]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/memory.c
[PATCH] Numerous fixes to kernel-doc info in source files.
[thirdparty/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
59
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
67
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
71
72 unsigned long num_physpages;
73 /*
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
79 */
80 void * high_memory;
81 unsigned long vmalloc_earlyreserve;
82
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
85 EXPORT_SYMBOL(vmalloc_earlyreserve);
86
87 int randomize_va_space __read_mostly = 1;
88
89 static int __init disable_randmaps(char *s)
90 {
91 randomize_va_space = 0;
92 return 1;
93 }
94 __setup("norandmaps", disable_randmaps);
95
96
97 /*
98 * If a p?d_bad entry is found while walking page tables, report
99 * the error, before resetting entry to p?d_none. Usually (but
100 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 */
102
103 void pgd_clear_bad(pgd_t *pgd)
104 {
105 pgd_ERROR(*pgd);
106 pgd_clear(pgd);
107 }
108
109 void pud_clear_bad(pud_t *pud)
110 {
111 pud_ERROR(*pud);
112 pud_clear(pud);
113 }
114
115 void pmd_clear_bad(pmd_t *pmd)
116 {
117 pmd_ERROR(*pmd);
118 pmd_clear(pmd);
119 }
120
121 /*
122 * Note: this doesn't free the actual pages themselves. That
123 * has been handled earlier when unmapping all the memory regions.
124 */
125 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
126 {
127 struct page *page = pmd_page(*pmd);
128 pmd_clear(pmd);
129 pte_lock_deinit(page);
130 pte_free_tlb(tlb, page);
131 dec_zone_page_state(page, NR_PAGETABLE);
132 tlb->mm->nr_ptes--;
133 }
134
135 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
136 unsigned long addr, unsigned long end,
137 unsigned long floor, unsigned long ceiling)
138 {
139 pmd_t *pmd;
140 unsigned long next;
141 unsigned long start;
142
143 start = addr;
144 pmd = pmd_offset(pud, addr);
145 do {
146 next = pmd_addr_end(addr, end);
147 if (pmd_none_or_clear_bad(pmd))
148 continue;
149 free_pte_range(tlb, pmd);
150 } while (pmd++, addr = next, addr != end);
151
152 start &= PUD_MASK;
153 if (start < floor)
154 return;
155 if (ceiling) {
156 ceiling &= PUD_MASK;
157 if (!ceiling)
158 return;
159 }
160 if (end - 1 > ceiling - 1)
161 return;
162
163 pmd = pmd_offset(pud, start);
164 pud_clear(pud);
165 pmd_free_tlb(tlb, pmd);
166 }
167
168 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
169 unsigned long addr, unsigned long end,
170 unsigned long floor, unsigned long ceiling)
171 {
172 pud_t *pud;
173 unsigned long next;
174 unsigned long start;
175
176 start = addr;
177 pud = pud_offset(pgd, addr);
178 do {
179 next = pud_addr_end(addr, end);
180 if (pud_none_or_clear_bad(pud))
181 continue;
182 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
183 } while (pud++, addr = next, addr != end);
184
185 start &= PGDIR_MASK;
186 if (start < floor)
187 return;
188 if (ceiling) {
189 ceiling &= PGDIR_MASK;
190 if (!ceiling)
191 return;
192 }
193 if (end - 1 > ceiling - 1)
194 return;
195
196 pud = pud_offset(pgd, start);
197 pgd_clear(pgd);
198 pud_free_tlb(tlb, pud);
199 }
200
201 /*
202 * This function frees user-level page tables of a process.
203 *
204 * Must be called with pagetable lock held.
205 */
206 void free_pgd_range(struct mmu_gather **tlb,
207 unsigned long addr, unsigned long end,
208 unsigned long floor, unsigned long ceiling)
209 {
210 pgd_t *pgd;
211 unsigned long next;
212 unsigned long start;
213
214 /*
215 * The next few lines have given us lots of grief...
216 *
217 * Why are we testing PMD* at this top level? Because often
218 * there will be no work to do at all, and we'd prefer not to
219 * go all the way down to the bottom just to discover that.
220 *
221 * Why all these "- 1"s? Because 0 represents both the bottom
222 * of the address space and the top of it (using -1 for the
223 * top wouldn't help much: the masks would do the wrong thing).
224 * The rule is that addr 0 and floor 0 refer to the bottom of
225 * the address space, but end 0 and ceiling 0 refer to the top
226 * Comparisons need to use "end - 1" and "ceiling - 1" (though
227 * that end 0 case should be mythical).
228 *
229 * Wherever addr is brought up or ceiling brought down, we must
230 * be careful to reject "the opposite 0" before it confuses the
231 * subsequent tests. But what about where end is brought down
232 * by PMD_SIZE below? no, end can't go down to 0 there.
233 *
234 * Whereas we round start (addr) and ceiling down, by different
235 * masks at different levels, in order to test whether a table
236 * now has no other vmas using it, so can be freed, we don't
237 * bother to round floor or end up - the tests don't need that.
238 */
239
240 addr &= PMD_MASK;
241 if (addr < floor) {
242 addr += PMD_SIZE;
243 if (!addr)
244 return;
245 }
246 if (ceiling) {
247 ceiling &= PMD_MASK;
248 if (!ceiling)
249 return;
250 }
251 if (end - 1 > ceiling - 1)
252 end -= PMD_SIZE;
253 if (addr > end - 1)
254 return;
255
256 start = addr;
257 pgd = pgd_offset((*tlb)->mm, addr);
258 do {
259 next = pgd_addr_end(addr, end);
260 if (pgd_none_or_clear_bad(pgd))
261 continue;
262 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
263 } while (pgd++, addr = next, addr != end);
264
265 if (!(*tlb)->fullmm)
266 flush_tlb_pgtables((*tlb)->mm, start, end);
267 }
268
269 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
270 unsigned long floor, unsigned long ceiling)
271 {
272 while (vma) {
273 struct vm_area_struct *next = vma->vm_next;
274 unsigned long addr = vma->vm_start;
275
276 /*
277 * Hide vma from rmap and vmtruncate before freeing pgtables
278 */
279 anon_vma_unlink(vma);
280 unlink_file_vma(vma);
281
282 if (is_vm_hugetlb_page(vma)) {
283 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
284 floor, next? next->vm_start: ceiling);
285 } else {
286 /*
287 * Optimization: gather nearby vmas into one call down
288 */
289 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
290 && !is_vm_hugetlb_page(next)) {
291 vma = next;
292 next = vma->vm_next;
293 anon_vma_unlink(vma);
294 unlink_file_vma(vma);
295 }
296 free_pgd_range(tlb, addr, vma->vm_end,
297 floor, next? next->vm_start: ceiling);
298 }
299 vma = next;
300 }
301 }
302
303 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
304 {
305 struct page *new = pte_alloc_one(mm, address);
306 if (!new)
307 return -ENOMEM;
308
309 pte_lock_init(new);
310 spin_lock(&mm->page_table_lock);
311 if (pmd_present(*pmd)) { /* Another has populated it */
312 pte_lock_deinit(new);
313 pte_free(new);
314 } else {
315 mm->nr_ptes++;
316 inc_zone_page_state(new, NR_PAGETABLE);
317 pmd_populate(mm, pmd, new);
318 }
319 spin_unlock(&mm->page_table_lock);
320 return 0;
321 }
322
323 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
324 {
325 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
326 if (!new)
327 return -ENOMEM;
328
329 spin_lock(&init_mm.page_table_lock);
330 if (pmd_present(*pmd)) /* Another has populated it */
331 pte_free_kernel(new);
332 else
333 pmd_populate_kernel(&init_mm, pmd, new);
334 spin_unlock(&init_mm.page_table_lock);
335 return 0;
336 }
337
338 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
339 {
340 if (file_rss)
341 add_mm_counter(mm, file_rss, file_rss);
342 if (anon_rss)
343 add_mm_counter(mm, anon_rss, anon_rss);
344 }
345
346 /*
347 * This function is called to print an error when a bad pte
348 * is found. For example, we might have a PFN-mapped pte in
349 * a region that doesn't allow it.
350 *
351 * The calling function must still handle the error.
352 */
353 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
354 {
355 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
356 "vm_flags = %lx, vaddr = %lx\n",
357 (long long)pte_val(pte),
358 (vma->vm_mm == current->mm ? current->comm : "???"),
359 vma->vm_flags, vaddr);
360 dump_stack();
361 }
362
363 static inline int is_cow_mapping(unsigned int flags)
364 {
365 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
366 }
367
368 /*
369 * This function gets the "struct page" associated with a pte.
370 *
371 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
372 * will have each page table entry just pointing to a raw page frame
373 * number, and as far as the VM layer is concerned, those do not have
374 * pages associated with them - even if the PFN might point to memory
375 * that otherwise is perfectly fine and has a "struct page".
376 *
377 * The way we recognize those mappings is through the rules set up
378 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
379 * and the vm_pgoff will point to the first PFN mapped: thus every
380 * page that is a raw mapping will always honor the rule
381 *
382 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
383 *
384 * and if that isn't true, the page has been COW'ed (in which case it
385 * _does_ have a "struct page" associated with it even if it is in a
386 * VM_PFNMAP range).
387 */
388 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
389 {
390 unsigned long pfn = pte_pfn(pte);
391
392 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
393 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
394 if (pfn == vma->vm_pgoff + off)
395 return NULL;
396 if (!is_cow_mapping(vma->vm_flags))
397 return NULL;
398 }
399
400 /*
401 * Add some anal sanity checks for now. Eventually,
402 * we should just do "return pfn_to_page(pfn)", but
403 * in the meantime we check that we get a valid pfn,
404 * and that the resulting page looks ok.
405 */
406 if (unlikely(!pfn_valid(pfn))) {
407 print_bad_pte(vma, pte, addr);
408 return NULL;
409 }
410
411 /*
412 * NOTE! We still have PageReserved() pages in the page
413 * tables.
414 *
415 * The PAGE_ZERO() pages and various VDSO mappings can
416 * cause them to exist.
417 */
418 return pfn_to_page(pfn);
419 }
420
421 /*
422 * copy one vm_area from one task to the other. Assumes the page tables
423 * already present in the new task to be cleared in the whole range
424 * covered by this vma.
425 */
426
427 static inline void
428 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
429 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
430 unsigned long addr, int *rss)
431 {
432 unsigned long vm_flags = vma->vm_flags;
433 pte_t pte = *src_pte;
434 struct page *page;
435
436 /* pte contains position in swap or file, so copy. */
437 if (unlikely(!pte_present(pte))) {
438 if (!pte_file(pte)) {
439 swp_entry_t entry = pte_to_swp_entry(pte);
440
441 swap_duplicate(entry);
442 /* make sure dst_mm is on swapoff's mmlist. */
443 if (unlikely(list_empty(&dst_mm->mmlist))) {
444 spin_lock(&mmlist_lock);
445 if (list_empty(&dst_mm->mmlist))
446 list_add(&dst_mm->mmlist,
447 &src_mm->mmlist);
448 spin_unlock(&mmlist_lock);
449 }
450 if (is_write_migration_entry(entry) &&
451 is_cow_mapping(vm_flags)) {
452 /*
453 * COW mappings require pages in both parent
454 * and child to be set to read.
455 */
456 make_migration_entry_read(&entry);
457 pte = swp_entry_to_pte(entry);
458 set_pte_at(src_mm, addr, src_pte, pte);
459 }
460 }
461 goto out_set_pte;
462 }
463
464 /*
465 * If it's a COW mapping, write protect it both
466 * in the parent and the child
467 */
468 if (is_cow_mapping(vm_flags)) {
469 ptep_set_wrprotect(src_mm, addr, src_pte);
470 pte = pte_wrprotect(pte);
471 }
472
473 /*
474 * If it's a shared mapping, mark it clean in
475 * the child
476 */
477 if (vm_flags & VM_SHARED)
478 pte = pte_mkclean(pte);
479 pte = pte_mkold(pte);
480
481 page = vm_normal_page(vma, addr, pte);
482 if (page) {
483 get_page(page);
484 page_dup_rmap(page);
485 rss[!!PageAnon(page)]++;
486 }
487
488 out_set_pte:
489 set_pte_at(dst_mm, addr, dst_pte, pte);
490 }
491
492 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
494 unsigned long addr, unsigned long end)
495 {
496 pte_t *src_pte, *dst_pte;
497 spinlock_t *src_ptl, *dst_ptl;
498 int progress = 0;
499 int rss[2];
500
501 again:
502 rss[1] = rss[0] = 0;
503 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
504 if (!dst_pte)
505 return -ENOMEM;
506 src_pte = pte_offset_map_nested(src_pmd, addr);
507 src_ptl = pte_lockptr(src_mm, src_pmd);
508 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
509 arch_enter_lazy_mmu_mode();
510
511 do {
512 /*
513 * We are holding two locks at this point - either of them
514 * could generate latencies in another task on another CPU.
515 */
516 if (progress >= 32) {
517 progress = 0;
518 if (need_resched() ||
519 need_lockbreak(src_ptl) ||
520 need_lockbreak(dst_ptl))
521 break;
522 }
523 if (pte_none(*src_pte)) {
524 progress++;
525 continue;
526 }
527 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
528 progress += 8;
529 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
530
531 arch_leave_lazy_mmu_mode();
532 spin_unlock(src_ptl);
533 pte_unmap_nested(src_pte - 1);
534 add_mm_rss(dst_mm, rss[0], rss[1]);
535 pte_unmap_unlock(dst_pte - 1, dst_ptl);
536 cond_resched();
537 if (addr != end)
538 goto again;
539 return 0;
540 }
541
542 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
543 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
544 unsigned long addr, unsigned long end)
545 {
546 pmd_t *src_pmd, *dst_pmd;
547 unsigned long next;
548
549 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
550 if (!dst_pmd)
551 return -ENOMEM;
552 src_pmd = pmd_offset(src_pud, addr);
553 do {
554 next = pmd_addr_end(addr, end);
555 if (pmd_none_or_clear_bad(src_pmd))
556 continue;
557 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
558 vma, addr, next))
559 return -ENOMEM;
560 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
561 return 0;
562 }
563
564 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
565 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
566 unsigned long addr, unsigned long end)
567 {
568 pud_t *src_pud, *dst_pud;
569 unsigned long next;
570
571 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
572 if (!dst_pud)
573 return -ENOMEM;
574 src_pud = pud_offset(src_pgd, addr);
575 do {
576 next = pud_addr_end(addr, end);
577 if (pud_none_or_clear_bad(src_pud))
578 continue;
579 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
580 vma, addr, next))
581 return -ENOMEM;
582 } while (dst_pud++, src_pud++, addr = next, addr != end);
583 return 0;
584 }
585
586 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
587 struct vm_area_struct *vma)
588 {
589 pgd_t *src_pgd, *dst_pgd;
590 unsigned long next;
591 unsigned long addr = vma->vm_start;
592 unsigned long end = vma->vm_end;
593
594 /*
595 * Don't copy ptes where a page fault will fill them correctly.
596 * Fork becomes much lighter when there are big shared or private
597 * readonly mappings. The tradeoff is that copy_page_range is more
598 * efficient than faulting.
599 */
600 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
601 if (!vma->anon_vma)
602 return 0;
603 }
604
605 if (is_vm_hugetlb_page(vma))
606 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
607
608 dst_pgd = pgd_offset(dst_mm, addr);
609 src_pgd = pgd_offset(src_mm, addr);
610 do {
611 next = pgd_addr_end(addr, end);
612 if (pgd_none_or_clear_bad(src_pgd))
613 continue;
614 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
615 vma, addr, next))
616 return -ENOMEM;
617 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
618 return 0;
619 }
620
621 static unsigned long zap_pte_range(struct mmu_gather *tlb,
622 struct vm_area_struct *vma, pmd_t *pmd,
623 unsigned long addr, unsigned long end,
624 long *zap_work, struct zap_details *details)
625 {
626 struct mm_struct *mm = tlb->mm;
627 pte_t *pte;
628 spinlock_t *ptl;
629 int file_rss = 0;
630 int anon_rss = 0;
631
632 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
633 arch_enter_lazy_mmu_mode();
634 do {
635 pte_t ptent = *pte;
636 if (pte_none(ptent)) {
637 (*zap_work)--;
638 continue;
639 }
640
641 (*zap_work) -= PAGE_SIZE;
642
643 if (pte_present(ptent)) {
644 struct page *page;
645
646 page = vm_normal_page(vma, addr, ptent);
647 if (unlikely(details) && page) {
648 /*
649 * unmap_shared_mapping_pages() wants to
650 * invalidate cache without truncating:
651 * unmap shared but keep private pages.
652 */
653 if (details->check_mapping &&
654 details->check_mapping != page->mapping)
655 continue;
656 /*
657 * Each page->index must be checked when
658 * invalidating or truncating nonlinear.
659 */
660 if (details->nonlinear_vma &&
661 (page->index < details->first_index ||
662 page->index > details->last_index))
663 continue;
664 }
665 ptent = ptep_get_and_clear_full(mm, addr, pte,
666 tlb->fullmm);
667 tlb_remove_tlb_entry(tlb, pte, addr);
668 if (unlikely(!page))
669 continue;
670 if (unlikely(details) && details->nonlinear_vma
671 && linear_page_index(details->nonlinear_vma,
672 addr) != page->index)
673 set_pte_at(mm, addr, pte,
674 pgoff_to_pte(page->index));
675 if (PageAnon(page))
676 anon_rss--;
677 else {
678 if (pte_dirty(ptent))
679 set_page_dirty(page);
680 if (pte_young(ptent))
681 SetPageReferenced(page);
682 file_rss--;
683 }
684 page_remove_rmap(page, vma);
685 tlb_remove_page(tlb, page);
686 continue;
687 }
688 /*
689 * If details->check_mapping, we leave swap entries;
690 * if details->nonlinear_vma, we leave file entries.
691 */
692 if (unlikely(details))
693 continue;
694 if (!pte_file(ptent))
695 free_swap_and_cache(pte_to_swp_entry(ptent));
696 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
697 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
698
699 add_mm_rss(mm, file_rss, anon_rss);
700 arch_leave_lazy_mmu_mode();
701 pte_unmap_unlock(pte - 1, ptl);
702
703 return addr;
704 }
705
706 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
707 struct vm_area_struct *vma, pud_t *pud,
708 unsigned long addr, unsigned long end,
709 long *zap_work, struct zap_details *details)
710 {
711 pmd_t *pmd;
712 unsigned long next;
713
714 pmd = pmd_offset(pud, addr);
715 do {
716 next = pmd_addr_end(addr, end);
717 if (pmd_none_or_clear_bad(pmd)) {
718 (*zap_work)--;
719 continue;
720 }
721 next = zap_pte_range(tlb, vma, pmd, addr, next,
722 zap_work, details);
723 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
724
725 return addr;
726 }
727
728 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
729 struct vm_area_struct *vma, pgd_t *pgd,
730 unsigned long addr, unsigned long end,
731 long *zap_work, struct zap_details *details)
732 {
733 pud_t *pud;
734 unsigned long next;
735
736 pud = pud_offset(pgd, addr);
737 do {
738 next = pud_addr_end(addr, end);
739 if (pud_none_or_clear_bad(pud)) {
740 (*zap_work)--;
741 continue;
742 }
743 next = zap_pmd_range(tlb, vma, pud, addr, next,
744 zap_work, details);
745 } while (pud++, addr = next, (addr != end && *zap_work > 0));
746
747 return addr;
748 }
749
750 static unsigned long unmap_page_range(struct mmu_gather *tlb,
751 struct vm_area_struct *vma,
752 unsigned long addr, unsigned long end,
753 long *zap_work, struct zap_details *details)
754 {
755 pgd_t *pgd;
756 unsigned long next;
757
758 if (details && !details->check_mapping && !details->nonlinear_vma)
759 details = NULL;
760
761 BUG_ON(addr >= end);
762 tlb_start_vma(tlb, vma);
763 pgd = pgd_offset(vma->vm_mm, addr);
764 do {
765 next = pgd_addr_end(addr, end);
766 if (pgd_none_or_clear_bad(pgd)) {
767 (*zap_work)--;
768 continue;
769 }
770 next = zap_pud_range(tlb, vma, pgd, addr, next,
771 zap_work, details);
772 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
773 tlb_end_vma(tlb, vma);
774
775 return addr;
776 }
777
778 #ifdef CONFIG_PREEMPT
779 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
780 #else
781 /* No preempt: go for improved straight-line efficiency */
782 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
783 #endif
784
785 /**
786 * unmap_vmas - unmap a range of memory covered by a list of vma's
787 * @tlbp: address of the caller's struct mmu_gather
788 * @vma: the starting vma
789 * @start_addr: virtual address at which to start unmapping
790 * @end_addr: virtual address at which to end unmapping
791 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
792 * @details: details of nonlinear truncation or shared cache invalidation
793 *
794 * Returns the end address of the unmapping (restart addr if interrupted).
795 *
796 * Unmap all pages in the vma list.
797 *
798 * We aim to not hold locks for too long (for scheduling latency reasons).
799 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
800 * return the ending mmu_gather to the caller.
801 *
802 * Only addresses between `start' and `end' will be unmapped.
803 *
804 * The VMA list must be sorted in ascending virtual address order.
805 *
806 * unmap_vmas() assumes that the caller will flush the whole unmapped address
807 * range after unmap_vmas() returns. So the only responsibility here is to
808 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
809 * drops the lock and schedules.
810 */
811 unsigned long unmap_vmas(struct mmu_gather **tlbp,
812 struct vm_area_struct *vma, unsigned long start_addr,
813 unsigned long end_addr, unsigned long *nr_accounted,
814 struct zap_details *details)
815 {
816 long zap_work = ZAP_BLOCK_SIZE;
817 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
818 int tlb_start_valid = 0;
819 unsigned long start = start_addr;
820 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
821 int fullmm = (*tlbp)->fullmm;
822
823 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
824 unsigned long end;
825
826 start = max(vma->vm_start, start_addr);
827 if (start >= vma->vm_end)
828 continue;
829 end = min(vma->vm_end, end_addr);
830 if (end <= vma->vm_start)
831 continue;
832
833 if (vma->vm_flags & VM_ACCOUNT)
834 *nr_accounted += (end - start) >> PAGE_SHIFT;
835
836 while (start != end) {
837 if (!tlb_start_valid) {
838 tlb_start = start;
839 tlb_start_valid = 1;
840 }
841
842 if (unlikely(is_vm_hugetlb_page(vma))) {
843 unmap_hugepage_range(vma, start, end);
844 zap_work -= (end - start) /
845 (HPAGE_SIZE / PAGE_SIZE);
846 start = end;
847 } else
848 start = unmap_page_range(*tlbp, vma,
849 start, end, &zap_work, details);
850
851 if (zap_work > 0) {
852 BUG_ON(start != end);
853 break;
854 }
855
856 tlb_finish_mmu(*tlbp, tlb_start, start);
857
858 if (need_resched() ||
859 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
860 if (i_mmap_lock) {
861 *tlbp = NULL;
862 goto out;
863 }
864 cond_resched();
865 }
866
867 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
868 tlb_start_valid = 0;
869 zap_work = ZAP_BLOCK_SIZE;
870 }
871 }
872 out:
873 return start; /* which is now the end (or restart) address */
874 }
875
876 /**
877 * zap_page_range - remove user pages in a given range
878 * @vma: vm_area_struct holding the applicable pages
879 * @address: starting address of pages to zap
880 * @size: number of bytes to zap
881 * @details: details of nonlinear truncation or shared cache invalidation
882 */
883 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
884 unsigned long size, struct zap_details *details)
885 {
886 struct mm_struct *mm = vma->vm_mm;
887 struct mmu_gather *tlb;
888 unsigned long end = address + size;
889 unsigned long nr_accounted = 0;
890
891 lru_add_drain();
892 tlb = tlb_gather_mmu(mm, 0);
893 update_hiwater_rss(mm);
894 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
895 if (tlb)
896 tlb_finish_mmu(tlb, address, end);
897 return end;
898 }
899
900 /*
901 * Do a quick page-table lookup for a single page.
902 */
903 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
904 unsigned int flags)
905 {
906 pgd_t *pgd;
907 pud_t *pud;
908 pmd_t *pmd;
909 pte_t *ptep, pte;
910 spinlock_t *ptl;
911 struct page *page;
912 struct mm_struct *mm = vma->vm_mm;
913
914 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
915 if (!IS_ERR(page)) {
916 BUG_ON(flags & FOLL_GET);
917 goto out;
918 }
919
920 page = NULL;
921 pgd = pgd_offset(mm, address);
922 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
923 goto no_page_table;
924
925 pud = pud_offset(pgd, address);
926 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
927 goto no_page_table;
928
929 pmd = pmd_offset(pud, address);
930 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
931 goto no_page_table;
932
933 if (pmd_huge(*pmd)) {
934 BUG_ON(flags & FOLL_GET);
935 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
936 goto out;
937 }
938
939 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
940 if (!ptep)
941 goto out;
942
943 pte = *ptep;
944 if (!pte_present(pte))
945 goto unlock;
946 if ((flags & FOLL_WRITE) && !pte_write(pte))
947 goto unlock;
948 page = vm_normal_page(vma, address, pte);
949 if (unlikely(!page))
950 goto unlock;
951
952 if (flags & FOLL_GET)
953 get_page(page);
954 if (flags & FOLL_TOUCH) {
955 if ((flags & FOLL_WRITE) &&
956 !pte_dirty(pte) && !PageDirty(page))
957 set_page_dirty(page);
958 mark_page_accessed(page);
959 }
960 unlock:
961 pte_unmap_unlock(ptep, ptl);
962 out:
963 return page;
964
965 no_page_table:
966 /*
967 * When core dumping an enormous anonymous area that nobody
968 * has touched so far, we don't want to allocate page tables.
969 */
970 if (flags & FOLL_ANON) {
971 page = ZERO_PAGE(address);
972 if (flags & FOLL_GET)
973 get_page(page);
974 BUG_ON(flags & FOLL_WRITE);
975 }
976 return page;
977 }
978
979 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
980 unsigned long start, int len, int write, int force,
981 struct page **pages, struct vm_area_struct **vmas)
982 {
983 int i;
984 unsigned int vm_flags;
985
986 /*
987 * Require read or write permissions.
988 * If 'force' is set, we only require the "MAY" flags.
989 */
990 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
991 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
992 i = 0;
993
994 do {
995 struct vm_area_struct *vma;
996 unsigned int foll_flags;
997
998 vma = find_extend_vma(mm, start);
999 if (!vma && in_gate_area(tsk, start)) {
1000 unsigned long pg = start & PAGE_MASK;
1001 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1002 pgd_t *pgd;
1003 pud_t *pud;
1004 pmd_t *pmd;
1005 pte_t *pte;
1006 if (write) /* user gate pages are read-only */
1007 return i ? : -EFAULT;
1008 if (pg > TASK_SIZE)
1009 pgd = pgd_offset_k(pg);
1010 else
1011 pgd = pgd_offset_gate(mm, pg);
1012 BUG_ON(pgd_none(*pgd));
1013 pud = pud_offset(pgd, pg);
1014 BUG_ON(pud_none(*pud));
1015 pmd = pmd_offset(pud, pg);
1016 if (pmd_none(*pmd))
1017 return i ? : -EFAULT;
1018 pte = pte_offset_map(pmd, pg);
1019 if (pte_none(*pte)) {
1020 pte_unmap(pte);
1021 return i ? : -EFAULT;
1022 }
1023 if (pages) {
1024 struct page *page = vm_normal_page(gate_vma, start, *pte);
1025 pages[i] = page;
1026 if (page)
1027 get_page(page);
1028 }
1029 pte_unmap(pte);
1030 if (vmas)
1031 vmas[i] = gate_vma;
1032 i++;
1033 start += PAGE_SIZE;
1034 len--;
1035 continue;
1036 }
1037
1038 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1039 || !(vm_flags & vma->vm_flags))
1040 return i ? : -EFAULT;
1041
1042 if (is_vm_hugetlb_page(vma)) {
1043 i = follow_hugetlb_page(mm, vma, pages, vmas,
1044 &start, &len, i);
1045 continue;
1046 }
1047
1048 foll_flags = FOLL_TOUCH;
1049 if (pages)
1050 foll_flags |= FOLL_GET;
1051 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1052 (!vma->vm_ops || !vma->vm_ops->nopage))
1053 foll_flags |= FOLL_ANON;
1054
1055 do {
1056 struct page *page;
1057
1058 if (write)
1059 foll_flags |= FOLL_WRITE;
1060
1061 cond_resched();
1062 while (!(page = follow_page(vma, start, foll_flags))) {
1063 int ret;
1064 ret = __handle_mm_fault(mm, vma, start,
1065 foll_flags & FOLL_WRITE);
1066 /*
1067 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1068 * broken COW when necessary, even if maybe_mkwrite
1069 * decided not to set pte_write. We can thus safely do
1070 * subsequent page lookups as if they were reads.
1071 */
1072 if (ret & VM_FAULT_WRITE)
1073 foll_flags &= ~FOLL_WRITE;
1074
1075 switch (ret & ~VM_FAULT_WRITE) {
1076 case VM_FAULT_MINOR:
1077 tsk->min_flt++;
1078 break;
1079 case VM_FAULT_MAJOR:
1080 tsk->maj_flt++;
1081 break;
1082 case VM_FAULT_SIGBUS:
1083 return i ? i : -EFAULT;
1084 case VM_FAULT_OOM:
1085 return i ? i : -ENOMEM;
1086 default:
1087 BUG();
1088 }
1089 cond_resched();
1090 }
1091 if (pages) {
1092 pages[i] = page;
1093
1094 flush_anon_page(vma, page, start);
1095 flush_dcache_page(page);
1096 }
1097 if (vmas)
1098 vmas[i] = vma;
1099 i++;
1100 start += PAGE_SIZE;
1101 len--;
1102 } while (len && start < vma->vm_end);
1103 } while (len);
1104 return i;
1105 }
1106 EXPORT_SYMBOL(get_user_pages);
1107
1108 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1109 unsigned long addr, unsigned long end, pgprot_t prot)
1110 {
1111 pte_t *pte;
1112 spinlock_t *ptl;
1113 int err = 0;
1114
1115 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1116 if (!pte)
1117 return -EAGAIN;
1118 arch_enter_lazy_mmu_mode();
1119 do {
1120 struct page *page = ZERO_PAGE(addr);
1121 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1122
1123 if (unlikely(!pte_none(*pte))) {
1124 err = -EEXIST;
1125 pte++;
1126 break;
1127 }
1128 page_cache_get(page);
1129 page_add_file_rmap(page);
1130 inc_mm_counter(mm, file_rss);
1131 set_pte_at(mm, addr, pte, zero_pte);
1132 } while (pte++, addr += PAGE_SIZE, addr != end);
1133 arch_leave_lazy_mmu_mode();
1134 pte_unmap_unlock(pte - 1, ptl);
1135 return err;
1136 }
1137
1138 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1139 unsigned long addr, unsigned long end, pgprot_t prot)
1140 {
1141 pmd_t *pmd;
1142 unsigned long next;
1143 int err;
1144
1145 pmd = pmd_alloc(mm, pud, addr);
1146 if (!pmd)
1147 return -EAGAIN;
1148 do {
1149 next = pmd_addr_end(addr, end);
1150 err = zeromap_pte_range(mm, pmd, addr, next, prot);
1151 if (err)
1152 break;
1153 } while (pmd++, addr = next, addr != end);
1154 return err;
1155 }
1156
1157 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1158 unsigned long addr, unsigned long end, pgprot_t prot)
1159 {
1160 pud_t *pud;
1161 unsigned long next;
1162 int err;
1163
1164 pud = pud_alloc(mm, pgd, addr);
1165 if (!pud)
1166 return -EAGAIN;
1167 do {
1168 next = pud_addr_end(addr, end);
1169 err = zeromap_pmd_range(mm, pud, addr, next, prot);
1170 if (err)
1171 break;
1172 } while (pud++, addr = next, addr != end);
1173 return err;
1174 }
1175
1176 int zeromap_page_range(struct vm_area_struct *vma,
1177 unsigned long addr, unsigned long size, pgprot_t prot)
1178 {
1179 pgd_t *pgd;
1180 unsigned long next;
1181 unsigned long end = addr + size;
1182 struct mm_struct *mm = vma->vm_mm;
1183 int err;
1184
1185 BUG_ON(addr >= end);
1186 pgd = pgd_offset(mm, addr);
1187 flush_cache_range(vma, addr, end);
1188 do {
1189 next = pgd_addr_end(addr, end);
1190 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1191 if (err)
1192 break;
1193 } while (pgd++, addr = next, addr != end);
1194 return err;
1195 }
1196
1197 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1198 {
1199 pgd_t * pgd = pgd_offset(mm, addr);
1200 pud_t * pud = pud_alloc(mm, pgd, addr);
1201 if (pud) {
1202 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1203 if (pmd)
1204 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1205 }
1206 return NULL;
1207 }
1208
1209 /*
1210 * This is the old fallback for page remapping.
1211 *
1212 * For historical reasons, it only allows reserved pages. Only
1213 * old drivers should use this, and they needed to mark their
1214 * pages reserved for the old functions anyway.
1215 */
1216 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1217 {
1218 int retval;
1219 pte_t *pte;
1220 spinlock_t *ptl;
1221
1222 retval = -EINVAL;
1223 if (PageAnon(page))
1224 goto out;
1225 retval = -ENOMEM;
1226 flush_dcache_page(page);
1227 pte = get_locked_pte(mm, addr, &ptl);
1228 if (!pte)
1229 goto out;
1230 retval = -EBUSY;
1231 if (!pte_none(*pte))
1232 goto out_unlock;
1233
1234 /* Ok, finally just insert the thing.. */
1235 get_page(page);
1236 inc_mm_counter(mm, file_rss);
1237 page_add_file_rmap(page);
1238 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1239
1240 retval = 0;
1241 out_unlock:
1242 pte_unmap_unlock(pte, ptl);
1243 out:
1244 return retval;
1245 }
1246
1247 /**
1248 * vm_insert_page - insert single page into user vma
1249 * @vma: user vma to map to
1250 * @addr: target user address of this page
1251 * @page: source kernel page
1252 *
1253 * This allows drivers to insert individual pages they've allocated
1254 * into a user vma.
1255 *
1256 * The page has to be a nice clean _individual_ kernel allocation.
1257 * If you allocate a compound page, you need to have marked it as
1258 * such (__GFP_COMP), or manually just split the page up yourself
1259 * (see split_page()).
1260 *
1261 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1262 * took an arbitrary page protection parameter. This doesn't allow
1263 * that. Your vma protection will have to be set up correctly, which
1264 * means that if you want a shared writable mapping, you'd better
1265 * ask for a shared writable mapping!
1266 *
1267 * The page does not need to be reserved.
1268 */
1269 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1270 {
1271 if (addr < vma->vm_start || addr >= vma->vm_end)
1272 return -EFAULT;
1273 if (!page_count(page))
1274 return -EINVAL;
1275 vma->vm_flags |= VM_INSERTPAGE;
1276 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1277 }
1278 EXPORT_SYMBOL(vm_insert_page);
1279
1280 /*
1281 * maps a range of physical memory into the requested pages. the old
1282 * mappings are removed. any references to nonexistent pages results
1283 * in null mappings (currently treated as "copy-on-access")
1284 */
1285 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1286 unsigned long addr, unsigned long end,
1287 unsigned long pfn, pgprot_t prot)
1288 {
1289 pte_t *pte;
1290 spinlock_t *ptl;
1291
1292 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1293 if (!pte)
1294 return -ENOMEM;
1295 arch_enter_lazy_mmu_mode();
1296 do {
1297 BUG_ON(!pte_none(*pte));
1298 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1299 pfn++;
1300 } while (pte++, addr += PAGE_SIZE, addr != end);
1301 arch_leave_lazy_mmu_mode();
1302 pte_unmap_unlock(pte - 1, ptl);
1303 return 0;
1304 }
1305
1306 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1307 unsigned long addr, unsigned long end,
1308 unsigned long pfn, pgprot_t prot)
1309 {
1310 pmd_t *pmd;
1311 unsigned long next;
1312
1313 pfn -= addr >> PAGE_SHIFT;
1314 pmd = pmd_alloc(mm, pud, addr);
1315 if (!pmd)
1316 return -ENOMEM;
1317 do {
1318 next = pmd_addr_end(addr, end);
1319 if (remap_pte_range(mm, pmd, addr, next,
1320 pfn + (addr >> PAGE_SHIFT), prot))
1321 return -ENOMEM;
1322 } while (pmd++, addr = next, addr != end);
1323 return 0;
1324 }
1325
1326 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1327 unsigned long addr, unsigned long end,
1328 unsigned long pfn, pgprot_t prot)
1329 {
1330 pud_t *pud;
1331 unsigned long next;
1332
1333 pfn -= addr >> PAGE_SHIFT;
1334 pud = pud_alloc(mm, pgd, addr);
1335 if (!pud)
1336 return -ENOMEM;
1337 do {
1338 next = pud_addr_end(addr, end);
1339 if (remap_pmd_range(mm, pud, addr, next,
1340 pfn + (addr >> PAGE_SHIFT), prot))
1341 return -ENOMEM;
1342 } while (pud++, addr = next, addr != end);
1343 return 0;
1344 }
1345
1346 /**
1347 * remap_pfn_range - remap kernel memory to userspace
1348 * @vma: user vma to map to
1349 * @addr: target user address to start at
1350 * @pfn: physical address of kernel memory
1351 * @size: size of map area
1352 * @prot: page protection flags for this mapping
1353 *
1354 * Note: this is only safe if the mm semaphore is held when called.
1355 */
1356 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1357 unsigned long pfn, unsigned long size, pgprot_t prot)
1358 {
1359 pgd_t *pgd;
1360 unsigned long next;
1361 unsigned long end = addr + PAGE_ALIGN(size);
1362 struct mm_struct *mm = vma->vm_mm;
1363 int err;
1364
1365 /*
1366 * Physically remapped pages are special. Tell the
1367 * rest of the world about it:
1368 * VM_IO tells people not to look at these pages
1369 * (accesses can have side effects).
1370 * VM_RESERVED is specified all over the place, because
1371 * in 2.4 it kept swapout's vma scan off this vma; but
1372 * in 2.6 the LRU scan won't even find its pages, so this
1373 * flag means no more than count its pages in reserved_vm,
1374 * and omit it from core dump, even when VM_IO turned off.
1375 * VM_PFNMAP tells the core MM that the base pages are just
1376 * raw PFN mappings, and do not have a "struct page" associated
1377 * with them.
1378 *
1379 * There's a horrible special case to handle copy-on-write
1380 * behaviour that some programs depend on. We mark the "original"
1381 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1382 */
1383 if (is_cow_mapping(vma->vm_flags)) {
1384 if (addr != vma->vm_start || end != vma->vm_end)
1385 return -EINVAL;
1386 vma->vm_pgoff = pfn;
1387 }
1388
1389 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1390
1391 BUG_ON(addr >= end);
1392 pfn -= addr >> PAGE_SHIFT;
1393 pgd = pgd_offset(mm, addr);
1394 flush_cache_range(vma, addr, end);
1395 do {
1396 next = pgd_addr_end(addr, end);
1397 err = remap_pud_range(mm, pgd, addr, next,
1398 pfn + (addr >> PAGE_SHIFT), prot);
1399 if (err)
1400 break;
1401 } while (pgd++, addr = next, addr != end);
1402 return err;
1403 }
1404 EXPORT_SYMBOL(remap_pfn_range);
1405
1406 /*
1407 * handle_pte_fault chooses page fault handler according to an entry
1408 * which was read non-atomically. Before making any commitment, on
1409 * those architectures or configurations (e.g. i386 with PAE) which
1410 * might give a mix of unmatched parts, do_swap_page and do_file_page
1411 * must check under lock before unmapping the pte and proceeding
1412 * (but do_wp_page is only called after already making such a check;
1413 * and do_anonymous_page and do_no_page can safely check later on).
1414 */
1415 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1416 pte_t *page_table, pte_t orig_pte)
1417 {
1418 int same = 1;
1419 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1420 if (sizeof(pte_t) > sizeof(unsigned long)) {
1421 spinlock_t *ptl = pte_lockptr(mm, pmd);
1422 spin_lock(ptl);
1423 same = pte_same(*page_table, orig_pte);
1424 spin_unlock(ptl);
1425 }
1426 #endif
1427 pte_unmap(page_table);
1428 return same;
1429 }
1430
1431 /*
1432 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1433 * servicing faults for write access. In the normal case, do always want
1434 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1435 * that do not have writing enabled, when used by access_process_vm.
1436 */
1437 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1438 {
1439 if (likely(vma->vm_flags & VM_WRITE))
1440 pte = pte_mkwrite(pte);
1441 return pte;
1442 }
1443
1444 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1445 {
1446 /*
1447 * If the source page was a PFN mapping, we don't have
1448 * a "struct page" for it. We do a best-effort copy by
1449 * just copying from the original user address. If that
1450 * fails, we just zero-fill it. Live with it.
1451 */
1452 if (unlikely(!src)) {
1453 void *kaddr = kmap_atomic(dst, KM_USER0);
1454 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1455
1456 /*
1457 * This really shouldn't fail, because the page is there
1458 * in the page tables. But it might just be unreadable,
1459 * in which case we just give up and fill the result with
1460 * zeroes.
1461 */
1462 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1463 memset(kaddr, 0, PAGE_SIZE);
1464 kunmap_atomic(kaddr, KM_USER0);
1465 flush_dcache_page(dst);
1466 return;
1467
1468 }
1469 copy_user_highpage(dst, src, va, vma);
1470 }
1471
1472 /*
1473 * This routine handles present pages, when users try to write
1474 * to a shared page. It is done by copying the page to a new address
1475 * and decrementing the shared-page counter for the old page.
1476 *
1477 * Note that this routine assumes that the protection checks have been
1478 * done by the caller (the low-level page fault routine in most cases).
1479 * Thus we can safely just mark it writable once we've done any necessary
1480 * COW.
1481 *
1482 * We also mark the page dirty at this point even though the page will
1483 * change only once the write actually happens. This avoids a few races,
1484 * and potentially makes it more efficient.
1485 *
1486 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1487 * but allow concurrent faults), with pte both mapped and locked.
1488 * We return with mmap_sem still held, but pte unmapped and unlocked.
1489 */
1490 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1491 unsigned long address, pte_t *page_table, pmd_t *pmd,
1492 spinlock_t *ptl, pte_t orig_pte)
1493 {
1494 struct page *old_page, *new_page;
1495 pte_t entry;
1496 int reuse = 0, ret = VM_FAULT_MINOR;
1497 struct page *dirty_page = NULL;
1498
1499 old_page = vm_normal_page(vma, address, orig_pte);
1500 if (!old_page)
1501 goto gotten;
1502
1503 /*
1504 * Take out anonymous pages first, anonymous shared vmas are
1505 * not dirty accountable.
1506 */
1507 if (PageAnon(old_page)) {
1508 if (!TestSetPageLocked(old_page)) {
1509 reuse = can_share_swap_page(old_page);
1510 unlock_page(old_page);
1511 }
1512 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1513 (VM_WRITE|VM_SHARED))) {
1514 /*
1515 * Only catch write-faults on shared writable pages,
1516 * read-only shared pages can get COWed by
1517 * get_user_pages(.write=1, .force=1).
1518 */
1519 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1520 /*
1521 * Notify the address space that the page is about to
1522 * become writable so that it can prohibit this or wait
1523 * for the page to get into an appropriate state.
1524 *
1525 * We do this without the lock held, so that it can
1526 * sleep if it needs to.
1527 */
1528 page_cache_get(old_page);
1529 pte_unmap_unlock(page_table, ptl);
1530
1531 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1532 goto unwritable_page;
1533
1534 /*
1535 * Since we dropped the lock we need to revalidate
1536 * the PTE as someone else may have changed it. If
1537 * they did, we just return, as we can count on the
1538 * MMU to tell us if they didn't also make it writable.
1539 */
1540 page_table = pte_offset_map_lock(mm, pmd, address,
1541 &ptl);
1542 page_cache_release(old_page);
1543 if (!pte_same(*page_table, orig_pte))
1544 goto unlock;
1545 }
1546 dirty_page = old_page;
1547 get_page(dirty_page);
1548 reuse = 1;
1549 }
1550
1551 if (reuse) {
1552 flush_cache_page(vma, address, pte_pfn(orig_pte));
1553 entry = pte_mkyoung(orig_pte);
1554 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1555 ptep_set_access_flags(vma, address, page_table, entry, 1);
1556 update_mmu_cache(vma, address, entry);
1557 lazy_mmu_prot_update(entry);
1558 ret |= VM_FAULT_WRITE;
1559 goto unlock;
1560 }
1561
1562 /*
1563 * Ok, we need to copy. Oh, well..
1564 */
1565 page_cache_get(old_page);
1566 gotten:
1567 pte_unmap_unlock(page_table, ptl);
1568
1569 if (unlikely(anon_vma_prepare(vma)))
1570 goto oom;
1571 if (old_page == ZERO_PAGE(address)) {
1572 new_page = alloc_zeroed_user_highpage(vma, address);
1573 if (!new_page)
1574 goto oom;
1575 } else {
1576 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1577 if (!new_page)
1578 goto oom;
1579 cow_user_page(new_page, old_page, address, vma);
1580 }
1581
1582 /*
1583 * Re-check the pte - we dropped the lock
1584 */
1585 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1586 if (likely(pte_same(*page_table, orig_pte))) {
1587 if (old_page) {
1588 page_remove_rmap(old_page, vma);
1589 if (!PageAnon(old_page)) {
1590 dec_mm_counter(mm, file_rss);
1591 inc_mm_counter(mm, anon_rss);
1592 }
1593 } else
1594 inc_mm_counter(mm, anon_rss);
1595 flush_cache_page(vma, address, pte_pfn(orig_pte));
1596 entry = mk_pte(new_page, vma->vm_page_prot);
1597 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1598 lazy_mmu_prot_update(entry);
1599 /*
1600 * Clear the pte entry and flush it first, before updating the
1601 * pte with the new entry. This will avoid a race condition
1602 * seen in the presence of one thread doing SMC and another
1603 * thread doing COW.
1604 */
1605 ptep_clear_flush(vma, address, page_table);
1606 set_pte_at(mm, address, page_table, entry);
1607 update_mmu_cache(vma, address, entry);
1608 lru_cache_add_active(new_page);
1609 page_add_new_anon_rmap(new_page, vma, address);
1610
1611 /* Free the old page.. */
1612 new_page = old_page;
1613 ret |= VM_FAULT_WRITE;
1614 }
1615 if (new_page)
1616 page_cache_release(new_page);
1617 if (old_page)
1618 page_cache_release(old_page);
1619 unlock:
1620 pte_unmap_unlock(page_table, ptl);
1621 if (dirty_page) {
1622 set_page_dirty_balance(dirty_page);
1623 put_page(dirty_page);
1624 }
1625 return ret;
1626 oom:
1627 if (old_page)
1628 page_cache_release(old_page);
1629 return VM_FAULT_OOM;
1630
1631 unwritable_page:
1632 page_cache_release(old_page);
1633 return VM_FAULT_SIGBUS;
1634 }
1635
1636 /*
1637 * Helper functions for unmap_mapping_range().
1638 *
1639 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1640 *
1641 * We have to restart searching the prio_tree whenever we drop the lock,
1642 * since the iterator is only valid while the lock is held, and anyway
1643 * a later vma might be split and reinserted earlier while lock dropped.
1644 *
1645 * The list of nonlinear vmas could be handled more efficiently, using
1646 * a placeholder, but handle it in the same way until a need is shown.
1647 * It is important to search the prio_tree before nonlinear list: a vma
1648 * may become nonlinear and be shifted from prio_tree to nonlinear list
1649 * while the lock is dropped; but never shifted from list to prio_tree.
1650 *
1651 * In order to make forward progress despite restarting the search,
1652 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1653 * quickly skip it next time around. Since the prio_tree search only
1654 * shows us those vmas affected by unmapping the range in question, we
1655 * can't efficiently keep all vmas in step with mapping->truncate_count:
1656 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1657 * mapping->truncate_count and vma->vm_truncate_count are protected by
1658 * i_mmap_lock.
1659 *
1660 * In order to make forward progress despite repeatedly restarting some
1661 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1662 * and restart from that address when we reach that vma again. It might
1663 * have been split or merged, shrunk or extended, but never shifted: so
1664 * restart_addr remains valid so long as it remains in the vma's range.
1665 * unmap_mapping_range forces truncate_count to leap over page-aligned
1666 * values so we can save vma's restart_addr in its truncate_count field.
1667 */
1668 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1669
1670 static void reset_vma_truncate_counts(struct address_space *mapping)
1671 {
1672 struct vm_area_struct *vma;
1673 struct prio_tree_iter iter;
1674
1675 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1676 vma->vm_truncate_count = 0;
1677 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1678 vma->vm_truncate_count = 0;
1679 }
1680
1681 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1682 unsigned long start_addr, unsigned long end_addr,
1683 struct zap_details *details)
1684 {
1685 unsigned long restart_addr;
1686 int need_break;
1687
1688 again:
1689 restart_addr = vma->vm_truncate_count;
1690 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1691 start_addr = restart_addr;
1692 if (start_addr >= end_addr) {
1693 /* Top of vma has been split off since last time */
1694 vma->vm_truncate_count = details->truncate_count;
1695 return 0;
1696 }
1697 }
1698
1699 restart_addr = zap_page_range(vma, start_addr,
1700 end_addr - start_addr, details);
1701 need_break = need_resched() ||
1702 need_lockbreak(details->i_mmap_lock);
1703
1704 if (restart_addr >= end_addr) {
1705 /* We have now completed this vma: mark it so */
1706 vma->vm_truncate_count = details->truncate_count;
1707 if (!need_break)
1708 return 0;
1709 } else {
1710 /* Note restart_addr in vma's truncate_count field */
1711 vma->vm_truncate_count = restart_addr;
1712 if (!need_break)
1713 goto again;
1714 }
1715
1716 spin_unlock(details->i_mmap_lock);
1717 cond_resched();
1718 spin_lock(details->i_mmap_lock);
1719 return -EINTR;
1720 }
1721
1722 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1723 struct zap_details *details)
1724 {
1725 struct vm_area_struct *vma;
1726 struct prio_tree_iter iter;
1727 pgoff_t vba, vea, zba, zea;
1728
1729 restart:
1730 vma_prio_tree_foreach(vma, &iter, root,
1731 details->first_index, details->last_index) {
1732 /* Skip quickly over those we have already dealt with */
1733 if (vma->vm_truncate_count == details->truncate_count)
1734 continue;
1735
1736 vba = vma->vm_pgoff;
1737 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1738 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1739 zba = details->first_index;
1740 if (zba < vba)
1741 zba = vba;
1742 zea = details->last_index;
1743 if (zea > vea)
1744 zea = vea;
1745
1746 if (unmap_mapping_range_vma(vma,
1747 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1748 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1749 details) < 0)
1750 goto restart;
1751 }
1752 }
1753
1754 static inline void unmap_mapping_range_list(struct list_head *head,
1755 struct zap_details *details)
1756 {
1757 struct vm_area_struct *vma;
1758
1759 /*
1760 * In nonlinear VMAs there is no correspondence between virtual address
1761 * offset and file offset. So we must perform an exhaustive search
1762 * across *all* the pages in each nonlinear VMA, not just the pages
1763 * whose virtual address lies outside the file truncation point.
1764 */
1765 restart:
1766 list_for_each_entry(vma, head, shared.vm_set.list) {
1767 /* Skip quickly over those we have already dealt with */
1768 if (vma->vm_truncate_count == details->truncate_count)
1769 continue;
1770 details->nonlinear_vma = vma;
1771 if (unmap_mapping_range_vma(vma, vma->vm_start,
1772 vma->vm_end, details) < 0)
1773 goto restart;
1774 }
1775 }
1776
1777 /**
1778 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1779 * @mapping: the address space containing mmaps to be unmapped.
1780 * @holebegin: byte in first page to unmap, relative to the start of
1781 * the underlying file. This will be rounded down to a PAGE_SIZE
1782 * boundary. Note that this is different from vmtruncate(), which
1783 * must keep the partial page. In contrast, we must get rid of
1784 * partial pages.
1785 * @holelen: size of prospective hole in bytes. This will be rounded
1786 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1787 * end of the file.
1788 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1789 * but 0 when invalidating pagecache, don't throw away private data.
1790 */
1791 void unmap_mapping_range(struct address_space *mapping,
1792 loff_t const holebegin, loff_t const holelen, int even_cows)
1793 {
1794 struct zap_details details;
1795 pgoff_t hba = holebegin >> PAGE_SHIFT;
1796 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1797
1798 /* Check for overflow. */
1799 if (sizeof(holelen) > sizeof(hlen)) {
1800 long long holeend =
1801 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1802 if (holeend & ~(long long)ULONG_MAX)
1803 hlen = ULONG_MAX - hba + 1;
1804 }
1805
1806 details.check_mapping = even_cows? NULL: mapping;
1807 details.nonlinear_vma = NULL;
1808 details.first_index = hba;
1809 details.last_index = hba + hlen - 1;
1810 if (details.last_index < details.first_index)
1811 details.last_index = ULONG_MAX;
1812 details.i_mmap_lock = &mapping->i_mmap_lock;
1813
1814 spin_lock(&mapping->i_mmap_lock);
1815
1816 /* serialize i_size write against truncate_count write */
1817 smp_wmb();
1818 /* Protect against page faults, and endless unmapping loops */
1819 mapping->truncate_count++;
1820 /*
1821 * For archs where spin_lock has inclusive semantics like ia64
1822 * this smp_mb() will prevent to read pagetable contents
1823 * before the truncate_count increment is visible to
1824 * other cpus.
1825 */
1826 smp_mb();
1827 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1828 if (mapping->truncate_count == 0)
1829 reset_vma_truncate_counts(mapping);
1830 mapping->truncate_count++;
1831 }
1832 details.truncate_count = mapping->truncate_count;
1833
1834 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1835 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1836 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1837 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1838 spin_unlock(&mapping->i_mmap_lock);
1839 }
1840 EXPORT_SYMBOL(unmap_mapping_range);
1841
1842 /**
1843 * vmtruncate - unmap mappings "freed" by truncate() syscall
1844 * @inode: inode of the file used
1845 * @offset: file offset to start truncating
1846 *
1847 * NOTE! We have to be ready to update the memory sharing
1848 * between the file and the memory map for a potential last
1849 * incomplete page. Ugly, but necessary.
1850 */
1851 int vmtruncate(struct inode * inode, loff_t offset)
1852 {
1853 struct address_space *mapping = inode->i_mapping;
1854 unsigned long limit;
1855
1856 if (inode->i_size < offset)
1857 goto do_expand;
1858 /*
1859 * truncation of in-use swapfiles is disallowed - it would cause
1860 * subsequent swapout to scribble on the now-freed blocks.
1861 */
1862 if (IS_SWAPFILE(inode))
1863 goto out_busy;
1864 i_size_write(inode, offset);
1865 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1866 truncate_inode_pages(mapping, offset);
1867 goto out_truncate;
1868
1869 do_expand:
1870 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1871 if (limit != RLIM_INFINITY && offset > limit)
1872 goto out_sig;
1873 if (offset > inode->i_sb->s_maxbytes)
1874 goto out_big;
1875 i_size_write(inode, offset);
1876
1877 out_truncate:
1878 if (inode->i_op && inode->i_op->truncate)
1879 inode->i_op->truncate(inode);
1880 return 0;
1881 out_sig:
1882 send_sig(SIGXFSZ, current, 0);
1883 out_big:
1884 return -EFBIG;
1885 out_busy:
1886 return -ETXTBSY;
1887 }
1888 EXPORT_SYMBOL(vmtruncate);
1889
1890 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1891 {
1892 struct address_space *mapping = inode->i_mapping;
1893
1894 /*
1895 * If the underlying filesystem is not going to provide
1896 * a way to truncate a range of blocks (punch a hole) -
1897 * we should return failure right now.
1898 */
1899 if (!inode->i_op || !inode->i_op->truncate_range)
1900 return -ENOSYS;
1901
1902 mutex_lock(&inode->i_mutex);
1903 down_write(&inode->i_alloc_sem);
1904 unmap_mapping_range(mapping, offset, (end - offset), 1);
1905 truncate_inode_pages_range(mapping, offset, end);
1906 inode->i_op->truncate_range(inode, offset, end);
1907 up_write(&inode->i_alloc_sem);
1908 mutex_unlock(&inode->i_mutex);
1909
1910 return 0;
1911 }
1912
1913 /**
1914 * swapin_readahead - swap in pages in hope we need them soon
1915 * @entry: swap entry of this memory
1916 * @addr: address to start
1917 * @vma: user vma this addresses belong to
1918 *
1919 * Primitive swap readahead code. We simply read an aligned block of
1920 * (1 << page_cluster) entries in the swap area. This method is chosen
1921 * because it doesn't cost us any seek time. We also make sure to queue
1922 * the 'original' request together with the readahead ones...
1923 *
1924 * This has been extended to use the NUMA policies from the mm triggering
1925 * the readahead.
1926 *
1927 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1928 */
1929 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1930 {
1931 #ifdef CONFIG_NUMA
1932 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1933 #endif
1934 int i, num;
1935 struct page *new_page;
1936 unsigned long offset;
1937
1938 /*
1939 * Get the number of handles we should do readahead io to.
1940 */
1941 num = valid_swaphandles(entry, &offset);
1942 for (i = 0; i < num; offset++, i++) {
1943 /* Ok, do the async read-ahead now */
1944 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1945 offset), vma, addr);
1946 if (!new_page)
1947 break;
1948 page_cache_release(new_page);
1949 #ifdef CONFIG_NUMA
1950 /*
1951 * Find the next applicable VMA for the NUMA policy.
1952 */
1953 addr += PAGE_SIZE;
1954 if (addr == 0)
1955 vma = NULL;
1956 if (vma) {
1957 if (addr >= vma->vm_end) {
1958 vma = next_vma;
1959 next_vma = vma ? vma->vm_next : NULL;
1960 }
1961 if (vma && addr < vma->vm_start)
1962 vma = NULL;
1963 } else {
1964 if (next_vma && addr >= next_vma->vm_start) {
1965 vma = next_vma;
1966 next_vma = vma->vm_next;
1967 }
1968 }
1969 #endif
1970 }
1971 lru_add_drain(); /* Push any new pages onto the LRU now */
1972 }
1973
1974 /*
1975 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1976 * but allow concurrent faults), and pte mapped but not yet locked.
1977 * We return with mmap_sem still held, but pte unmapped and unlocked.
1978 */
1979 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1980 unsigned long address, pte_t *page_table, pmd_t *pmd,
1981 int write_access, pte_t orig_pte)
1982 {
1983 spinlock_t *ptl;
1984 struct page *page;
1985 swp_entry_t entry;
1986 pte_t pte;
1987 int ret = VM_FAULT_MINOR;
1988
1989 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1990 goto out;
1991
1992 entry = pte_to_swp_entry(orig_pte);
1993 if (is_migration_entry(entry)) {
1994 migration_entry_wait(mm, pmd, address);
1995 goto out;
1996 }
1997 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1998 page = lookup_swap_cache(entry);
1999 if (!page) {
2000 grab_swap_token(); /* Contend for token _before_ read-in */
2001 swapin_readahead(entry, address, vma);
2002 page = read_swap_cache_async(entry, vma, address);
2003 if (!page) {
2004 /*
2005 * Back out if somebody else faulted in this pte
2006 * while we released the pte lock.
2007 */
2008 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2009 if (likely(pte_same(*page_table, orig_pte)))
2010 ret = VM_FAULT_OOM;
2011 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2012 goto unlock;
2013 }
2014
2015 /* Had to read the page from swap area: Major fault */
2016 ret = VM_FAULT_MAJOR;
2017 count_vm_event(PGMAJFAULT);
2018 }
2019
2020 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2021 mark_page_accessed(page);
2022 lock_page(page);
2023
2024 /*
2025 * Back out if somebody else already faulted in this pte.
2026 */
2027 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2028 if (unlikely(!pte_same(*page_table, orig_pte)))
2029 goto out_nomap;
2030
2031 if (unlikely(!PageUptodate(page))) {
2032 ret = VM_FAULT_SIGBUS;
2033 goto out_nomap;
2034 }
2035
2036 /* The page isn't present yet, go ahead with the fault. */
2037
2038 inc_mm_counter(mm, anon_rss);
2039 pte = mk_pte(page, vma->vm_page_prot);
2040 if (write_access && can_share_swap_page(page)) {
2041 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2042 write_access = 0;
2043 }
2044
2045 flush_icache_page(vma, page);
2046 set_pte_at(mm, address, page_table, pte);
2047 page_add_anon_rmap(page, vma, address);
2048
2049 swap_free(entry);
2050 if (vm_swap_full())
2051 remove_exclusive_swap_page(page);
2052 unlock_page(page);
2053
2054 if (write_access) {
2055 if (do_wp_page(mm, vma, address,
2056 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
2057 ret = VM_FAULT_OOM;
2058 goto out;
2059 }
2060
2061 /* No need to invalidate - it was non-present before */
2062 update_mmu_cache(vma, address, pte);
2063 lazy_mmu_prot_update(pte);
2064 unlock:
2065 pte_unmap_unlock(page_table, ptl);
2066 out:
2067 return ret;
2068 out_nomap:
2069 pte_unmap_unlock(page_table, ptl);
2070 unlock_page(page);
2071 page_cache_release(page);
2072 return ret;
2073 }
2074
2075 /*
2076 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2077 * but allow concurrent faults), and pte mapped but not yet locked.
2078 * We return with mmap_sem still held, but pte unmapped and unlocked.
2079 */
2080 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2081 unsigned long address, pte_t *page_table, pmd_t *pmd,
2082 int write_access)
2083 {
2084 struct page *page;
2085 spinlock_t *ptl;
2086 pte_t entry;
2087
2088 if (write_access) {
2089 /* Allocate our own private page. */
2090 pte_unmap(page_table);
2091
2092 if (unlikely(anon_vma_prepare(vma)))
2093 goto oom;
2094 page = alloc_zeroed_user_highpage(vma, address);
2095 if (!page)
2096 goto oom;
2097
2098 entry = mk_pte(page, vma->vm_page_prot);
2099 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2100
2101 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2102 if (!pte_none(*page_table))
2103 goto release;
2104 inc_mm_counter(mm, anon_rss);
2105 lru_cache_add_active(page);
2106 page_add_new_anon_rmap(page, vma, address);
2107 } else {
2108 /* Map the ZERO_PAGE - vm_page_prot is readonly */
2109 page = ZERO_PAGE(address);
2110 page_cache_get(page);
2111 entry = mk_pte(page, vma->vm_page_prot);
2112
2113 ptl = pte_lockptr(mm, pmd);
2114 spin_lock(ptl);
2115 if (!pte_none(*page_table))
2116 goto release;
2117 inc_mm_counter(mm, file_rss);
2118 page_add_file_rmap(page);
2119 }
2120
2121 set_pte_at(mm, address, page_table, entry);
2122
2123 /* No need to invalidate - it was non-present before */
2124 update_mmu_cache(vma, address, entry);
2125 lazy_mmu_prot_update(entry);
2126 unlock:
2127 pte_unmap_unlock(page_table, ptl);
2128 return VM_FAULT_MINOR;
2129 release:
2130 page_cache_release(page);
2131 goto unlock;
2132 oom:
2133 return VM_FAULT_OOM;
2134 }
2135
2136 /*
2137 * do_no_page() tries to create a new page mapping. It aggressively
2138 * tries to share with existing pages, but makes a separate copy if
2139 * the "write_access" parameter is true in order to avoid the next
2140 * page fault.
2141 *
2142 * As this is called only for pages that do not currently exist, we
2143 * do not need to flush old virtual caches or the TLB.
2144 *
2145 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2146 * but allow concurrent faults), and pte mapped but not yet locked.
2147 * We return with mmap_sem still held, but pte unmapped and unlocked.
2148 */
2149 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2150 unsigned long address, pte_t *page_table, pmd_t *pmd,
2151 int write_access)
2152 {
2153 spinlock_t *ptl;
2154 struct page *new_page;
2155 struct address_space *mapping = NULL;
2156 pte_t entry;
2157 unsigned int sequence = 0;
2158 int ret = VM_FAULT_MINOR;
2159 int anon = 0;
2160 struct page *dirty_page = NULL;
2161
2162 pte_unmap(page_table);
2163 BUG_ON(vma->vm_flags & VM_PFNMAP);
2164
2165 if (vma->vm_file) {
2166 mapping = vma->vm_file->f_mapping;
2167 sequence = mapping->truncate_count;
2168 smp_rmb(); /* serializes i_size against truncate_count */
2169 }
2170 retry:
2171 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2172 /*
2173 * No smp_rmb is needed here as long as there's a full
2174 * spin_lock/unlock sequence inside the ->nopage callback
2175 * (for the pagecache lookup) that acts as an implicit
2176 * smp_mb() and prevents the i_size read to happen
2177 * after the next truncate_count read.
2178 */
2179
2180 /* no page was available -- either SIGBUS, OOM or REFAULT */
2181 if (unlikely(new_page == NOPAGE_SIGBUS))
2182 return VM_FAULT_SIGBUS;
2183 else if (unlikely(new_page == NOPAGE_OOM))
2184 return VM_FAULT_OOM;
2185 else if (unlikely(new_page == NOPAGE_REFAULT))
2186 return VM_FAULT_MINOR;
2187
2188 /*
2189 * Should we do an early C-O-W break?
2190 */
2191 if (write_access) {
2192 if (!(vma->vm_flags & VM_SHARED)) {
2193 struct page *page;
2194
2195 if (unlikely(anon_vma_prepare(vma)))
2196 goto oom;
2197 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2198 if (!page)
2199 goto oom;
2200 copy_user_highpage(page, new_page, address, vma);
2201 page_cache_release(new_page);
2202 new_page = page;
2203 anon = 1;
2204
2205 } else {
2206 /* if the page will be shareable, see if the backing
2207 * address space wants to know that the page is about
2208 * to become writable */
2209 if (vma->vm_ops->page_mkwrite &&
2210 vma->vm_ops->page_mkwrite(vma, new_page) < 0
2211 ) {
2212 page_cache_release(new_page);
2213 return VM_FAULT_SIGBUS;
2214 }
2215 }
2216 }
2217
2218 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2219 /*
2220 * For a file-backed vma, someone could have truncated or otherwise
2221 * invalidated this page. If unmap_mapping_range got called,
2222 * retry getting the page.
2223 */
2224 if (mapping && unlikely(sequence != mapping->truncate_count)) {
2225 pte_unmap_unlock(page_table, ptl);
2226 page_cache_release(new_page);
2227 cond_resched();
2228 sequence = mapping->truncate_count;
2229 smp_rmb();
2230 goto retry;
2231 }
2232
2233 /*
2234 * This silly early PAGE_DIRTY setting removes a race
2235 * due to the bad i386 page protection. But it's valid
2236 * for other architectures too.
2237 *
2238 * Note that if write_access is true, we either now have
2239 * an exclusive copy of the page, or this is a shared mapping,
2240 * so we can make it writable and dirty to avoid having to
2241 * handle that later.
2242 */
2243 /* Only go through if we didn't race with anybody else... */
2244 if (pte_none(*page_table)) {
2245 flush_icache_page(vma, new_page);
2246 entry = mk_pte(new_page, vma->vm_page_prot);
2247 if (write_access)
2248 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2249 set_pte_at(mm, address, page_table, entry);
2250 if (anon) {
2251 inc_mm_counter(mm, anon_rss);
2252 lru_cache_add_active(new_page);
2253 page_add_new_anon_rmap(new_page, vma, address);
2254 } else {
2255 inc_mm_counter(mm, file_rss);
2256 page_add_file_rmap(new_page);
2257 if (write_access) {
2258 dirty_page = new_page;
2259 get_page(dirty_page);
2260 }
2261 }
2262 } else {
2263 /* One of our sibling threads was faster, back out. */
2264 page_cache_release(new_page);
2265 goto unlock;
2266 }
2267
2268 /* no need to invalidate: a not-present page shouldn't be cached */
2269 update_mmu_cache(vma, address, entry);
2270 lazy_mmu_prot_update(entry);
2271 unlock:
2272 pte_unmap_unlock(page_table, ptl);
2273 if (dirty_page) {
2274 set_page_dirty_balance(dirty_page);
2275 put_page(dirty_page);
2276 }
2277 return ret;
2278 oom:
2279 page_cache_release(new_page);
2280 return VM_FAULT_OOM;
2281 }
2282
2283 /*
2284 * do_no_pfn() tries to create a new page mapping for a page without
2285 * a struct_page backing it
2286 *
2287 * As this is called only for pages that do not currently exist, we
2288 * do not need to flush old virtual caches or the TLB.
2289 *
2290 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2291 * but allow concurrent faults), and pte mapped but not yet locked.
2292 * We return with mmap_sem still held, but pte unmapped and unlocked.
2293 *
2294 * It is expected that the ->nopfn handler always returns the same pfn
2295 * for a given virtual mapping.
2296 *
2297 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2298 */
2299 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2300 unsigned long address, pte_t *page_table, pmd_t *pmd,
2301 int write_access)
2302 {
2303 spinlock_t *ptl;
2304 pte_t entry;
2305 unsigned long pfn;
2306 int ret = VM_FAULT_MINOR;
2307
2308 pte_unmap(page_table);
2309 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2310 BUG_ON(is_cow_mapping(vma->vm_flags));
2311
2312 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2313 if (pfn == NOPFN_OOM)
2314 return VM_FAULT_OOM;
2315 if (pfn == NOPFN_SIGBUS)
2316 return VM_FAULT_SIGBUS;
2317
2318 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2319
2320 /* Only go through if we didn't race with anybody else... */
2321 if (pte_none(*page_table)) {
2322 entry = pfn_pte(pfn, vma->vm_page_prot);
2323 if (write_access)
2324 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2325 set_pte_at(mm, address, page_table, entry);
2326 }
2327 pte_unmap_unlock(page_table, ptl);
2328 return ret;
2329 }
2330
2331 /*
2332 * Fault of a previously existing named mapping. Repopulate the pte
2333 * from the encoded file_pte if possible. This enables swappable
2334 * nonlinear vmas.
2335 *
2336 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2337 * but allow concurrent faults), and pte mapped but not yet locked.
2338 * We return with mmap_sem still held, but pte unmapped and unlocked.
2339 */
2340 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2341 unsigned long address, pte_t *page_table, pmd_t *pmd,
2342 int write_access, pte_t orig_pte)
2343 {
2344 pgoff_t pgoff;
2345 int err;
2346
2347 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2348 return VM_FAULT_MINOR;
2349
2350 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2351 /*
2352 * Page table corrupted: show pte and kill process.
2353 */
2354 print_bad_pte(vma, orig_pte, address);
2355 return VM_FAULT_OOM;
2356 }
2357 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2358
2359 pgoff = pte_to_pgoff(orig_pte);
2360 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2361 vma->vm_page_prot, pgoff, 0);
2362 if (err == -ENOMEM)
2363 return VM_FAULT_OOM;
2364 if (err)
2365 return VM_FAULT_SIGBUS;
2366 return VM_FAULT_MAJOR;
2367 }
2368
2369 /*
2370 * These routines also need to handle stuff like marking pages dirty
2371 * and/or accessed for architectures that don't do it in hardware (most
2372 * RISC architectures). The early dirtying is also good on the i386.
2373 *
2374 * There is also a hook called "update_mmu_cache()" that architectures
2375 * with external mmu caches can use to update those (ie the Sparc or
2376 * PowerPC hashed page tables that act as extended TLBs).
2377 *
2378 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2379 * but allow concurrent faults), and pte mapped but not yet locked.
2380 * We return with mmap_sem still held, but pte unmapped and unlocked.
2381 */
2382 static inline int handle_pte_fault(struct mm_struct *mm,
2383 struct vm_area_struct *vma, unsigned long address,
2384 pte_t *pte, pmd_t *pmd, int write_access)
2385 {
2386 pte_t entry;
2387 pte_t old_entry;
2388 spinlock_t *ptl;
2389
2390 old_entry = entry = *pte;
2391 if (!pte_present(entry)) {
2392 if (pte_none(entry)) {
2393 if (vma->vm_ops) {
2394 if (vma->vm_ops->nopage)
2395 return do_no_page(mm, vma, address,
2396 pte, pmd,
2397 write_access);
2398 if (unlikely(vma->vm_ops->nopfn))
2399 return do_no_pfn(mm, vma, address, pte,
2400 pmd, write_access);
2401 }
2402 return do_anonymous_page(mm, vma, address,
2403 pte, pmd, write_access);
2404 }
2405 if (pte_file(entry))
2406 return do_file_page(mm, vma, address,
2407 pte, pmd, write_access, entry);
2408 return do_swap_page(mm, vma, address,
2409 pte, pmd, write_access, entry);
2410 }
2411
2412 ptl = pte_lockptr(mm, pmd);
2413 spin_lock(ptl);
2414 if (unlikely(!pte_same(*pte, entry)))
2415 goto unlock;
2416 if (write_access) {
2417 if (!pte_write(entry))
2418 return do_wp_page(mm, vma, address,
2419 pte, pmd, ptl, entry);
2420 entry = pte_mkdirty(entry);
2421 }
2422 entry = pte_mkyoung(entry);
2423 if (!pte_same(old_entry, entry)) {
2424 ptep_set_access_flags(vma, address, pte, entry, write_access);
2425 update_mmu_cache(vma, address, entry);
2426 lazy_mmu_prot_update(entry);
2427 } else {
2428 /*
2429 * This is needed only for protection faults but the arch code
2430 * is not yet telling us if this is a protection fault or not.
2431 * This still avoids useless tlb flushes for .text page faults
2432 * with threads.
2433 */
2434 if (write_access)
2435 flush_tlb_page(vma, address);
2436 }
2437 unlock:
2438 pte_unmap_unlock(pte, ptl);
2439 return VM_FAULT_MINOR;
2440 }
2441
2442 /*
2443 * By the time we get here, we already hold the mm semaphore
2444 */
2445 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2446 unsigned long address, int write_access)
2447 {
2448 pgd_t *pgd;
2449 pud_t *pud;
2450 pmd_t *pmd;
2451 pte_t *pte;
2452
2453 __set_current_state(TASK_RUNNING);
2454
2455 count_vm_event(PGFAULT);
2456
2457 if (unlikely(is_vm_hugetlb_page(vma)))
2458 return hugetlb_fault(mm, vma, address, write_access);
2459
2460 pgd = pgd_offset(mm, address);
2461 pud = pud_alloc(mm, pgd, address);
2462 if (!pud)
2463 return VM_FAULT_OOM;
2464 pmd = pmd_alloc(mm, pud, address);
2465 if (!pmd)
2466 return VM_FAULT_OOM;
2467 pte = pte_alloc_map(mm, pmd, address);
2468 if (!pte)
2469 return VM_FAULT_OOM;
2470
2471 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2472 }
2473
2474 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2475
2476 #ifndef __PAGETABLE_PUD_FOLDED
2477 /*
2478 * Allocate page upper directory.
2479 * We've already handled the fast-path in-line.
2480 */
2481 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2482 {
2483 pud_t *new = pud_alloc_one(mm, address);
2484 if (!new)
2485 return -ENOMEM;
2486
2487 spin_lock(&mm->page_table_lock);
2488 if (pgd_present(*pgd)) /* Another has populated it */
2489 pud_free(new);
2490 else
2491 pgd_populate(mm, pgd, new);
2492 spin_unlock(&mm->page_table_lock);
2493 return 0;
2494 }
2495 #else
2496 /* Workaround for gcc 2.96 */
2497 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2498 {
2499 return 0;
2500 }
2501 #endif /* __PAGETABLE_PUD_FOLDED */
2502
2503 #ifndef __PAGETABLE_PMD_FOLDED
2504 /*
2505 * Allocate page middle directory.
2506 * We've already handled the fast-path in-line.
2507 */
2508 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2509 {
2510 pmd_t *new = pmd_alloc_one(mm, address);
2511 if (!new)
2512 return -ENOMEM;
2513
2514 spin_lock(&mm->page_table_lock);
2515 #ifndef __ARCH_HAS_4LEVEL_HACK
2516 if (pud_present(*pud)) /* Another has populated it */
2517 pmd_free(new);
2518 else
2519 pud_populate(mm, pud, new);
2520 #else
2521 if (pgd_present(*pud)) /* Another has populated it */
2522 pmd_free(new);
2523 else
2524 pgd_populate(mm, pud, new);
2525 #endif /* __ARCH_HAS_4LEVEL_HACK */
2526 spin_unlock(&mm->page_table_lock);
2527 return 0;
2528 }
2529 #else
2530 /* Workaround for gcc 2.96 */
2531 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2532 {
2533 return 0;
2534 }
2535 #endif /* __PAGETABLE_PMD_FOLDED */
2536
2537 int make_pages_present(unsigned long addr, unsigned long end)
2538 {
2539 int ret, len, write;
2540 struct vm_area_struct * vma;
2541
2542 vma = find_vma(current->mm, addr);
2543 if (!vma)
2544 return -1;
2545 write = (vma->vm_flags & VM_WRITE) != 0;
2546 BUG_ON(addr >= end);
2547 BUG_ON(end > vma->vm_end);
2548 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2549 ret = get_user_pages(current, current->mm, addr,
2550 len, write, 0, NULL, NULL);
2551 if (ret < 0)
2552 return ret;
2553 return ret == len ? 0 : -1;
2554 }
2555
2556 /*
2557 * Map a vmalloc()-space virtual address to the physical page.
2558 */
2559 struct page * vmalloc_to_page(void * vmalloc_addr)
2560 {
2561 unsigned long addr = (unsigned long) vmalloc_addr;
2562 struct page *page = NULL;
2563 pgd_t *pgd = pgd_offset_k(addr);
2564 pud_t *pud;
2565 pmd_t *pmd;
2566 pte_t *ptep, pte;
2567
2568 if (!pgd_none(*pgd)) {
2569 pud = pud_offset(pgd, addr);
2570 if (!pud_none(*pud)) {
2571 pmd = pmd_offset(pud, addr);
2572 if (!pmd_none(*pmd)) {
2573 ptep = pte_offset_map(pmd, addr);
2574 pte = *ptep;
2575 if (pte_present(pte))
2576 page = pte_page(pte);
2577 pte_unmap(ptep);
2578 }
2579 }
2580 }
2581 return page;
2582 }
2583
2584 EXPORT_SYMBOL(vmalloc_to_page);
2585
2586 /*
2587 * Map a vmalloc()-space virtual address to the physical page frame number.
2588 */
2589 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2590 {
2591 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2592 }
2593
2594 EXPORT_SYMBOL(vmalloc_to_pfn);
2595
2596 #if !defined(__HAVE_ARCH_GATE_AREA)
2597
2598 #if defined(AT_SYSINFO_EHDR)
2599 static struct vm_area_struct gate_vma;
2600
2601 static int __init gate_vma_init(void)
2602 {
2603 gate_vma.vm_mm = NULL;
2604 gate_vma.vm_start = FIXADDR_USER_START;
2605 gate_vma.vm_end = FIXADDR_USER_END;
2606 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2607 gate_vma.vm_page_prot = __P101;
2608 /*
2609 * Make sure the vDSO gets into every core dump.
2610 * Dumping its contents makes post-mortem fully interpretable later
2611 * without matching up the same kernel and hardware config to see
2612 * what PC values meant.
2613 */
2614 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2615 return 0;
2616 }
2617 __initcall(gate_vma_init);
2618 #endif
2619
2620 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2621 {
2622 #ifdef AT_SYSINFO_EHDR
2623 return &gate_vma;
2624 #else
2625 return NULL;
2626 #endif
2627 }
2628
2629 int in_gate_area_no_task(unsigned long addr)
2630 {
2631 #ifdef AT_SYSINFO_EHDR
2632 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2633 return 1;
2634 #endif
2635 return 0;
2636 }
2637
2638 #endif /* __HAVE_ARCH_GATE_AREA */
2639
2640 /*
2641 * Access another process' address space.
2642 * Source/target buffer must be kernel space,
2643 * Do not walk the page table directly, use get_user_pages
2644 */
2645 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2646 {
2647 struct mm_struct *mm;
2648 struct vm_area_struct *vma;
2649 struct page *page;
2650 void *old_buf = buf;
2651
2652 mm = get_task_mm(tsk);
2653 if (!mm)
2654 return 0;
2655
2656 down_read(&mm->mmap_sem);
2657 /* ignore errors, just check how much was sucessfully transfered */
2658 while (len) {
2659 int bytes, ret, offset;
2660 void *maddr;
2661
2662 ret = get_user_pages(tsk, mm, addr, 1,
2663 write, 1, &page, &vma);
2664 if (ret <= 0)
2665 break;
2666
2667 bytes = len;
2668 offset = addr & (PAGE_SIZE-1);
2669 if (bytes > PAGE_SIZE-offset)
2670 bytes = PAGE_SIZE-offset;
2671
2672 maddr = kmap(page);
2673 if (write) {
2674 copy_to_user_page(vma, page, addr,
2675 maddr + offset, buf, bytes);
2676 set_page_dirty_lock(page);
2677 } else {
2678 copy_from_user_page(vma, page, addr,
2679 buf, maddr + offset, bytes);
2680 }
2681 kunmap(page);
2682 page_cache_release(page);
2683 len -= bytes;
2684 buf += bytes;
2685 addr += bytes;
2686 }
2687 up_read(&mm->mmap_sem);
2688 mmput(mm);
2689
2690 return buf - old_buf;
2691 }