (!PageCgroupUsed(pc))
3030 goto unlock_out;
3031
3032 switch (ctype) {
3033 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3034 case MEM_CGROUP_CHARGE_TYPE_DROP:
3035 /* See mem_cgroup_prepare_migration() */
3036 if (page_mapped(page) || PageCgroupMigration(pc))
3037 goto unlock_out;
3038 break;
3039 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3040 if (!PageAnon(page)) { /* Shared memory */
3041 if (page->mapping && !page_is_file_cache(page))
3042 goto unlock_out;
3043 } else if (page_mapped(page)) /* Anon */
3044 goto unlock_out;
3045 break;
3046 default:
3047 break;
3048 }
3049
3050 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3051
3052 ClearPageCgroupUsed(pc);
3053 /*
3054 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3055 * freed from LRU. This is safe because uncharged page is expected not
3056 * to be reused (freed soon). Exception is SwapCache, it's handled by
3057 * special functions.
3058 */
3059
3060 unlock_page_cgroup(pc);
3061 /*
3062 * even after unlock, we have memcg->res.usage here and this memcg
3063 * will never be freed.
3064 */
3065 memcg_check_events(memcg, page);
3066 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3067 mem_cgroup_swap_statistics(memcg, true);
3068 mem_cgroup_get(memcg);
3069 }
3070 if (!mem_cgroup_is_root(memcg))
3071 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3072
3073 return memcg;
3074
3075 unlock_out:
3076 unlock_page_cgroup(pc);
3077 return NULL;
3078 }
3079
3080 void mem_cgroup_uncharge_page(struct page *page)
3081 {
3082 /* early check. */
3083 if (page_mapped(page))
3084 return;
3085 if (page->mapping && !PageAnon(page))
3086 return;
3087 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3088 }
3089
3090 void mem_cgroup_uncharge_cache_page(struct page *page)
3091 {
3092 VM_BUG_ON(page_mapped(page));
3093 VM_BUG_ON(page->mapping);
3094 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3095 }
3096
3097 /*
3098 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3099 * In that cases, pages are freed continuously and we can expect pages
3100 * are in the same memcg. All these calls itself limits the number of
3101 * pages freed at once, then uncharge_start/end() is called properly.
3102 * This may be called prural(2) times in a context,
3103 */
3104
3105 void mem_cgroup_uncharge_start(void)
3106 {
3107 current->memcg_batch.do_batch++;
3108 /* We can do nest. */
3109 if (current->memcg_batch.do_batch == 1) {
3110 current->memcg_batch.memcg = NULL;
3111 current->memcg_batch.nr_pages = 0;
3112 current->memcg_batch.memsw_nr_pages = 0;
3113 }
3114 }
3115
3116 void mem_cgroup_uncharge_end(void)
3117 {
3118 struct memcg_batch_info *batch = &current->memcg_batch;
3119
3120 if (!batch->do_batch)
3121 return;
3122
3123 batch->do_batch--;
3124 if (batch->do_batch) /* If stacked, do nothing. */
3125 return;
3126
3127 if (!batch->memcg)
3128 return;
3129 /*
3130 * This "batch->memcg" is valid without any css_get/put etc...
3131 * bacause we hide charges behind us.
3132 */
3133 if (batch->nr_pages)
3134 res_counter_uncharge(&batch->memcg->res,
3135 batch->nr_pages * PAGE_SIZE);
3136 if (batch->memsw_nr_pages)
3137 res_counter_uncharge(&batch->memcg->memsw,
3138 batch->memsw_nr_pages * PAGE_SIZE);
3139 memcg_oom_recover(batch->memcg);
3140 /* forget this pointer (for sanity check) */
3141 batch->memcg = NULL;
3142 }
3143
3144 #ifdef CONFIG_SWAP
3145 /*
3146 * called after __delete_from_swap_cache() and drop "page" account.
3147 * memcg information is recorded to swap_cgroup of "ent"
3148 */
3149 void
3150 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3151 {
3152 struct mem_cgroup *memcg;
3153 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3154
3155 if (!swapout) /* this was a swap cache but the swap is unused ! */
3156 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3157
3158 memcg = __mem_cgroup_uncharge_common(page, ctype);
3159
3160 /*
3161 * record memcg information, if swapout && memcg != NULL,
3162 * mem_cgroup_get() was called in uncharge().
3163 */
3164 if (do_swap_account && swapout && memcg)
3165 swap_cgroup_record(ent, css_id(&memcg->css));
3166 }
3167 #endif
3168
3169 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3170 /*
3171 * called from swap_entry_free(). remove record in swap_cgroup and
3172 * uncharge "memsw" account.
3173 */
3174 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3175 {
3176 struct mem_cgroup *memcg;
3177 unsigned short id;
3178
3179 if (!do_swap_account)
3180 return;
3181
3182 id = swap_cgroup_record(ent, 0);
3183 rcu_read_lock();
3184 memcg = mem_cgroup_lookup(id);
3185 if (memcg) {
3186 /*
3187 * We uncharge this because swap is freed.
3188 * This memcg can be obsolete one. We avoid calling css_tryget
3189 */
3190 if (!mem_cgroup_is_root(memcg))
3191 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3192 mem_cgroup_swap_statistics(memcg, false);
3193 mem_cgroup_put(memcg);
3194 }
3195 rcu_read_unlock();
3196 }
3197
3198 /**
3199 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3200 * @entry: swap entry to be moved
3201 * @from: mem_cgroup which the entry is moved from
3202 * @to: mem_cgroup which the entry is moved to
3203 * @need_fixup: whether we should fixup res_counters and refcounts.
3204 *
3205 * It succeeds only when the swap_cgroup's record for this entry is the same
3206 * as the mem_cgroup's id of @from.
3207 *
3208 * Returns 0 on success, -EINVAL on failure.
3209 *
3210 * The caller must have charged to @to, IOW, called res_counter_charge() about
3211 * both res and memsw, and called css_get().
3212 */
3213 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3214 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3215 {
3216 unsigned short old_id, new_id;
3217
3218 old_id = css_id(&from->css);
3219 new_id = css_id(&to->css);
3220
3221 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3222 mem_cgroup_swap_statistics(from, false);
3223 mem_cgroup_swap_statistics(to, true);
3224 /*
3225 * This function is only called from task migration context now.
3226 * It postpones res_counter and refcount handling till the end
3227 * of task migration(mem_cgroup_clear_mc()) for performance
3228 * improvement. But we cannot postpone mem_cgroup_get(to)
3229 * because if the process that has been moved to @to does
3230 * swap-in, the refcount of @to might be decreased to 0.
3231 */
3232 mem_cgroup_get(to);
3233 if (need_fixup) {
3234 if (!mem_cgroup_is_root(from))
3235 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3236 mem_cgroup_put(from);
3237 /*
3238 * we charged both to->res and to->memsw, so we should
3239 * uncharge to->res.
3240 */
3241 if (!mem_cgroup_is_root(to))
3242 res_counter_uncharge(&to->res, PAGE_SIZE);
3243 }
3244 return 0;
3245 }
3246 return -EINVAL;
3247 }
3248 #else
3249 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3250 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3251 {
3252 return -EINVAL;
3253 }
3254 #endif
3255
3256 /*
3257 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3258 * page belongs to.
3259 */
3260 int mem_cgroup_prepare_migration(struct page *page,
3261 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3262 {
3263 struct mem_cgroup *memcg = NULL;
3264 struct page_cgroup *pc;
3265 enum charge_type ctype;
3266 int ret = 0;
3267
3268 *ptr = NULL;
3269
3270 VM_BUG_ON(PageTransHuge(page));
3271 if (mem_cgroup_disabled())
3272 return 0;
3273
3274 pc = lookup_page_cgroup(page);
3275 lock_page_cgroup(pc);
3276 if (PageCgroupUsed(pc)) {
3277 memcg = pc->mem_cgroup;
3278 css_get(&memcg->css);
3279 /*
3280 * At migrating an anonymous page, its mapcount goes down
3281 * to 0 and uncharge() will be called. But, even if it's fully
3282 * unmapped, migration may fail and this page has to be
3283 * charged again. We set MIGRATION flag here and delay uncharge
3284 * until end_migration() is called
3285 *
3286 * Corner Case Thinking
3287 * A)
3288 * When the old page was mapped as Anon and it's unmap-and-freed
3289 * while migration was ongoing.
3290 * If unmap finds the old page, uncharge() of it will be delayed
3291 * until end_migration(). If unmap finds a new page, it's
3292 * uncharged when it make mapcount to be 1->0. If unmap code
3293 * finds swap_migration_entry, the new page will not be mapped
3294 * and end_migration() will find it(mapcount==0).
3295 *
3296 * B)
3297 * When the old page was mapped but migraion fails, the kernel
3298 * remaps it. A charge for it is kept by MIGRATION flag even
3299 * if mapcount goes down to 0. We can do remap successfully
3300 * without charging it again.
3301 *
3302 * C)
3303 * The "old" page is under lock_page() until the end of
3304 * migration, so, the old page itself will not be swapped-out.
3305 * If the new page is swapped out before end_migraton, our
3306 * hook to usual swap-out path will catch the event.
3307 */
3308 if (PageAnon(page))
3309 SetPageCgroupMigration(pc);
3310 }
3311 unlock_page_cgroup(pc);
3312 /*
3313 * If the page is not charged at this point,
3314 * we return here.
3315 */
3316 if (!memcg)
3317 return 0;
3318
3319 *ptr = memcg;
3320 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3321 css_put(&memcg->css);/* drop extra refcnt */
3322 if (ret || *ptr == NULL) {
3323 if (PageAnon(page)) {
3324 lock_page_cgroup(pc);
3325 ClearPageCgroupMigration(pc);
3326 unlock_page_cgroup(pc);
3327 /*
3328 * The old page may be fully unmapped while we kept it.
3329 */
3330 mem_cgroup_uncharge_page(page);
3331 }
3332 return -ENOMEM;
3333 }
3334 /*
3335 * We charge new page before it's used/mapped. So, even if unlock_page()
3336 * is called before end_migration, we can catch all events on this new
3337 * page. In the case new page is migrated but not remapped, new page's
3338 * mapcount will be finally 0 and we call uncharge in end_migration().
3339 */
3340 pc = lookup_page_cgroup(newpage);
3341 if (PageAnon(page))
3342 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3343 else if (page_is_file_cache(page))
3344 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3345 else
3346 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3347 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3348 return ret;
3349 }
3350
3351 /* remove redundant charge if migration failed*/
3352 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3353 struct page *oldpage, struct page *newpage, bool migration_ok)
3354 {
3355 struct page *used, *unused;
3356 struct page_cgroup *pc;
3357
3358 if (!memcg)
3359 return;
3360 /* blocks rmdir() */
3361 cgroup_exclude_rmdir(&memcg->css);
3362 if (!migration_ok) {
3363 used = oldpage;
3364 unused = newpage;
3365 } else {
3366 used = newpage;
3367 unused = oldpage;
3368 }
3369 /*
3370 * We disallowed uncharge of pages under migration because mapcount
3371 * of the page goes down to zero, temporarly.
3372 * Clear the flag and check the page should be charged.
3373 */
3374 pc = lookup_page_cgroup(oldpage);
3375 lock_page_cgroup(pc);
3376 ClearPageCgroupMigration(pc);
3377 unlock_page_cgroup(pc);
3378
3379 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3380
3381 /*
3382 * If a page is a file cache, radix-tree replacement is very atomic
3383 * and we can skip this check. When it was an Anon page, its mapcount
3384 * goes down to 0. But because we added MIGRATION flage, it's not
3385 * uncharged yet. There are several case but page->mapcount check
3386 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3387 * check. (see prepare_charge() also)
3388 */
3389 if (PageAnon(used))
3390 mem_cgroup_uncharge_page(used);
3391 /*
3392 * At migration, we may charge account against cgroup which has no
3393 * tasks.
3394 * So, rmdir()->pre_destroy() can be called while we do this charge.
3395 * In that case, we need to call pre_destroy() again. check it here.
3396 */
3397 cgroup_release_and_wakeup_rmdir(&memcg->css);
3398 }
3399
3400 /*
3401 * At replace page cache, newpage is not under any memcg but it's on
3402 * LRU. So, this function doesn't touch res_counter but handles LRU
3403 * in correct way. Both pages are locked so we cannot race with uncharge.
3404 */
3405 void mem_cgroup_replace_page_cache(struct page *oldpage,
3406 struct page *newpage)
3407 {
3408 struct mem_cgroup *memcg;
3409 struct page_cgroup *pc;
3410 struct zone *zone;
3411 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3412 unsigned long flags;
3413
3414 if (mem_cgroup_disabled())
3415 return;
3416
3417 pc = lookup_page_cgroup(oldpage);
3418 /* fix accounting on old pages */
3419 lock_page_cgroup(pc);
3420 memcg = pc->mem_cgroup;
3421 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3422 ClearPageCgroupUsed(pc);
3423 unlock_page_cgroup(pc);
3424
3425 if (PageSwapBacked(oldpage))
3426 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3427
3428 zone = page_zone(newpage);
3429 pc = lookup_page_cgroup(newpage);
3430 /*
3431 * Even if newpage->mapping was NULL before starting replacement,
3432 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3433 * LRU while we overwrite pc->mem_cgroup.
3434 */
3435 spin_lock_irqsave(&zone->lru_lock, flags);
3436 if (PageLRU(newpage))
3437 del_page_from_lru_list(zone, newpage, page_lru(newpage));
3438 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
3439 if (PageLRU(newpage))
3440 add_page_to_lru_list(zone, newpage, page_lru(newpage));
3441 spin_unlock_irqrestore(&zone->lru_lock, flags);
3442 }
3443
3444 #ifdef CONFIG_DEBUG_VM
3445 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3446 {
3447 struct page_cgroup *pc;
3448
3449 pc = lookup_page_cgroup(page);
3450 if (likely(pc) && PageCgroupUsed(pc))
3451 return pc;
3452 return NULL;
3453 }
3454
3455 bool mem_cgroup_bad_page_check(struct page *page)
3456 {
3457 if (mem_cgroup_disabled())
3458 return false;
3459
3460 return lookup_page_cgroup_used(page) != NULL;
3461 }
3462
3463 void mem_cgroup_print_bad_page(struct page *page)
3464 {
3465 struct page_cgroup *pc;
3466
3467 pc = lookup_page_cgroup_used(page);
3468 if (pc) {
3469 int ret = -1;
3470 char *path;
3471
3472 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3473 pc, pc->flags, pc->mem_cgroup);
3474
3475 path = kmalloc(PATH_MAX, GFP_KERNEL);
3476 if (path) {
3477 rcu_read_lock();
3478 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3479 path, PATH_MAX);
3480 rcu_read_unlock();
3481 }
3482
3483 printk(KERN_CONT "(%s)\n",
3484 (ret < 0) ? "cannot get the path" : path);
3485 kfree(path);
3486 }
3487 }
3488 #endif
3489
3490 static DEFINE_MUTEX(set_limit_mutex);
3491
3492 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3493 unsigned long long val)
3494 {
3495 int retry_count;
3496 u64 memswlimit, memlimit;
3497 int ret = 0;
3498 int children = mem_cgroup_count_children(memcg);
3499 u64 curusage, oldusage;
3500 int enlarge;
3501
3502 /*
3503 * For keeping hierarchical_reclaim simple, how long we should retry
3504 * is depends on callers. We set our retry-count to be function
3505 * of # of children which we should visit in this loop.
3506 */
3507 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3508
3509 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3510
3511 enlarge = 0;
3512 while (retry_count) {
3513 if (signal_pending(current)) {
3514 ret = -EINTR;
3515 break;
3516 }
3517 /*
3518 * Rather than hide all in some function, I do this in
3519 * open coded manner. You see what this really does.
3520 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3521 */
3522 mutex_lock(&set_limit_mutex);
3523 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3524 if (memswlimit < val) {
3525 ret = -EINVAL;
3526 mutex_unlock(&set_limit_mutex);
3527 break;
3528 }
3529
3530 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3531 if (memlimit < val)
3532 enlarge = 1;
3533
3534 ret = res_counter_set_limit(&memcg->res, val);
3535 if (!ret) {
3536 if (memswlimit == val)
3537 memcg->memsw_is_minimum = true;
3538 else
3539 memcg->memsw_is_minimum = false;
3540 }
3541 mutex_unlock(&set_limit_mutex);
3542
3543 if (!ret)
3544 break;
3545
3546 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3547 MEM_CGROUP_RECLAIM_SHRINK);
3548 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3549 /* Usage is reduced ? */
3550 if (curusage >= oldusage)
3551 retry_count--;
3552 else
3553 oldusage = curusage;
3554 }
3555 if (!ret && enlarge)
3556 memcg_oom_recover(memcg);
3557
3558 return ret;
3559 }
3560
3561 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3562 unsigned long long val)
3563 {
3564 int retry_count;
3565 u64 memlimit, memswlimit, oldusage, curusage;
3566 int children = mem_cgroup_count_children(memcg);
3567 int ret = -EBUSY;
3568 int enlarge = 0;
3569
3570 /* see mem_cgroup_resize_res_limit */
3571 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3572 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3573 while (retry_count) {
3574 if (signal_pending(current)) {
3575 ret = -EINTR;
3576 break;
3577 }
3578 /*
3579 * Rather than hide all in some function, I do this in
3580 * open coded manner. You see what this really does.
3581 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3582 */
3583 mutex_lock(&set_limit_mutex);
3584 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3585 if (memlimit > val) {
3586 ret = -EINVAL;
3587 mutex_unlock(&set_limit_mutex);
3588 break;
3589 }
3590 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3591 if (memswlimit < val)
3592 enlarge = 1;
3593 ret = res_counter_set_limit(&memcg->memsw, val);
3594 if (!ret) {
3595 if (memlimit == val)
3596 memcg->memsw_is_minimum = true;
3597 else
3598 memcg->memsw_is_minimum = false;
3599 }
3600 mutex_unlock(&set_limit_mutex);
3601
3602 if (!ret)
3603 break;
3604
3605 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3606 MEM_CGROUP_RECLAIM_NOSWAP |
3607 MEM_CGROUP_RECLAIM_SHRINK);
3608 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3609 /* Usage is reduced ? */
3610 if (curusage >= oldusage)
3611 retry_count--;
3612 else
3613 oldusage = curusage;
3614 }
3615 if (!ret && enlarge)
3616 memcg_oom_recover(memcg);
3617 return ret;
3618 }
3619
3620 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3621 gfp_t gfp_mask,
3622 unsigned long *total_scanned)
3623 {
3624 unsigned long nr_reclaimed = 0;
3625 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3626 unsigned long reclaimed;
3627 int loop = 0;
3628 struct mem_cgroup_tree_per_zone *mctz;
3629 unsigned long long excess;
3630 unsigned long nr_scanned;
3631
3632 if (order > 0)
3633 return 0;
3634
3635 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3636 /*
3637 * This loop can run a while, specially if mem_cgroup's continuously
3638 * keep exceeding their soft limit and putting the system under
3639 * pressure
3640 */
3641 do {
3642 if (next_mz)
3643 mz = next_mz;
3644 else
3645 mz = mem_cgroup_largest_soft_limit_node(mctz);
3646 if (!mz)
3647 break;
3648
3649 nr_scanned = 0;
3650 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3651 gfp_mask, &nr_scanned);
3652 nr_reclaimed += reclaimed;
3653 *total_scanned += nr_scanned;
3654 spin_lock(&mctz->lock);
3655
3656 /*
3657 * If we failed to reclaim anything from this memory cgroup
3658 * it is time to move on to the next cgroup
3659 */
3660 next_mz = NULL;
3661 if (!reclaimed) {
3662 do {
3663 /*
3664 * Loop until we find yet another one.
3665 *
3666 * By the time we get the soft_limit lock
3667 * again, someone might have aded the
3668 * group back on the RB tree. Iterate to
3669 * make sure we get a different mem.
3670 * mem_cgroup_largest_soft_limit_node returns
3671 * NULL if no other cgroup is present on
3672 * the tree
3673 */
3674 next_mz =
3675 __mem_cgroup_largest_soft_limit_node(mctz);
3676 if (next_mz == mz)
3677 css_put(&next_mz->mem->css);
3678 else /* next_mz == NULL or other memcg */
3679 break;
3680 } while (1);
3681 }
3682 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3683 excess = res_counter_soft_limit_excess(&mz->mem->res);
3684 /*
3685 * One school of thought says that we should not add
3686 * back the node to the tree if reclaim returns 0.
3687 * But our reclaim could return 0, simply because due
3688 * to priority we are exposing a smaller subset of
3689 * memory to reclaim from. Consider this as a longer
3690 * term TODO.
3691 */
3692 /* If excess == 0, no tree ops */
3693 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3694 spin_unlock(&mctz->lock);
3695 css_put(&mz->mem->css);
3696 loop++;
3697 /*
3698 * Could not reclaim anything and there are no more
3699 * mem cgroups to try or we seem to be looping without
3700 * reclaiming anything.
3701 */
3702 if (!nr_reclaimed &&
3703 (next_mz == NULL ||
3704 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3705 break;
3706 } while (!nr_reclaimed);
3707 if (next_mz)
3708 css_put(&next_mz->mem->css);
3709 return nr_reclaimed;
3710 }
3711
3712 /*
3713 * This routine traverse page_cgroup in given list and drop them all.
3714 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3715 */
3716 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3717 int node, int zid, enum lru_list lru)
3718 {
3719 struct mem_cgroup_per_zone *mz;
3720 unsigned long flags, loop;
3721 struct list_head *list;
3722 struct page *busy;
3723 struct zone *zone;
3724 int ret = 0;
3725
3726 zone = &NODE_DATA(node)->node_zones[zid];
3727 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3728 list = &mz->lruvec.lists[lru];
3729
3730 loop = MEM_CGROUP_ZSTAT(mz, lru);
3731 /* give some margin against EBUSY etc...*/
3732 loop += 256;
3733 busy = NULL;
3734 while (loop--) {
3735 struct page_cgroup *pc;
3736 struct page *page;
3737
3738 ret = 0;
3739 spin_lock_irqsave(&zone->lru_lock, flags);
3740 if (list_empty(list)) {
3741 spin_unlock_irqrestore(&zone->lru_lock, flags);
3742 break;
3743 }
3744 page = list_entry(list->prev, struct page, lru);
3745 if (busy == page) {
3746 list_move(&page->lru, list);
3747 busy = NULL;
3748 spin_unlock_irqrestore(&zone->lru_lock, flags);
3749 continue;
3750 }
3751 spin_unlock_irqrestore(&zone->lru_lock, flags);
3752
3753 pc = lookup_page_cgroup(page);
3754
3755 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3756 if (ret == -ENOMEM)
3757 break;
3758
3759 if (ret == -EBUSY || ret == -EINVAL) {
3760 /* found lock contention or "pc" is obsolete. */
3761 busy = page;
3762 cond_resched();
3763 } else
3764 busy = NULL;
3765 }
3766
3767 if (!ret && !list_empty(list))
3768 return -EBUSY;
3769 return ret;
3770 }
3771
3772 /*
3773 * make mem_cgroup's charge to be 0 if there is no task.
3774 * This enables deleting this mem_cgroup.
3775 */
3776 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3777 {
3778 int ret;
3779 int node, zid, shrink;
3780 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3781 struct cgroup *cgrp = memcg->css.cgroup;
3782
3783 css_get(&memcg->css);
3784
3785 shrink = 0;
3786 /* should free all ? */
3787 if (free_all)
3788 goto try_to_free;
3789 move_account:
3790 do {
3791 ret = -EBUSY;
3792 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3793 goto out;
3794 ret = -EINTR;
3795 if (signal_pending(current))
3796 goto out;
3797 /* This is for making all *used* pages to be on LRU. */
3798 lru_add_drain_all();
3799 drain_all_stock_sync(memcg);
3800 ret = 0;
3801 mem_cgroup_start_move(memcg);
3802 for_each_node_state(node, N_HIGH_MEMORY) {
3803 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3804 enum lru_list l;
3805 for_each_lru(l) {
3806 ret = mem_cgroup_force_empty_list(memcg,
3807 node, zid, l);
3808 if (ret)
3809 break;
3810 }
3811 }
3812 if (ret)
3813 break;
3814 }
3815 mem_cgroup_end_move(memcg);
3816 memcg_oom_recover(memcg);
3817 /* it seems parent cgroup doesn't have enough mem */
3818 if (ret == -ENOMEM)
3819 goto try_to_free;
3820 cond_resched();
3821 /* "ret" should also be checked to ensure all lists are empty. */
3822 } while (memcg->res.usage > 0 || ret);
3823 out:
3824 css_put(&memcg->css);
3825 return ret;
3826
3827 try_to_free:
3828 /* returns EBUSY if there is a task or if we come here twice. */
3829 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3830 ret = -EBUSY;
3831 goto out;
3832 }
3833 /* we call try-to-free pages for make this cgroup empty */
3834 lru_add_drain_all();
3835 /* try to free all pages in this cgroup */
3836 shrink = 1;
3837 while (nr_retries && memcg->res.usage > 0) {
3838 int progress;
3839
3840 if (signal_pending(current)) {
3841 ret = -EINTR;
3842 goto out;
3843 }
3844 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3845 false);
3846 if (!progress) {
3847 nr_retries--;
3848 /* maybe some writeback is necessary */
3849 congestion_wait(BLK_RW_ASYNC, HZ/10);
3850 }
3851
3852 }
3853 lru_add_drain();
3854 /* try move_account...there may be some *locked* pages. */
3855 goto move_account;
3856 }
3857
3858 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3859 {
3860 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3861 }
3862
3863
3864 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3865 {
3866 return mem_cgroup_from_cont(cont)->use_hierarchy;
3867 }
3868
3869 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3870 u64 val)
3871 {
3872 int retval = 0;
3873 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3874 struct cgroup *parent = cont->parent;
3875 struct mem_cgroup *parent_memcg = NULL;
3876
3877 if (parent)
3878 parent_memcg = mem_cgroup_from_cont(parent);
3879
3880 cgroup_lock();
3881 /*
3882 * If parent's use_hierarchy is set, we can't make any modifications
3883 * in the child subtrees. If it is unset, then the change can
3884 * occur, provided the current cgroup has no children.
3885 *
3886 * For the root cgroup, parent_mem is NULL, we allow value to be
3887 * set if there are no children.
3888 */
3889 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3890 (val == 1 || val == 0)) {
3891 if (list_empty(&cont->children))
3892 memcg->use_hierarchy = val;
3893 else
3894 retval = -EBUSY;
3895 } else
3896 retval = -EINVAL;
3897 cgroup_unlock();
3898
3899 return retval;
3900 }
3901
3902
3903 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3904 enum mem_cgroup_stat_index idx)
3905 {
3906 struct mem_cgroup *iter;
3907 long val = 0;
3908
3909 /* Per-cpu values can be negative, use a signed accumulator */
3910 for_each_mem_cgroup_tree(iter, memcg)
3911 val += mem_cgroup_read_stat(iter, idx);
3912
3913 if (val < 0) /* race ? */
3914 val = 0;
3915 return val;
3916 }
3917
3918 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3919 {
3920 u64 val;
3921
3922 if (!mem_cgroup_is_root(memcg)) {
3923 if (!swap)
3924 return res_counter_read_u64(&memcg->res, RES_USAGE);
3925 else
3926 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3927 }
3928
3929 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3930 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3931
3932 if (swap)
3933 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3934
3935 return val << PAGE_SHIFT;
3936 }
3937
3938 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3939 {
3940 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3941 u64 val;
3942 int type, name;
3943
3944 type = MEMFILE_TYPE(cft->private);
3945 name = MEMFILE_ATTR(cft->private);
3946 switch (type) {
3947 case _MEM:
3948 if (name == RES_USAGE)
3949 val = mem_cgroup_usage(memcg, false);
3950 else
3951 val = res_counter_read_u64(&memcg->res, name);
3952 break;
3953 case _MEMSWAP:
3954 if (name == RES_USAGE)
3955 val = mem_cgroup_usage(memcg, true);
3956 else
3957 val = res_counter_read_u64(&memcg->memsw, name);
3958 break;
3959 default:
3960 BUG();
3961 break;
3962 }
3963 return val;
3964 }
3965 /*
3966 * The user of this function is...
3967 * RES_LIMIT.
3968 */
3969 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3970 const char *buffer)
3971 {
3972 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3973 int type, name;
3974 unsigned long long val;
3975 int ret;
3976
3977 type = MEMFILE_TYPE(cft->private);
3978 name = MEMFILE_ATTR(cft->private);
3979 switch (name) {
3980 case RES_LIMIT:
3981 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3982 ret = -EINVAL;
3983 break;
3984 }
3985 /* This function does all necessary parse...reuse it */
3986 ret = res_counter_memparse_write_strategy(buffer, &val);
3987 if (ret)
3988 break;
3989 if (type == _MEM)
3990 ret = mem_cgroup_resize_limit(memcg, val);
3991 else
3992 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3993 break;
3994 case RES_SOFT_LIMIT:
3995 ret = res_counter_memparse_write_strategy(buffer, &val);
3996 if (ret)
3997 break;
3998 /*
3999 * For memsw, soft limits are hard to implement in terms
4000 * of semantics, for now, we support soft limits for
4001 * control without swap
4002 */
4003 if (type == _MEM)
4004 ret = res_counter_set_soft_limit(&memcg->res, val);
4005 else
4006 ret = -EINVAL;
4007 break;
4008 default:
4009 ret = -EINVAL; /* should be BUG() ? */
4010 break;
4011 }
4012 return ret;
4013 }
4014
4015 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4016 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4017 {
4018 struct cgroup *cgroup;
4019 unsigned long long min_limit, min_memsw_limit, tmp;
4020
4021 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4022 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4023 cgroup = memcg->css.cgroup;
4024 if (!memcg->use_hierarchy)
4025 goto out;
4026
4027 while (cgroup->parent) {
4028 cgroup = cgroup->parent;
4029 memcg = mem_cgroup_from_cont(cgroup);
4030 if (!memcg->use_hierarchy)
4031 break;
4032 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4033 min_limit = min(min_limit, tmp);
4034 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4035 min_memsw_limit = min(min_memsw_limit, tmp);
4036 }
4037 out:
4038 *mem_limit = min_limit;
4039 *memsw_limit = min_memsw_limit;
4040 return;
4041 }
4042
4043 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4044 {
4045 struct mem_cgroup *memcg;
4046 int type, name;
4047
4048 memcg = mem_cgroup_from_cont(cont);
4049 type = MEMFILE_TYPE(event);
4050 name = MEMFILE_ATTR(event);
4051 switch (name) {
4052 case RES_MAX_USAGE:
4053 if (type == _MEM)
4054 res_counter_reset_max(&memcg->res);
4055 else
4056 res_counter_reset_max(&memcg->memsw);
4057 break;
4058 case RES_FAILCNT:
4059 if (type == _MEM)
4060 res_counter_reset_failcnt(&memcg->res);
4061 else
4062 res_counter_reset_failcnt(&memcg->memsw);
4063 break;
4064 }
4065
4066 return 0;
4067 }
4068
4069 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4070 struct cftype *cft)
4071 {
4072 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4073 }
4074
4075 #ifdef CONFIG_MMU
4076 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4077 struct cftype *cft, u64 val)
4078 {
4079 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4080
4081 if (val >= (1 << NR_MOVE_TYPE))
4082 return -EINVAL;
4083 /*
4084 * We check this value several times in both in can_attach() and
4085 * attach(), so we need cgroup lock to prevent this value from being
4086 * inconsistent.
4087 */
4088 cgroup_lock();
4089 memcg->move_charge_at_immigrate = val;
4090 cgroup_unlock();
4091
4092 return 0;
4093 }
4094 #else
4095 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4096 struct cftype *cft, u64 val)
4097 {
4098 return -ENOSYS;
4099 }
4100 #endif
4101
4102
4103 /* For read statistics */
4104 enum {
4105 MCS_CACHE,
4106 MCS_RSS,
4107 MCS_FILE_MAPPED,
4108 MCS_PGPGIN,
4109 MCS_PGPGOUT,
4110 MCS_SWAP,
4111 MCS_PGFAULT,
4112 MCS_PGMAJFAULT,
4113 MCS_INACTIVE_ANON,
4114 MCS_ACTIVE_ANON,
4115 MCS_INACTIVE_FILE,
4116 MCS_ACTIVE_FILE,
4117 MCS_UNEVICTABLE,
4118 NR_MCS_STAT,
4119 };
4120
4121 struct mcs_total_stat {
4122 s64 stat[NR_MCS_STAT];
4123 };
4124
4125 struct {
4126 char *local_name;
4127 char *total_name;
4128 } memcg_stat_strings[NR_MCS_STAT] = {
4129 {"cache", "total_cache"},
4130 {"rss", "total_rss"},
4131 {"mapped_file", "total_mapped_file"},
4132 {"pgpgin", "total_pgpgin"},
4133 {"pgpgout", "total_pgpgout"},
4134 {"swap", "total_swap"},
4135 {"pgfault", "total_pgfault"},
4136 {"pgmajfault", "total_pgmajfault"},
4137 {"inactive_anon", "total_inactive_anon"},
4138 {"active_anon", "total_active_anon"},
4139 {"inactive_file", "total_inactive_file"},
4140 {"active_file", "total_active_file"},
4141 {"unevictable", "total_unevictable"}
4142 };
4143
4144
4145 static void
4146 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4147 {
4148 s64 val;
4149
4150 /* per cpu stat */
4151 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4152 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4153 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4154 s->stat[MCS_RSS] += val * PAGE_SIZE;
4155 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4156 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4157 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4158 s->stat[MCS_PGPGIN] += val;
4159 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4160 s->stat[MCS_PGPGOUT] += val;
4161 if (do_swap_account) {
4162 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4163 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4164 }
4165 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4166 s->stat[MCS_PGFAULT] += val;
4167 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4168 s->stat[MCS_PGMAJFAULT] += val;
4169
4170 /* per zone stat */
4171 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4172 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4173 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4174 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4175 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4176 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4177 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4178 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4179 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4180 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4181 }
4182
4183 static void
4184 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4185 {
4186 struct mem_cgroup *iter;
4187
4188 for_each_mem_cgroup_tree(iter, memcg)
4189 mem_cgroup_get_local_stat(iter, s);
4190 }
4191
4192 #ifdef CONFIG_NUMA
4193 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4194 {
4195 int nid;
4196 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4197 unsigned long node_nr;
4198 struct cgroup *cont = m->private;
4199 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4200
4201 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4202 seq_printf(m, "total=%lu", total_nr);
4203 for_each_node_state(nid, N_HIGH_MEMORY) {
4204 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4205 seq_printf(m, " N%d=%lu", nid, node_nr);
4206 }
4207 seq_putc(m, '\n');
4208
4209 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4210 seq_printf(m, "file=%lu", file_nr);
4211 for_each_node_state(nid, N_HIGH_MEMORY) {
4212 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4213 LRU_ALL_FILE);
4214 seq_printf(m, " N%d=%lu", nid, node_nr);
4215 }
4216 seq_putc(m, '\n');
4217
4218 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4219 seq_printf(m, "anon=%lu", anon_nr);
4220 for_each_node_state(nid, N_HIGH_MEMORY) {
4221 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4222 LRU_ALL_ANON);
4223 seq_printf(m, " N%d=%lu", nid, node_nr);
4224 }
4225 seq_putc(m, '\n');
4226
4227 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4228 seq_printf(m, "unevictable=%lu", unevictable_nr);
4229 for_each_node_state(nid, N_HIGH_MEMORY) {
4230 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4231 BIT(LRU_UNEVICTABLE));
4232 seq_printf(m, " N%d=%lu", nid, node_nr);
4233 }
4234 seq_putc(m, '\n');
4235 return 0;
4236 }
4237 #endif /* CONFIG_NUMA */
4238
4239 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4240 struct cgroup_map_cb *cb)
4241 {
4242 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4243 struct mcs_total_stat mystat;
4244 int i;
4245
4246 memset(&mystat, 0, sizeof(mystat));
4247 mem_cgroup_get_local_stat(mem_cont, &mystat);
4248
4249
4250 for (i = 0; i < NR_MCS_STAT; i++) {
4251 if (i == MCS_SWAP && !do_swap_account)
4252 continue;
4253 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4254 }
4255
4256 /* Hierarchical information */
4257 {
4258 unsigned long long limit, memsw_limit;
4259 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4260 cb->fill(cb, "hierarchical_memory_limit", limit);
4261 if (do_swap_account)
4262 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4263 }
4264
4265 memset(&mystat, 0, sizeof(mystat));
4266 mem_cgroup_get_total_stat(mem_cont, &mystat);
4267 for (i = 0; i < NR_MCS_STAT; i++) {
4268 if (i == MCS_SWAP && !do_swap_account)
4269 continue;
4270 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4271 }
4272
4273 #ifdef CONFIG_DEBUG_VM
4274 {
4275 int nid, zid;
4276 struct mem_cgroup_per_zone *mz;
4277 unsigned long recent_rotated[2] = {0, 0};
4278 unsigned long recent_scanned[2] = {0, 0};
4279
4280 for_each_online_node(nid)
4281 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4282 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4283
4284 recent_rotated[0] +=
4285 mz->reclaim_stat.recent_rotated[0];
4286 recent_rotated[1] +=
4287 mz->reclaim_stat.recent_rotated[1];
4288 recent_scanned[0] +=
4289 mz->reclaim_stat.recent_scanned[0];
4290 recent_scanned[1] +=
4291 mz->reclaim_stat.recent_scanned[1];
4292 }
4293 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4294 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4295 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4296 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4297 }
4298 #endif
4299
4300 return 0;
4301 }
4302
4303 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4304 {
4305 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4306
4307 return mem_cgroup_swappiness(memcg);
4308 }
4309
4310 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4311 u64 val)
4312 {
4313 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4314 struct mem_cgroup *parent;
4315
4316 if (val > 100)
4317 return -EINVAL;
4318
4319 if (cgrp->parent == NULL)
4320 return -EINVAL;
4321
4322 parent = mem_cgroup_from_cont(cgrp->parent);
4323
4324 cgroup_lock();
4325
4326 /* If under hierarchy, only empty-root can set this value */
4327 if ((parent->use_hierarchy) ||
4328 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4329 cgroup_unlock();
4330 return -EINVAL;
4331 }
4332
4333 memcg->swappiness = val;
4334
4335 cgroup_unlock();
4336
4337 return 0;
4338 }
4339
4340 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4341 {
4342 struct mem_cgroup_threshold_ary *t;
4343 u64 usage;
4344 int i;
4345
4346 rcu_read_lock();
4347 if (!swap)
4348 t = rcu_dereference(memcg->thresholds.primary);
4349 else
4350 t = rcu_dereference(memcg->memsw_thresholds.primary);
4351
4352 if (!t)
4353 goto unlock;
4354
4355 usage = mem_cgroup_usage(memcg, swap);
4356
4357 /*
4358 * current_threshold points to threshold just below usage.
4359 * If it's not true, a threshold was crossed after last
4360 * call of __mem_cgroup_threshold().
4361 */
4362 i = t->current_threshold;
4363
4364 /*
4365 * Iterate backward over array of thresholds starting from
4366 * current_threshold and check if a threshold is crossed.
4367 * If none of thresholds below usage is crossed, we read
4368 * only one element of the array here.
4369 */
4370 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4371 eventfd_signal(t->entries[i].eventfd, 1);
4372
4373 /* i = current_threshold + 1 */
4374 i++;
4375
4376 /*
4377 * Iterate forward over array of thresholds starting from
4378 * current_threshold+1 and check if a threshold is crossed.
4379 * If none of thresholds above usage is crossed, we read
4380 * only one element of the array here.
4381 */
4382 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4383 eventfd_signal(t->entries[i].eventfd, 1);
4384
4385 /* Update current_threshold */
4386 t->current_threshold = i - 1;
4387 unlock:
4388 rcu_read_unlock();
4389 }
4390
4391 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4392 {
4393 while (memcg) {
4394 __mem_cgroup_threshold(memcg, false);
4395 if (do_swap_account)
4396 __mem_cgroup_threshold(memcg, true);
4397
4398 memcg = parent_mem_cgroup(memcg);
4399 }
4400 }
4401
4402 static int compare_thresholds(const void *a, const void *b)
4403 {
4404 const struct mem_cgroup_threshold *_a = a;
4405 const struct mem_cgroup_threshold *_b = b;
4406
4407 return _a->threshold - _b->threshold;
4408 }
4409
4410 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4411 {
4412 struct mem_cgroup_eventfd_list *ev;
4413
4414 list_for_each_entry(ev, &memcg->oom_notify, list)
4415 eventfd_signal(ev->eventfd, 1);
4416 return 0;
4417 }
4418
4419 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4420 {
4421 struct mem_cgroup *iter;
4422
4423 for_each_mem_cgroup_tree(iter, memcg)
4424 mem_cgroup_oom_notify_cb(iter);
4425 }
4426
4427 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4428 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4429 {
4430 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4431 struct mem_cgroup_thresholds *thresholds;
4432 struct mem_cgroup_threshold_ary *new;
4433 int type = MEMFILE_TYPE(cft->private);
4434 u64 threshold, usage;
4435 int i, size, ret;
4436
4437 ret = res_counter_memparse_write_strategy(args, &threshold);
4438 if (ret)
4439 return ret;
4440
4441 mutex_lock(&memcg->thresholds_lock);
4442
4443 if (type == _MEM)
4444 thresholds = &memcg->thresholds;
4445 else if (type == _MEMSWAP)
4446 thresholds = &memcg->memsw_thresholds;
4447 else
4448 BUG();
4449
4450 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4451
4452 /* Check if a threshold crossed before adding a new one */
4453 if (thresholds->primary)
4454 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4455
4456 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4457
4458 /* Allocate memory for new array of thresholds */
4459 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4460 GFP_KERNEL);
4461 if (!new) {
4462 ret = -ENOMEM;
4463 goto unlock;
4464 }
4465 new->size = size;
4466
4467 /* Copy thresholds (if any) to new array */
4468 if (thresholds->primary) {
4469 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4470 sizeof(struct mem_cgroup_threshold));
4471 }
4472
4473 /* Add new threshold */
4474 new->entries[size - 1].eventfd = eventfd;
4475 new->entries[size - 1].threshold = threshold;
4476
4477 /* Sort thresholds. Registering of new threshold isn't time-critical */
4478 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4479 compare_thresholds, NULL);
4480
4481 /* Find current threshold */
4482 new->current_threshold = -1;
4483 for (i = 0; i < size; i++) {
4484 if (new->entries[i].threshold < usage) {
4485 /*
4486 * new->current_threshold will not be used until
4487 * rcu_assign_pointer(), so it's safe to increment
4488 * it here.
4489 */
4490 ++new->current_threshold;
4491 }
4492 }
4493
4494 /* Free old spare buffer and save old primary buffer as spare */
4495 kfree(thresholds->spare);
4496 thresholds->spare = thresholds->primary;
4497
4498 rcu_assign_pointer(thresholds->primary, new);
4499
4500 /* To be sure that nobody uses thresholds */
4501 synchronize_rcu();
4502
4503 unlock:
4504 mutex_unlock(&memcg->thresholds_lock);
4505
4506 return ret;
4507 }
4508
4509 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4510 struct cftype *cft, struct eventfd_ctx *eventfd)
4511 {
4512 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4513 struct mem_cgroup_thresholds *thresholds;
4514 struct mem_cgroup_threshold_ary *new;
4515 int type = MEMFILE_TYPE(cft->private);
4516 u64 usage;
4517 int i, j, size;
4518
4519 mutex_lock(&memcg->thresholds_lock);
4520 if (type == _MEM)
4521 thresholds = &memcg->thresholds;
4522 else if (type == _MEMSWAP)
4523 thresholds = &memcg->memsw_thresholds;
4524 else
4525 BUG();
4526
4527 /*
4528 * Something went wrong if we trying to unregister a threshold
4529 * if we don't have thresholds
4530 */
4531 BUG_ON(!thresholds);
4532
4533 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4534
4535 /* Check if a threshold crossed before removing */
4536 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4537
4538 /* Calculate new number of threshold */
4539 size = 0;
4540 for (i = 0; i < thresholds->primary->size; i++) {
4541 if (thresholds->primary->entries[i].eventfd != eventfd)
4542 size++;
4543 }
4544
4545 new = thresholds->spare;
4546
4547 /* Set thresholds array to NULL if we don't have thresholds */
4548 if (!size) {
4549 kfree(new);
4550 new = NULL;
4551 goto swap_buffers;
4552 }
4553
4554 new->size = size;
4555
4556 /* Copy thresholds and find current threshold */
4557 new->current_threshold = -1;
4558 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4559 if (thresholds->primary->entries[i].eventfd == eventfd)
4560 continue;
4561
4562 new->entries[j] = thresholds->primary->entries[i];
4563 if (new->entries[j].threshold < usage) {
4564 /*
4565 * new->current_threshold will not be used
4566 * until rcu_assign_pointer(), so it's safe to increment
4567 * it here.
4568 */
4569 ++new->current_threshold;
4570 }
4571 j++;
4572 }
4573
4574 swap_buffers:
4575 /* Swap primary and spare array */
4576 thresholds->spare = thresholds->primary;
4577 rcu_assign_pointer(thresholds->primary, new);
4578
4579 /* To be sure that nobody uses thresholds */
4580 synchronize_rcu();
4581
4582 mutex_unlock(&memcg->thresholds_lock);
4583 }
4584
4585 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4586 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4587 {
4588 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4589 struct mem_cgroup_eventfd_list *event;
4590 int type = MEMFILE_TYPE(cft->private);
4591
4592 BUG_ON(type != _OOM_TYPE);
4593 event = kmalloc(sizeof(*event), GFP_KERNEL);
4594 if (!event)
4595 return -ENOMEM;
4596
4597 spin_lock(&memcg_oom_lock);
4598
4599 event->eventfd = eventfd;
4600 list_add(&event->list, &memcg->oom_notify);
4601
4602 /* already in OOM ? */
4603 if (atomic_read(&memcg->under_oom))
4604 eventfd_signal(eventfd, 1);
4605 spin_unlock(&memcg_oom_lock);
4606
4607 return 0;
4608 }
4609
4610 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4611 struct cftype *cft, struct eventfd_ctx *eventfd)
4612 {
4613 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4614 struct mem_cgroup_eventfd_list *ev, *tmp;
4615 int type = MEMFILE_TYPE(cft->private);
4616
4617 BUG_ON(type != _OOM_TYPE);
4618
4619 spin_lock(&memcg_oom_lock);
4620
4621 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4622 if (ev->eventfd == eventfd) {
4623 list_del(&ev->list);
4624 kfree(ev);
4625 }
4626 }
4627
4628 spin_unlock(&memcg_oom_lock);
4629 }
4630
4631 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4632 struct cftype *cft, struct cgroup_map_cb *cb)
4633 {
4634 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4635
4636 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4637
4638 if (atomic_read(&memcg->under_oom))
4639 cb->fill(cb, "under_oom", 1);
4640 else
4641 cb->fill(cb, "under_oom", 0);
4642 return 0;
4643 }
4644
4645 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4646 struct cftype *cft, u64 val)
4647 {
4648 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4649 struct mem_cgroup *parent;
4650
4651 /* cannot set to root cgroup and only 0 and 1 are allowed */
4652 if (!cgrp->parent || !((val == 0) || (val == 1)))
4653 return -EINVAL;
4654
4655 parent = mem_cgroup_from_cont(cgrp->parent);
4656
4657 cgroup_lock();
4658 /* oom-kill-disable is a flag for subhierarchy. */
4659 if ((parent->use_hierarchy) ||
4660 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4661 cgroup_unlock();
4662 return -EINVAL;
4663 }
4664 memcg->oom_kill_disable = val;
4665 if (!val)
4666 memcg_oom_recover(memcg);
4667 cgroup_unlock();
4668 return 0;
4669 }
4670
4671 #ifdef CONFIG_NUMA
4672 static const struct file_operations mem_control_numa_stat_file_operations = {
4673 .read = seq_read,
4674 .llseek = seq_lseek,
4675 .release = single_release,
4676 };
4677
4678 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4679 {
4680 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4681
4682 file->f_op = &mem_control_numa_stat_file_operations;
4683 return single_open(file, mem_control_numa_stat_show, cont);
4684 }
4685 #endif /* CONFIG_NUMA */
4686
4687 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4688 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4689 {
4690 /*
4691 * Part of this would be better living in a separate allocation
4692 * function, leaving us with just the cgroup tree population work.
4693 * We, however, depend on state such as network's proto_list that
4694 * is only initialized after cgroup creation. I found the less
4695 * cumbersome way to deal with it to defer it all to populate time
4696 */
4697 return mem_cgroup_sockets_init(cont, ss);
4698 };
4699
4700 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4701 struct cgroup *cont)
4702 {
4703 mem_cgroup_sockets_destroy(cont, ss);
4704 }
4705 #else
4706 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4707 {
4708 return 0;
4709 }
4710
4711 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4712 struct cgroup *cont)
4713 {
4714 }
4715 #endif
4716
4717 static struct cftype mem_cgroup_files[] = {
4718 {
4719 .name = "usage_in_bytes",
4720 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4721 .read_u64 = mem_cgroup_read,
4722 .register_event = mem_cgroup_usage_register_event,
4723 .unregister_event = mem_cgroup_usage_unregister_event,
4724 },
4725 {
4726 .name = "max_usage_in_bytes",
4727 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4728 .trigger = mem_cgroup_reset,
4729 .read_u64 = mem_cgroup_read,
4730 },
4731 {
4732 .name = "limit_in_bytes",
4733 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4734 .write_string = mem_cgroup_write,
4735 .read_u64 = mem_cgroup_read,
4736 },
4737 {
4738 .name = "soft_limit_in_bytes",
4739 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4740 .write_string = mem_cgroup_write,
4741 .read_u64 = mem_cgroup_read,
4742 },
4743 {
4744 .name = "failcnt",
4745 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4746 .trigger = mem_cgroup_reset,
4747 .read_u64 = mem_cgroup_read,
4748 },
4749 {
4750 .name = "stat",
4751 .read_map = mem_control_stat_show,
4752 },
4753 {
4754 .name = "force_empty",
4755 .trigger = mem_cgroup_force_empty_write,
4756 },
4757 {
4758 .name = "use_hierarchy",
4759 .write_u64 = mem_cgroup_hierarchy_write,
4760 .read_u64 = mem_cgroup_hierarchy_read,
4761 },
4762 {
4763 .name = "swappiness",
4764 .read_u64 = mem_cgroup_swappiness_read,
4765 .write_u64 = mem_cgroup_swappiness_write,
4766 },
4767 {
4768 .name = "move_charge_at_immigrate",
4769 .read_u64 = mem_cgroup_move_charge_read,
4770 .write_u64 = mem_cgroup_move_charge_write,
4771 },
4772 {
4773 .name = "oom_control",
4774 .read_map = mem_cgroup_oom_control_read,
4775 .write_u64 = mem_cgroup_oom_control_write,
4776 .register_event = mem_cgroup_oom_register_event,
4777 .unregister_event = mem_cgroup_oom_unregister_event,
4778 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4779 },
4780 #ifdef CONFIG_NUMA
4781 {
4782 .name = "numa_stat",
4783 .open = mem_control_numa_stat_open,
4784 .mode = S_IRUGO,
4785 },
4786 #endif
4787 };
4788
4789 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4790 static struct cftype memsw_cgroup_files[] = {
4791 {
4792 .name = "memsw.usage_in_bytes",
4793 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4794 .read_u64 = mem_cgroup_read,
4795 .register_event = mem_cgroup_usage_register_event,
4796 .unregister_event = mem_cgroup_usage_unregister_event,
4797 },
4798 {
4799 .name = "memsw.max_usage_in_bytes",
4800 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4801 .trigger = mem_cgroup_reset,
4802 .read_u64 = mem_cgroup_read,
4803 },
4804 {
4805 .name = "memsw.limit_in_bytes",
4806 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4807 .write_string = mem_cgroup_write,
4808 .read_u64 = mem_cgroup_read,
4809 },
4810 {
4811 .name = "memsw.failcnt",
4812 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4813 .trigger = mem_cgroup_reset,
4814 .read_u64 = mem_cgroup_read,
4815 },
4816 };
4817
4818 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4819 {
4820 if (!do_swap_account)
4821 return 0;
4822 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4823 ARRAY_SIZE(memsw_cgroup_files));
4824 };
4825 #else
4826 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4827 {
4828 return 0;
4829 }
4830 #endif
4831
4832 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4833 {
4834 struct mem_cgroup_per_node *pn;
4835 struct mem_cgroup_per_zone *mz;
4836 enum lru_list l;
4837 int zone, tmp = node;
4838 /*
4839 * This routine is called against possible nodes.
4840 * But it's BUG to call kmalloc() against offline node.
4841 *
4842 * TODO: this routine can waste much memory for nodes which will
4843 * never be onlined. It's better to use memory hotplug callback
4844 * function.
4845 */
4846 if (!node_state(node, N_NORMAL_MEMORY))
4847 tmp = -1;
4848 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4849 if (!pn)
4850 return 1;
4851
4852 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4853 mz = &pn->zoneinfo[zone];
4854 for_each_lru(l)
4855 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4856 mz->usage_in_excess = 0;
4857 mz->on_tree = false;
4858 mz->mem = memcg;
4859 }
4860 memcg->info.nodeinfo[node] = pn;
4861 return 0;
4862 }
4863
4864 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4865 {
4866 kfree(memcg->info.nodeinfo[node]);
4867 }
4868
4869 static struct mem_cgroup *mem_cgroup_alloc(void)
4870 {
4871 struct mem_cgroup *mem;
4872 int size = sizeof(struct mem_cgroup);
4873
4874 /* Can be very big if MAX_NUMNODES is very big */
4875 if (size < PAGE_SIZE)
4876 mem = kzalloc(size, GFP_KERNEL);
4877 else
4878 mem = vzalloc(size);
4879
4880 if (!mem)
4881 return NULL;
4882
4883 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4884 if (!mem->stat)
4885 goto out_free;
4886 spin_lock_init(&mem->pcp_counter_lock);
4887 return mem;
4888
4889 out_free:
4890 if (size < PAGE_SIZE)
4891 kfree(mem);
4892 else
4893 vfree(mem);
4894 return NULL;
4895 }
4896
4897 /*
4898 * At destroying mem_cgroup, references from swap_cgroup can remain.
4899 * (scanning all at force_empty is too costly...)
4900 *
4901 * Instead of clearing all references at force_empty, we remember
4902 * the number of reference from swap_cgroup and free mem_cgroup when
4903 * it goes down to 0.
4904 *
4905 * Removal of cgroup itself succeeds regardless of refs from swap.
4906 */
4907
4908 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4909 {
4910 int node;
4911
4912 mem_cgroup_remove_from_trees(memcg);
4913 free_css_id(&mem_cgroup_subsys, &memcg->css);
4914
4915 for_each_node_state(node, N_POSSIBLE)
4916 free_mem_cgroup_per_zone_info(memcg, node);
4917
4918 free_percpu(memcg->stat);
4919 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4920 kfree(memcg);
4921 else
4922 vfree(memcg);
4923 }
4924
4925 static void mem_cgroup_get(struct mem_cgroup *memcg)
4926 {
4927 atomic_inc(&memcg->refcnt);
4928 }
4929
4930 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4931 {
4932 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4933 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4934 __mem_cgroup_free(memcg);
4935 if (parent)
4936 mem_cgroup_put(parent);
4937 }
4938 }
4939
4940 static void mem_cgroup_put(struct mem_cgroup *memcg)
4941 {
4942 __mem_cgroup_put(memcg, 1);
4943 }
4944
4945 /*
4946 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4947 */
4948 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4949 {
4950 if (!memcg->res.parent)
4951 return NULL;
4952 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4953 }
4954 EXPORT_SYMBOL(parent_mem_cgroup);
4955
4956 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4957 static void __init enable_swap_cgroup(void)
4958 {
4959 if (!mem_cgroup_disabled() && really_do_swap_account)
4960 do_swap_account = 1;
4961 }
4962 #else
4963 static void __init enable_swap_cgroup(void)
4964 {
4965 }
4966 #endif
4967
4968 static int mem_cgroup_soft_limit_tree_init(void)
4969 {
4970 struct mem_cgroup_tree_per_node *rtpn;
4971 struct mem_cgroup_tree_per_zone *rtpz;
4972 int tmp, node, zone;
4973
4974 for_each_node_state(node, N_POSSIBLE) {
4975 tmp = node;
4976 if (!node_state(node, N_NORMAL_MEMORY))
4977 tmp = -1;
4978 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4979 if (!rtpn)
4980 return 1;
4981
4982 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4983
4984 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4985 rtpz = &rtpn->rb_tree_per_zone[zone];
4986 rtpz->rb_root = RB_ROOT;
4987 spin_lock_init(&rtpz->lock);
4988 }
4989 }
4990 return 0;
4991 }
4992
4993 static struct cgroup_subsys_state * __ref
4994 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4995 {
4996 struct mem_cgroup *memcg, *parent;
4997 long error = -ENOMEM;
4998 int node;
4999
5000 memcg = mem_cgroup_alloc();
5001 if (!memcg)
5002 return ERR_PTR(error);
5003
5004 for_each_node_state(node, N_POSSIBLE)
5005 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5006 goto free_out;
5007
5008 /* root ? */
5009 if (cont->parent == NULL) {
5010 int cpu;
5011 enable_swap_cgroup();
5012 parent = NULL;
5013 if (mem_cgroup_soft_limit_tree_init())
5014 goto free_out;
5015 root_mem_cgroup = memcg;
5016 for_each_possible_cpu(cpu) {
5017 struct memcg_stock_pcp *stock =
5018 &per_cpu(memcg_stock, cpu);
5019 INIT_WORK(&stock->work, drain_local_stock);
5020 }
5021 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5022 } else {
5023 parent = mem_cgroup_from_cont(cont->parent);
5024 memcg->use_hierarchy = parent->use_hierarchy;
5025 memcg->oom_kill_disable = parent->oom_kill_disable;
5026 }
5027
5028 if (parent && parent->use_hierarchy) {
5029 res_counter_init(&memcg->res, &parent->res);
5030 res_counter_init(&memcg->memsw, &parent->memsw);
5031 /*
5032 * We increment refcnt of the parent to ensure that we can
5033 * safely access it on res_counter_charge/uncharge.
5034 * This refcnt will be decremented when freeing this
5035 * mem_cgroup(see mem_cgroup_put).
5036 */
5037 mem_cgroup_get(parent);
5038 } else {
5039 res_counter_init(&memcg->res, NULL);
5040 res_counter_init(&memcg->memsw, NULL);
5041 }
5042 memcg->last_scanned_node = MAX_NUMNODES;
5043 INIT_LIST_HEAD(&memcg->oom_notify);
5044
5045 if (parent)
5046 memcg->swappiness = mem_cgroup_swappiness(parent);
5047 atomic_set(&memcg->refcnt, 1);
5048 memcg->move_charge_at_immigrate = 0;
5049 mutex_init(&memcg->thresholds_lock);
5050 return &memcg->css;
5051 free_out:
5052 __mem_cgroup_free(memcg);
5053 return ERR_PTR(error);
5054 }
5055
5056 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5057 struct cgroup *cont)
5058 {
5059 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5060
5061 return mem_cgroup_force_empty(memcg, false);
5062 }
5063
5064 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5065 struct cgroup *cont)
5066 {
5067 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5068
5069 kmem_cgroup_destroy(ss, cont);
5070
5071 mem_cgroup_put(memcg);
5072 }
5073
5074 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5075 struct cgroup *cont)
5076 {
5077 int ret;
5078
5079 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5080 ARRAY_SIZE(mem_cgroup_files));
5081
5082 if (!ret)
5083 ret = register_memsw_files(cont, ss);
5084
5085 if (!ret)
5086 ret = register_kmem_files(cont, ss);
5087
5088 return ret;
5089 }
5090
5091 #ifdef CONFIG_MMU
5092 /* Handlers for move charge at task migration. */
5093 #define PRECHARGE_COUNT_AT_ONCE 256
5094 static int mem_cgroup_do_precharge(unsigned long count)
5095 {
5096 int ret = 0;
5097 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5098 struct mem_cgroup *memcg = mc.to;
5099
5100 if (mem_cgroup_is_root(memcg)) {
5101 mc.precharge += count;
5102 /* we don't need css_get for root */
5103 return ret;
5104 }
5105 /* try to charge at once */
5106 if (count > 1) {
5107 struct res_counter *dummy;
5108 /*
5109 * "memcg" cannot be under rmdir() because we've already checked
5110 * by cgroup_lock_live_cgroup() that it is not removed and we
5111 * are still under the same cgroup_mutex. So we can postpone
5112 * css_get().
5113 */
5114 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5115 goto one_by_one;
5116 if (do_swap_account && res_counter_charge(&memcg->memsw,
5117 PAGE_SIZE * count, &dummy)) {
5118 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5119 goto one_by_one;
5120 }
5121 mc.precharge += count;
5122 return ret;
5123 }
5124 one_by_one:
5125 /* fall back to one by one charge */
5126 while (count--) {
5127 if (signal_pending(current)) {
5128 ret = -EINTR;
5129 break;
5130 }
5131 if (!batch_count--) {
5132 batch_count = PRECHARGE_COUNT_AT_ONCE;
5133 cond_resched();
5134 }
5135 ret = __mem_cgroup_try_charge(NULL,
5136 GFP_KERNEL, 1, &memcg, false);
5137 if (ret || !memcg)
5138 /* mem_cgroup_clear_mc() will do uncharge later */
5139 return -ENOMEM;
5140 mc.precharge++;
5141 }
5142 return ret;
5143 }
5144
5145 /**
5146 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5147 * @vma: the vma the pte to be checked belongs
5148 * @addr: the address corresponding to the pte to be checked
5149 * @ptent: the pte to be checked
5150 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5151 *
5152 * Returns
5153 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5154 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5155 * move charge. if @target is not NULL, the page is stored in target->page
5156 * with extra refcnt got(Callers should handle it).
5157 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5158 * target for charge migration. if @target is not NULL, the entry is stored
5159 * in target->ent.
5160 *
5161 * Called with pte lock held.
5162 */
5163 union mc_target {
5164 struct page *page;
5165 swp_entry_t ent;
5166 };
5167
5168 enum mc_target_type {
5169 MC_TARGET_NONE, /* not used */
5170 MC_TARGET_PAGE,
5171 MC_TARGET_SWAP,
5172 };
5173
5174 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5175 unsigned long addr, pte_t ptent)
5176 {
5177 struct page *page = vm_normal_page(vma, addr, ptent);
5178
5179 if (!page || !page_mapped(page))
5180 return NULL;
5181 if (PageAnon(page)) {
5182 /* we don't move shared anon */
5183 if (!move_anon() || page_mapcount(page) > 2)
5184 return NULL;
5185 } else if (!move_file())
5186 /* we ignore mapcount for file pages */
5187 return NULL;
5188 if (!get_page_unless_zero(page))
5189 return NULL;
5190
5191 return page;
5192 }
5193
5194 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5195 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5196 {
5197 int usage_count;
5198 struct page *page = NULL;
5199 swp_entry_t ent = pte_to_swp_entry(ptent);
5200
5201 if (!move_anon() || non_swap_entry(ent))
5202 return NULL;
5203 usage_count = mem_cgroup_count_swap_user(ent, &page);
5204 if (usage_count > 1) { /* we don't move shared anon */
5205 if (page)
5206 put_page(page);
5207 return NULL;
5208 }
5209 if (do_swap_account)
5210 entry->val = ent.val;
5211
5212 return page;
5213 }
5214
5215 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5216 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5217 {
5218 struct page *page = NULL;
5219 struct inode *inode;
5220 struct address_space *mapping;
5221 pgoff_t pgoff;
5222
5223 if (!vma->vm_file) /* anonymous vma */
5224 return NULL;
5225 if (!move_file())
5226 return NULL;
5227
5228 inode = vma->vm_file->f_path.dentry->d_inode;
5229 mapping = vma->vm_file->f_mapping;
5230 if (pte_none(ptent))
5231 pgoff = linear_page_index(vma, addr);
5232 else /* pte_file(ptent) is true */
5233 pgoff = pte_to_pgoff(ptent);
5234
5235 /* page is moved even if it's not RSS of this task(page-faulted). */
5236 page = find_get_page(mapping, pgoff);
5237
5238 #ifdef CONFIG_SWAP
5239 /* shmem/tmpfs may report page out on swap: account for that too. */
5240 if (radix_tree_exceptional_entry(page)) {
5241 swp_entry_t swap = radix_to_swp_entry(page);
5242 if (do_swap_account)
5243 *entry = swap;
5244 page = find_get_page(&swapper_space, swap.val);
5245 }
5246 #endif
5247 return page;
5248 }
5249
5250 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5251 unsigned long addr, pte_t ptent, union mc_target *target)
5252 {
5253 struct page *page = NULL;
5254 struct page_cgroup *pc;
5255 int ret = 0;
5256 swp_entry_t ent = { .val = 0 };
5257
5258 if (pte_present(ptent))
5259 page = mc_handle_present_pte(vma, addr, ptent);
5260 else if (is_swap_pte(ptent))
5261 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5262 else if (pte_none(ptent) || pte_file(ptent))
5263 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5264
5265 if (!page && !ent.val)
5266 return 0;
5267 if (page) {
5268 pc = lookup_page_cgroup(page);
5269 /*
5270 * Do only loose check w/o page_cgroup lock.
5271 * mem_cgroup_move_account() checks the pc is valid or not under
5272 * the lock.
5273 */
5274 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5275 ret = MC_TARGET_PAGE;
5276 if (target)
5277 target->page = page;
5278 }
5279 if (!ret || !target)
5280 put_page(page);
5281 }
5282 /* There is a swap entry and a page doesn't exist or isn't charged */
5283 if (ent.val && !ret &&
5284 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5285 ret = MC_TARGET_SWAP;
5286 if (target)
5287 target->ent = ent;
5288 }
5289 return ret;
5290 }
5291
5292 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5293 unsigned long addr, unsigned long end,
5294 struct mm_walk *walk)
5295 {
5296 struct vm_area_struct *vma = walk->private;
5297 pte_t *pte;
5298 spinlock_t *ptl;
5299
5300 split_huge_page_pmd(walk->mm, pmd);
5301
5302 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5303 for (; addr != end; pte++, addr += PAGE_SIZE)
5304 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5305 mc.precharge++; /* increment precharge temporarily */
5306 pte_unmap_unlock(pte - 1, ptl);
5307 cond_resched();
5308
5309 return 0;
5310 }
5311
5312 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5313 {
5314 unsigned long precharge;
5315 struct vm_area_struct *vma;
5316
5317 down_read(&mm->mmap_sem);
5318 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5319 struct mm_walk mem_cgroup_count_precharge_walk = {
5320 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5321 .mm = mm,
5322 .private = vma,
5323 };
5324 if (is_vm_hugetlb_page(vma))
5325 continue;
5326 walk_page_range(vma->vm_start, vma->vm_end,
5327 &mem_cgroup_count_precharge_walk);
5328 }
5329 up_read(&mm->mmap_sem);
5330
5331 precharge = mc.precharge;
5332 mc.precharge = 0;
5333
5334 return precharge;
5335 }
5336
5337 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5338 {
5339 unsigned long precharge = mem_cgroup_count_precharge(mm);
5340
5341 VM_BUG_ON(mc.moving_task);
5342 mc.moving_task = current;
5343 return mem_cgroup_do_precharge(precharge);
5344 }
5345
5346 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5347 static void __mem_cgroup_clear_mc(void)
5348 {
5349 struct mem_cgroup *from = mc.from;
5350 struct mem_cgroup *to = mc.to;
5351
5352 /* we must uncharge all the leftover precharges from mc.to */
5353 if (mc.precharge) {
5354 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5355 mc.precharge = 0;
5356 }
5357 /*
5358 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5359 * we must uncharge here.
5360 */
5361 if (mc.moved_charge) {
5362 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5363 mc.moved_charge = 0;
5364 }
5365 /* we must fixup refcnts and charges */
5366 if (mc.moved_swap) {
5367 /* uncharge swap account from the old cgroup */
5368 if (!mem_cgroup_is_root(mc.from))
5369 res_counter_uncharge(&mc.from->memsw,
5370 PAGE_SIZE * mc.moved_swap);
5371 __mem_cgroup_put(mc.from, mc.moved_swap);
5372
5373 if (!mem_cgroup_is_root(mc.to)) {
5374 /*
5375 * we charged both to->res and to->memsw, so we should
5376 * uncharge to->res.
5377 */
5378 res_counter_uncharge(&mc.to->res,
5379 PAGE_SIZE * mc.moved_swap);
5380 }
5381 /* we've already done mem_cgroup_get(mc.to) */
5382 mc.moved_swap = 0;
5383 }
5384 memcg_oom_recover(from);
5385 memcg_oom_recover(to);
5386 wake_up_all(&mc.waitq);
5387 }
5388
5389 static void mem_cgroup_clear_mc(void)
5390 {
5391 struct mem_cgroup *from = mc.from;
5392
5393 /*
5394 * we must clear moving_task before waking up waiters at the end of
5395 * task migration.
5396 */
5397 mc.moving_task = NULL;
5398 __mem_cgroup_clear_mc();
5399 spin_lock(&mc.lock);
5400 mc.from = NULL;
5401 mc.to = NULL;
5402 spin_unlock(&mc.lock);
5403 mem_cgroup_end_move(from);
5404 }
5405
5406 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5407 struct cgroup *cgroup,
5408 struct cgroup_taskset *tset)
5409 {
5410 struct task_struct *p = cgroup_taskset_first(tset);
5411 int ret = 0;
5412 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5413
5414 if (memcg->move_charge_at_immigrate) {
5415 struct mm_struct *mm;
5416 struct mem_cgroup *from = mem_cgroup_from_task(p);
5417
5418 VM_BUG_ON(from == memcg);
5419
5420 mm = get_task_mm(p);
5421 if (!mm)
5422 return 0;
5423 /* We move charges only when we move a owner of the mm */
5424 if (mm->owner == p) {
5425 VM_BUG_ON(mc.from);
5426 VM_BUG_ON(mc.to);
5427 VM_BUG_ON(mc.precharge);
5428 VM_BUG_ON(mc.moved_charge);
5429 VM_BUG_ON(mc.moved_swap);
5430 mem_cgroup_start_move(from);
5431 spin_lock(&mc.lock);
5432 mc.from = from;
5433 mc.to = memcg;
5434 spin_unlock(&mc.lock);
5435 /* We set mc.moving_task later */
5436
5437 ret = mem_cgroup_precharge_mc(mm);
5438 if (ret)
5439 mem_cgroup_clear_mc();
5440 }
5441 mmput(mm);
5442 }
5443 return ret;
5444 }
5445
5446 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5447 struct cgroup *cgroup,
5448 struct cgroup_taskset *tset)
5449 {
5450 mem_cgroup_clear_mc();
5451 }
5452
5453 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5454 unsigned long addr, unsigned long end,
5455 struct mm_walk *walk)
5456 {
5457 int ret = 0;
5458 struct vm_area_struct *vma = walk->private;
5459 pte_t *pte;
5460 spinlock_t *ptl;
5461
5462 split_huge_page_pmd(walk->mm, pmd);
5463 retry:
5464 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5465 for (; addr != end; addr += PAGE_SIZE) {
5466 pte_t ptent = *(pte++);
5467 union mc_target target;
5468 int type;
5469 struct page *page;
5470 struct page_cgroup *pc;
5471 swp_entry_t ent;
5472
5473 if (!mc.precharge)
5474 break;
5475
5476 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5477 switch (type) {
5478 case MC_TARGET_PAGE:
5479 page = target.page;
5480 if (isolate_lru_page(page))
5481 goto put;
5482 pc = lookup_page_cgroup(page);
5483 if (!mem_cgroup_move_account(page, 1, pc,
5484 mc.from, mc.to, false)) {
5485 mc.precharge--;
5486 /* we uncharge from mc.from later. */
5487 mc.moved_charge++;
5488 }
5489 putback_lru_page(page);
5490 put: /* is_target_pte_for_mc() gets the page */
5491 put_page(page);
5492 break;
5493 case MC_TARGET_SWAP:
5494 ent = target.ent;
5495 if (!mem_cgroup_move_swap_account(ent,
5496 mc.from, mc.to, false)) {
5497 mc.precharge--;
5498 /* we fixup refcnts and charges later. */
5499 mc.moved_swap++;
5500 }
5501 break;
5502 default:
5503 break;
5504 }
5505 }
5506 pte_unmap_unlock(pte - 1, ptl);
5507 cond_resched();
5508
5509 if (addr != end) {
5510 /*
5511 * We have consumed all precharges we got in can_attach().
5512 * We try charge one by one, but don't do any additional
5513 * charges to mc.to if we have failed in charge once in attach()
5514 * phase.
5515 */
5516 ret = mem_cgroup_do_precharge(1);
5517 if (!ret)
5518 goto retry;
5519 }
5520
5521 return ret;
5522 }
5523
5524 static void mem_cgroup_move_charge(struct mm_struct *mm)
5525 {
5526 struct vm_area_struct *vma;
5527
5528 lru_add_drain_all();
5529 retry:
5530 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5531 /*
5532 * Someone who are holding the mmap_sem might be waiting in
5533 * waitq. So we cancel all extra charges, wake up all waiters,
5534 * and retry. Because we cancel precharges, we might not be able
5535 * to move enough charges, but moving charge is a best-effort
5536 * feature anyway, so it wouldn't be a big problem.
5537 */
5538 __mem_cgroup_clear_mc();
5539 cond_resched();
5540 goto retry;
5541 }
5542 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5543 int ret;
5544 struct mm_walk mem_cgroup_move_charge_walk = {
5545 .pmd_entry = mem_cgroup_move_charge_pte_range,
5546 .mm = mm,
5547 .private = vma,
5548 };
5549 if (is_vm_hugetlb_page(vma))
5550 continue;
5551 ret = walk_page_range(vma->vm_start, vma->vm_end,
5552 &mem_cgroup_move_charge_walk);
5553 if (ret)
5554 /*
5555 * means we have consumed all precharges and failed in
5556 * doing additional charge. Just abandon here.
5557 */
5558 break;
5559 }
5560 up_read(&mm->mmap_sem);
5561 }
5562
5563 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5564 struct cgroup *cont,
5565 struct cgroup_taskset *tset)
5566 {
5567 struct task_struct *p = cgroup_taskset_first(tset);
5568 struct mm_struct *mm = get_task_mm(p);
5569
5570 if (mm) {
5571 if (mc.to)
5572 mem_cgroup_move_charge(mm);
5573 put_swap_token(mm);
5574 mmput(mm);
5575 }
5576 if (mc.to)
5577 mem_cgroup_clear_mc();
5578 }
5579 #else /* !CONFIG_MMU */
5580 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5581 struct cgroup *cgroup,
5582 struct cgroup_taskset *tset)
5583 {
5584 return 0;
5585 }
5586 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5587 struct cgroup *cgroup,
5588 struct cgroup_taskset *tset)
5589 {
5590 }
5591 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5592 struct cgroup *cont,
5593 struct cgroup_taskset *tset)
5594 {
5595 }
5596 #endif
5597
5598 struct cgroup_subsys mem_cgroup_subsys = {
5599 .name = "memory",
5600 .subsys_id = mem_cgroup_subsys_id,
5601 .create = mem_cgroup_create,
5602 .pre_destroy = mem_cgroup_pre_destroy,
5603 .destroy = mem_cgroup_destroy,
5604 .populate = mem_cgroup_populate,
5605 .can_attach = mem_cgroup_can_attach,
5606 .cancel_attach = mem_cgroup_cancel_attach,
5607 .attach = mem_cgroup_move_task,
5608 .early_init = 0,
5609 .use_id = 1,
5610 };
5611
5612 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5613 static int __init enable_swap_account(char *s)
5614 {
5615 /* consider enabled if no parameter or 1 is given */
5616 if (!strcmp(s, "1"))
5617 really_do_swap_account = 1;
5618 else if (!strcmp(s, "0"))
5619 really_do_swap_account = 0;
5620 return 1;
5621 }
5622 __setup("swapaccount=", enable_swap_account);
5623
5624 #endif