]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/memory-failure.c
Merge tag 'livepatching-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / mm / memory-failure.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37 #define pr_fmt(fmt) "Memory failure: " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include "swap.h"
66 #include "internal.h"
67 #include "ras/ras_event.h"
68
69 int sysctl_memory_failure_early_kill __read_mostly = 0;
70
71 int sysctl_memory_failure_recovery __read_mostly = 1;
72
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74
75 static bool hw_memory_failure __read_mostly = false;
76
77 inline void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 atomic_long_inc(&num_poisoned_pages);
80 memblk_nr_poison_inc(pfn);
81 }
82
83 inline void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 atomic_long_sub(i, &num_poisoned_pages);
86 if (pfn != -1UL)
87 memblk_nr_poison_sub(pfn, i);
88 }
89
90 /**
91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92 * @_name: name of the file in the per NUMA sysfs directory.
93 */
94 #define MF_ATTR_RO(_name) \
95 static ssize_t _name##_show(struct device *dev, \
96 struct device_attribute *attr, \
97 char *buf) \
98 { \
99 struct memory_failure_stats *mf_stats = \
100 &NODE_DATA(dev->id)->mf_stats; \
101 return sprintf(buf, "%lu\n", mf_stats->_name); \
102 } \
103 static DEVICE_ATTR_RO(_name)
104
105 MF_ATTR_RO(total);
106 MF_ATTR_RO(ignored);
107 MF_ATTR_RO(failed);
108 MF_ATTR_RO(delayed);
109 MF_ATTR_RO(recovered);
110
111 static struct attribute *memory_failure_attr[] = {
112 &dev_attr_total.attr,
113 &dev_attr_ignored.attr,
114 &dev_attr_failed.attr,
115 &dev_attr_delayed.attr,
116 &dev_attr_recovered.attr,
117 NULL,
118 };
119
120 const struct attribute_group memory_failure_attr_group = {
121 .name = "memory_failure",
122 .attrs = memory_failure_attr,
123 };
124
125 /*
126 * Return values:
127 * 1: the page is dissolved (if needed) and taken off from buddy,
128 * 0: the page is dissolved (if needed) and not taken off from buddy,
129 * < 0: failed to dissolve.
130 */
131 static int __page_handle_poison(struct page *page)
132 {
133 int ret;
134
135 zone_pcp_disable(page_zone(page));
136 ret = dissolve_free_huge_page(page);
137 if (!ret)
138 ret = take_page_off_buddy(page);
139 zone_pcp_enable(page_zone(page));
140
141 return ret;
142 }
143
144 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
145 {
146 if (hugepage_or_freepage) {
147 /*
148 * Doing this check for free pages is also fine since dissolve_free_huge_page
149 * returns 0 for non-hugetlb pages as well.
150 */
151 if (__page_handle_poison(page) <= 0)
152 /*
153 * We could fail to take off the target page from buddy
154 * for example due to racy page allocation, but that's
155 * acceptable because soft-offlined page is not broken
156 * and if someone really want to use it, they should
157 * take it.
158 */
159 return false;
160 }
161
162 SetPageHWPoison(page);
163 if (release)
164 put_page(page);
165 page_ref_inc(page);
166 num_poisoned_pages_inc(page_to_pfn(page));
167
168 return true;
169 }
170
171 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
172
173 u32 hwpoison_filter_enable = 0;
174 u32 hwpoison_filter_dev_major = ~0U;
175 u32 hwpoison_filter_dev_minor = ~0U;
176 u64 hwpoison_filter_flags_mask;
177 u64 hwpoison_filter_flags_value;
178 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
179 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
180 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
181 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
182 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
183
184 static int hwpoison_filter_dev(struct page *p)
185 {
186 struct address_space *mapping;
187 dev_t dev;
188
189 if (hwpoison_filter_dev_major == ~0U &&
190 hwpoison_filter_dev_minor == ~0U)
191 return 0;
192
193 mapping = page_mapping(p);
194 if (mapping == NULL || mapping->host == NULL)
195 return -EINVAL;
196
197 dev = mapping->host->i_sb->s_dev;
198 if (hwpoison_filter_dev_major != ~0U &&
199 hwpoison_filter_dev_major != MAJOR(dev))
200 return -EINVAL;
201 if (hwpoison_filter_dev_minor != ~0U &&
202 hwpoison_filter_dev_minor != MINOR(dev))
203 return -EINVAL;
204
205 return 0;
206 }
207
208 static int hwpoison_filter_flags(struct page *p)
209 {
210 if (!hwpoison_filter_flags_mask)
211 return 0;
212
213 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
214 hwpoison_filter_flags_value)
215 return 0;
216 else
217 return -EINVAL;
218 }
219
220 /*
221 * This allows stress tests to limit test scope to a collection of tasks
222 * by putting them under some memcg. This prevents killing unrelated/important
223 * processes such as /sbin/init. Note that the target task may share clean
224 * pages with init (eg. libc text), which is harmless. If the target task
225 * share _dirty_ pages with another task B, the test scheme must make sure B
226 * is also included in the memcg. At last, due to race conditions this filter
227 * can only guarantee that the page either belongs to the memcg tasks, or is
228 * a freed page.
229 */
230 #ifdef CONFIG_MEMCG
231 u64 hwpoison_filter_memcg;
232 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
233 static int hwpoison_filter_task(struct page *p)
234 {
235 if (!hwpoison_filter_memcg)
236 return 0;
237
238 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
239 return -EINVAL;
240
241 return 0;
242 }
243 #else
244 static int hwpoison_filter_task(struct page *p) { return 0; }
245 #endif
246
247 int hwpoison_filter(struct page *p)
248 {
249 if (!hwpoison_filter_enable)
250 return 0;
251
252 if (hwpoison_filter_dev(p))
253 return -EINVAL;
254
255 if (hwpoison_filter_flags(p))
256 return -EINVAL;
257
258 if (hwpoison_filter_task(p))
259 return -EINVAL;
260
261 return 0;
262 }
263 #else
264 int hwpoison_filter(struct page *p)
265 {
266 return 0;
267 }
268 #endif
269
270 EXPORT_SYMBOL_GPL(hwpoison_filter);
271
272 /*
273 * Kill all processes that have a poisoned page mapped and then isolate
274 * the page.
275 *
276 * General strategy:
277 * Find all processes having the page mapped and kill them.
278 * But we keep a page reference around so that the page is not
279 * actually freed yet.
280 * Then stash the page away
281 *
282 * There's no convenient way to get back to mapped processes
283 * from the VMAs. So do a brute-force search over all
284 * running processes.
285 *
286 * Remember that machine checks are not common (or rather
287 * if they are common you have other problems), so this shouldn't
288 * be a performance issue.
289 *
290 * Also there are some races possible while we get from the
291 * error detection to actually handle it.
292 */
293
294 struct to_kill {
295 struct list_head nd;
296 struct task_struct *tsk;
297 unsigned long addr;
298 short size_shift;
299 };
300
301 /*
302 * Send all the processes who have the page mapped a signal.
303 * ``action optional'' if they are not immediately affected by the error
304 * ``action required'' if error happened in current execution context
305 */
306 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
307 {
308 struct task_struct *t = tk->tsk;
309 short addr_lsb = tk->size_shift;
310 int ret = 0;
311
312 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
313 pfn, t->comm, t->pid);
314
315 if ((flags & MF_ACTION_REQUIRED) && (t == current))
316 ret = force_sig_mceerr(BUS_MCEERR_AR,
317 (void __user *)tk->addr, addr_lsb);
318 else
319 /*
320 * Signal other processes sharing the page if they have
321 * PF_MCE_EARLY set.
322 * Don't use force here, it's convenient if the signal
323 * can be temporarily blocked.
324 * This could cause a loop when the user sets SIGBUS
325 * to SIG_IGN, but hopefully no one will do that?
326 */
327 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
328 addr_lsb, t);
329 if (ret < 0)
330 pr_info("Error sending signal to %s:%d: %d\n",
331 t->comm, t->pid, ret);
332 return ret;
333 }
334
335 /*
336 * Unknown page type encountered. Try to check whether it can turn PageLRU by
337 * lru_add_drain_all.
338 */
339 void shake_page(struct page *p)
340 {
341 if (PageHuge(p))
342 return;
343
344 if (!PageSlab(p)) {
345 lru_add_drain_all();
346 if (PageLRU(p) || is_free_buddy_page(p))
347 return;
348 }
349
350 /*
351 * TODO: Could shrink slab caches here if a lightweight range-based
352 * shrinker will be available.
353 */
354 }
355 EXPORT_SYMBOL_GPL(shake_page);
356
357 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
358 unsigned long address)
359 {
360 unsigned long ret = 0;
361 pgd_t *pgd;
362 p4d_t *p4d;
363 pud_t *pud;
364 pmd_t *pmd;
365 pte_t *pte;
366
367 VM_BUG_ON_VMA(address == -EFAULT, vma);
368 pgd = pgd_offset(vma->vm_mm, address);
369 if (!pgd_present(*pgd))
370 return 0;
371 p4d = p4d_offset(pgd, address);
372 if (!p4d_present(*p4d))
373 return 0;
374 pud = pud_offset(p4d, address);
375 if (!pud_present(*pud))
376 return 0;
377 if (pud_devmap(*pud))
378 return PUD_SHIFT;
379 pmd = pmd_offset(pud, address);
380 if (!pmd_present(*pmd))
381 return 0;
382 if (pmd_devmap(*pmd))
383 return PMD_SHIFT;
384 pte = pte_offset_map(pmd, address);
385 if (pte_present(*pte) && pte_devmap(*pte))
386 ret = PAGE_SHIFT;
387 pte_unmap(pte);
388 return ret;
389 }
390
391 /*
392 * Failure handling: if we can't find or can't kill a process there's
393 * not much we can do. We just print a message and ignore otherwise.
394 */
395
396 #define FSDAX_INVALID_PGOFF ULONG_MAX
397
398 /*
399 * Schedule a process for later kill.
400 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
401 *
402 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
403 * filesystem with a memory failure handler has claimed the
404 * memory_failure event. In all other cases, page->index and
405 * page->mapping are sufficient for mapping the page back to its
406 * corresponding user virtual address.
407 */
408 static void add_to_kill(struct task_struct *tsk, struct page *p,
409 pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
410 struct list_head *to_kill)
411 {
412 struct to_kill *tk;
413
414 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
415 if (!tk) {
416 pr_err("Out of memory while machine check handling\n");
417 return;
418 }
419
420 tk->addr = page_address_in_vma(p, vma);
421 if (is_zone_device_page(p)) {
422 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
423 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
424 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
425 } else
426 tk->size_shift = page_shift(compound_head(p));
427
428 /*
429 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
430 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
431 * so "tk->size_shift == 0" effectively checks no mapping on
432 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
433 * to a process' address space, it's possible not all N VMAs
434 * contain mappings for the page, but at least one VMA does.
435 * Only deliver SIGBUS with payload derived from the VMA that
436 * has a mapping for the page.
437 */
438 if (tk->addr == -EFAULT) {
439 pr_info("Unable to find user space address %lx in %s\n",
440 page_to_pfn(p), tsk->comm);
441 } else if (tk->size_shift == 0) {
442 kfree(tk);
443 return;
444 }
445
446 get_task_struct(tsk);
447 tk->tsk = tsk;
448 list_add_tail(&tk->nd, to_kill);
449 }
450
451 /*
452 * Kill the processes that have been collected earlier.
453 *
454 * Only do anything when FORCEKILL is set, otherwise just free the
455 * list (this is used for clean pages which do not need killing)
456 * Also when FAIL is set do a force kill because something went
457 * wrong earlier.
458 */
459 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
460 unsigned long pfn, int flags)
461 {
462 struct to_kill *tk, *next;
463
464 list_for_each_entry_safe(tk, next, to_kill, nd) {
465 if (forcekill) {
466 /*
467 * In case something went wrong with munmapping
468 * make sure the process doesn't catch the
469 * signal and then access the memory. Just kill it.
470 */
471 if (fail || tk->addr == -EFAULT) {
472 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
473 pfn, tk->tsk->comm, tk->tsk->pid);
474 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
475 tk->tsk, PIDTYPE_PID);
476 }
477
478 /*
479 * In theory the process could have mapped
480 * something else on the address in-between. We could
481 * check for that, but we need to tell the
482 * process anyways.
483 */
484 else if (kill_proc(tk, pfn, flags) < 0)
485 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
486 pfn, tk->tsk->comm, tk->tsk->pid);
487 }
488 list_del(&tk->nd);
489 put_task_struct(tk->tsk);
490 kfree(tk);
491 }
492 }
493
494 /*
495 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
496 * on behalf of the thread group. Return task_struct of the (first found)
497 * dedicated thread if found, and return NULL otherwise.
498 *
499 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
500 * have to call rcu_read_lock/unlock() in this function.
501 */
502 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
503 {
504 struct task_struct *t;
505
506 for_each_thread(tsk, t) {
507 if (t->flags & PF_MCE_PROCESS) {
508 if (t->flags & PF_MCE_EARLY)
509 return t;
510 } else {
511 if (sysctl_memory_failure_early_kill)
512 return t;
513 }
514 }
515 return NULL;
516 }
517
518 /*
519 * Determine whether a given process is "early kill" process which expects
520 * to be signaled when some page under the process is hwpoisoned.
521 * Return task_struct of the dedicated thread (main thread unless explicitly
522 * specified) if the process is "early kill" and otherwise returns NULL.
523 *
524 * Note that the above is true for Action Optional case. For Action Required
525 * case, it's only meaningful to the current thread which need to be signaled
526 * with SIGBUS, this error is Action Optional for other non current
527 * processes sharing the same error page,if the process is "early kill", the
528 * task_struct of the dedicated thread will also be returned.
529 */
530 static struct task_struct *task_early_kill(struct task_struct *tsk,
531 int force_early)
532 {
533 if (!tsk->mm)
534 return NULL;
535 /*
536 * Comparing ->mm here because current task might represent
537 * a subthread, while tsk always points to the main thread.
538 */
539 if (force_early && tsk->mm == current->mm)
540 return current;
541
542 return find_early_kill_thread(tsk);
543 }
544
545 /*
546 * Collect processes when the error hit an anonymous page.
547 */
548 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
549 int force_early)
550 {
551 struct folio *folio = page_folio(page);
552 struct vm_area_struct *vma;
553 struct task_struct *tsk;
554 struct anon_vma *av;
555 pgoff_t pgoff;
556
557 av = folio_lock_anon_vma_read(folio, NULL);
558 if (av == NULL) /* Not actually mapped anymore */
559 return;
560
561 pgoff = page_to_pgoff(page);
562 read_lock(&tasklist_lock);
563 for_each_process (tsk) {
564 struct anon_vma_chain *vmac;
565 struct task_struct *t = task_early_kill(tsk, force_early);
566
567 if (!t)
568 continue;
569 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
570 pgoff, pgoff) {
571 vma = vmac->vma;
572 if (vma->vm_mm != t->mm)
573 continue;
574 if (!page_mapped_in_vma(page, vma))
575 continue;
576 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, to_kill);
577 }
578 }
579 read_unlock(&tasklist_lock);
580 anon_vma_unlock_read(av);
581 }
582
583 /*
584 * Collect processes when the error hit a file mapped page.
585 */
586 static void collect_procs_file(struct page *page, struct list_head *to_kill,
587 int force_early)
588 {
589 struct vm_area_struct *vma;
590 struct task_struct *tsk;
591 struct address_space *mapping = page->mapping;
592 pgoff_t pgoff;
593
594 i_mmap_lock_read(mapping);
595 read_lock(&tasklist_lock);
596 pgoff = page_to_pgoff(page);
597 for_each_process(tsk) {
598 struct task_struct *t = task_early_kill(tsk, force_early);
599
600 if (!t)
601 continue;
602 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
603 pgoff) {
604 /*
605 * Send early kill signal to tasks where a vma covers
606 * the page but the corrupted page is not necessarily
607 * mapped it in its pte.
608 * Assume applications who requested early kill want
609 * to be informed of all such data corruptions.
610 */
611 if (vma->vm_mm == t->mm)
612 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma,
613 to_kill);
614 }
615 }
616 read_unlock(&tasklist_lock);
617 i_mmap_unlock_read(mapping);
618 }
619
620 #ifdef CONFIG_FS_DAX
621 /*
622 * Collect processes when the error hit a fsdax page.
623 */
624 static void collect_procs_fsdax(struct page *page,
625 struct address_space *mapping, pgoff_t pgoff,
626 struct list_head *to_kill)
627 {
628 struct vm_area_struct *vma;
629 struct task_struct *tsk;
630
631 i_mmap_lock_read(mapping);
632 read_lock(&tasklist_lock);
633 for_each_process(tsk) {
634 struct task_struct *t = task_early_kill(tsk, true);
635
636 if (!t)
637 continue;
638 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
639 if (vma->vm_mm == t->mm)
640 add_to_kill(t, page, pgoff, vma, to_kill);
641 }
642 }
643 read_unlock(&tasklist_lock);
644 i_mmap_unlock_read(mapping);
645 }
646 #endif /* CONFIG_FS_DAX */
647
648 /*
649 * Collect the processes who have the corrupted page mapped to kill.
650 */
651 static void collect_procs(struct page *page, struct list_head *tokill,
652 int force_early)
653 {
654 if (!page->mapping)
655 return;
656
657 if (PageAnon(page))
658 collect_procs_anon(page, tokill, force_early);
659 else
660 collect_procs_file(page, tokill, force_early);
661 }
662
663 struct hwp_walk {
664 struct to_kill tk;
665 unsigned long pfn;
666 int flags;
667 };
668
669 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
670 {
671 tk->addr = addr;
672 tk->size_shift = shift;
673 }
674
675 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
676 unsigned long poisoned_pfn, struct to_kill *tk)
677 {
678 unsigned long pfn = 0;
679
680 if (pte_present(pte)) {
681 pfn = pte_pfn(pte);
682 } else {
683 swp_entry_t swp = pte_to_swp_entry(pte);
684
685 if (is_hwpoison_entry(swp))
686 pfn = swp_offset_pfn(swp);
687 }
688
689 if (!pfn || pfn != poisoned_pfn)
690 return 0;
691
692 set_to_kill(tk, addr, shift);
693 return 1;
694 }
695
696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
698 struct hwp_walk *hwp)
699 {
700 pmd_t pmd = *pmdp;
701 unsigned long pfn;
702 unsigned long hwpoison_vaddr;
703
704 if (!pmd_present(pmd))
705 return 0;
706 pfn = pmd_pfn(pmd);
707 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
708 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
709 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
710 return 1;
711 }
712 return 0;
713 }
714 #else
715 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
716 struct hwp_walk *hwp)
717 {
718 return 0;
719 }
720 #endif
721
722 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
723 unsigned long end, struct mm_walk *walk)
724 {
725 struct hwp_walk *hwp = walk->private;
726 int ret = 0;
727 pte_t *ptep, *mapped_pte;
728 spinlock_t *ptl;
729
730 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
731 if (ptl) {
732 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
733 spin_unlock(ptl);
734 goto out;
735 }
736
737 if (pmd_trans_unstable(pmdp))
738 goto out;
739
740 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
741 addr, &ptl);
742 for (; addr != end; ptep++, addr += PAGE_SIZE) {
743 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
744 hwp->pfn, &hwp->tk);
745 if (ret == 1)
746 break;
747 }
748 pte_unmap_unlock(mapped_pte, ptl);
749 out:
750 cond_resched();
751 return ret;
752 }
753
754 #ifdef CONFIG_HUGETLB_PAGE
755 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
756 unsigned long addr, unsigned long end,
757 struct mm_walk *walk)
758 {
759 struct hwp_walk *hwp = walk->private;
760 pte_t pte = huge_ptep_get(ptep);
761 struct hstate *h = hstate_vma(walk->vma);
762
763 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
764 hwp->pfn, &hwp->tk);
765 }
766 #else
767 #define hwpoison_hugetlb_range NULL
768 #endif
769
770 static const struct mm_walk_ops hwp_walk_ops = {
771 .pmd_entry = hwpoison_pte_range,
772 .hugetlb_entry = hwpoison_hugetlb_range,
773 };
774
775 /*
776 * Sends SIGBUS to the current process with error info.
777 *
778 * This function is intended to handle "Action Required" MCEs on already
779 * hardware poisoned pages. They could happen, for example, when
780 * memory_failure() failed to unmap the error page at the first call, or
781 * when multiple local machine checks happened on different CPUs.
782 *
783 * MCE handler currently has no easy access to the error virtual address,
784 * so this function walks page table to find it. The returned virtual address
785 * is proper in most cases, but it could be wrong when the application
786 * process has multiple entries mapping the error page.
787 */
788 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
789 int flags)
790 {
791 int ret;
792 struct hwp_walk priv = {
793 .pfn = pfn,
794 };
795 priv.tk.tsk = p;
796
797 if (!p->mm)
798 return -EFAULT;
799
800 mmap_read_lock(p->mm);
801 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
802 (void *)&priv);
803 if (ret == 1 && priv.tk.addr)
804 kill_proc(&priv.tk, pfn, flags);
805 else
806 ret = 0;
807 mmap_read_unlock(p->mm);
808 return ret > 0 ? -EHWPOISON : -EFAULT;
809 }
810
811 static const char *action_name[] = {
812 [MF_IGNORED] = "Ignored",
813 [MF_FAILED] = "Failed",
814 [MF_DELAYED] = "Delayed",
815 [MF_RECOVERED] = "Recovered",
816 };
817
818 static const char * const action_page_types[] = {
819 [MF_MSG_KERNEL] = "reserved kernel page",
820 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
821 [MF_MSG_SLAB] = "kernel slab page",
822 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
823 [MF_MSG_HUGE] = "huge page",
824 [MF_MSG_FREE_HUGE] = "free huge page",
825 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
826 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
827 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
828 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
829 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
830 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
831 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
832 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
833 [MF_MSG_CLEAN_LRU] = "clean LRU page",
834 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
835 [MF_MSG_BUDDY] = "free buddy page",
836 [MF_MSG_DAX] = "dax page",
837 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
838 [MF_MSG_UNKNOWN] = "unknown page",
839 };
840
841 /*
842 * XXX: It is possible that a page is isolated from LRU cache,
843 * and then kept in swap cache or failed to remove from page cache.
844 * The page count will stop it from being freed by unpoison.
845 * Stress tests should be aware of this memory leak problem.
846 */
847 static int delete_from_lru_cache(struct page *p)
848 {
849 if (isolate_lru_page(p)) {
850 /*
851 * Clear sensible page flags, so that the buddy system won't
852 * complain when the page is unpoison-and-freed.
853 */
854 ClearPageActive(p);
855 ClearPageUnevictable(p);
856
857 /*
858 * Poisoned page might never drop its ref count to 0 so we have
859 * to uncharge it manually from its memcg.
860 */
861 mem_cgroup_uncharge(page_folio(p));
862
863 /*
864 * drop the page count elevated by isolate_lru_page()
865 */
866 put_page(p);
867 return 0;
868 }
869 return -EIO;
870 }
871
872 static int truncate_error_page(struct page *p, unsigned long pfn,
873 struct address_space *mapping)
874 {
875 int ret = MF_FAILED;
876
877 if (mapping->a_ops->error_remove_page) {
878 struct folio *folio = page_folio(p);
879 int err = mapping->a_ops->error_remove_page(mapping, p);
880
881 if (err != 0) {
882 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
883 } else if (folio_has_private(folio) &&
884 !filemap_release_folio(folio, GFP_NOIO)) {
885 pr_info("%#lx: failed to release buffers\n", pfn);
886 } else {
887 ret = MF_RECOVERED;
888 }
889 } else {
890 /*
891 * If the file system doesn't support it just invalidate
892 * This fails on dirty or anything with private pages
893 */
894 if (invalidate_inode_page(p))
895 ret = MF_RECOVERED;
896 else
897 pr_info("%#lx: Failed to invalidate\n", pfn);
898 }
899
900 return ret;
901 }
902
903 struct page_state {
904 unsigned long mask;
905 unsigned long res;
906 enum mf_action_page_type type;
907
908 /* Callback ->action() has to unlock the relevant page inside it. */
909 int (*action)(struct page_state *ps, struct page *p);
910 };
911
912 /*
913 * Return true if page is still referenced by others, otherwise return
914 * false.
915 *
916 * The extra_pins is true when one extra refcount is expected.
917 */
918 static bool has_extra_refcount(struct page_state *ps, struct page *p,
919 bool extra_pins)
920 {
921 int count = page_count(p) - 1;
922
923 if (extra_pins)
924 count -= 1;
925
926 if (count > 0) {
927 pr_err("%#lx: %s still referenced by %d users\n",
928 page_to_pfn(p), action_page_types[ps->type], count);
929 return true;
930 }
931
932 return false;
933 }
934
935 /*
936 * Error hit kernel page.
937 * Do nothing, try to be lucky and not touch this instead. For a few cases we
938 * could be more sophisticated.
939 */
940 static int me_kernel(struct page_state *ps, struct page *p)
941 {
942 unlock_page(p);
943 return MF_IGNORED;
944 }
945
946 /*
947 * Page in unknown state. Do nothing.
948 */
949 static int me_unknown(struct page_state *ps, struct page *p)
950 {
951 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
952 unlock_page(p);
953 return MF_FAILED;
954 }
955
956 /*
957 * Clean (or cleaned) page cache page.
958 */
959 static int me_pagecache_clean(struct page_state *ps, struct page *p)
960 {
961 int ret;
962 struct address_space *mapping;
963 bool extra_pins;
964
965 delete_from_lru_cache(p);
966
967 /*
968 * For anonymous pages we're done the only reference left
969 * should be the one m_f() holds.
970 */
971 if (PageAnon(p)) {
972 ret = MF_RECOVERED;
973 goto out;
974 }
975
976 /*
977 * Now truncate the page in the page cache. This is really
978 * more like a "temporary hole punch"
979 * Don't do this for block devices when someone else
980 * has a reference, because it could be file system metadata
981 * and that's not safe to truncate.
982 */
983 mapping = page_mapping(p);
984 if (!mapping) {
985 /*
986 * Page has been teared down in the meanwhile
987 */
988 ret = MF_FAILED;
989 goto out;
990 }
991
992 /*
993 * The shmem page is kept in page cache instead of truncating
994 * so is expected to have an extra refcount after error-handling.
995 */
996 extra_pins = shmem_mapping(mapping);
997
998 /*
999 * Truncation is a bit tricky. Enable it per file system for now.
1000 *
1001 * Open: to take i_rwsem or not for this? Right now we don't.
1002 */
1003 ret = truncate_error_page(p, page_to_pfn(p), mapping);
1004 if (has_extra_refcount(ps, p, extra_pins))
1005 ret = MF_FAILED;
1006
1007 out:
1008 unlock_page(p);
1009
1010 return ret;
1011 }
1012
1013 /*
1014 * Dirty pagecache page
1015 * Issues: when the error hit a hole page the error is not properly
1016 * propagated.
1017 */
1018 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1019 {
1020 struct address_space *mapping = page_mapping(p);
1021
1022 SetPageError(p);
1023 /* TBD: print more information about the file. */
1024 if (mapping) {
1025 /*
1026 * IO error will be reported by write(), fsync(), etc.
1027 * who check the mapping.
1028 * This way the application knows that something went
1029 * wrong with its dirty file data.
1030 *
1031 * There's one open issue:
1032 *
1033 * The EIO will be only reported on the next IO
1034 * operation and then cleared through the IO map.
1035 * Normally Linux has two mechanisms to pass IO error
1036 * first through the AS_EIO flag in the address space
1037 * and then through the PageError flag in the page.
1038 * Since we drop pages on memory failure handling the
1039 * only mechanism open to use is through AS_AIO.
1040 *
1041 * This has the disadvantage that it gets cleared on
1042 * the first operation that returns an error, while
1043 * the PageError bit is more sticky and only cleared
1044 * when the page is reread or dropped. If an
1045 * application assumes it will always get error on
1046 * fsync, but does other operations on the fd before
1047 * and the page is dropped between then the error
1048 * will not be properly reported.
1049 *
1050 * This can already happen even without hwpoisoned
1051 * pages: first on metadata IO errors (which only
1052 * report through AS_EIO) or when the page is dropped
1053 * at the wrong time.
1054 *
1055 * So right now we assume that the application DTRT on
1056 * the first EIO, but we're not worse than other parts
1057 * of the kernel.
1058 */
1059 mapping_set_error(mapping, -EIO);
1060 }
1061
1062 return me_pagecache_clean(ps, p);
1063 }
1064
1065 /*
1066 * Clean and dirty swap cache.
1067 *
1068 * Dirty swap cache page is tricky to handle. The page could live both in page
1069 * cache and swap cache(ie. page is freshly swapped in). So it could be
1070 * referenced concurrently by 2 types of PTEs:
1071 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1072 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1073 * and then
1074 * - clear dirty bit to prevent IO
1075 * - remove from LRU
1076 * - but keep in the swap cache, so that when we return to it on
1077 * a later page fault, we know the application is accessing
1078 * corrupted data and shall be killed (we installed simple
1079 * interception code in do_swap_page to catch it).
1080 *
1081 * Clean swap cache pages can be directly isolated. A later page fault will
1082 * bring in the known good data from disk.
1083 */
1084 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1085 {
1086 int ret;
1087 bool extra_pins = false;
1088
1089 ClearPageDirty(p);
1090 /* Trigger EIO in shmem: */
1091 ClearPageUptodate(p);
1092
1093 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1094 unlock_page(p);
1095
1096 if (ret == MF_DELAYED)
1097 extra_pins = true;
1098
1099 if (has_extra_refcount(ps, p, extra_pins))
1100 ret = MF_FAILED;
1101
1102 return ret;
1103 }
1104
1105 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1106 {
1107 struct folio *folio = page_folio(p);
1108 int ret;
1109
1110 delete_from_swap_cache(folio);
1111
1112 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1113 folio_unlock(folio);
1114
1115 if (has_extra_refcount(ps, p, false))
1116 ret = MF_FAILED;
1117
1118 return ret;
1119 }
1120
1121 /*
1122 * Huge pages. Needs work.
1123 * Issues:
1124 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1125 * To narrow down kill region to one page, we need to break up pmd.
1126 */
1127 static int me_huge_page(struct page_state *ps, struct page *p)
1128 {
1129 int res;
1130 struct page *hpage = compound_head(p);
1131 struct address_space *mapping;
1132 bool extra_pins = false;
1133
1134 if (!PageHuge(hpage))
1135 return MF_DELAYED;
1136
1137 mapping = page_mapping(hpage);
1138 if (mapping) {
1139 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1140 /* The page is kept in page cache. */
1141 extra_pins = true;
1142 unlock_page(hpage);
1143 } else {
1144 unlock_page(hpage);
1145 /*
1146 * migration entry prevents later access on error hugepage,
1147 * so we can free and dissolve it into buddy to save healthy
1148 * subpages.
1149 */
1150 put_page(hpage);
1151 if (__page_handle_poison(p) >= 0) {
1152 page_ref_inc(p);
1153 res = MF_RECOVERED;
1154 } else {
1155 res = MF_FAILED;
1156 }
1157 }
1158
1159 if (has_extra_refcount(ps, p, extra_pins))
1160 res = MF_FAILED;
1161
1162 return res;
1163 }
1164
1165 /*
1166 * Various page states we can handle.
1167 *
1168 * A page state is defined by its current page->flags bits.
1169 * The table matches them in order and calls the right handler.
1170 *
1171 * This is quite tricky because we can access page at any time
1172 * in its live cycle, so all accesses have to be extremely careful.
1173 *
1174 * This is not complete. More states could be added.
1175 * For any missing state don't attempt recovery.
1176 */
1177
1178 #define dirty (1UL << PG_dirty)
1179 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1180 #define unevict (1UL << PG_unevictable)
1181 #define mlock (1UL << PG_mlocked)
1182 #define lru (1UL << PG_lru)
1183 #define head (1UL << PG_head)
1184 #define slab (1UL << PG_slab)
1185 #define reserved (1UL << PG_reserved)
1186
1187 static struct page_state error_states[] = {
1188 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1189 /*
1190 * free pages are specially detected outside this table:
1191 * PG_buddy pages only make a small fraction of all free pages.
1192 */
1193
1194 /*
1195 * Could in theory check if slab page is free or if we can drop
1196 * currently unused objects without touching them. But just
1197 * treat it as standard kernel for now.
1198 */
1199 { slab, slab, MF_MSG_SLAB, me_kernel },
1200
1201 { head, head, MF_MSG_HUGE, me_huge_page },
1202
1203 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1204 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1205
1206 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1207 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1208
1209 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1210 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1211
1212 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1213 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1214
1215 /*
1216 * Catchall entry: must be at end.
1217 */
1218 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1219 };
1220
1221 #undef dirty
1222 #undef sc
1223 #undef unevict
1224 #undef mlock
1225 #undef lru
1226 #undef head
1227 #undef slab
1228 #undef reserved
1229
1230 static void update_per_node_mf_stats(unsigned long pfn,
1231 enum mf_result result)
1232 {
1233 int nid = MAX_NUMNODES;
1234 struct memory_failure_stats *mf_stats = NULL;
1235
1236 nid = pfn_to_nid(pfn);
1237 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1238 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1239 return;
1240 }
1241
1242 mf_stats = &NODE_DATA(nid)->mf_stats;
1243 switch (result) {
1244 case MF_IGNORED:
1245 ++mf_stats->ignored;
1246 break;
1247 case MF_FAILED:
1248 ++mf_stats->failed;
1249 break;
1250 case MF_DELAYED:
1251 ++mf_stats->delayed;
1252 break;
1253 case MF_RECOVERED:
1254 ++mf_stats->recovered;
1255 break;
1256 default:
1257 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1258 break;
1259 }
1260 ++mf_stats->total;
1261 }
1262
1263 /*
1264 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1265 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1266 */
1267 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1268 enum mf_result result)
1269 {
1270 trace_memory_failure_event(pfn, type, result);
1271
1272 num_poisoned_pages_inc(pfn);
1273
1274 update_per_node_mf_stats(pfn, result);
1275
1276 pr_err("%#lx: recovery action for %s: %s\n",
1277 pfn, action_page_types[type], action_name[result]);
1278
1279 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1280 }
1281
1282 static int page_action(struct page_state *ps, struct page *p,
1283 unsigned long pfn)
1284 {
1285 int result;
1286
1287 /* page p should be unlocked after returning from ps->action(). */
1288 result = ps->action(ps, p);
1289
1290 /* Could do more checks here if page looks ok */
1291 /*
1292 * Could adjust zone counters here to correct for the missing page.
1293 */
1294
1295 return action_result(pfn, ps->type, result);
1296 }
1297
1298 static inline bool PageHWPoisonTakenOff(struct page *page)
1299 {
1300 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1301 }
1302
1303 void SetPageHWPoisonTakenOff(struct page *page)
1304 {
1305 set_page_private(page, MAGIC_HWPOISON);
1306 }
1307
1308 void ClearPageHWPoisonTakenOff(struct page *page)
1309 {
1310 if (PageHWPoison(page))
1311 set_page_private(page, 0);
1312 }
1313
1314 /*
1315 * Return true if a page type of a given page is supported by hwpoison
1316 * mechanism (while handling could fail), otherwise false. This function
1317 * does not return true for hugetlb or device memory pages, so it's assumed
1318 * to be called only in the context where we never have such pages.
1319 */
1320 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1321 {
1322 /* Soft offline could migrate non-LRU movable pages */
1323 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1324 return true;
1325
1326 return PageLRU(page) || is_free_buddy_page(page);
1327 }
1328
1329 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1330 {
1331 struct folio *folio = page_folio(page);
1332 int ret = 0;
1333 bool hugetlb = false;
1334
1335 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1336 if (hugetlb)
1337 return ret;
1338
1339 /*
1340 * This check prevents from calling folio_try_get() for any
1341 * unsupported type of folio in order to reduce the risk of unexpected
1342 * races caused by taking a folio refcount.
1343 */
1344 if (!HWPoisonHandlable(&folio->page, flags))
1345 return -EBUSY;
1346
1347 if (folio_try_get(folio)) {
1348 if (folio == page_folio(page))
1349 return 1;
1350
1351 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1352 folio_put(folio);
1353 }
1354
1355 return 0;
1356 }
1357
1358 static int get_any_page(struct page *p, unsigned long flags)
1359 {
1360 int ret = 0, pass = 0;
1361 bool count_increased = false;
1362
1363 if (flags & MF_COUNT_INCREASED)
1364 count_increased = true;
1365
1366 try_again:
1367 if (!count_increased) {
1368 ret = __get_hwpoison_page(p, flags);
1369 if (!ret) {
1370 if (page_count(p)) {
1371 /* We raced with an allocation, retry. */
1372 if (pass++ < 3)
1373 goto try_again;
1374 ret = -EBUSY;
1375 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1376 /* We raced with put_page, retry. */
1377 if (pass++ < 3)
1378 goto try_again;
1379 ret = -EIO;
1380 }
1381 goto out;
1382 } else if (ret == -EBUSY) {
1383 /*
1384 * We raced with (possibly temporary) unhandlable
1385 * page, retry.
1386 */
1387 if (pass++ < 3) {
1388 shake_page(p);
1389 goto try_again;
1390 }
1391 ret = -EIO;
1392 goto out;
1393 }
1394 }
1395
1396 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1397 ret = 1;
1398 } else {
1399 /*
1400 * A page we cannot handle. Check whether we can turn
1401 * it into something we can handle.
1402 */
1403 if (pass++ < 3) {
1404 put_page(p);
1405 shake_page(p);
1406 count_increased = false;
1407 goto try_again;
1408 }
1409 put_page(p);
1410 ret = -EIO;
1411 }
1412 out:
1413 if (ret == -EIO)
1414 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1415
1416 return ret;
1417 }
1418
1419 static int __get_unpoison_page(struct page *page)
1420 {
1421 struct folio *folio = page_folio(page);
1422 int ret = 0;
1423 bool hugetlb = false;
1424
1425 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1426 if (hugetlb)
1427 return ret;
1428
1429 /*
1430 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1431 * but also isolated from buddy freelist, so need to identify the
1432 * state and have to cancel both operations to unpoison.
1433 */
1434 if (PageHWPoisonTakenOff(page))
1435 return -EHWPOISON;
1436
1437 return get_page_unless_zero(page) ? 1 : 0;
1438 }
1439
1440 /**
1441 * get_hwpoison_page() - Get refcount for memory error handling
1442 * @p: Raw error page (hit by memory error)
1443 * @flags: Flags controlling behavior of error handling
1444 *
1445 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1446 * error on it, after checking that the error page is in a well-defined state
1447 * (defined as a page-type we can successfully handle the memory error on it,
1448 * such as LRU page and hugetlb page).
1449 *
1450 * Memory error handling could be triggered at any time on any type of page,
1451 * so it's prone to race with typical memory management lifecycle (like
1452 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1453 * extra care for the error page's state (as done in __get_hwpoison_page()),
1454 * and has some retry logic in get_any_page().
1455 *
1456 * When called from unpoison_memory(), the caller should already ensure that
1457 * the given page has PG_hwpoison. So it's never reused for other page
1458 * allocations, and __get_unpoison_page() never races with them.
1459 *
1460 * Return: 0 on failure,
1461 * 1 on success for in-use pages in a well-defined state,
1462 * -EIO for pages on which we can not handle memory errors,
1463 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1464 * operations like allocation and free,
1465 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1466 */
1467 static int get_hwpoison_page(struct page *p, unsigned long flags)
1468 {
1469 int ret;
1470
1471 zone_pcp_disable(page_zone(p));
1472 if (flags & MF_UNPOISON)
1473 ret = __get_unpoison_page(p);
1474 else
1475 ret = get_any_page(p, flags);
1476 zone_pcp_enable(page_zone(p));
1477
1478 return ret;
1479 }
1480
1481 /*
1482 * Do all that is necessary to remove user space mappings. Unmap
1483 * the pages and send SIGBUS to the processes if the data was dirty.
1484 */
1485 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1486 int flags, struct page *hpage)
1487 {
1488 struct folio *folio = page_folio(hpage);
1489 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1490 struct address_space *mapping;
1491 LIST_HEAD(tokill);
1492 bool unmap_success;
1493 int forcekill;
1494 bool mlocked = PageMlocked(hpage);
1495
1496 /*
1497 * Here we are interested only in user-mapped pages, so skip any
1498 * other types of pages.
1499 */
1500 if (PageReserved(p) || PageSlab(p) || PageTable(p))
1501 return true;
1502 if (!(PageLRU(hpage) || PageHuge(p)))
1503 return true;
1504
1505 /*
1506 * This check implies we don't kill processes if their pages
1507 * are in the swap cache early. Those are always late kills.
1508 */
1509 if (!page_mapped(hpage))
1510 return true;
1511
1512 if (PageKsm(p)) {
1513 pr_err("%#lx: can't handle KSM pages.\n", pfn);
1514 return false;
1515 }
1516
1517 if (PageSwapCache(p)) {
1518 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1519 ttu &= ~TTU_HWPOISON;
1520 }
1521
1522 /*
1523 * Propagate the dirty bit from PTEs to struct page first, because we
1524 * need this to decide if we should kill or just drop the page.
1525 * XXX: the dirty test could be racy: set_page_dirty() may not always
1526 * be called inside page lock (it's recommended but not enforced).
1527 */
1528 mapping = page_mapping(hpage);
1529 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1530 mapping_can_writeback(mapping)) {
1531 if (page_mkclean(hpage)) {
1532 SetPageDirty(hpage);
1533 } else {
1534 ttu &= ~TTU_HWPOISON;
1535 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1536 pfn);
1537 }
1538 }
1539
1540 /*
1541 * First collect all the processes that have the page
1542 * mapped in dirty form. This has to be done before try_to_unmap,
1543 * because ttu takes the rmap data structures down.
1544 */
1545 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1546
1547 if (PageHuge(hpage) && !PageAnon(hpage)) {
1548 /*
1549 * For hugetlb pages in shared mappings, try_to_unmap
1550 * could potentially call huge_pmd_unshare. Because of
1551 * this, take semaphore in write mode here and set
1552 * TTU_RMAP_LOCKED to indicate we have taken the lock
1553 * at this higher level.
1554 */
1555 mapping = hugetlb_page_mapping_lock_write(hpage);
1556 if (mapping) {
1557 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1558 i_mmap_unlock_write(mapping);
1559 } else
1560 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1561 } else {
1562 try_to_unmap(folio, ttu);
1563 }
1564
1565 unmap_success = !page_mapped(hpage);
1566 if (!unmap_success)
1567 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1568 pfn, page_mapcount(hpage));
1569
1570 /*
1571 * try_to_unmap() might put mlocked page in lru cache, so call
1572 * shake_page() again to ensure that it's flushed.
1573 */
1574 if (mlocked)
1575 shake_page(hpage);
1576
1577 /*
1578 * Now that the dirty bit has been propagated to the
1579 * struct page and all unmaps done we can decide if
1580 * killing is needed or not. Only kill when the page
1581 * was dirty or the process is not restartable,
1582 * otherwise the tokill list is merely
1583 * freed. When there was a problem unmapping earlier
1584 * use a more force-full uncatchable kill to prevent
1585 * any accesses to the poisoned memory.
1586 */
1587 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1588 !unmap_success;
1589 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1590
1591 return unmap_success;
1592 }
1593
1594 static int identify_page_state(unsigned long pfn, struct page *p,
1595 unsigned long page_flags)
1596 {
1597 struct page_state *ps;
1598
1599 /*
1600 * The first check uses the current page flags which may not have any
1601 * relevant information. The second check with the saved page flags is
1602 * carried out only if the first check can't determine the page status.
1603 */
1604 for (ps = error_states;; ps++)
1605 if ((p->flags & ps->mask) == ps->res)
1606 break;
1607
1608 page_flags |= (p->flags & (1UL << PG_dirty));
1609
1610 if (!ps->mask)
1611 for (ps = error_states;; ps++)
1612 if ((page_flags & ps->mask) == ps->res)
1613 break;
1614 return page_action(ps, p, pfn);
1615 }
1616
1617 static int try_to_split_thp_page(struct page *page)
1618 {
1619 int ret;
1620
1621 lock_page(page);
1622 ret = split_huge_page(page);
1623 unlock_page(page);
1624
1625 if (unlikely(ret))
1626 put_page(page);
1627
1628 return ret;
1629 }
1630
1631 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1632 struct address_space *mapping, pgoff_t index, int flags)
1633 {
1634 struct to_kill *tk;
1635 unsigned long size = 0;
1636
1637 list_for_each_entry(tk, to_kill, nd)
1638 if (tk->size_shift)
1639 size = max(size, 1UL << tk->size_shift);
1640
1641 if (size) {
1642 /*
1643 * Unmap the largest mapping to avoid breaking up device-dax
1644 * mappings which are constant size. The actual size of the
1645 * mapping being torn down is communicated in siginfo, see
1646 * kill_proc()
1647 */
1648 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1649
1650 unmap_mapping_range(mapping, start, size, 0);
1651 }
1652
1653 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1654 }
1655
1656 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1657 struct dev_pagemap *pgmap)
1658 {
1659 struct page *page = pfn_to_page(pfn);
1660 LIST_HEAD(to_kill);
1661 dax_entry_t cookie;
1662 int rc = 0;
1663
1664 /*
1665 * Pages instantiated by device-dax (not filesystem-dax)
1666 * may be compound pages.
1667 */
1668 page = compound_head(page);
1669
1670 /*
1671 * Prevent the inode from being freed while we are interrogating
1672 * the address_space, typically this would be handled by
1673 * lock_page(), but dax pages do not use the page lock. This
1674 * also prevents changes to the mapping of this pfn until
1675 * poison signaling is complete.
1676 */
1677 cookie = dax_lock_page(page);
1678 if (!cookie)
1679 return -EBUSY;
1680
1681 if (hwpoison_filter(page)) {
1682 rc = -EOPNOTSUPP;
1683 goto unlock;
1684 }
1685
1686 switch (pgmap->type) {
1687 case MEMORY_DEVICE_PRIVATE:
1688 case MEMORY_DEVICE_COHERENT:
1689 /*
1690 * TODO: Handle device pages which may need coordination
1691 * with device-side memory.
1692 */
1693 rc = -ENXIO;
1694 goto unlock;
1695 default:
1696 break;
1697 }
1698
1699 /*
1700 * Use this flag as an indication that the dax page has been
1701 * remapped UC to prevent speculative consumption of poison.
1702 */
1703 SetPageHWPoison(page);
1704
1705 /*
1706 * Unlike System-RAM there is no possibility to swap in a
1707 * different physical page at a given virtual address, so all
1708 * userspace consumption of ZONE_DEVICE memory necessitates
1709 * SIGBUS (i.e. MF_MUST_KILL)
1710 */
1711 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1712 collect_procs(page, &to_kill, true);
1713
1714 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1715 unlock:
1716 dax_unlock_page(page, cookie);
1717 return rc;
1718 }
1719
1720 #ifdef CONFIG_FS_DAX
1721 /**
1722 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1723 * @mapping: address_space of the file in use
1724 * @index: start pgoff of the range within the file
1725 * @count: length of the range, in unit of PAGE_SIZE
1726 * @mf_flags: memory failure flags
1727 */
1728 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1729 unsigned long count, int mf_flags)
1730 {
1731 LIST_HEAD(to_kill);
1732 dax_entry_t cookie;
1733 struct page *page;
1734 size_t end = index + count;
1735
1736 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1737
1738 for (; index < end; index++) {
1739 page = NULL;
1740 cookie = dax_lock_mapping_entry(mapping, index, &page);
1741 if (!cookie)
1742 return -EBUSY;
1743 if (!page)
1744 goto unlock;
1745
1746 SetPageHWPoison(page);
1747
1748 collect_procs_fsdax(page, mapping, index, &to_kill);
1749 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1750 index, mf_flags);
1751 unlock:
1752 dax_unlock_mapping_entry(mapping, index, cookie);
1753 }
1754 return 0;
1755 }
1756 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1757 #endif /* CONFIG_FS_DAX */
1758
1759 #ifdef CONFIG_HUGETLB_PAGE
1760 /*
1761 * Struct raw_hwp_page represents information about "raw error page",
1762 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1763 */
1764 struct raw_hwp_page {
1765 struct llist_node node;
1766 struct page *page;
1767 };
1768
1769 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1770 {
1771 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1772 }
1773
1774 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1775 {
1776 struct llist_head *head;
1777 struct llist_node *t, *tnode;
1778 unsigned long count = 0;
1779
1780 head = raw_hwp_list_head(folio);
1781 llist_for_each_safe(tnode, t, head->first) {
1782 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1783
1784 if (move_flag)
1785 SetPageHWPoison(p->page);
1786 else
1787 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1788 kfree(p);
1789 count++;
1790 }
1791 llist_del_all(head);
1792 return count;
1793 }
1794
1795 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1796 {
1797 struct llist_head *head;
1798 struct raw_hwp_page *raw_hwp;
1799 struct llist_node *t, *tnode;
1800 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1801
1802 /*
1803 * Once the hwpoison hugepage has lost reliable raw error info,
1804 * there is little meaning to keep additional error info precisely,
1805 * so skip to add additional raw error info.
1806 */
1807 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1808 return -EHWPOISON;
1809 head = raw_hwp_list_head(folio);
1810 llist_for_each_safe(tnode, t, head->first) {
1811 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1812
1813 if (p->page == page)
1814 return -EHWPOISON;
1815 }
1816
1817 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1818 if (raw_hwp) {
1819 raw_hwp->page = page;
1820 llist_add(&raw_hwp->node, head);
1821 /* the first error event will be counted in action_result(). */
1822 if (ret)
1823 num_poisoned_pages_inc(page_to_pfn(page));
1824 } else {
1825 /*
1826 * Failed to save raw error info. We no longer trace all
1827 * hwpoisoned subpages, and we need refuse to free/dissolve
1828 * this hwpoisoned hugepage.
1829 */
1830 folio_set_hugetlb_raw_hwp_unreliable(folio);
1831 /*
1832 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1833 * used any more, so free it.
1834 */
1835 __folio_free_raw_hwp(folio, false);
1836 }
1837 return ret;
1838 }
1839
1840 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1841 {
1842 /*
1843 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1844 * pages for tail pages are required but they don't exist.
1845 */
1846 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1847 return 0;
1848
1849 /*
1850 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1851 * definition.
1852 */
1853 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1854 return 0;
1855
1856 return __folio_free_raw_hwp(folio, move_flag);
1857 }
1858
1859 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1860 {
1861 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1862 return;
1863 folio_clear_hwpoison(folio);
1864 folio_free_raw_hwp(folio, true);
1865 }
1866
1867 /*
1868 * Called from hugetlb code with hugetlb_lock held.
1869 *
1870 * Return values:
1871 * 0 - free hugepage
1872 * 1 - in-use hugepage
1873 * 2 - not a hugepage
1874 * -EBUSY - the hugepage is busy (try to retry)
1875 * -EHWPOISON - the hugepage is already hwpoisoned
1876 */
1877 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1878 bool *migratable_cleared)
1879 {
1880 struct page *page = pfn_to_page(pfn);
1881 struct folio *folio = page_folio(page);
1882 int ret = 2; /* fallback to normal page handling */
1883 bool count_increased = false;
1884
1885 if (!folio_test_hugetlb(folio))
1886 goto out;
1887
1888 if (flags & MF_COUNT_INCREASED) {
1889 ret = 1;
1890 count_increased = true;
1891 } else if (folio_test_hugetlb_freed(folio)) {
1892 ret = 0;
1893 } else if (folio_test_hugetlb_migratable(folio)) {
1894 ret = folio_try_get(folio);
1895 if (ret)
1896 count_increased = true;
1897 } else {
1898 ret = -EBUSY;
1899 if (!(flags & MF_NO_RETRY))
1900 goto out;
1901 }
1902
1903 if (folio_set_hugetlb_hwpoison(folio, page)) {
1904 ret = -EHWPOISON;
1905 goto out;
1906 }
1907
1908 /*
1909 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
1910 * from being migrated by memory hotremove.
1911 */
1912 if (count_increased && folio_test_hugetlb_migratable(folio)) {
1913 folio_clear_hugetlb_migratable(folio);
1914 *migratable_cleared = true;
1915 }
1916
1917 return ret;
1918 out:
1919 if (count_increased)
1920 folio_put(folio);
1921 return ret;
1922 }
1923
1924 /*
1925 * Taking refcount of hugetlb pages needs extra care about race conditions
1926 * with basic operations like hugepage allocation/free/demotion.
1927 * So some of prechecks for hwpoison (pinning, and testing/setting
1928 * PageHWPoison) should be done in single hugetlb_lock range.
1929 */
1930 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1931 {
1932 int res;
1933 struct page *p = pfn_to_page(pfn);
1934 struct folio *folio;
1935 unsigned long page_flags;
1936 bool migratable_cleared = false;
1937
1938 *hugetlb = 1;
1939 retry:
1940 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1941 if (res == 2) { /* fallback to normal page handling */
1942 *hugetlb = 0;
1943 return 0;
1944 } else if (res == -EHWPOISON) {
1945 pr_err("%#lx: already hardware poisoned\n", pfn);
1946 if (flags & MF_ACTION_REQUIRED) {
1947 folio = page_folio(p);
1948 res = kill_accessing_process(current, folio_pfn(folio), flags);
1949 }
1950 return res;
1951 } else if (res == -EBUSY) {
1952 if (!(flags & MF_NO_RETRY)) {
1953 flags |= MF_NO_RETRY;
1954 goto retry;
1955 }
1956 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1957 }
1958
1959 folio = page_folio(p);
1960 folio_lock(folio);
1961
1962 if (hwpoison_filter(p)) {
1963 folio_clear_hugetlb_hwpoison(folio);
1964 if (migratable_cleared)
1965 folio_set_hugetlb_migratable(folio);
1966 folio_unlock(folio);
1967 if (res == 1)
1968 folio_put(folio);
1969 return -EOPNOTSUPP;
1970 }
1971
1972 /*
1973 * Handling free hugepage. The possible race with hugepage allocation
1974 * or demotion can be prevented by PageHWPoison flag.
1975 */
1976 if (res == 0) {
1977 folio_unlock(folio);
1978 if (__page_handle_poison(p) >= 0) {
1979 page_ref_inc(p);
1980 res = MF_RECOVERED;
1981 } else {
1982 res = MF_FAILED;
1983 }
1984 return action_result(pfn, MF_MSG_FREE_HUGE, res);
1985 }
1986
1987 page_flags = folio->flags;
1988
1989 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
1990 folio_unlock(folio);
1991 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1992 }
1993
1994 return identify_page_state(pfn, p, page_flags);
1995 }
1996
1997 #else
1998 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1999 {
2000 return 0;
2001 }
2002
2003 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2004 {
2005 return 0;
2006 }
2007 #endif /* CONFIG_HUGETLB_PAGE */
2008
2009 /* Drop the extra refcount in case we come from madvise() */
2010 static void put_ref_page(unsigned long pfn, int flags)
2011 {
2012 struct page *page;
2013
2014 if (!(flags & MF_COUNT_INCREASED))
2015 return;
2016
2017 page = pfn_to_page(pfn);
2018 if (page)
2019 put_page(page);
2020 }
2021
2022 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2023 struct dev_pagemap *pgmap)
2024 {
2025 int rc = -ENXIO;
2026
2027 put_ref_page(pfn, flags);
2028
2029 /* device metadata space is not recoverable */
2030 if (!pgmap_pfn_valid(pgmap, pfn))
2031 goto out;
2032
2033 /*
2034 * Call driver's implementation to handle the memory failure, otherwise
2035 * fall back to generic handler.
2036 */
2037 if (pgmap_has_memory_failure(pgmap)) {
2038 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2039 /*
2040 * Fall back to generic handler too if operation is not
2041 * supported inside the driver/device/filesystem.
2042 */
2043 if (rc != -EOPNOTSUPP)
2044 goto out;
2045 }
2046
2047 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2048 out:
2049 /* drop pgmap ref acquired in caller */
2050 put_dev_pagemap(pgmap);
2051 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2052 return rc;
2053 }
2054
2055 static DEFINE_MUTEX(mf_mutex);
2056
2057 /**
2058 * memory_failure - Handle memory failure of a page.
2059 * @pfn: Page Number of the corrupted page
2060 * @flags: fine tune action taken
2061 *
2062 * This function is called by the low level machine check code
2063 * of an architecture when it detects hardware memory corruption
2064 * of a page. It tries its best to recover, which includes
2065 * dropping pages, killing processes etc.
2066 *
2067 * The function is primarily of use for corruptions that
2068 * happen outside the current execution context (e.g. when
2069 * detected by a background scrubber)
2070 *
2071 * Must run in process context (e.g. a work queue) with interrupts
2072 * enabled and no spinlocks hold.
2073 *
2074 * Return: 0 for successfully handled the memory error,
2075 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2076 * < 0(except -EOPNOTSUPP) on failure.
2077 */
2078 int memory_failure(unsigned long pfn, int flags)
2079 {
2080 struct page *p;
2081 struct page *hpage;
2082 struct dev_pagemap *pgmap;
2083 int res = 0;
2084 unsigned long page_flags;
2085 bool retry = true;
2086 int hugetlb = 0;
2087
2088 if (!sysctl_memory_failure_recovery)
2089 panic("Memory failure on page %lx", pfn);
2090
2091 mutex_lock(&mf_mutex);
2092
2093 if (!(flags & MF_SW_SIMULATED))
2094 hw_memory_failure = true;
2095
2096 p = pfn_to_online_page(pfn);
2097 if (!p) {
2098 res = arch_memory_failure(pfn, flags);
2099 if (res == 0)
2100 goto unlock_mutex;
2101
2102 if (pfn_valid(pfn)) {
2103 pgmap = get_dev_pagemap(pfn, NULL);
2104 if (pgmap) {
2105 res = memory_failure_dev_pagemap(pfn, flags,
2106 pgmap);
2107 goto unlock_mutex;
2108 }
2109 }
2110 pr_err("%#lx: memory outside kernel control\n", pfn);
2111 res = -ENXIO;
2112 goto unlock_mutex;
2113 }
2114
2115 try_again:
2116 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2117 if (hugetlb)
2118 goto unlock_mutex;
2119
2120 if (TestSetPageHWPoison(p)) {
2121 pr_err("%#lx: already hardware poisoned\n", pfn);
2122 res = -EHWPOISON;
2123 if (flags & MF_ACTION_REQUIRED)
2124 res = kill_accessing_process(current, pfn, flags);
2125 if (flags & MF_COUNT_INCREASED)
2126 put_page(p);
2127 goto unlock_mutex;
2128 }
2129
2130 hpage = compound_head(p);
2131
2132 /*
2133 * We need/can do nothing about count=0 pages.
2134 * 1) it's a free page, and therefore in safe hand:
2135 * check_new_page() will be the gate keeper.
2136 * 2) it's part of a non-compound high order page.
2137 * Implies some kernel user: cannot stop them from
2138 * R/W the page; let's pray that the page has been
2139 * used and will be freed some time later.
2140 * In fact it's dangerous to directly bump up page count from 0,
2141 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2142 */
2143 if (!(flags & MF_COUNT_INCREASED)) {
2144 res = get_hwpoison_page(p, flags);
2145 if (!res) {
2146 if (is_free_buddy_page(p)) {
2147 if (take_page_off_buddy(p)) {
2148 page_ref_inc(p);
2149 res = MF_RECOVERED;
2150 } else {
2151 /* We lost the race, try again */
2152 if (retry) {
2153 ClearPageHWPoison(p);
2154 retry = false;
2155 goto try_again;
2156 }
2157 res = MF_FAILED;
2158 }
2159 res = action_result(pfn, MF_MSG_BUDDY, res);
2160 } else {
2161 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2162 }
2163 goto unlock_mutex;
2164 } else if (res < 0) {
2165 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2166 goto unlock_mutex;
2167 }
2168 }
2169
2170 if (PageTransHuge(hpage)) {
2171 /*
2172 * The flag must be set after the refcount is bumped
2173 * otherwise it may race with THP split.
2174 * And the flag can't be set in get_hwpoison_page() since
2175 * it is called by soft offline too and it is just called
2176 * for !MF_COUNT_INCREASE. So here seems to be the best
2177 * place.
2178 *
2179 * Don't need care about the above error handling paths for
2180 * get_hwpoison_page() since they handle either free page
2181 * or unhandlable page. The refcount is bumped iff the
2182 * page is a valid handlable page.
2183 */
2184 SetPageHasHWPoisoned(hpage);
2185 if (try_to_split_thp_page(p) < 0) {
2186 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2187 goto unlock_mutex;
2188 }
2189 VM_BUG_ON_PAGE(!page_count(p), p);
2190 }
2191
2192 /*
2193 * We ignore non-LRU pages for good reasons.
2194 * - PG_locked is only well defined for LRU pages and a few others
2195 * - to avoid races with __SetPageLocked()
2196 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2197 * The check (unnecessarily) ignores LRU pages being isolated and
2198 * walked by the page reclaim code, however that's not a big loss.
2199 */
2200 shake_page(p);
2201
2202 lock_page(p);
2203
2204 /*
2205 * We're only intended to deal with the non-Compound page here.
2206 * However, the page could have changed compound pages due to
2207 * race window. If this happens, we could try again to hopefully
2208 * handle the page next round.
2209 */
2210 if (PageCompound(p)) {
2211 if (retry) {
2212 ClearPageHWPoison(p);
2213 unlock_page(p);
2214 put_page(p);
2215 flags &= ~MF_COUNT_INCREASED;
2216 retry = false;
2217 goto try_again;
2218 }
2219 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2220 goto unlock_page;
2221 }
2222
2223 /*
2224 * We use page flags to determine what action should be taken, but
2225 * the flags can be modified by the error containment action. One
2226 * example is an mlocked page, where PG_mlocked is cleared by
2227 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2228 * correctly, we save a copy of the page flags at this time.
2229 */
2230 page_flags = p->flags;
2231
2232 if (hwpoison_filter(p)) {
2233 ClearPageHWPoison(p);
2234 unlock_page(p);
2235 put_page(p);
2236 res = -EOPNOTSUPP;
2237 goto unlock_mutex;
2238 }
2239
2240 /*
2241 * __munlock_folio() may clear a writeback page's LRU flag without
2242 * page_lock. We need wait writeback completion for this page or it
2243 * may trigger vfs BUG while evict inode.
2244 */
2245 if (!PageLRU(p) && !PageWriteback(p))
2246 goto identify_page_state;
2247
2248 /*
2249 * It's very difficult to mess with pages currently under IO
2250 * and in many cases impossible, so we just avoid it here.
2251 */
2252 wait_on_page_writeback(p);
2253
2254 /*
2255 * Now take care of user space mappings.
2256 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2257 */
2258 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2259 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2260 goto unlock_page;
2261 }
2262
2263 /*
2264 * Torn down by someone else?
2265 */
2266 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2267 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2268 goto unlock_page;
2269 }
2270
2271 identify_page_state:
2272 res = identify_page_state(pfn, p, page_flags);
2273 mutex_unlock(&mf_mutex);
2274 return res;
2275 unlock_page:
2276 unlock_page(p);
2277 unlock_mutex:
2278 mutex_unlock(&mf_mutex);
2279 return res;
2280 }
2281 EXPORT_SYMBOL_GPL(memory_failure);
2282
2283 #define MEMORY_FAILURE_FIFO_ORDER 4
2284 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2285
2286 struct memory_failure_entry {
2287 unsigned long pfn;
2288 int flags;
2289 };
2290
2291 struct memory_failure_cpu {
2292 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2293 MEMORY_FAILURE_FIFO_SIZE);
2294 spinlock_t lock;
2295 struct work_struct work;
2296 };
2297
2298 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2299
2300 /**
2301 * memory_failure_queue - Schedule handling memory failure of a page.
2302 * @pfn: Page Number of the corrupted page
2303 * @flags: Flags for memory failure handling
2304 *
2305 * This function is called by the low level hardware error handler
2306 * when it detects hardware memory corruption of a page. It schedules
2307 * the recovering of error page, including dropping pages, killing
2308 * processes etc.
2309 *
2310 * The function is primarily of use for corruptions that
2311 * happen outside the current execution context (e.g. when
2312 * detected by a background scrubber)
2313 *
2314 * Can run in IRQ context.
2315 */
2316 void memory_failure_queue(unsigned long pfn, int flags)
2317 {
2318 struct memory_failure_cpu *mf_cpu;
2319 unsigned long proc_flags;
2320 struct memory_failure_entry entry = {
2321 .pfn = pfn,
2322 .flags = flags,
2323 };
2324
2325 mf_cpu = &get_cpu_var(memory_failure_cpu);
2326 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2327 if (kfifo_put(&mf_cpu->fifo, entry))
2328 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2329 else
2330 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2331 pfn);
2332 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2333 put_cpu_var(memory_failure_cpu);
2334 }
2335 EXPORT_SYMBOL_GPL(memory_failure_queue);
2336
2337 static void memory_failure_work_func(struct work_struct *work)
2338 {
2339 struct memory_failure_cpu *mf_cpu;
2340 struct memory_failure_entry entry = { 0, };
2341 unsigned long proc_flags;
2342 int gotten;
2343
2344 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2345 for (;;) {
2346 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2347 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2348 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2349 if (!gotten)
2350 break;
2351 if (entry.flags & MF_SOFT_OFFLINE)
2352 soft_offline_page(entry.pfn, entry.flags);
2353 else
2354 memory_failure(entry.pfn, entry.flags);
2355 }
2356 }
2357
2358 /*
2359 * Process memory_failure work queued on the specified CPU.
2360 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2361 */
2362 void memory_failure_queue_kick(int cpu)
2363 {
2364 struct memory_failure_cpu *mf_cpu;
2365
2366 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2367 cancel_work_sync(&mf_cpu->work);
2368 memory_failure_work_func(&mf_cpu->work);
2369 }
2370
2371 static int __init memory_failure_init(void)
2372 {
2373 struct memory_failure_cpu *mf_cpu;
2374 int cpu;
2375
2376 for_each_possible_cpu(cpu) {
2377 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2378 spin_lock_init(&mf_cpu->lock);
2379 INIT_KFIFO(mf_cpu->fifo);
2380 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2381 }
2382
2383 return 0;
2384 }
2385 core_initcall(memory_failure_init);
2386
2387 #undef pr_fmt
2388 #define pr_fmt(fmt) "" fmt
2389 #define unpoison_pr_info(fmt, pfn, rs) \
2390 ({ \
2391 if (__ratelimit(rs)) \
2392 pr_info(fmt, pfn); \
2393 })
2394
2395 /**
2396 * unpoison_memory - Unpoison a previously poisoned page
2397 * @pfn: Page number of the to be unpoisoned page
2398 *
2399 * Software-unpoison a page that has been poisoned by
2400 * memory_failure() earlier.
2401 *
2402 * This is only done on the software-level, so it only works
2403 * for linux injected failures, not real hardware failures
2404 *
2405 * Returns 0 for success, otherwise -errno.
2406 */
2407 int unpoison_memory(unsigned long pfn)
2408 {
2409 struct folio *folio;
2410 struct page *p;
2411 int ret = -EBUSY;
2412 unsigned long count = 1;
2413 bool huge = false;
2414 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2415 DEFAULT_RATELIMIT_BURST);
2416
2417 if (!pfn_valid(pfn))
2418 return -ENXIO;
2419
2420 p = pfn_to_page(pfn);
2421 folio = page_folio(p);
2422
2423 mutex_lock(&mf_mutex);
2424
2425 if (hw_memory_failure) {
2426 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2427 pfn, &unpoison_rs);
2428 ret = -EOPNOTSUPP;
2429 goto unlock_mutex;
2430 }
2431
2432 if (!folio_test_hwpoison(folio)) {
2433 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2434 pfn, &unpoison_rs);
2435 goto unlock_mutex;
2436 }
2437
2438 if (folio_ref_count(folio) > 1) {
2439 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2440 pfn, &unpoison_rs);
2441 goto unlock_mutex;
2442 }
2443
2444 if (folio_mapped(folio)) {
2445 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2446 pfn, &unpoison_rs);
2447 goto unlock_mutex;
2448 }
2449
2450 if (folio_mapping(folio)) {
2451 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2452 pfn, &unpoison_rs);
2453 goto unlock_mutex;
2454 }
2455
2456 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
2457 goto unlock_mutex;
2458
2459 ret = get_hwpoison_page(p, MF_UNPOISON);
2460 if (!ret) {
2461 if (PageHuge(p)) {
2462 huge = true;
2463 count = folio_free_raw_hwp(folio, false);
2464 if (count == 0) {
2465 ret = -EBUSY;
2466 goto unlock_mutex;
2467 }
2468 }
2469 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2470 } else if (ret < 0) {
2471 if (ret == -EHWPOISON) {
2472 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2473 } else
2474 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2475 pfn, &unpoison_rs);
2476 } else {
2477 if (PageHuge(p)) {
2478 huge = true;
2479 count = folio_free_raw_hwp(folio, false);
2480 if (count == 0) {
2481 ret = -EBUSY;
2482 folio_put(folio);
2483 goto unlock_mutex;
2484 }
2485 }
2486
2487 folio_put(folio);
2488 if (TestClearPageHWPoison(p)) {
2489 folio_put(folio);
2490 ret = 0;
2491 }
2492 }
2493
2494 unlock_mutex:
2495 mutex_unlock(&mf_mutex);
2496 if (!ret) {
2497 if (!huge)
2498 num_poisoned_pages_sub(pfn, 1);
2499 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2500 page_to_pfn(p), &unpoison_rs);
2501 }
2502 return ret;
2503 }
2504 EXPORT_SYMBOL(unpoison_memory);
2505
2506 static bool isolate_page(struct page *page, struct list_head *pagelist)
2507 {
2508 bool isolated = false;
2509
2510 if (PageHuge(page)) {
2511 isolated = isolate_hugetlb(page_folio(page), pagelist);
2512 } else {
2513 bool lru = !__PageMovable(page);
2514
2515 if (lru)
2516 isolated = isolate_lru_page(page);
2517 else
2518 isolated = isolate_movable_page(page,
2519 ISOLATE_UNEVICTABLE);
2520
2521 if (isolated) {
2522 list_add(&page->lru, pagelist);
2523 if (lru)
2524 inc_node_page_state(page, NR_ISOLATED_ANON +
2525 page_is_file_lru(page));
2526 }
2527 }
2528
2529 /*
2530 * If we succeed to isolate the page, we grabbed another refcount on
2531 * the page, so we can safely drop the one we got from get_any_pages().
2532 * If we failed to isolate the page, it means that we cannot go further
2533 * and we will return an error, so drop the reference we got from
2534 * get_any_pages() as well.
2535 */
2536 put_page(page);
2537 return isolated;
2538 }
2539
2540 /*
2541 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2542 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2543 * If the page is mapped, it migrates the contents over.
2544 */
2545 static int soft_offline_in_use_page(struct page *page)
2546 {
2547 long ret = 0;
2548 unsigned long pfn = page_to_pfn(page);
2549 struct page *hpage = compound_head(page);
2550 char const *msg_page[] = {"page", "hugepage"};
2551 bool huge = PageHuge(page);
2552 LIST_HEAD(pagelist);
2553 struct migration_target_control mtc = {
2554 .nid = NUMA_NO_NODE,
2555 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2556 };
2557
2558 if (!huge && PageTransHuge(hpage)) {
2559 if (try_to_split_thp_page(page)) {
2560 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2561 return -EBUSY;
2562 }
2563 hpage = page;
2564 }
2565
2566 lock_page(page);
2567 if (!PageHuge(page))
2568 wait_on_page_writeback(page);
2569 if (PageHWPoison(page)) {
2570 unlock_page(page);
2571 put_page(page);
2572 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2573 return 0;
2574 }
2575
2576 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2577 /*
2578 * Try to invalidate first. This should work for
2579 * non dirty unmapped page cache pages.
2580 */
2581 ret = invalidate_inode_page(page);
2582 unlock_page(page);
2583
2584 if (ret) {
2585 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2586 page_handle_poison(page, false, true);
2587 return 0;
2588 }
2589
2590 if (isolate_page(hpage, &pagelist)) {
2591 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2592 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2593 if (!ret) {
2594 bool release = !huge;
2595
2596 if (!page_handle_poison(page, huge, release))
2597 ret = -EBUSY;
2598 } else {
2599 if (!list_empty(&pagelist))
2600 putback_movable_pages(&pagelist);
2601
2602 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2603 pfn, msg_page[huge], ret, &page->flags);
2604 if (ret > 0)
2605 ret = -EBUSY;
2606 }
2607 } else {
2608 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2609 pfn, msg_page[huge], page_count(page), &page->flags);
2610 ret = -EBUSY;
2611 }
2612 return ret;
2613 }
2614
2615 /**
2616 * soft_offline_page - Soft offline a page.
2617 * @pfn: pfn to soft-offline
2618 * @flags: flags. Same as memory_failure().
2619 *
2620 * Returns 0 on success
2621 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2622 * < 0 otherwise negated errno.
2623 *
2624 * Soft offline a page, by migration or invalidation,
2625 * without killing anything. This is for the case when
2626 * a page is not corrupted yet (so it's still valid to access),
2627 * but has had a number of corrected errors and is better taken
2628 * out.
2629 *
2630 * The actual policy on when to do that is maintained by
2631 * user space.
2632 *
2633 * This should never impact any application or cause data loss,
2634 * however it might take some time.
2635 *
2636 * This is not a 100% solution for all memory, but tries to be
2637 * ``good enough'' for the majority of memory.
2638 */
2639 int soft_offline_page(unsigned long pfn, int flags)
2640 {
2641 int ret;
2642 bool try_again = true;
2643 struct page *page;
2644
2645 if (!pfn_valid(pfn)) {
2646 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2647 return -ENXIO;
2648 }
2649
2650 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2651 page = pfn_to_online_page(pfn);
2652 if (!page) {
2653 put_ref_page(pfn, flags);
2654 return -EIO;
2655 }
2656
2657 mutex_lock(&mf_mutex);
2658
2659 if (PageHWPoison(page)) {
2660 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2661 put_ref_page(pfn, flags);
2662 mutex_unlock(&mf_mutex);
2663 return 0;
2664 }
2665
2666 retry:
2667 get_online_mems();
2668 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2669 put_online_mems();
2670
2671 if (hwpoison_filter(page)) {
2672 if (ret > 0)
2673 put_page(page);
2674
2675 mutex_unlock(&mf_mutex);
2676 return -EOPNOTSUPP;
2677 }
2678
2679 if (ret > 0) {
2680 ret = soft_offline_in_use_page(page);
2681 } else if (ret == 0) {
2682 if (!page_handle_poison(page, true, false) && try_again) {
2683 try_again = false;
2684 flags &= ~MF_COUNT_INCREASED;
2685 goto retry;
2686 }
2687 }
2688
2689 mutex_unlock(&mf_mutex);
2690
2691 return ret;
2692 }