]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/memory-failure.c
Merge tag 'drm-next-2023-05-05' of git://anongit.freedesktop.org/drm/drm
[thirdparty/linux.git] / mm / memory-failure.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37 #define pr_fmt(fmt) "Memory failure: " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include <linux/sysctl.h>
66 #include "swap.h"
67 #include "internal.h"
68 #include "ras/ras_event.h"
69
70 static int sysctl_memory_failure_early_kill __read_mostly;
71
72 static int sysctl_memory_failure_recovery __read_mostly = 1;
73
74 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
75
76 static bool hw_memory_failure __read_mostly = false;
77
78 inline void num_poisoned_pages_inc(unsigned long pfn)
79 {
80 atomic_long_inc(&num_poisoned_pages);
81 memblk_nr_poison_inc(pfn);
82 }
83
84 inline void num_poisoned_pages_sub(unsigned long pfn, long i)
85 {
86 atomic_long_sub(i, &num_poisoned_pages);
87 if (pfn != -1UL)
88 memblk_nr_poison_sub(pfn, i);
89 }
90
91 /**
92 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
93 * @_name: name of the file in the per NUMA sysfs directory.
94 */
95 #define MF_ATTR_RO(_name) \
96 static ssize_t _name##_show(struct device *dev, \
97 struct device_attribute *attr, \
98 char *buf) \
99 { \
100 struct memory_failure_stats *mf_stats = \
101 &NODE_DATA(dev->id)->mf_stats; \
102 return sprintf(buf, "%lu\n", mf_stats->_name); \
103 } \
104 static DEVICE_ATTR_RO(_name)
105
106 MF_ATTR_RO(total);
107 MF_ATTR_RO(ignored);
108 MF_ATTR_RO(failed);
109 MF_ATTR_RO(delayed);
110 MF_ATTR_RO(recovered);
111
112 static struct attribute *memory_failure_attr[] = {
113 &dev_attr_total.attr,
114 &dev_attr_ignored.attr,
115 &dev_attr_failed.attr,
116 &dev_attr_delayed.attr,
117 &dev_attr_recovered.attr,
118 NULL,
119 };
120
121 const struct attribute_group memory_failure_attr_group = {
122 .name = "memory_failure",
123 .attrs = memory_failure_attr,
124 };
125
126 #ifdef CONFIG_SYSCTL
127 static struct ctl_table memory_failure_table[] = {
128 {
129 .procname = "memory_failure_early_kill",
130 .data = &sysctl_memory_failure_early_kill,
131 .maxlen = sizeof(sysctl_memory_failure_early_kill),
132 .mode = 0644,
133 .proc_handler = proc_dointvec_minmax,
134 .extra1 = SYSCTL_ZERO,
135 .extra2 = SYSCTL_ONE,
136 },
137 {
138 .procname = "memory_failure_recovery",
139 .data = &sysctl_memory_failure_recovery,
140 .maxlen = sizeof(sysctl_memory_failure_recovery),
141 .mode = 0644,
142 .proc_handler = proc_dointvec_minmax,
143 .extra1 = SYSCTL_ZERO,
144 .extra2 = SYSCTL_ONE,
145 },
146 { }
147 };
148
149 static int __init memory_failure_sysctl_init(void)
150 {
151 register_sysctl_init("vm", memory_failure_table);
152 return 0;
153 }
154 late_initcall(memory_failure_sysctl_init);
155 #endif /* CONFIG_SYSCTL */
156
157 /*
158 * Return values:
159 * 1: the page is dissolved (if needed) and taken off from buddy,
160 * 0: the page is dissolved (if needed) and not taken off from buddy,
161 * < 0: failed to dissolve.
162 */
163 static int __page_handle_poison(struct page *page)
164 {
165 int ret;
166
167 zone_pcp_disable(page_zone(page));
168 ret = dissolve_free_huge_page(page);
169 if (!ret)
170 ret = take_page_off_buddy(page);
171 zone_pcp_enable(page_zone(page));
172
173 return ret;
174 }
175
176 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
177 {
178 if (hugepage_or_freepage) {
179 /*
180 * Doing this check for free pages is also fine since dissolve_free_huge_page
181 * returns 0 for non-hugetlb pages as well.
182 */
183 if (__page_handle_poison(page) <= 0)
184 /*
185 * We could fail to take off the target page from buddy
186 * for example due to racy page allocation, but that's
187 * acceptable because soft-offlined page is not broken
188 * and if someone really want to use it, they should
189 * take it.
190 */
191 return false;
192 }
193
194 SetPageHWPoison(page);
195 if (release)
196 put_page(page);
197 page_ref_inc(page);
198 num_poisoned_pages_inc(page_to_pfn(page));
199
200 return true;
201 }
202
203 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
204
205 u32 hwpoison_filter_enable = 0;
206 u32 hwpoison_filter_dev_major = ~0U;
207 u32 hwpoison_filter_dev_minor = ~0U;
208 u64 hwpoison_filter_flags_mask;
209 u64 hwpoison_filter_flags_value;
210 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
211 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
212 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
213 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
214 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
215
216 static int hwpoison_filter_dev(struct page *p)
217 {
218 struct address_space *mapping;
219 dev_t dev;
220
221 if (hwpoison_filter_dev_major == ~0U &&
222 hwpoison_filter_dev_minor == ~0U)
223 return 0;
224
225 mapping = page_mapping(p);
226 if (mapping == NULL || mapping->host == NULL)
227 return -EINVAL;
228
229 dev = mapping->host->i_sb->s_dev;
230 if (hwpoison_filter_dev_major != ~0U &&
231 hwpoison_filter_dev_major != MAJOR(dev))
232 return -EINVAL;
233 if (hwpoison_filter_dev_minor != ~0U &&
234 hwpoison_filter_dev_minor != MINOR(dev))
235 return -EINVAL;
236
237 return 0;
238 }
239
240 static int hwpoison_filter_flags(struct page *p)
241 {
242 if (!hwpoison_filter_flags_mask)
243 return 0;
244
245 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
246 hwpoison_filter_flags_value)
247 return 0;
248 else
249 return -EINVAL;
250 }
251
252 /*
253 * This allows stress tests to limit test scope to a collection of tasks
254 * by putting them under some memcg. This prevents killing unrelated/important
255 * processes such as /sbin/init. Note that the target task may share clean
256 * pages with init (eg. libc text), which is harmless. If the target task
257 * share _dirty_ pages with another task B, the test scheme must make sure B
258 * is also included in the memcg. At last, due to race conditions this filter
259 * can only guarantee that the page either belongs to the memcg tasks, or is
260 * a freed page.
261 */
262 #ifdef CONFIG_MEMCG
263 u64 hwpoison_filter_memcg;
264 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
265 static int hwpoison_filter_task(struct page *p)
266 {
267 if (!hwpoison_filter_memcg)
268 return 0;
269
270 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
271 return -EINVAL;
272
273 return 0;
274 }
275 #else
276 static int hwpoison_filter_task(struct page *p) { return 0; }
277 #endif
278
279 int hwpoison_filter(struct page *p)
280 {
281 if (!hwpoison_filter_enable)
282 return 0;
283
284 if (hwpoison_filter_dev(p))
285 return -EINVAL;
286
287 if (hwpoison_filter_flags(p))
288 return -EINVAL;
289
290 if (hwpoison_filter_task(p))
291 return -EINVAL;
292
293 return 0;
294 }
295 #else
296 int hwpoison_filter(struct page *p)
297 {
298 return 0;
299 }
300 #endif
301
302 EXPORT_SYMBOL_GPL(hwpoison_filter);
303
304 /*
305 * Kill all processes that have a poisoned page mapped and then isolate
306 * the page.
307 *
308 * General strategy:
309 * Find all processes having the page mapped and kill them.
310 * But we keep a page reference around so that the page is not
311 * actually freed yet.
312 * Then stash the page away
313 *
314 * There's no convenient way to get back to mapped processes
315 * from the VMAs. So do a brute-force search over all
316 * running processes.
317 *
318 * Remember that machine checks are not common (or rather
319 * if they are common you have other problems), so this shouldn't
320 * be a performance issue.
321 *
322 * Also there are some races possible while we get from the
323 * error detection to actually handle it.
324 */
325
326 struct to_kill {
327 struct list_head nd;
328 struct task_struct *tsk;
329 unsigned long addr;
330 short size_shift;
331 };
332
333 /*
334 * Send all the processes who have the page mapped a signal.
335 * ``action optional'' if they are not immediately affected by the error
336 * ``action required'' if error happened in current execution context
337 */
338 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
339 {
340 struct task_struct *t = tk->tsk;
341 short addr_lsb = tk->size_shift;
342 int ret = 0;
343
344 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
345 pfn, t->comm, t->pid);
346
347 if ((flags & MF_ACTION_REQUIRED) && (t == current))
348 ret = force_sig_mceerr(BUS_MCEERR_AR,
349 (void __user *)tk->addr, addr_lsb);
350 else
351 /*
352 * Signal other processes sharing the page if they have
353 * PF_MCE_EARLY set.
354 * Don't use force here, it's convenient if the signal
355 * can be temporarily blocked.
356 * This could cause a loop when the user sets SIGBUS
357 * to SIG_IGN, but hopefully no one will do that?
358 */
359 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
360 addr_lsb, t);
361 if (ret < 0)
362 pr_info("Error sending signal to %s:%d: %d\n",
363 t->comm, t->pid, ret);
364 return ret;
365 }
366
367 /*
368 * Unknown page type encountered. Try to check whether it can turn PageLRU by
369 * lru_add_drain_all.
370 */
371 void shake_page(struct page *p)
372 {
373 if (PageHuge(p))
374 return;
375
376 if (!PageSlab(p)) {
377 lru_add_drain_all();
378 if (PageLRU(p) || is_free_buddy_page(p))
379 return;
380 }
381
382 /*
383 * TODO: Could shrink slab caches here if a lightweight range-based
384 * shrinker will be available.
385 */
386 }
387 EXPORT_SYMBOL_GPL(shake_page);
388
389 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
390 unsigned long address)
391 {
392 unsigned long ret = 0;
393 pgd_t *pgd;
394 p4d_t *p4d;
395 pud_t *pud;
396 pmd_t *pmd;
397 pte_t *pte;
398
399 VM_BUG_ON_VMA(address == -EFAULT, vma);
400 pgd = pgd_offset(vma->vm_mm, address);
401 if (!pgd_present(*pgd))
402 return 0;
403 p4d = p4d_offset(pgd, address);
404 if (!p4d_present(*p4d))
405 return 0;
406 pud = pud_offset(p4d, address);
407 if (!pud_present(*pud))
408 return 0;
409 if (pud_devmap(*pud))
410 return PUD_SHIFT;
411 pmd = pmd_offset(pud, address);
412 if (!pmd_present(*pmd))
413 return 0;
414 if (pmd_devmap(*pmd))
415 return PMD_SHIFT;
416 pte = pte_offset_map(pmd, address);
417 if (pte_present(*pte) && pte_devmap(*pte))
418 ret = PAGE_SHIFT;
419 pte_unmap(pte);
420 return ret;
421 }
422
423 /*
424 * Failure handling: if we can't find or can't kill a process there's
425 * not much we can do. We just print a message and ignore otherwise.
426 */
427
428 #define FSDAX_INVALID_PGOFF ULONG_MAX
429
430 /*
431 * Schedule a process for later kill.
432 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
433 *
434 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
435 * filesystem with a memory failure handler has claimed the
436 * memory_failure event. In all other cases, page->index and
437 * page->mapping are sufficient for mapping the page back to its
438 * corresponding user virtual address.
439 */
440 static void __add_to_kill(struct task_struct *tsk, struct page *p,
441 struct vm_area_struct *vma, struct list_head *to_kill,
442 unsigned long ksm_addr, pgoff_t fsdax_pgoff)
443 {
444 struct to_kill *tk;
445
446 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
447 if (!tk) {
448 pr_err("Out of memory while machine check handling\n");
449 return;
450 }
451
452 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
453 if (is_zone_device_page(p)) {
454 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
455 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
456 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
457 } else
458 tk->size_shift = page_shift(compound_head(p));
459
460 /*
461 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
462 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
463 * so "tk->size_shift == 0" effectively checks no mapping on
464 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
465 * to a process' address space, it's possible not all N VMAs
466 * contain mappings for the page, but at least one VMA does.
467 * Only deliver SIGBUS with payload derived from the VMA that
468 * has a mapping for the page.
469 */
470 if (tk->addr == -EFAULT) {
471 pr_info("Unable to find user space address %lx in %s\n",
472 page_to_pfn(p), tsk->comm);
473 } else if (tk->size_shift == 0) {
474 kfree(tk);
475 return;
476 }
477
478 get_task_struct(tsk);
479 tk->tsk = tsk;
480 list_add_tail(&tk->nd, to_kill);
481 }
482
483 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
484 struct vm_area_struct *vma,
485 struct list_head *to_kill)
486 {
487 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
488 }
489
490 #ifdef CONFIG_KSM
491 static bool task_in_to_kill_list(struct list_head *to_kill,
492 struct task_struct *tsk)
493 {
494 struct to_kill *tk, *next;
495
496 list_for_each_entry_safe(tk, next, to_kill, nd) {
497 if (tk->tsk == tsk)
498 return true;
499 }
500
501 return false;
502 }
503 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
504 struct vm_area_struct *vma, struct list_head *to_kill,
505 unsigned long ksm_addr)
506 {
507 if (!task_in_to_kill_list(to_kill, tsk))
508 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
509 }
510 #endif
511 /*
512 * Kill the processes that have been collected earlier.
513 *
514 * Only do anything when FORCEKILL is set, otherwise just free the
515 * list (this is used for clean pages which do not need killing)
516 * Also when FAIL is set do a force kill because something went
517 * wrong earlier.
518 */
519 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
520 unsigned long pfn, int flags)
521 {
522 struct to_kill *tk, *next;
523
524 list_for_each_entry_safe(tk, next, to_kill, nd) {
525 if (forcekill) {
526 /*
527 * In case something went wrong with munmapping
528 * make sure the process doesn't catch the
529 * signal and then access the memory. Just kill it.
530 */
531 if (fail || tk->addr == -EFAULT) {
532 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
533 pfn, tk->tsk->comm, tk->tsk->pid);
534 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
535 tk->tsk, PIDTYPE_PID);
536 }
537
538 /*
539 * In theory the process could have mapped
540 * something else on the address in-between. We could
541 * check for that, but we need to tell the
542 * process anyways.
543 */
544 else if (kill_proc(tk, pfn, flags) < 0)
545 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
546 pfn, tk->tsk->comm, tk->tsk->pid);
547 }
548 list_del(&tk->nd);
549 put_task_struct(tk->tsk);
550 kfree(tk);
551 }
552 }
553
554 /*
555 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
556 * on behalf of the thread group. Return task_struct of the (first found)
557 * dedicated thread if found, and return NULL otherwise.
558 *
559 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
560 * have to call rcu_read_lock/unlock() in this function.
561 */
562 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
563 {
564 struct task_struct *t;
565
566 for_each_thread(tsk, t) {
567 if (t->flags & PF_MCE_PROCESS) {
568 if (t->flags & PF_MCE_EARLY)
569 return t;
570 } else {
571 if (sysctl_memory_failure_early_kill)
572 return t;
573 }
574 }
575 return NULL;
576 }
577
578 /*
579 * Determine whether a given process is "early kill" process which expects
580 * to be signaled when some page under the process is hwpoisoned.
581 * Return task_struct of the dedicated thread (main thread unless explicitly
582 * specified) if the process is "early kill" and otherwise returns NULL.
583 *
584 * Note that the above is true for Action Optional case. For Action Required
585 * case, it's only meaningful to the current thread which need to be signaled
586 * with SIGBUS, this error is Action Optional for other non current
587 * processes sharing the same error page,if the process is "early kill", the
588 * task_struct of the dedicated thread will also be returned.
589 */
590 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
591 {
592 if (!tsk->mm)
593 return NULL;
594 /*
595 * Comparing ->mm here because current task might represent
596 * a subthread, while tsk always points to the main thread.
597 */
598 if (force_early && tsk->mm == current->mm)
599 return current;
600
601 return find_early_kill_thread(tsk);
602 }
603
604 /*
605 * Collect processes when the error hit an anonymous page.
606 */
607 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
608 int force_early)
609 {
610 struct folio *folio = page_folio(page);
611 struct vm_area_struct *vma;
612 struct task_struct *tsk;
613 struct anon_vma *av;
614 pgoff_t pgoff;
615
616 av = folio_lock_anon_vma_read(folio, NULL);
617 if (av == NULL) /* Not actually mapped anymore */
618 return;
619
620 pgoff = page_to_pgoff(page);
621 read_lock(&tasklist_lock);
622 for_each_process (tsk) {
623 struct anon_vma_chain *vmac;
624 struct task_struct *t = task_early_kill(tsk, force_early);
625
626 if (!t)
627 continue;
628 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
629 pgoff, pgoff) {
630 vma = vmac->vma;
631 if (vma->vm_mm != t->mm)
632 continue;
633 if (!page_mapped_in_vma(page, vma))
634 continue;
635 add_to_kill_anon_file(t, page, vma, to_kill);
636 }
637 }
638 read_unlock(&tasklist_lock);
639 anon_vma_unlock_read(av);
640 }
641
642 /*
643 * Collect processes when the error hit a file mapped page.
644 */
645 static void collect_procs_file(struct page *page, struct list_head *to_kill,
646 int force_early)
647 {
648 struct vm_area_struct *vma;
649 struct task_struct *tsk;
650 struct address_space *mapping = page->mapping;
651 pgoff_t pgoff;
652
653 i_mmap_lock_read(mapping);
654 read_lock(&tasklist_lock);
655 pgoff = page_to_pgoff(page);
656 for_each_process(tsk) {
657 struct task_struct *t = task_early_kill(tsk, force_early);
658
659 if (!t)
660 continue;
661 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
662 pgoff) {
663 /*
664 * Send early kill signal to tasks where a vma covers
665 * the page but the corrupted page is not necessarily
666 * mapped it in its pte.
667 * Assume applications who requested early kill want
668 * to be informed of all such data corruptions.
669 */
670 if (vma->vm_mm == t->mm)
671 add_to_kill_anon_file(t, page, vma, to_kill);
672 }
673 }
674 read_unlock(&tasklist_lock);
675 i_mmap_unlock_read(mapping);
676 }
677
678 #ifdef CONFIG_FS_DAX
679 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
680 struct vm_area_struct *vma,
681 struct list_head *to_kill, pgoff_t pgoff)
682 {
683 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
684 }
685
686 /*
687 * Collect processes when the error hit a fsdax page.
688 */
689 static void collect_procs_fsdax(struct page *page,
690 struct address_space *mapping, pgoff_t pgoff,
691 struct list_head *to_kill)
692 {
693 struct vm_area_struct *vma;
694 struct task_struct *tsk;
695
696 i_mmap_lock_read(mapping);
697 read_lock(&tasklist_lock);
698 for_each_process(tsk) {
699 struct task_struct *t = task_early_kill(tsk, true);
700
701 if (!t)
702 continue;
703 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
704 if (vma->vm_mm == t->mm)
705 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
706 }
707 }
708 read_unlock(&tasklist_lock);
709 i_mmap_unlock_read(mapping);
710 }
711 #endif /* CONFIG_FS_DAX */
712
713 /*
714 * Collect the processes who have the corrupted page mapped to kill.
715 */
716 static void collect_procs(struct page *page, struct list_head *tokill,
717 int force_early)
718 {
719 if (!page->mapping)
720 return;
721 if (unlikely(PageKsm(page)))
722 collect_procs_ksm(page, tokill, force_early);
723 else if (PageAnon(page))
724 collect_procs_anon(page, tokill, force_early);
725 else
726 collect_procs_file(page, tokill, force_early);
727 }
728
729 struct hwp_walk {
730 struct to_kill tk;
731 unsigned long pfn;
732 int flags;
733 };
734
735 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
736 {
737 tk->addr = addr;
738 tk->size_shift = shift;
739 }
740
741 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
742 unsigned long poisoned_pfn, struct to_kill *tk)
743 {
744 unsigned long pfn = 0;
745
746 if (pte_present(pte)) {
747 pfn = pte_pfn(pte);
748 } else {
749 swp_entry_t swp = pte_to_swp_entry(pte);
750
751 if (is_hwpoison_entry(swp))
752 pfn = swp_offset_pfn(swp);
753 }
754
755 if (!pfn || pfn != poisoned_pfn)
756 return 0;
757
758 set_to_kill(tk, addr, shift);
759 return 1;
760 }
761
762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
763 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
764 struct hwp_walk *hwp)
765 {
766 pmd_t pmd = *pmdp;
767 unsigned long pfn;
768 unsigned long hwpoison_vaddr;
769
770 if (!pmd_present(pmd))
771 return 0;
772 pfn = pmd_pfn(pmd);
773 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
774 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
775 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
776 return 1;
777 }
778 return 0;
779 }
780 #else
781 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
782 struct hwp_walk *hwp)
783 {
784 return 0;
785 }
786 #endif
787
788 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
789 unsigned long end, struct mm_walk *walk)
790 {
791 struct hwp_walk *hwp = walk->private;
792 int ret = 0;
793 pte_t *ptep, *mapped_pte;
794 spinlock_t *ptl;
795
796 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
797 if (ptl) {
798 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
799 spin_unlock(ptl);
800 goto out;
801 }
802
803 if (pmd_trans_unstable(pmdp))
804 goto out;
805
806 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
807 addr, &ptl);
808 for (; addr != end; ptep++, addr += PAGE_SIZE) {
809 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
810 hwp->pfn, &hwp->tk);
811 if (ret == 1)
812 break;
813 }
814 pte_unmap_unlock(mapped_pte, ptl);
815 out:
816 cond_resched();
817 return ret;
818 }
819
820 #ifdef CONFIG_HUGETLB_PAGE
821 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
822 unsigned long addr, unsigned long end,
823 struct mm_walk *walk)
824 {
825 struct hwp_walk *hwp = walk->private;
826 pte_t pte = huge_ptep_get(ptep);
827 struct hstate *h = hstate_vma(walk->vma);
828
829 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
830 hwp->pfn, &hwp->tk);
831 }
832 #else
833 #define hwpoison_hugetlb_range NULL
834 #endif
835
836 static const struct mm_walk_ops hwp_walk_ops = {
837 .pmd_entry = hwpoison_pte_range,
838 .hugetlb_entry = hwpoison_hugetlb_range,
839 };
840
841 /*
842 * Sends SIGBUS to the current process with error info.
843 *
844 * This function is intended to handle "Action Required" MCEs on already
845 * hardware poisoned pages. They could happen, for example, when
846 * memory_failure() failed to unmap the error page at the first call, or
847 * when multiple local machine checks happened on different CPUs.
848 *
849 * MCE handler currently has no easy access to the error virtual address,
850 * so this function walks page table to find it. The returned virtual address
851 * is proper in most cases, but it could be wrong when the application
852 * process has multiple entries mapping the error page.
853 */
854 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
855 int flags)
856 {
857 int ret;
858 struct hwp_walk priv = {
859 .pfn = pfn,
860 };
861 priv.tk.tsk = p;
862
863 if (!p->mm)
864 return -EFAULT;
865
866 mmap_read_lock(p->mm);
867 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
868 (void *)&priv);
869 if (ret == 1 && priv.tk.addr)
870 kill_proc(&priv.tk, pfn, flags);
871 else
872 ret = 0;
873 mmap_read_unlock(p->mm);
874 return ret > 0 ? -EHWPOISON : -EFAULT;
875 }
876
877 static const char *action_name[] = {
878 [MF_IGNORED] = "Ignored",
879 [MF_FAILED] = "Failed",
880 [MF_DELAYED] = "Delayed",
881 [MF_RECOVERED] = "Recovered",
882 };
883
884 static const char * const action_page_types[] = {
885 [MF_MSG_KERNEL] = "reserved kernel page",
886 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
887 [MF_MSG_SLAB] = "kernel slab page",
888 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
889 [MF_MSG_HUGE] = "huge page",
890 [MF_MSG_FREE_HUGE] = "free huge page",
891 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
892 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
893 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
894 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
895 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
896 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
897 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
898 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
899 [MF_MSG_CLEAN_LRU] = "clean LRU page",
900 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
901 [MF_MSG_BUDDY] = "free buddy page",
902 [MF_MSG_DAX] = "dax page",
903 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
904 [MF_MSG_UNKNOWN] = "unknown page",
905 };
906
907 /*
908 * XXX: It is possible that a page is isolated from LRU cache,
909 * and then kept in swap cache or failed to remove from page cache.
910 * The page count will stop it from being freed by unpoison.
911 * Stress tests should be aware of this memory leak problem.
912 */
913 static int delete_from_lru_cache(struct page *p)
914 {
915 if (isolate_lru_page(p)) {
916 /*
917 * Clear sensible page flags, so that the buddy system won't
918 * complain when the page is unpoison-and-freed.
919 */
920 ClearPageActive(p);
921 ClearPageUnevictable(p);
922
923 /*
924 * Poisoned page might never drop its ref count to 0 so we have
925 * to uncharge it manually from its memcg.
926 */
927 mem_cgroup_uncharge(page_folio(p));
928
929 /*
930 * drop the page count elevated by isolate_lru_page()
931 */
932 put_page(p);
933 return 0;
934 }
935 return -EIO;
936 }
937
938 static int truncate_error_page(struct page *p, unsigned long pfn,
939 struct address_space *mapping)
940 {
941 int ret = MF_FAILED;
942
943 if (mapping->a_ops->error_remove_page) {
944 struct folio *folio = page_folio(p);
945 int err = mapping->a_ops->error_remove_page(mapping, p);
946
947 if (err != 0) {
948 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
949 } else if (folio_has_private(folio) &&
950 !filemap_release_folio(folio, GFP_NOIO)) {
951 pr_info("%#lx: failed to release buffers\n", pfn);
952 } else {
953 ret = MF_RECOVERED;
954 }
955 } else {
956 /*
957 * If the file system doesn't support it just invalidate
958 * This fails on dirty or anything with private pages
959 */
960 if (invalidate_inode_page(p))
961 ret = MF_RECOVERED;
962 else
963 pr_info("%#lx: Failed to invalidate\n", pfn);
964 }
965
966 return ret;
967 }
968
969 struct page_state {
970 unsigned long mask;
971 unsigned long res;
972 enum mf_action_page_type type;
973
974 /* Callback ->action() has to unlock the relevant page inside it. */
975 int (*action)(struct page_state *ps, struct page *p);
976 };
977
978 /*
979 * Return true if page is still referenced by others, otherwise return
980 * false.
981 *
982 * The extra_pins is true when one extra refcount is expected.
983 */
984 static bool has_extra_refcount(struct page_state *ps, struct page *p,
985 bool extra_pins)
986 {
987 int count = page_count(p) - 1;
988
989 if (extra_pins)
990 count -= 1;
991
992 if (count > 0) {
993 pr_err("%#lx: %s still referenced by %d users\n",
994 page_to_pfn(p), action_page_types[ps->type], count);
995 return true;
996 }
997
998 return false;
999 }
1000
1001 /*
1002 * Error hit kernel page.
1003 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1004 * could be more sophisticated.
1005 */
1006 static int me_kernel(struct page_state *ps, struct page *p)
1007 {
1008 unlock_page(p);
1009 return MF_IGNORED;
1010 }
1011
1012 /*
1013 * Page in unknown state. Do nothing.
1014 */
1015 static int me_unknown(struct page_state *ps, struct page *p)
1016 {
1017 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1018 unlock_page(p);
1019 return MF_FAILED;
1020 }
1021
1022 /*
1023 * Clean (or cleaned) page cache page.
1024 */
1025 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1026 {
1027 int ret;
1028 struct address_space *mapping;
1029 bool extra_pins;
1030
1031 delete_from_lru_cache(p);
1032
1033 /*
1034 * For anonymous pages we're done the only reference left
1035 * should be the one m_f() holds.
1036 */
1037 if (PageAnon(p)) {
1038 ret = MF_RECOVERED;
1039 goto out;
1040 }
1041
1042 /*
1043 * Now truncate the page in the page cache. This is really
1044 * more like a "temporary hole punch"
1045 * Don't do this for block devices when someone else
1046 * has a reference, because it could be file system metadata
1047 * and that's not safe to truncate.
1048 */
1049 mapping = page_mapping(p);
1050 if (!mapping) {
1051 /*
1052 * Page has been teared down in the meanwhile
1053 */
1054 ret = MF_FAILED;
1055 goto out;
1056 }
1057
1058 /*
1059 * The shmem page is kept in page cache instead of truncating
1060 * so is expected to have an extra refcount after error-handling.
1061 */
1062 extra_pins = shmem_mapping(mapping);
1063
1064 /*
1065 * Truncation is a bit tricky. Enable it per file system for now.
1066 *
1067 * Open: to take i_rwsem or not for this? Right now we don't.
1068 */
1069 ret = truncate_error_page(p, page_to_pfn(p), mapping);
1070 if (has_extra_refcount(ps, p, extra_pins))
1071 ret = MF_FAILED;
1072
1073 out:
1074 unlock_page(p);
1075
1076 return ret;
1077 }
1078
1079 /*
1080 * Dirty pagecache page
1081 * Issues: when the error hit a hole page the error is not properly
1082 * propagated.
1083 */
1084 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1085 {
1086 struct address_space *mapping = page_mapping(p);
1087
1088 SetPageError(p);
1089 /* TBD: print more information about the file. */
1090 if (mapping) {
1091 /*
1092 * IO error will be reported by write(), fsync(), etc.
1093 * who check the mapping.
1094 * This way the application knows that something went
1095 * wrong with its dirty file data.
1096 *
1097 * There's one open issue:
1098 *
1099 * The EIO will be only reported on the next IO
1100 * operation and then cleared through the IO map.
1101 * Normally Linux has two mechanisms to pass IO error
1102 * first through the AS_EIO flag in the address space
1103 * and then through the PageError flag in the page.
1104 * Since we drop pages on memory failure handling the
1105 * only mechanism open to use is through AS_AIO.
1106 *
1107 * This has the disadvantage that it gets cleared on
1108 * the first operation that returns an error, while
1109 * the PageError bit is more sticky and only cleared
1110 * when the page is reread or dropped. If an
1111 * application assumes it will always get error on
1112 * fsync, but does other operations on the fd before
1113 * and the page is dropped between then the error
1114 * will not be properly reported.
1115 *
1116 * This can already happen even without hwpoisoned
1117 * pages: first on metadata IO errors (which only
1118 * report through AS_EIO) or when the page is dropped
1119 * at the wrong time.
1120 *
1121 * So right now we assume that the application DTRT on
1122 * the first EIO, but we're not worse than other parts
1123 * of the kernel.
1124 */
1125 mapping_set_error(mapping, -EIO);
1126 }
1127
1128 return me_pagecache_clean(ps, p);
1129 }
1130
1131 /*
1132 * Clean and dirty swap cache.
1133 *
1134 * Dirty swap cache page is tricky to handle. The page could live both in page
1135 * cache and swap cache(ie. page is freshly swapped in). So it could be
1136 * referenced concurrently by 2 types of PTEs:
1137 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1138 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1139 * and then
1140 * - clear dirty bit to prevent IO
1141 * - remove from LRU
1142 * - but keep in the swap cache, so that when we return to it on
1143 * a later page fault, we know the application is accessing
1144 * corrupted data and shall be killed (we installed simple
1145 * interception code in do_swap_page to catch it).
1146 *
1147 * Clean swap cache pages can be directly isolated. A later page fault will
1148 * bring in the known good data from disk.
1149 */
1150 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1151 {
1152 int ret;
1153 bool extra_pins = false;
1154
1155 ClearPageDirty(p);
1156 /* Trigger EIO in shmem: */
1157 ClearPageUptodate(p);
1158
1159 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1160 unlock_page(p);
1161
1162 if (ret == MF_DELAYED)
1163 extra_pins = true;
1164
1165 if (has_extra_refcount(ps, p, extra_pins))
1166 ret = MF_FAILED;
1167
1168 return ret;
1169 }
1170
1171 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1172 {
1173 struct folio *folio = page_folio(p);
1174 int ret;
1175
1176 delete_from_swap_cache(folio);
1177
1178 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1179 folio_unlock(folio);
1180
1181 if (has_extra_refcount(ps, p, false))
1182 ret = MF_FAILED;
1183
1184 return ret;
1185 }
1186
1187 /*
1188 * Huge pages. Needs work.
1189 * Issues:
1190 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1191 * To narrow down kill region to one page, we need to break up pmd.
1192 */
1193 static int me_huge_page(struct page_state *ps, struct page *p)
1194 {
1195 int res;
1196 struct page *hpage = compound_head(p);
1197 struct address_space *mapping;
1198 bool extra_pins = false;
1199
1200 if (!PageHuge(hpage))
1201 return MF_DELAYED;
1202
1203 mapping = page_mapping(hpage);
1204 if (mapping) {
1205 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1206 /* The page is kept in page cache. */
1207 extra_pins = true;
1208 unlock_page(hpage);
1209 } else {
1210 unlock_page(hpage);
1211 /*
1212 * migration entry prevents later access on error hugepage,
1213 * so we can free and dissolve it into buddy to save healthy
1214 * subpages.
1215 */
1216 put_page(hpage);
1217 if (__page_handle_poison(p) >= 0) {
1218 page_ref_inc(p);
1219 res = MF_RECOVERED;
1220 } else {
1221 res = MF_FAILED;
1222 }
1223 }
1224
1225 if (has_extra_refcount(ps, p, extra_pins))
1226 res = MF_FAILED;
1227
1228 return res;
1229 }
1230
1231 /*
1232 * Various page states we can handle.
1233 *
1234 * A page state is defined by its current page->flags bits.
1235 * The table matches them in order and calls the right handler.
1236 *
1237 * This is quite tricky because we can access page at any time
1238 * in its live cycle, so all accesses have to be extremely careful.
1239 *
1240 * This is not complete. More states could be added.
1241 * For any missing state don't attempt recovery.
1242 */
1243
1244 #define dirty (1UL << PG_dirty)
1245 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1246 #define unevict (1UL << PG_unevictable)
1247 #define mlock (1UL << PG_mlocked)
1248 #define lru (1UL << PG_lru)
1249 #define head (1UL << PG_head)
1250 #define slab (1UL << PG_slab)
1251 #define reserved (1UL << PG_reserved)
1252
1253 static struct page_state error_states[] = {
1254 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1255 /*
1256 * free pages are specially detected outside this table:
1257 * PG_buddy pages only make a small fraction of all free pages.
1258 */
1259
1260 /*
1261 * Could in theory check if slab page is free or if we can drop
1262 * currently unused objects without touching them. But just
1263 * treat it as standard kernel for now.
1264 */
1265 { slab, slab, MF_MSG_SLAB, me_kernel },
1266
1267 { head, head, MF_MSG_HUGE, me_huge_page },
1268
1269 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1270 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1271
1272 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1273 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1274
1275 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1276 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1277
1278 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1279 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1280
1281 /*
1282 * Catchall entry: must be at end.
1283 */
1284 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1285 };
1286
1287 #undef dirty
1288 #undef sc
1289 #undef unevict
1290 #undef mlock
1291 #undef lru
1292 #undef head
1293 #undef slab
1294 #undef reserved
1295
1296 static void update_per_node_mf_stats(unsigned long pfn,
1297 enum mf_result result)
1298 {
1299 int nid = MAX_NUMNODES;
1300 struct memory_failure_stats *mf_stats = NULL;
1301
1302 nid = pfn_to_nid(pfn);
1303 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1304 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1305 return;
1306 }
1307
1308 mf_stats = &NODE_DATA(nid)->mf_stats;
1309 switch (result) {
1310 case MF_IGNORED:
1311 ++mf_stats->ignored;
1312 break;
1313 case MF_FAILED:
1314 ++mf_stats->failed;
1315 break;
1316 case MF_DELAYED:
1317 ++mf_stats->delayed;
1318 break;
1319 case MF_RECOVERED:
1320 ++mf_stats->recovered;
1321 break;
1322 default:
1323 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1324 break;
1325 }
1326 ++mf_stats->total;
1327 }
1328
1329 /*
1330 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1331 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1332 */
1333 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1334 enum mf_result result)
1335 {
1336 trace_memory_failure_event(pfn, type, result);
1337
1338 num_poisoned_pages_inc(pfn);
1339
1340 update_per_node_mf_stats(pfn, result);
1341
1342 pr_err("%#lx: recovery action for %s: %s\n",
1343 pfn, action_page_types[type], action_name[result]);
1344
1345 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1346 }
1347
1348 static int page_action(struct page_state *ps, struct page *p,
1349 unsigned long pfn)
1350 {
1351 int result;
1352
1353 /* page p should be unlocked after returning from ps->action(). */
1354 result = ps->action(ps, p);
1355
1356 /* Could do more checks here if page looks ok */
1357 /*
1358 * Could adjust zone counters here to correct for the missing page.
1359 */
1360
1361 return action_result(pfn, ps->type, result);
1362 }
1363
1364 static inline bool PageHWPoisonTakenOff(struct page *page)
1365 {
1366 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1367 }
1368
1369 void SetPageHWPoisonTakenOff(struct page *page)
1370 {
1371 set_page_private(page, MAGIC_HWPOISON);
1372 }
1373
1374 void ClearPageHWPoisonTakenOff(struct page *page)
1375 {
1376 if (PageHWPoison(page))
1377 set_page_private(page, 0);
1378 }
1379
1380 /*
1381 * Return true if a page type of a given page is supported by hwpoison
1382 * mechanism (while handling could fail), otherwise false. This function
1383 * does not return true for hugetlb or device memory pages, so it's assumed
1384 * to be called only in the context where we never have such pages.
1385 */
1386 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1387 {
1388 /* Soft offline could migrate non-LRU movable pages */
1389 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1390 return true;
1391
1392 return PageLRU(page) || is_free_buddy_page(page);
1393 }
1394
1395 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1396 {
1397 struct folio *folio = page_folio(page);
1398 int ret = 0;
1399 bool hugetlb = false;
1400
1401 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1402 if (hugetlb)
1403 return ret;
1404
1405 /*
1406 * This check prevents from calling folio_try_get() for any
1407 * unsupported type of folio in order to reduce the risk of unexpected
1408 * races caused by taking a folio refcount.
1409 */
1410 if (!HWPoisonHandlable(&folio->page, flags))
1411 return -EBUSY;
1412
1413 if (folio_try_get(folio)) {
1414 if (folio == page_folio(page))
1415 return 1;
1416
1417 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1418 folio_put(folio);
1419 }
1420
1421 return 0;
1422 }
1423
1424 static int get_any_page(struct page *p, unsigned long flags)
1425 {
1426 int ret = 0, pass = 0;
1427 bool count_increased = false;
1428
1429 if (flags & MF_COUNT_INCREASED)
1430 count_increased = true;
1431
1432 try_again:
1433 if (!count_increased) {
1434 ret = __get_hwpoison_page(p, flags);
1435 if (!ret) {
1436 if (page_count(p)) {
1437 /* We raced with an allocation, retry. */
1438 if (pass++ < 3)
1439 goto try_again;
1440 ret = -EBUSY;
1441 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1442 /* We raced with put_page, retry. */
1443 if (pass++ < 3)
1444 goto try_again;
1445 ret = -EIO;
1446 }
1447 goto out;
1448 } else if (ret == -EBUSY) {
1449 /*
1450 * We raced with (possibly temporary) unhandlable
1451 * page, retry.
1452 */
1453 if (pass++ < 3) {
1454 shake_page(p);
1455 goto try_again;
1456 }
1457 ret = -EIO;
1458 goto out;
1459 }
1460 }
1461
1462 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1463 ret = 1;
1464 } else {
1465 /*
1466 * A page we cannot handle. Check whether we can turn
1467 * it into something we can handle.
1468 */
1469 if (pass++ < 3) {
1470 put_page(p);
1471 shake_page(p);
1472 count_increased = false;
1473 goto try_again;
1474 }
1475 put_page(p);
1476 ret = -EIO;
1477 }
1478 out:
1479 if (ret == -EIO)
1480 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1481
1482 return ret;
1483 }
1484
1485 static int __get_unpoison_page(struct page *page)
1486 {
1487 struct folio *folio = page_folio(page);
1488 int ret = 0;
1489 bool hugetlb = false;
1490
1491 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1492 if (hugetlb)
1493 return ret;
1494
1495 /*
1496 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1497 * but also isolated from buddy freelist, so need to identify the
1498 * state and have to cancel both operations to unpoison.
1499 */
1500 if (PageHWPoisonTakenOff(page))
1501 return -EHWPOISON;
1502
1503 return get_page_unless_zero(page) ? 1 : 0;
1504 }
1505
1506 /**
1507 * get_hwpoison_page() - Get refcount for memory error handling
1508 * @p: Raw error page (hit by memory error)
1509 * @flags: Flags controlling behavior of error handling
1510 *
1511 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1512 * error on it, after checking that the error page is in a well-defined state
1513 * (defined as a page-type we can successfully handle the memory error on it,
1514 * such as LRU page and hugetlb page).
1515 *
1516 * Memory error handling could be triggered at any time on any type of page,
1517 * so it's prone to race with typical memory management lifecycle (like
1518 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1519 * extra care for the error page's state (as done in __get_hwpoison_page()),
1520 * and has some retry logic in get_any_page().
1521 *
1522 * When called from unpoison_memory(), the caller should already ensure that
1523 * the given page has PG_hwpoison. So it's never reused for other page
1524 * allocations, and __get_unpoison_page() never races with them.
1525 *
1526 * Return: 0 on failure,
1527 * 1 on success for in-use pages in a well-defined state,
1528 * -EIO for pages on which we can not handle memory errors,
1529 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1530 * operations like allocation and free,
1531 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1532 */
1533 static int get_hwpoison_page(struct page *p, unsigned long flags)
1534 {
1535 int ret;
1536
1537 zone_pcp_disable(page_zone(p));
1538 if (flags & MF_UNPOISON)
1539 ret = __get_unpoison_page(p);
1540 else
1541 ret = get_any_page(p, flags);
1542 zone_pcp_enable(page_zone(p));
1543
1544 return ret;
1545 }
1546
1547 /*
1548 * Do all that is necessary to remove user space mappings. Unmap
1549 * the pages and send SIGBUS to the processes if the data was dirty.
1550 */
1551 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1552 int flags, struct page *hpage)
1553 {
1554 struct folio *folio = page_folio(hpage);
1555 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1556 struct address_space *mapping;
1557 LIST_HEAD(tokill);
1558 bool unmap_success;
1559 int forcekill;
1560 bool mlocked = PageMlocked(hpage);
1561
1562 /*
1563 * Here we are interested only in user-mapped pages, so skip any
1564 * other types of pages.
1565 */
1566 if (PageReserved(p) || PageSlab(p) || PageTable(p))
1567 return true;
1568 if (!(PageLRU(hpage) || PageHuge(p)))
1569 return true;
1570
1571 /*
1572 * This check implies we don't kill processes if their pages
1573 * are in the swap cache early. Those are always late kills.
1574 */
1575 if (!page_mapped(hpage))
1576 return true;
1577
1578 if (PageSwapCache(p)) {
1579 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1580 ttu &= ~TTU_HWPOISON;
1581 }
1582
1583 /*
1584 * Propagate the dirty bit from PTEs to struct page first, because we
1585 * need this to decide if we should kill or just drop the page.
1586 * XXX: the dirty test could be racy: set_page_dirty() may not always
1587 * be called inside page lock (it's recommended but not enforced).
1588 */
1589 mapping = page_mapping(hpage);
1590 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1591 mapping_can_writeback(mapping)) {
1592 if (page_mkclean(hpage)) {
1593 SetPageDirty(hpage);
1594 } else {
1595 ttu &= ~TTU_HWPOISON;
1596 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1597 pfn);
1598 }
1599 }
1600
1601 /*
1602 * First collect all the processes that have the page
1603 * mapped in dirty form. This has to be done before try_to_unmap,
1604 * because ttu takes the rmap data structures down.
1605 */
1606 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1607
1608 if (PageHuge(hpage) && !PageAnon(hpage)) {
1609 /*
1610 * For hugetlb pages in shared mappings, try_to_unmap
1611 * could potentially call huge_pmd_unshare. Because of
1612 * this, take semaphore in write mode here and set
1613 * TTU_RMAP_LOCKED to indicate we have taken the lock
1614 * at this higher level.
1615 */
1616 mapping = hugetlb_page_mapping_lock_write(hpage);
1617 if (mapping) {
1618 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1619 i_mmap_unlock_write(mapping);
1620 } else
1621 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1622 } else {
1623 try_to_unmap(folio, ttu);
1624 }
1625
1626 unmap_success = !page_mapped(hpage);
1627 if (!unmap_success)
1628 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1629 pfn, page_mapcount(hpage));
1630
1631 /*
1632 * try_to_unmap() might put mlocked page in lru cache, so call
1633 * shake_page() again to ensure that it's flushed.
1634 */
1635 if (mlocked)
1636 shake_page(hpage);
1637
1638 /*
1639 * Now that the dirty bit has been propagated to the
1640 * struct page and all unmaps done we can decide if
1641 * killing is needed or not. Only kill when the page
1642 * was dirty or the process is not restartable,
1643 * otherwise the tokill list is merely
1644 * freed. When there was a problem unmapping earlier
1645 * use a more force-full uncatchable kill to prevent
1646 * any accesses to the poisoned memory.
1647 */
1648 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1649 !unmap_success;
1650 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1651
1652 return unmap_success;
1653 }
1654
1655 static int identify_page_state(unsigned long pfn, struct page *p,
1656 unsigned long page_flags)
1657 {
1658 struct page_state *ps;
1659
1660 /*
1661 * The first check uses the current page flags which may not have any
1662 * relevant information. The second check with the saved page flags is
1663 * carried out only if the first check can't determine the page status.
1664 */
1665 for (ps = error_states;; ps++)
1666 if ((p->flags & ps->mask) == ps->res)
1667 break;
1668
1669 page_flags |= (p->flags & (1UL << PG_dirty));
1670
1671 if (!ps->mask)
1672 for (ps = error_states;; ps++)
1673 if ((page_flags & ps->mask) == ps->res)
1674 break;
1675 return page_action(ps, p, pfn);
1676 }
1677
1678 static int try_to_split_thp_page(struct page *page)
1679 {
1680 int ret;
1681
1682 lock_page(page);
1683 ret = split_huge_page(page);
1684 unlock_page(page);
1685
1686 if (unlikely(ret))
1687 put_page(page);
1688
1689 return ret;
1690 }
1691
1692 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1693 struct address_space *mapping, pgoff_t index, int flags)
1694 {
1695 struct to_kill *tk;
1696 unsigned long size = 0;
1697
1698 list_for_each_entry(tk, to_kill, nd)
1699 if (tk->size_shift)
1700 size = max(size, 1UL << tk->size_shift);
1701
1702 if (size) {
1703 /*
1704 * Unmap the largest mapping to avoid breaking up device-dax
1705 * mappings which are constant size. The actual size of the
1706 * mapping being torn down is communicated in siginfo, see
1707 * kill_proc()
1708 */
1709 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1710
1711 unmap_mapping_range(mapping, start, size, 0);
1712 }
1713
1714 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1715 }
1716
1717 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1718 struct dev_pagemap *pgmap)
1719 {
1720 struct page *page = pfn_to_page(pfn);
1721 LIST_HEAD(to_kill);
1722 dax_entry_t cookie;
1723 int rc = 0;
1724
1725 /*
1726 * Pages instantiated by device-dax (not filesystem-dax)
1727 * may be compound pages.
1728 */
1729 page = compound_head(page);
1730
1731 /*
1732 * Prevent the inode from being freed while we are interrogating
1733 * the address_space, typically this would be handled by
1734 * lock_page(), but dax pages do not use the page lock. This
1735 * also prevents changes to the mapping of this pfn until
1736 * poison signaling is complete.
1737 */
1738 cookie = dax_lock_page(page);
1739 if (!cookie)
1740 return -EBUSY;
1741
1742 if (hwpoison_filter(page)) {
1743 rc = -EOPNOTSUPP;
1744 goto unlock;
1745 }
1746
1747 switch (pgmap->type) {
1748 case MEMORY_DEVICE_PRIVATE:
1749 case MEMORY_DEVICE_COHERENT:
1750 /*
1751 * TODO: Handle device pages which may need coordination
1752 * with device-side memory.
1753 */
1754 rc = -ENXIO;
1755 goto unlock;
1756 default:
1757 break;
1758 }
1759
1760 /*
1761 * Use this flag as an indication that the dax page has been
1762 * remapped UC to prevent speculative consumption of poison.
1763 */
1764 SetPageHWPoison(page);
1765
1766 /*
1767 * Unlike System-RAM there is no possibility to swap in a
1768 * different physical page at a given virtual address, so all
1769 * userspace consumption of ZONE_DEVICE memory necessitates
1770 * SIGBUS (i.e. MF_MUST_KILL)
1771 */
1772 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1773 collect_procs(page, &to_kill, true);
1774
1775 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1776 unlock:
1777 dax_unlock_page(page, cookie);
1778 return rc;
1779 }
1780
1781 #ifdef CONFIG_FS_DAX
1782 /**
1783 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1784 * @mapping: address_space of the file in use
1785 * @index: start pgoff of the range within the file
1786 * @count: length of the range, in unit of PAGE_SIZE
1787 * @mf_flags: memory failure flags
1788 */
1789 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1790 unsigned long count, int mf_flags)
1791 {
1792 LIST_HEAD(to_kill);
1793 dax_entry_t cookie;
1794 struct page *page;
1795 size_t end = index + count;
1796
1797 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1798
1799 for (; index < end; index++) {
1800 page = NULL;
1801 cookie = dax_lock_mapping_entry(mapping, index, &page);
1802 if (!cookie)
1803 return -EBUSY;
1804 if (!page)
1805 goto unlock;
1806
1807 SetPageHWPoison(page);
1808
1809 collect_procs_fsdax(page, mapping, index, &to_kill);
1810 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1811 index, mf_flags);
1812 unlock:
1813 dax_unlock_mapping_entry(mapping, index, cookie);
1814 }
1815 return 0;
1816 }
1817 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1818 #endif /* CONFIG_FS_DAX */
1819
1820 #ifdef CONFIG_HUGETLB_PAGE
1821 /*
1822 * Struct raw_hwp_page represents information about "raw error page",
1823 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1824 */
1825 struct raw_hwp_page {
1826 struct llist_node node;
1827 struct page *page;
1828 };
1829
1830 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1831 {
1832 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1833 }
1834
1835 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1836 {
1837 struct llist_head *head;
1838 struct llist_node *t, *tnode;
1839 unsigned long count = 0;
1840
1841 head = raw_hwp_list_head(folio);
1842 llist_for_each_safe(tnode, t, head->first) {
1843 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1844
1845 if (move_flag)
1846 SetPageHWPoison(p->page);
1847 else
1848 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1849 kfree(p);
1850 count++;
1851 }
1852 llist_del_all(head);
1853 return count;
1854 }
1855
1856 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1857 {
1858 struct llist_head *head;
1859 struct raw_hwp_page *raw_hwp;
1860 struct llist_node *t, *tnode;
1861 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1862
1863 /*
1864 * Once the hwpoison hugepage has lost reliable raw error info,
1865 * there is little meaning to keep additional error info precisely,
1866 * so skip to add additional raw error info.
1867 */
1868 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1869 return -EHWPOISON;
1870 head = raw_hwp_list_head(folio);
1871 llist_for_each_safe(tnode, t, head->first) {
1872 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1873
1874 if (p->page == page)
1875 return -EHWPOISON;
1876 }
1877
1878 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1879 if (raw_hwp) {
1880 raw_hwp->page = page;
1881 llist_add(&raw_hwp->node, head);
1882 /* the first error event will be counted in action_result(). */
1883 if (ret)
1884 num_poisoned_pages_inc(page_to_pfn(page));
1885 } else {
1886 /*
1887 * Failed to save raw error info. We no longer trace all
1888 * hwpoisoned subpages, and we need refuse to free/dissolve
1889 * this hwpoisoned hugepage.
1890 */
1891 folio_set_hugetlb_raw_hwp_unreliable(folio);
1892 /*
1893 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1894 * used any more, so free it.
1895 */
1896 __folio_free_raw_hwp(folio, false);
1897 }
1898 return ret;
1899 }
1900
1901 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1902 {
1903 /*
1904 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1905 * pages for tail pages are required but they don't exist.
1906 */
1907 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1908 return 0;
1909
1910 /*
1911 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1912 * definition.
1913 */
1914 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1915 return 0;
1916
1917 return __folio_free_raw_hwp(folio, move_flag);
1918 }
1919
1920 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1921 {
1922 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1923 return;
1924 folio_clear_hwpoison(folio);
1925 folio_free_raw_hwp(folio, true);
1926 }
1927
1928 /*
1929 * Called from hugetlb code with hugetlb_lock held.
1930 *
1931 * Return values:
1932 * 0 - free hugepage
1933 * 1 - in-use hugepage
1934 * 2 - not a hugepage
1935 * -EBUSY - the hugepage is busy (try to retry)
1936 * -EHWPOISON - the hugepage is already hwpoisoned
1937 */
1938 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1939 bool *migratable_cleared)
1940 {
1941 struct page *page = pfn_to_page(pfn);
1942 struct folio *folio = page_folio(page);
1943 int ret = 2; /* fallback to normal page handling */
1944 bool count_increased = false;
1945
1946 if (!folio_test_hugetlb(folio))
1947 goto out;
1948
1949 if (flags & MF_COUNT_INCREASED) {
1950 ret = 1;
1951 count_increased = true;
1952 } else if (folio_test_hugetlb_freed(folio)) {
1953 ret = 0;
1954 } else if (folio_test_hugetlb_migratable(folio)) {
1955 ret = folio_try_get(folio);
1956 if (ret)
1957 count_increased = true;
1958 } else {
1959 ret = -EBUSY;
1960 if (!(flags & MF_NO_RETRY))
1961 goto out;
1962 }
1963
1964 if (folio_set_hugetlb_hwpoison(folio, page)) {
1965 ret = -EHWPOISON;
1966 goto out;
1967 }
1968
1969 /*
1970 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
1971 * from being migrated by memory hotremove.
1972 */
1973 if (count_increased && folio_test_hugetlb_migratable(folio)) {
1974 folio_clear_hugetlb_migratable(folio);
1975 *migratable_cleared = true;
1976 }
1977
1978 return ret;
1979 out:
1980 if (count_increased)
1981 folio_put(folio);
1982 return ret;
1983 }
1984
1985 /*
1986 * Taking refcount of hugetlb pages needs extra care about race conditions
1987 * with basic operations like hugepage allocation/free/demotion.
1988 * So some of prechecks for hwpoison (pinning, and testing/setting
1989 * PageHWPoison) should be done in single hugetlb_lock range.
1990 */
1991 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1992 {
1993 int res;
1994 struct page *p = pfn_to_page(pfn);
1995 struct folio *folio;
1996 unsigned long page_flags;
1997 bool migratable_cleared = false;
1998
1999 *hugetlb = 1;
2000 retry:
2001 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2002 if (res == 2) { /* fallback to normal page handling */
2003 *hugetlb = 0;
2004 return 0;
2005 } else if (res == -EHWPOISON) {
2006 pr_err("%#lx: already hardware poisoned\n", pfn);
2007 if (flags & MF_ACTION_REQUIRED) {
2008 folio = page_folio(p);
2009 res = kill_accessing_process(current, folio_pfn(folio), flags);
2010 }
2011 return res;
2012 } else if (res == -EBUSY) {
2013 if (!(flags & MF_NO_RETRY)) {
2014 flags |= MF_NO_RETRY;
2015 goto retry;
2016 }
2017 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2018 }
2019
2020 folio = page_folio(p);
2021 folio_lock(folio);
2022
2023 if (hwpoison_filter(p)) {
2024 folio_clear_hugetlb_hwpoison(folio);
2025 if (migratable_cleared)
2026 folio_set_hugetlb_migratable(folio);
2027 folio_unlock(folio);
2028 if (res == 1)
2029 folio_put(folio);
2030 return -EOPNOTSUPP;
2031 }
2032
2033 /*
2034 * Handling free hugepage. The possible race with hugepage allocation
2035 * or demotion can be prevented by PageHWPoison flag.
2036 */
2037 if (res == 0) {
2038 folio_unlock(folio);
2039 if (__page_handle_poison(p) >= 0) {
2040 page_ref_inc(p);
2041 res = MF_RECOVERED;
2042 } else {
2043 res = MF_FAILED;
2044 }
2045 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2046 }
2047
2048 page_flags = folio->flags;
2049
2050 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2051 folio_unlock(folio);
2052 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2053 }
2054
2055 return identify_page_state(pfn, p, page_flags);
2056 }
2057
2058 #else
2059 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2060 {
2061 return 0;
2062 }
2063
2064 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2065 {
2066 return 0;
2067 }
2068 #endif /* CONFIG_HUGETLB_PAGE */
2069
2070 /* Drop the extra refcount in case we come from madvise() */
2071 static void put_ref_page(unsigned long pfn, int flags)
2072 {
2073 struct page *page;
2074
2075 if (!(flags & MF_COUNT_INCREASED))
2076 return;
2077
2078 page = pfn_to_page(pfn);
2079 if (page)
2080 put_page(page);
2081 }
2082
2083 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2084 struct dev_pagemap *pgmap)
2085 {
2086 int rc = -ENXIO;
2087
2088 put_ref_page(pfn, flags);
2089
2090 /* device metadata space is not recoverable */
2091 if (!pgmap_pfn_valid(pgmap, pfn))
2092 goto out;
2093
2094 /*
2095 * Call driver's implementation to handle the memory failure, otherwise
2096 * fall back to generic handler.
2097 */
2098 if (pgmap_has_memory_failure(pgmap)) {
2099 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2100 /*
2101 * Fall back to generic handler too if operation is not
2102 * supported inside the driver/device/filesystem.
2103 */
2104 if (rc != -EOPNOTSUPP)
2105 goto out;
2106 }
2107
2108 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2109 out:
2110 /* drop pgmap ref acquired in caller */
2111 put_dev_pagemap(pgmap);
2112 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2113 return rc;
2114 }
2115
2116 static DEFINE_MUTEX(mf_mutex);
2117
2118 /**
2119 * memory_failure - Handle memory failure of a page.
2120 * @pfn: Page Number of the corrupted page
2121 * @flags: fine tune action taken
2122 *
2123 * This function is called by the low level machine check code
2124 * of an architecture when it detects hardware memory corruption
2125 * of a page. It tries its best to recover, which includes
2126 * dropping pages, killing processes etc.
2127 *
2128 * The function is primarily of use for corruptions that
2129 * happen outside the current execution context (e.g. when
2130 * detected by a background scrubber)
2131 *
2132 * Must run in process context (e.g. a work queue) with interrupts
2133 * enabled and no spinlocks hold.
2134 *
2135 * Return: 0 for successfully handled the memory error,
2136 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2137 * < 0(except -EOPNOTSUPP) on failure.
2138 */
2139 int memory_failure(unsigned long pfn, int flags)
2140 {
2141 struct page *p;
2142 struct page *hpage;
2143 struct dev_pagemap *pgmap;
2144 int res = 0;
2145 unsigned long page_flags;
2146 bool retry = true;
2147 int hugetlb = 0;
2148
2149 if (!sysctl_memory_failure_recovery)
2150 panic("Memory failure on page %lx", pfn);
2151
2152 mutex_lock(&mf_mutex);
2153
2154 if (!(flags & MF_SW_SIMULATED))
2155 hw_memory_failure = true;
2156
2157 p = pfn_to_online_page(pfn);
2158 if (!p) {
2159 res = arch_memory_failure(pfn, flags);
2160 if (res == 0)
2161 goto unlock_mutex;
2162
2163 if (pfn_valid(pfn)) {
2164 pgmap = get_dev_pagemap(pfn, NULL);
2165 if (pgmap) {
2166 res = memory_failure_dev_pagemap(pfn, flags,
2167 pgmap);
2168 goto unlock_mutex;
2169 }
2170 }
2171 pr_err("%#lx: memory outside kernel control\n", pfn);
2172 res = -ENXIO;
2173 goto unlock_mutex;
2174 }
2175
2176 try_again:
2177 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2178 if (hugetlb)
2179 goto unlock_mutex;
2180
2181 if (TestSetPageHWPoison(p)) {
2182 pr_err("%#lx: already hardware poisoned\n", pfn);
2183 res = -EHWPOISON;
2184 if (flags & MF_ACTION_REQUIRED)
2185 res = kill_accessing_process(current, pfn, flags);
2186 if (flags & MF_COUNT_INCREASED)
2187 put_page(p);
2188 goto unlock_mutex;
2189 }
2190
2191 hpage = compound_head(p);
2192
2193 /*
2194 * We need/can do nothing about count=0 pages.
2195 * 1) it's a free page, and therefore in safe hand:
2196 * check_new_page() will be the gate keeper.
2197 * 2) it's part of a non-compound high order page.
2198 * Implies some kernel user: cannot stop them from
2199 * R/W the page; let's pray that the page has been
2200 * used and will be freed some time later.
2201 * In fact it's dangerous to directly bump up page count from 0,
2202 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2203 */
2204 if (!(flags & MF_COUNT_INCREASED)) {
2205 res = get_hwpoison_page(p, flags);
2206 if (!res) {
2207 if (is_free_buddy_page(p)) {
2208 if (take_page_off_buddy(p)) {
2209 page_ref_inc(p);
2210 res = MF_RECOVERED;
2211 } else {
2212 /* We lost the race, try again */
2213 if (retry) {
2214 ClearPageHWPoison(p);
2215 retry = false;
2216 goto try_again;
2217 }
2218 res = MF_FAILED;
2219 }
2220 res = action_result(pfn, MF_MSG_BUDDY, res);
2221 } else {
2222 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2223 }
2224 goto unlock_mutex;
2225 } else if (res < 0) {
2226 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2227 goto unlock_mutex;
2228 }
2229 }
2230
2231 if (PageTransHuge(hpage)) {
2232 /*
2233 * The flag must be set after the refcount is bumped
2234 * otherwise it may race with THP split.
2235 * And the flag can't be set in get_hwpoison_page() since
2236 * it is called by soft offline too and it is just called
2237 * for !MF_COUNT_INCREASE. So here seems to be the best
2238 * place.
2239 *
2240 * Don't need care about the above error handling paths for
2241 * get_hwpoison_page() since they handle either free page
2242 * or unhandlable page. The refcount is bumped iff the
2243 * page is a valid handlable page.
2244 */
2245 SetPageHasHWPoisoned(hpage);
2246 if (try_to_split_thp_page(p) < 0) {
2247 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2248 goto unlock_mutex;
2249 }
2250 VM_BUG_ON_PAGE(!page_count(p), p);
2251 }
2252
2253 /*
2254 * We ignore non-LRU pages for good reasons.
2255 * - PG_locked is only well defined for LRU pages and a few others
2256 * - to avoid races with __SetPageLocked()
2257 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2258 * The check (unnecessarily) ignores LRU pages being isolated and
2259 * walked by the page reclaim code, however that's not a big loss.
2260 */
2261 shake_page(p);
2262
2263 lock_page(p);
2264
2265 /*
2266 * We're only intended to deal with the non-Compound page here.
2267 * However, the page could have changed compound pages due to
2268 * race window. If this happens, we could try again to hopefully
2269 * handle the page next round.
2270 */
2271 if (PageCompound(p)) {
2272 if (retry) {
2273 ClearPageHWPoison(p);
2274 unlock_page(p);
2275 put_page(p);
2276 flags &= ~MF_COUNT_INCREASED;
2277 retry = false;
2278 goto try_again;
2279 }
2280 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2281 goto unlock_page;
2282 }
2283
2284 /*
2285 * We use page flags to determine what action should be taken, but
2286 * the flags can be modified by the error containment action. One
2287 * example is an mlocked page, where PG_mlocked is cleared by
2288 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2289 * correctly, we save a copy of the page flags at this time.
2290 */
2291 page_flags = p->flags;
2292
2293 if (hwpoison_filter(p)) {
2294 ClearPageHWPoison(p);
2295 unlock_page(p);
2296 put_page(p);
2297 res = -EOPNOTSUPP;
2298 goto unlock_mutex;
2299 }
2300
2301 /*
2302 * __munlock_folio() may clear a writeback page's LRU flag without
2303 * page_lock. We need wait writeback completion for this page or it
2304 * may trigger vfs BUG while evict inode.
2305 */
2306 if (!PageLRU(p) && !PageWriteback(p))
2307 goto identify_page_state;
2308
2309 /*
2310 * It's very difficult to mess with pages currently under IO
2311 * and in many cases impossible, so we just avoid it here.
2312 */
2313 wait_on_page_writeback(p);
2314
2315 /*
2316 * Now take care of user space mappings.
2317 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2318 */
2319 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2320 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2321 goto unlock_page;
2322 }
2323
2324 /*
2325 * Torn down by someone else?
2326 */
2327 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2328 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2329 goto unlock_page;
2330 }
2331
2332 identify_page_state:
2333 res = identify_page_state(pfn, p, page_flags);
2334 mutex_unlock(&mf_mutex);
2335 return res;
2336 unlock_page:
2337 unlock_page(p);
2338 unlock_mutex:
2339 mutex_unlock(&mf_mutex);
2340 return res;
2341 }
2342 EXPORT_SYMBOL_GPL(memory_failure);
2343
2344 #define MEMORY_FAILURE_FIFO_ORDER 4
2345 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2346
2347 struct memory_failure_entry {
2348 unsigned long pfn;
2349 int flags;
2350 };
2351
2352 struct memory_failure_cpu {
2353 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2354 MEMORY_FAILURE_FIFO_SIZE);
2355 spinlock_t lock;
2356 struct work_struct work;
2357 };
2358
2359 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2360
2361 /**
2362 * memory_failure_queue - Schedule handling memory failure of a page.
2363 * @pfn: Page Number of the corrupted page
2364 * @flags: Flags for memory failure handling
2365 *
2366 * This function is called by the low level hardware error handler
2367 * when it detects hardware memory corruption of a page. It schedules
2368 * the recovering of error page, including dropping pages, killing
2369 * processes etc.
2370 *
2371 * The function is primarily of use for corruptions that
2372 * happen outside the current execution context (e.g. when
2373 * detected by a background scrubber)
2374 *
2375 * Can run in IRQ context.
2376 */
2377 void memory_failure_queue(unsigned long pfn, int flags)
2378 {
2379 struct memory_failure_cpu *mf_cpu;
2380 unsigned long proc_flags;
2381 struct memory_failure_entry entry = {
2382 .pfn = pfn,
2383 .flags = flags,
2384 };
2385
2386 mf_cpu = &get_cpu_var(memory_failure_cpu);
2387 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2388 if (kfifo_put(&mf_cpu->fifo, entry))
2389 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2390 else
2391 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2392 pfn);
2393 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2394 put_cpu_var(memory_failure_cpu);
2395 }
2396 EXPORT_SYMBOL_GPL(memory_failure_queue);
2397
2398 static void memory_failure_work_func(struct work_struct *work)
2399 {
2400 struct memory_failure_cpu *mf_cpu;
2401 struct memory_failure_entry entry = { 0, };
2402 unsigned long proc_flags;
2403 int gotten;
2404
2405 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2406 for (;;) {
2407 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2408 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2409 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2410 if (!gotten)
2411 break;
2412 if (entry.flags & MF_SOFT_OFFLINE)
2413 soft_offline_page(entry.pfn, entry.flags);
2414 else
2415 memory_failure(entry.pfn, entry.flags);
2416 }
2417 }
2418
2419 /*
2420 * Process memory_failure work queued on the specified CPU.
2421 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2422 */
2423 void memory_failure_queue_kick(int cpu)
2424 {
2425 struct memory_failure_cpu *mf_cpu;
2426
2427 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2428 cancel_work_sync(&mf_cpu->work);
2429 memory_failure_work_func(&mf_cpu->work);
2430 }
2431
2432 static int __init memory_failure_init(void)
2433 {
2434 struct memory_failure_cpu *mf_cpu;
2435 int cpu;
2436
2437 for_each_possible_cpu(cpu) {
2438 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2439 spin_lock_init(&mf_cpu->lock);
2440 INIT_KFIFO(mf_cpu->fifo);
2441 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2442 }
2443
2444 return 0;
2445 }
2446 core_initcall(memory_failure_init);
2447
2448 #undef pr_fmt
2449 #define pr_fmt(fmt) "" fmt
2450 #define unpoison_pr_info(fmt, pfn, rs) \
2451 ({ \
2452 if (__ratelimit(rs)) \
2453 pr_info(fmt, pfn); \
2454 })
2455
2456 /**
2457 * unpoison_memory - Unpoison a previously poisoned page
2458 * @pfn: Page number of the to be unpoisoned page
2459 *
2460 * Software-unpoison a page that has been poisoned by
2461 * memory_failure() earlier.
2462 *
2463 * This is only done on the software-level, so it only works
2464 * for linux injected failures, not real hardware failures
2465 *
2466 * Returns 0 for success, otherwise -errno.
2467 */
2468 int unpoison_memory(unsigned long pfn)
2469 {
2470 struct folio *folio;
2471 struct page *p;
2472 int ret = -EBUSY;
2473 unsigned long count = 1;
2474 bool huge = false;
2475 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2476 DEFAULT_RATELIMIT_BURST);
2477
2478 if (!pfn_valid(pfn))
2479 return -ENXIO;
2480
2481 p = pfn_to_page(pfn);
2482 folio = page_folio(p);
2483
2484 mutex_lock(&mf_mutex);
2485
2486 if (hw_memory_failure) {
2487 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2488 pfn, &unpoison_rs);
2489 ret = -EOPNOTSUPP;
2490 goto unlock_mutex;
2491 }
2492
2493 if (!folio_test_hwpoison(folio)) {
2494 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2495 pfn, &unpoison_rs);
2496 goto unlock_mutex;
2497 }
2498
2499 if (folio_ref_count(folio) > 1) {
2500 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2501 pfn, &unpoison_rs);
2502 goto unlock_mutex;
2503 }
2504
2505 if (folio_mapped(folio)) {
2506 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2507 pfn, &unpoison_rs);
2508 goto unlock_mutex;
2509 }
2510
2511 if (folio_mapping(folio)) {
2512 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2513 pfn, &unpoison_rs);
2514 goto unlock_mutex;
2515 }
2516
2517 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
2518 goto unlock_mutex;
2519
2520 ret = get_hwpoison_page(p, MF_UNPOISON);
2521 if (!ret) {
2522 if (PageHuge(p)) {
2523 huge = true;
2524 count = folio_free_raw_hwp(folio, false);
2525 if (count == 0) {
2526 ret = -EBUSY;
2527 goto unlock_mutex;
2528 }
2529 }
2530 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2531 } else if (ret < 0) {
2532 if (ret == -EHWPOISON) {
2533 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2534 } else
2535 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2536 pfn, &unpoison_rs);
2537 } else {
2538 if (PageHuge(p)) {
2539 huge = true;
2540 count = folio_free_raw_hwp(folio, false);
2541 if (count == 0) {
2542 ret = -EBUSY;
2543 folio_put(folio);
2544 goto unlock_mutex;
2545 }
2546 }
2547
2548 folio_put(folio);
2549 if (TestClearPageHWPoison(p)) {
2550 folio_put(folio);
2551 ret = 0;
2552 }
2553 }
2554
2555 unlock_mutex:
2556 mutex_unlock(&mf_mutex);
2557 if (!ret) {
2558 if (!huge)
2559 num_poisoned_pages_sub(pfn, 1);
2560 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2561 page_to_pfn(p), &unpoison_rs);
2562 }
2563 return ret;
2564 }
2565 EXPORT_SYMBOL(unpoison_memory);
2566
2567 static bool isolate_page(struct page *page, struct list_head *pagelist)
2568 {
2569 bool isolated = false;
2570
2571 if (PageHuge(page)) {
2572 isolated = isolate_hugetlb(page_folio(page), pagelist);
2573 } else {
2574 bool lru = !__PageMovable(page);
2575
2576 if (lru)
2577 isolated = isolate_lru_page(page);
2578 else
2579 isolated = isolate_movable_page(page,
2580 ISOLATE_UNEVICTABLE);
2581
2582 if (isolated) {
2583 list_add(&page->lru, pagelist);
2584 if (lru)
2585 inc_node_page_state(page, NR_ISOLATED_ANON +
2586 page_is_file_lru(page));
2587 }
2588 }
2589
2590 /*
2591 * If we succeed to isolate the page, we grabbed another refcount on
2592 * the page, so we can safely drop the one we got from get_any_pages().
2593 * If we failed to isolate the page, it means that we cannot go further
2594 * and we will return an error, so drop the reference we got from
2595 * get_any_pages() as well.
2596 */
2597 put_page(page);
2598 return isolated;
2599 }
2600
2601 /*
2602 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2603 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2604 * If the page is mapped, it migrates the contents over.
2605 */
2606 static int soft_offline_in_use_page(struct page *page)
2607 {
2608 long ret = 0;
2609 unsigned long pfn = page_to_pfn(page);
2610 struct page *hpage = compound_head(page);
2611 char const *msg_page[] = {"page", "hugepage"};
2612 bool huge = PageHuge(page);
2613 LIST_HEAD(pagelist);
2614 struct migration_target_control mtc = {
2615 .nid = NUMA_NO_NODE,
2616 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2617 };
2618
2619 if (!huge && PageTransHuge(hpage)) {
2620 if (try_to_split_thp_page(page)) {
2621 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2622 return -EBUSY;
2623 }
2624 hpage = page;
2625 }
2626
2627 lock_page(page);
2628 if (!PageHuge(page))
2629 wait_on_page_writeback(page);
2630 if (PageHWPoison(page)) {
2631 unlock_page(page);
2632 put_page(page);
2633 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2634 return 0;
2635 }
2636
2637 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2638 /*
2639 * Try to invalidate first. This should work for
2640 * non dirty unmapped page cache pages.
2641 */
2642 ret = invalidate_inode_page(page);
2643 unlock_page(page);
2644
2645 if (ret) {
2646 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2647 page_handle_poison(page, false, true);
2648 return 0;
2649 }
2650
2651 if (isolate_page(hpage, &pagelist)) {
2652 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2653 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2654 if (!ret) {
2655 bool release = !huge;
2656
2657 if (!page_handle_poison(page, huge, release))
2658 ret = -EBUSY;
2659 } else {
2660 if (!list_empty(&pagelist))
2661 putback_movable_pages(&pagelist);
2662
2663 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2664 pfn, msg_page[huge], ret, &page->flags);
2665 if (ret > 0)
2666 ret = -EBUSY;
2667 }
2668 } else {
2669 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2670 pfn, msg_page[huge], page_count(page), &page->flags);
2671 ret = -EBUSY;
2672 }
2673 return ret;
2674 }
2675
2676 /**
2677 * soft_offline_page - Soft offline a page.
2678 * @pfn: pfn to soft-offline
2679 * @flags: flags. Same as memory_failure().
2680 *
2681 * Returns 0 on success
2682 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2683 * < 0 otherwise negated errno.
2684 *
2685 * Soft offline a page, by migration or invalidation,
2686 * without killing anything. This is for the case when
2687 * a page is not corrupted yet (so it's still valid to access),
2688 * but has had a number of corrected errors and is better taken
2689 * out.
2690 *
2691 * The actual policy on when to do that is maintained by
2692 * user space.
2693 *
2694 * This should never impact any application or cause data loss,
2695 * however it might take some time.
2696 *
2697 * This is not a 100% solution for all memory, but tries to be
2698 * ``good enough'' for the majority of memory.
2699 */
2700 int soft_offline_page(unsigned long pfn, int flags)
2701 {
2702 int ret;
2703 bool try_again = true;
2704 struct page *page;
2705
2706 if (!pfn_valid(pfn)) {
2707 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2708 return -ENXIO;
2709 }
2710
2711 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2712 page = pfn_to_online_page(pfn);
2713 if (!page) {
2714 put_ref_page(pfn, flags);
2715 return -EIO;
2716 }
2717
2718 mutex_lock(&mf_mutex);
2719
2720 if (PageHWPoison(page)) {
2721 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2722 put_ref_page(pfn, flags);
2723 mutex_unlock(&mf_mutex);
2724 return 0;
2725 }
2726
2727 retry:
2728 get_online_mems();
2729 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2730 put_online_mems();
2731
2732 if (hwpoison_filter(page)) {
2733 if (ret > 0)
2734 put_page(page);
2735
2736 mutex_unlock(&mf_mutex);
2737 return -EOPNOTSUPP;
2738 }
2739
2740 if (ret > 0) {
2741 ret = soft_offline_in_use_page(page);
2742 } else if (ret == 0) {
2743 if (!page_handle_poison(page, true, false) && try_again) {
2744 try_again = false;
2745 flags &= ~MF_COUNT_INCREASED;
2746 goto retry;
2747 }
2748 }
2749
2750 mutex_unlock(&mf_mutex);
2751
2752 return ret;
2753 }