]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/memory-failure.c
irqchip/brcmstb-l2: Make two init functions static
[thirdparty/linux.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/memremap.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include <linux/page-isolation.h>
62 #include "internal.h"
63 #include "ras/ras_event.h"
64
65 int sysctl_memory_failure_early_kill __read_mostly = 0;
66
67 int sysctl_memory_failure_recovery __read_mostly = 1;
68
69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70
71 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
72
73 u32 hwpoison_filter_enable = 0;
74 u32 hwpoison_filter_dev_major = ~0U;
75 u32 hwpoison_filter_dev_minor = ~0U;
76 u64 hwpoison_filter_flags_mask;
77 u64 hwpoison_filter_flags_value;
78 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
82 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
83
84 static int hwpoison_filter_dev(struct page *p)
85 {
86 struct address_space *mapping;
87 dev_t dev;
88
89 if (hwpoison_filter_dev_major == ~0U &&
90 hwpoison_filter_dev_minor == ~0U)
91 return 0;
92
93 /*
94 * page_mapping() does not accept slab pages.
95 */
96 if (PageSlab(p))
97 return -EINVAL;
98
99 mapping = page_mapping(p);
100 if (mapping == NULL || mapping->host == NULL)
101 return -EINVAL;
102
103 dev = mapping->host->i_sb->s_dev;
104 if (hwpoison_filter_dev_major != ~0U &&
105 hwpoison_filter_dev_major != MAJOR(dev))
106 return -EINVAL;
107 if (hwpoison_filter_dev_minor != ~0U &&
108 hwpoison_filter_dev_minor != MINOR(dev))
109 return -EINVAL;
110
111 return 0;
112 }
113
114 static int hwpoison_filter_flags(struct page *p)
115 {
116 if (!hwpoison_filter_flags_mask)
117 return 0;
118
119 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
120 hwpoison_filter_flags_value)
121 return 0;
122 else
123 return -EINVAL;
124 }
125
126 /*
127 * This allows stress tests to limit test scope to a collection of tasks
128 * by putting them under some memcg. This prevents killing unrelated/important
129 * processes such as /sbin/init. Note that the target task may share clean
130 * pages with init (eg. libc text), which is harmless. If the target task
131 * share _dirty_ pages with another task B, the test scheme must make sure B
132 * is also included in the memcg. At last, due to race conditions this filter
133 * can only guarantee that the page either belongs to the memcg tasks, or is
134 * a freed page.
135 */
136 #ifdef CONFIG_MEMCG
137 u64 hwpoison_filter_memcg;
138 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
139 static int hwpoison_filter_task(struct page *p)
140 {
141 if (!hwpoison_filter_memcg)
142 return 0;
143
144 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
145 return -EINVAL;
146
147 return 0;
148 }
149 #else
150 static int hwpoison_filter_task(struct page *p) { return 0; }
151 #endif
152
153 int hwpoison_filter(struct page *p)
154 {
155 if (!hwpoison_filter_enable)
156 return 0;
157
158 if (hwpoison_filter_dev(p))
159 return -EINVAL;
160
161 if (hwpoison_filter_flags(p))
162 return -EINVAL;
163
164 if (hwpoison_filter_task(p))
165 return -EINVAL;
166
167 return 0;
168 }
169 #else
170 int hwpoison_filter(struct page *p)
171 {
172 return 0;
173 }
174 #endif
175
176 EXPORT_SYMBOL_GPL(hwpoison_filter);
177
178 /*
179 * Kill all processes that have a poisoned page mapped and then isolate
180 * the page.
181 *
182 * General strategy:
183 * Find all processes having the page mapped and kill them.
184 * But we keep a page reference around so that the page is not
185 * actually freed yet.
186 * Then stash the page away
187 *
188 * There's no convenient way to get back to mapped processes
189 * from the VMAs. So do a brute-force search over all
190 * running processes.
191 *
192 * Remember that machine checks are not common (or rather
193 * if they are common you have other problems), so this shouldn't
194 * be a performance issue.
195 *
196 * Also there are some races possible while we get from the
197 * error detection to actually handle it.
198 */
199
200 struct to_kill {
201 struct list_head nd;
202 struct task_struct *tsk;
203 unsigned long addr;
204 short size_shift;
205 char addr_valid;
206 };
207
208 /*
209 * Send all the processes who have the page mapped a signal.
210 * ``action optional'' if they are not immediately affected by the error
211 * ``action required'' if error happened in current execution context
212 */
213 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
214 {
215 struct task_struct *t = tk->tsk;
216 short addr_lsb = tk->size_shift;
217 int ret;
218
219 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
220 pfn, t->comm, t->pid);
221
222 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
223 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
224 addr_lsb, current);
225 } else {
226 /*
227 * Don't use force here, it's convenient if the signal
228 * can be temporarily blocked.
229 * This could cause a loop when the user sets SIGBUS
230 * to SIG_IGN, but hopefully no one will do that?
231 */
232 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
233 addr_lsb, t); /* synchronous? */
234 }
235 if (ret < 0)
236 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
237 t->comm, t->pid, ret);
238 return ret;
239 }
240
241 /*
242 * When a unknown page type is encountered drain as many buffers as possible
243 * in the hope to turn the page into a LRU or free page, which we can handle.
244 */
245 void shake_page(struct page *p, int access)
246 {
247 if (PageHuge(p))
248 return;
249
250 if (!PageSlab(p)) {
251 lru_add_drain_all();
252 if (PageLRU(p))
253 return;
254 drain_all_pages(page_zone(p));
255 if (PageLRU(p) || is_free_buddy_page(p))
256 return;
257 }
258
259 /*
260 * Only call shrink_node_slabs here (which would also shrink
261 * other caches) if access is not potentially fatal.
262 */
263 if (access)
264 drop_slab_node(page_to_nid(p));
265 }
266 EXPORT_SYMBOL_GPL(shake_page);
267
268 static unsigned long dev_pagemap_mapping_shift(struct page *page,
269 struct vm_area_struct *vma)
270 {
271 unsigned long address = vma_address(page, vma);
272 pgd_t *pgd;
273 p4d_t *p4d;
274 pud_t *pud;
275 pmd_t *pmd;
276 pte_t *pte;
277
278 pgd = pgd_offset(vma->vm_mm, address);
279 if (!pgd_present(*pgd))
280 return 0;
281 p4d = p4d_offset(pgd, address);
282 if (!p4d_present(*p4d))
283 return 0;
284 pud = pud_offset(p4d, address);
285 if (!pud_present(*pud))
286 return 0;
287 if (pud_devmap(*pud))
288 return PUD_SHIFT;
289 pmd = pmd_offset(pud, address);
290 if (!pmd_present(*pmd))
291 return 0;
292 if (pmd_devmap(*pmd))
293 return PMD_SHIFT;
294 pte = pte_offset_map(pmd, address);
295 if (!pte_present(*pte))
296 return 0;
297 if (pte_devmap(*pte))
298 return PAGE_SHIFT;
299 return 0;
300 }
301
302 /*
303 * Failure handling: if we can't find or can't kill a process there's
304 * not much we can do. We just print a message and ignore otherwise.
305 */
306
307 /*
308 * Schedule a process for later kill.
309 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
310 * TBD would GFP_NOIO be enough?
311 */
312 static void add_to_kill(struct task_struct *tsk, struct page *p,
313 struct vm_area_struct *vma,
314 struct list_head *to_kill,
315 struct to_kill **tkc)
316 {
317 struct to_kill *tk;
318
319 if (*tkc) {
320 tk = *tkc;
321 *tkc = NULL;
322 } else {
323 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
324 if (!tk) {
325 pr_err("Memory failure: Out of memory while machine check handling\n");
326 return;
327 }
328 }
329 tk->addr = page_address_in_vma(p, vma);
330 tk->addr_valid = 1;
331 if (is_zone_device_page(p))
332 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
333 else
334 tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
335
336 /*
337 * In theory we don't have to kill when the page was
338 * munmaped. But it could be also a mremap. Since that's
339 * likely very rare kill anyways just out of paranoia, but use
340 * a SIGKILL because the error is not contained anymore.
341 */
342 if (tk->addr == -EFAULT || tk->size_shift == 0) {
343 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
344 page_to_pfn(p), tsk->comm);
345 tk->addr_valid = 0;
346 }
347 get_task_struct(tsk);
348 tk->tsk = tsk;
349 list_add_tail(&tk->nd, to_kill);
350 }
351
352 /*
353 * Kill the processes that have been collected earlier.
354 *
355 * Only do anything when DOIT is set, otherwise just free the list
356 * (this is used for clean pages which do not need killing)
357 * Also when FAIL is set do a force kill because something went
358 * wrong earlier.
359 */
360 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
361 unsigned long pfn, int flags)
362 {
363 struct to_kill *tk, *next;
364
365 list_for_each_entry_safe (tk, next, to_kill, nd) {
366 if (forcekill) {
367 /*
368 * In case something went wrong with munmapping
369 * make sure the process doesn't catch the
370 * signal and then access the memory. Just kill it.
371 */
372 if (fail || tk->addr_valid == 0) {
373 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
374 pfn, tk->tsk->comm, tk->tsk->pid);
375 force_sig(SIGKILL, tk->tsk);
376 }
377
378 /*
379 * In theory the process could have mapped
380 * something else on the address in-between. We could
381 * check for that, but we need to tell the
382 * process anyways.
383 */
384 else if (kill_proc(tk, pfn, flags) < 0)
385 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
386 pfn, tk->tsk->comm, tk->tsk->pid);
387 }
388 put_task_struct(tk->tsk);
389 kfree(tk);
390 }
391 }
392
393 /*
394 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
395 * on behalf of the thread group. Return task_struct of the (first found)
396 * dedicated thread if found, and return NULL otherwise.
397 *
398 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
399 * have to call rcu_read_lock/unlock() in this function.
400 */
401 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
402 {
403 struct task_struct *t;
404
405 for_each_thread(tsk, t)
406 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
407 return t;
408 return NULL;
409 }
410
411 /*
412 * Determine whether a given process is "early kill" process which expects
413 * to be signaled when some page under the process is hwpoisoned.
414 * Return task_struct of the dedicated thread (main thread unless explicitly
415 * specified) if the process is "early kill," and otherwise returns NULL.
416 */
417 static struct task_struct *task_early_kill(struct task_struct *tsk,
418 int force_early)
419 {
420 struct task_struct *t;
421 if (!tsk->mm)
422 return NULL;
423 if (force_early)
424 return tsk;
425 t = find_early_kill_thread(tsk);
426 if (t)
427 return t;
428 if (sysctl_memory_failure_early_kill)
429 return tsk;
430 return NULL;
431 }
432
433 /*
434 * Collect processes when the error hit an anonymous page.
435 */
436 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
437 struct to_kill **tkc, int force_early)
438 {
439 struct vm_area_struct *vma;
440 struct task_struct *tsk;
441 struct anon_vma *av;
442 pgoff_t pgoff;
443
444 av = page_lock_anon_vma_read(page);
445 if (av == NULL) /* Not actually mapped anymore */
446 return;
447
448 pgoff = page_to_pgoff(page);
449 read_lock(&tasklist_lock);
450 for_each_process (tsk) {
451 struct anon_vma_chain *vmac;
452 struct task_struct *t = task_early_kill(tsk, force_early);
453
454 if (!t)
455 continue;
456 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
457 pgoff, pgoff) {
458 vma = vmac->vma;
459 if (!page_mapped_in_vma(page, vma))
460 continue;
461 if (vma->vm_mm == t->mm)
462 add_to_kill(t, page, vma, to_kill, tkc);
463 }
464 }
465 read_unlock(&tasklist_lock);
466 page_unlock_anon_vma_read(av);
467 }
468
469 /*
470 * Collect processes when the error hit a file mapped page.
471 */
472 static void collect_procs_file(struct page *page, struct list_head *to_kill,
473 struct to_kill **tkc, int force_early)
474 {
475 struct vm_area_struct *vma;
476 struct task_struct *tsk;
477 struct address_space *mapping = page->mapping;
478
479 i_mmap_lock_read(mapping);
480 read_lock(&tasklist_lock);
481 for_each_process(tsk) {
482 pgoff_t pgoff = page_to_pgoff(page);
483 struct task_struct *t = task_early_kill(tsk, force_early);
484
485 if (!t)
486 continue;
487 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
488 pgoff) {
489 /*
490 * Send early kill signal to tasks where a vma covers
491 * the page but the corrupted page is not necessarily
492 * mapped it in its pte.
493 * Assume applications who requested early kill want
494 * to be informed of all such data corruptions.
495 */
496 if (vma->vm_mm == t->mm)
497 add_to_kill(t, page, vma, to_kill, tkc);
498 }
499 }
500 read_unlock(&tasklist_lock);
501 i_mmap_unlock_read(mapping);
502 }
503
504 /*
505 * Collect the processes who have the corrupted page mapped to kill.
506 * This is done in two steps for locking reasons.
507 * First preallocate one tokill structure outside the spin locks,
508 * so that we can kill at least one process reasonably reliable.
509 */
510 static void collect_procs(struct page *page, struct list_head *tokill,
511 int force_early)
512 {
513 struct to_kill *tk;
514
515 if (!page->mapping)
516 return;
517
518 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
519 if (!tk)
520 return;
521 if (PageAnon(page))
522 collect_procs_anon(page, tokill, &tk, force_early);
523 else
524 collect_procs_file(page, tokill, &tk, force_early);
525 kfree(tk);
526 }
527
528 static const char *action_name[] = {
529 [MF_IGNORED] = "Ignored",
530 [MF_FAILED] = "Failed",
531 [MF_DELAYED] = "Delayed",
532 [MF_RECOVERED] = "Recovered",
533 };
534
535 static const char * const action_page_types[] = {
536 [MF_MSG_KERNEL] = "reserved kernel page",
537 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
538 [MF_MSG_SLAB] = "kernel slab page",
539 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
540 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
541 [MF_MSG_HUGE] = "huge page",
542 [MF_MSG_FREE_HUGE] = "free huge page",
543 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
544 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
545 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
546 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
547 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
548 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
549 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
550 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
551 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
552 [MF_MSG_CLEAN_LRU] = "clean LRU page",
553 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
554 [MF_MSG_BUDDY] = "free buddy page",
555 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
556 [MF_MSG_DAX] = "dax page",
557 [MF_MSG_UNKNOWN] = "unknown page",
558 };
559
560 /*
561 * XXX: It is possible that a page is isolated from LRU cache,
562 * and then kept in swap cache or failed to remove from page cache.
563 * The page count will stop it from being freed by unpoison.
564 * Stress tests should be aware of this memory leak problem.
565 */
566 static int delete_from_lru_cache(struct page *p)
567 {
568 if (!isolate_lru_page(p)) {
569 /*
570 * Clear sensible page flags, so that the buddy system won't
571 * complain when the page is unpoison-and-freed.
572 */
573 ClearPageActive(p);
574 ClearPageUnevictable(p);
575
576 /*
577 * Poisoned page might never drop its ref count to 0 so we have
578 * to uncharge it manually from its memcg.
579 */
580 mem_cgroup_uncharge(p);
581
582 /*
583 * drop the page count elevated by isolate_lru_page()
584 */
585 put_page(p);
586 return 0;
587 }
588 return -EIO;
589 }
590
591 static int truncate_error_page(struct page *p, unsigned long pfn,
592 struct address_space *mapping)
593 {
594 int ret = MF_FAILED;
595
596 if (mapping->a_ops->error_remove_page) {
597 int err = mapping->a_ops->error_remove_page(mapping, p);
598
599 if (err != 0) {
600 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
601 pfn, err);
602 } else if (page_has_private(p) &&
603 !try_to_release_page(p, GFP_NOIO)) {
604 pr_info("Memory failure: %#lx: failed to release buffers\n",
605 pfn);
606 } else {
607 ret = MF_RECOVERED;
608 }
609 } else {
610 /*
611 * If the file system doesn't support it just invalidate
612 * This fails on dirty or anything with private pages
613 */
614 if (invalidate_inode_page(p))
615 ret = MF_RECOVERED;
616 else
617 pr_info("Memory failure: %#lx: Failed to invalidate\n",
618 pfn);
619 }
620
621 return ret;
622 }
623
624 /*
625 * Error hit kernel page.
626 * Do nothing, try to be lucky and not touch this instead. For a few cases we
627 * could be more sophisticated.
628 */
629 static int me_kernel(struct page *p, unsigned long pfn)
630 {
631 return MF_IGNORED;
632 }
633
634 /*
635 * Page in unknown state. Do nothing.
636 */
637 static int me_unknown(struct page *p, unsigned long pfn)
638 {
639 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
640 return MF_FAILED;
641 }
642
643 /*
644 * Clean (or cleaned) page cache page.
645 */
646 static int me_pagecache_clean(struct page *p, unsigned long pfn)
647 {
648 struct address_space *mapping;
649
650 delete_from_lru_cache(p);
651
652 /*
653 * For anonymous pages we're done the only reference left
654 * should be the one m_f() holds.
655 */
656 if (PageAnon(p))
657 return MF_RECOVERED;
658
659 /*
660 * Now truncate the page in the page cache. This is really
661 * more like a "temporary hole punch"
662 * Don't do this for block devices when someone else
663 * has a reference, because it could be file system metadata
664 * and that's not safe to truncate.
665 */
666 mapping = page_mapping(p);
667 if (!mapping) {
668 /*
669 * Page has been teared down in the meanwhile
670 */
671 return MF_FAILED;
672 }
673
674 /*
675 * Truncation is a bit tricky. Enable it per file system for now.
676 *
677 * Open: to take i_mutex or not for this? Right now we don't.
678 */
679 return truncate_error_page(p, pfn, mapping);
680 }
681
682 /*
683 * Dirty pagecache page
684 * Issues: when the error hit a hole page the error is not properly
685 * propagated.
686 */
687 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
688 {
689 struct address_space *mapping = page_mapping(p);
690
691 SetPageError(p);
692 /* TBD: print more information about the file. */
693 if (mapping) {
694 /*
695 * IO error will be reported by write(), fsync(), etc.
696 * who check the mapping.
697 * This way the application knows that something went
698 * wrong with its dirty file data.
699 *
700 * There's one open issue:
701 *
702 * The EIO will be only reported on the next IO
703 * operation and then cleared through the IO map.
704 * Normally Linux has two mechanisms to pass IO error
705 * first through the AS_EIO flag in the address space
706 * and then through the PageError flag in the page.
707 * Since we drop pages on memory failure handling the
708 * only mechanism open to use is through AS_AIO.
709 *
710 * This has the disadvantage that it gets cleared on
711 * the first operation that returns an error, while
712 * the PageError bit is more sticky and only cleared
713 * when the page is reread or dropped. If an
714 * application assumes it will always get error on
715 * fsync, but does other operations on the fd before
716 * and the page is dropped between then the error
717 * will not be properly reported.
718 *
719 * This can already happen even without hwpoisoned
720 * pages: first on metadata IO errors (which only
721 * report through AS_EIO) or when the page is dropped
722 * at the wrong time.
723 *
724 * So right now we assume that the application DTRT on
725 * the first EIO, but we're not worse than other parts
726 * of the kernel.
727 */
728 mapping_set_error(mapping, -EIO);
729 }
730
731 return me_pagecache_clean(p, pfn);
732 }
733
734 /*
735 * Clean and dirty swap cache.
736 *
737 * Dirty swap cache page is tricky to handle. The page could live both in page
738 * cache and swap cache(ie. page is freshly swapped in). So it could be
739 * referenced concurrently by 2 types of PTEs:
740 * normal PTEs and swap PTEs. We try to handle them consistently by calling
741 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
742 * and then
743 * - clear dirty bit to prevent IO
744 * - remove from LRU
745 * - but keep in the swap cache, so that when we return to it on
746 * a later page fault, we know the application is accessing
747 * corrupted data and shall be killed (we installed simple
748 * interception code in do_swap_page to catch it).
749 *
750 * Clean swap cache pages can be directly isolated. A later page fault will
751 * bring in the known good data from disk.
752 */
753 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
754 {
755 ClearPageDirty(p);
756 /* Trigger EIO in shmem: */
757 ClearPageUptodate(p);
758
759 if (!delete_from_lru_cache(p))
760 return MF_DELAYED;
761 else
762 return MF_FAILED;
763 }
764
765 static int me_swapcache_clean(struct page *p, unsigned long pfn)
766 {
767 delete_from_swap_cache(p);
768
769 if (!delete_from_lru_cache(p))
770 return MF_RECOVERED;
771 else
772 return MF_FAILED;
773 }
774
775 /*
776 * Huge pages. Needs work.
777 * Issues:
778 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
779 * To narrow down kill region to one page, we need to break up pmd.
780 */
781 static int me_huge_page(struct page *p, unsigned long pfn)
782 {
783 int res = 0;
784 struct page *hpage = compound_head(p);
785 struct address_space *mapping;
786
787 if (!PageHuge(hpage))
788 return MF_DELAYED;
789
790 mapping = page_mapping(hpage);
791 if (mapping) {
792 res = truncate_error_page(hpage, pfn, mapping);
793 } else {
794 unlock_page(hpage);
795 /*
796 * migration entry prevents later access on error anonymous
797 * hugepage, so we can free and dissolve it into buddy to
798 * save healthy subpages.
799 */
800 if (PageAnon(hpage))
801 put_page(hpage);
802 dissolve_free_huge_page(p);
803 res = MF_RECOVERED;
804 lock_page(hpage);
805 }
806
807 return res;
808 }
809
810 /*
811 * Various page states we can handle.
812 *
813 * A page state is defined by its current page->flags bits.
814 * The table matches them in order and calls the right handler.
815 *
816 * This is quite tricky because we can access page at any time
817 * in its live cycle, so all accesses have to be extremely careful.
818 *
819 * This is not complete. More states could be added.
820 * For any missing state don't attempt recovery.
821 */
822
823 #define dirty (1UL << PG_dirty)
824 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
825 #define unevict (1UL << PG_unevictable)
826 #define mlock (1UL << PG_mlocked)
827 #define writeback (1UL << PG_writeback)
828 #define lru (1UL << PG_lru)
829 #define head (1UL << PG_head)
830 #define slab (1UL << PG_slab)
831 #define reserved (1UL << PG_reserved)
832
833 static struct page_state {
834 unsigned long mask;
835 unsigned long res;
836 enum mf_action_page_type type;
837 int (*action)(struct page *p, unsigned long pfn);
838 } error_states[] = {
839 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
840 /*
841 * free pages are specially detected outside this table:
842 * PG_buddy pages only make a small fraction of all free pages.
843 */
844
845 /*
846 * Could in theory check if slab page is free or if we can drop
847 * currently unused objects without touching them. But just
848 * treat it as standard kernel for now.
849 */
850 { slab, slab, MF_MSG_SLAB, me_kernel },
851
852 { head, head, MF_MSG_HUGE, me_huge_page },
853
854 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
855 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
856
857 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
858 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
859
860 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
861 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
862
863 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
864 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
865
866 /*
867 * Catchall entry: must be at end.
868 */
869 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
870 };
871
872 #undef dirty
873 #undef sc
874 #undef unevict
875 #undef mlock
876 #undef writeback
877 #undef lru
878 #undef head
879 #undef slab
880 #undef reserved
881
882 /*
883 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
884 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
885 */
886 static void action_result(unsigned long pfn, enum mf_action_page_type type,
887 enum mf_result result)
888 {
889 trace_memory_failure_event(pfn, type, result);
890
891 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
892 pfn, action_page_types[type], action_name[result]);
893 }
894
895 static int page_action(struct page_state *ps, struct page *p,
896 unsigned long pfn)
897 {
898 int result;
899 int count;
900
901 result = ps->action(p, pfn);
902
903 count = page_count(p) - 1;
904 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
905 count--;
906 if (count > 0) {
907 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
908 pfn, action_page_types[ps->type], count);
909 result = MF_FAILED;
910 }
911 action_result(pfn, ps->type, result);
912
913 /* Could do more checks here if page looks ok */
914 /*
915 * Could adjust zone counters here to correct for the missing page.
916 */
917
918 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
919 }
920
921 /**
922 * get_hwpoison_page() - Get refcount for memory error handling:
923 * @page: raw error page (hit by memory error)
924 *
925 * Return: return 0 if failed to grab the refcount, otherwise true (some
926 * non-zero value.)
927 */
928 int get_hwpoison_page(struct page *page)
929 {
930 struct page *head = compound_head(page);
931
932 if (!PageHuge(head) && PageTransHuge(head)) {
933 /*
934 * Non anonymous thp exists only in allocation/free time. We
935 * can't handle such a case correctly, so let's give it up.
936 * This should be better than triggering BUG_ON when kernel
937 * tries to touch the "partially handled" page.
938 */
939 if (!PageAnon(head)) {
940 pr_err("Memory failure: %#lx: non anonymous thp\n",
941 page_to_pfn(page));
942 return 0;
943 }
944 }
945
946 if (get_page_unless_zero(head)) {
947 if (head == compound_head(page))
948 return 1;
949
950 pr_info("Memory failure: %#lx cannot catch tail\n",
951 page_to_pfn(page));
952 put_page(head);
953 }
954
955 return 0;
956 }
957 EXPORT_SYMBOL_GPL(get_hwpoison_page);
958
959 /*
960 * Do all that is necessary to remove user space mappings. Unmap
961 * the pages and send SIGBUS to the processes if the data was dirty.
962 */
963 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
964 int flags, struct page **hpagep)
965 {
966 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
967 struct address_space *mapping;
968 LIST_HEAD(tokill);
969 bool unmap_success;
970 int kill = 1, forcekill;
971 struct page *hpage = *hpagep;
972 bool mlocked = PageMlocked(hpage);
973
974 /*
975 * Here we are interested only in user-mapped pages, so skip any
976 * other types of pages.
977 */
978 if (PageReserved(p) || PageSlab(p))
979 return true;
980 if (!(PageLRU(hpage) || PageHuge(p)))
981 return true;
982
983 /*
984 * This check implies we don't kill processes if their pages
985 * are in the swap cache early. Those are always late kills.
986 */
987 if (!page_mapped(hpage))
988 return true;
989
990 if (PageKsm(p)) {
991 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
992 return false;
993 }
994
995 if (PageSwapCache(p)) {
996 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
997 pfn);
998 ttu |= TTU_IGNORE_HWPOISON;
999 }
1000
1001 /*
1002 * Propagate the dirty bit from PTEs to struct page first, because we
1003 * need this to decide if we should kill or just drop the page.
1004 * XXX: the dirty test could be racy: set_page_dirty() may not always
1005 * be called inside page lock (it's recommended but not enforced).
1006 */
1007 mapping = page_mapping(hpage);
1008 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1009 mapping_cap_writeback_dirty(mapping)) {
1010 if (page_mkclean(hpage)) {
1011 SetPageDirty(hpage);
1012 } else {
1013 kill = 0;
1014 ttu |= TTU_IGNORE_HWPOISON;
1015 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1016 pfn);
1017 }
1018 }
1019
1020 /*
1021 * First collect all the processes that have the page
1022 * mapped in dirty form. This has to be done before try_to_unmap,
1023 * because ttu takes the rmap data structures down.
1024 *
1025 * Error handling: We ignore errors here because
1026 * there's nothing that can be done.
1027 */
1028 if (kill)
1029 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1030
1031 unmap_success = try_to_unmap(hpage, ttu);
1032 if (!unmap_success)
1033 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1034 pfn, page_mapcount(hpage));
1035
1036 /*
1037 * try_to_unmap() might put mlocked page in lru cache, so call
1038 * shake_page() again to ensure that it's flushed.
1039 */
1040 if (mlocked)
1041 shake_page(hpage, 0);
1042
1043 /*
1044 * Now that the dirty bit has been propagated to the
1045 * struct page and all unmaps done we can decide if
1046 * killing is needed or not. Only kill when the page
1047 * was dirty or the process is not restartable,
1048 * otherwise the tokill list is merely
1049 * freed. When there was a problem unmapping earlier
1050 * use a more force-full uncatchable kill to prevent
1051 * any accesses to the poisoned memory.
1052 */
1053 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1054 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1055
1056 return unmap_success;
1057 }
1058
1059 static int identify_page_state(unsigned long pfn, struct page *p,
1060 unsigned long page_flags)
1061 {
1062 struct page_state *ps;
1063
1064 /*
1065 * The first check uses the current page flags which may not have any
1066 * relevant information. The second check with the saved page flags is
1067 * carried out only if the first check can't determine the page status.
1068 */
1069 for (ps = error_states;; ps++)
1070 if ((p->flags & ps->mask) == ps->res)
1071 break;
1072
1073 page_flags |= (p->flags & (1UL << PG_dirty));
1074
1075 if (!ps->mask)
1076 for (ps = error_states;; ps++)
1077 if ((page_flags & ps->mask) == ps->res)
1078 break;
1079 return page_action(ps, p, pfn);
1080 }
1081
1082 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1083 {
1084 struct page *p = pfn_to_page(pfn);
1085 struct page *head = compound_head(p);
1086 int res;
1087 unsigned long page_flags;
1088
1089 if (TestSetPageHWPoison(head)) {
1090 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1091 pfn);
1092 return 0;
1093 }
1094
1095 num_poisoned_pages_inc();
1096
1097 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1098 /*
1099 * Check "filter hit" and "race with other subpage."
1100 */
1101 lock_page(head);
1102 if (PageHWPoison(head)) {
1103 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1104 || (p != head && TestSetPageHWPoison(head))) {
1105 num_poisoned_pages_dec();
1106 unlock_page(head);
1107 return 0;
1108 }
1109 }
1110 unlock_page(head);
1111 dissolve_free_huge_page(p);
1112 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1113 return 0;
1114 }
1115
1116 lock_page(head);
1117 page_flags = head->flags;
1118
1119 if (!PageHWPoison(head)) {
1120 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1121 num_poisoned_pages_dec();
1122 unlock_page(head);
1123 put_hwpoison_page(head);
1124 return 0;
1125 }
1126
1127 /*
1128 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1129 * simply disable it. In order to make it work properly, we need
1130 * make sure that:
1131 * - conversion of a pud that maps an error hugetlb into hwpoison
1132 * entry properly works, and
1133 * - other mm code walking over page table is aware of pud-aligned
1134 * hwpoison entries.
1135 */
1136 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1137 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1138 res = -EBUSY;
1139 goto out;
1140 }
1141
1142 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1143 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1144 res = -EBUSY;
1145 goto out;
1146 }
1147
1148 res = identify_page_state(pfn, p, page_flags);
1149 out:
1150 unlock_page(head);
1151 return res;
1152 }
1153
1154 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1155 struct dev_pagemap *pgmap)
1156 {
1157 struct page *page = pfn_to_page(pfn);
1158 const bool unmap_success = true;
1159 unsigned long size = 0;
1160 struct to_kill *tk;
1161 LIST_HEAD(tokill);
1162 int rc = -EBUSY;
1163 loff_t start;
1164 dax_entry_t cookie;
1165
1166 /*
1167 * Prevent the inode from being freed while we are interrogating
1168 * the address_space, typically this would be handled by
1169 * lock_page(), but dax pages do not use the page lock. This
1170 * also prevents changes to the mapping of this pfn until
1171 * poison signaling is complete.
1172 */
1173 cookie = dax_lock_page(page);
1174 if (!cookie)
1175 goto out;
1176
1177 if (hwpoison_filter(page)) {
1178 rc = 0;
1179 goto unlock;
1180 }
1181
1182 switch (pgmap->type) {
1183 case MEMORY_DEVICE_PRIVATE:
1184 case MEMORY_DEVICE_PUBLIC:
1185 /*
1186 * TODO: Handle HMM pages which may need coordination
1187 * with device-side memory.
1188 */
1189 goto unlock;
1190 default:
1191 break;
1192 }
1193
1194 /*
1195 * Use this flag as an indication that the dax page has been
1196 * remapped UC to prevent speculative consumption of poison.
1197 */
1198 SetPageHWPoison(page);
1199
1200 /*
1201 * Unlike System-RAM there is no possibility to swap in a
1202 * different physical page at a given virtual address, so all
1203 * userspace consumption of ZONE_DEVICE memory necessitates
1204 * SIGBUS (i.e. MF_MUST_KILL)
1205 */
1206 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1207 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1208
1209 list_for_each_entry(tk, &tokill, nd)
1210 if (tk->size_shift)
1211 size = max(size, 1UL << tk->size_shift);
1212 if (size) {
1213 /*
1214 * Unmap the largest mapping to avoid breaking up
1215 * device-dax mappings which are constant size. The
1216 * actual size of the mapping being torn down is
1217 * communicated in siginfo, see kill_proc()
1218 */
1219 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1220 unmap_mapping_range(page->mapping, start, start + size, 0);
1221 }
1222 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1223 rc = 0;
1224 unlock:
1225 dax_unlock_page(page, cookie);
1226 out:
1227 /* drop pgmap ref acquired in caller */
1228 put_dev_pagemap(pgmap);
1229 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1230 return rc;
1231 }
1232
1233 /**
1234 * memory_failure - Handle memory failure of a page.
1235 * @pfn: Page Number of the corrupted page
1236 * @flags: fine tune action taken
1237 *
1238 * This function is called by the low level machine check code
1239 * of an architecture when it detects hardware memory corruption
1240 * of a page. It tries its best to recover, which includes
1241 * dropping pages, killing processes etc.
1242 *
1243 * The function is primarily of use for corruptions that
1244 * happen outside the current execution context (e.g. when
1245 * detected by a background scrubber)
1246 *
1247 * Must run in process context (e.g. a work queue) with interrupts
1248 * enabled and no spinlocks hold.
1249 */
1250 int memory_failure(unsigned long pfn, int flags)
1251 {
1252 struct page *p;
1253 struct page *hpage;
1254 struct page *orig_head;
1255 struct dev_pagemap *pgmap;
1256 int res;
1257 unsigned long page_flags;
1258
1259 if (!sysctl_memory_failure_recovery)
1260 panic("Memory failure on page %lx", pfn);
1261
1262 if (!pfn_valid(pfn)) {
1263 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1264 pfn);
1265 return -ENXIO;
1266 }
1267
1268 pgmap = get_dev_pagemap(pfn, NULL);
1269 if (pgmap)
1270 return memory_failure_dev_pagemap(pfn, flags, pgmap);
1271
1272 p = pfn_to_page(pfn);
1273 if (PageHuge(p))
1274 return memory_failure_hugetlb(pfn, flags);
1275 if (TestSetPageHWPoison(p)) {
1276 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1277 pfn);
1278 return 0;
1279 }
1280
1281 orig_head = hpage = compound_head(p);
1282 num_poisoned_pages_inc();
1283
1284 /*
1285 * We need/can do nothing about count=0 pages.
1286 * 1) it's a free page, and therefore in safe hand:
1287 * prep_new_page() will be the gate keeper.
1288 * 2) it's part of a non-compound high order page.
1289 * Implies some kernel user: cannot stop them from
1290 * R/W the page; let's pray that the page has been
1291 * used and will be freed some time later.
1292 * In fact it's dangerous to directly bump up page count from 0,
1293 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1294 */
1295 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1296 if (is_free_buddy_page(p)) {
1297 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1298 return 0;
1299 } else {
1300 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1301 return -EBUSY;
1302 }
1303 }
1304
1305 if (PageTransHuge(hpage)) {
1306 lock_page(p);
1307 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1308 unlock_page(p);
1309 if (!PageAnon(p))
1310 pr_err("Memory failure: %#lx: non anonymous thp\n",
1311 pfn);
1312 else
1313 pr_err("Memory failure: %#lx: thp split failed\n",
1314 pfn);
1315 if (TestClearPageHWPoison(p))
1316 num_poisoned_pages_dec();
1317 put_hwpoison_page(p);
1318 return -EBUSY;
1319 }
1320 unlock_page(p);
1321 VM_BUG_ON_PAGE(!page_count(p), p);
1322 hpage = compound_head(p);
1323 }
1324
1325 /*
1326 * We ignore non-LRU pages for good reasons.
1327 * - PG_locked is only well defined for LRU pages and a few others
1328 * - to avoid races with __SetPageLocked()
1329 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1330 * The check (unnecessarily) ignores LRU pages being isolated and
1331 * walked by the page reclaim code, however that's not a big loss.
1332 */
1333 shake_page(p, 0);
1334 /* shake_page could have turned it free. */
1335 if (!PageLRU(p) && is_free_buddy_page(p)) {
1336 if (flags & MF_COUNT_INCREASED)
1337 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1338 else
1339 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1340 return 0;
1341 }
1342
1343 lock_page(p);
1344
1345 /*
1346 * The page could have changed compound pages during the locking.
1347 * If this happens just bail out.
1348 */
1349 if (PageCompound(p) && compound_head(p) != orig_head) {
1350 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1351 res = -EBUSY;
1352 goto out;
1353 }
1354
1355 /*
1356 * We use page flags to determine what action should be taken, but
1357 * the flags can be modified by the error containment action. One
1358 * example is an mlocked page, where PG_mlocked is cleared by
1359 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1360 * correctly, we save a copy of the page flags at this time.
1361 */
1362 if (PageHuge(p))
1363 page_flags = hpage->flags;
1364 else
1365 page_flags = p->flags;
1366
1367 /*
1368 * unpoison always clear PG_hwpoison inside page lock
1369 */
1370 if (!PageHWPoison(p)) {
1371 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1372 num_poisoned_pages_dec();
1373 unlock_page(p);
1374 put_hwpoison_page(p);
1375 return 0;
1376 }
1377 if (hwpoison_filter(p)) {
1378 if (TestClearPageHWPoison(p))
1379 num_poisoned_pages_dec();
1380 unlock_page(p);
1381 put_hwpoison_page(p);
1382 return 0;
1383 }
1384
1385 if (!PageTransTail(p) && !PageLRU(p))
1386 goto identify_page_state;
1387
1388 /*
1389 * It's very difficult to mess with pages currently under IO
1390 * and in many cases impossible, so we just avoid it here.
1391 */
1392 wait_on_page_writeback(p);
1393
1394 /*
1395 * Now take care of user space mappings.
1396 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1397 *
1398 * When the raw error page is thp tail page, hpage points to the raw
1399 * page after thp split.
1400 */
1401 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1402 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1403 res = -EBUSY;
1404 goto out;
1405 }
1406
1407 /*
1408 * Torn down by someone else?
1409 */
1410 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1411 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1412 res = -EBUSY;
1413 goto out;
1414 }
1415
1416 identify_page_state:
1417 res = identify_page_state(pfn, p, page_flags);
1418 out:
1419 unlock_page(p);
1420 return res;
1421 }
1422 EXPORT_SYMBOL_GPL(memory_failure);
1423
1424 #define MEMORY_FAILURE_FIFO_ORDER 4
1425 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1426
1427 struct memory_failure_entry {
1428 unsigned long pfn;
1429 int flags;
1430 };
1431
1432 struct memory_failure_cpu {
1433 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1434 MEMORY_FAILURE_FIFO_SIZE);
1435 spinlock_t lock;
1436 struct work_struct work;
1437 };
1438
1439 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1440
1441 /**
1442 * memory_failure_queue - Schedule handling memory failure of a page.
1443 * @pfn: Page Number of the corrupted page
1444 * @flags: Flags for memory failure handling
1445 *
1446 * This function is called by the low level hardware error handler
1447 * when it detects hardware memory corruption of a page. It schedules
1448 * the recovering of error page, including dropping pages, killing
1449 * processes etc.
1450 *
1451 * The function is primarily of use for corruptions that
1452 * happen outside the current execution context (e.g. when
1453 * detected by a background scrubber)
1454 *
1455 * Can run in IRQ context.
1456 */
1457 void memory_failure_queue(unsigned long pfn, int flags)
1458 {
1459 struct memory_failure_cpu *mf_cpu;
1460 unsigned long proc_flags;
1461 struct memory_failure_entry entry = {
1462 .pfn = pfn,
1463 .flags = flags,
1464 };
1465
1466 mf_cpu = &get_cpu_var(memory_failure_cpu);
1467 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1468 if (kfifo_put(&mf_cpu->fifo, entry))
1469 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1470 else
1471 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1472 pfn);
1473 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1474 put_cpu_var(memory_failure_cpu);
1475 }
1476 EXPORT_SYMBOL_GPL(memory_failure_queue);
1477
1478 static void memory_failure_work_func(struct work_struct *work)
1479 {
1480 struct memory_failure_cpu *mf_cpu;
1481 struct memory_failure_entry entry = { 0, };
1482 unsigned long proc_flags;
1483 int gotten;
1484
1485 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1486 for (;;) {
1487 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1488 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1489 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1490 if (!gotten)
1491 break;
1492 if (entry.flags & MF_SOFT_OFFLINE)
1493 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1494 else
1495 memory_failure(entry.pfn, entry.flags);
1496 }
1497 }
1498
1499 static int __init memory_failure_init(void)
1500 {
1501 struct memory_failure_cpu *mf_cpu;
1502 int cpu;
1503
1504 for_each_possible_cpu(cpu) {
1505 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1506 spin_lock_init(&mf_cpu->lock);
1507 INIT_KFIFO(mf_cpu->fifo);
1508 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1509 }
1510
1511 return 0;
1512 }
1513 core_initcall(memory_failure_init);
1514
1515 #define unpoison_pr_info(fmt, pfn, rs) \
1516 ({ \
1517 if (__ratelimit(rs)) \
1518 pr_info(fmt, pfn); \
1519 })
1520
1521 /**
1522 * unpoison_memory - Unpoison a previously poisoned page
1523 * @pfn: Page number of the to be unpoisoned page
1524 *
1525 * Software-unpoison a page that has been poisoned by
1526 * memory_failure() earlier.
1527 *
1528 * This is only done on the software-level, so it only works
1529 * for linux injected failures, not real hardware failures
1530 *
1531 * Returns 0 for success, otherwise -errno.
1532 */
1533 int unpoison_memory(unsigned long pfn)
1534 {
1535 struct page *page;
1536 struct page *p;
1537 int freeit = 0;
1538 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1539 DEFAULT_RATELIMIT_BURST);
1540
1541 if (!pfn_valid(pfn))
1542 return -ENXIO;
1543
1544 p = pfn_to_page(pfn);
1545 page = compound_head(p);
1546
1547 if (!PageHWPoison(p)) {
1548 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1549 pfn, &unpoison_rs);
1550 return 0;
1551 }
1552
1553 if (page_count(page) > 1) {
1554 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1555 pfn, &unpoison_rs);
1556 return 0;
1557 }
1558
1559 if (page_mapped(page)) {
1560 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1561 pfn, &unpoison_rs);
1562 return 0;
1563 }
1564
1565 if (page_mapping(page)) {
1566 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1567 pfn, &unpoison_rs);
1568 return 0;
1569 }
1570
1571 /*
1572 * unpoison_memory() can encounter thp only when the thp is being
1573 * worked by memory_failure() and the page lock is not held yet.
1574 * In such case, we yield to memory_failure() and make unpoison fail.
1575 */
1576 if (!PageHuge(page) && PageTransHuge(page)) {
1577 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1578 pfn, &unpoison_rs);
1579 return 0;
1580 }
1581
1582 if (!get_hwpoison_page(p)) {
1583 if (TestClearPageHWPoison(p))
1584 num_poisoned_pages_dec();
1585 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1586 pfn, &unpoison_rs);
1587 return 0;
1588 }
1589
1590 lock_page(page);
1591 /*
1592 * This test is racy because PG_hwpoison is set outside of page lock.
1593 * That's acceptable because that won't trigger kernel panic. Instead,
1594 * the PG_hwpoison page will be caught and isolated on the entrance to
1595 * the free buddy page pool.
1596 */
1597 if (TestClearPageHWPoison(page)) {
1598 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1599 pfn, &unpoison_rs);
1600 num_poisoned_pages_dec();
1601 freeit = 1;
1602 }
1603 unlock_page(page);
1604
1605 put_hwpoison_page(page);
1606 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1607 put_hwpoison_page(page);
1608
1609 return 0;
1610 }
1611 EXPORT_SYMBOL(unpoison_memory);
1612
1613 static struct page *new_page(struct page *p, unsigned long private)
1614 {
1615 int nid = page_to_nid(p);
1616
1617 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1618 }
1619
1620 /*
1621 * Safely get reference count of an arbitrary page.
1622 * Returns 0 for a free page, -EIO for a zero refcount page
1623 * that is not free, and 1 for any other page type.
1624 * For 1 the page is returned with increased page count, otherwise not.
1625 */
1626 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1627 {
1628 int ret;
1629
1630 if (flags & MF_COUNT_INCREASED)
1631 return 1;
1632
1633 /*
1634 * When the target page is a free hugepage, just remove it
1635 * from free hugepage list.
1636 */
1637 if (!get_hwpoison_page(p)) {
1638 if (PageHuge(p)) {
1639 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1640 ret = 0;
1641 } else if (is_free_buddy_page(p)) {
1642 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1643 ret = 0;
1644 } else {
1645 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1646 __func__, pfn, p->flags);
1647 ret = -EIO;
1648 }
1649 } else {
1650 /* Not a free page */
1651 ret = 1;
1652 }
1653 return ret;
1654 }
1655
1656 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1657 {
1658 int ret = __get_any_page(page, pfn, flags);
1659
1660 if (ret == 1 && !PageHuge(page) &&
1661 !PageLRU(page) && !__PageMovable(page)) {
1662 /*
1663 * Try to free it.
1664 */
1665 put_hwpoison_page(page);
1666 shake_page(page, 1);
1667
1668 /*
1669 * Did it turn free?
1670 */
1671 ret = __get_any_page(page, pfn, 0);
1672 if (ret == 1 && !PageLRU(page)) {
1673 /* Drop page reference which is from __get_any_page() */
1674 put_hwpoison_page(page);
1675 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1676 pfn, page->flags, &page->flags);
1677 return -EIO;
1678 }
1679 }
1680 return ret;
1681 }
1682
1683 static int soft_offline_huge_page(struct page *page, int flags)
1684 {
1685 int ret;
1686 unsigned long pfn = page_to_pfn(page);
1687 struct page *hpage = compound_head(page);
1688 LIST_HEAD(pagelist);
1689
1690 /*
1691 * This double-check of PageHWPoison is to avoid the race with
1692 * memory_failure(). See also comment in __soft_offline_page().
1693 */
1694 lock_page(hpage);
1695 if (PageHWPoison(hpage)) {
1696 unlock_page(hpage);
1697 put_hwpoison_page(hpage);
1698 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1699 return -EBUSY;
1700 }
1701 unlock_page(hpage);
1702
1703 ret = isolate_huge_page(hpage, &pagelist);
1704 /*
1705 * get_any_page() and isolate_huge_page() takes a refcount each,
1706 * so need to drop one here.
1707 */
1708 put_hwpoison_page(hpage);
1709 if (!ret) {
1710 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1711 return -EBUSY;
1712 }
1713
1714 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1715 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1716 if (ret) {
1717 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1718 pfn, ret, page->flags, &page->flags);
1719 if (!list_empty(&pagelist))
1720 putback_movable_pages(&pagelist);
1721 if (ret > 0)
1722 ret = -EIO;
1723 } else {
1724 /*
1725 * We set PG_hwpoison only when the migration source hugepage
1726 * was successfully dissolved, because otherwise hwpoisoned
1727 * hugepage remains on free hugepage list, then userspace will
1728 * find it as SIGBUS by allocation failure. That's not expected
1729 * in soft-offlining.
1730 */
1731 ret = dissolve_free_huge_page(page);
1732 if (!ret) {
1733 if (set_hwpoison_free_buddy_page(page))
1734 num_poisoned_pages_inc();
1735 }
1736 }
1737 return ret;
1738 }
1739
1740 static int __soft_offline_page(struct page *page, int flags)
1741 {
1742 int ret;
1743 unsigned long pfn = page_to_pfn(page);
1744
1745 /*
1746 * Check PageHWPoison again inside page lock because PageHWPoison
1747 * is set by memory_failure() outside page lock. Note that
1748 * memory_failure() also double-checks PageHWPoison inside page lock,
1749 * so there's no race between soft_offline_page() and memory_failure().
1750 */
1751 lock_page(page);
1752 wait_on_page_writeback(page);
1753 if (PageHWPoison(page)) {
1754 unlock_page(page);
1755 put_hwpoison_page(page);
1756 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1757 return -EBUSY;
1758 }
1759 /*
1760 * Try to invalidate first. This should work for
1761 * non dirty unmapped page cache pages.
1762 */
1763 ret = invalidate_inode_page(page);
1764 unlock_page(page);
1765 /*
1766 * RED-PEN would be better to keep it isolated here, but we
1767 * would need to fix isolation locking first.
1768 */
1769 if (ret == 1) {
1770 put_hwpoison_page(page);
1771 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1772 SetPageHWPoison(page);
1773 num_poisoned_pages_inc();
1774 return 0;
1775 }
1776
1777 /*
1778 * Simple invalidation didn't work.
1779 * Try to migrate to a new page instead. migrate.c
1780 * handles a large number of cases for us.
1781 */
1782 if (PageLRU(page))
1783 ret = isolate_lru_page(page);
1784 else
1785 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1786 /*
1787 * Drop page reference which is came from get_any_page()
1788 * successful isolate_lru_page() already took another one.
1789 */
1790 put_hwpoison_page(page);
1791 if (!ret) {
1792 LIST_HEAD(pagelist);
1793 /*
1794 * After isolated lru page, the PageLRU will be cleared,
1795 * so use !__PageMovable instead for LRU page's mapping
1796 * cannot have PAGE_MAPPING_MOVABLE.
1797 */
1798 if (!__PageMovable(page))
1799 inc_node_page_state(page, NR_ISOLATED_ANON +
1800 page_is_file_cache(page));
1801 list_add(&page->lru, &pagelist);
1802 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1803 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1804 if (ret) {
1805 if (!list_empty(&pagelist))
1806 putback_movable_pages(&pagelist);
1807
1808 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1809 pfn, ret, page->flags, &page->flags);
1810 if (ret > 0)
1811 ret = -EIO;
1812 }
1813 } else {
1814 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1815 pfn, ret, page_count(page), page->flags, &page->flags);
1816 }
1817 return ret;
1818 }
1819
1820 static int soft_offline_in_use_page(struct page *page, int flags)
1821 {
1822 int ret;
1823 int mt;
1824 struct page *hpage = compound_head(page);
1825
1826 if (!PageHuge(page) && PageTransHuge(hpage)) {
1827 lock_page(hpage);
1828 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1829 unlock_page(hpage);
1830 if (!PageAnon(hpage))
1831 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1832 else
1833 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1834 put_hwpoison_page(hpage);
1835 return -EBUSY;
1836 }
1837 unlock_page(hpage);
1838 get_hwpoison_page(page);
1839 put_hwpoison_page(hpage);
1840 }
1841
1842 /*
1843 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1844 * to free list immediately (not via pcplist) when released after
1845 * successful page migration. Otherwise we can't guarantee that the
1846 * page is really free after put_page() returns, so
1847 * set_hwpoison_free_buddy_page() highly likely fails.
1848 */
1849 mt = get_pageblock_migratetype(page);
1850 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1851 if (PageHuge(page))
1852 ret = soft_offline_huge_page(page, flags);
1853 else
1854 ret = __soft_offline_page(page, flags);
1855 set_pageblock_migratetype(page, mt);
1856 return ret;
1857 }
1858
1859 static int soft_offline_free_page(struct page *page)
1860 {
1861 int rc = 0;
1862 struct page *head = compound_head(page);
1863
1864 if (PageHuge(head))
1865 rc = dissolve_free_huge_page(page);
1866 if (!rc) {
1867 if (set_hwpoison_free_buddy_page(page))
1868 num_poisoned_pages_inc();
1869 else
1870 rc = -EBUSY;
1871 }
1872 return rc;
1873 }
1874
1875 /**
1876 * soft_offline_page - Soft offline a page.
1877 * @page: page to offline
1878 * @flags: flags. Same as memory_failure().
1879 *
1880 * Returns 0 on success, otherwise negated errno.
1881 *
1882 * Soft offline a page, by migration or invalidation,
1883 * without killing anything. This is for the case when
1884 * a page is not corrupted yet (so it's still valid to access),
1885 * but has had a number of corrected errors and is better taken
1886 * out.
1887 *
1888 * The actual policy on when to do that is maintained by
1889 * user space.
1890 *
1891 * This should never impact any application or cause data loss,
1892 * however it might take some time.
1893 *
1894 * This is not a 100% solution for all memory, but tries to be
1895 * ``good enough'' for the majority of memory.
1896 */
1897 int soft_offline_page(struct page *page, int flags)
1898 {
1899 int ret;
1900 unsigned long pfn = page_to_pfn(page);
1901
1902 if (is_zone_device_page(page)) {
1903 pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1904 pfn);
1905 if (flags & MF_COUNT_INCREASED)
1906 put_page(page);
1907 return -EIO;
1908 }
1909
1910 if (PageHWPoison(page)) {
1911 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1912 if (flags & MF_COUNT_INCREASED)
1913 put_hwpoison_page(page);
1914 return -EBUSY;
1915 }
1916
1917 get_online_mems();
1918 ret = get_any_page(page, pfn, flags);
1919 put_online_mems();
1920
1921 if (ret > 0)
1922 ret = soft_offline_in_use_page(page, flags);
1923 else if (ret == 0)
1924 ret = soft_offline_free_page(page);
1925
1926 return ret;
1927 }