]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/memory.c
nouveau/uvmm: fix addr/range calcs for remap operations
[thirdparty/kernel/linux.git] / mm / memory.c
1
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4 * linux/mm/memory.c
5 *
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 */
8
9 /*
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
12 */
13
14 /*
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
17 *
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
20 * far as I could see.
21 *
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23 */
24
25 /*
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
31 */
32
33 /*
34 * 05.04.94 - Multi-page memory management added for v1.1.
35 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 *
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
38 * (Gerhard.Wichert@pdb.siemens.de)
39 *
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 */
42
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81
82 #include <trace/events/kmem.h>
83
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110
111 /*
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
113 * wr-protected).
114 */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 return false;
119
120 return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122
123 /*
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
126 * of ZONE_NORMAL.
127 */
128 void *high_memory;
129 EXPORT_SYMBOL(high_memory);
130
131 /*
132 * Randomize the address space (stacks, mmaps, brk, etc.).
133 *
134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135 * as ancient (libc5 based) binaries can segfault. )
136 */
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
139 1;
140 #else
141 2;
142 #endif
143
144 #ifndef arch_wants_old_prefaulted_pte
145 static inline bool arch_wants_old_prefaulted_pte(void)
146 {
147 /*
148 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 * some architectures, even if it's performed in hardware. By
150 * default, "false" means prefaulted entries will be 'young'.
151 */
152 return false;
153 }
154 #endif
155
156 static int __init disable_randmaps(char *s)
157 {
158 randomize_va_space = 0;
159 return 1;
160 }
161 __setup("norandmaps", disable_randmaps);
162
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
165
166 unsigned long highest_memmap_pfn __read_mostly;
167
168 /*
169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170 */
171 static int __init init_zero_pfn(void)
172 {
173 zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 return 0;
175 }
176 early_initcall(init_zero_pfn);
177
178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
179 {
180 trace_rss_stat(mm, member);
181 }
182
183 /*
184 * Note: this doesn't free the actual pages themselves. That
185 * has been handled earlier when unmapping all the memory regions.
186 */
187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 unsigned long addr)
189 {
190 pgtable_t token = pmd_pgtable(*pmd);
191 pmd_clear(pmd);
192 pte_free_tlb(tlb, token, addr);
193 mm_dec_nr_ptes(tlb->mm);
194 }
195
196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 unsigned long addr, unsigned long end,
198 unsigned long floor, unsigned long ceiling)
199 {
200 pmd_t *pmd;
201 unsigned long next;
202 unsigned long start;
203
204 start = addr;
205 pmd = pmd_offset(pud, addr);
206 do {
207 next = pmd_addr_end(addr, end);
208 if (pmd_none_or_clear_bad(pmd))
209 continue;
210 free_pte_range(tlb, pmd, addr);
211 } while (pmd++, addr = next, addr != end);
212
213 start &= PUD_MASK;
214 if (start < floor)
215 return;
216 if (ceiling) {
217 ceiling &= PUD_MASK;
218 if (!ceiling)
219 return;
220 }
221 if (end - 1 > ceiling - 1)
222 return;
223
224 pmd = pmd_offset(pud, start);
225 pud_clear(pud);
226 pmd_free_tlb(tlb, pmd, start);
227 mm_dec_nr_pmds(tlb->mm);
228 }
229
230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 unsigned long addr, unsigned long end,
232 unsigned long floor, unsigned long ceiling)
233 {
234 pud_t *pud;
235 unsigned long next;
236 unsigned long start;
237
238 start = addr;
239 pud = pud_offset(p4d, addr);
240 do {
241 next = pud_addr_end(addr, end);
242 if (pud_none_or_clear_bad(pud))
243 continue;
244 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 } while (pud++, addr = next, addr != end);
246
247 start &= P4D_MASK;
248 if (start < floor)
249 return;
250 if (ceiling) {
251 ceiling &= P4D_MASK;
252 if (!ceiling)
253 return;
254 }
255 if (end - 1 > ceiling - 1)
256 return;
257
258 pud = pud_offset(p4d, start);
259 p4d_clear(p4d);
260 pud_free_tlb(tlb, pud, start);
261 mm_dec_nr_puds(tlb->mm);
262 }
263
264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 unsigned long addr, unsigned long end,
266 unsigned long floor, unsigned long ceiling)
267 {
268 p4d_t *p4d;
269 unsigned long next;
270 unsigned long start;
271
272 start = addr;
273 p4d = p4d_offset(pgd, addr);
274 do {
275 next = p4d_addr_end(addr, end);
276 if (p4d_none_or_clear_bad(p4d))
277 continue;
278 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 } while (p4d++, addr = next, addr != end);
280
281 start &= PGDIR_MASK;
282 if (start < floor)
283 return;
284 if (ceiling) {
285 ceiling &= PGDIR_MASK;
286 if (!ceiling)
287 return;
288 }
289 if (end - 1 > ceiling - 1)
290 return;
291
292 p4d = p4d_offset(pgd, start);
293 pgd_clear(pgd);
294 p4d_free_tlb(tlb, p4d, start);
295 }
296
297 /*
298 * This function frees user-level page tables of a process.
299 */
300 void free_pgd_range(struct mmu_gather *tlb,
301 unsigned long addr, unsigned long end,
302 unsigned long floor, unsigned long ceiling)
303 {
304 pgd_t *pgd;
305 unsigned long next;
306
307 /*
308 * The next few lines have given us lots of grief...
309 *
310 * Why are we testing PMD* at this top level? Because often
311 * there will be no work to do at all, and we'd prefer not to
312 * go all the way down to the bottom just to discover that.
313 *
314 * Why all these "- 1"s? Because 0 represents both the bottom
315 * of the address space and the top of it (using -1 for the
316 * top wouldn't help much: the masks would do the wrong thing).
317 * The rule is that addr 0 and floor 0 refer to the bottom of
318 * the address space, but end 0 and ceiling 0 refer to the top
319 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 * that end 0 case should be mythical).
321 *
322 * Wherever addr is brought up or ceiling brought down, we must
323 * be careful to reject "the opposite 0" before it confuses the
324 * subsequent tests. But what about where end is brought down
325 * by PMD_SIZE below? no, end can't go down to 0 there.
326 *
327 * Whereas we round start (addr) and ceiling down, by different
328 * masks at different levels, in order to test whether a table
329 * now has no other vmas using it, so can be freed, we don't
330 * bother to round floor or end up - the tests don't need that.
331 */
332
333 addr &= PMD_MASK;
334 if (addr < floor) {
335 addr += PMD_SIZE;
336 if (!addr)
337 return;
338 }
339 if (ceiling) {
340 ceiling &= PMD_MASK;
341 if (!ceiling)
342 return;
343 }
344 if (end - 1 > ceiling - 1)
345 end -= PMD_SIZE;
346 if (addr > end - 1)
347 return;
348 /*
349 * We add page table cache pages with PAGE_SIZE,
350 * (see pte_free_tlb()), flush the tlb if we need
351 */
352 tlb_change_page_size(tlb, PAGE_SIZE);
353 pgd = pgd_offset(tlb->mm, addr);
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 } while (pgd++, addr = next, addr != end);
360 }
361
362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 struct vm_area_struct *vma, unsigned long floor,
364 unsigned long ceiling, bool mm_wr_locked)
365 {
366 do {
367 unsigned long addr = vma->vm_start;
368 struct vm_area_struct *next;
369
370 /*
371 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
372 * be 0. This will underflow and is okay.
373 */
374 next = mas_find(mas, ceiling - 1);
375 if (unlikely(xa_is_zero(next)))
376 next = NULL;
377
378 /*
379 * Hide vma from rmap and truncate_pagecache before freeing
380 * pgtables
381 */
382 if (mm_wr_locked)
383 vma_start_write(vma);
384 unlink_anon_vmas(vma);
385 unlink_file_vma(vma);
386
387 if (is_vm_hugetlb_page(vma)) {
388 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
389 floor, next ? next->vm_start : ceiling);
390 } else {
391 /*
392 * Optimization: gather nearby vmas into one call down
393 */
394 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
395 && !is_vm_hugetlb_page(next)) {
396 vma = next;
397 next = mas_find(mas, ceiling - 1);
398 if (unlikely(xa_is_zero(next)))
399 next = NULL;
400 if (mm_wr_locked)
401 vma_start_write(vma);
402 unlink_anon_vmas(vma);
403 unlink_file_vma(vma);
404 }
405 free_pgd_range(tlb, addr, vma->vm_end,
406 floor, next ? next->vm_start : ceiling);
407 }
408 vma = next;
409 } while (vma);
410 }
411
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 {
414 spinlock_t *ptl = pmd_lock(mm, pmd);
415
416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
417 mm_inc_nr_ptes(mm);
418 /*
419 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 * visible before the pte is made visible to other CPUs by being
421 * put into page tables.
422 *
423 * The other side of the story is the pointer chasing in the page
424 * table walking code (when walking the page table without locking;
425 * ie. most of the time). Fortunately, these data accesses consist
426 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 * being the notable exception) will already guarantee loads are
428 * seen in-order. See the alpha page table accessors for the
429 * smp_rmb() barriers in page table walking code.
430 */
431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 pmd_populate(mm, pmd, *pte);
433 *pte = NULL;
434 }
435 spin_unlock(ptl);
436 }
437
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 {
440 pgtable_t new = pte_alloc_one(mm);
441 if (!new)
442 return -ENOMEM;
443
444 pmd_install(mm, pmd, &new);
445 if (new)
446 pte_free(mm, new);
447 return 0;
448 }
449
450 int __pte_alloc_kernel(pmd_t *pmd)
451 {
452 pte_t *new = pte_alloc_one_kernel(&init_mm);
453 if (!new)
454 return -ENOMEM;
455
456 spin_lock(&init_mm.page_table_lock);
457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
458 smp_wmb(); /* See comment in pmd_install() */
459 pmd_populate_kernel(&init_mm, pmd, new);
460 new = NULL;
461 }
462 spin_unlock(&init_mm.page_table_lock);
463 if (new)
464 pte_free_kernel(&init_mm, new);
465 return 0;
466 }
467
468 static inline void init_rss_vec(int *rss)
469 {
470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 }
472
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 {
475 int i;
476
477 for (i = 0; i < NR_MM_COUNTERS; i++)
478 if (rss[i])
479 add_mm_counter(mm, i, rss[i]);
480 }
481
482 /*
483 * This function is called to print an error when a bad pte
484 * is found. For example, we might have a PFN-mapped pte in
485 * a region that doesn't allow it.
486 *
487 * The calling function must still handle the error.
488 */
489 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
490 pte_t pte, struct page *page)
491 {
492 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
493 p4d_t *p4d = p4d_offset(pgd, addr);
494 pud_t *pud = pud_offset(p4d, addr);
495 pmd_t *pmd = pmd_offset(pud, addr);
496 struct address_space *mapping;
497 pgoff_t index;
498 static unsigned long resume;
499 static unsigned long nr_shown;
500 static unsigned long nr_unshown;
501
502 /*
503 * Allow a burst of 60 reports, then keep quiet for that minute;
504 * or allow a steady drip of one report per second.
505 */
506 if (nr_shown == 60) {
507 if (time_before(jiffies, resume)) {
508 nr_unshown++;
509 return;
510 }
511 if (nr_unshown) {
512 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
513 nr_unshown);
514 nr_unshown = 0;
515 }
516 nr_shown = 0;
517 }
518 if (nr_shown++ == 0)
519 resume = jiffies + 60 * HZ;
520
521 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
522 index = linear_page_index(vma, addr);
523
524 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
525 current->comm,
526 (long long)pte_val(pte), (long long)pmd_val(*pmd));
527 if (page)
528 dump_page(page, "bad pte");
529 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
530 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
531 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
532 vma->vm_file,
533 vma->vm_ops ? vma->vm_ops->fault : NULL,
534 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
535 mapping ? mapping->a_ops->read_folio : NULL);
536 dump_stack();
537 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
538 }
539
540 /*
541 * vm_normal_page -- This function gets the "struct page" associated with a pte.
542 *
543 * "Special" mappings do not wish to be associated with a "struct page" (either
544 * it doesn't exist, or it exists but they don't want to touch it). In this
545 * case, NULL is returned here. "Normal" mappings do have a struct page.
546 *
547 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
548 * pte bit, in which case this function is trivial. Secondly, an architecture
549 * may not have a spare pte bit, which requires a more complicated scheme,
550 * described below.
551 *
552 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
553 * special mapping (even if there are underlying and valid "struct pages").
554 * COWed pages of a VM_PFNMAP are always normal.
555 *
556 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
557 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
558 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
559 * mapping will always honor the rule
560 *
561 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
562 *
563 * And for normal mappings this is false.
564 *
565 * This restricts such mappings to be a linear translation from virtual address
566 * to pfn. To get around this restriction, we allow arbitrary mappings so long
567 * as the vma is not a COW mapping; in that case, we know that all ptes are
568 * special (because none can have been COWed).
569 *
570 *
571 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
572 *
573 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
574 * page" backing, however the difference is that _all_ pages with a struct
575 * page (that is, those where pfn_valid is true) are refcounted and considered
576 * normal pages by the VM. The disadvantage is that pages are refcounted
577 * (which can be slower and simply not an option for some PFNMAP users). The
578 * advantage is that we don't have to follow the strict linearity rule of
579 * PFNMAP mappings in order to support COWable mappings.
580 *
581 */
582 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
583 pte_t pte)
584 {
585 unsigned long pfn = pte_pfn(pte);
586
587 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
588 if (likely(!pte_special(pte)))
589 goto check_pfn;
590 if (vma->vm_ops && vma->vm_ops->find_special_page)
591 return vma->vm_ops->find_special_page(vma, addr);
592 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
593 return NULL;
594 if (is_zero_pfn(pfn))
595 return NULL;
596 if (pte_devmap(pte))
597 /*
598 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
599 * and will have refcounts incremented on their struct pages
600 * when they are inserted into PTEs, thus they are safe to
601 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
602 * do not have refcounts. Example of legacy ZONE_DEVICE is
603 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
604 */
605 return NULL;
606
607 print_bad_pte(vma, addr, pte, NULL);
608 return NULL;
609 }
610
611 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
612
613 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
614 if (vma->vm_flags & VM_MIXEDMAP) {
615 if (!pfn_valid(pfn))
616 return NULL;
617 goto out;
618 } else {
619 unsigned long off;
620 off = (addr - vma->vm_start) >> PAGE_SHIFT;
621 if (pfn == vma->vm_pgoff + off)
622 return NULL;
623 if (!is_cow_mapping(vma->vm_flags))
624 return NULL;
625 }
626 }
627
628 if (is_zero_pfn(pfn))
629 return NULL;
630
631 check_pfn:
632 if (unlikely(pfn > highest_memmap_pfn)) {
633 print_bad_pte(vma, addr, pte, NULL);
634 return NULL;
635 }
636
637 /*
638 * NOTE! We still have PageReserved() pages in the page tables.
639 * eg. VDSO mappings can cause them to exist.
640 */
641 out:
642 return pfn_to_page(pfn);
643 }
644
645 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
646 pte_t pte)
647 {
648 struct page *page = vm_normal_page(vma, addr, pte);
649
650 if (page)
651 return page_folio(page);
652 return NULL;
653 }
654
655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
656 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
657 pmd_t pmd)
658 {
659 unsigned long pfn = pmd_pfn(pmd);
660
661 /*
662 * There is no pmd_special() but there may be special pmds, e.g.
663 * in a direct-access (dax) mapping, so let's just replicate the
664 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
665 */
666 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
667 if (vma->vm_flags & VM_MIXEDMAP) {
668 if (!pfn_valid(pfn))
669 return NULL;
670 goto out;
671 } else {
672 unsigned long off;
673 off = (addr - vma->vm_start) >> PAGE_SHIFT;
674 if (pfn == vma->vm_pgoff + off)
675 return NULL;
676 if (!is_cow_mapping(vma->vm_flags))
677 return NULL;
678 }
679 }
680
681 if (pmd_devmap(pmd))
682 return NULL;
683 if (is_huge_zero_pmd(pmd))
684 return NULL;
685 if (unlikely(pfn > highest_memmap_pfn))
686 return NULL;
687
688 /*
689 * NOTE! We still have PageReserved() pages in the page tables.
690 * eg. VDSO mappings can cause them to exist.
691 */
692 out:
693 return pfn_to_page(pfn);
694 }
695
696 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
697 unsigned long addr, pmd_t pmd)
698 {
699 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
700
701 if (page)
702 return page_folio(page);
703 return NULL;
704 }
705 #endif
706
707 static void restore_exclusive_pte(struct vm_area_struct *vma,
708 struct page *page, unsigned long address,
709 pte_t *ptep)
710 {
711 struct folio *folio = page_folio(page);
712 pte_t orig_pte;
713 pte_t pte;
714 swp_entry_t entry;
715
716 orig_pte = ptep_get(ptep);
717 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
718 if (pte_swp_soft_dirty(orig_pte))
719 pte = pte_mksoft_dirty(pte);
720
721 entry = pte_to_swp_entry(orig_pte);
722 if (pte_swp_uffd_wp(orig_pte))
723 pte = pte_mkuffd_wp(pte);
724 else if (is_writable_device_exclusive_entry(entry))
725 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
726
727 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
728 PageAnonExclusive(page)), folio);
729
730 /*
731 * No need to take a page reference as one was already
732 * created when the swap entry was made.
733 */
734 if (folio_test_anon(folio))
735 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
736 else
737 /*
738 * Currently device exclusive access only supports anonymous
739 * memory so the entry shouldn't point to a filebacked page.
740 */
741 WARN_ON_ONCE(1);
742
743 set_pte_at(vma->vm_mm, address, ptep, pte);
744
745 /*
746 * No need to invalidate - it was non-present before. However
747 * secondary CPUs may have mappings that need invalidating.
748 */
749 update_mmu_cache(vma, address, ptep);
750 }
751
752 /*
753 * Tries to restore an exclusive pte if the page lock can be acquired without
754 * sleeping.
755 */
756 static int
757 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
758 unsigned long addr)
759 {
760 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
761 struct page *page = pfn_swap_entry_to_page(entry);
762
763 if (trylock_page(page)) {
764 restore_exclusive_pte(vma, page, addr, src_pte);
765 unlock_page(page);
766 return 0;
767 }
768
769 return -EBUSY;
770 }
771
772 /*
773 * copy one vm_area from one task to the other. Assumes the page tables
774 * already present in the new task to be cleared in the whole range
775 * covered by this vma.
776 */
777
778 static unsigned long
779 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
780 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
781 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
782 {
783 unsigned long vm_flags = dst_vma->vm_flags;
784 pte_t orig_pte = ptep_get(src_pte);
785 pte_t pte = orig_pte;
786 struct folio *folio;
787 struct page *page;
788 swp_entry_t entry = pte_to_swp_entry(orig_pte);
789
790 if (likely(!non_swap_entry(entry))) {
791 if (swap_duplicate(entry) < 0)
792 return -EIO;
793
794 /* make sure dst_mm is on swapoff's mmlist. */
795 if (unlikely(list_empty(&dst_mm->mmlist))) {
796 spin_lock(&mmlist_lock);
797 if (list_empty(&dst_mm->mmlist))
798 list_add(&dst_mm->mmlist,
799 &src_mm->mmlist);
800 spin_unlock(&mmlist_lock);
801 }
802 /* Mark the swap entry as shared. */
803 if (pte_swp_exclusive(orig_pte)) {
804 pte = pte_swp_clear_exclusive(orig_pte);
805 set_pte_at(src_mm, addr, src_pte, pte);
806 }
807 rss[MM_SWAPENTS]++;
808 } else if (is_migration_entry(entry)) {
809 folio = pfn_swap_entry_folio(entry);
810
811 rss[mm_counter(folio)]++;
812
813 if (!is_readable_migration_entry(entry) &&
814 is_cow_mapping(vm_flags)) {
815 /*
816 * COW mappings require pages in both parent and child
817 * to be set to read. A previously exclusive entry is
818 * now shared.
819 */
820 entry = make_readable_migration_entry(
821 swp_offset(entry));
822 pte = swp_entry_to_pte(entry);
823 if (pte_swp_soft_dirty(orig_pte))
824 pte = pte_swp_mksoft_dirty(pte);
825 if (pte_swp_uffd_wp(orig_pte))
826 pte = pte_swp_mkuffd_wp(pte);
827 set_pte_at(src_mm, addr, src_pte, pte);
828 }
829 } else if (is_device_private_entry(entry)) {
830 page = pfn_swap_entry_to_page(entry);
831 folio = page_folio(page);
832
833 /*
834 * Update rss count even for unaddressable pages, as
835 * they should treated just like normal pages in this
836 * respect.
837 *
838 * We will likely want to have some new rss counters
839 * for unaddressable pages, at some point. But for now
840 * keep things as they are.
841 */
842 folio_get(folio);
843 rss[mm_counter(folio)]++;
844 /* Cannot fail as these pages cannot get pinned. */
845 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
846
847 /*
848 * We do not preserve soft-dirty information, because so
849 * far, checkpoint/restore is the only feature that
850 * requires that. And checkpoint/restore does not work
851 * when a device driver is involved (you cannot easily
852 * save and restore device driver state).
853 */
854 if (is_writable_device_private_entry(entry) &&
855 is_cow_mapping(vm_flags)) {
856 entry = make_readable_device_private_entry(
857 swp_offset(entry));
858 pte = swp_entry_to_pte(entry);
859 if (pte_swp_uffd_wp(orig_pte))
860 pte = pte_swp_mkuffd_wp(pte);
861 set_pte_at(src_mm, addr, src_pte, pte);
862 }
863 } else if (is_device_exclusive_entry(entry)) {
864 /*
865 * Make device exclusive entries present by restoring the
866 * original entry then copying as for a present pte. Device
867 * exclusive entries currently only support private writable
868 * (ie. COW) mappings.
869 */
870 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
871 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
872 return -EBUSY;
873 return -ENOENT;
874 } else if (is_pte_marker_entry(entry)) {
875 pte_marker marker = copy_pte_marker(entry, dst_vma);
876
877 if (marker)
878 set_pte_at(dst_mm, addr, dst_pte,
879 make_pte_marker(marker));
880 return 0;
881 }
882 if (!userfaultfd_wp(dst_vma))
883 pte = pte_swp_clear_uffd_wp(pte);
884 set_pte_at(dst_mm, addr, dst_pte, pte);
885 return 0;
886 }
887
888 /*
889 * Copy a present and normal page.
890 *
891 * NOTE! The usual case is that this isn't required;
892 * instead, the caller can just increase the page refcount
893 * and re-use the pte the traditional way.
894 *
895 * And if we need a pre-allocated page but don't yet have
896 * one, return a negative error to let the preallocation
897 * code know so that it can do so outside the page table
898 * lock.
899 */
900 static inline int
901 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903 struct folio **prealloc, struct page *page)
904 {
905 struct folio *new_folio;
906 pte_t pte;
907
908 new_folio = *prealloc;
909 if (!new_folio)
910 return -EAGAIN;
911
912 /*
913 * We have a prealloc page, all good! Take it
914 * over and copy the page & arm it.
915 */
916 *prealloc = NULL;
917 copy_user_highpage(&new_folio->page, page, addr, src_vma);
918 __folio_mark_uptodate(new_folio);
919 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
920 folio_add_lru_vma(new_folio, dst_vma);
921 rss[MM_ANONPAGES]++;
922
923 /* All done, just insert the new page copy in the child */
924 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
925 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
926 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
927 /* Uffd-wp needs to be delivered to dest pte as well */
928 pte = pte_mkuffd_wp(pte);
929 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
930 return 0;
931 }
932
933 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
934 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
935 pte_t pte, unsigned long addr, int nr)
936 {
937 struct mm_struct *src_mm = src_vma->vm_mm;
938
939 /* If it's a COW mapping, write protect it both processes. */
940 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
941 wrprotect_ptes(src_mm, addr, src_pte, nr);
942 pte = pte_wrprotect(pte);
943 }
944
945 /* If it's a shared mapping, mark it clean in the child. */
946 if (src_vma->vm_flags & VM_SHARED)
947 pte = pte_mkclean(pte);
948 pte = pte_mkold(pte);
949
950 if (!userfaultfd_wp(dst_vma))
951 pte = pte_clear_uffd_wp(pte);
952
953 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
954 }
955
956 /*
957 * Copy one present PTE, trying to batch-process subsequent PTEs that map
958 * consecutive pages of the same folio by copying them as well.
959 *
960 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
961 * Otherwise, returns the number of copied PTEs (at least 1).
962 */
963 static inline int
964 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
965 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
966 int max_nr, int *rss, struct folio **prealloc)
967 {
968 struct page *page;
969 struct folio *folio;
970 bool any_writable;
971 fpb_t flags = 0;
972 int err, nr;
973
974 page = vm_normal_page(src_vma, addr, pte);
975 if (unlikely(!page))
976 goto copy_pte;
977
978 folio = page_folio(page);
979
980 /*
981 * If we likely have to copy, just don't bother with batching. Make
982 * sure that the common "small folio" case is as fast as possible
983 * by keeping the batching logic separate.
984 */
985 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
986 if (src_vma->vm_flags & VM_SHARED)
987 flags |= FPB_IGNORE_DIRTY;
988 if (!vma_soft_dirty_enabled(src_vma))
989 flags |= FPB_IGNORE_SOFT_DIRTY;
990
991 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
992 &any_writable);
993 folio_ref_add(folio, nr);
994 if (folio_test_anon(folio)) {
995 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
996 nr, src_vma))) {
997 folio_ref_sub(folio, nr);
998 return -EAGAIN;
999 }
1000 rss[MM_ANONPAGES] += nr;
1001 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1002 } else {
1003 folio_dup_file_rmap_ptes(folio, page, nr);
1004 rss[mm_counter_file(folio)] += nr;
1005 }
1006 if (any_writable)
1007 pte = pte_mkwrite(pte, src_vma);
1008 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1009 addr, nr);
1010 return nr;
1011 }
1012
1013 folio_get(folio);
1014 if (folio_test_anon(folio)) {
1015 /*
1016 * If this page may have been pinned by the parent process,
1017 * copy the page immediately for the child so that we'll always
1018 * guarantee the pinned page won't be randomly replaced in the
1019 * future.
1020 */
1021 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1022 /* Page may be pinned, we have to copy. */
1023 folio_put(folio);
1024 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1025 addr, rss, prealloc, page);
1026 return err ? err : 1;
1027 }
1028 rss[MM_ANONPAGES]++;
1029 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1030 } else {
1031 folio_dup_file_rmap_pte(folio, page);
1032 rss[mm_counter_file(folio)]++;
1033 }
1034
1035 copy_pte:
1036 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1037 return 1;
1038 }
1039
1040 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1041 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1042 {
1043 struct folio *new_folio;
1044
1045 if (need_zero)
1046 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1047 else
1048 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1049 addr, false);
1050
1051 if (!new_folio)
1052 return NULL;
1053
1054 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1055 folio_put(new_folio);
1056 return NULL;
1057 }
1058 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1059
1060 return new_folio;
1061 }
1062
1063 static int
1064 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1065 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1066 unsigned long end)
1067 {
1068 struct mm_struct *dst_mm = dst_vma->vm_mm;
1069 struct mm_struct *src_mm = src_vma->vm_mm;
1070 pte_t *orig_src_pte, *orig_dst_pte;
1071 pte_t *src_pte, *dst_pte;
1072 pte_t ptent;
1073 spinlock_t *src_ptl, *dst_ptl;
1074 int progress, max_nr, ret = 0;
1075 int rss[NR_MM_COUNTERS];
1076 swp_entry_t entry = (swp_entry_t){0};
1077 struct folio *prealloc = NULL;
1078 int nr;
1079
1080 again:
1081 progress = 0;
1082 init_rss_vec(rss);
1083
1084 /*
1085 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1086 * error handling here, assume that exclusive mmap_lock on dst and src
1087 * protects anon from unexpected THP transitions; with shmem and file
1088 * protected by mmap_lock-less collapse skipping areas with anon_vma
1089 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1090 * can remove such assumptions later, but this is good enough for now.
1091 */
1092 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1093 if (!dst_pte) {
1094 ret = -ENOMEM;
1095 goto out;
1096 }
1097 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1098 if (!src_pte) {
1099 pte_unmap_unlock(dst_pte, dst_ptl);
1100 /* ret == 0 */
1101 goto out;
1102 }
1103 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1104 orig_src_pte = src_pte;
1105 orig_dst_pte = dst_pte;
1106 arch_enter_lazy_mmu_mode();
1107
1108 do {
1109 nr = 1;
1110
1111 /*
1112 * We are holding two locks at this point - either of them
1113 * could generate latencies in another task on another CPU.
1114 */
1115 if (progress >= 32) {
1116 progress = 0;
1117 if (need_resched() ||
1118 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1119 break;
1120 }
1121 ptent = ptep_get(src_pte);
1122 if (pte_none(ptent)) {
1123 progress++;
1124 continue;
1125 }
1126 if (unlikely(!pte_present(ptent))) {
1127 ret = copy_nonpresent_pte(dst_mm, src_mm,
1128 dst_pte, src_pte,
1129 dst_vma, src_vma,
1130 addr, rss);
1131 if (ret == -EIO) {
1132 entry = pte_to_swp_entry(ptep_get(src_pte));
1133 break;
1134 } else if (ret == -EBUSY) {
1135 break;
1136 } else if (!ret) {
1137 progress += 8;
1138 continue;
1139 }
1140 ptent = ptep_get(src_pte);
1141 VM_WARN_ON_ONCE(!pte_present(ptent));
1142
1143 /*
1144 * Device exclusive entry restored, continue by copying
1145 * the now present pte.
1146 */
1147 WARN_ON_ONCE(ret != -ENOENT);
1148 }
1149 /* copy_present_ptes() will clear `*prealloc' if consumed */
1150 max_nr = (end - addr) / PAGE_SIZE;
1151 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1152 ptent, addr, max_nr, rss, &prealloc);
1153 /*
1154 * If we need a pre-allocated page for this pte, drop the
1155 * locks, allocate, and try again.
1156 */
1157 if (unlikely(ret == -EAGAIN))
1158 break;
1159 if (unlikely(prealloc)) {
1160 /*
1161 * pre-alloc page cannot be reused by next time so as
1162 * to strictly follow mempolicy (e.g., alloc_page_vma()
1163 * will allocate page according to address). This
1164 * could only happen if one pinned pte changed.
1165 */
1166 folio_put(prealloc);
1167 prealloc = NULL;
1168 }
1169 nr = ret;
1170 progress += 8 * nr;
1171 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1172 addr != end);
1173
1174 arch_leave_lazy_mmu_mode();
1175 pte_unmap_unlock(orig_src_pte, src_ptl);
1176 add_mm_rss_vec(dst_mm, rss);
1177 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1178 cond_resched();
1179
1180 if (ret == -EIO) {
1181 VM_WARN_ON_ONCE(!entry.val);
1182 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1183 ret = -ENOMEM;
1184 goto out;
1185 }
1186 entry.val = 0;
1187 } else if (ret == -EBUSY) {
1188 goto out;
1189 } else if (ret == -EAGAIN) {
1190 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1191 if (!prealloc)
1192 return -ENOMEM;
1193 } else if (ret < 0) {
1194 VM_WARN_ON_ONCE(1);
1195 }
1196
1197 /* We've captured and resolved the error. Reset, try again. */
1198 ret = 0;
1199
1200 if (addr != end)
1201 goto again;
1202 out:
1203 if (unlikely(prealloc))
1204 folio_put(prealloc);
1205 return ret;
1206 }
1207
1208 static inline int
1209 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1210 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1211 unsigned long end)
1212 {
1213 struct mm_struct *dst_mm = dst_vma->vm_mm;
1214 struct mm_struct *src_mm = src_vma->vm_mm;
1215 pmd_t *src_pmd, *dst_pmd;
1216 unsigned long next;
1217
1218 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1219 if (!dst_pmd)
1220 return -ENOMEM;
1221 src_pmd = pmd_offset(src_pud, addr);
1222 do {
1223 next = pmd_addr_end(addr, end);
1224 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1225 || pmd_devmap(*src_pmd)) {
1226 int err;
1227 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1228 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1229 addr, dst_vma, src_vma);
1230 if (err == -ENOMEM)
1231 return -ENOMEM;
1232 if (!err)
1233 continue;
1234 /* fall through */
1235 }
1236 if (pmd_none_or_clear_bad(src_pmd))
1237 continue;
1238 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1239 addr, next))
1240 return -ENOMEM;
1241 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1242 return 0;
1243 }
1244
1245 static inline int
1246 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1247 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1248 unsigned long end)
1249 {
1250 struct mm_struct *dst_mm = dst_vma->vm_mm;
1251 struct mm_struct *src_mm = src_vma->vm_mm;
1252 pud_t *src_pud, *dst_pud;
1253 unsigned long next;
1254
1255 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1256 if (!dst_pud)
1257 return -ENOMEM;
1258 src_pud = pud_offset(src_p4d, addr);
1259 do {
1260 next = pud_addr_end(addr, end);
1261 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1262 int err;
1263
1264 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1265 err = copy_huge_pud(dst_mm, src_mm,
1266 dst_pud, src_pud, addr, src_vma);
1267 if (err == -ENOMEM)
1268 return -ENOMEM;
1269 if (!err)
1270 continue;
1271 /* fall through */
1272 }
1273 if (pud_none_or_clear_bad(src_pud))
1274 continue;
1275 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1276 addr, next))
1277 return -ENOMEM;
1278 } while (dst_pud++, src_pud++, addr = next, addr != end);
1279 return 0;
1280 }
1281
1282 static inline int
1283 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1284 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1285 unsigned long end)
1286 {
1287 struct mm_struct *dst_mm = dst_vma->vm_mm;
1288 p4d_t *src_p4d, *dst_p4d;
1289 unsigned long next;
1290
1291 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1292 if (!dst_p4d)
1293 return -ENOMEM;
1294 src_p4d = p4d_offset(src_pgd, addr);
1295 do {
1296 next = p4d_addr_end(addr, end);
1297 if (p4d_none_or_clear_bad(src_p4d))
1298 continue;
1299 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1300 addr, next))
1301 return -ENOMEM;
1302 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1303 return 0;
1304 }
1305
1306 /*
1307 * Return true if the vma needs to copy the pgtable during this fork(). Return
1308 * false when we can speed up fork() by allowing lazy page faults later until
1309 * when the child accesses the memory range.
1310 */
1311 static bool
1312 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1313 {
1314 /*
1315 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1316 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1317 * contains uffd-wp protection information, that's something we can't
1318 * retrieve from page cache, and skip copying will lose those info.
1319 */
1320 if (userfaultfd_wp(dst_vma))
1321 return true;
1322
1323 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1324 return true;
1325
1326 if (src_vma->anon_vma)
1327 return true;
1328
1329 /*
1330 * Don't copy ptes where a page fault will fill them correctly. Fork
1331 * becomes much lighter when there are big shared or private readonly
1332 * mappings. The tradeoff is that copy_page_range is more efficient
1333 * than faulting.
1334 */
1335 return false;
1336 }
1337
1338 int
1339 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1340 {
1341 pgd_t *src_pgd, *dst_pgd;
1342 unsigned long next;
1343 unsigned long addr = src_vma->vm_start;
1344 unsigned long end = src_vma->vm_end;
1345 struct mm_struct *dst_mm = dst_vma->vm_mm;
1346 struct mm_struct *src_mm = src_vma->vm_mm;
1347 struct mmu_notifier_range range;
1348 bool is_cow;
1349 int ret;
1350
1351 if (!vma_needs_copy(dst_vma, src_vma))
1352 return 0;
1353
1354 if (is_vm_hugetlb_page(src_vma))
1355 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1356
1357 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1358 /*
1359 * We do not free on error cases below as remove_vma
1360 * gets called on error from higher level routine
1361 */
1362 ret = track_pfn_copy(src_vma);
1363 if (ret)
1364 return ret;
1365 }
1366
1367 /*
1368 * We need to invalidate the secondary MMU mappings only when
1369 * there could be a permission downgrade on the ptes of the
1370 * parent mm. And a permission downgrade will only happen if
1371 * is_cow_mapping() returns true.
1372 */
1373 is_cow = is_cow_mapping(src_vma->vm_flags);
1374
1375 if (is_cow) {
1376 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1377 0, src_mm, addr, end);
1378 mmu_notifier_invalidate_range_start(&range);
1379 /*
1380 * Disabling preemption is not needed for the write side, as
1381 * the read side doesn't spin, but goes to the mmap_lock.
1382 *
1383 * Use the raw variant of the seqcount_t write API to avoid
1384 * lockdep complaining about preemptibility.
1385 */
1386 vma_assert_write_locked(src_vma);
1387 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1388 }
1389
1390 ret = 0;
1391 dst_pgd = pgd_offset(dst_mm, addr);
1392 src_pgd = pgd_offset(src_mm, addr);
1393 do {
1394 next = pgd_addr_end(addr, end);
1395 if (pgd_none_or_clear_bad(src_pgd))
1396 continue;
1397 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1398 addr, next))) {
1399 untrack_pfn_clear(dst_vma);
1400 ret = -ENOMEM;
1401 break;
1402 }
1403 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1404
1405 if (is_cow) {
1406 raw_write_seqcount_end(&src_mm->write_protect_seq);
1407 mmu_notifier_invalidate_range_end(&range);
1408 }
1409 return ret;
1410 }
1411
1412 /* Whether we should zap all COWed (private) pages too */
1413 static inline bool should_zap_cows(struct zap_details *details)
1414 {
1415 /* By default, zap all pages */
1416 if (!details)
1417 return true;
1418
1419 /* Or, we zap COWed pages only if the caller wants to */
1420 return details->even_cows;
1421 }
1422
1423 /* Decides whether we should zap this folio with the folio pointer specified */
1424 static inline bool should_zap_folio(struct zap_details *details,
1425 struct folio *folio)
1426 {
1427 /* If we can make a decision without *folio.. */
1428 if (should_zap_cows(details))
1429 return true;
1430
1431 /* Otherwise we should only zap non-anon folios */
1432 return !folio_test_anon(folio);
1433 }
1434
1435 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1436 {
1437 if (!details)
1438 return false;
1439
1440 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1441 }
1442
1443 /*
1444 * This function makes sure that we'll replace the none pte with an uffd-wp
1445 * swap special pte marker when necessary. Must be with the pgtable lock held.
1446 */
1447 static inline void
1448 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1449 unsigned long addr, pte_t *pte, int nr,
1450 struct zap_details *details, pte_t pteval)
1451 {
1452 /* Zap on anonymous always means dropping everything */
1453 if (vma_is_anonymous(vma))
1454 return;
1455
1456 if (zap_drop_file_uffd_wp(details))
1457 return;
1458
1459 for (;;) {
1460 /* the PFN in the PTE is irrelevant. */
1461 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1462 if (--nr == 0)
1463 break;
1464 pte++;
1465 addr += PAGE_SIZE;
1466 }
1467 }
1468
1469 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1470 struct vm_area_struct *vma, struct folio *folio,
1471 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1472 unsigned long addr, struct zap_details *details, int *rss,
1473 bool *force_flush, bool *force_break)
1474 {
1475 struct mm_struct *mm = tlb->mm;
1476 bool delay_rmap = false;
1477
1478 if (!folio_test_anon(folio)) {
1479 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1480 if (pte_dirty(ptent)) {
1481 folio_mark_dirty(folio);
1482 if (tlb_delay_rmap(tlb)) {
1483 delay_rmap = true;
1484 *force_flush = true;
1485 }
1486 }
1487 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1488 folio_mark_accessed(folio);
1489 rss[mm_counter(folio)] -= nr;
1490 } else {
1491 /* We don't need up-to-date accessed/dirty bits. */
1492 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1493 rss[MM_ANONPAGES] -= nr;
1494 }
1495 /* Checking a single PTE in a batch is sufficient. */
1496 arch_check_zapped_pte(vma, ptent);
1497 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1498 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1499 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1500 ptent);
1501
1502 if (!delay_rmap) {
1503 folio_remove_rmap_ptes(folio, page, nr, vma);
1504
1505 /* Only sanity-check the first page in a batch. */
1506 if (unlikely(page_mapcount(page) < 0))
1507 print_bad_pte(vma, addr, ptent, page);
1508 }
1509 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1510 *force_flush = true;
1511 *force_break = true;
1512 }
1513 }
1514
1515 /*
1516 * Zap or skip at least one present PTE, trying to batch-process subsequent
1517 * PTEs that map consecutive pages of the same folio.
1518 *
1519 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1520 */
1521 static inline int zap_present_ptes(struct mmu_gather *tlb,
1522 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1523 unsigned int max_nr, unsigned long addr,
1524 struct zap_details *details, int *rss, bool *force_flush,
1525 bool *force_break)
1526 {
1527 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1528 struct mm_struct *mm = tlb->mm;
1529 struct folio *folio;
1530 struct page *page;
1531 int nr;
1532
1533 page = vm_normal_page(vma, addr, ptent);
1534 if (!page) {
1535 /* We don't need up-to-date accessed/dirty bits. */
1536 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1537 arch_check_zapped_pte(vma, ptent);
1538 tlb_remove_tlb_entry(tlb, pte, addr);
1539 VM_WARN_ON_ONCE(userfaultfd_wp(vma));
1540 ksm_might_unmap_zero_page(mm, ptent);
1541 return 1;
1542 }
1543
1544 folio = page_folio(page);
1545 if (unlikely(!should_zap_folio(details, folio)))
1546 return 1;
1547
1548 /*
1549 * Make sure that the common "small folio" case is as fast as possible
1550 * by keeping the batching logic separate.
1551 */
1552 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1553 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1554 NULL);
1555
1556 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1557 addr, details, rss, force_flush,
1558 force_break);
1559 return nr;
1560 }
1561 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1562 details, rss, force_flush, force_break);
1563 return 1;
1564 }
1565
1566 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1567 struct vm_area_struct *vma, pmd_t *pmd,
1568 unsigned long addr, unsigned long end,
1569 struct zap_details *details)
1570 {
1571 bool force_flush = false, force_break = false;
1572 struct mm_struct *mm = tlb->mm;
1573 int rss[NR_MM_COUNTERS];
1574 spinlock_t *ptl;
1575 pte_t *start_pte;
1576 pte_t *pte;
1577 swp_entry_t entry;
1578 int nr;
1579
1580 tlb_change_page_size(tlb, PAGE_SIZE);
1581 init_rss_vec(rss);
1582 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1583 if (!pte)
1584 return addr;
1585
1586 flush_tlb_batched_pending(mm);
1587 arch_enter_lazy_mmu_mode();
1588 do {
1589 pte_t ptent = ptep_get(pte);
1590 struct folio *folio;
1591 struct page *page;
1592 int max_nr;
1593
1594 nr = 1;
1595 if (pte_none(ptent))
1596 continue;
1597
1598 if (need_resched())
1599 break;
1600
1601 if (pte_present(ptent)) {
1602 max_nr = (end - addr) / PAGE_SIZE;
1603 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1604 addr, details, rss, &force_flush,
1605 &force_break);
1606 if (unlikely(force_break)) {
1607 addr += nr * PAGE_SIZE;
1608 break;
1609 }
1610 continue;
1611 }
1612
1613 entry = pte_to_swp_entry(ptent);
1614 if (is_device_private_entry(entry) ||
1615 is_device_exclusive_entry(entry)) {
1616 page = pfn_swap_entry_to_page(entry);
1617 folio = page_folio(page);
1618 if (unlikely(!should_zap_folio(details, folio)))
1619 continue;
1620 /*
1621 * Both device private/exclusive mappings should only
1622 * work with anonymous page so far, so we don't need to
1623 * consider uffd-wp bit when zap. For more information,
1624 * see zap_install_uffd_wp_if_needed().
1625 */
1626 WARN_ON_ONCE(!vma_is_anonymous(vma));
1627 rss[mm_counter(folio)]--;
1628 if (is_device_private_entry(entry))
1629 folio_remove_rmap_pte(folio, page, vma);
1630 folio_put(folio);
1631 } else if (!non_swap_entry(entry)) {
1632 /* Genuine swap entry, hence a private anon page */
1633 if (!should_zap_cows(details))
1634 continue;
1635 rss[MM_SWAPENTS]--;
1636 if (unlikely(!free_swap_and_cache(entry)))
1637 print_bad_pte(vma, addr, ptent, NULL);
1638 } else if (is_migration_entry(entry)) {
1639 folio = pfn_swap_entry_folio(entry);
1640 if (!should_zap_folio(details, folio))
1641 continue;
1642 rss[mm_counter(folio)]--;
1643 } else if (pte_marker_entry_uffd_wp(entry)) {
1644 /*
1645 * For anon: always drop the marker; for file: only
1646 * drop the marker if explicitly requested.
1647 */
1648 if (!vma_is_anonymous(vma) &&
1649 !zap_drop_file_uffd_wp(details))
1650 continue;
1651 } else if (is_hwpoison_entry(entry) ||
1652 is_poisoned_swp_entry(entry)) {
1653 if (!should_zap_cows(details))
1654 continue;
1655 } else {
1656 /* We should have covered all the swap entry types */
1657 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1658 WARN_ON_ONCE(1);
1659 }
1660 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1661 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, details, ptent);
1662 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1663
1664 add_mm_rss_vec(mm, rss);
1665 arch_leave_lazy_mmu_mode();
1666
1667 /* Do the actual TLB flush before dropping ptl */
1668 if (force_flush) {
1669 tlb_flush_mmu_tlbonly(tlb);
1670 tlb_flush_rmaps(tlb, vma);
1671 }
1672 pte_unmap_unlock(start_pte, ptl);
1673
1674 /*
1675 * If we forced a TLB flush (either due to running out of
1676 * batch buffers or because we needed to flush dirty TLB
1677 * entries before releasing the ptl), free the batched
1678 * memory too. Come back again if we didn't do everything.
1679 */
1680 if (force_flush)
1681 tlb_flush_mmu(tlb);
1682
1683 return addr;
1684 }
1685
1686 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1687 struct vm_area_struct *vma, pud_t *pud,
1688 unsigned long addr, unsigned long end,
1689 struct zap_details *details)
1690 {
1691 pmd_t *pmd;
1692 unsigned long next;
1693
1694 pmd = pmd_offset(pud, addr);
1695 do {
1696 next = pmd_addr_end(addr, end);
1697 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1698 if (next - addr != HPAGE_PMD_SIZE)
1699 __split_huge_pmd(vma, pmd, addr, false, NULL);
1700 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1701 addr = next;
1702 continue;
1703 }
1704 /* fall through */
1705 } else if (details && details->single_folio &&
1706 folio_test_pmd_mappable(details->single_folio) &&
1707 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1708 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1709 /*
1710 * Take and drop THP pmd lock so that we cannot return
1711 * prematurely, while zap_huge_pmd() has cleared *pmd,
1712 * but not yet decremented compound_mapcount().
1713 */
1714 spin_unlock(ptl);
1715 }
1716 if (pmd_none(*pmd)) {
1717 addr = next;
1718 continue;
1719 }
1720 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1721 if (addr != next)
1722 pmd--;
1723 } while (pmd++, cond_resched(), addr != end);
1724
1725 return addr;
1726 }
1727
1728 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1729 struct vm_area_struct *vma, p4d_t *p4d,
1730 unsigned long addr, unsigned long end,
1731 struct zap_details *details)
1732 {
1733 pud_t *pud;
1734 unsigned long next;
1735
1736 pud = pud_offset(p4d, addr);
1737 do {
1738 next = pud_addr_end(addr, end);
1739 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1740 if (next - addr != HPAGE_PUD_SIZE) {
1741 mmap_assert_locked(tlb->mm);
1742 split_huge_pud(vma, pud, addr);
1743 } else if (zap_huge_pud(tlb, vma, pud, addr))
1744 goto next;
1745 /* fall through */
1746 }
1747 if (pud_none_or_clear_bad(pud))
1748 continue;
1749 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1750 next:
1751 cond_resched();
1752 } while (pud++, addr = next, addr != end);
1753
1754 return addr;
1755 }
1756
1757 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1758 struct vm_area_struct *vma, pgd_t *pgd,
1759 unsigned long addr, unsigned long end,
1760 struct zap_details *details)
1761 {
1762 p4d_t *p4d;
1763 unsigned long next;
1764
1765 p4d = p4d_offset(pgd, addr);
1766 do {
1767 next = p4d_addr_end(addr, end);
1768 if (p4d_none_or_clear_bad(p4d))
1769 continue;
1770 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1771 } while (p4d++, addr = next, addr != end);
1772
1773 return addr;
1774 }
1775
1776 void unmap_page_range(struct mmu_gather *tlb,
1777 struct vm_area_struct *vma,
1778 unsigned long addr, unsigned long end,
1779 struct zap_details *details)
1780 {
1781 pgd_t *pgd;
1782 unsigned long next;
1783
1784 BUG_ON(addr >= end);
1785 tlb_start_vma(tlb, vma);
1786 pgd = pgd_offset(vma->vm_mm, addr);
1787 do {
1788 next = pgd_addr_end(addr, end);
1789 if (pgd_none_or_clear_bad(pgd))
1790 continue;
1791 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1792 } while (pgd++, addr = next, addr != end);
1793 tlb_end_vma(tlb, vma);
1794 }
1795
1796
1797 static void unmap_single_vma(struct mmu_gather *tlb,
1798 struct vm_area_struct *vma, unsigned long start_addr,
1799 unsigned long end_addr,
1800 struct zap_details *details, bool mm_wr_locked)
1801 {
1802 unsigned long start = max(vma->vm_start, start_addr);
1803 unsigned long end;
1804
1805 if (start >= vma->vm_end)
1806 return;
1807 end = min(vma->vm_end, end_addr);
1808 if (end <= vma->vm_start)
1809 return;
1810
1811 if (vma->vm_file)
1812 uprobe_munmap(vma, start, end);
1813
1814 if (unlikely(vma->vm_flags & VM_PFNMAP))
1815 untrack_pfn(vma, 0, 0, mm_wr_locked);
1816
1817 if (start != end) {
1818 if (unlikely(is_vm_hugetlb_page(vma))) {
1819 /*
1820 * It is undesirable to test vma->vm_file as it
1821 * should be non-null for valid hugetlb area.
1822 * However, vm_file will be NULL in the error
1823 * cleanup path of mmap_region. When
1824 * hugetlbfs ->mmap method fails,
1825 * mmap_region() nullifies vma->vm_file
1826 * before calling this function to clean up.
1827 * Since no pte has actually been setup, it is
1828 * safe to do nothing in this case.
1829 */
1830 if (vma->vm_file) {
1831 zap_flags_t zap_flags = details ?
1832 details->zap_flags : 0;
1833 __unmap_hugepage_range(tlb, vma, start, end,
1834 NULL, zap_flags);
1835 }
1836 } else
1837 unmap_page_range(tlb, vma, start, end, details);
1838 }
1839 }
1840
1841 /**
1842 * unmap_vmas - unmap a range of memory covered by a list of vma's
1843 * @tlb: address of the caller's struct mmu_gather
1844 * @mas: the maple state
1845 * @vma: the starting vma
1846 * @start_addr: virtual address at which to start unmapping
1847 * @end_addr: virtual address at which to end unmapping
1848 * @tree_end: The maximum index to check
1849 * @mm_wr_locked: lock flag
1850 *
1851 * Unmap all pages in the vma list.
1852 *
1853 * Only addresses between `start' and `end' will be unmapped.
1854 *
1855 * The VMA list must be sorted in ascending virtual address order.
1856 *
1857 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1858 * range after unmap_vmas() returns. So the only responsibility here is to
1859 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1860 * drops the lock and schedules.
1861 */
1862 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1863 struct vm_area_struct *vma, unsigned long start_addr,
1864 unsigned long end_addr, unsigned long tree_end,
1865 bool mm_wr_locked)
1866 {
1867 struct mmu_notifier_range range;
1868 struct zap_details details = {
1869 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1870 /* Careful - we need to zap private pages too! */
1871 .even_cows = true,
1872 };
1873
1874 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1875 start_addr, end_addr);
1876 mmu_notifier_invalidate_range_start(&range);
1877 do {
1878 unsigned long start = start_addr;
1879 unsigned long end = end_addr;
1880 hugetlb_zap_begin(vma, &start, &end);
1881 unmap_single_vma(tlb, vma, start, end, &details,
1882 mm_wr_locked);
1883 hugetlb_zap_end(vma, &details);
1884 vma = mas_find(mas, tree_end - 1);
1885 } while (vma && likely(!xa_is_zero(vma)));
1886 mmu_notifier_invalidate_range_end(&range);
1887 }
1888
1889 /**
1890 * zap_page_range_single - remove user pages in a given range
1891 * @vma: vm_area_struct holding the applicable pages
1892 * @address: starting address of pages to zap
1893 * @size: number of bytes to zap
1894 * @details: details of shared cache invalidation
1895 *
1896 * The range must fit into one VMA.
1897 */
1898 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1899 unsigned long size, struct zap_details *details)
1900 {
1901 const unsigned long end = address + size;
1902 struct mmu_notifier_range range;
1903 struct mmu_gather tlb;
1904
1905 lru_add_drain();
1906 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1907 address, end);
1908 hugetlb_zap_begin(vma, &range.start, &range.end);
1909 tlb_gather_mmu(&tlb, vma->vm_mm);
1910 update_hiwater_rss(vma->vm_mm);
1911 mmu_notifier_invalidate_range_start(&range);
1912 /*
1913 * unmap 'address-end' not 'range.start-range.end' as range
1914 * could have been expanded for hugetlb pmd sharing.
1915 */
1916 unmap_single_vma(&tlb, vma, address, end, details, false);
1917 mmu_notifier_invalidate_range_end(&range);
1918 tlb_finish_mmu(&tlb);
1919 hugetlb_zap_end(vma, details);
1920 }
1921
1922 /**
1923 * zap_vma_ptes - remove ptes mapping the vma
1924 * @vma: vm_area_struct holding ptes to be zapped
1925 * @address: starting address of pages to zap
1926 * @size: number of bytes to zap
1927 *
1928 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1929 *
1930 * The entire address range must be fully contained within the vma.
1931 *
1932 */
1933 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1934 unsigned long size)
1935 {
1936 if (!range_in_vma(vma, address, address + size) ||
1937 !(vma->vm_flags & VM_PFNMAP))
1938 return;
1939
1940 zap_page_range_single(vma, address, size, NULL);
1941 }
1942 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1943
1944 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1945 {
1946 pgd_t *pgd;
1947 p4d_t *p4d;
1948 pud_t *pud;
1949 pmd_t *pmd;
1950
1951 pgd = pgd_offset(mm, addr);
1952 p4d = p4d_alloc(mm, pgd, addr);
1953 if (!p4d)
1954 return NULL;
1955 pud = pud_alloc(mm, p4d, addr);
1956 if (!pud)
1957 return NULL;
1958 pmd = pmd_alloc(mm, pud, addr);
1959 if (!pmd)
1960 return NULL;
1961
1962 VM_BUG_ON(pmd_trans_huge(*pmd));
1963 return pmd;
1964 }
1965
1966 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1967 spinlock_t **ptl)
1968 {
1969 pmd_t *pmd = walk_to_pmd(mm, addr);
1970
1971 if (!pmd)
1972 return NULL;
1973 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1974 }
1975
1976 static int validate_page_before_insert(struct page *page)
1977 {
1978 struct folio *folio = page_folio(page);
1979
1980 if (folio_test_anon(folio) || folio_test_slab(folio) ||
1981 page_has_type(page))
1982 return -EINVAL;
1983 flush_dcache_folio(folio);
1984 return 0;
1985 }
1986
1987 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1988 unsigned long addr, struct page *page, pgprot_t prot)
1989 {
1990 struct folio *folio = page_folio(page);
1991
1992 if (!pte_none(ptep_get(pte)))
1993 return -EBUSY;
1994 /* Ok, finally just insert the thing.. */
1995 folio_get(folio);
1996 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
1997 folio_add_file_rmap_pte(folio, page, vma);
1998 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1999 return 0;
2000 }
2001
2002 /*
2003 * This is the old fallback for page remapping.
2004 *
2005 * For historical reasons, it only allows reserved pages. Only
2006 * old drivers should use this, and they needed to mark their
2007 * pages reserved for the old functions anyway.
2008 */
2009 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2010 struct page *page, pgprot_t prot)
2011 {
2012 int retval;
2013 pte_t *pte;
2014 spinlock_t *ptl;
2015
2016 retval = validate_page_before_insert(page);
2017 if (retval)
2018 goto out;
2019 retval = -ENOMEM;
2020 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2021 if (!pte)
2022 goto out;
2023 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2024 pte_unmap_unlock(pte, ptl);
2025 out:
2026 return retval;
2027 }
2028
2029 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2030 unsigned long addr, struct page *page, pgprot_t prot)
2031 {
2032 int err;
2033
2034 if (!page_count(page))
2035 return -EINVAL;
2036 err = validate_page_before_insert(page);
2037 if (err)
2038 return err;
2039 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2040 }
2041
2042 /* insert_pages() amortizes the cost of spinlock operations
2043 * when inserting pages in a loop.
2044 */
2045 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2046 struct page **pages, unsigned long *num, pgprot_t prot)
2047 {
2048 pmd_t *pmd = NULL;
2049 pte_t *start_pte, *pte;
2050 spinlock_t *pte_lock;
2051 struct mm_struct *const mm = vma->vm_mm;
2052 unsigned long curr_page_idx = 0;
2053 unsigned long remaining_pages_total = *num;
2054 unsigned long pages_to_write_in_pmd;
2055 int ret;
2056 more:
2057 ret = -EFAULT;
2058 pmd = walk_to_pmd(mm, addr);
2059 if (!pmd)
2060 goto out;
2061
2062 pages_to_write_in_pmd = min_t(unsigned long,
2063 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2064
2065 /* Allocate the PTE if necessary; takes PMD lock once only. */
2066 ret = -ENOMEM;
2067 if (pte_alloc(mm, pmd))
2068 goto out;
2069
2070 while (pages_to_write_in_pmd) {
2071 int pte_idx = 0;
2072 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2073
2074 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2075 if (!start_pte) {
2076 ret = -EFAULT;
2077 goto out;
2078 }
2079 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2080 int err = insert_page_in_batch_locked(vma, pte,
2081 addr, pages[curr_page_idx], prot);
2082 if (unlikely(err)) {
2083 pte_unmap_unlock(start_pte, pte_lock);
2084 ret = err;
2085 remaining_pages_total -= pte_idx;
2086 goto out;
2087 }
2088 addr += PAGE_SIZE;
2089 ++curr_page_idx;
2090 }
2091 pte_unmap_unlock(start_pte, pte_lock);
2092 pages_to_write_in_pmd -= batch_size;
2093 remaining_pages_total -= batch_size;
2094 }
2095 if (remaining_pages_total)
2096 goto more;
2097 ret = 0;
2098 out:
2099 *num = remaining_pages_total;
2100 return ret;
2101 }
2102
2103 /**
2104 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2105 * @vma: user vma to map to
2106 * @addr: target start user address of these pages
2107 * @pages: source kernel pages
2108 * @num: in: number of pages to map. out: number of pages that were *not*
2109 * mapped. (0 means all pages were successfully mapped).
2110 *
2111 * Preferred over vm_insert_page() when inserting multiple pages.
2112 *
2113 * In case of error, we may have mapped a subset of the provided
2114 * pages. It is the caller's responsibility to account for this case.
2115 *
2116 * The same restrictions apply as in vm_insert_page().
2117 */
2118 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2119 struct page **pages, unsigned long *num)
2120 {
2121 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2122
2123 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2124 return -EFAULT;
2125 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2126 BUG_ON(mmap_read_trylock(vma->vm_mm));
2127 BUG_ON(vma->vm_flags & VM_PFNMAP);
2128 vm_flags_set(vma, VM_MIXEDMAP);
2129 }
2130 /* Defer page refcount checking till we're about to map that page. */
2131 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2132 }
2133 EXPORT_SYMBOL(vm_insert_pages);
2134
2135 /**
2136 * vm_insert_page - insert single page into user vma
2137 * @vma: user vma to map to
2138 * @addr: target user address of this page
2139 * @page: source kernel page
2140 *
2141 * This allows drivers to insert individual pages they've allocated
2142 * into a user vma.
2143 *
2144 * The page has to be a nice clean _individual_ kernel allocation.
2145 * If you allocate a compound page, you need to have marked it as
2146 * such (__GFP_COMP), or manually just split the page up yourself
2147 * (see split_page()).
2148 *
2149 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2150 * took an arbitrary page protection parameter. This doesn't allow
2151 * that. Your vma protection will have to be set up correctly, which
2152 * means that if you want a shared writable mapping, you'd better
2153 * ask for a shared writable mapping!
2154 *
2155 * The page does not need to be reserved.
2156 *
2157 * Usually this function is called from f_op->mmap() handler
2158 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2159 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2160 * function from other places, for example from page-fault handler.
2161 *
2162 * Return: %0 on success, negative error code otherwise.
2163 */
2164 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2165 struct page *page)
2166 {
2167 if (addr < vma->vm_start || addr >= vma->vm_end)
2168 return -EFAULT;
2169 if (!page_count(page))
2170 return -EINVAL;
2171 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2172 BUG_ON(mmap_read_trylock(vma->vm_mm));
2173 BUG_ON(vma->vm_flags & VM_PFNMAP);
2174 vm_flags_set(vma, VM_MIXEDMAP);
2175 }
2176 return insert_page(vma, addr, page, vma->vm_page_prot);
2177 }
2178 EXPORT_SYMBOL(vm_insert_page);
2179
2180 /*
2181 * __vm_map_pages - maps range of kernel pages into user vma
2182 * @vma: user vma to map to
2183 * @pages: pointer to array of source kernel pages
2184 * @num: number of pages in page array
2185 * @offset: user's requested vm_pgoff
2186 *
2187 * This allows drivers to map range of kernel pages into a user vma.
2188 *
2189 * Return: 0 on success and error code otherwise.
2190 */
2191 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2192 unsigned long num, unsigned long offset)
2193 {
2194 unsigned long count = vma_pages(vma);
2195 unsigned long uaddr = vma->vm_start;
2196 int ret, i;
2197
2198 /* Fail if the user requested offset is beyond the end of the object */
2199 if (offset >= num)
2200 return -ENXIO;
2201
2202 /* Fail if the user requested size exceeds available object size */
2203 if (count > num - offset)
2204 return -ENXIO;
2205
2206 for (i = 0; i < count; i++) {
2207 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2208 if (ret < 0)
2209 return ret;
2210 uaddr += PAGE_SIZE;
2211 }
2212
2213 return 0;
2214 }
2215
2216 /**
2217 * vm_map_pages - maps range of kernel pages starts with non zero offset
2218 * @vma: user vma to map to
2219 * @pages: pointer to array of source kernel pages
2220 * @num: number of pages in page array
2221 *
2222 * Maps an object consisting of @num pages, catering for the user's
2223 * requested vm_pgoff
2224 *
2225 * If we fail to insert any page into the vma, the function will return
2226 * immediately leaving any previously inserted pages present. Callers
2227 * from the mmap handler may immediately return the error as their caller
2228 * will destroy the vma, removing any successfully inserted pages. Other
2229 * callers should make their own arrangements for calling unmap_region().
2230 *
2231 * Context: Process context. Called by mmap handlers.
2232 * Return: 0 on success and error code otherwise.
2233 */
2234 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2235 unsigned long num)
2236 {
2237 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2238 }
2239 EXPORT_SYMBOL(vm_map_pages);
2240
2241 /**
2242 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2243 * @vma: user vma to map to
2244 * @pages: pointer to array of source kernel pages
2245 * @num: number of pages in page array
2246 *
2247 * Similar to vm_map_pages(), except that it explicitly sets the offset
2248 * to 0. This function is intended for the drivers that did not consider
2249 * vm_pgoff.
2250 *
2251 * Context: Process context. Called by mmap handlers.
2252 * Return: 0 on success and error code otherwise.
2253 */
2254 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2255 unsigned long num)
2256 {
2257 return __vm_map_pages(vma, pages, num, 0);
2258 }
2259 EXPORT_SYMBOL(vm_map_pages_zero);
2260
2261 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2262 pfn_t pfn, pgprot_t prot, bool mkwrite)
2263 {
2264 struct mm_struct *mm = vma->vm_mm;
2265 pte_t *pte, entry;
2266 spinlock_t *ptl;
2267
2268 pte = get_locked_pte(mm, addr, &ptl);
2269 if (!pte)
2270 return VM_FAULT_OOM;
2271 entry = ptep_get(pte);
2272 if (!pte_none(entry)) {
2273 if (mkwrite) {
2274 /*
2275 * For read faults on private mappings the PFN passed
2276 * in may not match the PFN we have mapped if the
2277 * mapped PFN is a writeable COW page. In the mkwrite
2278 * case we are creating a writable PTE for a shared
2279 * mapping and we expect the PFNs to match. If they
2280 * don't match, we are likely racing with block
2281 * allocation and mapping invalidation so just skip the
2282 * update.
2283 */
2284 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2285 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2286 goto out_unlock;
2287 }
2288 entry = pte_mkyoung(entry);
2289 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2290 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2291 update_mmu_cache(vma, addr, pte);
2292 }
2293 goto out_unlock;
2294 }
2295
2296 /* Ok, finally just insert the thing.. */
2297 if (pfn_t_devmap(pfn))
2298 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2299 else
2300 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2301
2302 if (mkwrite) {
2303 entry = pte_mkyoung(entry);
2304 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2305 }
2306
2307 set_pte_at(mm, addr, pte, entry);
2308 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2309
2310 out_unlock:
2311 pte_unmap_unlock(pte, ptl);
2312 return VM_FAULT_NOPAGE;
2313 }
2314
2315 /**
2316 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2317 * @vma: user vma to map to
2318 * @addr: target user address of this page
2319 * @pfn: source kernel pfn
2320 * @pgprot: pgprot flags for the inserted page
2321 *
2322 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2323 * to override pgprot on a per-page basis.
2324 *
2325 * This only makes sense for IO mappings, and it makes no sense for
2326 * COW mappings. In general, using multiple vmas is preferable;
2327 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2328 * impractical.
2329 *
2330 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2331 * caching- and encryption bits different than those of @vma->vm_page_prot,
2332 * because the caching- or encryption mode may not be known at mmap() time.
2333 *
2334 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2335 * to set caching and encryption bits for those vmas (except for COW pages).
2336 * This is ensured by core vm only modifying these page table entries using
2337 * functions that don't touch caching- or encryption bits, using pte_modify()
2338 * if needed. (See for example mprotect()).
2339 *
2340 * Also when new page-table entries are created, this is only done using the
2341 * fault() callback, and never using the value of vma->vm_page_prot,
2342 * except for page-table entries that point to anonymous pages as the result
2343 * of COW.
2344 *
2345 * Context: Process context. May allocate using %GFP_KERNEL.
2346 * Return: vm_fault_t value.
2347 */
2348 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2349 unsigned long pfn, pgprot_t pgprot)
2350 {
2351 /*
2352 * Technically, architectures with pte_special can avoid all these
2353 * restrictions (same for remap_pfn_range). However we would like
2354 * consistency in testing and feature parity among all, so we should
2355 * try to keep these invariants in place for everybody.
2356 */
2357 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2358 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2359 (VM_PFNMAP|VM_MIXEDMAP));
2360 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2361 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2362
2363 if (addr < vma->vm_start || addr >= vma->vm_end)
2364 return VM_FAULT_SIGBUS;
2365
2366 if (!pfn_modify_allowed(pfn, pgprot))
2367 return VM_FAULT_SIGBUS;
2368
2369 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2370
2371 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2372 false);
2373 }
2374 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2375
2376 /**
2377 * vmf_insert_pfn - insert single pfn into user vma
2378 * @vma: user vma to map to
2379 * @addr: target user address of this page
2380 * @pfn: source kernel pfn
2381 *
2382 * Similar to vm_insert_page, this allows drivers to insert individual pages
2383 * they've allocated into a user vma. Same comments apply.
2384 *
2385 * This function should only be called from a vm_ops->fault handler, and
2386 * in that case the handler should return the result of this function.
2387 *
2388 * vma cannot be a COW mapping.
2389 *
2390 * As this is called only for pages that do not currently exist, we
2391 * do not need to flush old virtual caches or the TLB.
2392 *
2393 * Context: Process context. May allocate using %GFP_KERNEL.
2394 * Return: vm_fault_t value.
2395 */
2396 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2397 unsigned long pfn)
2398 {
2399 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2400 }
2401 EXPORT_SYMBOL(vmf_insert_pfn);
2402
2403 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2404 {
2405 /* these checks mirror the abort conditions in vm_normal_page */
2406 if (vma->vm_flags & VM_MIXEDMAP)
2407 return true;
2408 if (pfn_t_devmap(pfn))
2409 return true;
2410 if (pfn_t_special(pfn))
2411 return true;
2412 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2413 return true;
2414 return false;
2415 }
2416
2417 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2418 unsigned long addr, pfn_t pfn, bool mkwrite)
2419 {
2420 pgprot_t pgprot = vma->vm_page_prot;
2421 int err;
2422
2423 BUG_ON(!vm_mixed_ok(vma, pfn));
2424
2425 if (addr < vma->vm_start || addr >= vma->vm_end)
2426 return VM_FAULT_SIGBUS;
2427
2428 track_pfn_insert(vma, &pgprot, pfn);
2429
2430 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2431 return VM_FAULT_SIGBUS;
2432
2433 /*
2434 * If we don't have pte special, then we have to use the pfn_valid()
2435 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2436 * refcount the page if pfn_valid is true (hence insert_page rather
2437 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2438 * without pte special, it would there be refcounted as a normal page.
2439 */
2440 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2441 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2442 struct page *page;
2443
2444 /*
2445 * At this point we are committed to insert_page()
2446 * regardless of whether the caller specified flags that
2447 * result in pfn_t_has_page() == false.
2448 */
2449 page = pfn_to_page(pfn_t_to_pfn(pfn));
2450 err = insert_page(vma, addr, page, pgprot);
2451 } else {
2452 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2453 }
2454
2455 if (err == -ENOMEM)
2456 return VM_FAULT_OOM;
2457 if (err < 0 && err != -EBUSY)
2458 return VM_FAULT_SIGBUS;
2459
2460 return VM_FAULT_NOPAGE;
2461 }
2462
2463 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2464 pfn_t pfn)
2465 {
2466 return __vm_insert_mixed(vma, addr, pfn, false);
2467 }
2468 EXPORT_SYMBOL(vmf_insert_mixed);
2469
2470 /*
2471 * If the insertion of PTE failed because someone else already added a
2472 * different entry in the mean time, we treat that as success as we assume
2473 * the same entry was actually inserted.
2474 */
2475 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2476 unsigned long addr, pfn_t pfn)
2477 {
2478 return __vm_insert_mixed(vma, addr, pfn, true);
2479 }
2480 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2481
2482 /*
2483 * maps a range of physical memory into the requested pages. the old
2484 * mappings are removed. any references to nonexistent pages results
2485 * in null mappings (currently treated as "copy-on-access")
2486 */
2487 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2488 unsigned long addr, unsigned long end,
2489 unsigned long pfn, pgprot_t prot)
2490 {
2491 pte_t *pte, *mapped_pte;
2492 spinlock_t *ptl;
2493 int err = 0;
2494
2495 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2496 if (!pte)
2497 return -ENOMEM;
2498 arch_enter_lazy_mmu_mode();
2499 do {
2500 BUG_ON(!pte_none(ptep_get(pte)));
2501 if (!pfn_modify_allowed(pfn, prot)) {
2502 err = -EACCES;
2503 break;
2504 }
2505 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2506 pfn++;
2507 } while (pte++, addr += PAGE_SIZE, addr != end);
2508 arch_leave_lazy_mmu_mode();
2509 pte_unmap_unlock(mapped_pte, ptl);
2510 return err;
2511 }
2512
2513 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2514 unsigned long addr, unsigned long end,
2515 unsigned long pfn, pgprot_t prot)
2516 {
2517 pmd_t *pmd;
2518 unsigned long next;
2519 int err;
2520
2521 pfn -= addr >> PAGE_SHIFT;
2522 pmd = pmd_alloc(mm, pud, addr);
2523 if (!pmd)
2524 return -ENOMEM;
2525 VM_BUG_ON(pmd_trans_huge(*pmd));
2526 do {
2527 next = pmd_addr_end(addr, end);
2528 err = remap_pte_range(mm, pmd, addr, next,
2529 pfn + (addr >> PAGE_SHIFT), prot);
2530 if (err)
2531 return err;
2532 } while (pmd++, addr = next, addr != end);
2533 return 0;
2534 }
2535
2536 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2537 unsigned long addr, unsigned long end,
2538 unsigned long pfn, pgprot_t prot)
2539 {
2540 pud_t *pud;
2541 unsigned long next;
2542 int err;
2543
2544 pfn -= addr >> PAGE_SHIFT;
2545 pud = pud_alloc(mm, p4d, addr);
2546 if (!pud)
2547 return -ENOMEM;
2548 do {
2549 next = pud_addr_end(addr, end);
2550 err = remap_pmd_range(mm, pud, addr, next,
2551 pfn + (addr >> PAGE_SHIFT), prot);
2552 if (err)
2553 return err;
2554 } while (pud++, addr = next, addr != end);
2555 return 0;
2556 }
2557
2558 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2559 unsigned long addr, unsigned long end,
2560 unsigned long pfn, pgprot_t prot)
2561 {
2562 p4d_t *p4d;
2563 unsigned long next;
2564 int err;
2565
2566 pfn -= addr >> PAGE_SHIFT;
2567 p4d = p4d_alloc(mm, pgd, addr);
2568 if (!p4d)
2569 return -ENOMEM;
2570 do {
2571 next = p4d_addr_end(addr, end);
2572 err = remap_pud_range(mm, p4d, addr, next,
2573 pfn + (addr >> PAGE_SHIFT), prot);
2574 if (err)
2575 return err;
2576 } while (p4d++, addr = next, addr != end);
2577 return 0;
2578 }
2579
2580 /*
2581 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2582 * must have pre-validated the caching bits of the pgprot_t.
2583 */
2584 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2585 unsigned long pfn, unsigned long size, pgprot_t prot)
2586 {
2587 pgd_t *pgd;
2588 unsigned long next;
2589 unsigned long end = addr + PAGE_ALIGN(size);
2590 struct mm_struct *mm = vma->vm_mm;
2591 int err;
2592
2593 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2594 return -EINVAL;
2595
2596 /*
2597 * Physically remapped pages are special. Tell the
2598 * rest of the world about it:
2599 * VM_IO tells people not to look at these pages
2600 * (accesses can have side effects).
2601 * VM_PFNMAP tells the core MM that the base pages are just
2602 * raw PFN mappings, and do not have a "struct page" associated
2603 * with them.
2604 * VM_DONTEXPAND
2605 * Disable vma merging and expanding with mremap().
2606 * VM_DONTDUMP
2607 * Omit vma from core dump, even when VM_IO turned off.
2608 *
2609 * There's a horrible special case to handle copy-on-write
2610 * behaviour that some programs depend on. We mark the "original"
2611 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2612 * See vm_normal_page() for details.
2613 */
2614 if (is_cow_mapping(vma->vm_flags)) {
2615 if (addr != vma->vm_start || end != vma->vm_end)
2616 return -EINVAL;
2617 vma->vm_pgoff = pfn;
2618 }
2619
2620 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2621
2622 BUG_ON(addr >= end);
2623 pfn -= addr >> PAGE_SHIFT;
2624 pgd = pgd_offset(mm, addr);
2625 flush_cache_range(vma, addr, end);
2626 do {
2627 next = pgd_addr_end(addr, end);
2628 err = remap_p4d_range(mm, pgd, addr, next,
2629 pfn + (addr >> PAGE_SHIFT), prot);
2630 if (err)
2631 return err;
2632 } while (pgd++, addr = next, addr != end);
2633
2634 return 0;
2635 }
2636
2637 /**
2638 * remap_pfn_range - remap kernel memory to userspace
2639 * @vma: user vma to map to
2640 * @addr: target page aligned user address to start at
2641 * @pfn: page frame number of kernel physical memory address
2642 * @size: size of mapping area
2643 * @prot: page protection flags for this mapping
2644 *
2645 * Note: this is only safe if the mm semaphore is held when called.
2646 *
2647 * Return: %0 on success, negative error code otherwise.
2648 */
2649 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2650 unsigned long pfn, unsigned long size, pgprot_t prot)
2651 {
2652 int err;
2653
2654 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2655 if (err)
2656 return -EINVAL;
2657
2658 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2659 if (err)
2660 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2661 return err;
2662 }
2663 EXPORT_SYMBOL(remap_pfn_range);
2664
2665 /**
2666 * vm_iomap_memory - remap memory to userspace
2667 * @vma: user vma to map to
2668 * @start: start of the physical memory to be mapped
2669 * @len: size of area
2670 *
2671 * This is a simplified io_remap_pfn_range() for common driver use. The
2672 * driver just needs to give us the physical memory range to be mapped,
2673 * we'll figure out the rest from the vma information.
2674 *
2675 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2676 * whatever write-combining details or similar.
2677 *
2678 * Return: %0 on success, negative error code otherwise.
2679 */
2680 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2681 {
2682 unsigned long vm_len, pfn, pages;
2683
2684 /* Check that the physical memory area passed in looks valid */
2685 if (start + len < start)
2686 return -EINVAL;
2687 /*
2688 * You *really* shouldn't map things that aren't page-aligned,
2689 * but we've historically allowed it because IO memory might
2690 * just have smaller alignment.
2691 */
2692 len += start & ~PAGE_MASK;
2693 pfn = start >> PAGE_SHIFT;
2694 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2695 if (pfn + pages < pfn)
2696 return -EINVAL;
2697
2698 /* We start the mapping 'vm_pgoff' pages into the area */
2699 if (vma->vm_pgoff > pages)
2700 return -EINVAL;
2701 pfn += vma->vm_pgoff;
2702 pages -= vma->vm_pgoff;
2703
2704 /* Can we fit all of the mapping? */
2705 vm_len = vma->vm_end - vma->vm_start;
2706 if (vm_len >> PAGE_SHIFT > pages)
2707 return -EINVAL;
2708
2709 /* Ok, let it rip */
2710 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2711 }
2712 EXPORT_SYMBOL(vm_iomap_memory);
2713
2714 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2715 unsigned long addr, unsigned long end,
2716 pte_fn_t fn, void *data, bool create,
2717 pgtbl_mod_mask *mask)
2718 {
2719 pte_t *pte, *mapped_pte;
2720 int err = 0;
2721 spinlock_t *ptl;
2722
2723 if (create) {
2724 mapped_pte = pte = (mm == &init_mm) ?
2725 pte_alloc_kernel_track(pmd, addr, mask) :
2726 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2727 if (!pte)
2728 return -ENOMEM;
2729 } else {
2730 mapped_pte = pte = (mm == &init_mm) ?
2731 pte_offset_kernel(pmd, addr) :
2732 pte_offset_map_lock(mm, pmd, addr, &ptl);
2733 if (!pte)
2734 return -EINVAL;
2735 }
2736
2737 arch_enter_lazy_mmu_mode();
2738
2739 if (fn) {
2740 do {
2741 if (create || !pte_none(ptep_get(pte))) {
2742 err = fn(pte++, addr, data);
2743 if (err)
2744 break;
2745 }
2746 } while (addr += PAGE_SIZE, addr != end);
2747 }
2748 *mask |= PGTBL_PTE_MODIFIED;
2749
2750 arch_leave_lazy_mmu_mode();
2751
2752 if (mm != &init_mm)
2753 pte_unmap_unlock(mapped_pte, ptl);
2754 return err;
2755 }
2756
2757 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2758 unsigned long addr, unsigned long end,
2759 pte_fn_t fn, void *data, bool create,
2760 pgtbl_mod_mask *mask)
2761 {
2762 pmd_t *pmd;
2763 unsigned long next;
2764 int err = 0;
2765
2766 BUG_ON(pud_huge(*pud));
2767
2768 if (create) {
2769 pmd = pmd_alloc_track(mm, pud, addr, mask);
2770 if (!pmd)
2771 return -ENOMEM;
2772 } else {
2773 pmd = pmd_offset(pud, addr);
2774 }
2775 do {
2776 next = pmd_addr_end(addr, end);
2777 if (pmd_none(*pmd) && !create)
2778 continue;
2779 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2780 return -EINVAL;
2781 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2782 if (!create)
2783 continue;
2784 pmd_clear_bad(pmd);
2785 }
2786 err = apply_to_pte_range(mm, pmd, addr, next,
2787 fn, data, create, mask);
2788 if (err)
2789 break;
2790 } while (pmd++, addr = next, addr != end);
2791
2792 return err;
2793 }
2794
2795 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2796 unsigned long addr, unsigned long end,
2797 pte_fn_t fn, void *data, bool create,
2798 pgtbl_mod_mask *mask)
2799 {
2800 pud_t *pud;
2801 unsigned long next;
2802 int err = 0;
2803
2804 if (create) {
2805 pud = pud_alloc_track(mm, p4d, addr, mask);
2806 if (!pud)
2807 return -ENOMEM;
2808 } else {
2809 pud = pud_offset(p4d, addr);
2810 }
2811 do {
2812 next = pud_addr_end(addr, end);
2813 if (pud_none(*pud) && !create)
2814 continue;
2815 if (WARN_ON_ONCE(pud_leaf(*pud)))
2816 return -EINVAL;
2817 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2818 if (!create)
2819 continue;
2820 pud_clear_bad(pud);
2821 }
2822 err = apply_to_pmd_range(mm, pud, addr, next,
2823 fn, data, create, mask);
2824 if (err)
2825 break;
2826 } while (pud++, addr = next, addr != end);
2827
2828 return err;
2829 }
2830
2831 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2832 unsigned long addr, unsigned long end,
2833 pte_fn_t fn, void *data, bool create,
2834 pgtbl_mod_mask *mask)
2835 {
2836 p4d_t *p4d;
2837 unsigned long next;
2838 int err = 0;
2839
2840 if (create) {
2841 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2842 if (!p4d)
2843 return -ENOMEM;
2844 } else {
2845 p4d = p4d_offset(pgd, addr);
2846 }
2847 do {
2848 next = p4d_addr_end(addr, end);
2849 if (p4d_none(*p4d) && !create)
2850 continue;
2851 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2852 return -EINVAL;
2853 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2854 if (!create)
2855 continue;
2856 p4d_clear_bad(p4d);
2857 }
2858 err = apply_to_pud_range(mm, p4d, addr, next,
2859 fn, data, create, mask);
2860 if (err)
2861 break;
2862 } while (p4d++, addr = next, addr != end);
2863
2864 return err;
2865 }
2866
2867 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2868 unsigned long size, pte_fn_t fn,
2869 void *data, bool create)
2870 {
2871 pgd_t *pgd;
2872 unsigned long start = addr, next;
2873 unsigned long end = addr + size;
2874 pgtbl_mod_mask mask = 0;
2875 int err = 0;
2876
2877 if (WARN_ON(addr >= end))
2878 return -EINVAL;
2879
2880 pgd = pgd_offset(mm, addr);
2881 do {
2882 next = pgd_addr_end(addr, end);
2883 if (pgd_none(*pgd) && !create)
2884 continue;
2885 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2886 return -EINVAL;
2887 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2888 if (!create)
2889 continue;
2890 pgd_clear_bad(pgd);
2891 }
2892 err = apply_to_p4d_range(mm, pgd, addr, next,
2893 fn, data, create, &mask);
2894 if (err)
2895 break;
2896 } while (pgd++, addr = next, addr != end);
2897
2898 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2899 arch_sync_kernel_mappings(start, start + size);
2900
2901 return err;
2902 }
2903
2904 /*
2905 * Scan a region of virtual memory, filling in page tables as necessary
2906 * and calling a provided function on each leaf page table.
2907 */
2908 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2909 unsigned long size, pte_fn_t fn, void *data)
2910 {
2911 return __apply_to_page_range(mm, addr, size, fn, data, true);
2912 }
2913 EXPORT_SYMBOL_GPL(apply_to_page_range);
2914
2915 /*
2916 * Scan a region of virtual memory, calling a provided function on
2917 * each leaf page table where it exists.
2918 *
2919 * Unlike apply_to_page_range, this does _not_ fill in page tables
2920 * where they are absent.
2921 */
2922 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2923 unsigned long size, pte_fn_t fn, void *data)
2924 {
2925 return __apply_to_page_range(mm, addr, size, fn, data, false);
2926 }
2927 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2928
2929 /*
2930 * handle_pte_fault chooses page fault handler according to an entry which was
2931 * read non-atomically. Before making any commitment, on those architectures
2932 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2933 * parts, do_swap_page must check under lock before unmapping the pte and
2934 * proceeding (but do_wp_page is only called after already making such a check;
2935 * and do_anonymous_page can safely check later on).
2936 */
2937 static inline int pte_unmap_same(struct vm_fault *vmf)
2938 {
2939 int same = 1;
2940 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2941 if (sizeof(pte_t) > sizeof(unsigned long)) {
2942 spin_lock(vmf->ptl);
2943 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2944 spin_unlock(vmf->ptl);
2945 }
2946 #endif
2947 pte_unmap(vmf->pte);
2948 vmf->pte = NULL;
2949 return same;
2950 }
2951
2952 /*
2953 * Return:
2954 * 0: copied succeeded
2955 * -EHWPOISON: copy failed due to hwpoison in source page
2956 * -EAGAIN: copied failed (some other reason)
2957 */
2958 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2959 struct vm_fault *vmf)
2960 {
2961 int ret;
2962 void *kaddr;
2963 void __user *uaddr;
2964 struct vm_area_struct *vma = vmf->vma;
2965 struct mm_struct *mm = vma->vm_mm;
2966 unsigned long addr = vmf->address;
2967
2968 if (likely(src)) {
2969 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2970 memory_failure_queue(page_to_pfn(src), 0);
2971 return -EHWPOISON;
2972 }
2973 return 0;
2974 }
2975
2976 /*
2977 * If the source page was a PFN mapping, we don't have
2978 * a "struct page" for it. We do a best-effort copy by
2979 * just copying from the original user address. If that
2980 * fails, we just zero-fill it. Live with it.
2981 */
2982 kaddr = kmap_local_page(dst);
2983 pagefault_disable();
2984 uaddr = (void __user *)(addr & PAGE_MASK);
2985
2986 /*
2987 * On architectures with software "accessed" bits, we would
2988 * take a double page fault, so mark it accessed here.
2989 */
2990 vmf->pte = NULL;
2991 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2992 pte_t entry;
2993
2994 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2995 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2996 /*
2997 * Other thread has already handled the fault
2998 * and update local tlb only
2999 */
3000 if (vmf->pte)
3001 update_mmu_tlb(vma, addr, vmf->pte);
3002 ret = -EAGAIN;
3003 goto pte_unlock;
3004 }
3005
3006 entry = pte_mkyoung(vmf->orig_pte);
3007 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3008 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3009 }
3010
3011 /*
3012 * This really shouldn't fail, because the page is there
3013 * in the page tables. But it might just be unreadable,
3014 * in which case we just give up and fill the result with
3015 * zeroes.
3016 */
3017 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3018 if (vmf->pte)
3019 goto warn;
3020
3021 /* Re-validate under PTL if the page is still mapped */
3022 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3023 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3024 /* The PTE changed under us, update local tlb */
3025 if (vmf->pte)
3026 update_mmu_tlb(vma, addr, vmf->pte);
3027 ret = -EAGAIN;
3028 goto pte_unlock;
3029 }
3030
3031 /*
3032 * The same page can be mapped back since last copy attempt.
3033 * Try to copy again under PTL.
3034 */
3035 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3036 /*
3037 * Give a warn in case there can be some obscure
3038 * use-case
3039 */
3040 warn:
3041 WARN_ON_ONCE(1);
3042 clear_page(kaddr);
3043 }
3044 }
3045
3046 ret = 0;
3047
3048 pte_unlock:
3049 if (vmf->pte)
3050 pte_unmap_unlock(vmf->pte, vmf->ptl);
3051 pagefault_enable();
3052 kunmap_local(kaddr);
3053 flush_dcache_page(dst);
3054
3055 return ret;
3056 }
3057
3058 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3059 {
3060 struct file *vm_file = vma->vm_file;
3061
3062 if (vm_file)
3063 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3064
3065 /*
3066 * Special mappings (e.g. VDSO) do not have any file so fake
3067 * a default GFP_KERNEL for them.
3068 */
3069 return GFP_KERNEL;
3070 }
3071
3072 /*
3073 * Notify the address space that the page is about to become writable so that
3074 * it can prohibit this or wait for the page to get into an appropriate state.
3075 *
3076 * We do this without the lock held, so that it can sleep if it needs to.
3077 */
3078 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3079 {
3080 vm_fault_t ret;
3081 unsigned int old_flags = vmf->flags;
3082
3083 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3084
3085 if (vmf->vma->vm_file &&
3086 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3087 return VM_FAULT_SIGBUS;
3088
3089 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3090 /* Restore original flags so that caller is not surprised */
3091 vmf->flags = old_flags;
3092 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3093 return ret;
3094 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3095 folio_lock(folio);
3096 if (!folio->mapping) {
3097 folio_unlock(folio);
3098 return 0; /* retry */
3099 }
3100 ret |= VM_FAULT_LOCKED;
3101 } else
3102 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3103 return ret;
3104 }
3105
3106 /*
3107 * Handle dirtying of a page in shared file mapping on a write fault.
3108 *
3109 * The function expects the page to be locked and unlocks it.
3110 */
3111 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3112 {
3113 struct vm_area_struct *vma = vmf->vma;
3114 struct address_space *mapping;
3115 struct folio *folio = page_folio(vmf->page);
3116 bool dirtied;
3117 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3118
3119 dirtied = folio_mark_dirty(folio);
3120 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3121 /*
3122 * Take a local copy of the address_space - folio.mapping may be zeroed
3123 * by truncate after folio_unlock(). The address_space itself remains
3124 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3125 * release semantics to prevent the compiler from undoing this copying.
3126 */
3127 mapping = folio_raw_mapping(folio);
3128 folio_unlock(folio);
3129
3130 if (!page_mkwrite)
3131 file_update_time(vma->vm_file);
3132
3133 /*
3134 * Throttle page dirtying rate down to writeback speed.
3135 *
3136 * mapping may be NULL here because some device drivers do not
3137 * set page.mapping but still dirty their pages
3138 *
3139 * Drop the mmap_lock before waiting on IO, if we can. The file
3140 * is pinning the mapping, as per above.
3141 */
3142 if ((dirtied || page_mkwrite) && mapping) {
3143 struct file *fpin;
3144
3145 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3146 balance_dirty_pages_ratelimited(mapping);
3147 if (fpin) {
3148 fput(fpin);
3149 return VM_FAULT_COMPLETED;
3150 }
3151 }
3152
3153 return 0;
3154 }
3155
3156 /*
3157 * Handle write page faults for pages that can be reused in the current vma
3158 *
3159 * This can happen either due to the mapping being with the VM_SHARED flag,
3160 * or due to us being the last reference standing to the page. In either
3161 * case, all we need to do here is to mark the page as writable and update
3162 * any related book-keeping.
3163 */
3164 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3165 __releases(vmf->ptl)
3166 {
3167 struct vm_area_struct *vma = vmf->vma;
3168 pte_t entry;
3169
3170 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3171
3172 if (folio) {
3173 VM_BUG_ON(folio_test_anon(folio) &&
3174 !PageAnonExclusive(vmf->page));
3175 /*
3176 * Clear the folio's cpupid information as the existing
3177 * information potentially belongs to a now completely
3178 * unrelated process.
3179 */
3180 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3181 }
3182
3183 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3184 entry = pte_mkyoung(vmf->orig_pte);
3185 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3186 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3187 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3188 pte_unmap_unlock(vmf->pte, vmf->ptl);
3189 count_vm_event(PGREUSE);
3190 }
3191
3192 /*
3193 * We could add a bitflag somewhere, but for now, we know that all
3194 * vm_ops that have a ->map_pages have been audited and don't need
3195 * the mmap_lock to be held.
3196 */
3197 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3198 {
3199 struct vm_area_struct *vma = vmf->vma;
3200
3201 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3202 return 0;
3203 vma_end_read(vma);
3204 return VM_FAULT_RETRY;
3205 }
3206
3207 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3208 {
3209 struct vm_area_struct *vma = vmf->vma;
3210
3211 if (likely(vma->anon_vma))
3212 return 0;
3213 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3214 vma_end_read(vma);
3215 return VM_FAULT_RETRY;
3216 }
3217 if (__anon_vma_prepare(vma))
3218 return VM_FAULT_OOM;
3219 return 0;
3220 }
3221
3222 /*
3223 * Handle the case of a page which we actually need to copy to a new page,
3224 * either due to COW or unsharing.
3225 *
3226 * Called with mmap_lock locked and the old page referenced, but
3227 * without the ptl held.
3228 *
3229 * High level logic flow:
3230 *
3231 * - Allocate a page, copy the content of the old page to the new one.
3232 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3233 * - Take the PTL. If the pte changed, bail out and release the allocated page
3234 * - If the pte is still the way we remember it, update the page table and all
3235 * relevant references. This includes dropping the reference the page-table
3236 * held to the old page, as well as updating the rmap.
3237 * - In any case, unlock the PTL and drop the reference we took to the old page.
3238 */
3239 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3240 {
3241 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3242 struct vm_area_struct *vma = vmf->vma;
3243 struct mm_struct *mm = vma->vm_mm;
3244 struct folio *old_folio = NULL;
3245 struct folio *new_folio = NULL;
3246 pte_t entry;
3247 int page_copied = 0;
3248 struct mmu_notifier_range range;
3249 vm_fault_t ret;
3250 bool pfn_is_zero;
3251
3252 delayacct_wpcopy_start();
3253
3254 if (vmf->page)
3255 old_folio = page_folio(vmf->page);
3256 ret = vmf_anon_prepare(vmf);
3257 if (unlikely(ret))
3258 goto out;
3259
3260 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3261 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3262 if (!new_folio)
3263 goto oom;
3264
3265 if (!pfn_is_zero) {
3266 int err;
3267
3268 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3269 if (err) {
3270 /*
3271 * COW failed, if the fault was solved by other,
3272 * it's fine. If not, userspace would re-fault on
3273 * the same address and we will handle the fault
3274 * from the second attempt.
3275 * The -EHWPOISON case will not be retried.
3276 */
3277 folio_put(new_folio);
3278 if (old_folio)
3279 folio_put(old_folio);
3280
3281 delayacct_wpcopy_end();
3282 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3283 }
3284 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3285 }
3286
3287 __folio_mark_uptodate(new_folio);
3288
3289 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3290 vmf->address & PAGE_MASK,
3291 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3292 mmu_notifier_invalidate_range_start(&range);
3293
3294 /*
3295 * Re-check the pte - we dropped the lock
3296 */
3297 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3298 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3299 if (old_folio) {
3300 if (!folio_test_anon(old_folio)) {
3301 dec_mm_counter(mm, mm_counter_file(old_folio));
3302 inc_mm_counter(mm, MM_ANONPAGES);
3303 }
3304 } else {
3305 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3306 inc_mm_counter(mm, MM_ANONPAGES);
3307 }
3308 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3309 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3310 entry = pte_sw_mkyoung(entry);
3311 if (unlikely(unshare)) {
3312 if (pte_soft_dirty(vmf->orig_pte))
3313 entry = pte_mksoft_dirty(entry);
3314 if (pte_uffd_wp(vmf->orig_pte))
3315 entry = pte_mkuffd_wp(entry);
3316 } else {
3317 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3318 }
3319
3320 /*
3321 * Clear the pte entry and flush it first, before updating the
3322 * pte with the new entry, to keep TLBs on different CPUs in
3323 * sync. This code used to set the new PTE then flush TLBs, but
3324 * that left a window where the new PTE could be loaded into
3325 * some TLBs while the old PTE remains in others.
3326 */
3327 ptep_clear_flush(vma, vmf->address, vmf->pte);
3328 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3329 folio_add_lru_vma(new_folio, vma);
3330 /*
3331 * We call the notify macro here because, when using secondary
3332 * mmu page tables (such as kvm shadow page tables), we want the
3333 * new page to be mapped directly into the secondary page table.
3334 */
3335 BUG_ON(unshare && pte_write(entry));
3336 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3337 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3338 if (old_folio) {
3339 /*
3340 * Only after switching the pte to the new page may
3341 * we remove the mapcount here. Otherwise another
3342 * process may come and find the rmap count decremented
3343 * before the pte is switched to the new page, and
3344 * "reuse" the old page writing into it while our pte
3345 * here still points into it and can be read by other
3346 * threads.
3347 *
3348 * The critical issue is to order this
3349 * folio_remove_rmap_pte() with the ptp_clear_flush
3350 * above. Those stores are ordered by (if nothing else,)
3351 * the barrier present in the atomic_add_negative
3352 * in folio_remove_rmap_pte();
3353 *
3354 * Then the TLB flush in ptep_clear_flush ensures that
3355 * no process can access the old page before the
3356 * decremented mapcount is visible. And the old page
3357 * cannot be reused until after the decremented
3358 * mapcount is visible. So transitively, TLBs to
3359 * old page will be flushed before it can be reused.
3360 */
3361 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3362 }
3363
3364 /* Free the old page.. */
3365 new_folio = old_folio;
3366 page_copied = 1;
3367 pte_unmap_unlock(vmf->pte, vmf->ptl);
3368 } else if (vmf->pte) {
3369 update_mmu_tlb(vma, vmf->address, vmf->pte);
3370 pte_unmap_unlock(vmf->pte, vmf->ptl);
3371 }
3372
3373 mmu_notifier_invalidate_range_end(&range);
3374
3375 if (new_folio)
3376 folio_put(new_folio);
3377 if (old_folio) {
3378 if (page_copied)
3379 free_swap_cache(old_folio);
3380 folio_put(old_folio);
3381 }
3382
3383 delayacct_wpcopy_end();
3384 return 0;
3385 oom:
3386 ret = VM_FAULT_OOM;
3387 out:
3388 if (old_folio)
3389 folio_put(old_folio);
3390
3391 delayacct_wpcopy_end();
3392 return ret;
3393 }
3394
3395 /**
3396 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3397 * writeable once the page is prepared
3398 *
3399 * @vmf: structure describing the fault
3400 * @folio: the folio of vmf->page
3401 *
3402 * This function handles all that is needed to finish a write page fault in a
3403 * shared mapping due to PTE being read-only once the mapped page is prepared.
3404 * It handles locking of PTE and modifying it.
3405 *
3406 * The function expects the page to be locked or other protection against
3407 * concurrent faults / writeback (such as DAX radix tree locks).
3408 *
3409 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3410 * we acquired PTE lock.
3411 */
3412 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3413 {
3414 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3415 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3416 &vmf->ptl);
3417 if (!vmf->pte)
3418 return VM_FAULT_NOPAGE;
3419 /*
3420 * We might have raced with another page fault while we released the
3421 * pte_offset_map_lock.
3422 */
3423 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3424 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3425 pte_unmap_unlock(vmf->pte, vmf->ptl);
3426 return VM_FAULT_NOPAGE;
3427 }
3428 wp_page_reuse(vmf, folio);
3429 return 0;
3430 }
3431
3432 /*
3433 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3434 * mapping
3435 */
3436 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3437 {
3438 struct vm_area_struct *vma = vmf->vma;
3439
3440 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3441 vm_fault_t ret;
3442
3443 pte_unmap_unlock(vmf->pte, vmf->ptl);
3444 ret = vmf_can_call_fault(vmf);
3445 if (ret)
3446 return ret;
3447
3448 vmf->flags |= FAULT_FLAG_MKWRITE;
3449 ret = vma->vm_ops->pfn_mkwrite(vmf);
3450 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3451 return ret;
3452 return finish_mkwrite_fault(vmf, NULL);
3453 }
3454 wp_page_reuse(vmf, NULL);
3455 return 0;
3456 }
3457
3458 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3459 __releases(vmf->ptl)
3460 {
3461 struct vm_area_struct *vma = vmf->vma;
3462 vm_fault_t ret = 0;
3463
3464 folio_get(folio);
3465
3466 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3467 vm_fault_t tmp;
3468
3469 pte_unmap_unlock(vmf->pte, vmf->ptl);
3470 tmp = vmf_can_call_fault(vmf);
3471 if (tmp) {
3472 folio_put(folio);
3473 return tmp;
3474 }
3475
3476 tmp = do_page_mkwrite(vmf, folio);
3477 if (unlikely(!tmp || (tmp &
3478 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3479 folio_put(folio);
3480 return tmp;
3481 }
3482 tmp = finish_mkwrite_fault(vmf, folio);
3483 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3484 folio_unlock(folio);
3485 folio_put(folio);
3486 return tmp;
3487 }
3488 } else {
3489 wp_page_reuse(vmf, folio);
3490 folio_lock(folio);
3491 }
3492 ret |= fault_dirty_shared_page(vmf);
3493 folio_put(folio);
3494
3495 return ret;
3496 }
3497
3498 static bool wp_can_reuse_anon_folio(struct folio *folio,
3499 struct vm_area_struct *vma)
3500 {
3501 /*
3502 * We could currently only reuse a subpage of a large folio if no
3503 * other subpages of the large folios are still mapped. However,
3504 * let's just consistently not reuse subpages even if we could
3505 * reuse in that scenario, and give back a large folio a bit
3506 * sooner.
3507 */
3508 if (folio_test_large(folio))
3509 return false;
3510
3511 /*
3512 * We have to verify under folio lock: these early checks are
3513 * just an optimization to avoid locking the folio and freeing
3514 * the swapcache if there is little hope that we can reuse.
3515 *
3516 * KSM doesn't necessarily raise the folio refcount.
3517 */
3518 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3519 return false;
3520 if (!folio_test_lru(folio))
3521 /*
3522 * We cannot easily detect+handle references from
3523 * remote LRU caches or references to LRU folios.
3524 */
3525 lru_add_drain();
3526 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3527 return false;
3528 if (!folio_trylock(folio))
3529 return false;
3530 if (folio_test_swapcache(folio))
3531 folio_free_swap(folio);
3532 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3533 folio_unlock(folio);
3534 return false;
3535 }
3536 /*
3537 * Ok, we've got the only folio reference from our mapping
3538 * and the folio is locked, it's dark out, and we're wearing
3539 * sunglasses. Hit it.
3540 */
3541 folio_move_anon_rmap(folio, vma);
3542 folio_unlock(folio);
3543 return true;
3544 }
3545
3546 /*
3547 * This routine handles present pages, when
3548 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3549 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3550 * (FAULT_FLAG_UNSHARE)
3551 *
3552 * It is done by copying the page to a new address and decrementing the
3553 * shared-page counter for the old page.
3554 *
3555 * Note that this routine assumes that the protection checks have been
3556 * done by the caller (the low-level page fault routine in most cases).
3557 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3558 * done any necessary COW.
3559 *
3560 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3561 * though the page will change only once the write actually happens. This
3562 * avoids a few races, and potentially makes it more efficient.
3563 *
3564 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3565 * but allow concurrent faults), with pte both mapped and locked.
3566 * We return with mmap_lock still held, but pte unmapped and unlocked.
3567 */
3568 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3569 __releases(vmf->ptl)
3570 {
3571 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3572 struct vm_area_struct *vma = vmf->vma;
3573 struct folio *folio = NULL;
3574 pte_t pte;
3575
3576 if (likely(!unshare)) {
3577 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3578 if (!userfaultfd_wp_async(vma)) {
3579 pte_unmap_unlock(vmf->pte, vmf->ptl);
3580 return handle_userfault(vmf, VM_UFFD_WP);
3581 }
3582
3583 /*
3584 * Nothing needed (cache flush, TLB invalidations,
3585 * etc.) because we're only removing the uffd-wp bit,
3586 * which is completely invisible to the user.
3587 */
3588 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3589
3590 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3591 /*
3592 * Update this to be prepared for following up CoW
3593 * handling
3594 */
3595 vmf->orig_pte = pte;
3596 }
3597
3598 /*
3599 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3600 * is flushed in this case before copying.
3601 */
3602 if (unlikely(userfaultfd_wp(vmf->vma) &&
3603 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3604 flush_tlb_page(vmf->vma, vmf->address);
3605 }
3606
3607 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3608
3609 if (vmf->page)
3610 folio = page_folio(vmf->page);
3611
3612 /*
3613 * Shared mapping: we are guaranteed to have VM_WRITE and
3614 * FAULT_FLAG_WRITE set at this point.
3615 */
3616 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3617 /*
3618 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3619 * VM_PFNMAP VMA.
3620 *
3621 * We should not cow pages in a shared writeable mapping.
3622 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3623 */
3624 if (!vmf->page)
3625 return wp_pfn_shared(vmf);
3626 return wp_page_shared(vmf, folio);
3627 }
3628
3629 /*
3630 * Private mapping: create an exclusive anonymous page copy if reuse
3631 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3632 *
3633 * If we encounter a page that is marked exclusive, we must reuse
3634 * the page without further checks.
3635 */
3636 if (folio && folio_test_anon(folio) &&
3637 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3638 if (!PageAnonExclusive(vmf->page))
3639 SetPageAnonExclusive(vmf->page);
3640 if (unlikely(unshare)) {
3641 pte_unmap_unlock(vmf->pte, vmf->ptl);
3642 return 0;
3643 }
3644 wp_page_reuse(vmf, folio);
3645 return 0;
3646 }
3647 /*
3648 * Ok, we need to copy. Oh, well..
3649 */
3650 if (folio)
3651 folio_get(folio);
3652
3653 pte_unmap_unlock(vmf->pte, vmf->ptl);
3654 #ifdef CONFIG_KSM
3655 if (folio && folio_test_ksm(folio))
3656 count_vm_event(COW_KSM);
3657 #endif
3658 return wp_page_copy(vmf);
3659 }
3660
3661 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3662 unsigned long start_addr, unsigned long end_addr,
3663 struct zap_details *details)
3664 {
3665 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3666 }
3667
3668 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3669 pgoff_t first_index,
3670 pgoff_t last_index,
3671 struct zap_details *details)
3672 {
3673 struct vm_area_struct *vma;
3674 pgoff_t vba, vea, zba, zea;
3675
3676 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3677 vba = vma->vm_pgoff;
3678 vea = vba + vma_pages(vma) - 1;
3679 zba = max(first_index, vba);
3680 zea = min(last_index, vea);
3681
3682 unmap_mapping_range_vma(vma,
3683 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3684 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3685 details);
3686 }
3687 }
3688
3689 /**
3690 * unmap_mapping_folio() - Unmap single folio from processes.
3691 * @folio: The locked folio to be unmapped.
3692 *
3693 * Unmap this folio from any userspace process which still has it mmaped.
3694 * Typically, for efficiency, the range of nearby pages has already been
3695 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3696 * truncation or invalidation holds the lock on a folio, it may find that
3697 * the page has been remapped again: and then uses unmap_mapping_folio()
3698 * to unmap it finally.
3699 */
3700 void unmap_mapping_folio(struct folio *folio)
3701 {
3702 struct address_space *mapping = folio->mapping;
3703 struct zap_details details = { };
3704 pgoff_t first_index;
3705 pgoff_t last_index;
3706
3707 VM_BUG_ON(!folio_test_locked(folio));
3708
3709 first_index = folio->index;
3710 last_index = folio_next_index(folio) - 1;
3711
3712 details.even_cows = false;
3713 details.single_folio = folio;
3714 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3715
3716 i_mmap_lock_read(mapping);
3717 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3718 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3719 last_index, &details);
3720 i_mmap_unlock_read(mapping);
3721 }
3722
3723 /**
3724 * unmap_mapping_pages() - Unmap pages from processes.
3725 * @mapping: The address space containing pages to be unmapped.
3726 * @start: Index of first page to be unmapped.
3727 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3728 * @even_cows: Whether to unmap even private COWed pages.
3729 *
3730 * Unmap the pages in this address space from any userspace process which
3731 * has them mmaped. Generally, you want to remove COWed pages as well when
3732 * a file is being truncated, but not when invalidating pages from the page
3733 * cache.
3734 */
3735 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3736 pgoff_t nr, bool even_cows)
3737 {
3738 struct zap_details details = { };
3739 pgoff_t first_index = start;
3740 pgoff_t last_index = start + nr - 1;
3741
3742 details.even_cows = even_cows;
3743 if (last_index < first_index)
3744 last_index = ULONG_MAX;
3745
3746 i_mmap_lock_read(mapping);
3747 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3748 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3749 last_index, &details);
3750 i_mmap_unlock_read(mapping);
3751 }
3752 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3753
3754 /**
3755 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3756 * address_space corresponding to the specified byte range in the underlying
3757 * file.
3758 *
3759 * @mapping: the address space containing mmaps to be unmapped.
3760 * @holebegin: byte in first page to unmap, relative to the start of
3761 * the underlying file. This will be rounded down to a PAGE_SIZE
3762 * boundary. Note that this is different from truncate_pagecache(), which
3763 * must keep the partial page. In contrast, we must get rid of
3764 * partial pages.
3765 * @holelen: size of prospective hole in bytes. This will be rounded
3766 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3767 * end of the file.
3768 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3769 * but 0 when invalidating pagecache, don't throw away private data.
3770 */
3771 void unmap_mapping_range(struct address_space *mapping,
3772 loff_t const holebegin, loff_t const holelen, int even_cows)
3773 {
3774 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3775 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3776
3777 /* Check for overflow. */
3778 if (sizeof(holelen) > sizeof(hlen)) {
3779 long long holeend =
3780 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3781 if (holeend & ~(long long)ULONG_MAX)
3782 hlen = ULONG_MAX - hba + 1;
3783 }
3784
3785 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3786 }
3787 EXPORT_SYMBOL(unmap_mapping_range);
3788
3789 /*
3790 * Restore a potential device exclusive pte to a working pte entry
3791 */
3792 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3793 {
3794 struct folio *folio = page_folio(vmf->page);
3795 struct vm_area_struct *vma = vmf->vma;
3796 struct mmu_notifier_range range;
3797 vm_fault_t ret;
3798
3799 /*
3800 * We need a reference to lock the folio because we don't hold
3801 * the PTL so a racing thread can remove the device-exclusive
3802 * entry and unmap it. If the folio is free the entry must
3803 * have been removed already. If it happens to have already
3804 * been re-allocated after being freed all we do is lock and
3805 * unlock it.
3806 */
3807 if (!folio_try_get(folio))
3808 return 0;
3809
3810 ret = folio_lock_or_retry(folio, vmf);
3811 if (ret) {
3812 folio_put(folio);
3813 return ret;
3814 }
3815 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3816 vma->vm_mm, vmf->address & PAGE_MASK,
3817 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3818 mmu_notifier_invalidate_range_start(&range);
3819
3820 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3821 &vmf->ptl);
3822 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3823 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3824
3825 if (vmf->pte)
3826 pte_unmap_unlock(vmf->pte, vmf->ptl);
3827 folio_unlock(folio);
3828 folio_put(folio);
3829
3830 mmu_notifier_invalidate_range_end(&range);
3831 return 0;
3832 }
3833
3834 static inline bool should_try_to_free_swap(struct folio *folio,
3835 struct vm_area_struct *vma,
3836 unsigned int fault_flags)
3837 {
3838 if (!folio_test_swapcache(folio))
3839 return false;
3840 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3841 folio_test_mlocked(folio))
3842 return true;
3843 /*
3844 * If we want to map a page that's in the swapcache writable, we
3845 * have to detect via the refcount if we're really the exclusive
3846 * user. Try freeing the swapcache to get rid of the swapcache
3847 * reference only in case it's likely that we'll be the exlusive user.
3848 */
3849 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3850 folio_ref_count(folio) == 2;
3851 }
3852
3853 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3854 {
3855 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3856 vmf->address, &vmf->ptl);
3857 if (!vmf->pte)
3858 return 0;
3859 /*
3860 * Be careful so that we will only recover a special uffd-wp pte into a
3861 * none pte. Otherwise it means the pte could have changed, so retry.
3862 *
3863 * This should also cover the case where e.g. the pte changed
3864 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3865 * So is_pte_marker() check is not enough to safely drop the pte.
3866 */
3867 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3868 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3869 pte_unmap_unlock(vmf->pte, vmf->ptl);
3870 return 0;
3871 }
3872
3873 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3874 {
3875 if (vma_is_anonymous(vmf->vma))
3876 return do_anonymous_page(vmf);
3877 else
3878 return do_fault(vmf);
3879 }
3880
3881 /*
3882 * This is actually a page-missing access, but with uffd-wp special pte
3883 * installed. It means this pte was wr-protected before being unmapped.
3884 */
3885 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3886 {
3887 /*
3888 * Just in case there're leftover special ptes even after the region
3889 * got unregistered - we can simply clear them.
3890 */
3891 if (unlikely(!userfaultfd_wp(vmf->vma)))
3892 return pte_marker_clear(vmf);
3893
3894 return do_pte_missing(vmf);
3895 }
3896
3897 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3898 {
3899 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3900 unsigned long marker = pte_marker_get(entry);
3901
3902 /*
3903 * PTE markers should never be empty. If anything weird happened,
3904 * the best thing to do is to kill the process along with its mm.
3905 */
3906 if (WARN_ON_ONCE(!marker))
3907 return VM_FAULT_SIGBUS;
3908
3909 /* Higher priority than uffd-wp when data corrupted */
3910 if (marker & PTE_MARKER_POISONED)
3911 return VM_FAULT_HWPOISON;
3912
3913 if (pte_marker_entry_uffd_wp(entry))
3914 return pte_marker_handle_uffd_wp(vmf);
3915
3916 /* This is an unknown pte marker */
3917 return VM_FAULT_SIGBUS;
3918 }
3919
3920 /*
3921 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3922 * but allow concurrent faults), and pte mapped but not yet locked.
3923 * We return with pte unmapped and unlocked.
3924 *
3925 * We return with the mmap_lock locked or unlocked in the same cases
3926 * as does filemap_fault().
3927 */
3928 vm_fault_t do_swap_page(struct vm_fault *vmf)
3929 {
3930 struct vm_area_struct *vma = vmf->vma;
3931 struct folio *swapcache, *folio = NULL;
3932 struct page *page;
3933 struct swap_info_struct *si = NULL;
3934 rmap_t rmap_flags = RMAP_NONE;
3935 bool need_clear_cache = false;
3936 bool exclusive = false;
3937 swp_entry_t entry;
3938 pte_t pte;
3939 vm_fault_t ret = 0;
3940 void *shadow = NULL;
3941
3942 if (!pte_unmap_same(vmf))
3943 goto out;
3944
3945 entry = pte_to_swp_entry(vmf->orig_pte);
3946 if (unlikely(non_swap_entry(entry))) {
3947 if (is_migration_entry(entry)) {
3948 migration_entry_wait(vma->vm_mm, vmf->pmd,
3949 vmf->address);
3950 } else if (is_device_exclusive_entry(entry)) {
3951 vmf->page = pfn_swap_entry_to_page(entry);
3952 ret = remove_device_exclusive_entry(vmf);
3953 } else if (is_device_private_entry(entry)) {
3954 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3955 /*
3956 * migrate_to_ram is not yet ready to operate
3957 * under VMA lock.
3958 */
3959 vma_end_read(vma);
3960 ret = VM_FAULT_RETRY;
3961 goto out;
3962 }
3963
3964 vmf->page = pfn_swap_entry_to_page(entry);
3965 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3966 vmf->address, &vmf->ptl);
3967 if (unlikely(!vmf->pte ||
3968 !pte_same(ptep_get(vmf->pte),
3969 vmf->orig_pte)))
3970 goto unlock;
3971
3972 /*
3973 * Get a page reference while we know the page can't be
3974 * freed.
3975 */
3976 get_page(vmf->page);
3977 pte_unmap_unlock(vmf->pte, vmf->ptl);
3978 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3979 put_page(vmf->page);
3980 } else if (is_hwpoison_entry(entry)) {
3981 ret = VM_FAULT_HWPOISON;
3982 } else if (is_pte_marker_entry(entry)) {
3983 ret = handle_pte_marker(vmf);
3984 } else {
3985 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3986 ret = VM_FAULT_SIGBUS;
3987 }
3988 goto out;
3989 }
3990
3991 /* Prevent swapoff from happening to us. */
3992 si = get_swap_device(entry);
3993 if (unlikely(!si))
3994 goto out;
3995
3996 folio = swap_cache_get_folio(entry, vma, vmf->address);
3997 if (folio)
3998 page = folio_file_page(folio, swp_offset(entry));
3999 swapcache = folio;
4000
4001 if (!folio) {
4002 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4003 __swap_count(entry) == 1) {
4004 /*
4005 * Prevent parallel swapin from proceeding with
4006 * the cache flag. Otherwise, another thread may
4007 * finish swapin first, free the entry, and swapout
4008 * reusing the same entry. It's undetectable as
4009 * pte_same() returns true due to entry reuse.
4010 */
4011 if (swapcache_prepare(entry)) {
4012 /* Relax a bit to prevent rapid repeated page faults */
4013 schedule_timeout_uninterruptible(1);
4014 goto out;
4015 }
4016 need_clear_cache = true;
4017
4018 /* skip swapcache */
4019 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4020 vma, vmf->address, false);
4021 page = &folio->page;
4022 if (folio) {
4023 __folio_set_locked(folio);
4024 __folio_set_swapbacked(folio);
4025
4026 if (mem_cgroup_swapin_charge_folio(folio,
4027 vma->vm_mm, GFP_KERNEL,
4028 entry)) {
4029 ret = VM_FAULT_OOM;
4030 goto out_page;
4031 }
4032 mem_cgroup_swapin_uncharge_swap(entry);
4033
4034 shadow = get_shadow_from_swap_cache(entry);
4035 if (shadow)
4036 workingset_refault(folio, shadow);
4037
4038 folio_add_lru(folio);
4039
4040 /* To provide entry to swap_read_folio() */
4041 folio->swap = entry;
4042 swap_read_folio(folio, true, NULL);
4043 folio->private = NULL;
4044 }
4045 } else {
4046 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4047 vmf);
4048 if (page)
4049 folio = page_folio(page);
4050 swapcache = folio;
4051 }
4052
4053 if (!folio) {
4054 /*
4055 * Back out if somebody else faulted in this pte
4056 * while we released the pte lock.
4057 */
4058 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4059 vmf->address, &vmf->ptl);
4060 if (likely(vmf->pte &&
4061 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4062 ret = VM_FAULT_OOM;
4063 goto unlock;
4064 }
4065
4066 /* Had to read the page from swap area: Major fault */
4067 ret = VM_FAULT_MAJOR;
4068 count_vm_event(PGMAJFAULT);
4069 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4070 } else if (PageHWPoison(page)) {
4071 /*
4072 * hwpoisoned dirty swapcache pages are kept for killing
4073 * owner processes (which may be unknown at hwpoison time)
4074 */
4075 ret = VM_FAULT_HWPOISON;
4076 goto out_release;
4077 }
4078
4079 ret |= folio_lock_or_retry(folio, vmf);
4080 if (ret & VM_FAULT_RETRY)
4081 goto out_release;
4082
4083 if (swapcache) {
4084 /*
4085 * Make sure folio_free_swap() or swapoff did not release the
4086 * swapcache from under us. The page pin, and pte_same test
4087 * below, are not enough to exclude that. Even if it is still
4088 * swapcache, we need to check that the page's swap has not
4089 * changed.
4090 */
4091 if (unlikely(!folio_test_swapcache(folio) ||
4092 page_swap_entry(page).val != entry.val))
4093 goto out_page;
4094
4095 /*
4096 * KSM sometimes has to copy on read faults, for example, if
4097 * page->index of !PageKSM() pages would be nonlinear inside the
4098 * anon VMA -- PageKSM() is lost on actual swapout.
4099 */
4100 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4101 if (unlikely(!folio)) {
4102 ret = VM_FAULT_OOM;
4103 folio = swapcache;
4104 goto out_page;
4105 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4106 ret = VM_FAULT_HWPOISON;
4107 folio = swapcache;
4108 goto out_page;
4109 }
4110 if (folio != swapcache)
4111 page = folio_page(folio, 0);
4112
4113 /*
4114 * If we want to map a page that's in the swapcache writable, we
4115 * have to detect via the refcount if we're really the exclusive
4116 * owner. Try removing the extra reference from the local LRU
4117 * caches if required.
4118 */
4119 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4120 !folio_test_ksm(folio) && !folio_test_lru(folio))
4121 lru_add_drain();
4122 }
4123
4124 folio_throttle_swaprate(folio, GFP_KERNEL);
4125
4126 /*
4127 * Back out if somebody else already faulted in this pte.
4128 */
4129 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4130 &vmf->ptl);
4131 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4132 goto out_nomap;
4133
4134 if (unlikely(!folio_test_uptodate(folio))) {
4135 ret = VM_FAULT_SIGBUS;
4136 goto out_nomap;
4137 }
4138
4139 /*
4140 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4141 * must never point at an anonymous page in the swapcache that is
4142 * PG_anon_exclusive. Sanity check that this holds and especially, that
4143 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4144 * check after taking the PT lock and making sure that nobody
4145 * concurrently faulted in this page and set PG_anon_exclusive.
4146 */
4147 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4148 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4149
4150 /*
4151 * Check under PT lock (to protect against concurrent fork() sharing
4152 * the swap entry concurrently) for certainly exclusive pages.
4153 */
4154 if (!folio_test_ksm(folio)) {
4155 exclusive = pte_swp_exclusive(vmf->orig_pte);
4156 if (folio != swapcache) {
4157 /*
4158 * We have a fresh page that is not exposed to the
4159 * swapcache -> certainly exclusive.
4160 */
4161 exclusive = true;
4162 } else if (exclusive && folio_test_writeback(folio) &&
4163 data_race(si->flags & SWP_STABLE_WRITES)) {
4164 /*
4165 * This is tricky: not all swap backends support
4166 * concurrent page modifications while under writeback.
4167 *
4168 * So if we stumble over such a page in the swapcache
4169 * we must not set the page exclusive, otherwise we can
4170 * map it writable without further checks and modify it
4171 * while still under writeback.
4172 *
4173 * For these problematic swap backends, simply drop the
4174 * exclusive marker: this is perfectly fine as we start
4175 * writeback only if we fully unmapped the page and
4176 * there are no unexpected references on the page after
4177 * unmapping succeeded. After fully unmapped, no
4178 * further GUP references (FOLL_GET and FOLL_PIN) can
4179 * appear, so dropping the exclusive marker and mapping
4180 * it only R/O is fine.
4181 */
4182 exclusive = false;
4183 }
4184 }
4185
4186 /*
4187 * Some architectures may have to restore extra metadata to the page
4188 * when reading from swap. This metadata may be indexed by swap entry
4189 * so this must be called before swap_free().
4190 */
4191 arch_swap_restore(entry, folio);
4192
4193 /*
4194 * Remove the swap entry and conditionally try to free up the swapcache.
4195 * We're already holding a reference on the page but haven't mapped it
4196 * yet.
4197 */
4198 swap_free(entry);
4199 if (should_try_to_free_swap(folio, vma, vmf->flags))
4200 folio_free_swap(folio);
4201
4202 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4203 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4204 pte = mk_pte(page, vma->vm_page_prot);
4205
4206 /*
4207 * Same logic as in do_wp_page(); however, optimize for pages that are
4208 * certainly not shared either because we just allocated them without
4209 * exposing them to the swapcache or because the swap entry indicates
4210 * exclusivity.
4211 */
4212 if (!folio_test_ksm(folio) &&
4213 (exclusive || folio_ref_count(folio) == 1)) {
4214 if (vmf->flags & FAULT_FLAG_WRITE) {
4215 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4216 vmf->flags &= ~FAULT_FLAG_WRITE;
4217 }
4218 rmap_flags |= RMAP_EXCLUSIVE;
4219 }
4220 flush_icache_page(vma, page);
4221 if (pte_swp_soft_dirty(vmf->orig_pte))
4222 pte = pte_mksoft_dirty(pte);
4223 if (pte_swp_uffd_wp(vmf->orig_pte))
4224 pte = pte_mkuffd_wp(pte);
4225 vmf->orig_pte = pte;
4226
4227 /* ksm created a completely new copy */
4228 if (unlikely(folio != swapcache && swapcache)) {
4229 folio_add_new_anon_rmap(folio, vma, vmf->address);
4230 folio_add_lru_vma(folio, vma);
4231 } else {
4232 folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4233 rmap_flags);
4234 }
4235
4236 VM_BUG_ON(!folio_test_anon(folio) ||
4237 (pte_write(pte) && !PageAnonExclusive(page)));
4238 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4239 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4240
4241 folio_unlock(folio);
4242 if (folio != swapcache && swapcache) {
4243 /*
4244 * Hold the lock to avoid the swap entry to be reused
4245 * until we take the PT lock for the pte_same() check
4246 * (to avoid false positives from pte_same). For
4247 * further safety release the lock after the swap_free
4248 * so that the swap count won't change under a
4249 * parallel locked swapcache.
4250 */
4251 folio_unlock(swapcache);
4252 folio_put(swapcache);
4253 }
4254
4255 if (vmf->flags & FAULT_FLAG_WRITE) {
4256 ret |= do_wp_page(vmf);
4257 if (ret & VM_FAULT_ERROR)
4258 ret &= VM_FAULT_ERROR;
4259 goto out;
4260 }
4261
4262 /* No need to invalidate - it was non-present before */
4263 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4264 unlock:
4265 if (vmf->pte)
4266 pte_unmap_unlock(vmf->pte, vmf->ptl);
4267 out:
4268 /* Clear the swap cache pin for direct swapin after PTL unlock */
4269 if (need_clear_cache)
4270 swapcache_clear(si, entry);
4271 if (si)
4272 put_swap_device(si);
4273 return ret;
4274 out_nomap:
4275 if (vmf->pte)
4276 pte_unmap_unlock(vmf->pte, vmf->ptl);
4277 out_page:
4278 folio_unlock(folio);
4279 out_release:
4280 folio_put(folio);
4281 if (folio != swapcache && swapcache) {
4282 folio_unlock(swapcache);
4283 folio_put(swapcache);
4284 }
4285 if (need_clear_cache)
4286 swapcache_clear(si, entry);
4287 if (si)
4288 put_swap_device(si);
4289 return ret;
4290 }
4291
4292 static bool pte_range_none(pte_t *pte, int nr_pages)
4293 {
4294 int i;
4295
4296 for (i = 0; i < nr_pages; i++) {
4297 if (!pte_none(ptep_get_lockless(pte + i)))
4298 return false;
4299 }
4300
4301 return true;
4302 }
4303
4304 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4305 {
4306 struct vm_area_struct *vma = vmf->vma;
4307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4308 unsigned long orders;
4309 struct folio *folio;
4310 unsigned long addr;
4311 pte_t *pte;
4312 gfp_t gfp;
4313 int order;
4314
4315 /*
4316 * If uffd is active for the vma we need per-page fault fidelity to
4317 * maintain the uffd semantics.
4318 */
4319 if (unlikely(userfaultfd_armed(vma)))
4320 goto fallback;
4321
4322 /*
4323 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4324 * for this vma. Then filter out the orders that can't be allocated over
4325 * the faulting address and still be fully contained in the vma.
4326 */
4327 orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true,
4328 BIT(PMD_ORDER) - 1);
4329 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4330
4331 if (!orders)
4332 goto fallback;
4333
4334 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4335 if (!pte)
4336 return ERR_PTR(-EAGAIN);
4337
4338 /*
4339 * Find the highest order where the aligned range is completely
4340 * pte_none(). Note that all remaining orders will be completely
4341 * pte_none().
4342 */
4343 order = highest_order(orders);
4344 while (orders) {
4345 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4346 if (pte_range_none(pte + pte_index(addr), 1 << order))
4347 break;
4348 order = next_order(&orders, order);
4349 }
4350
4351 pte_unmap(pte);
4352
4353 /* Try allocating the highest of the remaining orders. */
4354 gfp = vma_thp_gfp_mask(vma);
4355 while (orders) {
4356 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4357 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4358 if (folio) {
4359 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4360 folio_put(folio);
4361 goto next;
4362 }
4363 folio_throttle_swaprate(folio, gfp);
4364 clear_huge_page(&folio->page, vmf->address, 1 << order);
4365 return folio;
4366 }
4367 next:
4368 order = next_order(&orders, order);
4369 }
4370
4371 fallback:
4372 #endif
4373 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4374 }
4375
4376 /*
4377 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4378 * but allow concurrent faults), and pte mapped but not yet locked.
4379 * We return with mmap_lock still held, but pte unmapped and unlocked.
4380 */
4381 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4382 {
4383 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4384 struct vm_area_struct *vma = vmf->vma;
4385 unsigned long addr = vmf->address;
4386 struct folio *folio;
4387 vm_fault_t ret = 0;
4388 int nr_pages = 1;
4389 pte_t entry;
4390 int i;
4391
4392 /* File mapping without ->vm_ops ? */
4393 if (vma->vm_flags & VM_SHARED)
4394 return VM_FAULT_SIGBUS;
4395
4396 /*
4397 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4398 * be distinguished from a transient failure of pte_offset_map().
4399 */
4400 if (pte_alloc(vma->vm_mm, vmf->pmd))
4401 return VM_FAULT_OOM;
4402
4403 /* Use the zero-page for reads */
4404 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4405 !mm_forbids_zeropage(vma->vm_mm)) {
4406 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4407 vma->vm_page_prot));
4408 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4409 vmf->address, &vmf->ptl);
4410 if (!vmf->pte)
4411 goto unlock;
4412 if (vmf_pte_changed(vmf)) {
4413 update_mmu_tlb(vma, vmf->address, vmf->pte);
4414 goto unlock;
4415 }
4416 ret = check_stable_address_space(vma->vm_mm);
4417 if (ret)
4418 goto unlock;
4419 /* Deliver the page fault to userland, check inside PT lock */
4420 if (userfaultfd_missing(vma)) {
4421 pte_unmap_unlock(vmf->pte, vmf->ptl);
4422 return handle_userfault(vmf, VM_UFFD_MISSING);
4423 }
4424 goto setpte;
4425 }
4426
4427 /* Allocate our own private page. */
4428 if (unlikely(anon_vma_prepare(vma)))
4429 goto oom;
4430 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4431 folio = alloc_anon_folio(vmf);
4432 if (IS_ERR(folio))
4433 return 0;
4434 if (!folio)
4435 goto oom;
4436
4437 nr_pages = folio_nr_pages(folio);
4438 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4439
4440 /*
4441 * The memory barrier inside __folio_mark_uptodate makes sure that
4442 * preceding stores to the page contents become visible before
4443 * the set_pte_at() write.
4444 */
4445 __folio_mark_uptodate(folio);
4446
4447 entry = mk_pte(&folio->page, vma->vm_page_prot);
4448 entry = pte_sw_mkyoung(entry);
4449 if (vma->vm_flags & VM_WRITE)
4450 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4451
4452 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4453 if (!vmf->pte)
4454 goto release;
4455 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4456 update_mmu_tlb(vma, addr, vmf->pte);
4457 goto release;
4458 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4459 for (i = 0; i < nr_pages; i++)
4460 update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
4461 goto release;
4462 }
4463
4464 ret = check_stable_address_space(vma->vm_mm);
4465 if (ret)
4466 goto release;
4467
4468 /* Deliver the page fault to userland, check inside PT lock */
4469 if (userfaultfd_missing(vma)) {
4470 pte_unmap_unlock(vmf->pte, vmf->ptl);
4471 folio_put(folio);
4472 return handle_userfault(vmf, VM_UFFD_MISSING);
4473 }
4474
4475 folio_ref_add(folio, nr_pages - 1);
4476 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4477 folio_add_new_anon_rmap(folio, vma, addr);
4478 folio_add_lru_vma(folio, vma);
4479 setpte:
4480 if (uffd_wp)
4481 entry = pte_mkuffd_wp(entry);
4482 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4483
4484 /* No need to invalidate - it was non-present before */
4485 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4486 unlock:
4487 if (vmf->pte)
4488 pte_unmap_unlock(vmf->pte, vmf->ptl);
4489 return ret;
4490 release:
4491 folio_put(folio);
4492 goto unlock;
4493 oom:
4494 return VM_FAULT_OOM;
4495 }
4496
4497 /*
4498 * The mmap_lock must have been held on entry, and may have been
4499 * released depending on flags and vma->vm_ops->fault() return value.
4500 * See filemap_fault() and __lock_page_retry().
4501 */
4502 static vm_fault_t __do_fault(struct vm_fault *vmf)
4503 {
4504 struct vm_area_struct *vma = vmf->vma;
4505 struct folio *folio;
4506 vm_fault_t ret;
4507
4508 /*
4509 * Preallocate pte before we take page_lock because this might lead to
4510 * deadlocks for memcg reclaim which waits for pages under writeback:
4511 * lock_page(A)
4512 * SetPageWriteback(A)
4513 * unlock_page(A)
4514 * lock_page(B)
4515 * lock_page(B)
4516 * pte_alloc_one
4517 * shrink_page_list
4518 * wait_on_page_writeback(A)
4519 * SetPageWriteback(B)
4520 * unlock_page(B)
4521 * # flush A, B to clear the writeback
4522 */
4523 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4524 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4525 if (!vmf->prealloc_pte)
4526 return VM_FAULT_OOM;
4527 }
4528
4529 ret = vma->vm_ops->fault(vmf);
4530 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4531 VM_FAULT_DONE_COW)))
4532 return ret;
4533
4534 folio = page_folio(vmf->page);
4535 if (unlikely(PageHWPoison(vmf->page))) {
4536 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4537 if (ret & VM_FAULT_LOCKED) {
4538 if (page_mapped(vmf->page))
4539 unmap_mapping_folio(folio);
4540 /* Retry if a clean folio was removed from the cache. */
4541 if (mapping_evict_folio(folio->mapping, folio))
4542 poisonret = VM_FAULT_NOPAGE;
4543 folio_unlock(folio);
4544 }
4545 folio_put(folio);
4546 vmf->page = NULL;
4547 return poisonret;
4548 }
4549
4550 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4551 folio_lock(folio);
4552 else
4553 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4554
4555 return ret;
4556 }
4557
4558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4559 static void deposit_prealloc_pte(struct vm_fault *vmf)
4560 {
4561 struct vm_area_struct *vma = vmf->vma;
4562
4563 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4564 /*
4565 * We are going to consume the prealloc table,
4566 * count that as nr_ptes.
4567 */
4568 mm_inc_nr_ptes(vma->vm_mm);
4569 vmf->prealloc_pte = NULL;
4570 }
4571
4572 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4573 {
4574 struct folio *folio = page_folio(page);
4575 struct vm_area_struct *vma = vmf->vma;
4576 bool write = vmf->flags & FAULT_FLAG_WRITE;
4577 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4578 pmd_t entry;
4579 vm_fault_t ret = VM_FAULT_FALLBACK;
4580
4581 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4582 return ret;
4583
4584 if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
4585 return ret;
4586
4587 /*
4588 * Just backoff if any subpage of a THP is corrupted otherwise
4589 * the corrupted page may mapped by PMD silently to escape the
4590 * check. This kind of THP just can be PTE mapped. Access to
4591 * the corrupted subpage should trigger SIGBUS as expected.
4592 */
4593 if (unlikely(folio_test_has_hwpoisoned(folio)))
4594 return ret;
4595
4596 /*
4597 * Archs like ppc64 need additional space to store information
4598 * related to pte entry. Use the preallocated table for that.
4599 */
4600 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4601 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4602 if (!vmf->prealloc_pte)
4603 return VM_FAULT_OOM;
4604 }
4605
4606 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4607 if (unlikely(!pmd_none(*vmf->pmd)))
4608 goto out;
4609
4610 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4611
4612 entry = mk_huge_pmd(page, vma->vm_page_prot);
4613 if (write)
4614 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4615
4616 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4617 folio_add_file_rmap_pmd(folio, page, vma);
4618
4619 /*
4620 * deposit and withdraw with pmd lock held
4621 */
4622 if (arch_needs_pgtable_deposit())
4623 deposit_prealloc_pte(vmf);
4624
4625 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4626
4627 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4628
4629 /* fault is handled */
4630 ret = 0;
4631 count_vm_event(THP_FILE_MAPPED);
4632 out:
4633 spin_unlock(vmf->ptl);
4634 return ret;
4635 }
4636 #else
4637 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4638 {
4639 return VM_FAULT_FALLBACK;
4640 }
4641 #endif
4642
4643 /**
4644 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4645 * @vmf: Fault decription.
4646 * @folio: The folio that contains @page.
4647 * @page: The first page to create a PTE for.
4648 * @nr: The number of PTEs to create.
4649 * @addr: The first address to create a PTE for.
4650 */
4651 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4652 struct page *page, unsigned int nr, unsigned long addr)
4653 {
4654 struct vm_area_struct *vma = vmf->vma;
4655 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4656 bool write = vmf->flags & FAULT_FLAG_WRITE;
4657 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4658 pte_t entry;
4659
4660 flush_icache_pages(vma, page, nr);
4661 entry = mk_pte(page, vma->vm_page_prot);
4662
4663 if (prefault && arch_wants_old_prefaulted_pte())
4664 entry = pte_mkold(entry);
4665 else
4666 entry = pte_sw_mkyoung(entry);
4667
4668 if (write)
4669 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4670 if (unlikely(uffd_wp))
4671 entry = pte_mkuffd_wp(entry);
4672 /* copy-on-write page */
4673 if (write && !(vma->vm_flags & VM_SHARED)) {
4674 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4675 VM_BUG_ON_FOLIO(nr != 1, folio);
4676 folio_add_new_anon_rmap(folio, vma, addr);
4677 folio_add_lru_vma(folio, vma);
4678 } else {
4679 add_mm_counter(vma->vm_mm, mm_counter_file(folio), nr);
4680 folio_add_file_rmap_ptes(folio, page, nr, vma);
4681 }
4682 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4683
4684 /* no need to invalidate: a not-present page won't be cached */
4685 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4686 }
4687
4688 static bool vmf_pte_changed(struct vm_fault *vmf)
4689 {
4690 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4691 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4692
4693 return !pte_none(ptep_get(vmf->pte));
4694 }
4695
4696 /**
4697 * finish_fault - finish page fault once we have prepared the page to fault
4698 *
4699 * @vmf: structure describing the fault
4700 *
4701 * This function handles all that is needed to finish a page fault once the
4702 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4703 * given page, adds reverse page mapping, handles memcg charges and LRU
4704 * addition.
4705 *
4706 * The function expects the page to be locked and on success it consumes a
4707 * reference of a page being mapped (for the PTE which maps it).
4708 *
4709 * Return: %0 on success, %VM_FAULT_ code in case of error.
4710 */
4711 vm_fault_t finish_fault(struct vm_fault *vmf)
4712 {
4713 struct vm_area_struct *vma = vmf->vma;
4714 struct page *page;
4715 vm_fault_t ret;
4716
4717 /* Did we COW the page? */
4718 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4719 page = vmf->cow_page;
4720 else
4721 page = vmf->page;
4722
4723 /*
4724 * check even for read faults because we might have lost our CoWed
4725 * page
4726 */
4727 if (!(vma->vm_flags & VM_SHARED)) {
4728 ret = check_stable_address_space(vma->vm_mm);
4729 if (ret)
4730 return ret;
4731 }
4732
4733 if (pmd_none(*vmf->pmd)) {
4734 if (PageTransCompound(page)) {
4735 ret = do_set_pmd(vmf, page);
4736 if (ret != VM_FAULT_FALLBACK)
4737 return ret;
4738 }
4739
4740 if (vmf->prealloc_pte)
4741 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4742 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4743 return VM_FAULT_OOM;
4744 }
4745
4746 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4747 vmf->address, &vmf->ptl);
4748 if (!vmf->pte)
4749 return VM_FAULT_NOPAGE;
4750
4751 /* Re-check under ptl */
4752 if (likely(!vmf_pte_changed(vmf))) {
4753 struct folio *folio = page_folio(page);
4754
4755 set_pte_range(vmf, folio, page, 1, vmf->address);
4756 ret = 0;
4757 } else {
4758 update_mmu_tlb(vma, vmf->address, vmf->pte);
4759 ret = VM_FAULT_NOPAGE;
4760 }
4761
4762 pte_unmap_unlock(vmf->pte, vmf->ptl);
4763 return ret;
4764 }
4765
4766 static unsigned long fault_around_pages __read_mostly =
4767 65536 >> PAGE_SHIFT;
4768
4769 #ifdef CONFIG_DEBUG_FS
4770 static int fault_around_bytes_get(void *data, u64 *val)
4771 {
4772 *val = fault_around_pages << PAGE_SHIFT;
4773 return 0;
4774 }
4775
4776 /*
4777 * fault_around_bytes must be rounded down to the nearest page order as it's
4778 * what do_fault_around() expects to see.
4779 */
4780 static int fault_around_bytes_set(void *data, u64 val)
4781 {
4782 if (val / PAGE_SIZE > PTRS_PER_PTE)
4783 return -EINVAL;
4784
4785 /*
4786 * The minimum value is 1 page, however this results in no fault-around
4787 * at all. See should_fault_around().
4788 */
4789 val = max(val, PAGE_SIZE);
4790 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
4791
4792 return 0;
4793 }
4794 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4795 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4796
4797 static int __init fault_around_debugfs(void)
4798 {
4799 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4800 &fault_around_bytes_fops);
4801 return 0;
4802 }
4803 late_initcall(fault_around_debugfs);
4804 #endif
4805
4806 /*
4807 * do_fault_around() tries to map few pages around the fault address. The hope
4808 * is that the pages will be needed soon and this will lower the number of
4809 * faults to handle.
4810 *
4811 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4812 * not ready to be mapped: not up-to-date, locked, etc.
4813 *
4814 * This function doesn't cross VMA or page table boundaries, in order to call
4815 * map_pages() and acquire a PTE lock only once.
4816 *
4817 * fault_around_pages defines how many pages we'll try to map.
4818 * do_fault_around() expects it to be set to a power of two less than or equal
4819 * to PTRS_PER_PTE.
4820 *
4821 * The virtual address of the area that we map is naturally aligned to
4822 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4823 * (and therefore to page order). This way it's easier to guarantee
4824 * that we don't cross page table boundaries.
4825 */
4826 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4827 {
4828 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4829 pgoff_t pte_off = pte_index(vmf->address);
4830 /* The page offset of vmf->address within the VMA. */
4831 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4832 pgoff_t from_pte, to_pte;
4833 vm_fault_t ret;
4834
4835 /* The PTE offset of the start address, clamped to the VMA. */
4836 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4837 pte_off - min(pte_off, vma_off));
4838
4839 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4840 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4841 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4842
4843 if (pmd_none(*vmf->pmd)) {
4844 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4845 if (!vmf->prealloc_pte)
4846 return VM_FAULT_OOM;
4847 }
4848
4849 rcu_read_lock();
4850 ret = vmf->vma->vm_ops->map_pages(vmf,
4851 vmf->pgoff + from_pte - pte_off,
4852 vmf->pgoff + to_pte - pte_off);
4853 rcu_read_unlock();
4854
4855 return ret;
4856 }
4857
4858 /* Return true if we should do read fault-around, false otherwise */
4859 static inline bool should_fault_around(struct vm_fault *vmf)
4860 {
4861 /* No ->map_pages? No way to fault around... */
4862 if (!vmf->vma->vm_ops->map_pages)
4863 return false;
4864
4865 if (uffd_disable_fault_around(vmf->vma))
4866 return false;
4867
4868 /* A single page implies no faulting 'around' at all. */
4869 return fault_around_pages > 1;
4870 }
4871
4872 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4873 {
4874 vm_fault_t ret = 0;
4875 struct folio *folio;
4876
4877 /*
4878 * Let's call ->map_pages() first and use ->fault() as fallback
4879 * if page by the offset is not ready to be mapped (cold cache or
4880 * something).
4881 */
4882 if (should_fault_around(vmf)) {
4883 ret = do_fault_around(vmf);
4884 if (ret)
4885 return ret;
4886 }
4887
4888 ret = vmf_can_call_fault(vmf);
4889 if (ret)
4890 return ret;
4891
4892 ret = __do_fault(vmf);
4893 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4894 return ret;
4895
4896 ret |= finish_fault(vmf);
4897 folio = page_folio(vmf->page);
4898 folio_unlock(folio);
4899 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4900 folio_put(folio);
4901 return ret;
4902 }
4903
4904 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4905 {
4906 struct vm_area_struct *vma = vmf->vma;
4907 struct folio *folio;
4908 vm_fault_t ret;
4909
4910 ret = vmf_can_call_fault(vmf);
4911 if (!ret)
4912 ret = vmf_anon_prepare(vmf);
4913 if (ret)
4914 return ret;
4915
4916 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4917 if (!folio)
4918 return VM_FAULT_OOM;
4919
4920 vmf->cow_page = &folio->page;
4921
4922 ret = __do_fault(vmf);
4923 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4924 goto uncharge_out;
4925 if (ret & VM_FAULT_DONE_COW)
4926 return ret;
4927
4928 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4929 __folio_mark_uptodate(folio);
4930
4931 ret |= finish_fault(vmf);
4932 unlock_page(vmf->page);
4933 put_page(vmf->page);
4934 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4935 goto uncharge_out;
4936 return ret;
4937 uncharge_out:
4938 folio_put(folio);
4939 return ret;
4940 }
4941
4942 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4943 {
4944 struct vm_area_struct *vma = vmf->vma;
4945 vm_fault_t ret, tmp;
4946 struct folio *folio;
4947
4948 ret = vmf_can_call_fault(vmf);
4949 if (ret)
4950 return ret;
4951
4952 ret = __do_fault(vmf);
4953 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4954 return ret;
4955
4956 folio = page_folio(vmf->page);
4957
4958 /*
4959 * Check if the backing address space wants to know that the page is
4960 * about to become writable
4961 */
4962 if (vma->vm_ops->page_mkwrite) {
4963 folio_unlock(folio);
4964 tmp = do_page_mkwrite(vmf, folio);
4965 if (unlikely(!tmp ||
4966 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4967 folio_put(folio);
4968 return tmp;
4969 }
4970 }
4971
4972 ret |= finish_fault(vmf);
4973 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4974 VM_FAULT_RETRY))) {
4975 folio_unlock(folio);
4976 folio_put(folio);
4977 return ret;
4978 }
4979
4980 ret |= fault_dirty_shared_page(vmf);
4981 return ret;
4982 }
4983
4984 /*
4985 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4986 * but allow concurrent faults).
4987 * The mmap_lock may have been released depending on flags and our
4988 * return value. See filemap_fault() and __folio_lock_or_retry().
4989 * If mmap_lock is released, vma may become invalid (for example
4990 * by other thread calling munmap()).
4991 */
4992 static vm_fault_t do_fault(struct vm_fault *vmf)
4993 {
4994 struct vm_area_struct *vma = vmf->vma;
4995 struct mm_struct *vm_mm = vma->vm_mm;
4996 vm_fault_t ret;
4997
4998 /*
4999 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5000 */
5001 if (!vma->vm_ops->fault) {
5002 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5003 vmf->address, &vmf->ptl);
5004 if (unlikely(!vmf->pte))
5005 ret = VM_FAULT_SIGBUS;
5006 else {
5007 /*
5008 * Make sure this is not a temporary clearing of pte
5009 * by holding ptl and checking again. A R/M/W update
5010 * of pte involves: take ptl, clearing the pte so that
5011 * we don't have concurrent modification by hardware
5012 * followed by an update.
5013 */
5014 if (unlikely(pte_none(ptep_get(vmf->pte))))
5015 ret = VM_FAULT_SIGBUS;
5016 else
5017 ret = VM_FAULT_NOPAGE;
5018
5019 pte_unmap_unlock(vmf->pte, vmf->ptl);
5020 }
5021 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5022 ret = do_read_fault(vmf);
5023 else if (!(vma->vm_flags & VM_SHARED))
5024 ret = do_cow_fault(vmf);
5025 else
5026 ret = do_shared_fault(vmf);
5027
5028 /* preallocated pagetable is unused: free it */
5029 if (vmf->prealloc_pte) {
5030 pte_free(vm_mm, vmf->prealloc_pte);
5031 vmf->prealloc_pte = NULL;
5032 }
5033 return ret;
5034 }
5035
5036 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
5037 unsigned long addr, int page_nid, int *flags)
5038 {
5039 folio_get(folio);
5040
5041 /* Record the current PID acceesing VMA */
5042 vma_set_access_pid_bit(vma);
5043
5044 count_vm_numa_event(NUMA_HINT_FAULTS);
5045 if (page_nid == numa_node_id()) {
5046 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5047 *flags |= TNF_FAULT_LOCAL;
5048 }
5049
5050 return mpol_misplaced(folio, vma, addr);
5051 }
5052
5053 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5054 {
5055 struct vm_area_struct *vma = vmf->vma;
5056 struct folio *folio = NULL;
5057 int nid = NUMA_NO_NODE;
5058 bool writable = false;
5059 int last_cpupid;
5060 int target_nid;
5061 pte_t pte, old_pte;
5062 int flags = 0;
5063
5064 /*
5065 * The pte cannot be used safely until we verify, while holding the page
5066 * table lock, that its contents have not changed during fault handling.
5067 */
5068 spin_lock(vmf->ptl);
5069 /* Read the live PTE from the page tables: */
5070 old_pte = ptep_get(vmf->pte);
5071
5072 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5073 pte_unmap_unlock(vmf->pte, vmf->ptl);
5074 goto out;
5075 }
5076
5077 pte = pte_modify(old_pte, vma->vm_page_prot);
5078
5079 /*
5080 * Detect now whether the PTE could be writable; this information
5081 * is only valid while holding the PT lock.
5082 */
5083 writable = pte_write(pte);
5084 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
5085 can_change_pte_writable(vma, vmf->address, pte))
5086 writable = true;
5087
5088 folio = vm_normal_folio(vma, vmf->address, pte);
5089 if (!folio || folio_is_zone_device(folio))
5090 goto out_map;
5091
5092 /* TODO: handle PTE-mapped THP */
5093 if (folio_test_large(folio))
5094 goto out_map;
5095
5096 /*
5097 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5098 * much anyway since they can be in shared cache state. This misses
5099 * the case where a mapping is writable but the process never writes
5100 * to it but pte_write gets cleared during protection updates and
5101 * pte_dirty has unpredictable behaviour between PTE scan updates,
5102 * background writeback, dirty balancing and application behaviour.
5103 */
5104 if (!writable)
5105 flags |= TNF_NO_GROUP;
5106
5107 /*
5108 * Flag if the folio is shared between multiple address spaces. This
5109 * is later used when determining whether to group tasks together
5110 */
5111 if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
5112 flags |= TNF_SHARED;
5113
5114 nid = folio_nid(folio);
5115 /*
5116 * For memory tiering mode, cpupid of slow memory page is used
5117 * to record page access time. So use default value.
5118 */
5119 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5120 !node_is_toptier(nid))
5121 last_cpupid = (-1 & LAST_CPUPID_MASK);
5122 else
5123 last_cpupid = folio_last_cpupid(folio);
5124 target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
5125 if (target_nid == NUMA_NO_NODE) {
5126 folio_put(folio);
5127 goto out_map;
5128 }
5129 pte_unmap_unlock(vmf->pte, vmf->ptl);
5130 writable = false;
5131
5132 /* Migrate to the requested node */
5133 if (migrate_misplaced_folio(folio, vma, target_nid)) {
5134 nid = target_nid;
5135 flags |= TNF_MIGRATED;
5136 } else {
5137 flags |= TNF_MIGRATE_FAIL;
5138 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5139 vmf->address, &vmf->ptl);
5140 if (unlikely(!vmf->pte))
5141 goto out;
5142 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5143 pte_unmap_unlock(vmf->pte, vmf->ptl);
5144 goto out;
5145 }
5146 goto out_map;
5147 }
5148
5149 out:
5150 if (nid != NUMA_NO_NODE)
5151 task_numa_fault(last_cpupid, nid, 1, flags);
5152 return 0;
5153 out_map:
5154 /*
5155 * Make it present again, depending on how arch implements
5156 * non-accessible ptes, some can allow access by kernel mode.
5157 */
5158 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
5159 pte = pte_modify(old_pte, vma->vm_page_prot);
5160 pte = pte_mkyoung(pte);
5161 if (writable)
5162 pte = pte_mkwrite(pte, vma);
5163 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
5164 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
5165 pte_unmap_unlock(vmf->pte, vmf->ptl);
5166 goto out;
5167 }
5168
5169 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5170 {
5171 struct vm_area_struct *vma = vmf->vma;
5172 if (vma_is_anonymous(vma))
5173 return do_huge_pmd_anonymous_page(vmf);
5174 if (vma->vm_ops->huge_fault)
5175 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5176 return VM_FAULT_FALLBACK;
5177 }
5178
5179 /* `inline' is required to avoid gcc 4.1.2 build error */
5180 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5181 {
5182 struct vm_area_struct *vma = vmf->vma;
5183 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5184 vm_fault_t ret;
5185
5186 if (vma_is_anonymous(vma)) {
5187 if (likely(!unshare) &&
5188 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5189 if (userfaultfd_wp_async(vmf->vma))
5190 goto split;
5191 return handle_userfault(vmf, VM_UFFD_WP);
5192 }
5193 return do_huge_pmd_wp_page(vmf);
5194 }
5195
5196 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5197 if (vma->vm_ops->huge_fault) {
5198 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5199 if (!(ret & VM_FAULT_FALLBACK))
5200 return ret;
5201 }
5202 }
5203
5204 split:
5205 /* COW or write-notify handled on pte level: split pmd. */
5206 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5207
5208 return VM_FAULT_FALLBACK;
5209 }
5210
5211 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5212 {
5213 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5214 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5215 struct vm_area_struct *vma = vmf->vma;
5216 /* No support for anonymous transparent PUD pages yet */
5217 if (vma_is_anonymous(vma))
5218 return VM_FAULT_FALLBACK;
5219 if (vma->vm_ops->huge_fault)
5220 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5221 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5222 return VM_FAULT_FALLBACK;
5223 }
5224
5225 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5226 {
5227 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5228 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5229 struct vm_area_struct *vma = vmf->vma;
5230 vm_fault_t ret;
5231
5232 /* No support for anonymous transparent PUD pages yet */
5233 if (vma_is_anonymous(vma))
5234 goto split;
5235 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5236 if (vma->vm_ops->huge_fault) {
5237 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5238 if (!(ret & VM_FAULT_FALLBACK))
5239 return ret;
5240 }
5241 }
5242 split:
5243 /* COW or write-notify not handled on PUD level: split pud.*/
5244 __split_huge_pud(vma, vmf->pud, vmf->address);
5245 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5246 return VM_FAULT_FALLBACK;
5247 }
5248
5249 /*
5250 * These routines also need to handle stuff like marking pages dirty
5251 * and/or accessed for architectures that don't do it in hardware (most
5252 * RISC architectures). The early dirtying is also good on the i386.
5253 *
5254 * There is also a hook called "update_mmu_cache()" that architectures
5255 * with external mmu caches can use to update those (ie the Sparc or
5256 * PowerPC hashed page tables that act as extended TLBs).
5257 *
5258 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5259 * concurrent faults).
5260 *
5261 * The mmap_lock may have been released depending on flags and our return value.
5262 * See filemap_fault() and __folio_lock_or_retry().
5263 */
5264 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5265 {
5266 pte_t entry;
5267
5268 if (unlikely(pmd_none(*vmf->pmd))) {
5269 /*
5270 * Leave __pte_alloc() until later: because vm_ops->fault may
5271 * want to allocate huge page, and if we expose page table
5272 * for an instant, it will be difficult to retract from
5273 * concurrent faults and from rmap lookups.
5274 */
5275 vmf->pte = NULL;
5276 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5277 } else {
5278 /*
5279 * A regular pmd is established and it can't morph into a huge
5280 * pmd by anon khugepaged, since that takes mmap_lock in write
5281 * mode; but shmem or file collapse to THP could still morph
5282 * it into a huge pmd: just retry later if so.
5283 */
5284 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5285 vmf->address, &vmf->ptl);
5286 if (unlikely(!vmf->pte))
5287 return 0;
5288 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5289 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5290
5291 if (pte_none(vmf->orig_pte)) {
5292 pte_unmap(vmf->pte);
5293 vmf->pte = NULL;
5294 }
5295 }
5296
5297 if (!vmf->pte)
5298 return do_pte_missing(vmf);
5299
5300 if (!pte_present(vmf->orig_pte))
5301 return do_swap_page(vmf);
5302
5303 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5304 return do_numa_page(vmf);
5305
5306 spin_lock(vmf->ptl);
5307 entry = vmf->orig_pte;
5308 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5309 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5310 goto unlock;
5311 }
5312 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5313 if (!pte_write(entry))
5314 return do_wp_page(vmf);
5315 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5316 entry = pte_mkdirty(entry);
5317 }
5318 entry = pte_mkyoung(entry);
5319 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5320 vmf->flags & FAULT_FLAG_WRITE)) {
5321 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5322 vmf->pte, 1);
5323 } else {
5324 /* Skip spurious TLB flush for retried page fault */
5325 if (vmf->flags & FAULT_FLAG_TRIED)
5326 goto unlock;
5327 /*
5328 * This is needed only for protection faults but the arch code
5329 * is not yet telling us if this is a protection fault or not.
5330 * This still avoids useless tlb flushes for .text page faults
5331 * with threads.
5332 */
5333 if (vmf->flags & FAULT_FLAG_WRITE)
5334 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5335 vmf->pte);
5336 }
5337 unlock:
5338 pte_unmap_unlock(vmf->pte, vmf->ptl);
5339 return 0;
5340 }
5341
5342 /*
5343 * On entry, we hold either the VMA lock or the mmap_lock
5344 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5345 * the result, the mmap_lock is not held on exit. See filemap_fault()
5346 * and __folio_lock_or_retry().
5347 */
5348 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5349 unsigned long address, unsigned int flags)
5350 {
5351 struct vm_fault vmf = {
5352 .vma = vma,
5353 .address = address & PAGE_MASK,
5354 .real_address = address,
5355 .flags = flags,
5356 .pgoff = linear_page_index(vma, address),
5357 .gfp_mask = __get_fault_gfp_mask(vma),
5358 };
5359 struct mm_struct *mm = vma->vm_mm;
5360 unsigned long vm_flags = vma->vm_flags;
5361 pgd_t *pgd;
5362 p4d_t *p4d;
5363 vm_fault_t ret;
5364
5365 pgd = pgd_offset(mm, address);
5366 p4d = p4d_alloc(mm, pgd, address);
5367 if (!p4d)
5368 return VM_FAULT_OOM;
5369
5370 vmf.pud = pud_alloc(mm, p4d, address);
5371 if (!vmf.pud)
5372 return VM_FAULT_OOM;
5373 retry_pud:
5374 if (pud_none(*vmf.pud) &&
5375 thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) {
5376 ret = create_huge_pud(&vmf);
5377 if (!(ret & VM_FAULT_FALLBACK))
5378 return ret;
5379 } else {
5380 pud_t orig_pud = *vmf.pud;
5381
5382 barrier();
5383 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5384
5385 /*
5386 * TODO once we support anonymous PUDs: NUMA case and
5387 * FAULT_FLAG_UNSHARE handling.
5388 */
5389 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5390 ret = wp_huge_pud(&vmf, orig_pud);
5391 if (!(ret & VM_FAULT_FALLBACK))
5392 return ret;
5393 } else {
5394 huge_pud_set_accessed(&vmf, orig_pud);
5395 return 0;
5396 }
5397 }
5398 }
5399
5400 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5401 if (!vmf.pmd)
5402 return VM_FAULT_OOM;
5403
5404 /* Huge pud page fault raced with pmd_alloc? */
5405 if (pud_trans_unstable(vmf.pud))
5406 goto retry_pud;
5407
5408 if (pmd_none(*vmf.pmd) &&
5409 thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) {
5410 ret = create_huge_pmd(&vmf);
5411 if (!(ret & VM_FAULT_FALLBACK))
5412 return ret;
5413 } else {
5414 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5415
5416 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5417 VM_BUG_ON(thp_migration_supported() &&
5418 !is_pmd_migration_entry(vmf.orig_pmd));
5419 if (is_pmd_migration_entry(vmf.orig_pmd))
5420 pmd_migration_entry_wait(mm, vmf.pmd);
5421 return 0;
5422 }
5423 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5424 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5425 return do_huge_pmd_numa_page(&vmf);
5426
5427 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5428 !pmd_write(vmf.orig_pmd)) {
5429 ret = wp_huge_pmd(&vmf);
5430 if (!(ret & VM_FAULT_FALLBACK))
5431 return ret;
5432 } else {
5433 huge_pmd_set_accessed(&vmf);
5434 return 0;
5435 }
5436 }
5437 }
5438
5439 return handle_pte_fault(&vmf);
5440 }
5441
5442 /**
5443 * mm_account_fault - Do page fault accounting
5444 * @mm: mm from which memcg should be extracted. It can be NULL.
5445 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5446 * of perf event counters, but we'll still do the per-task accounting to
5447 * the task who triggered this page fault.
5448 * @address: the faulted address.
5449 * @flags: the fault flags.
5450 * @ret: the fault retcode.
5451 *
5452 * This will take care of most of the page fault accounting. Meanwhile, it
5453 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5454 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5455 * still be in per-arch page fault handlers at the entry of page fault.
5456 */
5457 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5458 unsigned long address, unsigned int flags,
5459 vm_fault_t ret)
5460 {
5461 bool major;
5462
5463 /* Incomplete faults will be accounted upon completion. */
5464 if (ret & VM_FAULT_RETRY)
5465 return;
5466
5467 /*
5468 * To preserve the behavior of older kernels, PGFAULT counters record
5469 * both successful and failed faults, as opposed to perf counters,
5470 * which ignore failed cases.
5471 */
5472 count_vm_event(PGFAULT);
5473 count_memcg_event_mm(mm, PGFAULT);
5474
5475 /*
5476 * Do not account for unsuccessful faults (e.g. when the address wasn't
5477 * valid). That includes arch_vma_access_permitted() failing before
5478 * reaching here. So this is not a "this many hardware page faults"
5479 * counter. We should use the hw profiling for that.
5480 */
5481 if (ret & VM_FAULT_ERROR)
5482 return;
5483
5484 /*
5485 * We define the fault as a major fault when the final successful fault
5486 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5487 * handle it immediately previously).
5488 */
5489 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5490
5491 if (major)
5492 current->maj_flt++;
5493 else
5494 current->min_flt++;
5495
5496 /*
5497 * If the fault is done for GUP, regs will be NULL. We only do the
5498 * accounting for the per thread fault counters who triggered the
5499 * fault, and we skip the perf event updates.
5500 */
5501 if (!regs)
5502 return;
5503
5504 if (major)
5505 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5506 else
5507 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5508 }
5509
5510 #ifdef CONFIG_LRU_GEN
5511 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5512 {
5513 /* the LRU algorithm only applies to accesses with recency */
5514 current->in_lru_fault = vma_has_recency(vma);
5515 }
5516
5517 static void lru_gen_exit_fault(void)
5518 {
5519 current->in_lru_fault = false;
5520 }
5521 #else
5522 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5523 {
5524 }
5525
5526 static void lru_gen_exit_fault(void)
5527 {
5528 }
5529 #endif /* CONFIG_LRU_GEN */
5530
5531 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5532 unsigned int *flags)
5533 {
5534 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5535 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5536 return VM_FAULT_SIGSEGV;
5537 /*
5538 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5539 * just treat it like an ordinary read-fault otherwise.
5540 */
5541 if (!is_cow_mapping(vma->vm_flags))
5542 *flags &= ~FAULT_FLAG_UNSHARE;
5543 } else if (*flags & FAULT_FLAG_WRITE) {
5544 /* Write faults on read-only mappings are impossible ... */
5545 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5546 return VM_FAULT_SIGSEGV;
5547 /* ... and FOLL_FORCE only applies to COW mappings. */
5548 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5549 !is_cow_mapping(vma->vm_flags)))
5550 return VM_FAULT_SIGSEGV;
5551 }
5552 #ifdef CONFIG_PER_VMA_LOCK
5553 /*
5554 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5555 * the assumption that lock is dropped on VM_FAULT_RETRY.
5556 */
5557 if (WARN_ON_ONCE((*flags &
5558 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5559 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5560 return VM_FAULT_SIGSEGV;
5561 #endif
5562
5563 return 0;
5564 }
5565
5566 /*
5567 * By the time we get here, we already hold the mm semaphore
5568 *
5569 * The mmap_lock may have been released depending on flags and our
5570 * return value. See filemap_fault() and __folio_lock_or_retry().
5571 */
5572 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5573 unsigned int flags, struct pt_regs *regs)
5574 {
5575 /* If the fault handler drops the mmap_lock, vma may be freed */
5576 struct mm_struct *mm = vma->vm_mm;
5577 vm_fault_t ret;
5578
5579 __set_current_state(TASK_RUNNING);
5580
5581 ret = sanitize_fault_flags(vma, &flags);
5582 if (ret)
5583 goto out;
5584
5585 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5586 flags & FAULT_FLAG_INSTRUCTION,
5587 flags & FAULT_FLAG_REMOTE)) {
5588 ret = VM_FAULT_SIGSEGV;
5589 goto out;
5590 }
5591
5592 /*
5593 * Enable the memcg OOM handling for faults triggered in user
5594 * space. Kernel faults are handled more gracefully.
5595 */
5596 if (flags & FAULT_FLAG_USER)
5597 mem_cgroup_enter_user_fault();
5598
5599 lru_gen_enter_fault(vma);
5600
5601 if (unlikely(is_vm_hugetlb_page(vma)))
5602 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5603 else
5604 ret = __handle_mm_fault(vma, address, flags);
5605
5606 lru_gen_exit_fault();
5607
5608 if (flags & FAULT_FLAG_USER) {
5609 mem_cgroup_exit_user_fault();
5610 /*
5611 * The task may have entered a memcg OOM situation but
5612 * if the allocation error was handled gracefully (no
5613 * VM_FAULT_OOM), there is no need to kill anything.
5614 * Just clean up the OOM state peacefully.
5615 */
5616 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5617 mem_cgroup_oom_synchronize(false);
5618 }
5619 out:
5620 mm_account_fault(mm, regs, address, flags, ret);
5621
5622 return ret;
5623 }
5624 EXPORT_SYMBOL_GPL(handle_mm_fault);
5625
5626 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5627 #include <linux/extable.h>
5628
5629 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5630 {
5631 if (likely(mmap_read_trylock(mm)))
5632 return true;
5633
5634 if (regs && !user_mode(regs)) {
5635 unsigned long ip = exception_ip(regs);
5636 if (!search_exception_tables(ip))
5637 return false;
5638 }
5639
5640 return !mmap_read_lock_killable(mm);
5641 }
5642
5643 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5644 {
5645 /*
5646 * We don't have this operation yet.
5647 *
5648 * It should be easy enough to do: it's basically a
5649 * atomic_long_try_cmpxchg_acquire()
5650 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5651 * it also needs the proper lockdep magic etc.
5652 */
5653 return false;
5654 }
5655
5656 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5657 {
5658 mmap_read_unlock(mm);
5659 if (regs && !user_mode(regs)) {
5660 unsigned long ip = exception_ip(regs);
5661 if (!search_exception_tables(ip))
5662 return false;
5663 }
5664 return !mmap_write_lock_killable(mm);
5665 }
5666
5667 /*
5668 * Helper for page fault handling.
5669 *
5670 * This is kind of equivalend to "mmap_read_lock()" followed
5671 * by "find_extend_vma()", except it's a lot more careful about
5672 * the locking (and will drop the lock on failure).
5673 *
5674 * For example, if we have a kernel bug that causes a page
5675 * fault, we don't want to just use mmap_read_lock() to get
5676 * the mm lock, because that would deadlock if the bug were
5677 * to happen while we're holding the mm lock for writing.
5678 *
5679 * So this checks the exception tables on kernel faults in
5680 * order to only do this all for instructions that are actually
5681 * expected to fault.
5682 *
5683 * We can also actually take the mm lock for writing if we
5684 * need to extend the vma, which helps the VM layer a lot.
5685 */
5686 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5687 unsigned long addr, struct pt_regs *regs)
5688 {
5689 struct vm_area_struct *vma;
5690
5691 if (!get_mmap_lock_carefully(mm, regs))
5692 return NULL;
5693
5694 vma = find_vma(mm, addr);
5695 if (likely(vma && (vma->vm_start <= addr)))
5696 return vma;
5697
5698 /*
5699 * Well, dang. We might still be successful, but only
5700 * if we can extend a vma to do so.
5701 */
5702 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5703 mmap_read_unlock(mm);
5704 return NULL;
5705 }
5706
5707 /*
5708 * We can try to upgrade the mmap lock atomically,
5709 * in which case we can continue to use the vma
5710 * we already looked up.
5711 *
5712 * Otherwise we'll have to drop the mmap lock and
5713 * re-take it, and also look up the vma again,
5714 * re-checking it.
5715 */
5716 if (!mmap_upgrade_trylock(mm)) {
5717 if (!upgrade_mmap_lock_carefully(mm, regs))
5718 return NULL;
5719
5720 vma = find_vma(mm, addr);
5721 if (!vma)
5722 goto fail;
5723 if (vma->vm_start <= addr)
5724 goto success;
5725 if (!(vma->vm_flags & VM_GROWSDOWN))
5726 goto fail;
5727 }
5728
5729 if (expand_stack_locked(vma, addr))
5730 goto fail;
5731
5732 success:
5733 mmap_write_downgrade(mm);
5734 return vma;
5735
5736 fail:
5737 mmap_write_unlock(mm);
5738 return NULL;
5739 }
5740 #endif
5741
5742 #ifdef CONFIG_PER_VMA_LOCK
5743 /*
5744 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5745 * stable and not isolated. If the VMA is not found or is being modified the
5746 * function returns NULL.
5747 */
5748 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5749 unsigned long address)
5750 {
5751 MA_STATE(mas, &mm->mm_mt, address, address);
5752 struct vm_area_struct *vma;
5753
5754 rcu_read_lock();
5755 retry:
5756 vma = mas_walk(&mas);
5757 if (!vma)
5758 goto inval;
5759
5760 if (!vma_start_read(vma))
5761 goto inval;
5762
5763 /*
5764 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5765 * This check must happen after vma_start_read(); otherwise, a
5766 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5767 * from its anon_vma.
5768 */
5769 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5770 goto inval_end_read;
5771
5772 /* Check since vm_start/vm_end might change before we lock the VMA */
5773 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5774 goto inval_end_read;
5775
5776 /* Check if the VMA got isolated after we found it */
5777 if (vma->detached) {
5778 vma_end_read(vma);
5779 count_vm_vma_lock_event(VMA_LOCK_MISS);
5780 /* The area was replaced with another one */
5781 goto retry;
5782 }
5783
5784 rcu_read_unlock();
5785 return vma;
5786
5787 inval_end_read:
5788 vma_end_read(vma);
5789 inval:
5790 rcu_read_unlock();
5791 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5792 return NULL;
5793 }
5794 #endif /* CONFIG_PER_VMA_LOCK */
5795
5796 #ifndef __PAGETABLE_P4D_FOLDED
5797 /*
5798 * Allocate p4d page table.
5799 * We've already handled the fast-path in-line.
5800 */
5801 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5802 {
5803 p4d_t *new = p4d_alloc_one(mm, address);
5804 if (!new)
5805 return -ENOMEM;
5806
5807 spin_lock(&mm->page_table_lock);
5808 if (pgd_present(*pgd)) { /* Another has populated it */
5809 p4d_free(mm, new);
5810 } else {
5811 smp_wmb(); /* See comment in pmd_install() */
5812 pgd_populate(mm, pgd, new);
5813 }
5814 spin_unlock(&mm->page_table_lock);
5815 return 0;
5816 }
5817 #endif /* __PAGETABLE_P4D_FOLDED */
5818
5819 #ifndef __PAGETABLE_PUD_FOLDED
5820 /*
5821 * Allocate page upper directory.
5822 * We've already handled the fast-path in-line.
5823 */
5824 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5825 {
5826 pud_t *new = pud_alloc_one(mm, address);
5827 if (!new)
5828 return -ENOMEM;
5829
5830 spin_lock(&mm->page_table_lock);
5831 if (!p4d_present(*p4d)) {
5832 mm_inc_nr_puds(mm);
5833 smp_wmb(); /* See comment in pmd_install() */
5834 p4d_populate(mm, p4d, new);
5835 } else /* Another has populated it */
5836 pud_free(mm, new);
5837 spin_unlock(&mm->page_table_lock);
5838 return 0;
5839 }
5840 #endif /* __PAGETABLE_PUD_FOLDED */
5841
5842 #ifndef __PAGETABLE_PMD_FOLDED
5843 /*
5844 * Allocate page middle directory.
5845 * We've already handled the fast-path in-line.
5846 */
5847 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5848 {
5849 spinlock_t *ptl;
5850 pmd_t *new = pmd_alloc_one(mm, address);
5851 if (!new)
5852 return -ENOMEM;
5853
5854 ptl = pud_lock(mm, pud);
5855 if (!pud_present(*pud)) {
5856 mm_inc_nr_pmds(mm);
5857 smp_wmb(); /* See comment in pmd_install() */
5858 pud_populate(mm, pud, new);
5859 } else { /* Another has populated it */
5860 pmd_free(mm, new);
5861 }
5862 spin_unlock(ptl);
5863 return 0;
5864 }
5865 #endif /* __PAGETABLE_PMD_FOLDED */
5866
5867 /**
5868 * follow_pte - look up PTE at a user virtual address
5869 * @mm: the mm_struct of the target address space
5870 * @address: user virtual address
5871 * @ptepp: location to store found PTE
5872 * @ptlp: location to store the lock for the PTE
5873 *
5874 * On a successful return, the pointer to the PTE is stored in @ptepp;
5875 * the corresponding lock is taken and its location is stored in @ptlp.
5876 * The contents of the PTE are only stable until @ptlp is released;
5877 * any further use, if any, must be protected against invalidation
5878 * with MMU notifiers.
5879 *
5880 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5881 * should be taken for read.
5882 *
5883 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5884 * it is not a good general-purpose API.
5885 *
5886 * Return: zero on success, -ve otherwise.
5887 */
5888 int follow_pte(struct mm_struct *mm, unsigned long address,
5889 pte_t **ptepp, spinlock_t **ptlp)
5890 {
5891 pgd_t *pgd;
5892 p4d_t *p4d;
5893 pud_t *pud;
5894 pmd_t *pmd;
5895 pte_t *ptep;
5896
5897 pgd = pgd_offset(mm, address);
5898 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5899 goto out;
5900
5901 p4d = p4d_offset(pgd, address);
5902 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5903 goto out;
5904
5905 pud = pud_offset(p4d, address);
5906 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5907 goto out;
5908
5909 pmd = pmd_offset(pud, address);
5910 VM_BUG_ON(pmd_trans_huge(*pmd));
5911
5912 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5913 if (!ptep)
5914 goto out;
5915 if (!pte_present(ptep_get(ptep)))
5916 goto unlock;
5917 *ptepp = ptep;
5918 return 0;
5919 unlock:
5920 pte_unmap_unlock(ptep, *ptlp);
5921 out:
5922 return -EINVAL;
5923 }
5924 EXPORT_SYMBOL_GPL(follow_pte);
5925
5926 /**
5927 * follow_pfn - look up PFN at a user virtual address
5928 * @vma: memory mapping
5929 * @address: user virtual address
5930 * @pfn: location to store found PFN
5931 *
5932 * Only IO mappings and raw PFN mappings are allowed.
5933 *
5934 * This function does not allow the caller to read the permissions
5935 * of the PTE. Do not use it.
5936 *
5937 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5938 */
5939 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5940 unsigned long *pfn)
5941 {
5942 int ret = -EINVAL;
5943 spinlock_t *ptl;
5944 pte_t *ptep;
5945
5946 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5947 return ret;
5948
5949 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5950 if (ret)
5951 return ret;
5952 *pfn = pte_pfn(ptep_get(ptep));
5953 pte_unmap_unlock(ptep, ptl);
5954 return 0;
5955 }
5956 EXPORT_SYMBOL(follow_pfn);
5957
5958 #ifdef CONFIG_HAVE_IOREMAP_PROT
5959 int follow_phys(struct vm_area_struct *vma,
5960 unsigned long address, unsigned int flags,
5961 unsigned long *prot, resource_size_t *phys)
5962 {
5963 int ret = -EINVAL;
5964 pte_t *ptep, pte;
5965 spinlock_t *ptl;
5966
5967 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5968 goto out;
5969
5970 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5971 goto out;
5972 pte = ptep_get(ptep);
5973
5974 if ((flags & FOLL_WRITE) && !pte_write(pte))
5975 goto unlock;
5976
5977 *prot = pgprot_val(pte_pgprot(pte));
5978 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5979
5980 ret = 0;
5981 unlock:
5982 pte_unmap_unlock(ptep, ptl);
5983 out:
5984 return ret;
5985 }
5986
5987 /**
5988 * generic_access_phys - generic implementation for iomem mmap access
5989 * @vma: the vma to access
5990 * @addr: userspace address, not relative offset within @vma
5991 * @buf: buffer to read/write
5992 * @len: length of transfer
5993 * @write: set to FOLL_WRITE when writing, otherwise reading
5994 *
5995 * This is a generic implementation for &vm_operations_struct.access for an
5996 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5997 * not page based.
5998 */
5999 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6000 void *buf, int len, int write)
6001 {
6002 resource_size_t phys_addr;
6003 unsigned long prot = 0;
6004 void __iomem *maddr;
6005 pte_t *ptep, pte;
6006 spinlock_t *ptl;
6007 int offset = offset_in_page(addr);
6008 int ret = -EINVAL;
6009
6010 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6011 return -EINVAL;
6012
6013 retry:
6014 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
6015 return -EINVAL;
6016 pte = ptep_get(ptep);
6017 pte_unmap_unlock(ptep, ptl);
6018
6019 prot = pgprot_val(pte_pgprot(pte));
6020 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6021
6022 if ((write & FOLL_WRITE) && !pte_write(pte))
6023 return -EINVAL;
6024
6025 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6026 if (!maddr)
6027 return -ENOMEM;
6028
6029 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
6030 goto out_unmap;
6031
6032 if (!pte_same(pte, ptep_get(ptep))) {
6033 pte_unmap_unlock(ptep, ptl);
6034 iounmap(maddr);
6035
6036 goto retry;
6037 }
6038
6039 if (write)
6040 memcpy_toio(maddr + offset, buf, len);
6041 else
6042 memcpy_fromio(buf, maddr + offset, len);
6043 ret = len;
6044 pte_unmap_unlock(ptep, ptl);
6045 out_unmap:
6046 iounmap(maddr);
6047
6048 return ret;
6049 }
6050 EXPORT_SYMBOL_GPL(generic_access_phys);
6051 #endif
6052
6053 /*
6054 * Access another process' address space as given in mm.
6055 */
6056 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6057 void *buf, int len, unsigned int gup_flags)
6058 {
6059 void *old_buf = buf;
6060 int write = gup_flags & FOLL_WRITE;
6061
6062 if (mmap_read_lock_killable(mm))
6063 return 0;
6064
6065 /* Untag the address before looking up the VMA */
6066 addr = untagged_addr_remote(mm, addr);
6067
6068 /* Avoid triggering the temporary warning in __get_user_pages */
6069 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6070 return 0;
6071
6072 /* ignore errors, just check how much was successfully transferred */
6073 while (len) {
6074 int bytes, offset;
6075 void *maddr;
6076 struct vm_area_struct *vma = NULL;
6077 struct page *page = get_user_page_vma_remote(mm, addr,
6078 gup_flags, &vma);
6079
6080 if (IS_ERR(page)) {
6081 /* We might need to expand the stack to access it */
6082 vma = vma_lookup(mm, addr);
6083 if (!vma) {
6084 vma = expand_stack(mm, addr);
6085
6086 /* mmap_lock was dropped on failure */
6087 if (!vma)
6088 return buf - old_buf;
6089
6090 /* Try again if stack expansion worked */
6091 continue;
6092 }
6093
6094 /*
6095 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6096 * we can access using slightly different code.
6097 */
6098 bytes = 0;
6099 #ifdef CONFIG_HAVE_IOREMAP_PROT
6100 if (vma->vm_ops && vma->vm_ops->access)
6101 bytes = vma->vm_ops->access(vma, addr, buf,
6102 len, write);
6103 #endif
6104 if (bytes <= 0)
6105 break;
6106 } else {
6107 bytes = len;
6108 offset = addr & (PAGE_SIZE-1);
6109 if (bytes > PAGE_SIZE-offset)
6110 bytes = PAGE_SIZE-offset;
6111
6112 maddr = kmap_local_page(page);
6113 if (write) {
6114 copy_to_user_page(vma, page, addr,
6115 maddr + offset, buf, bytes);
6116 set_page_dirty_lock(page);
6117 } else {
6118 copy_from_user_page(vma, page, addr,
6119 buf, maddr + offset, bytes);
6120 }
6121 unmap_and_put_page(page, maddr);
6122 }
6123 len -= bytes;
6124 buf += bytes;
6125 addr += bytes;
6126 }
6127 mmap_read_unlock(mm);
6128
6129 return buf - old_buf;
6130 }
6131
6132 /**
6133 * access_remote_vm - access another process' address space
6134 * @mm: the mm_struct of the target address space
6135 * @addr: start address to access
6136 * @buf: source or destination buffer
6137 * @len: number of bytes to transfer
6138 * @gup_flags: flags modifying lookup behaviour
6139 *
6140 * The caller must hold a reference on @mm.
6141 *
6142 * Return: number of bytes copied from source to destination.
6143 */
6144 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6145 void *buf, int len, unsigned int gup_flags)
6146 {
6147 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6148 }
6149
6150 /*
6151 * Access another process' address space.
6152 * Source/target buffer must be kernel space,
6153 * Do not walk the page table directly, use get_user_pages
6154 */
6155 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6156 void *buf, int len, unsigned int gup_flags)
6157 {
6158 struct mm_struct *mm;
6159 int ret;
6160
6161 mm = get_task_mm(tsk);
6162 if (!mm)
6163 return 0;
6164
6165 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6166
6167 mmput(mm);
6168
6169 return ret;
6170 }
6171 EXPORT_SYMBOL_GPL(access_process_vm);
6172
6173 /*
6174 * Print the name of a VMA.
6175 */
6176 void print_vma_addr(char *prefix, unsigned long ip)
6177 {
6178 struct mm_struct *mm = current->mm;
6179 struct vm_area_struct *vma;
6180
6181 /*
6182 * we might be running from an atomic context so we cannot sleep
6183 */
6184 if (!mmap_read_trylock(mm))
6185 return;
6186
6187 vma = find_vma(mm, ip);
6188 if (vma && vma->vm_file) {
6189 struct file *f = vma->vm_file;
6190 char *buf = (char *)__get_free_page(GFP_NOWAIT);
6191 if (buf) {
6192 char *p;
6193
6194 p = file_path(f, buf, PAGE_SIZE);
6195 if (IS_ERR(p))
6196 p = "?";
6197 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
6198 vma->vm_start,
6199 vma->vm_end - vma->vm_start);
6200 free_page((unsigned long)buf);
6201 }
6202 }
6203 mmap_read_unlock(mm);
6204 }
6205
6206 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6207 void __might_fault(const char *file, int line)
6208 {
6209 if (pagefault_disabled())
6210 return;
6211 __might_sleep(file, line);
6212 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6213 if (current->mm)
6214 might_lock_read(&current->mm->mmap_lock);
6215 #endif
6216 }
6217 EXPORT_SYMBOL(__might_fault);
6218 #endif
6219
6220 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6221 /*
6222 * Process all subpages of the specified huge page with the specified
6223 * operation. The target subpage will be processed last to keep its
6224 * cache lines hot.
6225 */
6226 static inline int process_huge_page(
6227 unsigned long addr_hint, unsigned int pages_per_huge_page,
6228 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6229 void *arg)
6230 {
6231 int i, n, base, l, ret;
6232 unsigned long addr = addr_hint &
6233 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6234
6235 /* Process target subpage last to keep its cache lines hot */
6236 might_sleep();
6237 n = (addr_hint - addr) / PAGE_SIZE;
6238 if (2 * n <= pages_per_huge_page) {
6239 /* If target subpage in first half of huge page */
6240 base = 0;
6241 l = n;
6242 /* Process subpages at the end of huge page */
6243 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6244 cond_resched();
6245 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6246 if (ret)
6247 return ret;
6248 }
6249 } else {
6250 /* If target subpage in second half of huge page */
6251 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6252 l = pages_per_huge_page - n;
6253 /* Process subpages at the begin of huge page */
6254 for (i = 0; i < base; i++) {
6255 cond_resched();
6256 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6257 if (ret)
6258 return ret;
6259 }
6260 }
6261 /*
6262 * Process remaining subpages in left-right-left-right pattern
6263 * towards the target subpage
6264 */
6265 for (i = 0; i < l; i++) {
6266 int left_idx = base + i;
6267 int right_idx = base + 2 * l - 1 - i;
6268
6269 cond_resched();
6270 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6271 if (ret)
6272 return ret;
6273 cond_resched();
6274 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6275 if (ret)
6276 return ret;
6277 }
6278 return 0;
6279 }
6280
6281 static void clear_gigantic_page(struct page *page,
6282 unsigned long addr,
6283 unsigned int pages_per_huge_page)
6284 {
6285 int i;
6286 struct page *p;
6287
6288 might_sleep();
6289 for (i = 0; i < pages_per_huge_page; i++) {
6290 p = nth_page(page, i);
6291 cond_resched();
6292 clear_user_highpage(p, addr + i * PAGE_SIZE);
6293 }
6294 }
6295
6296 static int clear_subpage(unsigned long addr, int idx, void *arg)
6297 {
6298 struct page *page = arg;
6299
6300 clear_user_highpage(nth_page(page, idx), addr);
6301 return 0;
6302 }
6303
6304 void clear_huge_page(struct page *page,
6305 unsigned long addr_hint, unsigned int pages_per_huge_page)
6306 {
6307 unsigned long addr = addr_hint &
6308 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6309
6310 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6311 clear_gigantic_page(page, addr, pages_per_huge_page);
6312 return;
6313 }
6314
6315 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6316 }
6317
6318 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6319 unsigned long addr,
6320 struct vm_area_struct *vma,
6321 unsigned int pages_per_huge_page)
6322 {
6323 int i;
6324 struct page *dst_page;
6325 struct page *src_page;
6326
6327 for (i = 0; i < pages_per_huge_page; i++) {
6328 dst_page = folio_page(dst, i);
6329 src_page = folio_page(src, i);
6330
6331 cond_resched();
6332 if (copy_mc_user_highpage(dst_page, src_page,
6333 addr + i*PAGE_SIZE, vma)) {
6334 memory_failure_queue(page_to_pfn(src_page), 0);
6335 return -EHWPOISON;
6336 }
6337 }
6338 return 0;
6339 }
6340
6341 struct copy_subpage_arg {
6342 struct page *dst;
6343 struct page *src;
6344 struct vm_area_struct *vma;
6345 };
6346
6347 static int copy_subpage(unsigned long addr, int idx, void *arg)
6348 {
6349 struct copy_subpage_arg *copy_arg = arg;
6350 struct page *dst = nth_page(copy_arg->dst, idx);
6351 struct page *src = nth_page(copy_arg->src, idx);
6352
6353 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) {
6354 memory_failure_queue(page_to_pfn(src), 0);
6355 return -EHWPOISON;
6356 }
6357 return 0;
6358 }
6359
6360 int copy_user_large_folio(struct folio *dst, struct folio *src,
6361 unsigned long addr_hint, struct vm_area_struct *vma)
6362 {
6363 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6364 unsigned long addr = addr_hint &
6365 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6366 struct copy_subpage_arg arg = {
6367 .dst = &dst->page,
6368 .src = &src->page,
6369 .vma = vma,
6370 };
6371
6372 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6373 return copy_user_gigantic_page(dst, src, addr, vma,
6374 pages_per_huge_page);
6375
6376 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6377 }
6378
6379 long copy_folio_from_user(struct folio *dst_folio,
6380 const void __user *usr_src,
6381 bool allow_pagefault)
6382 {
6383 void *kaddr;
6384 unsigned long i, rc = 0;
6385 unsigned int nr_pages = folio_nr_pages(dst_folio);
6386 unsigned long ret_val = nr_pages * PAGE_SIZE;
6387 struct page *subpage;
6388
6389 for (i = 0; i < nr_pages; i++) {
6390 subpage = folio_page(dst_folio, i);
6391 kaddr = kmap_local_page(subpage);
6392 if (!allow_pagefault)
6393 pagefault_disable();
6394 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6395 if (!allow_pagefault)
6396 pagefault_enable();
6397 kunmap_local(kaddr);
6398
6399 ret_val -= (PAGE_SIZE - rc);
6400 if (rc)
6401 break;
6402
6403 flush_dcache_page(subpage);
6404
6405 cond_resched();
6406 }
6407 return ret_val;
6408 }
6409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6410
6411 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6412
6413 static struct kmem_cache *page_ptl_cachep;
6414
6415 void __init ptlock_cache_init(void)
6416 {
6417 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6418 SLAB_PANIC, NULL);
6419 }
6420
6421 bool ptlock_alloc(struct ptdesc *ptdesc)
6422 {
6423 spinlock_t *ptl;
6424
6425 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6426 if (!ptl)
6427 return false;
6428 ptdesc->ptl = ptl;
6429 return true;
6430 }
6431
6432 void ptlock_free(struct ptdesc *ptdesc)
6433 {
6434 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6435 }
6436 #endif