1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
80 #include <trace/events/kmem.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
87 #include <asm/tlbflush.h>
89 #include "pgalloc-track.h"
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 static vm_fault_t
do_fault(struct vm_fault
*vmf
);
98 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
);
99 static bool vmf_pte_changed(struct vm_fault
*vmf
);
102 * Return true if the original pte was a uffd-wp pte marker (so the pte was
105 static __always_inline
bool vmf_orig_pte_uffd_wp(struct vm_fault
*vmf
)
107 if (!userfaultfd_wp(vmf
->vma
))
109 if (!(vmf
->flags
& FAULT_FLAG_ORIG_PTE_VALID
))
112 return pte_marker_uffd_wp(vmf
->orig_pte
);
116 * Randomize the address space (stacks, mmaps, brk, etc.).
118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119 * as ancient (libc5 based) binaries can segfault. )
121 int randomize_va_space __read_mostly
=
122 #ifdef CONFIG_COMPAT_BRK
128 #ifndef arch_wants_old_prefaulted_pte
129 static inline bool arch_wants_old_prefaulted_pte(void)
132 * Transitioning a PTE from 'old' to 'young' can be expensive on
133 * some architectures, even if it's performed in hardware. By
134 * default, "false" means prefaulted entries will be 'young'.
140 static int __init
disable_randmaps(char *s
)
142 randomize_va_space
= 0;
145 __setup("norandmaps", disable_randmaps
);
147 unsigned long zero_pfn __read_mostly
;
148 EXPORT_SYMBOL(zero_pfn
);
150 unsigned long highest_memmap_pfn __read_mostly
;
153 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
155 static int __init
init_zero_pfn(void)
157 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
160 early_initcall(init_zero_pfn
);
162 void mm_trace_rss_stat(struct mm_struct
*mm
, int member
)
164 trace_rss_stat(mm
, member
);
168 * Note: this doesn't free the actual pages themselves. That
169 * has been handled earlier when unmapping all the memory regions.
171 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
174 pgtable_t token
= pmd_pgtable(*pmd
);
176 pte_free_tlb(tlb
, token
, addr
);
177 mm_dec_nr_ptes(tlb
->mm
);
180 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
181 unsigned long addr
, unsigned long end
,
182 unsigned long floor
, unsigned long ceiling
)
189 pmd
= pmd_offset(pud
, addr
);
191 next
= pmd_addr_end(addr
, end
);
192 if (pmd_none_or_clear_bad(pmd
))
194 free_pte_range(tlb
, pmd
, addr
);
195 } while (pmd
++, addr
= next
, addr
!= end
);
205 if (end
- 1 > ceiling
- 1)
208 pmd
= pmd_offset(pud
, start
);
210 pmd_free_tlb(tlb
, pmd
, start
);
211 mm_dec_nr_pmds(tlb
->mm
);
214 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
215 unsigned long addr
, unsigned long end
,
216 unsigned long floor
, unsigned long ceiling
)
223 pud
= pud_offset(p4d
, addr
);
225 next
= pud_addr_end(addr
, end
);
226 if (pud_none_or_clear_bad(pud
))
228 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
229 } while (pud
++, addr
= next
, addr
!= end
);
239 if (end
- 1 > ceiling
- 1)
242 pud
= pud_offset(p4d
, start
);
244 pud_free_tlb(tlb
, pud
, start
);
245 mm_dec_nr_puds(tlb
->mm
);
248 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
249 unsigned long addr
, unsigned long end
,
250 unsigned long floor
, unsigned long ceiling
)
257 p4d
= p4d_offset(pgd
, addr
);
259 next
= p4d_addr_end(addr
, end
);
260 if (p4d_none_or_clear_bad(p4d
))
262 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
263 } while (p4d
++, addr
= next
, addr
!= end
);
269 ceiling
&= PGDIR_MASK
;
273 if (end
- 1 > ceiling
- 1)
276 p4d
= p4d_offset(pgd
, start
);
278 p4d_free_tlb(tlb
, p4d
, start
);
282 * free_pgd_range - Unmap and free page tables in the range
283 * @tlb: the mmu_gather containing pending TLB flush info
284 * @addr: virtual address start
285 * @end: virtual address end
286 * @floor: lowest address boundary
287 * @ceiling: highest address boundary
289 * This function tears down all user-level page tables in the
290 * specified virtual address range [@addr..@end). It is part of
291 * the memory unmap flow.
293 void free_pgd_range(struct mmu_gather
*tlb
,
294 unsigned long addr
, unsigned long end
,
295 unsigned long floor
, unsigned long ceiling
)
301 * The next few lines have given us lots of grief...
303 * Why are we testing PMD* at this top level? Because often
304 * there will be no work to do at all, and we'd prefer not to
305 * go all the way down to the bottom just to discover that.
307 * Why all these "- 1"s? Because 0 represents both the bottom
308 * of the address space and the top of it (using -1 for the
309 * top wouldn't help much: the masks would do the wrong thing).
310 * The rule is that addr 0 and floor 0 refer to the bottom of
311 * the address space, but end 0 and ceiling 0 refer to the top
312 * Comparisons need to use "end - 1" and "ceiling - 1" (though
313 * that end 0 case should be mythical).
315 * Wherever addr is brought up or ceiling brought down, we must
316 * be careful to reject "the opposite 0" before it confuses the
317 * subsequent tests. But what about where end is brought down
318 * by PMD_SIZE below? no, end can't go down to 0 there.
320 * Whereas we round start (addr) and ceiling down, by different
321 * masks at different levels, in order to test whether a table
322 * now has no other vmas using it, so can be freed, we don't
323 * bother to round floor or end up - the tests don't need that.
337 if (end
- 1 > ceiling
- 1)
342 * We add page table cache pages with PAGE_SIZE,
343 * (see pte_free_tlb()), flush the tlb if we need
345 tlb_change_page_size(tlb
, PAGE_SIZE
);
346 pgd
= pgd_offset(tlb
->mm
, addr
);
348 next
= pgd_addr_end(addr
, end
);
349 if (pgd_none_or_clear_bad(pgd
))
351 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
352 } while (pgd
++, addr
= next
, addr
!= end
);
355 void free_pgtables(struct mmu_gather
*tlb
, struct ma_state
*mas
,
356 struct vm_area_struct
*vma
, unsigned long floor
,
357 unsigned long ceiling
, bool mm_wr_locked
)
359 struct unlink_vma_file_batch vb
;
364 unsigned long addr
= vma
->vm_start
;
365 struct vm_area_struct
*next
;
368 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
369 * be 0. This will underflow and is okay.
371 next
= mas_find(mas
, ceiling
- 1);
372 if (unlikely(xa_is_zero(next
)))
376 * Hide vma from rmap and truncate_pagecache before freeing
380 vma_start_write(vma
);
381 unlink_anon_vmas(vma
);
383 if (is_vm_hugetlb_page(vma
)) {
384 unlink_file_vma(vma
);
385 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
386 floor
, next
? next
->vm_start
: ceiling
);
388 unlink_file_vma_batch_init(&vb
);
389 unlink_file_vma_batch_add(&vb
, vma
);
392 * Optimization: gather nearby vmas into one call down
394 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
395 && !is_vm_hugetlb_page(next
)) {
397 next
= mas_find(mas
, ceiling
- 1);
398 if (unlikely(xa_is_zero(next
)))
401 vma_start_write(vma
);
402 unlink_anon_vmas(vma
);
403 unlink_file_vma_batch_add(&vb
, vma
);
405 unlink_file_vma_batch_final(&vb
);
406 free_pgd_range(tlb
, addr
, vma
->vm_end
,
407 floor
, next
? next
->vm_start
: ceiling
);
413 void pmd_install(struct mm_struct
*mm
, pmd_t
*pmd
, pgtable_t
*pte
)
415 spinlock_t
*ptl
= pmd_lock(mm
, pmd
);
417 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
420 * Ensure all pte setup (eg. pte page lock and page clearing) are
421 * visible before the pte is made visible to other CPUs by being
422 * put into page tables.
424 * The other side of the story is the pointer chasing in the page
425 * table walking code (when walking the page table without locking;
426 * ie. most of the time). Fortunately, these data accesses consist
427 * of a chain of data-dependent loads, meaning most CPUs (alpha
428 * being the notable exception) will already guarantee loads are
429 * seen in-order. See the alpha page table accessors for the
430 * smp_rmb() barriers in page table walking code.
432 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
433 pmd_populate(mm
, pmd
, *pte
);
439 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
)
441 pgtable_t
new = pte_alloc_one(mm
);
445 pmd_install(mm
, pmd
, &new);
451 int __pte_alloc_kernel(pmd_t
*pmd
)
453 pte_t
*new = pte_alloc_one_kernel(&init_mm
);
457 spin_lock(&init_mm
.page_table_lock
);
458 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
459 smp_wmb(); /* See comment in pmd_install() */
460 pmd_populate_kernel(&init_mm
, pmd
, new);
463 spin_unlock(&init_mm
.page_table_lock
);
465 pte_free_kernel(&init_mm
, new);
469 static inline void init_rss_vec(int *rss
)
471 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
474 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
478 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
480 add_mm_counter(mm
, i
, rss
[i
]);
484 * This function is called to print an error when a bad pte
485 * is found. For example, we might have a PFN-mapped pte in
486 * a region that doesn't allow it.
488 * The calling function must still handle the error.
490 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
491 pte_t pte
, struct page
*page
)
493 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
494 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
495 pud_t
*pud
= pud_offset(p4d
, addr
);
496 pmd_t
*pmd
= pmd_offset(pud
, addr
);
497 struct address_space
*mapping
;
499 static unsigned long resume
;
500 static unsigned long nr_shown
;
501 static unsigned long nr_unshown
;
504 * Allow a burst of 60 reports, then keep quiet for that minute;
505 * or allow a steady drip of one report per second.
507 if (nr_shown
== 60) {
508 if (time_before(jiffies
, resume
)) {
513 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
520 resume
= jiffies
+ 60 * HZ
;
522 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
523 index
= linear_page_index(vma
, addr
);
525 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
527 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
529 dump_page(page
, "bad pte");
530 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
532 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n",
534 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
535 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
536 vma
->vm_file
? vma
->vm_file
->f_op
->mmap_prepare
: NULL
,
537 mapping
? mapping
->a_ops
->read_folio
: NULL
);
539 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
543 * vm_normal_page -- This function gets the "struct page" associated with a pte.
545 * "Special" mappings do not wish to be associated with a "struct page" (either
546 * it doesn't exist, or it exists but they don't want to touch it). In this
547 * case, NULL is returned here. "Normal" mappings do have a struct page.
549 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550 * pte bit, in which case this function is trivial. Secondly, an architecture
551 * may not have a spare pte bit, which requires a more complicated scheme,
554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555 * special mapping (even if there are underlying and valid "struct pages").
556 * COWed pages of a VM_PFNMAP are always normal.
558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561 * mapping will always honor the rule
563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
565 * And for normal mappings this is false.
567 * This restricts such mappings to be a linear translation from virtual address
568 * to pfn. To get around this restriction, we allow arbitrary mappings so long
569 * as the vma is not a COW mapping; in that case, we know that all ptes are
570 * special (because none can have been COWed).
573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576 * page" backing, however the difference is that _all_ pages with a struct
577 * page (that is, those where pfn_valid is true) are refcounted and considered
578 * normal pages by the VM. The only exception are zeropages, which are
579 * *never* refcounted.
581 * The disadvantage is that pages are refcounted (which can be slower and
582 * simply not an option for some PFNMAP users). The advantage is that we
583 * don't have to follow the strict linearity rule of PFNMAP mappings in
584 * order to support COWable mappings.
587 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
590 unsigned long pfn
= pte_pfn(pte
);
592 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
)) {
593 if (likely(!pte_special(pte
)))
595 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
596 return vma
->vm_ops
->find_special_page(vma
, addr
);
597 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
599 if (is_zero_pfn(pfn
))
603 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
604 * and will have refcounts incremented on their struct pages
605 * when they are inserted into PTEs, thus they are safe to
606 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
607 * do not have refcounts. Example of legacy ZONE_DEVICE is
608 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
612 print_bad_pte(vma
, addr
, pte
, NULL
);
616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
619 if (vma
->vm_flags
& VM_MIXEDMAP
) {
622 if (is_zero_pfn(pfn
))
627 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
628 if (pfn
== vma
->vm_pgoff
+ off
)
630 if (!is_cow_mapping(vma
->vm_flags
))
635 if (is_zero_pfn(pfn
))
639 if (unlikely(pfn
> highest_memmap_pfn
)) {
640 print_bad_pte(vma
, addr
, pte
, NULL
);
645 * NOTE! We still have PageReserved() pages in the page tables.
646 * eg. VDSO mappings can cause them to exist.
649 VM_WARN_ON_ONCE(is_zero_pfn(pfn
));
650 return pfn_to_page(pfn
);
653 struct folio
*vm_normal_folio(struct vm_area_struct
*vma
, unsigned long addr
,
656 struct page
*page
= vm_normal_page(vma
, addr
, pte
);
659 return page_folio(page
);
663 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
664 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
667 unsigned long pfn
= pmd_pfn(pmd
);
669 /* Currently it's only used for huge pfnmaps */
670 if (unlikely(pmd_special(pmd
)))
673 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
674 if (vma
->vm_flags
& VM_MIXEDMAP
) {
680 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
681 if (pfn
== vma
->vm_pgoff
+ off
)
683 if (!is_cow_mapping(vma
->vm_flags
))
690 if (is_huge_zero_pmd(pmd
))
692 if (unlikely(pfn
> highest_memmap_pfn
))
696 * NOTE! We still have PageReserved() pages in the page tables.
697 * eg. VDSO mappings can cause them to exist.
700 return pfn_to_page(pfn
);
703 struct folio
*vm_normal_folio_pmd(struct vm_area_struct
*vma
,
704 unsigned long addr
, pmd_t pmd
)
706 struct page
*page
= vm_normal_page_pmd(vma
, addr
, pmd
);
709 return page_folio(page
);
715 * restore_exclusive_pte - Restore a device-exclusive entry
716 * @vma: VMA covering @address
717 * @folio: the mapped folio
718 * @page: the mapped folio page
719 * @address: the virtual address
720 * @ptep: pte pointer into the locked page table mapping the folio page
721 * @orig_pte: pte value at @ptep
723 * Restore a device-exclusive non-swap entry to an ordinary present pte.
725 * The folio and the page table must be locked, and MMU notifiers must have
726 * been called to invalidate any (exclusive) device mappings.
728 * Locking the folio makes sure that anybody who just converted the pte to
729 * a device-exclusive entry can map it into the device to make forward
730 * progress without others converting it back until the folio was unlocked.
732 * If the folio lock ever becomes an issue, we can stop relying on the folio
733 * lock; it might make some scenarios with heavy thrashing less likely to
734 * make forward progress, but these scenarios might not be valid use cases.
736 * Note that the folio lock does not protect against all cases of concurrent
737 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers
738 * must use MMU notifiers to sync against any concurrent changes.
740 static void restore_exclusive_pte(struct vm_area_struct
*vma
,
741 struct folio
*folio
, struct page
*page
, unsigned long address
,
742 pte_t
*ptep
, pte_t orig_pte
)
746 VM_WARN_ON_FOLIO(!folio_test_locked(folio
), folio
);
748 pte
= pte_mkold(mk_pte(page
, READ_ONCE(vma
->vm_page_prot
)));
749 if (pte_swp_soft_dirty(orig_pte
))
750 pte
= pte_mksoft_dirty(pte
);
752 if (pte_swp_uffd_wp(orig_pte
))
753 pte
= pte_mkuffd_wp(pte
);
755 if ((vma
->vm_flags
& VM_WRITE
) &&
756 can_change_pte_writable(vma
, address
, pte
)) {
757 if (folio_test_dirty(folio
))
758 pte
= pte_mkdirty(pte
);
759 pte
= pte_mkwrite(pte
, vma
);
761 set_pte_at(vma
->vm_mm
, address
, ptep
, pte
);
764 * No need to invalidate - it was non-present before. However
765 * secondary CPUs may have mappings that need invalidating.
767 update_mmu_cache(vma
, address
, ptep
);
771 * Tries to restore an exclusive pte if the page lock can be acquired without
774 static int try_restore_exclusive_pte(struct vm_area_struct
*vma
,
775 unsigned long addr
, pte_t
*ptep
, pte_t orig_pte
)
777 struct page
*page
= pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte
));
778 struct folio
*folio
= page_folio(page
);
780 if (folio_trylock(folio
)) {
781 restore_exclusive_pte(vma
, folio
, page
, addr
, ptep
, orig_pte
);
790 * copy one vm_area from one task to the other. Assumes the page tables
791 * already present in the new task to be cleared in the whole range
792 * covered by this vma.
796 copy_nonpresent_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
797 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*dst_vma
,
798 struct vm_area_struct
*src_vma
, unsigned long addr
, int *rss
)
800 unsigned long vm_flags
= dst_vma
->vm_flags
;
801 pte_t orig_pte
= ptep_get(src_pte
);
802 pte_t pte
= orig_pte
;
805 swp_entry_t entry
= pte_to_swp_entry(orig_pte
);
807 if (likely(!non_swap_entry(entry
))) {
808 if (swap_duplicate(entry
) < 0)
811 /* make sure dst_mm is on swapoff's mmlist. */
812 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
813 spin_lock(&mmlist_lock
);
814 if (list_empty(&dst_mm
->mmlist
))
815 list_add(&dst_mm
->mmlist
,
817 spin_unlock(&mmlist_lock
);
819 /* Mark the swap entry as shared. */
820 if (pte_swp_exclusive(orig_pte
)) {
821 pte
= pte_swp_clear_exclusive(orig_pte
);
822 set_pte_at(src_mm
, addr
, src_pte
, pte
);
825 } else if (is_migration_entry(entry
)) {
826 folio
= pfn_swap_entry_folio(entry
);
828 rss
[mm_counter(folio
)]++;
830 if (!is_readable_migration_entry(entry
) &&
831 is_cow_mapping(vm_flags
)) {
833 * COW mappings require pages in both parent and child
834 * to be set to read. A previously exclusive entry is
837 entry
= make_readable_migration_entry(
839 pte
= swp_entry_to_pte(entry
);
840 if (pte_swp_soft_dirty(orig_pte
))
841 pte
= pte_swp_mksoft_dirty(pte
);
842 if (pte_swp_uffd_wp(orig_pte
))
843 pte
= pte_swp_mkuffd_wp(pte
);
844 set_pte_at(src_mm
, addr
, src_pte
, pte
);
846 } else if (is_device_private_entry(entry
)) {
847 page
= pfn_swap_entry_to_page(entry
);
848 folio
= page_folio(page
);
851 * Update rss count even for unaddressable pages, as
852 * they should treated just like normal pages in this
855 * We will likely want to have some new rss counters
856 * for unaddressable pages, at some point. But for now
857 * keep things as they are.
860 rss
[mm_counter(folio
)]++;
861 /* Cannot fail as these pages cannot get pinned. */
862 folio_try_dup_anon_rmap_pte(folio
, page
, dst_vma
, src_vma
);
865 * We do not preserve soft-dirty information, because so
866 * far, checkpoint/restore is the only feature that
867 * requires that. And checkpoint/restore does not work
868 * when a device driver is involved (you cannot easily
869 * save and restore device driver state).
871 if (is_writable_device_private_entry(entry
) &&
872 is_cow_mapping(vm_flags
)) {
873 entry
= make_readable_device_private_entry(
875 pte
= swp_entry_to_pte(entry
);
876 if (pte_swp_uffd_wp(orig_pte
))
877 pte
= pte_swp_mkuffd_wp(pte
);
878 set_pte_at(src_mm
, addr
, src_pte
, pte
);
880 } else if (is_device_exclusive_entry(entry
)) {
882 * Make device exclusive entries present by restoring the
883 * original entry then copying as for a present pte. Device
884 * exclusive entries currently only support private writable
885 * (ie. COW) mappings.
887 VM_BUG_ON(!is_cow_mapping(src_vma
->vm_flags
));
888 if (try_restore_exclusive_pte(src_vma
, addr
, src_pte
, orig_pte
))
891 } else if (is_pte_marker_entry(entry
)) {
892 pte_marker marker
= copy_pte_marker(entry
, dst_vma
);
895 set_pte_at(dst_mm
, addr
, dst_pte
,
896 make_pte_marker(marker
));
899 if (!userfaultfd_wp(dst_vma
))
900 pte
= pte_swp_clear_uffd_wp(pte
);
901 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
906 * Copy a present and normal page.
908 * NOTE! The usual case is that this isn't required;
909 * instead, the caller can just increase the page refcount
910 * and re-use the pte the traditional way.
912 * And if we need a pre-allocated page but don't yet have
913 * one, return a negative error to let the preallocation
914 * code know so that it can do so outside the page table
918 copy_present_page(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
,
919 pte_t
*dst_pte
, pte_t
*src_pte
, unsigned long addr
, int *rss
,
920 struct folio
**prealloc
, struct page
*page
)
922 struct folio
*new_folio
;
925 new_folio
= *prealloc
;
930 * We have a prealloc page, all good! Take it
931 * over and copy the page & arm it.
934 if (copy_mc_user_highpage(&new_folio
->page
, page
, addr
, src_vma
))
938 __folio_mark_uptodate(new_folio
);
939 folio_add_new_anon_rmap(new_folio
, dst_vma
, addr
, RMAP_EXCLUSIVE
);
940 folio_add_lru_vma(new_folio
, dst_vma
);
943 /* All done, just insert the new page copy in the child */
944 pte
= folio_mk_pte(new_folio
, dst_vma
->vm_page_prot
);
945 pte
= maybe_mkwrite(pte_mkdirty(pte
), dst_vma
);
946 if (userfaultfd_pte_wp(dst_vma
, ptep_get(src_pte
)))
947 /* Uffd-wp needs to be delivered to dest pte as well */
948 pte
= pte_mkuffd_wp(pte
);
949 set_pte_at(dst_vma
->vm_mm
, addr
, dst_pte
, pte
);
953 static __always_inline
void __copy_present_ptes(struct vm_area_struct
*dst_vma
,
954 struct vm_area_struct
*src_vma
, pte_t
*dst_pte
, pte_t
*src_pte
,
955 pte_t pte
, unsigned long addr
, int nr
)
957 struct mm_struct
*src_mm
= src_vma
->vm_mm
;
959 /* If it's a COW mapping, write protect it both processes. */
960 if (is_cow_mapping(src_vma
->vm_flags
) && pte_write(pte
)) {
961 wrprotect_ptes(src_mm
, addr
, src_pte
, nr
);
962 pte
= pte_wrprotect(pte
);
965 /* If it's a shared mapping, mark it clean in the child. */
966 if (src_vma
->vm_flags
& VM_SHARED
)
967 pte
= pte_mkclean(pte
);
968 pte
= pte_mkold(pte
);
970 if (!userfaultfd_wp(dst_vma
))
971 pte
= pte_clear_uffd_wp(pte
);
973 set_ptes(dst_vma
->vm_mm
, addr
, dst_pte
, pte
, nr
);
977 * Copy one present PTE, trying to batch-process subsequent PTEs that map
978 * consecutive pages of the same folio by copying them as well.
980 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
981 * Otherwise, returns the number of copied PTEs (at least 1).
984 copy_present_ptes(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
,
985 pte_t
*dst_pte
, pte_t
*src_pte
, pte_t pte
, unsigned long addr
,
986 int max_nr
, int *rss
, struct folio
**prealloc
)
994 page
= vm_normal_page(src_vma
, addr
, pte
);
998 folio
= page_folio(page
);
1001 * If we likely have to copy, just don't bother with batching. Make
1002 * sure that the common "small folio" case is as fast as possible
1003 * by keeping the batching logic separate.
1005 if (unlikely(!*prealloc
&& folio_test_large(folio
) && max_nr
!= 1)) {
1006 if (src_vma
->vm_flags
& VM_SHARED
)
1007 flags
|= FPB_IGNORE_DIRTY
;
1008 if (!vma_soft_dirty_enabled(src_vma
))
1009 flags
|= FPB_IGNORE_SOFT_DIRTY
;
1011 nr
= folio_pte_batch(folio
, addr
, src_pte
, pte
, max_nr
, flags
,
1012 &any_writable
, NULL
, NULL
);
1013 folio_ref_add(folio
, nr
);
1014 if (folio_test_anon(folio
)) {
1015 if (unlikely(folio_try_dup_anon_rmap_ptes(folio
, page
,
1016 nr
, dst_vma
, src_vma
))) {
1017 folio_ref_sub(folio
, nr
);
1020 rss
[MM_ANONPAGES
] += nr
;
1021 VM_WARN_ON_FOLIO(PageAnonExclusive(page
), folio
);
1023 folio_dup_file_rmap_ptes(folio
, page
, nr
, dst_vma
);
1024 rss
[mm_counter_file(folio
)] += nr
;
1027 pte
= pte_mkwrite(pte
, src_vma
);
1028 __copy_present_ptes(dst_vma
, src_vma
, dst_pte
, src_pte
, pte
,
1034 if (folio_test_anon(folio
)) {
1036 * If this page may have been pinned by the parent process,
1037 * copy the page immediately for the child so that we'll always
1038 * guarantee the pinned page won't be randomly replaced in the
1041 if (unlikely(folio_try_dup_anon_rmap_pte(folio
, page
, dst_vma
, src_vma
))) {
1042 /* Page may be pinned, we have to copy. */
1044 err
= copy_present_page(dst_vma
, src_vma
, dst_pte
, src_pte
,
1045 addr
, rss
, prealloc
, page
);
1046 return err
? err
: 1;
1048 rss
[MM_ANONPAGES
]++;
1049 VM_WARN_ON_FOLIO(PageAnonExclusive(page
), folio
);
1051 folio_dup_file_rmap_pte(folio
, page
, dst_vma
);
1052 rss
[mm_counter_file(folio
)]++;
1056 __copy_present_ptes(dst_vma
, src_vma
, dst_pte
, src_pte
, pte
, addr
, 1);
1060 static inline struct folio
*folio_prealloc(struct mm_struct
*src_mm
,
1061 struct vm_area_struct
*vma
, unsigned long addr
, bool need_zero
)
1063 struct folio
*new_folio
;
1066 new_folio
= vma_alloc_zeroed_movable_folio(vma
, addr
);
1068 new_folio
= vma_alloc_folio(GFP_HIGHUSER_MOVABLE
, 0, vma
, addr
);
1073 if (mem_cgroup_charge(new_folio
, src_mm
, GFP_KERNEL
)) {
1074 folio_put(new_folio
);
1077 folio_throttle_swaprate(new_folio
, GFP_KERNEL
);
1083 copy_pte_range(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
,
1084 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
1087 struct mm_struct
*dst_mm
= dst_vma
->vm_mm
;
1088 struct mm_struct
*src_mm
= src_vma
->vm_mm
;
1089 pte_t
*orig_src_pte
, *orig_dst_pte
;
1090 pte_t
*src_pte
, *dst_pte
;
1093 spinlock_t
*src_ptl
, *dst_ptl
;
1094 int progress
, max_nr
, ret
= 0;
1095 int rss
[NR_MM_COUNTERS
];
1096 swp_entry_t entry
= (swp_entry_t
){0};
1097 struct folio
*prealloc
= NULL
;
1105 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1106 * error handling here, assume that exclusive mmap_lock on dst and src
1107 * protects anon from unexpected THP transitions; with shmem and file
1108 * protected by mmap_lock-less collapse skipping areas with anon_vma
1109 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1110 * can remove such assumptions later, but this is good enough for now.
1112 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
1119 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1120 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1121 * the PTE page is stable, and there is no need to get pmdval and do
1124 src_pte
= pte_offset_map_rw_nolock(src_mm
, src_pmd
, addr
, &dummy_pmdval
,
1127 pte_unmap_unlock(dst_pte
, dst_ptl
);
1131 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1132 orig_src_pte
= src_pte
;
1133 orig_dst_pte
= dst_pte
;
1134 arch_enter_lazy_mmu_mode();
1140 * We are holding two locks at this point - either of them
1141 * could generate latencies in another task on another CPU.
1143 if (progress
>= 32) {
1145 if (need_resched() ||
1146 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
1149 ptent
= ptep_get(src_pte
);
1150 if (pte_none(ptent
)) {
1154 if (unlikely(!pte_present(ptent
))) {
1155 ret
= copy_nonpresent_pte(dst_mm
, src_mm
,
1160 entry
= pte_to_swp_entry(ptep_get(src_pte
));
1162 } else if (ret
== -EBUSY
) {
1168 ptent
= ptep_get(src_pte
);
1169 VM_WARN_ON_ONCE(!pte_present(ptent
));
1172 * Device exclusive entry restored, continue by copying
1173 * the now present pte.
1175 WARN_ON_ONCE(ret
!= -ENOENT
);
1177 /* copy_present_ptes() will clear `*prealloc' if consumed */
1178 max_nr
= (end
- addr
) / PAGE_SIZE
;
1179 ret
= copy_present_ptes(dst_vma
, src_vma
, dst_pte
, src_pte
,
1180 ptent
, addr
, max_nr
, rss
, &prealloc
);
1182 * If we need a pre-allocated page for this pte, drop the
1183 * locks, allocate, and try again.
1184 * If copy failed due to hwpoison in source page, break out.
1186 if (unlikely(ret
== -EAGAIN
|| ret
== -EHWPOISON
))
1188 if (unlikely(prealloc
)) {
1190 * pre-alloc page cannot be reused by next time so as
1191 * to strictly follow mempolicy (e.g., alloc_page_vma()
1192 * will allocate page according to address). This
1193 * could only happen if one pinned pte changed.
1195 folio_put(prealloc
);
1200 } while (dst_pte
+= nr
, src_pte
+= nr
, addr
+= PAGE_SIZE
* nr
,
1203 arch_leave_lazy_mmu_mode();
1204 pte_unmap_unlock(orig_src_pte
, src_ptl
);
1205 add_mm_rss_vec(dst_mm
, rss
);
1206 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
1210 VM_WARN_ON_ONCE(!entry
.val
);
1211 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0) {
1216 } else if (ret
== -EBUSY
|| unlikely(ret
== -EHWPOISON
)) {
1218 } else if (ret
== -EAGAIN
) {
1219 prealloc
= folio_prealloc(src_mm
, src_vma
, addr
, false);
1222 } else if (ret
< 0) {
1226 /* We've captured and resolved the error. Reset, try again. */
1232 if (unlikely(prealloc
))
1233 folio_put(prealloc
);
1238 copy_pmd_range(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
,
1239 pud_t
*dst_pud
, pud_t
*src_pud
, unsigned long addr
,
1242 struct mm_struct
*dst_mm
= dst_vma
->vm_mm
;
1243 struct mm_struct
*src_mm
= src_vma
->vm_mm
;
1244 pmd_t
*src_pmd
, *dst_pmd
;
1247 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
1250 src_pmd
= pmd_offset(src_pud
, addr
);
1252 next
= pmd_addr_end(addr
, end
);
1253 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
1254 || pmd_devmap(*src_pmd
)) {
1256 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, src_vma
);
1257 err
= copy_huge_pmd(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1258 addr
, dst_vma
, src_vma
);
1265 if (pmd_none_or_clear_bad(src_pmd
))
1267 if (copy_pte_range(dst_vma
, src_vma
, dst_pmd
, src_pmd
,
1270 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1275 copy_pud_range(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
,
1276 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, unsigned long addr
,
1279 struct mm_struct
*dst_mm
= dst_vma
->vm_mm
;
1280 struct mm_struct
*src_mm
= src_vma
->vm_mm
;
1281 pud_t
*src_pud
, *dst_pud
;
1284 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
1287 src_pud
= pud_offset(src_p4d
, addr
);
1289 next
= pud_addr_end(addr
, end
);
1290 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
1293 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, src_vma
);
1294 err
= copy_huge_pud(dst_mm
, src_mm
,
1295 dst_pud
, src_pud
, addr
, src_vma
);
1302 if (pud_none_or_clear_bad(src_pud
))
1304 if (copy_pmd_range(dst_vma
, src_vma
, dst_pud
, src_pud
,
1307 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1312 copy_p4d_range(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
,
1313 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, unsigned long addr
,
1316 struct mm_struct
*dst_mm
= dst_vma
->vm_mm
;
1317 p4d_t
*src_p4d
, *dst_p4d
;
1320 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
1323 src_p4d
= p4d_offset(src_pgd
, addr
);
1325 next
= p4d_addr_end(addr
, end
);
1326 if (p4d_none_or_clear_bad(src_p4d
))
1328 if (copy_pud_range(dst_vma
, src_vma
, dst_p4d
, src_p4d
,
1331 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
1336 * Return true if the vma needs to copy the pgtable during this fork(). Return
1337 * false when we can speed up fork() by allowing lazy page faults later until
1338 * when the child accesses the memory range.
1341 vma_needs_copy(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
)
1344 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1345 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1346 * contains uffd-wp protection information, that's something we can't
1347 * retrieve from page cache, and skip copying will lose those info.
1349 if (userfaultfd_wp(dst_vma
))
1352 if (src_vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
1355 if (src_vma
->anon_vma
)
1359 * Don't copy ptes where a page fault will fill them correctly. Fork
1360 * becomes much lighter when there are big shared or private readonly
1361 * mappings. The tradeoff is that copy_page_range is more efficient
1368 copy_page_range(struct vm_area_struct
*dst_vma
, struct vm_area_struct
*src_vma
)
1370 pgd_t
*src_pgd
, *dst_pgd
;
1371 unsigned long addr
= src_vma
->vm_start
;
1372 unsigned long end
= src_vma
->vm_end
;
1373 struct mm_struct
*dst_mm
= dst_vma
->vm_mm
;
1374 struct mm_struct
*src_mm
= src_vma
->vm_mm
;
1375 struct mmu_notifier_range range
;
1380 if (!vma_needs_copy(dst_vma
, src_vma
))
1383 if (is_vm_hugetlb_page(src_vma
))
1384 return copy_hugetlb_page_range(dst_mm
, src_mm
, dst_vma
, src_vma
);
1387 * We need to invalidate the secondary MMU mappings only when
1388 * there could be a permission downgrade on the ptes of the
1389 * parent mm. And a permission downgrade will only happen if
1390 * is_cow_mapping() returns true.
1392 is_cow
= is_cow_mapping(src_vma
->vm_flags
);
1395 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_PAGE
,
1396 0, src_mm
, addr
, end
);
1397 mmu_notifier_invalidate_range_start(&range
);
1399 * Disabling preemption is not needed for the write side, as
1400 * the read side doesn't spin, but goes to the mmap_lock.
1402 * Use the raw variant of the seqcount_t write API to avoid
1403 * lockdep complaining about preemptibility.
1405 vma_assert_write_locked(src_vma
);
1406 raw_write_seqcount_begin(&src_mm
->write_protect_seq
);
1410 dst_pgd
= pgd_offset(dst_mm
, addr
);
1411 src_pgd
= pgd_offset(src_mm
, addr
);
1413 next
= pgd_addr_end(addr
, end
);
1414 if (pgd_none_or_clear_bad(src_pgd
))
1416 if (unlikely(copy_p4d_range(dst_vma
, src_vma
, dst_pgd
, src_pgd
,
1421 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1424 raw_write_seqcount_end(&src_mm
->write_protect_seq
);
1425 mmu_notifier_invalidate_range_end(&range
);
1430 /* Whether we should zap all COWed (private) pages too */
1431 static inline bool should_zap_cows(struct zap_details
*details
)
1433 /* By default, zap all pages */
1434 if (!details
|| details
->reclaim_pt
)
1437 /* Or, we zap COWed pages only if the caller wants to */
1438 return details
->even_cows
;
1441 /* Decides whether we should zap this folio with the folio pointer specified */
1442 static inline bool should_zap_folio(struct zap_details
*details
,
1443 struct folio
*folio
)
1445 /* If we can make a decision without *folio.. */
1446 if (should_zap_cows(details
))
1449 /* Otherwise we should only zap non-anon folios */
1450 return !folio_test_anon(folio
);
1453 static inline bool zap_drop_markers(struct zap_details
*details
)
1458 return details
->zap_flags
& ZAP_FLAG_DROP_MARKER
;
1462 * This function makes sure that we'll replace the none pte with an uffd-wp
1463 * swap special pte marker when necessary. Must be with the pgtable lock held.
1465 * Returns true if uffd-wp ptes was installed, false otherwise.
1468 zap_install_uffd_wp_if_needed(struct vm_area_struct
*vma
,
1469 unsigned long addr
, pte_t
*pte
, int nr
,
1470 struct zap_details
*details
, pte_t pteval
)
1472 bool was_installed
= false;
1474 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1475 /* Zap on anonymous always means dropping everything */
1476 if (vma_is_anonymous(vma
))
1479 if (zap_drop_markers(details
))
1483 /* the PFN in the PTE is irrelevant. */
1484 if (pte_install_uffd_wp_if_needed(vma
, addr
, pte
, pteval
))
1485 was_installed
= true;
1492 return was_installed
;
1495 static __always_inline
void zap_present_folio_ptes(struct mmu_gather
*tlb
,
1496 struct vm_area_struct
*vma
, struct folio
*folio
,
1497 struct page
*page
, pte_t
*pte
, pte_t ptent
, unsigned int nr
,
1498 unsigned long addr
, struct zap_details
*details
, int *rss
,
1499 bool *force_flush
, bool *force_break
, bool *any_skipped
)
1501 struct mm_struct
*mm
= tlb
->mm
;
1502 bool delay_rmap
= false;
1504 if (!folio_test_anon(folio
)) {
1505 ptent
= get_and_clear_full_ptes(mm
, addr
, pte
, nr
, tlb
->fullmm
);
1506 if (pte_dirty(ptent
)) {
1507 folio_mark_dirty(folio
);
1508 if (tlb_delay_rmap(tlb
)) {
1510 *force_flush
= true;
1513 if (pte_young(ptent
) && likely(vma_has_recency(vma
)))
1514 folio_mark_accessed(folio
);
1515 rss
[mm_counter(folio
)] -= nr
;
1517 /* We don't need up-to-date accessed/dirty bits. */
1518 clear_full_ptes(mm
, addr
, pte
, nr
, tlb
->fullmm
);
1519 rss
[MM_ANONPAGES
] -= nr
;
1521 /* Checking a single PTE in a batch is sufficient. */
1522 arch_check_zapped_pte(vma
, ptent
);
1523 tlb_remove_tlb_entries(tlb
, pte
, nr
, addr
);
1524 if (unlikely(userfaultfd_pte_wp(vma
, ptent
)))
1525 *any_skipped
= zap_install_uffd_wp_if_needed(vma
, addr
, pte
,
1526 nr
, details
, ptent
);
1529 folio_remove_rmap_ptes(folio
, page
, nr
, vma
);
1531 if (unlikely(folio_mapcount(folio
) < 0))
1532 print_bad_pte(vma
, addr
, ptent
, page
);
1534 if (unlikely(__tlb_remove_folio_pages(tlb
, page
, nr
, delay_rmap
))) {
1535 *force_flush
= true;
1536 *force_break
= true;
1541 * Zap or skip at least one present PTE, trying to batch-process subsequent
1542 * PTEs that map consecutive pages of the same folio.
1544 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1546 static inline int zap_present_ptes(struct mmu_gather
*tlb
,
1547 struct vm_area_struct
*vma
, pte_t
*pte
, pte_t ptent
,
1548 unsigned int max_nr
, unsigned long addr
,
1549 struct zap_details
*details
, int *rss
, bool *force_flush
,
1550 bool *force_break
, bool *any_skipped
)
1552 const fpb_t fpb_flags
= FPB_IGNORE_DIRTY
| FPB_IGNORE_SOFT_DIRTY
;
1553 struct mm_struct
*mm
= tlb
->mm
;
1554 struct folio
*folio
;
1558 page
= vm_normal_page(vma
, addr
, ptent
);
1560 /* We don't need up-to-date accessed/dirty bits. */
1561 ptep_get_and_clear_full(mm
, addr
, pte
, tlb
->fullmm
);
1562 arch_check_zapped_pte(vma
, ptent
);
1563 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1564 if (userfaultfd_pte_wp(vma
, ptent
))
1565 *any_skipped
= zap_install_uffd_wp_if_needed(vma
, addr
,
1566 pte
, 1, details
, ptent
);
1567 ksm_might_unmap_zero_page(mm
, ptent
);
1571 folio
= page_folio(page
);
1572 if (unlikely(!should_zap_folio(details
, folio
))) {
1573 *any_skipped
= true;
1578 * Make sure that the common "small folio" case is as fast as possible
1579 * by keeping the batching logic separate.
1581 if (unlikely(folio_test_large(folio
) && max_nr
!= 1)) {
1582 nr
= folio_pte_batch(folio
, addr
, pte
, ptent
, max_nr
, fpb_flags
,
1585 zap_present_folio_ptes(tlb
, vma
, folio
, page
, pte
, ptent
, nr
,
1586 addr
, details
, rss
, force_flush
,
1587 force_break
, any_skipped
);
1590 zap_present_folio_ptes(tlb
, vma
, folio
, page
, pte
, ptent
, 1, addr
,
1591 details
, rss
, force_flush
, force_break
, any_skipped
);
1595 static inline int zap_nonpresent_ptes(struct mmu_gather
*tlb
,
1596 struct vm_area_struct
*vma
, pte_t
*pte
, pte_t ptent
,
1597 unsigned int max_nr
, unsigned long addr
,
1598 struct zap_details
*details
, int *rss
, bool *any_skipped
)
1603 *any_skipped
= true;
1604 entry
= pte_to_swp_entry(ptent
);
1605 if (is_device_private_entry(entry
) ||
1606 is_device_exclusive_entry(entry
)) {
1607 struct page
*page
= pfn_swap_entry_to_page(entry
);
1608 struct folio
*folio
= page_folio(page
);
1610 if (unlikely(!should_zap_folio(details
, folio
)))
1613 * Both device private/exclusive mappings should only
1614 * work with anonymous page so far, so we don't need to
1615 * consider uffd-wp bit when zap. For more information,
1616 * see zap_install_uffd_wp_if_needed().
1618 WARN_ON_ONCE(!vma_is_anonymous(vma
));
1619 rss
[mm_counter(folio
)]--;
1620 folio_remove_rmap_pte(folio
, page
, vma
);
1622 } else if (!non_swap_entry(entry
)) {
1623 /* Genuine swap entries, hence a private anon pages */
1624 if (!should_zap_cows(details
))
1627 nr
= swap_pte_batch(pte
, max_nr
, ptent
);
1628 rss
[MM_SWAPENTS
] -= nr
;
1629 free_swap_and_cache_nr(entry
, nr
);
1630 } else if (is_migration_entry(entry
)) {
1631 struct folio
*folio
= pfn_swap_entry_folio(entry
);
1633 if (!should_zap_folio(details
, folio
))
1635 rss
[mm_counter(folio
)]--;
1636 } else if (pte_marker_entry_uffd_wp(entry
)) {
1638 * For anon: always drop the marker; for file: only
1639 * drop the marker if explicitly requested.
1641 if (!vma_is_anonymous(vma
) && !zap_drop_markers(details
))
1643 } else if (is_guard_swp_entry(entry
)) {
1645 * Ordinary zapping should not remove guard PTE
1646 * markers. Only do so if we should remove PTE markers
1649 if (!zap_drop_markers(details
))
1651 } else if (is_hwpoison_entry(entry
) || is_poisoned_swp_entry(entry
)) {
1652 if (!should_zap_cows(details
))
1655 /* We should have covered all the swap entry types */
1656 pr_alert("unrecognized swap entry 0x%lx\n", entry
.val
);
1659 clear_not_present_full_ptes(vma
->vm_mm
, addr
, pte
, nr
, tlb
->fullmm
);
1660 *any_skipped
= zap_install_uffd_wp_if_needed(vma
, addr
, pte
, nr
, details
, ptent
);
1665 static inline int do_zap_pte_range(struct mmu_gather
*tlb
,
1666 struct vm_area_struct
*vma
, pte_t
*pte
,
1667 unsigned long addr
, unsigned long end
,
1668 struct zap_details
*details
, int *rss
,
1669 bool *force_flush
, bool *force_break
,
1672 pte_t ptent
= ptep_get(pte
);
1673 int max_nr
= (end
- addr
) / PAGE_SIZE
;
1676 /* Skip all consecutive none ptes */
1677 if (pte_none(ptent
)) {
1678 for (nr
= 1; nr
< max_nr
; nr
++) {
1679 ptent
= ptep_get(pte
+ nr
);
1680 if (!pte_none(ptent
))
1687 addr
+= nr
* PAGE_SIZE
;
1690 if (pte_present(ptent
))
1691 nr
+= zap_present_ptes(tlb
, vma
, pte
, ptent
, max_nr
, addr
,
1692 details
, rss
, force_flush
, force_break
,
1695 nr
+= zap_nonpresent_ptes(tlb
, vma
, pte
, ptent
, max_nr
, addr
,
1696 details
, rss
, any_skipped
);
1701 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1702 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1703 unsigned long addr
, unsigned long end
,
1704 struct zap_details
*details
)
1706 bool force_flush
= false, force_break
= false;
1707 struct mm_struct
*mm
= tlb
->mm
;
1708 int rss
[NR_MM_COUNTERS
];
1713 unsigned long start
= addr
;
1714 bool can_reclaim_pt
= reclaim_pt_is_enabled(start
, end
, details
);
1715 bool direct_reclaim
= true;
1719 tlb_change_page_size(tlb
, PAGE_SIZE
);
1721 start_pte
= pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1725 flush_tlb_batched_pending(mm
);
1726 arch_enter_lazy_mmu_mode();
1728 bool any_skipped
= false;
1730 if (need_resched()) {
1731 direct_reclaim
= false;
1735 nr
= do_zap_pte_range(tlb
, vma
, pte
, addr
, end
, details
, rss
,
1736 &force_flush
, &force_break
, &any_skipped
);
1738 can_reclaim_pt
= false;
1739 if (unlikely(force_break
)) {
1740 addr
+= nr
* PAGE_SIZE
;
1741 direct_reclaim
= false;
1744 } while (pte
+= nr
, addr
+= PAGE_SIZE
* nr
, addr
!= end
);
1747 * Fast path: try to hold the pmd lock and unmap the PTE page.
1749 * If the pte lock was released midway (retry case), or if the attempt
1750 * to hold the pmd lock failed, then we need to recheck all pte entries
1751 * to ensure they are still none, thereby preventing the pte entries
1752 * from being repopulated by another thread.
1754 if (can_reclaim_pt
&& direct_reclaim
&& addr
== end
)
1755 direct_reclaim
= try_get_and_clear_pmd(mm
, pmd
, &pmdval
);
1757 add_mm_rss_vec(mm
, rss
);
1758 arch_leave_lazy_mmu_mode();
1760 /* Do the actual TLB flush before dropping ptl */
1762 tlb_flush_mmu_tlbonly(tlb
);
1763 tlb_flush_rmaps(tlb
, vma
);
1765 pte_unmap_unlock(start_pte
, ptl
);
1768 * If we forced a TLB flush (either due to running out of
1769 * batch buffers or because we needed to flush dirty TLB
1770 * entries before releasing the ptl), free the batched
1771 * memory too. Come back again if we didn't do everything.
1778 force_flush
= false;
1779 force_break
= false;
1783 if (can_reclaim_pt
) {
1785 free_pte(mm
, start
, tlb
, pmdval
);
1787 try_to_free_pte(mm
, pmd
, start
, tlb
);
1793 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1794 struct vm_area_struct
*vma
, pud_t
*pud
,
1795 unsigned long addr
, unsigned long end
,
1796 struct zap_details
*details
)
1801 pmd
= pmd_offset(pud
, addr
);
1803 next
= pmd_addr_end(addr
, end
);
1804 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1805 if (next
- addr
!= HPAGE_PMD_SIZE
)
1806 __split_huge_pmd(vma
, pmd
, addr
, false);
1807 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
)) {
1812 } else if (details
&& details
->single_folio
&&
1813 folio_test_pmd_mappable(details
->single_folio
) &&
1814 next
- addr
== HPAGE_PMD_SIZE
&& pmd_none(*pmd
)) {
1815 spinlock_t
*ptl
= pmd_lock(tlb
->mm
, pmd
);
1817 * Take and drop THP pmd lock so that we cannot return
1818 * prematurely, while zap_huge_pmd() has cleared *pmd,
1819 * but not yet decremented compound_mapcount().
1823 if (pmd_none(*pmd
)) {
1827 addr
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1830 } while (pmd
++, cond_resched(), addr
!= end
);
1835 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1836 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1837 unsigned long addr
, unsigned long end
,
1838 struct zap_details
*details
)
1843 pud
= pud_offset(p4d
, addr
);
1845 next
= pud_addr_end(addr
, end
);
1846 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1847 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1848 mmap_assert_locked(tlb
->mm
);
1849 split_huge_pud(vma
, pud
, addr
);
1850 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1854 if (pud_none_or_clear_bad(pud
))
1856 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1859 } while (pud
++, addr
= next
, addr
!= end
);
1864 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1865 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1866 unsigned long addr
, unsigned long end
,
1867 struct zap_details
*details
)
1872 p4d
= p4d_offset(pgd
, addr
);
1874 next
= p4d_addr_end(addr
, end
);
1875 if (p4d_none_or_clear_bad(p4d
))
1877 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1878 } while (p4d
++, addr
= next
, addr
!= end
);
1883 void unmap_page_range(struct mmu_gather
*tlb
,
1884 struct vm_area_struct
*vma
,
1885 unsigned long addr
, unsigned long end
,
1886 struct zap_details
*details
)
1891 BUG_ON(addr
>= end
);
1892 tlb_start_vma(tlb
, vma
);
1893 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1895 next
= pgd_addr_end(addr
, end
);
1896 if (pgd_none_or_clear_bad(pgd
))
1898 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1899 } while (pgd
++, addr
= next
, addr
!= end
);
1900 tlb_end_vma(tlb
, vma
);
1904 static void unmap_single_vma(struct mmu_gather
*tlb
,
1905 struct vm_area_struct
*vma
, unsigned long start_addr
,
1906 unsigned long end_addr
,
1907 struct zap_details
*details
, bool mm_wr_locked
)
1909 unsigned long start
= max(vma
->vm_start
, start_addr
);
1912 if (start
>= vma
->vm_end
)
1914 end
= min(vma
->vm_end
, end_addr
);
1915 if (end
<= vma
->vm_start
)
1919 uprobe_munmap(vma
, start
, end
);
1922 if (unlikely(is_vm_hugetlb_page(vma
))) {
1924 * It is undesirable to test vma->vm_file as it
1925 * should be non-null for valid hugetlb area.
1926 * However, vm_file will be NULL in the error
1927 * cleanup path of mmap_region. When
1928 * hugetlbfs ->mmap method fails,
1929 * mmap_region() nullifies vma->vm_file
1930 * before calling this function to clean up.
1931 * Since no pte has actually been setup, it is
1932 * safe to do nothing in this case.
1935 zap_flags_t zap_flags
= details
?
1936 details
->zap_flags
: 0;
1937 __unmap_hugepage_range(tlb
, vma
, start
, end
,
1941 unmap_page_range(tlb
, vma
, start
, end
, details
);
1946 * unmap_vmas - unmap a range of memory covered by a list of vma's
1947 * @tlb: address of the caller's struct mmu_gather
1948 * @mas: the maple state
1949 * @vma: the starting vma
1950 * @start_addr: virtual address at which to start unmapping
1951 * @end_addr: virtual address at which to end unmapping
1952 * @tree_end: The maximum index to check
1953 * @mm_wr_locked: lock flag
1955 * Unmap all pages in the vma list.
1957 * Only addresses between `start' and `end' will be unmapped.
1959 * The VMA list must be sorted in ascending virtual address order.
1961 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1962 * range after unmap_vmas() returns. So the only responsibility here is to
1963 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1964 * drops the lock and schedules.
1966 void unmap_vmas(struct mmu_gather
*tlb
, struct ma_state
*mas
,
1967 struct vm_area_struct
*vma
, unsigned long start_addr
,
1968 unsigned long end_addr
, unsigned long tree_end
,
1971 struct mmu_notifier_range range
;
1972 struct zap_details details
= {
1973 .zap_flags
= ZAP_FLAG_DROP_MARKER
| ZAP_FLAG_UNMAP
,
1974 /* Careful - we need to zap private pages too! */
1978 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
->vm_mm
,
1979 start_addr
, end_addr
);
1980 mmu_notifier_invalidate_range_start(&range
);
1982 unsigned long start
= start_addr
;
1983 unsigned long end
= end_addr
;
1984 hugetlb_zap_begin(vma
, &start
, &end
);
1985 unmap_single_vma(tlb
, vma
, start
, end
, &details
,
1987 hugetlb_zap_end(vma
, &details
);
1988 vma
= mas_find(mas
, tree_end
- 1);
1989 } while (vma
&& likely(!xa_is_zero(vma
)));
1990 mmu_notifier_invalidate_range_end(&range
);
1994 * zap_page_range_single_batched - remove user pages in a given range
1995 * @tlb: pointer to the caller's struct mmu_gather
1996 * @vma: vm_area_struct holding the applicable pages
1997 * @address: starting address of pages to remove
1998 * @size: number of bytes to remove
1999 * @details: details of shared cache invalidation
2001 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for
2002 * hugetlb, @tlb is flushed and re-initialized by this function.
2004 void zap_page_range_single_batched(struct mmu_gather
*tlb
,
2005 struct vm_area_struct
*vma
, unsigned long address
,
2006 unsigned long size
, struct zap_details
*details
)
2008 const unsigned long end
= address
+ size
;
2009 struct mmu_notifier_range range
;
2011 VM_WARN_ON_ONCE(!tlb
|| tlb
->mm
!= vma
->vm_mm
);
2013 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
->vm_mm
,
2015 hugetlb_zap_begin(vma
, &range
.start
, &range
.end
);
2016 update_hiwater_rss(vma
->vm_mm
);
2017 mmu_notifier_invalidate_range_start(&range
);
2019 * unmap 'address-end' not 'range.start-range.end' as range
2020 * could have been expanded for hugetlb pmd sharing.
2022 unmap_single_vma(tlb
, vma
, address
, end
, details
, false);
2023 mmu_notifier_invalidate_range_end(&range
);
2024 if (is_vm_hugetlb_page(vma
)) {
2026 * flush tlb and free resources before hugetlb_zap_end(), to
2027 * avoid concurrent page faults' allocation failure.
2029 tlb_finish_mmu(tlb
);
2030 hugetlb_zap_end(vma
, details
);
2031 tlb_gather_mmu(tlb
, vma
->vm_mm
);
2036 * zap_page_range_single - remove user pages in a given range
2037 * @vma: vm_area_struct holding the applicable pages
2038 * @address: starting address of pages to zap
2039 * @size: number of bytes to zap
2040 * @details: details of shared cache invalidation
2042 * The range must fit into one VMA.
2044 void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
2045 unsigned long size
, struct zap_details
*details
)
2047 struct mmu_gather tlb
;
2049 tlb_gather_mmu(&tlb
, vma
->vm_mm
);
2050 zap_page_range_single_batched(&tlb
, vma
, address
, size
, details
);
2051 tlb_finish_mmu(&tlb
);
2055 * zap_vma_ptes - remove ptes mapping the vma
2056 * @vma: vm_area_struct holding ptes to be zapped
2057 * @address: starting address of pages to zap
2058 * @size: number of bytes to zap
2060 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2062 * The entire address range must be fully contained within the vma.
2065 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
2068 if (!range_in_vma(vma
, address
, address
+ size
) ||
2069 !(vma
->vm_flags
& VM_PFNMAP
))
2072 zap_page_range_single(vma
, address
, size
, NULL
);
2074 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
2076 static pmd_t
*walk_to_pmd(struct mm_struct
*mm
, unsigned long addr
)
2083 pgd
= pgd_offset(mm
, addr
);
2084 p4d
= p4d_alloc(mm
, pgd
, addr
);
2087 pud
= pud_alloc(mm
, p4d
, addr
);
2090 pmd
= pmd_alloc(mm
, pud
, addr
);
2094 VM_BUG_ON(pmd_trans_huge(*pmd
));
2098 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
2101 pmd_t
*pmd
= walk_to_pmd(mm
, addr
);
2105 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
2108 static bool vm_mixed_zeropage_allowed(struct vm_area_struct
*vma
)
2110 VM_WARN_ON_ONCE(vma
->vm_flags
& VM_PFNMAP
);
2112 * Whoever wants to forbid the zeropage after some zeropages
2113 * might already have been mapped has to scan the page tables and
2114 * bail out on any zeropages. Zeropages in COW mappings can
2115 * be unshared using FAULT_FLAG_UNSHARE faults.
2117 if (mm_forbids_zeropage(vma
->vm_mm
))
2119 /* zeropages in COW mappings are common and unproblematic. */
2120 if (is_cow_mapping(vma
->vm_flags
))
2122 /* Mappings that do not allow for writable PTEs are unproblematic. */
2123 if (!(vma
->vm_flags
& (VM_WRITE
| VM_MAYWRITE
)))
2126 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2127 * find the shared zeropage and longterm-pin it, which would
2128 * be problematic as soon as the zeropage gets replaced by a different
2129 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2130 * now differ to what GUP looked up. FSDAX is incompatible to
2131 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2134 return vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
&&
2135 (vma_is_fsdax(vma
) || vma
->vm_flags
& VM_IO
);
2138 static int validate_page_before_insert(struct vm_area_struct
*vma
,
2141 struct folio
*folio
= page_folio(page
);
2143 if (!folio_ref_count(folio
))
2145 if (unlikely(is_zero_folio(folio
))) {
2146 if (!vm_mixed_zeropage_allowed(vma
))
2150 if (folio_test_anon(folio
) || folio_test_slab(folio
) ||
2151 page_has_type(page
))
2153 flush_dcache_folio(folio
);
2157 static int insert_page_into_pte_locked(struct vm_area_struct
*vma
, pte_t
*pte
,
2158 unsigned long addr
, struct page
*page
,
2159 pgprot_t prot
, bool mkwrite
)
2161 struct folio
*folio
= page_folio(page
);
2162 pte_t pteval
= ptep_get(pte
);
2164 if (!pte_none(pteval
)) {
2168 /* see insert_pfn(). */
2169 if (pte_pfn(pteval
) != page_to_pfn(page
)) {
2170 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval
)));
2173 pteval
= maybe_mkwrite(pteval
, vma
);
2174 pteval
= pte_mkyoung(pteval
);
2175 if (ptep_set_access_flags(vma
, addr
, pte
, pteval
, 1))
2176 update_mmu_cache(vma
, addr
, pte
);
2180 /* Ok, finally just insert the thing.. */
2181 pteval
= mk_pte(page
, prot
);
2182 if (unlikely(is_zero_folio(folio
))) {
2183 pteval
= pte_mkspecial(pteval
);
2186 pteval
= mk_pte(page
, prot
);
2188 pteval
= pte_mkyoung(pteval
);
2189 pteval
= maybe_mkwrite(pte_mkdirty(pteval
), vma
);
2191 inc_mm_counter(vma
->vm_mm
, mm_counter_file(folio
));
2192 folio_add_file_rmap_pte(folio
, page
, vma
);
2194 set_pte_at(vma
->vm_mm
, addr
, pte
, pteval
);
2198 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2199 struct page
*page
, pgprot_t prot
, bool mkwrite
)
2205 retval
= validate_page_before_insert(vma
, page
);
2209 pte
= get_locked_pte(vma
->vm_mm
, addr
, &ptl
);
2212 retval
= insert_page_into_pte_locked(vma
, pte
, addr
, page
, prot
,
2214 pte_unmap_unlock(pte
, ptl
);
2219 static int insert_page_in_batch_locked(struct vm_area_struct
*vma
, pte_t
*pte
,
2220 unsigned long addr
, struct page
*page
, pgprot_t prot
)
2224 err
= validate_page_before_insert(vma
, page
);
2227 return insert_page_into_pte_locked(vma
, pte
, addr
, page
, prot
, false);
2230 /* insert_pages() amortizes the cost of spinlock operations
2231 * when inserting pages in a loop.
2233 static int insert_pages(struct vm_area_struct
*vma
, unsigned long addr
,
2234 struct page
**pages
, unsigned long *num
, pgprot_t prot
)
2237 pte_t
*start_pte
, *pte
;
2238 spinlock_t
*pte_lock
;
2239 struct mm_struct
*const mm
= vma
->vm_mm
;
2240 unsigned long curr_page_idx
= 0;
2241 unsigned long remaining_pages_total
= *num
;
2242 unsigned long pages_to_write_in_pmd
;
2246 pmd
= walk_to_pmd(mm
, addr
);
2250 pages_to_write_in_pmd
= min_t(unsigned long,
2251 remaining_pages_total
, PTRS_PER_PTE
- pte_index(addr
));
2253 /* Allocate the PTE if necessary; takes PMD lock once only. */
2255 if (pte_alloc(mm
, pmd
))
2258 while (pages_to_write_in_pmd
) {
2260 const int batch_size
= min_t(int, pages_to_write_in_pmd
, 8);
2262 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &pte_lock
);
2267 for (pte
= start_pte
; pte_idx
< batch_size
; ++pte
, ++pte_idx
) {
2268 int err
= insert_page_in_batch_locked(vma
, pte
,
2269 addr
, pages
[curr_page_idx
], prot
);
2270 if (unlikely(err
)) {
2271 pte_unmap_unlock(start_pte
, pte_lock
);
2273 remaining_pages_total
-= pte_idx
;
2279 pte_unmap_unlock(start_pte
, pte_lock
);
2280 pages_to_write_in_pmd
-= batch_size
;
2281 remaining_pages_total
-= batch_size
;
2283 if (remaining_pages_total
)
2287 *num
= remaining_pages_total
;
2292 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2293 * @vma: user vma to map to
2294 * @addr: target start user address of these pages
2295 * @pages: source kernel pages
2296 * @num: in: number of pages to map. out: number of pages that were *not*
2297 * mapped. (0 means all pages were successfully mapped).
2299 * Preferred over vm_insert_page() when inserting multiple pages.
2301 * In case of error, we may have mapped a subset of the provided
2302 * pages. It is the caller's responsibility to account for this case.
2304 * The same restrictions apply as in vm_insert_page().
2306 int vm_insert_pages(struct vm_area_struct
*vma
, unsigned long addr
,
2307 struct page
**pages
, unsigned long *num
)
2309 const unsigned long end_addr
= addr
+ (*num
* PAGE_SIZE
) - 1;
2311 if (addr
< vma
->vm_start
|| end_addr
>= vma
->vm_end
)
2313 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
2314 BUG_ON(mmap_read_trylock(vma
->vm_mm
));
2315 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2316 vm_flags_set(vma
, VM_MIXEDMAP
);
2318 /* Defer page refcount checking till we're about to map that page. */
2319 return insert_pages(vma
, addr
, pages
, num
, vma
->vm_page_prot
);
2321 EXPORT_SYMBOL(vm_insert_pages
);
2324 * vm_insert_page - insert single page into user vma
2325 * @vma: user vma to map to
2326 * @addr: target user address of this page
2327 * @page: source kernel page
2329 * This allows drivers to insert individual pages they've allocated
2330 * into a user vma. The zeropage is supported in some VMAs,
2331 * see vm_mixed_zeropage_allowed().
2333 * The page has to be a nice clean _individual_ kernel allocation.
2334 * If you allocate a compound page, you need to have marked it as
2335 * such (__GFP_COMP), or manually just split the page up yourself
2336 * (see split_page()).
2338 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2339 * took an arbitrary page protection parameter. This doesn't allow
2340 * that. Your vma protection will have to be set up correctly, which
2341 * means that if you want a shared writable mapping, you'd better
2342 * ask for a shared writable mapping!
2344 * The page does not need to be reserved.
2346 * Usually this function is called from f_op->mmap() handler
2347 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2348 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2349 * function from other places, for example from page-fault handler.
2351 * Return: %0 on success, negative error code otherwise.
2353 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2356 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2358 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
2359 BUG_ON(mmap_read_trylock(vma
->vm_mm
));
2360 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2361 vm_flags_set(vma
, VM_MIXEDMAP
);
2363 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
, false);
2365 EXPORT_SYMBOL(vm_insert_page
);
2368 * __vm_map_pages - maps range of kernel pages into user vma
2369 * @vma: user vma to map to
2370 * @pages: pointer to array of source kernel pages
2371 * @num: number of pages in page array
2372 * @offset: user's requested vm_pgoff
2374 * This allows drivers to map range of kernel pages into a user vma.
2375 * The zeropage is supported in some VMAs, see
2376 * vm_mixed_zeropage_allowed().
2378 * Return: 0 on success and error code otherwise.
2380 static int __vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
2381 unsigned long num
, unsigned long offset
)
2383 unsigned long count
= vma_pages(vma
);
2384 unsigned long uaddr
= vma
->vm_start
;
2387 /* Fail if the user requested offset is beyond the end of the object */
2391 /* Fail if the user requested size exceeds available object size */
2392 if (count
> num
- offset
)
2395 for (i
= 0; i
< count
; i
++) {
2396 ret
= vm_insert_page(vma
, uaddr
, pages
[offset
+ i
]);
2406 * vm_map_pages - maps range of kernel pages starts with non zero offset
2407 * @vma: user vma to map to
2408 * @pages: pointer to array of source kernel pages
2409 * @num: number of pages in page array
2411 * Maps an object consisting of @num pages, catering for the user's
2412 * requested vm_pgoff
2414 * If we fail to insert any page into the vma, the function will return
2415 * immediately leaving any previously inserted pages present. Callers
2416 * from the mmap handler may immediately return the error as their caller
2417 * will destroy the vma, removing any successfully inserted pages. Other
2418 * callers should make their own arrangements for calling unmap_region().
2420 * Context: Process context. Called by mmap handlers.
2421 * Return: 0 on success and error code otherwise.
2423 int vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
2426 return __vm_map_pages(vma
, pages
, num
, vma
->vm_pgoff
);
2428 EXPORT_SYMBOL(vm_map_pages
);
2431 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2432 * @vma: user vma to map to
2433 * @pages: pointer to array of source kernel pages
2434 * @num: number of pages in page array
2436 * Similar to vm_map_pages(), except that it explicitly sets the offset
2437 * to 0. This function is intended for the drivers that did not consider
2440 * Context: Process context. Called by mmap handlers.
2441 * Return: 0 on success and error code otherwise.
2443 int vm_map_pages_zero(struct vm_area_struct
*vma
, struct page
**pages
,
2446 return __vm_map_pages(vma
, pages
, num
, 0);
2448 EXPORT_SYMBOL(vm_map_pages_zero
);
2450 static vm_fault_t
insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2451 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
2453 struct mm_struct
*mm
= vma
->vm_mm
;
2457 pte
= get_locked_pte(mm
, addr
, &ptl
);
2459 return VM_FAULT_OOM
;
2460 entry
= ptep_get(pte
);
2461 if (!pte_none(entry
)) {
2464 * For read faults on private mappings the PFN passed
2465 * in may not match the PFN we have mapped if the
2466 * mapped PFN is a writeable COW page. In the mkwrite
2467 * case we are creating a writable PTE for a shared
2468 * mapping and we expect the PFNs to match. If they
2469 * don't match, we are likely racing with block
2470 * allocation and mapping invalidation so just skip the
2473 if (pte_pfn(entry
) != pfn_t_to_pfn(pfn
)) {
2474 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry
)));
2477 entry
= pte_mkyoung(entry
);
2478 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2479 if (ptep_set_access_flags(vma
, addr
, pte
, entry
, 1))
2480 update_mmu_cache(vma
, addr
, pte
);
2485 /* Ok, finally just insert the thing.. */
2486 if (pfn_t_devmap(pfn
))
2487 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
2489 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
2492 entry
= pte_mkyoung(entry
);
2493 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2496 set_pte_at(mm
, addr
, pte
, entry
);
2497 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
2500 pte_unmap_unlock(pte
, ptl
);
2501 return VM_FAULT_NOPAGE
;
2505 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2506 * @vma: user vma to map to
2507 * @addr: target user address of this page
2508 * @pfn: source kernel pfn
2509 * @pgprot: pgprot flags for the inserted page
2511 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2512 * to override pgprot on a per-page basis.
2514 * This only makes sense for IO mappings, and it makes no sense for
2515 * COW mappings. In general, using multiple vmas is preferable;
2516 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2519 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2520 * caching- and encryption bits different than those of @vma->vm_page_prot,
2521 * because the caching- or encryption mode may not be known at mmap() time.
2523 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2524 * to set caching and encryption bits for those vmas (except for COW pages).
2525 * This is ensured by core vm only modifying these page table entries using
2526 * functions that don't touch caching- or encryption bits, using pte_modify()
2527 * if needed. (See for example mprotect()).
2529 * Also when new page-table entries are created, this is only done using the
2530 * fault() callback, and never using the value of vma->vm_page_prot,
2531 * except for page-table entries that point to anonymous pages as the result
2534 * Context: Process context. May allocate using %GFP_KERNEL.
2535 * Return: vm_fault_t value.
2537 vm_fault_t
vmf_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
2538 unsigned long pfn
, pgprot_t pgprot
)
2541 * Technically, architectures with pte_special can avoid all these
2542 * restrictions (same for remap_pfn_range). However we would like
2543 * consistency in testing and feature parity among all, so we should
2544 * try to keep these invariants in place for everybody.
2546 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2547 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
2548 (VM_PFNMAP
|VM_MIXEDMAP
));
2549 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2550 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2552 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2553 return VM_FAULT_SIGBUS
;
2555 if (!pfn_modify_allowed(pfn
, pgprot
))
2556 return VM_FAULT_SIGBUS
;
2558 pfnmap_setup_cachemode_pfn(pfn
, &pgprot
);
2560 return insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
2563 EXPORT_SYMBOL(vmf_insert_pfn_prot
);
2566 * vmf_insert_pfn - insert single pfn into user vma
2567 * @vma: user vma to map to
2568 * @addr: target user address of this page
2569 * @pfn: source kernel pfn
2571 * Similar to vm_insert_page, this allows drivers to insert individual pages
2572 * they've allocated into a user vma. Same comments apply.
2574 * This function should only be called from a vm_ops->fault handler, and
2575 * in that case the handler should return the result of this function.
2577 * vma cannot be a COW mapping.
2579 * As this is called only for pages that do not currently exist, we
2580 * do not need to flush old virtual caches or the TLB.
2582 * Context: Process context. May allocate using %GFP_KERNEL.
2583 * Return: vm_fault_t value.
2585 vm_fault_t
vmf_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2588 return vmf_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
2590 EXPORT_SYMBOL(vmf_insert_pfn
);
2592 static bool vm_mixed_ok(struct vm_area_struct
*vma
, pfn_t pfn
, bool mkwrite
)
2594 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn
))) &&
2595 (mkwrite
|| !vm_mixed_zeropage_allowed(vma
)))
2597 /* these checks mirror the abort conditions in vm_normal_page */
2598 if (vma
->vm_flags
& VM_MIXEDMAP
)
2600 if (pfn_t_devmap(pfn
))
2602 if (pfn_t_special(pfn
))
2604 if (is_zero_pfn(pfn_t_to_pfn(pfn
)))
2609 static vm_fault_t
__vm_insert_mixed(struct vm_area_struct
*vma
,
2610 unsigned long addr
, pfn_t pfn
, bool mkwrite
)
2612 pgprot_t pgprot
= vma
->vm_page_prot
;
2615 if (!vm_mixed_ok(vma
, pfn
, mkwrite
))
2616 return VM_FAULT_SIGBUS
;
2618 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2619 return VM_FAULT_SIGBUS
;
2621 pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn
), &pgprot
);
2623 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
2624 return VM_FAULT_SIGBUS
;
2627 * If we don't have pte special, then we have to use the pfn_valid()
2628 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2629 * refcount the page if pfn_valid is true (hence insert_page rather
2630 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2631 * without pte special, it would there be refcounted as a normal page.
2633 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
) &&
2634 !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
2638 * At this point we are committed to insert_page()
2639 * regardless of whether the caller specified flags that
2640 * result in pfn_t_has_page() == false.
2642 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
2643 err
= insert_page(vma
, addr
, page
, pgprot
, mkwrite
);
2645 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
2649 return VM_FAULT_OOM
;
2650 if (err
< 0 && err
!= -EBUSY
)
2651 return VM_FAULT_SIGBUS
;
2653 return VM_FAULT_NOPAGE
;
2656 vm_fault_t
vmf_insert_page_mkwrite(struct vm_fault
*vmf
, struct page
*page
,
2659 pgprot_t pgprot
= vmf
->vma
->vm_page_prot
;
2660 unsigned long addr
= vmf
->address
;
2663 if (addr
< vmf
->vma
->vm_start
|| addr
>= vmf
->vma
->vm_end
)
2664 return VM_FAULT_SIGBUS
;
2666 err
= insert_page(vmf
->vma
, addr
, page
, pgprot
, write
);
2668 return VM_FAULT_OOM
;
2669 if (err
< 0 && err
!= -EBUSY
)
2670 return VM_FAULT_SIGBUS
;
2672 return VM_FAULT_NOPAGE
;
2674 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite
);
2676 vm_fault_t
vmf_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
2679 return __vm_insert_mixed(vma
, addr
, pfn
, false);
2681 EXPORT_SYMBOL(vmf_insert_mixed
);
2684 * If the insertion of PTE failed because someone else already added a
2685 * different entry in the mean time, we treat that as success as we assume
2686 * the same entry was actually inserted.
2688 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
2689 unsigned long addr
, pfn_t pfn
)
2691 return __vm_insert_mixed(vma
, addr
, pfn
, true);
2695 * maps a range of physical memory into the requested pages. the old
2696 * mappings are removed. any references to nonexistent pages results
2697 * in null mappings (currently treated as "copy-on-access")
2699 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2700 unsigned long addr
, unsigned long end
,
2701 unsigned long pfn
, pgprot_t prot
)
2703 pte_t
*pte
, *mapped_pte
;
2707 mapped_pte
= pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2710 arch_enter_lazy_mmu_mode();
2712 BUG_ON(!pte_none(ptep_get(pte
)));
2713 if (!pfn_modify_allowed(pfn
, prot
)) {
2717 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2719 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2720 arch_leave_lazy_mmu_mode();
2721 pte_unmap_unlock(mapped_pte
, ptl
);
2725 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2726 unsigned long addr
, unsigned long end
,
2727 unsigned long pfn
, pgprot_t prot
)
2733 pfn
-= addr
>> PAGE_SHIFT
;
2734 pmd
= pmd_alloc(mm
, pud
, addr
);
2737 VM_BUG_ON(pmd_trans_huge(*pmd
));
2739 next
= pmd_addr_end(addr
, end
);
2740 err
= remap_pte_range(mm
, pmd
, addr
, next
,
2741 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2744 } while (pmd
++, addr
= next
, addr
!= end
);
2748 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2749 unsigned long addr
, unsigned long end
,
2750 unsigned long pfn
, pgprot_t prot
)
2756 pfn
-= addr
>> PAGE_SHIFT
;
2757 pud
= pud_alloc(mm
, p4d
, addr
);
2761 next
= pud_addr_end(addr
, end
);
2762 err
= remap_pmd_range(mm
, pud
, addr
, next
,
2763 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2766 } while (pud
++, addr
= next
, addr
!= end
);
2770 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2771 unsigned long addr
, unsigned long end
,
2772 unsigned long pfn
, pgprot_t prot
)
2778 pfn
-= addr
>> PAGE_SHIFT
;
2779 p4d
= p4d_alloc(mm
, pgd
, addr
);
2783 next
= p4d_addr_end(addr
, end
);
2784 err
= remap_pud_range(mm
, p4d
, addr
, next
,
2785 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2788 } while (p4d
++, addr
= next
, addr
!= end
);
2792 static int remap_pfn_range_internal(struct vm_area_struct
*vma
, unsigned long addr
,
2793 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2797 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2798 struct mm_struct
*mm
= vma
->vm_mm
;
2801 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr
)))
2805 * Physically remapped pages are special. Tell the
2806 * rest of the world about it:
2807 * VM_IO tells people not to look at these pages
2808 * (accesses can have side effects).
2809 * VM_PFNMAP tells the core MM that the base pages are just
2810 * raw PFN mappings, and do not have a "struct page" associated
2813 * Disable vma merging and expanding with mremap().
2815 * Omit vma from core dump, even when VM_IO turned off.
2817 * There's a horrible special case to handle copy-on-write
2818 * behaviour that some programs depend on. We mark the "original"
2819 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2820 * See vm_normal_page() for details.
2822 if (is_cow_mapping(vma
->vm_flags
)) {
2823 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2825 vma
->vm_pgoff
= pfn
;
2828 vm_flags_set(vma
, VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
);
2830 BUG_ON(addr
>= end
);
2831 pfn
-= addr
>> PAGE_SHIFT
;
2832 pgd
= pgd_offset(mm
, addr
);
2833 flush_cache_range(vma
, addr
, end
);
2835 next
= pgd_addr_end(addr
, end
);
2836 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
2837 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2840 } while (pgd
++, addr
= next
, addr
!= end
);
2846 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2847 * must have pre-validated the caching bits of the pgprot_t.
2849 int remap_pfn_range_notrack(struct vm_area_struct
*vma
, unsigned long addr
,
2850 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2852 int error
= remap_pfn_range_internal(vma
, addr
, pfn
, size
, prot
);
2858 * A partial pfn range mapping is dangerous: it does not
2859 * maintain page reference counts, and callers may free
2860 * pages due to the error. So zap it early.
2862 zap_page_range_single(vma
, addr
, size
, NULL
);
2866 #ifdef __HAVE_PFNMAP_TRACKING
2867 static inline struct pfnmap_track_ctx
*pfnmap_track_ctx_alloc(unsigned long pfn
,
2868 unsigned long size
, pgprot_t
*prot
)
2870 struct pfnmap_track_ctx
*ctx
;
2872 if (pfnmap_track(pfn
, size
, prot
))
2873 return ERR_PTR(-EINVAL
);
2875 ctx
= kmalloc(sizeof(*ctx
), GFP_KERNEL
);
2876 if (unlikely(!ctx
)) {
2877 pfnmap_untrack(pfn
, size
);
2878 return ERR_PTR(-ENOMEM
);
2883 kref_init(&ctx
->kref
);
2887 void pfnmap_track_ctx_release(struct kref
*ref
)
2889 struct pfnmap_track_ctx
*ctx
= container_of(ref
, struct pfnmap_track_ctx
, kref
);
2891 pfnmap_untrack(ctx
->pfn
, ctx
->size
);
2894 #endif /* __HAVE_PFNMAP_TRACKING */
2897 * remap_pfn_range - remap kernel memory to userspace
2898 * @vma: user vma to map to
2899 * @addr: target page aligned user address to start at
2900 * @pfn: page frame number of kernel physical memory address
2901 * @size: size of mapping area
2902 * @prot: page protection flags for this mapping
2904 * Note: this is only safe if the mm semaphore is held when called.
2906 * Return: %0 on success, negative error code otherwise.
2908 #ifdef __HAVE_PFNMAP_TRACKING
2909 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2910 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2912 struct pfnmap_track_ctx
*ctx
= NULL
;
2915 size
= PAGE_ALIGN(size
);
2918 * If we cover the full VMA, we'll perform actual tracking, and
2919 * remember to untrack when the last reference to our tracking
2920 * context from a VMA goes away. We'll keep tracking the whole pfn
2921 * range even during VMA splits and partial unmapping.
2923 * If we only cover parts of the VMA, we'll only setup the cachemode
2924 * in the pgprot for the pfn range.
2926 if (addr
== vma
->vm_start
&& addr
+ size
== vma
->vm_end
) {
2927 if (vma
->pfnmap_track_ctx
)
2929 ctx
= pfnmap_track_ctx_alloc(pfn
, size
, &prot
);
2931 return PTR_ERR(ctx
);
2932 } else if (pfnmap_setup_cachemode(pfn
, size
, &prot
)) {
2936 err
= remap_pfn_range_notrack(vma
, addr
, pfn
, size
, prot
);
2939 kref_put(&ctx
->kref
, pfnmap_track_ctx_release
);
2941 vma
->pfnmap_track_ctx
= ctx
;
2947 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2948 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2950 return remap_pfn_range_notrack(vma
, addr
, pfn
, size
, prot
);
2953 EXPORT_SYMBOL(remap_pfn_range
);
2956 * vm_iomap_memory - remap memory to userspace
2957 * @vma: user vma to map to
2958 * @start: start of the physical memory to be mapped
2959 * @len: size of area
2961 * This is a simplified io_remap_pfn_range() for common driver use. The
2962 * driver just needs to give us the physical memory range to be mapped,
2963 * we'll figure out the rest from the vma information.
2965 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2966 * whatever write-combining details or similar.
2968 * Return: %0 on success, negative error code otherwise.
2970 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2972 unsigned long vm_len
, pfn
, pages
;
2974 /* Check that the physical memory area passed in looks valid */
2975 if (start
+ len
< start
)
2978 * You *really* shouldn't map things that aren't page-aligned,
2979 * but we've historically allowed it because IO memory might
2980 * just have smaller alignment.
2982 len
+= start
& ~PAGE_MASK
;
2983 pfn
= start
>> PAGE_SHIFT
;
2984 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2985 if (pfn
+ pages
< pfn
)
2988 /* We start the mapping 'vm_pgoff' pages into the area */
2989 if (vma
->vm_pgoff
> pages
)
2991 pfn
+= vma
->vm_pgoff
;
2992 pages
-= vma
->vm_pgoff
;
2994 /* Can we fit all of the mapping? */
2995 vm_len
= vma
->vm_end
- vma
->vm_start
;
2996 if (vm_len
>> PAGE_SHIFT
> pages
)
2999 /* Ok, let it rip */
3000 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
3002 EXPORT_SYMBOL(vm_iomap_memory
);
3004 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
3005 unsigned long addr
, unsigned long end
,
3006 pte_fn_t fn
, void *data
, bool create
,
3007 pgtbl_mod_mask
*mask
)
3009 pte_t
*pte
, *mapped_pte
;
3014 mapped_pte
= pte
= (mm
== &init_mm
) ?
3015 pte_alloc_kernel_track(pmd
, addr
, mask
) :
3016 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
3020 mapped_pte
= pte
= (mm
== &init_mm
) ?
3021 pte_offset_kernel(pmd
, addr
) :
3022 pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
3027 arch_enter_lazy_mmu_mode();
3031 if (create
|| !pte_none(ptep_get(pte
))) {
3032 err
= fn(pte
, addr
, data
);
3036 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
3038 *mask
|= PGTBL_PTE_MODIFIED
;
3040 arch_leave_lazy_mmu_mode();
3043 pte_unmap_unlock(mapped_pte
, ptl
);
3047 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
3048 unsigned long addr
, unsigned long end
,
3049 pte_fn_t fn
, void *data
, bool create
,
3050 pgtbl_mod_mask
*mask
)
3056 BUG_ON(pud_leaf(*pud
));
3059 pmd
= pmd_alloc_track(mm
, pud
, addr
, mask
);
3063 pmd
= pmd_offset(pud
, addr
);
3066 next
= pmd_addr_end(addr
, end
);
3067 if (pmd_none(*pmd
) && !create
)
3069 if (WARN_ON_ONCE(pmd_leaf(*pmd
)))
3071 if (!pmd_none(*pmd
) && WARN_ON_ONCE(pmd_bad(*pmd
))) {
3076 err
= apply_to_pte_range(mm
, pmd
, addr
, next
,
3077 fn
, data
, create
, mask
);
3080 } while (pmd
++, addr
= next
, addr
!= end
);
3085 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
3086 unsigned long addr
, unsigned long end
,
3087 pte_fn_t fn
, void *data
, bool create
,
3088 pgtbl_mod_mask
*mask
)
3095 pud
= pud_alloc_track(mm
, p4d
, addr
, mask
);
3099 pud
= pud_offset(p4d
, addr
);
3102 next
= pud_addr_end(addr
, end
);
3103 if (pud_none(*pud
) && !create
)
3105 if (WARN_ON_ONCE(pud_leaf(*pud
)))
3107 if (!pud_none(*pud
) && WARN_ON_ONCE(pud_bad(*pud
))) {
3112 err
= apply_to_pmd_range(mm
, pud
, addr
, next
,
3113 fn
, data
, create
, mask
);
3116 } while (pud
++, addr
= next
, addr
!= end
);
3121 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
3122 unsigned long addr
, unsigned long end
,
3123 pte_fn_t fn
, void *data
, bool create
,
3124 pgtbl_mod_mask
*mask
)
3131 p4d
= p4d_alloc_track(mm
, pgd
, addr
, mask
);
3135 p4d
= p4d_offset(pgd
, addr
);
3138 next
= p4d_addr_end(addr
, end
);
3139 if (p4d_none(*p4d
) && !create
)
3141 if (WARN_ON_ONCE(p4d_leaf(*p4d
)))
3143 if (!p4d_none(*p4d
) && WARN_ON_ONCE(p4d_bad(*p4d
))) {
3148 err
= apply_to_pud_range(mm
, p4d
, addr
, next
,
3149 fn
, data
, create
, mask
);
3152 } while (p4d
++, addr
= next
, addr
!= end
);
3157 static int __apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
3158 unsigned long size
, pte_fn_t fn
,
3159 void *data
, bool create
)
3162 unsigned long start
= addr
, next
;
3163 unsigned long end
= addr
+ size
;
3164 pgtbl_mod_mask mask
= 0;
3167 if (WARN_ON(addr
>= end
))
3170 pgd
= pgd_offset(mm
, addr
);
3172 next
= pgd_addr_end(addr
, end
);
3173 if (pgd_none(*pgd
) && !create
)
3175 if (WARN_ON_ONCE(pgd_leaf(*pgd
))) {
3179 if (!pgd_none(*pgd
) && WARN_ON_ONCE(pgd_bad(*pgd
))) {
3184 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
,
3185 fn
, data
, create
, &mask
);
3188 } while (pgd
++, addr
= next
, addr
!= end
);
3190 if (mask
& ARCH_PAGE_TABLE_SYNC_MASK
)
3191 arch_sync_kernel_mappings(start
, start
+ size
);
3197 * Scan a region of virtual memory, filling in page tables as necessary
3198 * and calling a provided function on each leaf page table.
3200 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
3201 unsigned long size
, pte_fn_t fn
, void *data
)
3203 return __apply_to_page_range(mm
, addr
, size
, fn
, data
, true);
3205 EXPORT_SYMBOL_GPL(apply_to_page_range
);
3208 * Scan a region of virtual memory, calling a provided function on
3209 * each leaf page table where it exists.
3211 * Unlike apply_to_page_range, this does _not_ fill in page tables
3212 * where they are absent.
3214 int apply_to_existing_page_range(struct mm_struct
*mm
, unsigned long addr
,
3215 unsigned long size
, pte_fn_t fn
, void *data
)
3217 return __apply_to_page_range(mm
, addr
, size
, fn
, data
, false);
3221 * handle_pte_fault chooses page fault handler according to an entry which was
3222 * read non-atomically. Before making any commitment, on those architectures
3223 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3224 * parts, do_swap_page must check under lock before unmapping the pte and
3225 * proceeding (but do_wp_page is only called after already making such a check;
3226 * and do_anonymous_page can safely check later on).
3228 static inline int pte_unmap_same(struct vm_fault
*vmf
)
3231 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3232 if (sizeof(pte_t
) > sizeof(unsigned long)) {
3233 spin_lock(vmf
->ptl
);
3234 same
= pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
);
3235 spin_unlock(vmf
->ptl
);
3238 pte_unmap(vmf
->pte
);
3245 * 0: copied succeeded
3246 * -EHWPOISON: copy failed due to hwpoison in source page
3247 * -EAGAIN: copied failed (some other reason)
3249 static inline int __wp_page_copy_user(struct page
*dst
, struct page
*src
,
3250 struct vm_fault
*vmf
)
3255 struct vm_area_struct
*vma
= vmf
->vma
;
3256 struct mm_struct
*mm
= vma
->vm_mm
;
3257 unsigned long addr
= vmf
->address
;
3260 if (copy_mc_user_highpage(dst
, src
, addr
, vma
))
3266 * If the source page was a PFN mapping, we don't have
3267 * a "struct page" for it. We do a best-effort copy by
3268 * just copying from the original user address. If that
3269 * fails, we just zero-fill it. Live with it.
3271 kaddr
= kmap_local_page(dst
);
3272 pagefault_disable();
3273 uaddr
= (void __user
*)(addr
& PAGE_MASK
);
3276 * On architectures with software "accessed" bits, we would
3277 * take a double page fault, so mark it accessed here.
3280 if (!arch_has_hw_pte_young() && !pte_young(vmf
->orig_pte
)) {
3283 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
3284 if (unlikely(!vmf
->pte
|| !pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
))) {
3286 * Other thread has already handled the fault
3287 * and update local tlb only
3290 update_mmu_tlb(vma
, addr
, vmf
->pte
);
3295 entry
= pte_mkyoung(vmf
->orig_pte
);
3296 if (ptep_set_access_flags(vma
, addr
, vmf
->pte
, entry
, 0))
3297 update_mmu_cache_range(vmf
, vma
, addr
, vmf
->pte
, 1);
3301 * This really shouldn't fail, because the page is there
3302 * in the page tables. But it might just be unreadable,
3303 * in which case we just give up and fill the result with
3306 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
3310 /* Re-validate under PTL if the page is still mapped */
3311 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
3312 if (unlikely(!vmf
->pte
|| !pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
))) {
3313 /* The PTE changed under us, update local tlb */
3315 update_mmu_tlb(vma
, addr
, vmf
->pte
);
3321 * The same page can be mapped back since last copy attempt.
3322 * Try to copy again under PTL.
3324 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
3326 * Give a warn in case there can be some obscure
3339 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3341 kunmap_local(kaddr
);
3342 flush_dcache_page(dst
);
3347 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
3349 struct file
*vm_file
= vma
->vm_file
;
3352 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
3355 * Special mappings (e.g. VDSO) do not have any file so fake
3356 * a default GFP_KERNEL for them.
3362 * Notify the address space that the page is about to become writable so that
3363 * it can prohibit this or wait for the page to get into an appropriate state.
3365 * We do this without the lock held, so that it can sleep if it needs to.
3367 static vm_fault_t
do_page_mkwrite(struct vm_fault
*vmf
, struct folio
*folio
)
3370 unsigned int old_flags
= vmf
->flags
;
3372 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
3374 if (vmf
->vma
->vm_file
&&
3375 IS_SWAPFILE(vmf
->vma
->vm_file
->f_mapping
->host
))
3376 return VM_FAULT_SIGBUS
;
3378 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
3379 /* Restore original flags so that caller is not surprised */
3380 vmf
->flags
= old_flags
;
3381 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
3383 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
3385 if (!folio
->mapping
) {
3386 folio_unlock(folio
);
3387 return 0; /* retry */
3389 ret
|= VM_FAULT_LOCKED
;
3391 VM_BUG_ON_FOLIO(!folio_test_locked(folio
), folio
);
3396 * Handle dirtying of a page in shared file mapping on a write fault.
3398 * The function expects the page to be locked and unlocks it.
3400 static vm_fault_t
fault_dirty_shared_page(struct vm_fault
*vmf
)
3402 struct vm_area_struct
*vma
= vmf
->vma
;
3403 struct address_space
*mapping
;
3404 struct folio
*folio
= page_folio(vmf
->page
);
3406 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
3408 dirtied
= folio_mark_dirty(folio
);
3409 VM_BUG_ON_FOLIO(folio_test_anon(folio
), folio
);
3411 * Take a local copy of the address_space - folio.mapping may be zeroed
3412 * by truncate after folio_unlock(). The address_space itself remains
3413 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3414 * release semantics to prevent the compiler from undoing this copying.
3416 mapping
= folio_raw_mapping(folio
);
3417 folio_unlock(folio
);
3420 file_update_time(vma
->vm_file
);
3423 * Throttle page dirtying rate down to writeback speed.
3425 * mapping may be NULL here because some device drivers do not
3426 * set page.mapping but still dirty their pages
3428 * Drop the mmap_lock before waiting on IO, if we can. The file
3429 * is pinning the mapping, as per above.
3431 if ((dirtied
|| page_mkwrite
) && mapping
) {
3434 fpin
= maybe_unlock_mmap_for_io(vmf
, NULL
);
3435 balance_dirty_pages_ratelimited(mapping
);
3438 return VM_FAULT_COMPLETED
;
3446 * Handle write page faults for pages that can be reused in the current vma
3448 * This can happen either due to the mapping being with the VM_SHARED flag,
3449 * or due to us being the last reference standing to the page. In either
3450 * case, all we need to do here is to mark the page as writable and update
3451 * any related book-keeping.
3453 static inline void wp_page_reuse(struct vm_fault
*vmf
, struct folio
*folio
)
3454 __releases(vmf
->ptl
)
3456 struct vm_area_struct
*vma
= vmf
->vma
;
3459 VM_BUG_ON(!(vmf
->flags
& FAULT_FLAG_WRITE
));
3460 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf
->orig_pte
)));
3463 VM_BUG_ON(folio_test_anon(folio
) &&
3464 !PageAnonExclusive(vmf
->page
));
3466 * Clear the folio's cpupid information as the existing
3467 * information potentially belongs to a now completely
3468 * unrelated process.
3470 folio_xchg_last_cpupid(folio
, (1 << LAST_CPUPID_SHIFT
) - 1);
3473 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
3474 entry
= pte_mkyoung(vmf
->orig_pte
);
3475 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3476 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
3477 update_mmu_cache_range(vmf
, vma
, vmf
->address
, vmf
->pte
, 1);
3478 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3479 count_vm_event(PGREUSE
);
3483 * We could add a bitflag somewhere, but for now, we know that all
3484 * vm_ops that have a ->map_pages have been audited and don't need
3485 * the mmap_lock to be held.
3487 static inline vm_fault_t
vmf_can_call_fault(const struct vm_fault
*vmf
)
3489 struct vm_area_struct
*vma
= vmf
->vma
;
3491 if (vma
->vm_ops
->map_pages
|| !(vmf
->flags
& FAULT_FLAG_VMA_LOCK
))
3494 return VM_FAULT_RETRY
;
3498 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3499 * @vmf: The vm_fault descriptor passed from the fault handler.
3501 * When preparing to insert an anonymous page into a VMA from a
3502 * fault handler, call this function rather than anon_vma_prepare().
3503 * If this vma does not already have an associated anon_vma and we are
3504 * only protected by the per-VMA lock, the caller must retry with the
3505 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3506 * determine if this VMA can share its anon_vma, and that's not safe to
3507 * do with only the per-VMA lock held for this VMA.
3509 * Return: 0 if fault handling can proceed. Any other value should be
3510 * returned to the caller.
3512 vm_fault_t
__vmf_anon_prepare(struct vm_fault
*vmf
)
3514 struct vm_area_struct
*vma
= vmf
->vma
;
3517 if (likely(vma
->anon_vma
))
3519 if (vmf
->flags
& FAULT_FLAG_VMA_LOCK
) {
3520 if (!mmap_read_trylock(vma
->vm_mm
))
3521 return VM_FAULT_RETRY
;
3523 if (__anon_vma_prepare(vma
))
3525 if (vmf
->flags
& FAULT_FLAG_VMA_LOCK
)
3526 mmap_read_unlock(vma
->vm_mm
);
3531 * Handle the case of a page which we actually need to copy to a new page,
3532 * either due to COW or unsharing.
3534 * Called with mmap_lock locked and the old page referenced, but
3535 * without the ptl held.
3537 * High level logic flow:
3539 * - Allocate a page, copy the content of the old page to the new one.
3540 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3541 * - Take the PTL. If the pte changed, bail out and release the allocated page
3542 * - If the pte is still the way we remember it, update the page table and all
3543 * relevant references. This includes dropping the reference the page-table
3544 * held to the old page, as well as updating the rmap.
3545 * - In any case, unlock the PTL and drop the reference we took to the old page.
3547 static vm_fault_t
wp_page_copy(struct vm_fault
*vmf
)
3549 const bool unshare
= vmf
->flags
& FAULT_FLAG_UNSHARE
;
3550 struct vm_area_struct
*vma
= vmf
->vma
;
3551 struct mm_struct
*mm
= vma
->vm_mm
;
3552 struct folio
*old_folio
= NULL
;
3553 struct folio
*new_folio
= NULL
;
3555 int page_copied
= 0;
3556 struct mmu_notifier_range range
;
3560 delayacct_wpcopy_start();
3563 old_folio
= page_folio(vmf
->page
);
3564 ret
= vmf_anon_prepare(vmf
);
3568 pfn_is_zero
= is_zero_pfn(pte_pfn(vmf
->orig_pte
));
3569 new_folio
= folio_prealloc(mm
, vma
, vmf
->address
, pfn_is_zero
);
3576 err
= __wp_page_copy_user(&new_folio
->page
, vmf
->page
, vmf
);
3579 * COW failed, if the fault was solved by other,
3580 * it's fine. If not, userspace would re-fault on
3581 * the same address and we will handle the fault
3582 * from the second attempt.
3583 * The -EHWPOISON case will not be retried.
3585 folio_put(new_folio
);
3587 folio_put(old_folio
);
3589 delayacct_wpcopy_end();
3590 return err
== -EHWPOISON
? VM_FAULT_HWPOISON
: 0;
3592 kmsan_copy_page_meta(&new_folio
->page
, vmf
->page
);
3595 __folio_mark_uptodate(new_folio
);
3597 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, mm
,
3598 vmf
->address
& PAGE_MASK
,
3599 (vmf
->address
& PAGE_MASK
) + PAGE_SIZE
);
3600 mmu_notifier_invalidate_range_start(&range
);
3603 * Re-check the pte - we dropped the lock
3605 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
3606 if (likely(vmf
->pte
&& pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
))) {
3608 if (!folio_test_anon(old_folio
)) {
3609 dec_mm_counter(mm
, mm_counter_file(old_folio
));
3610 inc_mm_counter(mm
, MM_ANONPAGES
);
3613 ksm_might_unmap_zero_page(mm
, vmf
->orig_pte
);
3614 inc_mm_counter(mm
, MM_ANONPAGES
);
3616 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
3617 entry
= folio_mk_pte(new_folio
, vma
->vm_page_prot
);
3618 entry
= pte_sw_mkyoung(entry
);
3619 if (unlikely(unshare
)) {
3620 if (pte_soft_dirty(vmf
->orig_pte
))
3621 entry
= pte_mksoft_dirty(entry
);
3622 if (pte_uffd_wp(vmf
->orig_pte
))
3623 entry
= pte_mkuffd_wp(entry
);
3625 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3629 * Clear the pte entry and flush it first, before updating the
3630 * pte with the new entry, to keep TLBs on different CPUs in
3631 * sync. This code used to set the new PTE then flush TLBs, but
3632 * that left a window where the new PTE could be loaded into
3633 * some TLBs while the old PTE remains in others.
3635 ptep_clear_flush(vma
, vmf
->address
, vmf
->pte
);
3636 folio_add_new_anon_rmap(new_folio
, vma
, vmf
->address
, RMAP_EXCLUSIVE
);
3637 folio_add_lru_vma(new_folio
, vma
);
3638 BUG_ON(unshare
&& pte_write(entry
));
3639 set_pte_at(mm
, vmf
->address
, vmf
->pte
, entry
);
3640 update_mmu_cache_range(vmf
, vma
, vmf
->address
, vmf
->pte
, 1);
3643 * Only after switching the pte to the new page may
3644 * we remove the mapcount here. Otherwise another
3645 * process may come and find the rmap count decremented
3646 * before the pte is switched to the new page, and
3647 * "reuse" the old page writing into it while our pte
3648 * here still points into it and can be read by other
3651 * The critical issue is to order this
3652 * folio_remove_rmap_pte() with the ptp_clear_flush
3653 * above. Those stores are ordered by (if nothing else,)
3654 * the barrier present in the atomic_add_negative
3655 * in folio_remove_rmap_pte();
3657 * Then the TLB flush in ptep_clear_flush ensures that
3658 * no process can access the old page before the
3659 * decremented mapcount is visible. And the old page
3660 * cannot be reused until after the decremented
3661 * mapcount is visible. So transitively, TLBs to
3662 * old page will be flushed before it can be reused.
3664 folio_remove_rmap_pte(old_folio
, vmf
->page
, vma
);
3667 /* Free the old page.. */
3668 new_folio
= old_folio
;
3670 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3671 } else if (vmf
->pte
) {
3672 update_mmu_tlb(vma
, vmf
->address
, vmf
->pte
);
3673 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3676 mmu_notifier_invalidate_range_end(&range
);
3679 folio_put(new_folio
);
3682 free_swap_cache(old_folio
);
3683 folio_put(old_folio
);
3686 delayacct_wpcopy_end();
3692 folio_put(old_folio
);
3694 delayacct_wpcopy_end();
3699 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3700 * writeable once the page is prepared
3702 * @vmf: structure describing the fault
3703 * @folio: the folio of vmf->page
3705 * This function handles all that is needed to finish a write page fault in a
3706 * shared mapping due to PTE being read-only once the mapped page is prepared.
3707 * It handles locking of PTE and modifying it.
3709 * The function expects the page to be locked or other protection against
3710 * concurrent faults / writeback (such as DAX radix tree locks).
3712 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3713 * we acquired PTE lock.
3715 static vm_fault_t
finish_mkwrite_fault(struct vm_fault
*vmf
, struct folio
*folio
)
3717 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
3718 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3721 return VM_FAULT_NOPAGE
;
3723 * We might have raced with another page fault while we released the
3724 * pte_offset_map_lock.
3726 if (!pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
)) {
3727 update_mmu_tlb(vmf
->vma
, vmf
->address
, vmf
->pte
);
3728 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3729 return VM_FAULT_NOPAGE
;
3731 wp_page_reuse(vmf
, folio
);
3736 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3739 static vm_fault_t
wp_pfn_shared(struct vm_fault
*vmf
)
3741 struct vm_area_struct
*vma
= vmf
->vma
;
3743 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
3746 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3747 ret
= vmf_can_call_fault(vmf
);
3751 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
3752 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
3753 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
3755 return finish_mkwrite_fault(vmf
, NULL
);
3757 wp_page_reuse(vmf
, NULL
);
3761 static vm_fault_t
wp_page_shared(struct vm_fault
*vmf
, struct folio
*folio
)
3762 __releases(vmf
->ptl
)
3764 struct vm_area_struct
*vma
= vmf
->vma
;
3769 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
3772 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3773 tmp
= vmf_can_call_fault(vmf
);
3779 tmp
= do_page_mkwrite(vmf
, folio
);
3780 if (unlikely(!tmp
|| (tmp
&
3781 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3785 tmp
= finish_mkwrite_fault(vmf
, folio
);
3786 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
3787 folio_unlock(folio
);
3792 wp_page_reuse(vmf
, folio
);
3795 ret
|= fault_dirty_shared_page(vmf
);
3801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3802 static bool __wp_can_reuse_large_anon_folio(struct folio
*folio
,
3803 struct vm_area_struct
*vma
)
3805 bool exclusive
= false;
3807 /* Let's just free up a large folio if only a single page is mapped. */
3808 if (folio_large_mapcount(folio
) <= 1)
3812 * The assumption for anonymous folios is that each page can only get
3813 * mapped once into each MM. The only exception are KSM folios, which
3816 * Each taken mapcount must be paired with exactly one taken reference,
3817 * whereby the refcount must be incremented before the mapcount when
3818 * mapping a page, and the refcount must be decremented after the
3819 * mapcount when unmapping a page.
3821 * If all folio references are from mappings, and all mappings are in
3822 * the page tables of this MM, then this folio is exclusive to this MM.
3824 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM
, &folio
->_mm_ids
))
3827 VM_WARN_ON_ONCE(folio_test_ksm(folio
));
3829 if (unlikely(folio_test_swapcache(folio
))) {
3831 * Note: freeing up the swapcache will fail if some PTEs are
3832 * still swap entries.
3834 if (!folio_trylock(folio
))
3836 folio_free_swap(folio
);
3837 folio_unlock(folio
);
3840 if (folio_large_mapcount(folio
) != folio_ref_count(folio
))
3843 /* Stabilize the mapcount vs. refcount and recheck. */
3844 folio_lock_large_mapcount(folio
);
3845 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio
) > folio_ref_count(folio
), folio
);
3847 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM
, &folio
->_mm_ids
))
3849 if (folio_large_mapcount(folio
) != folio_ref_count(folio
))
3852 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio
) > folio_nr_pages(folio
), folio
);
3853 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio
), folio
);
3854 VM_WARN_ON_ONCE(folio_mm_id(folio
, 0) != vma
->vm_mm
->mm_id
&&
3855 folio_mm_id(folio
, 1) != vma
->vm_mm
->mm_id
);
3858 * Do we need the folio lock? Likely not. If there would have been
3859 * references from page migration/swapout, we would have detected
3860 * an additional folio reference and never ended up here.
3864 folio_unlock_large_mapcount(folio
);
3867 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
3868 static bool __wp_can_reuse_large_anon_folio(struct folio
*folio
,
3869 struct vm_area_struct
*vma
)
3873 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3875 static bool wp_can_reuse_anon_folio(struct folio
*folio
,
3876 struct vm_area_struct
*vma
)
3878 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) && folio_test_large(folio
))
3879 return __wp_can_reuse_large_anon_folio(folio
, vma
);
3882 * We have to verify under folio lock: these early checks are
3883 * just an optimization to avoid locking the folio and freeing
3884 * the swapcache if there is little hope that we can reuse.
3886 * KSM doesn't necessarily raise the folio refcount.
3888 if (folio_test_ksm(folio
) || folio_ref_count(folio
) > 3)
3890 if (!folio_test_lru(folio
))
3892 * We cannot easily detect+handle references from
3893 * remote LRU caches or references to LRU folios.
3896 if (folio_ref_count(folio
) > 1 + folio_test_swapcache(folio
))
3898 if (!folio_trylock(folio
))
3900 if (folio_test_swapcache(folio
))
3901 folio_free_swap(folio
);
3902 if (folio_test_ksm(folio
) || folio_ref_count(folio
) != 1) {
3903 folio_unlock(folio
);
3907 * Ok, we've got the only folio reference from our mapping
3908 * and the folio is locked, it's dark out, and we're wearing
3909 * sunglasses. Hit it.
3911 folio_move_anon_rmap(folio
, vma
);
3912 folio_unlock(folio
);
3917 * This routine handles present pages, when
3918 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3919 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3920 * (FAULT_FLAG_UNSHARE)
3922 * It is done by copying the page to a new address and decrementing the
3923 * shared-page counter for the old page.
3925 * Note that this routine assumes that the protection checks have been
3926 * done by the caller (the low-level page fault routine in most cases).
3927 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3928 * done any necessary COW.
3930 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3931 * though the page will change only once the write actually happens. This
3932 * avoids a few races, and potentially makes it more efficient.
3934 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3935 * but allow concurrent faults), with pte both mapped and locked.
3936 * We return with mmap_lock still held, but pte unmapped and unlocked.
3938 static vm_fault_t
do_wp_page(struct vm_fault
*vmf
)
3939 __releases(vmf
->ptl
)
3941 const bool unshare
= vmf
->flags
& FAULT_FLAG_UNSHARE
;
3942 struct vm_area_struct
*vma
= vmf
->vma
;
3943 struct folio
*folio
= NULL
;
3946 if (likely(!unshare
)) {
3947 if (userfaultfd_pte_wp(vma
, ptep_get(vmf
->pte
))) {
3948 if (!userfaultfd_wp_async(vma
)) {
3949 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3950 return handle_userfault(vmf
, VM_UFFD_WP
);
3954 * Nothing needed (cache flush, TLB invalidations,
3955 * etc.) because we're only removing the uffd-wp bit,
3956 * which is completely invisible to the user.
3958 pte
= pte_clear_uffd_wp(ptep_get(vmf
->pte
));
3960 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3962 * Update this to be prepared for following up CoW
3965 vmf
->orig_pte
= pte
;
3969 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3970 * is flushed in this case before copying.
3972 if (unlikely(userfaultfd_wp(vmf
->vma
) &&
3973 mm_tlb_flush_pending(vmf
->vma
->vm_mm
)))
3974 flush_tlb_page(vmf
->vma
, vmf
->address
);
3977 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
3980 folio
= page_folio(vmf
->page
);
3983 * Shared mapping: we are guaranteed to have VM_WRITE and
3984 * FAULT_FLAG_WRITE set at this point.
3986 if (vma
->vm_flags
& (VM_SHARED
| VM_MAYSHARE
)) {
3988 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3989 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called.
3991 * We should not cow pages in a shared writeable mapping.
3992 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3994 if (!vmf
->page
|| is_fsdax_page(vmf
->page
)) {
3996 return wp_pfn_shared(vmf
);
3998 return wp_page_shared(vmf
, folio
);
4002 * Private mapping: create an exclusive anonymous page copy if reuse
4003 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
4005 * If we encounter a page that is marked exclusive, we must reuse
4006 * the page without further checks.
4008 if (folio
&& folio_test_anon(folio
) &&
4009 (PageAnonExclusive(vmf
->page
) || wp_can_reuse_anon_folio(folio
, vma
))) {
4010 if (!PageAnonExclusive(vmf
->page
))
4011 SetPageAnonExclusive(vmf
->page
);
4012 if (unlikely(unshare
)) {
4013 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4016 wp_page_reuse(vmf
, folio
);
4020 * Ok, we need to copy. Oh, well..
4025 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4027 if (folio
&& folio_test_ksm(folio
))
4028 count_vm_event(COW_KSM
);
4030 return wp_page_copy(vmf
);
4033 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
4034 unsigned long start_addr
, unsigned long end_addr
,
4035 struct zap_details
*details
)
4037 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
4040 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
4041 pgoff_t first_index
,
4043 struct zap_details
*details
)
4045 struct vm_area_struct
*vma
;
4046 pgoff_t vba
, vea
, zba
, zea
;
4048 vma_interval_tree_foreach(vma
, root
, first_index
, last_index
) {
4049 vba
= vma
->vm_pgoff
;
4050 vea
= vba
+ vma_pages(vma
) - 1;
4051 zba
= max(first_index
, vba
);
4052 zea
= min(last_index
, vea
);
4054 unmap_mapping_range_vma(vma
,
4055 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
4056 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
4062 * unmap_mapping_folio() - Unmap single folio from processes.
4063 * @folio: The locked folio to be unmapped.
4065 * Unmap this folio from any userspace process which still has it mmaped.
4066 * Typically, for efficiency, the range of nearby pages has already been
4067 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
4068 * truncation or invalidation holds the lock on a folio, it may find that
4069 * the page has been remapped again: and then uses unmap_mapping_folio()
4070 * to unmap it finally.
4072 void unmap_mapping_folio(struct folio
*folio
)
4074 struct address_space
*mapping
= folio
->mapping
;
4075 struct zap_details details
= { };
4076 pgoff_t first_index
;
4079 VM_BUG_ON(!folio_test_locked(folio
));
4081 first_index
= folio
->index
;
4082 last_index
= folio_next_index(folio
) - 1;
4084 details
.even_cows
= false;
4085 details
.single_folio
= folio
;
4086 details
.zap_flags
= ZAP_FLAG_DROP_MARKER
;
4088 i_mmap_lock_read(mapping
);
4089 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
4090 unmap_mapping_range_tree(&mapping
->i_mmap
, first_index
,
4091 last_index
, &details
);
4092 i_mmap_unlock_read(mapping
);
4096 * unmap_mapping_pages() - Unmap pages from processes.
4097 * @mapping: The address space containing pages to be unmapped.
4098 * @start: Index of first page to be unmapped.
4099 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
4100 * @even_cows: Whether to unmap even private COWed pages.
4102 * Unmap the pages in this address space from any userspace process which
4103 * has them mmaped. Generally, you want to remove COWed pages as well when
4104 * a file is being truncated, but not when invalidating pages from the page
4107 void unmap_mapping_pages(struct address_space
*mapping
, pgoff_t start
,
4108 pgoff_t nr
, bool even_cows
)
4110 struct zap_details details
= { };
4111 pgoff_t first_index
= start
;
4112 pgoff_t last_index
= start
+ nr
- 1;
4114 details
.even_cows
= even_cows
;
4115 if (last_index
< first_index
)
4116 last_index
= ULONG_MAX
;
4118 i_mmap_lock_read(mapping
);
4119 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
4120 unmap_mapping_range_tree(&mapping
->i_mmap
, first_index
,
4121 last_index
, &details
);
4122 i_mmap_unlock_read(mapping
);
4124 EXPORT_SYMBOL_GPL(unmap_mapping_pages
);
4127 * unmap_mapping_range - unmap the portion of all mmaps in the specified
4128 * address_space corresponding to the specified byte range in the underlying
4131 * @mapping: the address space containing mmaps to be unmapped.
4132 * @holebegin: byte in first page to unmap, relative to the start of
4133 * the underlying file. This will be rounded down to a PAGE_SIZE
4134 * boundary. Note that this is different from truncate_pagecache(), which
4135 * must keep the partial page. In contrast, we must get rid of
4137 * @holelen: size of prospective hole in bytes. This will be rounded
4138 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
4140 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
4141 * but 0 when invalidating pagecache, don't throw away private data.
4143 void unmap_mapping_range(struct address_space
*mapping
,
4144 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
4146 pgoff_t hba
= (pgoff_t
)(holebegin
) >> PAGE_SHIFT
;
4147 pgoff_t hlen
= ((pgoff_t
)(holelen
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
4149 /* Check for overflow. */
4150 if (sizeof(holelen
) > sizeof(hlen
)) {
4152 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
4153 if (holeend
& ~(long long)ULONG_MAX
)
4154 hlen
= ULONG_MAX
- hba
+ 1;
4157 unmap_mapping_pages(mapping
, hba
, hlen
, even_cows
);
4159 EXPORT_SYMBOL(unmap_mapping_range
);
4162 * Restore a potential device exclusive pte to a working pte entry
4164 static vm_fault_t
remove_device_exclusive_entry(struct vm_fault
*vmf
)
4166 struct folio
*folio
= page_folio(vmf
->page
);
4167 struct vm_area_struct
*vma
= vmf
->vma
;
4168 struct mmu_notifier_range range
;
4172 * We need a reference to lock the folio because we don't hold
4173 * the PTL so a racing thread can remove the device-exclusive
4174 * entry and unmap it. If the folio is free the entry must
4175 * have been removed already. If it happens to have already
4176 * been re-allocated after being freed all we do is lock and
4179 if (!folio_try_get(folio
))
4182 ret
= folio_lock_or_retry(folio
, vmf
);
4187 mmu_notifier_range_init_owner(&range
, MMU_NOTIFY_CLEAR
, 0,
4188 vma
->vm_mm
, vmf
->address
& PAGE_MASK
,
4189 (vmf
->address
& PAGE_MASK
) + PAGE_SIZE
, NULL
);
4190 mmu_notifier_invalidate_range_start(&range
);
4192 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
4194 if (likely(vmf
->pte
&& pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
)))
4195 restore_exclusive_pte(vma
, folio
, vmf
->page
, vmf
->address
,
4196 vmf
->pte
, vmf
->orig_pte
);
4199 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4200 folio_unlock(folio
);
4203 mmu_notifier_invalidate_range_end(&range
);
4207 static inline bool should_try_to_free_swap(struct folio
*folio
,
4208 struct vm_area_struct
*vma
,
4209 unsigned int fault_flags
)
4211 if (!folio_test_swapcache(folio
))
4213 if (mem_cgroup_swap_full(folio
) || (vma
->vm_flags
& VM_LOCKED
) ||
4214 folio_test_mlocked(folio
))
4217 * If we want to map a page that's in the swapcache writable, we
4218 * have to detect via the refcount if we're really the exclusive
4219 * user. Try freeing the swapcache to get rid of the swapcache
4220 * reference only in case it's likely that we'll be the exlusive user.
4222 return (fault_flags
& FAULT_FLAG_WRITE
) && !folio_test_ksm(folio
) &&
4223 folio_ref_count(folio
) == (1 + folio_nr_pages(folio
));
4226 static vm_fault_t
pte_marker_clear(struct vm_fault
*vmf
)
4228 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
,
4229 vmf
->address
, &vmf
->ptl
);
4233 * Be careful so that we will only recover a special uffd-wp pte into a
4234 * none pte. Otherwise it means the pte could have changed, so retry.
4236 * This should also cover the case where e.g. the pte changed
4237 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4238 * So is_pte_marker() check is not enough to safely drop the pte.
4240 if (pte_same(vmf
->orig_pte
, ptep_get(vmf
->pte
)))
4241 pte_clear(vmf
->vma
->vm_mm
, vmf
->address
, vmf
->pte
);
4242 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4246 static vm_fault_t
do_pte_missing(struct vm_fault
*vmf
)
4248 if (vma_is_anonymous(vmf
->vma
))
4249 return do_anonymous_page(vmf
);
4251 return do_fault(vmf
);
4255 * This is actually a page-missing access, but with uffd-wp special pte
4256 * installed. It means this pte was wr-protected before being unmapped.
4258 static vm_fault_t
pte_marker_handle_uffd_wp(struct vm_fault
*vmf
)
4261 * Just in case there're leftover special ptes even after the region
4262 * got unregistered - we can simply clear them.
4264 if (unlikely(!userfaultfd_wp(vmf
->vma
)))
4265 return pte_marker_clear(vmf
);
4267 return do_pte_missing(vmf
);
4270 static vm_fault_t
handle_pte_marker(struct vm_fault
*vmf
)
4272 swp_entry_t entry
= pte_to_swp_entry(vmf
->orig_pte
);
4273 unsigned long marker
= pte_marker_get(entry
);
4276 * PTE markers should never be empty. If anything weird happened,
4277 * the best thing to do is to kill the process along with its mm.
4279 if (WARN_ON_ONCE(!marker
))
4280 return VM_FAULT_SIGBUS
;
4282 /* Higher priority than uffd-wp when data corrupted */
4283 if (marker
& PTE_MARKER_POISONED
)
4284 return VM_FAULT_HWPOISON
;
4286 /* Hitting a guard page is always a fatal condition. */
4287 if (marker
& PTE_MARKER_GUARD
)
4288 return VM_FAULT_SIGSEGV
;
4290 if (pte_marker_entry_uffd_wp(entry
))
4291 return pte_marker_handle_uffd_wp(vmf
);
4293 /* This is an unknown pte marker */
4294 return VM_FAULT_SIGBUS
;
4297 static struct folio
*__alloc_swap_folio(struct vm_fault
*vmf
)
4299 struct vm_area_struct
*vma
= vmf
->vma
;
4300 struct folio
*folio
;
4303 folio
= vma_alloc_folio(GFP_HIGHUSER_MOVABLE
, 0, vma
, vmf
->address
);
4307 entry
= pte_to_swp_entry(vmf
->orig_pte
);
4308 if (mem_cgroup_swapin_charge_folio(folio
, vma
->vm_mm
,
4309 GFP_KERNEL
, entry
)) {
4317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4319 * Check if the PTEs within a range are contiguous swap entries
4320 * and have consistent swapcache, zeromap.
4322 static bool can_swapin_thp(struct vm_fault
*vmf
, pte_t
*ptep
, int nr_pages
)
4329 addr
= ALIGN_DOWN(vmf
->address
, nr_pages
* PAGE_SIZE
);
4330 idx
= (vmf
->address
- addr
) / PAGE_SIZE
;
4331 pte
= ptep_get(ptep
);
4333 if (!pte_same(pte
, pte_move_swp_offset(vmf
->orig_pte
, -idx
)))
4335 entry
= pte_to_swp_entry(pte
);
4336 if (swap_pte_batch(ptep
, nr_pages
, pte
) != nr_pages
)
4340 * swap_read_folio() can't handle the case a large folio is hybridly
4341 * from different backends. And they are likely corner cases. Similar
4342 * things might be added once zswap support large folios.
4344 if (unlikely(swap_zeromap_batch(entry
, nr_pages
, NULL
) != nr_pages
))
4346 if (unlikely(non_swapcache_batch(entry
, nr_pages
) != nr_pages
))
4352 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset
,
4354 unsigned long orders
)
4358 order
= highest_order(orders
);
4361 * To swap in a THP with nr pages, we require that its first swap_offset
4362 * is aligned with that number, as it was when the THP was swapped out.
4363 * This helps filter out most invalid entries.
4367 if ((addr
>> PAGE_SHIFT
) % nr
== swp_offset
% nr
)
4369 order
= next_order(&orders
, order
);
4375 static struct folio
*alloc_swap_folio(struct vm_fault
*vmf
)
4377 struct vm_area_struct
*vma
= vmf
->vma
;
4378 unsigned long orders
;
4379 struct folio
*folio
;
4388 * If uffd is active for the vma we need per-page fault fidelity to
4389 * maintain the uffd semantics.
4391 if (unlikely(userfaultfd_armed(vma
)))
4395 * A large swapped out folio could be partially or fully in zswap. We
4396 * lack handling for such cases, so fallback to swapping in order-0
4399 if (!zswap_never_enabled())
4402 entry
= pte_to_swp_entry(vmf
->orig_pte
);
4404 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4405 * and suitable for swapping THP.
4407 orders
= thp_vma_allowable_orders(vma
, vma
->vm_flags
,
4408 TVA_IN_PF
| TVA_ENFORCE_SYSFS
, BIT(PMD_ORDER
) - 1);
4409 orders
= thp_vma_suitable_orders(vma
, vmf
->address
, orders
);
4410 orders
= thp_swap_suitable_orders(swp_offset(entry
),
4411 vmf
->address
, orders
);
4416 pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
,
4417 vmf
->address
& PMD_MASK
, &ptl
);
4422 * For do_swap_page, find the highest order where the aligned range is
4423 * completely swap entries with contiguous swap offsets.
4425 order
= highest_order(orders
);
4427 addr
= ALIGN_DOWN(vmf
->address
, PAGE_SIZE
<< order
);
4428 if (can_swapin_thp(vmf
, pte
+ pte_index(addr
), 1 << order
))
4430 order
= next_order(&orders
, order
);
4433 pte_unmap_unlock(pte
, ptl
);
4435 /* Try allocating the highest of the remaining orders. */
4436 gfp
= vma_thp_gfp_mask(vma
);
4438 addr
= ALIGN_DOWN(vmf
->address
, PAGE_SIZE
<< order
);
4439 folio
= vma_alloc_folio(gfp
, order
, vma
, addr
);
4441 if (!mem_cgroup_swapin_charge_folio(folio
, vma
->vm_mm
,
4444 count_mthp_stat(order
, MTHP_STAT_SWPIN_FALLBACK_CHARGE
);
4447 count_mthp_stat(order
, MTHP_STAT_SWPIN_FALLBACK
);
4448 order
= next_order(&orders
, order
);
4452 return __alloc_swap_folio(vmf
);
4454 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4455 static struct folio
*alloc_swap_folio(struct vm_fault
*vmf
)
4457 return __alloc_swap_folio(vmf
);
4459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4461 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq
);
4464 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4465 * but allow concurrent faults), and pte mapped but not yet locked.
4466 * We return with pte unmapped and unlocked.
4468 * We return with the mmap_lock locked or unlocked in the same cases
4469 * as does filemap_fault().
4471 vm_fault_t
do_swap_page(struct vm_fault
*vmf
)
4473 struct vm_area_struct
*vma
= vmf
->vma
;
4474 struct folio
*swapcache
, *folio
= NULL
;
4475 DECLARE_WAITQUEUE(wait
, current
);
4477 struct swap_info_struct
*si
= NULL
;
4478 rmap_t rmap_flags
= RMAP_NONE
;
4479 bool need_clear_cache
= false;
4480 bool exclusive
= false;
4484 void *shadow
= NULL
;
4486 unsigned long page_idx
;
4487 unsigned long address
;
4490 if (!pte_unmap_same(vmf
))
4493 entry
= pte_to_swp_entry(vmf
->orig_pte
);
4494 if (unlikely(non_swap_entry(entry
))) {
4495 if (is_migration_entry(entry
)) {
4496 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
4498 } else if (is_device_exclusive_entry(entry
)) {
4499 vmf
->page
= pfn_swap_entry_to_page(entry
);
4500 ret
= remove_device_exclusive_entry(vmf
);
4501 } else if (is_device_private_entry(entry
)) {
4502 if (vmf
->flags
& FAULT_FLAG_VMA_LOCK
) {
4504 * migrate_to_ram is not yet ready to operate
4508 ret
= VM_FAULT_RETRY
;
4512 vmf
->page
= pfn_swap_entry_to_page(entry
);
4513 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
4514 vmf
->address
, &vmf
->ptl
);
4515 if (unlikely(!vmf
->pte
||
4516 !pte_same(ptep_get(vmf
->pte
),
4521 * Get a page reference while we know the page can't be
4524 if (trylock_page(vmf
->page
)) {
4525 struct dev_pagemap
*pgmap
;
4527 get_page(vmf
->page
);
4528 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4529 pgmap
= page_pgmap(vmf
->page
);
4530 ret
= pgmap
->ops
->migrate_to_ram(vmf
);
4531 unlock_page(vmf
->page
);
4532 put_page(vmf
->page
);
4534 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4536 } else if (is_hwpoison_entry(entry
)) {
4537 ret
= VM_FAULT_HWPOISON
;
4538 } else if (is_pte_marker_entry(entry
)) {
4539 ret
= handle_pte_marker(vmf
);
4541 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
4542 ret
= VM_FAULT_SIGBUS
;
4547 /* Prevent swapoff from happening to us. */
4548 si
= get_swap_device(entry
);
4552 folio
= swap_cache_get_folio(entry
, vma
, vmf
->address
);
4554 page
= folio_file_page(folio
, swp_offset(entry
));
4558 if (data_race(si
->flags
& SWP_SYNCHRONOUS_IO
) &&
4559 __swap_count(entry
) == 1) {
4560 /* skip swapcache */
4561 folio
= alloc_swap_folio(vmf
);
4563 __folio_set_locked(folio
);
4564 __folio_set_swapbacked(folio
);
4566 nr_pages
= folio_nr_pages(folio
);
4567 if (folio_test_large(folio
))
4568 entry
.val
= ALIGN_DOWN(entry
.val
, nr_pages
);
4570 * Prevent parallel swapin from proceeding with
4571 * the cache flag. Otherwise, another thread
4572 * may finish swapin first, free the entry, and
4573 * swapout reusing the same entry. It's
4574 * undetectable as pte_same() returns true due
4577 if (swapcache_prepare(entry
, nr_pages
)) {
4579 * Relax a bit to prevent rapid
4580 * repeated page faults.
4582 add_wait_queue(&swapcache_wq
, &wait
);
4583 schedule_timeout_uninterruptible(1);
4584 remove_wait_queue(&swapcache_wq
, &wait
);
4587 need_clear_cache
= true;
4589 memcg1_swapin(entry
, nr_pages
);
4591 shadow
= get_shadow_from_swap_cache(entry
);
4593 workingset_refault(folio
, shadow
);
4595 folio_add_lru(folio
);
4597 /* To provide entry to swap_read_folio() */
4598 folio
->swap
= entry
;
4599 swap_read_folio(folio
, NULL
);
4600 folio
->private = NULL
;
4603 folio
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
4610 * Back out if somebody else faulted in this pte
4611 * while we released the pte lock.
4613 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
4614 vmf
->address
, &vmf
->ptl
);
4615 if (likely(vmf
->pte
&&
4616 pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
)))
4621 /* Had to read the page from swap area: Major fault */
4622 ret
= VM_FAULT_MAJOR
;
4623 count_vm_event(PGMAJFAULT
);
4624 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
4625 page
= folio_file_page(folio
, swp_offset(entry
));
4626 } else if (PageHWPoison(page
)) {
4628 * hwpoisoned dirty swapcache pages are kept for killing
4629 * owner processes (which may be unknown at hwpoison time)
4631 ret
= VM_FAULT_HWPOISON
;
4635 ret
|= folio_lock_or_retry(folio
, vmf
);
4636 if (ret
& VM_FAULT_RETRY
)
4641 * Make sure folio_free_swap() or swapoff did not release the
4642 * swapcache from under us. The page pin, and pte_same test
4643 * below, are not enough to exclude that. Even if it is still
4644 * swapcache, we need to check that the page's swap has not
4647 if (unlikely(!folio_test_swapcache(folio
) ||
4648 page_swap_entry(page
).val
!= entry
.val
))
4652 * KSM sometimes has to copy on read faults, for example, if
4653 * folio->index of non-ksm folios would be nonlinear inside the
4654 * anon VMA -- the ksm flag is lost on actual swapout.
4656 folio
= ksm_might_need_to_copy(folio
, vma
, vmf
->address
);
4657 if (unlikely(!folio
)) {
4661 } else if (unlikely(folio
== ERR_PTR(-EHWPOISON
))) {
4662 ret
= VM_FAULT_HWPOISON
;
4666 if (folio
!= swapcache
)
4667 page
= folio_page(folio
, 0);
4670 * If we want to map a page that's in the swapcache writable, we
4671 * have to detect via the refcount if we're really the exclusive
4672 * owner. Try removing the extra reference from the local LRU
4673 * caches if required.
4675 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && folio
== swapcache
&&
4676 !folio_test_ksm(folio
) && !folio_test_lru(folio
))
4680 folio_throttle_swaprate(folio
, GFP_KERNEL
);
4683 * Back out if somebody else already faulted in this pte.
4685 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
4687 if (unlikely(!vmf
->pte
|| !pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
)))
4690 if (unlikely(!folio_test_uptodate(folio
))) {
4691 ret
= VM_FAULT_SIGBUS
;
4695 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4696 if (folio_test_large(folio
) && !folio_test_swapcache(folio
)) {
4697 unsigned long nr
= folio_nr_pages(folio
);
4698 unsigned long folio_start
= ALIGN_DOWN(vmf
->address
, nr
* PAGE_SIZE
);
4699 unsigned long idx
= (vmf
->address
- folio_start
) / PAGE_SIZE
;
4700 pte_t
*folio_ptep
= vmf
->pte
- idx
;
4701 pte_t folio_pte
= ptep_get(folio_ptep
);
4703 if (!pte_same(folio_pte
, pte_move_swp_offset(vmf
->orig_pte
, -idx
)) ||
4704 swap_pte_batch(folio_ptep
, nr
, folio_pte
) != nr
)
4708 address
= folio_start
;
4715 address
= vmf
->address
;
4717 if (folio_test_large(folio
) && folio_test_swapcache(folio
)) {
4718 int nr
= folio_nr_pages(folio
);
4719 unsigned long idx
= folio_page_idx(folio
, page
);
4720 unsigned long folio_start
= address
- idx
* PAGE_SIZE
;
4721 unsigned long folio_end
= folio_start
+ nr
* PAGE_SIZE
;
4725 if (unlikely(folio_start
< max(address
& PMD_MASK
, vma
->vm_start
)))
4727 if (unlikely(folio_end
> pmd_addr_end(address
, vma
->vm_end
)))
4730 folio_ptep
= vmf
->pte
- idx
;
4731 folio_pte
= ptep_get(folio_ptep
);
4732 if (!pte_same(folio_pte
, pte_move_swp_offset(vmf
->orig_pte
, -idx
)) ||
4733 swap_pte_batch(folio_ptep
, nr
, folio_pte
) != nr
)
4737 address
= folio_start
;
4740 entry
= folio
->swap
;
4741 page
= &folio
->page
;
4746 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4747 * must never point at an anonymous page in the swapcache that is
4748 * PG_anon_exclusive. Sanity check that this holds and especially, that
4749 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4750 * check after taking the PT lock and making sure that nobody
4751 * concurrently faulted in this page and set PG_anon_exclusive.
4753 BUG_ON(!folio_test_anon(folio
) && folio_test_mappedtodisk(folio
));
4754 BUG_ON(folio_test_anon(folio
) && PageAnonExclusive(page
));
4757 * Check under PT lock (to protect against concurrent fork() sharing
4758 * the swap entry concurrently) for certainly exclusive pages.
4760 if (!folio_test_ksm(folio
)) {
4761 exclusive
= pte_swp_exclusive(vmf
->orig_pte
);
4762 if (folio
!= swapcache
) {
4764 * We have a fresh page that is not exposed to the
4765 * swapcache -> certainly exclusive.
4768 } else if (exclusive
&& folio_test_writeback(folio
) &&
4769 data_race(si
->flags
& SWP_STABLE_WRITES
)) {
4771 * This is tricky: not all swap backends support
4772 * concurrent page modifications while under writeback.
4774 * So if we stumble over such a page in the swapcache
4775 * we must not set the page exclusive, otherwise we can
4776 * map it writable without further checks and modify it
4777 * while still under writeback.
4779 * For these problematic swap backends, simply drop the
4780 * exclusive marker: this is perfectly fine as we start
4781 * writeback only if we fully unmapped the page and
4782 * there are no unexpected references on the page after
4783 * unmapping succeeded. After fully unmapped, no
4784 * further GUP references (FOLL_GET and FOLL_PIN) can
4785 * appear, so dropping the exclusive marker and mapping
4786 * it only R/O is fine.
4793 * Some architectures may have to restore extra metadata to the page
4794 * when reading from swap. This metadata may be indexed by swap entry
4795 * so this must be called before swap_free().
4797 arch_swap_restore(folio_swap(entry
, folio
), folio
);
4800 * Remove the swap entry and conditionally try to free up the swapcache.
4801 * We're already holding a reference on the page but haven't mapped it
4804 swap_free_nr(entry
, nr_pages
);
4805 if (should_try_to_free_swap(folio
, vma
, vmf
->flags
))
4806 folio_free_swap(folio
);
4808 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, nr_pages
);
4809 add_mm_counter(vma
->vm_mm
, MM_SWAPENTS
, -nr_pages
);
4810 pte
= mk_pte(page
, vma
->vm_page_prot
);
4811 if (pte_swp_soft_dirty(vmf
->orig_pte
))
4812 pte
= pte_mksoft_dirty(pte
);
4813 if (pte_swp_uffd_wp(vmf
->orig_pte
))
4814 pte
= pte_mkuffd_wp(pte
);
4817 * Same logic as in do_wp_page(); however, optimize for pages that are
4818 * certainly not shared either because we just allocated them without
4819 * exposing them to the swapcache or because the swap entry indicates
4822 if (!folio_test_ksm(folio
) &&
4823 (exclusive
|| folio_ref_count(folio
) == 1)) {
4824 if ((vma
->vm_flags
& VM_WRITE
) && !userfaultfd_pte_wp(vma
, pte
) &&
4825 !pte_needs_soft_dirty_wp(vma
, pte
)) {
4826 pte
= pte_mkwrite(pte
, vma
);
4827 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
4828 pte
= pte_mkdirty(pte
);
4829 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
4832 rmap_flags
|= RMAP_EXCLUSIVE
;
4834 folio_ref_add(folio
, nr_pages
- 1);
4835 flush_icache_pages(vma
, page
, nr_pages
);
4836 vmf
->orig_pte
= pte_advance_pfn(pte
, page_idx
);
4838 /* ksm created a completely new copy */
4839 if (unlikely(folio
!= swapcache
&& swapcache
)) {
4840 folio_add_new_anon_rmap(folio
, vma
, address
, RMAP_EXCLUSIVE
);
4841 folio_add_lru_vma(folio
, vma
);
4842 } else if (!folio_test_anon(folio
)) {
4844 * We currently only expect small !anon folios which are either
4845 * fully exclusive or fully shared, or new allocated large
4846 * folios which are fully exclusive. If we ever get large
4847 * folios within swapcache here, we have to be careful.
4849 VM_WARN_ON_ONCE(folio_test_large(folio
) && folio_test_swapcache(folio
));
4850 VM_WARN_ON_FOLIO(!folio_test_locked(folio
), folio
);
4851 folio_add_new_anon_rmap(folio
, vma
, address
, rmap_flags
);
4853 folio_add_anon_rmap_ptes(folio
, page
, nr_pages
, vma
, address
,
4857 VM_BUG_ON(!folio_test_anon(folio
) ||
4858 (pte_write(pte
) && !PageAnonExclusive(page
)));
4859 set_ptes(vma
->vm_mm
, address
, ptep
, pte
, nr_pages
);
4860 arch_do_swap_page_nr(vma
->vm_mm
, vma
, address
,
4861 pte
, pte
, nr_pages
);
4863 folio_unlock(folio
);
4864 if (folio
!= swapcache
&& swapcache
) {
4866 * Hold the lock to avoid the swap entry to be reused
4867 * until we take the PT lock for the pte_same() check
4868 * (to avoid false positives from pte_same). For
4869 * further safety release the lock after the swap_free
4870 * so that the swap count won't change under a
4871 * parallel locked swapcache.
4873 folio_unlock(swapcache
);
4874 folio_put(swapcache
);
4877 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
4878 ret
|= do_wp_page(vmf
);
4879 if (ret
& VM_FAULT_ERROR
)
4880 ret
&= VM_FAULT_ERROR
;
4884 /* No need to invalidate - it was non-present before */
4885 update_mmu_cache_range(vmf
, vma
, address
, ptep
, nr_pages
);
4888 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4890 /* Clear the swap cache pin for direct swapin after PTL unlock */
4891 if (need_clear_cache
) {
4892 swapcache_clear(si
, entry
, nr_pages
);
4893 if (waitqueue_active(&swapcache_wq
))
4894 wake_up(&swapcache_wq
);
4897 put_swap_device(si
);
4901 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4903 folio_unlock(folio
);
4906 if (folio
!= swapcache
&& swapcache
) {
4907 folio_unlock(swapcache
);
4908 folio_put(swapcache
);
4910 if (need_clear_cache
) {
4911 swapcache_clear(si
, entry
, nr_pages
);
4912 if (waitqueue_active(&swapcache_wq
))
4913 wake_up(&swapcache_wq
);
4916 put_swap_device(si
);
4920 static bool pte_range_none(pte_t
*pte
, int nr_pages
)
4924 for (i
= 0; i
< nr_pages
; i
++) {
4925 if (!pte_none(ptep_get_lockless(pte
+ i
)))
4932 static struct folio
*alloc_anon_folio(struct vm_fault
*vmf
)
4934 struct vm_area_struct
*vma
= vmf
->vma
;
4935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4936 unsigned long orders
;
4937 struct folio
*folio
;
4944 * If uffd is active for the vma we need per-page fault fidelity to
4945 * maintain the uffd semantics.
4947 if (unlikely(userfaultfd_armed(vma
)))
4951 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4952 * for this vma. Then filter out the orders that can't be allocated over
4953 * the faulting address and still be fully contained in the vma.
4955 orders
= thp_vma_allowable_orders(vma
, vma
->vm_flags
,
4956 TVA_IN_PF
| TVA_ENFORCE_SYSFS
, BIT(PMD_ORDER
) - 1);
4957 orders
= thp_vma_suitable_orders(vma
, vmf
->address
, orders
);
4962 pte
= pte_offset_map(vmf
->pmd
, vmf
->address
& PMD_MASK
);
4964 return ERR_PTR(-EAGAIN
);
4967 * Find the highest order where the aligned range is completely
4968 * pte_none(). Note that all remaining orders will be completely
4971 order
= highest_order(orders
);
4973 addr
= ALIGN_DOWN(vmf
->address
, PAGE_SIZE
<< order
);
4974 if (pte_range_none(pte
+ pte_index(addr
), 1 << order
))
4976 order
= next_order(&orders
, order
);
4984 /* Try allocating the highest of the remaining orders. */
4985 gfp
= vma_thp_gfp_mask(vma
);
4987 addr
= ALIGN_DOWN(vmf
->address
, PAGE_SIZE
<< order
);
4988 folio
= vma_alloc_folio(gfp
, order
, vma
, addr
);
4990 if (mem_cgroup_charge(folio
, vma
->vm_mm
, gfp
)) {
4991 count_mthp_stat(order
, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE
);
4995 folio_throttle_swaprate(folio
, gfp
);
4997 * When a folio is not zeroed during allocation
4998 * (__GFP_ZERO not used) or user folios require special
4999 * handling, folio_zero_user() is used to make sure
5000 * that the page corresponding to the faulting address
5001 * will be hot in the cache after zeroing.
5003 if (user_alloc_needs_zeroing())
5004 folio_zero_user(folio
, vmf
->address
);
5008 count_mthp_stat(order
, MTHP_STAT_ANON_FAULT_FALLBACK
);
5009 order
= next_order(&orders
, order
);
5014 return folio_prealloc(vma
->vm_mm
, vma
, vmf
->address
, true);
5018 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5019 * but allow concurrent faults), and pte mapped but not yet locked.
5020 * We return with mmap_lock still held, but pte unmapped and unlocked.
5022 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
)
5024 struct vm_area_struct
*vma
= vmf
->vma
;
5025 unsigned long addr
= vmf
->address
;
5026 struct folio
*folio
;
5031 /* File mapping without ->vm_ops ? */
5032 if (vma
->vm_flags
& VM_SHARED
)
5033 return VM_FAULT_SIGBUS
;
5036 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
5037 * be distinguished from a transient failure of pte_offset_map().
5039 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
))
5040 return VM_FAULT_OOM
;
5042 /* Use the zero-page for reads */
5043 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
5044 !mm_forbids_zeropage(vma
->vm_mm
)) {
5045 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
5046 vma
->vm_page_prot
));
5047 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
5048 vmf
->address
, &vmf
->ptl
);
5051 if (vmf_pte_changed(vmf
)) {
5052 update_mmu_tlb(vma
, vmf
->address
, vmf
->pte
);
5055 ret
= check_stable_address_space(vma
->vm_mm
);
5058 /* Deliver the page fault to userland, check inside PT lock */
5059 if (userfaultfd_missing(vma
)) {
5060 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5061 return handle_userfault(vmf
, VM_UFFD_MISSING
);
5066 /* Allocate our own private page. */
5067 ret
= vmf_anon_prepare(vmf
);
5070 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
5071 folio
= alloc_anon_folio(vmf
);
5077 nr_pages
= folio_nr_pages(folio
);
5078 addr
= ALIGN_DOWN(vmf
->address
, nr_pages
* PAGE_SIZE
);
5081 * The memory barrier inside __folio_mark_uptodate makes sure that
5082 * preceding stores to the page contents become visible before
5083 * the set_pte_at() write.
5085 __folio_mark_uptodate(folio
);
5087 entry
= folio_mk_pte(folio
, vma
->vm_page_prot
);
5088 entry
= pte_sw_mkyoung(entry
);
5089 if (vma
->vm_flags
& VM_WRITE
)
5090 entry
= pte_mkwrite(pte_mkdirty(entry
), vma
);
5092 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
5095 if (nr_pages
== 1 && vmf_pte_changed(vmf
)) {
5096 update_mmu_tlb(vma
, addr
, vmf
->pte
);
5098 } else if (nr_pages
> 1 && !pte_range_none(vmf
->pte
, nr_pages
)) {
5099 update_mmu_tlb_range(vma
, addr
, vmf
->pte
, nr_pages
);
5103 ret
= check_stable_address_space(vma
->vm_mm
);
5107 /* Deliver the page fault to userland, check inside PT lock */
5108 if (userfaultfd_missing(vma
)) {
5109 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5111 return handle_userfault(vmf
, VM_UFFD_MISSING
);
5114 folio_ref_add(folio
, nr_pages
- 1);
5115 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, nr_pages
);
5116 count_mthp_stat(folio_order(folio
), MTHP_STAT_ANON_FAULT_ALLOC
);
5117 folio_add_new_anon_rmap(folio
, vma
, addr
, RMAP_EXCLUSIVE
);
5118 folio_add_lru_vma(folio
, vma
);
5120 if (vmf_orig_pte_uffd_wp(vmf
))
5121 entry
= pte_mkuffd_wp(entry
);
5122 set_ptes(vma
->vm_mm
, addr
, vmf
->pte
, entry
, nr_pages
);
5124 /* No need to invalidate - it was non-present before */
5125 update_mmu_cache_range(vmf
, vma
, addr
, vmf
->pte
, nr_pages
);
5128 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5134 return VM_FAULT_OOM
;
5138 * The mmap_lock must have been held on entry, and may have been
5139 * released depending on flags and vma->vm_ops->fault() return value.
5140 * See filemap_fault() and __lock_page_retry().
5142 static vm_fault_t
__do_fault(struct vm_fault
*vmf
)
5144 struct vm_area_struct
*vma
= vmf
->vma
;
5145 struct folio
*folio
;
5149 * Preallocate pte before we take page_lock because this might lead to
5150 * deadlocks for memcg reclaim which waits for pages under writeback:
5152 * SetPageWriteback(A)
5158 * wait_on_page_writeback(A)
5159 * SetPageWriteback(B)
5161 * # flush A, B to clear the writeback
5163 if (pmd_none(*vmf
->pmd
) && !vmf
->prealloc_pte
) {
5164 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
);
5165 if (!vmf
->prealloc_pte
)
5166 return VM_FAULT_OOM
;
5169 ret
= vma
->vm_ops
->fault(vmf
);
5170 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
5171 VM_FAULT_DONE_COW
)))
5174 folio
= page_folio(vmf
->page
);
5175 if (unlikely(PageHWPoison(vmf
->page
))) {
5176 vm_fault_t poisonret
= VM_FAULT_HWPOISON
;
5177 if (ret
& VM_FAULT_LOCKED
) {
5178 if (page_mapped(vmf
->page
))
5179 unmap_mapping_folio(folio
);
5180 /* Retry if a clean folio was removed from the cache. */
5181 if (mapping_evict_folio(folio
->mapping
, folio
))
5182 poisonret
= VM_FAULT_NOPAGE
;
5183 folio_unlock(folio
);
5190 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
5193 VM_BUG_ON_PAGE(!folio_test_locked(folio
), vmf
->page
);
5198 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5199 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
5201 struct vm_area_struct
*vma
= vmf
->vma
;
5203 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
5205 * We are going to consume the prealloc table,
5206 * count that as nr_ptes.
5208 mm_inc_nr_ptes(vma
->vm_mm
);
5209 vmf
->prealloc_pte
= NULL
;
5212 vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct folio
*folio
, struct page
*page
)
5214 struct vm_area_struct
*vma
= vmf
->vma
;
5215 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
5216 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
5218 vm_fault_t ret
= VM_FAULT_FALLBACK
;
5221 * It is too late to allocate a small folio, we already have a large
5222 * folio in the pagecache: especially s390 KVM cannot tolerate any
5223 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5224 * PMD mappings if THPs are disabled.
5226 if (thp_disabled_by_hw() || vma_thp_disabled(vma
, vma
->vm_flags
))
5229 if (!thp_vma_suitable_order(vma
, haddr
, PMD_ORDER
))
5232 if (folio_order(folio
) != HPAGE_PMD_ORDER
)
5234 page
= &folio
->page
;
5237 * Just backoff if any subpage of a THP is corrupted otherwise
5238 * the corrupted page may mapped by PMD silently to escape the
5239 * check. This kind of THP just can be PTE mapped. Access to
5240 * the corrupted subpage should trigger SIGBUS as expected.
5242 if (unlikely(folio_test_has_hwpoisoned(folio
)))
5246 * Archs like ppc64 need additional space to store information
5247 * related to pte entry. Use the preallocated table for that.
5249 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
5250 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
);
5251 if (!vmf
->prealloc_pte
)
5252 return VM_FAULT_OOM
;
5255 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
5256 if (unlikely(!pmd_none(*vmf
->pmd
)))
5259 flush_icache_pages(vma
, page
, HPAGE_PMD_NR
);
5261 entry
= folio_mk_pmd(folio
, vma
->vm_page_prot
);
5263 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
5265 add_mm_counter(vma
->vm_mm
, mm_counter_file(folio
), HPAGE_PMD_NR
);
5266 folio_add_file_rmap_pmd(folio
, page
, vma
);
5269 * deposit and withdraw with pmd lock held
5271 if (arch_needs_pgtable_deposit())
5272 deposit_prealloc_pte(vmf
);
5274 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
5276 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
5278 /* fault is handled */
5280 count_vm_event(THP_FILE_MAPPED
);
5282 spin_unlock(vmf
->ptl
);
5286 vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct folio
*folio
, struct page
*page
)
5288 return VM_FAULT_FALLBACK
;
5293 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5294 * @vmf: Fault decription.
5295 * @folio: The folio that contains @page.
5296 * @page: The first page to create a PTE for.
5297 * @nr: The number of PTEs to create.
5298 * @addr: The first address to create a PTE for.
5300 void set_pte_range(struct vm_fault
*vmf
, struct folio
*folio
,
5301 struct page
*page
, unsigned int nr
, unsigned long addr
)
5303 struct vm_area_struct
*vma
= vmf
->vma
;
5304 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
5305 bool prefault
= !in_range(vmf
->address
, addr
, nr
* PAGE_SIZE
);
5308 flush_icache_pages(vma
, page
, nr
);
5309 entry
= mk_pte(page
, vma
->vm_page_prot
);
5311 if (prefault
&& arch_wants_old_prefaulted_pte())
5312 entry
= pte_mkold(entry
);
5314 entry
= pte_sw_mkyoung(entry
);
5317 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
5318 else if (pte_write(entry
) && folio_test_dirty(folio
))
5319 entry
= pte_mkdirty(entry
);
5320 if (unlikely(vmf_orig_pte_uffd_wp(vmf
)))
5321 entry
= pte_mkuffd_wp(entry
);
5322 /* copy-on-write page */
5323 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
5324 VM_BUG_ON_FOLIO(nr
!= 1, folio
);
5325 folio_add_new_anon_rmap(folio
, vma
, addr
, RMAP_EXCLUSIVE
);
5326 folio_add_lru_vma(folio
, vma
);
5328 folio_add_file_rmap_ptes(folio
, page
, nr
, vma
);
5330 set_ptes(vma
->vm_mm
, addr
, vmf
->pte
, entry
, nr
);
5332 /* no need to invalidate: a not-present page won't be cached */
5333 update_mmu_cache_range(vmf
, vma
, addr
, vmf
->pte
, nr
);
5336 static bool vmf_pte_changed(struct vm_fault
*vmf
)
5338 if (vmf
->flags
& FAULT_FLAG_ORIG_PTE_VALID
)
5339 return !pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
);
5341 return !pte_none(ptep_get(vmf
->pte
));
5345 * finish_fault - finish page fault once we have prepared the page to fault
5347 * @vmf: structure describing the fault
5349 * This function handles all that is needed to finish a page fault once the
5350 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5351 * given page, adds reverse page mapping, handles memcg charges and LRU
5354 * The function expects the page to be locked and on success it consumes a
5355 * reference of a page being mapped (for the PTE which maps it).
5357 * Return: %0 on success, %VM_FAULT_ code in case of error.
5359 vm_fault_t
finish_fault(struct vm_fault
*vmf
)
5361 struct vm_area_struct
*vma
= vmf
->vma
;
5363 struct folio
*folio
;
5365 bool is_cow
= (vmf
->flags
& FAULT_FLAG_WRITE
) &&
5366 !(vma
->vm_flags
& VM_SHARED
);
5369 bool needs_fallback
= false;
5372 addr
= vmf
->address
;
5374 /* Did we COW the page? */
5376 page
= vmf
->cow_page
;
5380 folio
= page_folio(page
);
5382 * check even for read faults because we might have lost our CoWed
5385 if (!(vma
->vm_flags
& VM_SHARED
)) {
5386 ret
= check_stable_address_space(vma
->vm_mm
);
5391 if (pmd_none(*vmf
->pmd
)) {
5392 if (folio_test_pmd_mappable(folio
)) {
5393 ret
= do_set_pmd(vmf
, folio
, page
);
5394 if (ret
!= VM_FAULT_FALLBACK
)
5398 if (vmf
->prealloc_pte
)
5399 pmd_install(vma
->vm_mm
, vmf
->pmd
, &vmf
->prealloc_pte
);
5400 else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
)))
5401 return VM_FAULT_OOM
;
5404 nr_pages
= folio_nr_pages(folio
);
5407 * Using per-page fault to maintain the uffd semantics, and same
5408 * approach also applies to non-anonymous-shmem faults to avoid
5409 * inflating the RSS of the process.
5411 if (!vma_is_anon_shmem(vma
) || unlikely(userfaultfd_armed(vma
)) ||
5412 unlikely(needs_fallback
)) {
5414 } else if (nr_pages
> 1) {
5415 pgoff_t idx
= folio_page_idx(folio
, page
);
5416 /* The page offset of vmf->address within the VMA. */
5417 pgoff_t vma_off
= vmf
->pgoff
- vmf
->vma
->vm_pgoff
;
5418 /* The index of the entry in the pagetable for fault page. */
5419 pgoff_t pte_off
= pte_index(vmf
->address
);
5422 * Fallback to per-page fault in case the folio size in page
5423 * cache beyond the VMA limits and PMD pagetable limits.
5425 if (unlikely(vma_off
< idx
||
5426 vma_off
+ (nr_pages
- idx
) > vma_pages(vma
) ||
5428 pte_off
+ (nr_pages
- idx
) > PTRS_PER_PTE
)) {
5431 /* Now we can set mappings for the whole large folio. */
5432 addr
= vmf
->address
- idx
* PAGE_SIZE
;
5433 page
= &folio
->page
;
5437 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
5440 return VM_FAULT_NOPAGE
;
5442 /* Re-check under ptl */
5443 if (nr_pages
== 1 && unlikely(vmf_pte_changed(vmf
))) {
5444 update_mmu_tlb(vma
, addr
, vmf
->pte
);
5445 ret
= VM_FAULT_NOPAGE
;
5447 } else if (nr_pages
> 1 && !pte_range_none(vmf
->pte
, nr_pages
)) {
5448 needs_fallback
= true;
5449 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5453 folio_ref_add(folio
, nr_pages
- 1);
5454 set_pte_range(vmf
, folio
, page
, nr_pages
, addr
);
5455 type
= is_cow
? MM_ANONPAGES
: mm_counter_file(folio
);
5456 add_mm_counter(vma
->vm_mm
, type
, nr_pages
);
5460 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5464 static unsigned long fault_around_pages __read_mostly
=
5465 65536 >> PAGE_SHIFT
;
5467 #ifdef CONFIG_DEBUG_FS
5468 static int fault_around_bytes_get(void *data
, u64
*val
)
5470 *val
= fault_around_pages
<< PAGE_SHIFT
;
5475 * fault_around_bytes must be rounded down to the nearest page order as it's
5476 * what do_fault_around() expects to see.
5478 static int fault_around_bytes_set(void *data
, u64 val
)
5480 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
5484 * The minimum value is 1 page, however this results in no fault-around
5485 * at all. See should_fault_around().
5487 val
= max(val
, PAGE_SIZE
);
5488 fault_around_pages
= rounddown_pow_of_two(val
) >> PAGE_SHIFT
;
5492 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
5493 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
5495 static int __init
fault_around_debugfs(void)
5497 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
5498 &fault_around_bytes_fops
);
5501 late_initcall(fault_around_debugfs
);
5505 * do_fault_around() tries to map few pages around the fault address. The hope
5506 * is that the pages will be needed soon and this will lower the number of
5509 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5510 * not ready to be mapped: not up-to-date, locked, etc.
5512 * This function doesn't cross VMA or page table boundaries, in order to call
5513 * map_pages() and acquire a PTE lock only once.
5515 * fault_around_pages defines how many pages we'll try to map.
5516 * do_fault_around() expects it to be set to a power of two less than or equal
5519 * The virtual address of the area that we map is naturally aligned to
5520 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5521 * (and therefore to page order). This way it's easier to guarantee
5522 * that we don't cross page table boundaries.
5524 static vm_fault_t
do_fault_around(struct vm_fault
*vmf
)
5526 pgoff_t nr_pages
= READ_ONCE(fault_around_pages
);
5527 pgoff_t pte_off
= pte_index(vmf
->address
);
5528 /* The page offset of vmf->address within the VMA. */
5529 pgoff_t vma_off
= vmf
->pgoff
- vmf
->vma
->vm_pgoff
;
5530 pgoff_t from_pte
, to_pte
;
5533 /* The PTE offset of the start address, clamped to the VMA. */
5534 from_pte
= max(ALIGN_DOWN(pte_off
, nr_pages
),
5535 pte_off
- min(pte_off
, vma_off
));
5537 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5538 to_pte
= min3(from_pte
+ nr_pages
, (pgoff_t
)PTRS_PER_PTE
,
5539 pte_off
+ vma_pages(vmf
->vma
) - vma_off
) - 1;
5541 if (pmd_none(*vmf
->pmd
)) {
5542 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
5543 if (!vmf
->prealloc_pte
)
5544 return VM_FAULT_OOM
;
5548 ret
= vmf
->vma
->vm_ops
->map_pages(vmf
,
5549 vmf
->pgoff
+ from_pte
- pte_off
,
5550 vmf
->pgoff
+ to_pte
- pte_off
);
5556 /* Return true if we should do read fault-around, false otherwise */
5557 static inline bool should_fault_around(struct vm_fault
*vmf
)
5559 /* No ->map_pages? No way to fault around... */
5560 if (!vmf
->vma
->vm_ops
->map_pages
)
5563 if (uffd_disable_fault_around(vmf
->vma
))
5566 /* A single page implies no faulting 'around' at all. */
5567 return fault_around_pages
> 1;
5570 static vm_fault_t
do_read_fault(struct vm_fault
*vmf
)
5573 struct folio
*folio
;
5576 * Let's call ->map_pages() first and use ->fault() as fallback
5577 * if page by the offset is not ready to be mapped (cold cache or
5580 if (should_fault_around(vmf
)) {
5581 ret
= do_fault_around(vmf
);
5586 ret
= vmf_can_call_fault(vmf
);
5590 ret
= __do_fault(vmf
);
5591 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
5594 ret
|= finish_fault(vmf
);
5595 folio
= page_folio(vmf
->page
);
5596 folio_unlock(folio
);
5597 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
5602 static vm_fault_t
do_cow_fault(struct vm_fault
*vmf
)
5604 struct vm_area_struct
*vma
= vmf
->vma
;
5605 struct folio
*folio
;
5608 ret
= vmf_can_call_fault(vmf
);
5610 ret
= vmf_anon_prepare(vmf
);
5614 folio
= folio_prealloc(vma
->vm_mm
, vma
, vmf
->address
, false);
5616 return VM_FAULT_OOM
;
5618 vmf
->cow_page
= &folio
->page
;
5620 ret
= __do_fault(vmf
);
5621 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
5623 if (ret
& VM_FAULT_DONE_COW
)
5626 if (copy_mc_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
)) {
5627 ret
= VM_FAULT_HWPOISON
;
5630 __folio_mark_uptodate(folio
);
5632 ret
|= finish_fault(vmf
);
5634 unlock_page(vmf
->page
);
5635 put_page(vmf
->page
);
5636 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
5644 static vm_fault_t
do_shared_fault(struct vm_fault
*vmf
)
5646 struct vm_area_struct
*vma
= vmf
->vma
;
5647 vm_fault_t ret
, tmp
;
5648 struct folio
*folio
;
5650 ret
= vmf_can_call_fault(vmf
);
5654 ret
= __do_fault(vmf
);
5655 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
5658 folio
= page_folio(vmf
->page
);
5661 * Check if the backing address space wants to know that the page is
5662 * about to become writable
5664 if (vma
->vm_ops
->page_mkwrite
) {
5665 folio_unlock(folio
);
5666 tmp
= do_page_mkwrite(vmf
, folio
);
5667 if (unlikely(!tmp
||
5668 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
5674 ret
|= finish_fault(vmf
);
5675 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
5677 folio_unlock(folio
);
5682 ret
|= fault_dirty_shared_page(vmf
);
5687 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5688 * but allow concurrent faults).
5689 * The mmap_lock may have been released depending on flags and our
5690 * return value. See filemap_fault() and __folio_lock_or_retry().
5691 * If mmap_lock is released, vma may become invalid (for example
5692 * by other thread calling munmap()).
5694 static vm_fault_t
do_fault(struct vm_fault
*vmf
)
5696 struct vm_area_struct
*vma
= vmf
->vma
;
5697 struct mm_struct
*vm_mm
= vma
->vm_mm
;
5701 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5703 if (!vma
->vm_ops
->fault
) {
5704 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
,
5705 vmf
->address
, &vmf
->ptl
);
5706 if (unlikely(!vmf
->pte
))
5707 ret
= VM_FAULT_SIGBUS
;
5710 * Make sure this is not a temporary clearing of pte
5711 * by holding ptl and checking again. A R/M/W update
5712 * of pte involves: take ptl, clearing the pte so that
5713 * we don't have concurrent modification by hardware
5714 * followed by an update.
5716 if (unlikely(pte_none(ptep_get(vmf
->pte
))))
5717 ret
= VM_FAULT_SIGBUS
;
5719 ret
= VM_FAULT_NOPAGE
;
5721 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5723 } else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
5724 ret
= do_read_fault(vmf
);
5725 else if (!(vma
->vm_flags
& VM_SHARED
))
5726 ret
= do_cow_fault(vmf
);
5728 ret
= do_shared_fault(vmf
);
5730 /* preallocated pagetable is unused: free it */
5731 if (vmf
->prealloc_pte
) {
5732 pte_free(vm_mm
, vmf
->prealloc_pte
);
5733 vmf
->prealloc_pte
= NULL
;
5738 int numa_migrate_check(struct folio
*folio
, struct vm_fault
*vmf
,
5739 unsigned long addr
, int *flags
,
5740 bool writable
, int *last_cpupid
)
5742 struct vm_area_struct
*vma
= vmf
->vma
;
5745 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5746 * much anyway since they can be in shared cache state. This misses
5747 * the case where a mapping is writable but the process never writes
5748 * to it but pte_write gets cleared during protection updates and
5749 * pte_dirty has unpredictable behaviour between PTE scan updates,
5750 * background writeback, dirty balancing and application behaviour.
5753 *flags
|= TNF_NO_GROUP
;
5756 * Flag if the folio is shared between multiple address spaces. This
5757 * is later used when determining whether to group tasks together
5759 if (folio_maybe_mapped_shared(folio
) && (vma
->vm_flags
& VM_SHARED
))
5760 *flags
|= TNF_SHARED
;
5762 * For memory tiering mode, cpupid of slow memory page is used
5763 * to record page access time. So use default value.
5765 if (folio_use_access_time(folio
))
5766 *last_cpupid
= (-1 & LAST_CPUPID_MASK
);
5768 *last_cpupid
= folio_last_cpupid(folio
);
5770 /* Record the current PID acceesing VMA */
5771 vma_set_access_pid_bit(vma
);
5773 count_vm_numa_event(NUMA_HINT_FAULTS
);
5774 #ifdef CONFIG_NUMA_BALANCING
5775 count_memcg_folio_events(folio
, NUMA_HINT_FAULTS
, 1);
5777 if (folio_nid(folio
) == numa_node_id()) {
5778 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
5779 *flags
|= TNF_FAULT_LOCAL
;
5782 return mpol_misplaced(folio
, vmf
, addr
);
5785 static void numa_rebuild_single_mapping(struct vm_fault
*vmf
, struct vm_area_struct
*vma
,
5786 unsigned long fault_addr
, pte_t
*fault_pte
,
5791 old_pte
= ptep_modify_prot_start(vma
, fault_addr
, fault_pte
);
5792 pte
= pte_modify(old_pte
, vma
->vm_page_prot
);
5793 pte
= pte_mkyoung(pte
);
5795 pte
= pte_mkwrite(pte
, vma
);
5796 ptep_modify_prot_commit(vma
, fault_addr
, fault_pte
, old_pte
, pte
);
5797 update_mmu_cache_range(vmf
, vma
, fault_addr
, fault_pte
, 1);
5800 static void numa_rebuild_large_mapping(struct vm_fault
*vmf
, struct vm_area_struct
*vma
,
5801 struct folio
*folio
, pte_t fault_pte
,
5802 bool ignore_writable
, bool pte_write_upgrade
)
5804 int nr
= pte_pfn(fault_pte
) - folio_pfn(folio
);
5805 unsigned long start
, end
, addr
= vmf
->address
;
5806 unsigned long addr_start
= addr
- (nr
<< PAGE_SHIFT
);
5807 unsigned long pt_start
= ALIGN_DOWN(addr
, PMD_SIZE
);
5810 /* Stay within the VMA and within the page table. */
5811 start
= max3(addr_start
, pt_start
, vma
->vm_start
);
5812 end
= min3(addr_start
+ folio_size(folio
), pt_start
+ PMD_SIZE
,
5814 start_ptep
= vmf
->pte
- ((addr
- start
) >> PAGE_SHIFT
);
5816 /* Restore all PTEs' mapping of the large folio */
5817 for (addr
= start
; addr
!= end
; start_ptep
++, addr
+= PAGE_SIZE
) {
5818 pte_t ptent
= ptep_get(start_ptep
);
5819 bool writable
= false;
5821 if (!pte_present(ptent
) || !pte_protnone(ptent
))
5824 if (pfn_folio(pte_pfn(ptent
)) != folio
)
5827 if (!ignore_writable
) {
5828 ptent
= pte_modify(ptent
, vma
->vm_page_prot
);
5829 writable
= pte_write(ptent
);
5830 if (!writable
&& pte_write_upgrade
&&
5831 can_change_pte_writable(vma
, addr
, ptent
))
5835 numa_rebuild_single_mapping(vmf
, vma
, addr
, start_ptep
, writable
);
5839 static vm_fault_t
do_numa_page(struct vm_fault
*vmf
)
5841 struct vm_area_struct
*vma
= vmf
->vma
;
5842 struct folio
*folio
= NULL
;
5843 int nid
= NUMA_NO_NODE
;
5844 bool writable
= false, ignore_writable
= false;
5845 bool pte_write_upgrade
= vma_wants_manual_pte_write_upgrade(vma
);
5849 int flags
= 0, nr_pages
;
5852 * The pte cannot be used safely until we verify, while holding the page
5853 * table lock, that its contents have not changed during fault handling.
5855 spin_lock(vmf
->ptl
);
5856 /* Read the live PTE from the page tables: */
5857 old_pte
= ptep_get(vmf
->pte
);
5859 if (unlikely(!pte_same(old_pte
, vmf
->orig_pte
))) {
5860 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5864 pte
= pte_modify(old_pte
, vma
->vm_page_prot
);
5867 * Detect now whether the PTE could be writable; this information
5868 * is only valid while holding the PT lock.
5870 writable
= pte_write(pte
);
5871 if (!writable
&& pte_write_upgrade
&&
5872 can_change_pte_writable(vma
, vmf
->address
, pte
))
5875 folio
= vm_normal_folio(vma
, vmf
->address
, pte
);
5876 if (!folio
|| folio_is_zone_device(folio
))
5879 nid
= folio_nid(folio
);
5880 nr_pages
= folio_nr_pages(folio
);
5882 target_nid
= numa_migrate_check(folio
, vmf
, vmf
->address
, &flags
,
5883 writable
, &last_cpupid
);
5884 if (target_nid
== NUMA_NO_NODE
)
5886 if (migrate_misplaced_folio_prepare(folio
, vma
, target_nid
)) {
5887 flags
|= TNF_MIGRATE_FAIL
;
5890 /* The folio is isolated and isolation code holds a folio reference. */
5891 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5893 ignore_writable
= true;
5895 /* Migrate to the requested node */
5896 if (!migrate_misplaced_folio(folio
, target_nid
)) {
5898 flags
|= TNF_MIGRATED
;
5899 task_numa_fault(last_cpupid
, nid
, nr_pages
, flags
);
5903 flags
|= TNF_MIGRATE_FAIL
;
5904 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
5905 vmf
->address
, &vmf
->ptl
);
5906 if (unlikely(!vmf
->pte
))
5908 if (unlikely(!pte_same(ptep_get(vmf
->pte
), vmf
->orig_pte
))) {
5909 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5914 * Make it present again, depending on how arch implements
5915 * non-accessible ptes, some can allow access by kernel mode.
5917 if (folio
&& folio_test_large(folio
))
5918 numa_rebuild_large_mapping(vmf
, vma
, folio
, pte
, ignore_writable
,
5921 numa_rebuild_single_mapping(vmf
, vma
, vmf
->address
, vmf
->pte
,
5923 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
5925 if (nid
!= NUMA_NO_NODE
)
5926 task_numa_fault(last_cpupid
, nid
, nr_pages
, flags
);
5930 static inline vm_fault_t
create_huge_pmd(struct vm_fault
*vmf
)
5932 struct vm_area_struct
*vma
= vmf
->vma
;
5933 if (vma_is_anonymous(vma
))
5934 return do_huge_pmd_anonymous_page(vmf
);
5935 if (vma
->vm_ops
->huge_fault
)
5936 return vma
->vm_ops
->huge_fault(vmf
, PMD_ORDER
);
5937 return VM_FAULT_FALLBACK
;
5940 /* `inline' is required to avoid gcc 4.1.2 build error */
5941 static inline vm_fault_t
wp_huge_pmd(struct vm_fault
*vmf
)
5943 struct vm_area_struct
*vma
= vmf
->vma
;
5944 const bool unshare
= vmf
->flags
& FAULT_FLAG_UNSHARE
;
5947 if (vma_is_anonymous(vma
)) {
5948 if (likely(!unshare
) &&
5949 userfaultfd_huge_pmd_wp(vma
, vmf
->orig_pmd
)) {
5950 if (userfaultfd_wp_async(vmf
->vma
))
5952 return handle_userfault(vmf
, VM_UFFD_WP
);
5954 return do_huge_pmd_wp_page(vmf
);
5957 if (vma
->vm_flags
& (VM_SHARED
| VM_MAYSHARE
)) {
5958 if (vma
->vm_ops
->huge_fault
) {
5959 ret
= vma
->vm_ops
->huge_fault(vmf
, PMD_ORDER
);
5960 if (!(ret
& VM_FAULT_FALLBACK
))
5966 /* COW or write-notify handled on pte level: split pmd. */
5967 __split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
, false);
5969 return VM_FAULT_FALLBACK
;
5972 static vm_fault_t
create_huge_pud(struct vm_fault
*vmf
)
5974 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5975 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5976 struct vm_area_struct
*vma
= vmf
->vma
;
5977 /* No support for anonymous transparent PUD pages yet */
5978 if (vma_is_anonymous(vma
))
5979 return VM_FAULT_FALLBACK
;
5980 if (vma
->vm_ops
->huge_fault
)
5981 return vma
->vm_ops
->huge_fault(vmf
, PUD_ORDER
);
5982 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5983 return VM_FAULT_FALLBACK
;
5986 static vm_fault_t
wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
5988 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5989 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5990 struct vm_area_struct
*vma
= vmf
->vma
;
5993 /* No support for anonymous transparent PUD pages yet */
5994 if (vma_is_anonymous(vma
))
5996 if (vma
->vm_flags
& (VM_SHARED
| VM_MAYSHARE
)) {
5997 if (vma
->vm_ops
->huge_fault
) {
5998 ret
= vma
->vm_ops
->huge_fault(vmf
, PUD_ORDER
);
5999 if (!(ret
& VM_FAULT_FALLBACK
))
6004 /* COW or write-notify not handled on PUD level: split pud.*/
6005 __split_huge_pud(vma
, vmf
->pud
, vmf
->address
);
6006 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
6007 return VM_FAULT_FALLBACK
;
6011 * These routines also need to handle stuff like marking pages dirty
6012 * and/or accessed for architectures that don't do it in hardware (most
6013 * RISC architectures). The early dirtying is also good on the i386.
6015 * There is also a hook called "update_mmu_cache()" that architectures
6016 * with external mmu caches can use to update those (ie the Sparc or
6017 * PowerPC hashed page tables that act as extended TLBs).
6019 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
6020 * concurrent faults).
6022 * The mmap_lock may have been released depending on flags and our return value.
6023 * See filemap_fault() and __folio_lock_or_retry().
6025 static vm_fault_t
handle_pte_fault(struct vm_fault
*vmf
)
6029 if (unlikely(pmd_none(*vmf
->pmd
))) {
6031 * Leave __pte_alloc() until later: because vm_ops->fault may
6032 * want to allocate huge page, and if we expose page table
6033 * for an instant, it will be difficult to retract from
6034 * concurrent faults and from rmap lookups.
6037 vmf
->flags
&= ~FAULT_FLAG_ORIG_PTE_VALID
;
6042 * A regular pmd is established and it can't morph into a huge
6043 * pmd by anon khugepaged, since that takes mmap_lock in write
6044 * mode; but shmem or file collapse to THP could still morph
6045 * it into a huge pmd: just retry later if so.
6047 * Use the maywrite version to indicate that vmf->pte may be
6048 * modified, but since we will use pte_same() to detect the
6049 * change of the !pte_none() entry, there is no need to recheck
6050 * the pmdval. Here we chooes to pass a dummy variable instead
6051 * of NULL, which helps new user think about why this place is
6054 vmf
->pte
= pte_offset_map_rw_nolock(vmf
->vma
->vm_mm
, vmf
->pmd
,
6055 vmf
->address
, &dummy_pmdval
,
6057 if (unlikely(!vmf
->pte
))
6059 vmf
->orig_pte
= ptep_get_lockless(vmf
->pte
);
6060 vmf
->flags
|= FAULT_FLAG_ORIG_PTE_VALID
;
6062 if (pte_none(vmf
->orig_pte
)) {
6063 pte_unmap(vmf
->pte
);
6069 return do_pte_missing(vmf
);
6071 if (!pte_present(vmf
->orig_pte
))
6072 return do_swap_page(vmf
);
6074 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
6075 return do_numa_page(vmf
);
6077 spin_lock(vmf
->ptl
);
6078 entry
= vmf
->orig_pte
;
6079 if (unlikely(!pte_same(ptep_get(vmf
->pte
), entry
))) {
6080 update_mmu_tlb(vmf
->vma
, vmf
->address
, vmf
->pte
);
6083 if (vmf
->flags
& (FAULT_FLAG_WRITE
|FAULT_FLAG_UNSHARE
)) {
6084 if (!pte_write(entry
))
6085 return do_wp_page(vmf
);
6086 else if (likely(vmf
->flags
& FAULT_FLAG_WRITE
))
6087 entry
= pte_mkdirty(entry
);
6089 entry
= pte_mkyoung(entry
);
6090 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
6091 vmf
->flags
& FAULT_FLAG_WRITE
)) {
6092 update_mmu_cache_range(vmf
, vmf
->vma
, vmf
->address
,
6095 /* Skip spurious TLB flush for retried page fault */
6096 if (vmf
->flags
& FAULT_FLAG_TRIED
)
6099 * This is needed only for protection faults but the arch code
6100 * is not yet telling us if this is a protection fault or not.
6101 * This still avoids useless tlb flushes for .text page faults
6104 if (vmf
->flags
& FAULT_FLAG_WRITE
)
6105 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
,
6109 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
6114 * On entry, we hold either the VMA lock or the mmap_lock
6115 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
6116 * the result, the mmap_lock is not held on exit. See filemap_fault()
6117 * and __folio_lock_or_retry().
6119 static vm_fault_t
__handle_mm_fault(struct vm_area_struct
*vma
,
6120 unsigned long address
, unsigned int flags
)
6122 struct vm_fault vmf
= {
6124 .address
= address
& PAGE_MASK
,
6125 .real_address
= address
,
6127 .pgoff
= linear_page_index(vma
, address
),
6128 .gfp_mask
= __get_fault_gfp_mask(vma
),
6130 struct mm_struct
*mm
= vma
->vm_mm
;
6131 unsigned long vm_flags
= vma
->vm_flags
;
6136 pgd
= pgd_offset(mm
, address
);
6137 p4d
= p4d_alloc(mm
, pgd
, address
);
6139 return VM_FAULT_OOM
;
6141 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
6143 return VM_FAULT_OOM
;
6145 if (pud_none(*vmf
.pud
) &&
6146 thp_vma_allowable_order(vma
, vm_flags
,
6147 TVA_IN_PF
| TVA_ENFORCE_SYSFS
, PUD_ORDER
)) {
6148 ret
= create_huge_pud(&vmf
);
6149 if (!(ret
& VM_FAULT_FALLBACK
))
6152 pud_t orig_pud
= *vmf
.pud
;
6155 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
6158 * TODO once we support anonymous PUDs: NUMA case and
6159 * FAULT_FLAG_UNSHARE handling.
6161 if ((flags
& FAULT_FLAG_WRITE
) && !pud_write(orig_pud
)) {
6162 ret
= wp_huge_pud(&vmf
, orig_pud
);
6163 if (!(ret
& VM_FAULT_FALLBACK
))
6166 huge_pud_set_accessed(&vmf
, orig_pud
);
6172 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
6174 return VM_FAULT_OOM
;
6176 /* Huge pud page fault raced with pmd_alloc? */
6177 if (pud_trans_unstable(vmf
.pud
))
6180 if (pmd_none(*vmf
.pmd
) &&
6181 thp_vma_allowable_order(vma
, vm_flags
,
6182 TVA_IN_PF
| TVA_ENFORCE_SYSFS
, PMD_ORDER
)) {
6183 ret
= create_huge_pmd(&vmf
);
6184 if (!(ret
& VM_FAULT_FALLBACK
))
6187 vmf
.orig_pmd
= pmdp_get_lockless(vmf
.pmd
);
6189 if (unlikely(is_swap_pmd(vmf
.orig_pmd
))) {
6190 VM_BUG_ON(thp_migration_supported() &&
6191 !is_pmd_migration_entry(vmf
.orig_pmd
));
6192 if (is_pmd_migration_entry(vmf
.orig_pmd
))
6193 pmd_migration_entry_wait(mm
, vmf
.pmd
);
6196 if (pmd_trans_huge(vmf
.orig_pmd
) || pmd_devmap(vmf
.orig_pmd
)) {
6197 if (pmd_protnone(vmf
.orig_pmd
) && vma_is_accessible(vma
))
6198 return do_huge_pmd_numa_page(&vmf
);
6200 if ((flags
& (FAULT_FLAG_WRITE
|FAULT_FLAG_UNSHARE
)) &&
6201 !pmd_write(vmf
.orig_pmd
)) {
6202 ret
= wp_huge_pmd(&vmf
);
6203 if (!(ret
& VM_FAULT_FALLBACK
))
6206 huge_pmd_set_accessed(&vmf
);
6212 return handle_pte_fault(&vmf
);
6216 * mm_account_fault - Do page fault accounting
6217 * @mm: mm from which memcg should be extracted. It can be NULL.
6218 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
6219 * of perf event counters, but we'll still do the per-task accounting to
6220 * the task who triggered this page fault.
6221 * @address: the faulted address.
6222 * @flags: the fault flags.
6223 * @ret: the fault retcode.
6225 * This will take care of most of the page fault accounting. Meanwhile, it
6226 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6227 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6228 * still be in per-arch page fault handlers at the entry of page fault.
6230 static inline void mm_account_fault(struct mm_struct
*mm
, struct pt_regs
*regs
,
6231 unsigned long address
, unsigned int flags
,
6236 /* Incomplete faults will be accounted upon completion. */
6237 if (ret
& VM_FAULT_RETRY
)
6241 * To preserve the behavior of older kernels, PGFAULT counters record
6242 * both successful and failed faults, as opposed to perf counters,
6243 * which ignore failed cases.
6245 count_vm_event(PGFAULT
);
6246 count_memcg_event_mm(mm
, PGFAULT
);
6249 * Do not account for unsuccessful faults (e.g. when the address wasn't
6250 * valid). That includes arch_vma_access_permitted() failing before
6251 * reaching here. So this is not a "this many hardware page faults"
6252 * counter. We should use the hw profiling for that.
6254 if (ret
& VM_FAULT_ERROR
)
6258 * We define the fault as a major fault when the final successful fault
6259 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6260 * handle it immediately previously).
6262 major
= (ret
& VM_FAULT_MAJOR
) || (flags
& FAULT_FLAG_TRIED
);
6270 * If the fault is done for GUP, regs will be NULL. We only do the
6271 * accounting for the per thread fault counters who triggered the
6272 * fault, and we skip the perf event updates.
6278 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
6280 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
6283 #ifdef CONFIG_LRU_GEN
6284 static void lru_gen_enter_fault(struct vm_area_struct
*vma
)
6286 /* the LRU algorithm only applies to accesses with recency */
6287 current
->in_lru_fault
= vma_has_recency(vma
);
6290 static void lru_gen_exit_fault(void)
6292 current
->in_lru_fault
= false;
6295 static void lru_gen_enter_fault(struct vm_area_struct
*vma
)
6299 static void lru_gen_exit_fault(void)
6302 #endif /* CONFIG_LRU_GEN */
6304 static vm_fault_t
sanitize_fault_flags(struct vm_area_struct
*vma
,
6305 unsigned int *flags
)
6307 if (unlikely(*flags
& FAULT_FLAG_UNSHARE
)) {
6308 if (WARN_ON_ONCE(*flags
& FAULT_FLAG_WRITE
))
6309 return VM_FAULT_SIGSEGV
;
6311 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6312 * just treat it like an ordinary read-fault otherwise.
6314 if (!is_cow_mapping(vma
->vm_flags
))
6315 *flags
&= ~FAULT_FLAG_UNSHARE
;
6316 } else if (*flags
& FAULT_FLAG_WRITE
) {
6317 /* Write faults on read-only mappings are impossible ... */
6318 if (WARN_ON_ONCE(!(vma
->vm_flags
& VM_MAYWRITE
)))
6319 return VM_FAULT_SIGSEGV
;
6320 /* ... and FOLL_FORCE only applies to COW mappings. */
6321 if (WARN_ON_ONCE(!(vma
->vm_flags
& VM_WRITE
) &&
6322 !is_cow_mapping(vma
->vm_flags
)))
6323 return VM_FAULT_SIGSEGV
;
6325 #ifdef CONFIG_PER_VMA_LOCK
6327 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6328 * the assumption that lock is dropped on VM_FAULT_RETRY.
6330 if (WARN_ON_ONCE((*flags
&
6331 (FAULT_FLAG_VMA_LOCK
| FAULT_FLAG_RETRY_NOWAIT
)) ==
6332 (FAULT_FLAG_VMA_LOCK
| FAULT_FLAG_RETRY_NOWAIT
)))
6333 return VM_FAULT_SIGSEGV
;
6340 * By the time we get here, we already hold either the VMA lock or the
6341 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6343 * The mmap_lock may have been released depending on flags and our
6344 * return value. See filemap_fault() and __folio_lock_or_retry().
6346 vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
6347 unsigned int flags
, struct pt_regs
*regs
)
6349 /* If the fault handler drops the mmap_lock, vma may be freed */
6350 struct mm_struct
*mm
= vma
->vm_mm
;
6354 __set_current_state(TASK_RUNNING
);
6356 ret
= sanitize_fault_flags(vma
, &flags
);
6360 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
6361 flags
& FAULT_FLAG_INSTRUCTION
,
6362 flags
& FAULT_FLAG_REMOTE
)) {
6363 ret
= VM_FAULT_SIGSEGV
;
6367 is_droppable
= !!(vma
->vm_flags
& VM_DROPPABLE
);
6370 * Enable the memcg OOM handling for faults triggered in user
6371 * space. Kernel faults are handled more gracefully.
6373 if (flags
& FAULT_FLAG_USER
)
6374 mem_cgroup_enter_user_fault();
6376 lru_gen_enter_fault(vma
);
6378 if (unlikely(is_vm_hugetlb_page(vma
)))
6379 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
6381 ret
= __handle_mm_fault(vma
, address
, flags
);
6384 * Warning: It is no longer safe to dereference vma-> after this point,
6385 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6386 * vma might be destroyed from underneath us.
6389 lru_gen_exit_fault();
6391 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6393 ret
&= ~VM_FAULT_OOM
;
6395 if (flags
& FAULT_FLAG_USER
) {
6396 mem_cgroup_exit_user_fault();
6398 * The task may have entered a memcg OOM situation but
6399 * if the allocation error was handled gracefully (no
6400 * VM_FAULT_OOM), there is no need to kill anything.
6401 * Just clean up the OOM state peacefully.
6403 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
6404 mem_cgroup_oom_synchronize(false);
6407 mm_account_fault(mm
, regs
, address
, flags
, ret
);
6411 EXPORT_SYMBOL_GPL(handle_mm_fault
);
6413 #ifndef __PAGETABLE_P4D_FOLDED
6415 * Allocate p4d page table.
6416 * We've already handled the fast-path in-line.
6418 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
6420 p4d_t
*new = p4d_alloc_one(mm
, address
);
6424 spin_lock(&mm
->page_table_lock
);
6425 if (pgd_present(*pgd
)) { /* Another has populated it */
6428 smp_wmb(); /* See comment in pmd_install() */
6429 pgd_populate(mm
, pgd
, new);
6431 spin_unlock(&mm
->page_table_lock
);
6434 #endif /* __PAGETABLE_P4D_FOLDED */
6436 #ifndef __PAGETABLE_PUD_FOLDED
6438 * Allocate page upper directory.
6439 * We've already handled the fast-path in-line.
6441 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
6443 pud_t
*new = pud_alloc_one(mm
, address
);
6447 spin_lock(&mm
->page_table_lock
);
6448 if (!p4d_present(*p4d
)) {
6450 smp_wmb(); /* See comment in pmd_install() */
6451 p4d_populate(mm
, p4d
, new);
6452 } else /* Another has populated it */
6454 spin_unlock(&mm
->page_table_lock
);
6457 #endif /* __PAGETABLE_PUD_FOLDED */
6459 #ifndef __PAGETABLE_PMD_FOLDED
6461 * Allocate page middle directory.
6462 * We've already handled the fast-path in-line.
6464 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
6467 pmd_t
*new = pmd_alloc_one(mm
, address
);
6471 ptl
= pud_lock(mm
, pud
);
6472 if (!pud_present(*pud
)) {
6474 smp_wmb(); /* See comment in pmd_install() */
6475 pud_populate(mm
, pud
, new);
6476 } else { /* Another has populated it */
6482 #endif /* __PAGETABLE_PMD_FOLDED */
6484 static inline void pfnmap_args_setup(struct follow_pfnmap_args
*args
,
6485 spinlock_t
*lock
, pte_t
*ptep
,
6486 pgprot_t pgprot
, unsigned long pfn_base
,
6487 unsigned long addr_mask
, bool writable
,
6492 args
->pfn
= pfn_base
+ ((args
->address
& ~addr_mask
) >> PAGE_SHIFT
);
6493 args
->addr_mask
= addr_mask
;
6494 args
->pgprot
= pgprot
;
6495 args
->writable
= writable
;
6496 args
->special
= special
;
6499 static inline void pfnmap_lockdep_assert(struct vm_area_struct
*vma
)
6501 #ifdef CONFIG_LOCKDEP
6502 struct file
*file
= vma
->vm_file
;
6503 struct address_space
*mapping
= file
? file
->f_mapping
: NULL
;
6506 lockdep_assert(lockdep_is_held(&mapping
->i_mmap_rwsem
) ||
6507 lockdep_is_held(&vma
->vm_mm
->mmap_lock
));
6509 lockdep_assert(lockdep_is_held(&vma
->vm_mm
->mmap_lock
));
6514 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6515 * @args: Pointer to struct @follow_pfnmap_args
6517 * The caller needs to setup args->vma and args->address to point to the
6518 * virtual address as the target of such lookup. On a successful return,
6519 * the results will be put into other output fields.
6521 * After the caller finished using the fields, the caller must invoke
6522 * another follow_pfnmap_end() to proper releases the locks and resources
6523 * of such look up request.
6525 * During the start() and end() calls, the results in @args will be valid
6526 * as proper locks will be held. After the end() is called, all the fields
6527 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6528 * use of such information after end() may require proper synchronizations
6529 * by the caller with page table updates, otherwise it can create a
6532 * If the PTE maps a refcounted page, callers are responsible to protect
6533 * against invalidation with MMU notifiers; otherwise access to the PFN at
6534 * a later point in time can trigger use-after-free.
6536 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6537 * should be taken for read, and the mmap semaphore cannot be released
6538 * before the end() is invoked.
6540 * This function must not be used to modify PTE content.
6542 * Return: zero on success, negative otherwise.
6544 int follow_pfnmap_start(struct follow_pfnmap_args
*args
)
6546 struct vm_area_struct
*vma
= args
->vma
;
6547 unsigned long address
= args
->address
;
6548 struct mm_struct
*mm
= vma
->vm_mm
;
6556 pfnmap_lockdep_assert(vma
);
6558 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
6561 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
6564 pgdp
= pgd_offset(mm
, address
);
6565 if (pgd_none(*pgdp
) || unlikely(pgd_bad(*pgdp
)))
6568 p4dp
= p4d_offset(pgdp
, address
);
6569 p4d
= READ_ONCE(*p4dp
);
6570 if (p4d_none(p4d
) || unlikely(p4d_bad(p4d
)))
6573 pudp
= pud_offset(p4dp
, address
);
6574 pud
= READ_ONCE(*pudp
);
6577 if (pud_leaf(pud
)) {
6578 lock
= pud_lock(mm
, pudp
);
6579 if (!unlikely(pud_leaf(pud
))) {
6583 pfnmap_args_setup(args
, lock
, NULL
, pud_pgprot(pud
),
6584 pud_pfn(pud
), PUD_MASK
, pud_write(pud
),
6589 pmdp
= pmd_offset(pudp
, address
);
6590 pmd
= pmdp_get_lockless(pmdp
);
6591 if (pmd_leaf(pmd
)) {
6592 lock
= pmd_lock(mm
, pmdp
);
6593 if (!unlikely(pmd_leaf(pmd
))) {
6597 pfnmap_args_setup(args
, lock
, NULL
, pmd_pgprot(pmd
),
6598 pmd_pfn(pmd
), PMD_MASK
, pmd_write(pmd
),
6603 ptep
= pte_offset_map_lock(mm
, pmdp
, address
, &lock
);
6606 pte
= ptep_get(ptep
);
6607 if (!pte_present(pte
))
6609 pfnmap_args_setup(args
, lock
, ptep
, pte_pgprot(pte
),
6610 pte_pfn(pte
), PAGE_MASK
, pte_write(pte
),
6614 pte_unmap_unlock(ptep
, lock
);
6618 EXPORT_SYMBOL_GPL(follow_pfnmap_start
);
6621 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6622 * @args: Pointer to struct @follow_pfnmap_args
6624 * Must be used in pair of follow_pfnmap_start(). See the start() function
6625 * above for more information.
6627 void follow_pfnmap_end(struct follow_pfnmap_args
*args
)
6630 spin_unlock(args
->lock
);
6632 pte_unmap(args
->ptep
);
6634 EXPORT_SYMBOL_GPL(follow_pfnmap_end
);
6636 #ifdef CONFIG_HAVE_IOREMAP_PROT
6638 * generic_access_phys - generic implementation for iomem mmap access
6639 * @vma: the vma to access
6640 * @addr: userspace address, not relative offset within @vma
6641 * @buf: buffer to read/write
6642 * @len: length of transfer
6643 * @write: set to FOLL_WRITE when writing, otherwise reading
6645 * This is a generic implementation for &vm_operations_struct.access for an
6646 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6649 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
6650 void *buf
, int len
, int write
)
6652 resource_size_t phys_addr
;
6653 pgprot_t prot
= __pgprot(0);
6654 void __iomem
*maddr
;
6655 int offset
= offset_in_page(addr
);
6658 struct follow_pfnmap_args args
= { .vma
= vma
, .address
= addr
};
6661 if (follow_pfnmap_start(&args
))
6664 phys_addr
= (resource_size_t
)args
.pfn
<< PAGE_SHIFT
;
6665 writable
= args
.writable
;
6666 follow_pfnmap_end(&args
);
6668 if ((write
& FOLL_WRITE
) && !writable
)
6671 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
6675 if (follow_pfnmap_start(&args
))
6678 if ((pgprot_val(prot
) != pgprot_val(args
.pgprot
)) ||
6679 (phys_addr
!= (args
.pfn
<< PAGE_SHIFT
)) ||
6680 (writable
!= args
.writable
)) {
6681 follow_pfnmap_end(&args
);
6687 memcpy_toio(maddr
+ offset
, buf
, len
);
6689 memcpy_fromio(buf
, maddr
+ offset
, len
);
6691 follow_pfnmap_end(&args
);
6697 EXPORT_SYMBOL_GPL(generic_access_phys
);
6701 * Access another process' address space as given in mm.
6703 static int __access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
6704 void *buf
, int len
, unsigned int gup_flags
)
6706 void *old_buf
= buf
;
6707 int write
= gup_flags
& FOLL_WRITE
;
6709 if (mmap_read_lock_killable(mm
))
6712 /* Untag the address before looking up the VMA */
6713 addr
= untagged_addr_remote(mm
, addr
);
6715 /* Avoid triggering the temporary warning in __get_user_pages */
6716 if (!vma_lookup(mm
, addr
) && !expand_stack(mm
, addr
))
6719 /* ignore errors, just check how much was successfully transferred */
6723 struct vm_area_struct
*vma
= NULL
;
6724 struct page
*page
= get_user_page_vma_remote(mm
, addr
,
6728 /* We might need to expand the stack to access it */
6729 vma
= vma_lookup(mm
, addr
);
6731 vma
= expand_stack(mm
, addr
);
6733 /* mmap_lock was dropped on failure */
6735 return buf
- old_buf
;
6737 /* Try again if stack expansion worked */
6742 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6743 * we can access using slightly different code.
6746 #ifdef CONFIG_HAVE_IOREMAP_PROT
6747 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
6748 bytes
= vma
->vm_ops
->access(vma
, addr
, buf
,
6755 offset
= addr
& (PAGE_SIZE
-1);
6756 if (bytes
> PAGE_SIZE
-offset
)
6757 bytes
= PAGE_SIZE
-offset
;
6759 maddr
= kmap_local_page(page
);
6761 copy_to_user_page(vma
, page
, addr
,
6762 maddr
+ offset
, buf
, bytes
);
6763 set_page_dirty_lock(page
);
6765 copy_from_user_page(vma
, page
, addr
,
6766 buf
, maddr
+ offset
, bytes
);
6768 unmap_and_put_page(page
, maddr
);
6774 mmap_read_unlock(mm
);
6776 return buf
- old_buf
;
6780 * access_remote_vm - access another process' address space
6781 * @mm: the mm_struct of the target address space
6782 * @addr: start address to access
6783 * @buf: source or destination buffer
6784 * @len: number of bytes to transfer
6785 * @gup_flags: flags modifying lookup behaviour
6787 * The caller must hold a reference on @mm.
6789 * Return: number of bytes copied from source to destination.
6791 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
6792 void *buf
, int len
, unsigned int gup_flags
)
6794 return __access_remote_vm(mm
, addr
, buf
, len
, gup_flags
);
6798 * Access another process' address space.
6799 * Source/target buffer must be kernel space,
6800 * Do not walk the page table directly, use get_user_pages
6802 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
6803 void *buf
, int len
, unsigned int gup_flags
)
6805 struct mm_struct
*mm
;
6808 mm
= get_task_mm(tsk
);
6812 ret
= __access_remote_vm(mm
, addr
, buf
, len
, gup_flags
);
6818 EXPORT_SYMBOL_GPL(access_process_vm
);
6820 #ifdef CONFIG_BPF_SYSCALL
6822 * Copy a string from another process's address space as given in mm.
6823 * If there is any error return -EFAULT.
6825 static int __copy_remote_vm_str(struct mm_struct
*mm
, unsigned long addr
,
6826 void *buf
, int len
, unsigned int gup_flags
)
6828 void *old_buf
= buf
;
6831 *(char *)buf
= '\0';
6833 if (mmap_read_lock_killable(mm
))
6836 addr
= untagged_addr_remote(mm
, addr
);
6838 /* Avoid triggering the temporary warning in __get_user_pages */
6839 if (!vma_lookup(mm
, addr
)) {
6845 int bytes
, offset
, retval
;
6848 struct vm_area_struct
*vma
= NULL
;
6850 page
= get_user_page_vma_remote(mm
, addr
, gup_flags
, &vma
);
6853 * Treat as a total failure for now until we decide how
6854 * to handle the CONFIG_HAVE_IOREMAP_PROT case and
6857 *(char *)buf
= '\0';
6863 offset
= addr
& (PAGE_SIZE
- 1);
6864 if (bytes
> PAGE_SIZE
- offset
)
6865 bytes
= PAGE_SIZE
- offset
;
6867 maddr
= kmap_local_page(page
);
6868 retval
= strscpy(buf
, maddr
+ offset
, bytes
);
6870 /* Found the end of the string */
6872 unmap_and_put_page(page
, maddr
);
6878 * Because strscpy always NUL terminates we need to
6879 * copy the last byte in the page if we are going to
6884 copy_from_user_page(vma
, page
, addr
, buf
, maddr
+ (PAGE_SIZE
- 1), 1);
6890 unmap_and_put_page(page
, maddr
);
6894 mmap_read_unlock(mm
);
6897 return buf
- old_buf
;
6901 * copy_remote_vm_str - copy a string from another process's address space.
6902 * @tsk: the task of the target address space
6903 * @addr: start address to read from
6904 * @buf: destination buffer
6905 * @len: number of bytes to copy
6906 * @gup_flags: flags modifying lookup behaviour
6908 * The caller must hold a reference on @mm.
6910 * Return: number of bytes copied from @addr (source) to @buf (destination);
6911 * not including the trailing NUL. Always guaranteed to leave NUL-terminated
6912 * buffer. On any error, return -EFAULT.
6914 int copy_remote_vm_str(struct task_struct
*tsk
, unsigned long addr
,
6915 void *buf
, int len
, unsigned int gup_flags
)
6917 struct mm_struct
*mm
;
6920 if (unlikely(len
== 0))
6923 mm
= get_task_mm(tsk
);
6925 *(char *)buf
= '\0';
6929 ret
= __copy_remote_vm_str(mm
, addr
, buf
, len
, gup_flags
);
6935 EXPORT_SYMBOL_GPL(copy_remote_vm_str
);
6936 #endif /* CONFIG_BPF_SYSCALL */
6939 * Print the name of a VMA.
6941 void print_vma_addr(char *prefix
, unsigned long ip
)
6943 struct mm_struct
*mm
= current
->mm
;
6944 struct vm_area_struct
*vma
;
6947 * we might be running from an atomic context so we cannot sleep
6949 if (!mmap_read_trylock(mm
))
6952 vma
= vma_lookup(mm
, ip
);
6953 if (vma
&& vma
->vm_file
) {
6954 struct file
*f
= vma
->vm_file
;
6955 ip
-= vma
->vm_start
;
6956 ip
+= vma
->vm_pgoff
<< PAGE_SHIFT
;
6957 printk("%s%pD[%lx,%lx+%lx]", prefix
, f
, ip
,
6959 vma
->vm_end
- vma
->vm_start
);
6961 mmap_read_unlock(mm
);
6964 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6965 void __might_fault(const char *file
, int line
)
6967 if (pagefault_disabled())
6969 __might_sleep(file
, line
);
6971 might_lock_read(¤t
->mm
->mmap_lock
);
6973 EXPORT_SYMBOL(__might_fault
);
6976 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6978 * Process all subpages of the specified huge page with the specified
6979 * operation. The target subpage will be processed last to keep its
6982 static inline int process_huge_page(
6983 unsigned long addr_hint
, unsigned int nr_pages
,
6984 int (*process_subpage
)(unsigned long addr
, int idx
, void *arg
),
6987 int i
, n
, base
, l
, ret
;
6988 unsigned long addr
= addr_hint
&
6989 ~(((unsigned long)nr_pages
<< PAGE_SHIFT
) - 1);
6991 /* Process target subpage last to keep its cache lines hot */
6993 n
= (addr_hint
- addr
) / PAGE_SIZE
;
6994 if (2 * n
<= nr_pages
) {
6995 /* If target subpage in first half of huge page */
6998 /* Process subpages at the end of huge page */
6999 for (i
= nr_pages
- 1; i
>= 2 * n
; i
--) {
7001 ret
= process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
7006 /* If target subpage in second half of huge page */
7007 base
= nr_pages
- 2 * (nr_pages
- n
);
7009 /* Process subpages at the begin of huge page */
7010 for (i
= 0; i
< base
; i
++) {
7012 ret
= process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
7018 * Process remaining subpages in left-right-left-right pattern
7019 * towards the target subpage
7021 for (i
= 0; i
< l
; i
++) {
7022 int left_idx
= base
+ i
;
7023 int right_idx
= base
+ 2 * l
- 1 - i
;
7026 ret
= process_subpage(addr
+ left_idx
* PAGE_SIZE
, left_idx
, arg
);
7030 ret
= process_subpage(addr
+ right_idx
* PAGE_SIZE
, right_idx
, arg
);
7037 static void clear_gigantic_page(struct folio
*folio
, unsigned long addr_hint
,
7038 unsigned int nr_pages
)
7040 unsigned long addr
= ALIGN_DOWN(addr_hint
, folio_size(folio
));
7044 for (i
= 0; i
< nr_pages
; i
++) {
7046 clear_user_highpage(folio_page(folio
, i
), addr
+ i
* PAGE_SIZE
);
7050 static int clear_subpage(unsigned long addr
, int idx
, void *arg
)
7052 struct folio
*folio
= arg
;
7054 clear_user_highpage(folio_page(folio
, idx
), addr
);
7059 * folio_zero_user - Zero a folio which will be mapped to userspace.
7060 * @folio: The folio to zero.
7061 * @addr_hint: The address will be accessed or the base address if uncelar.
7063 void folio_zero_user(struct folio
*folio
, unsigned long addr_hint
)
7065 unsigned int nr_pages
= folio_nr_pages(folio
);
7067 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
))
7068 clear_gigantic_page(folio
, addr_hint
, nr_pages
);
7070 process_huge_page(addr_hint
, nr_pages
, clear_subpage
, folio
);
7073 static int copy_user_gigantic_page(struct folio
*dst
, struct folio
*src
,
7074 unsigned long addr_hint
,
7075 struct vm_area_struct
*vma
,
7076 unsigned int nr_pages
)
7078 unsigned long addr
= ALIGN_DOWN(addr_hint
, folio_size(dst
));
7079 struct page
*dst_page
;
7080 struct page
*src_page
;
7083 for (i
= 0; i
< nr_pages
; i
++) {
7084 dst_page
= folio_page(dst
, i
);
7085 src_page
= folio_page(src
, i
);
7088 if (copy_mc_user_highpage(dst_page
, src_page
,
7089 addr
+ i
*PAGE_SIZE
, vma
))
7095 struct copy_subpage_arg
{
7098 struct vm_area_struct
*vma
;
7101 static int copy_subpage(unsigned long addr
, int idx
, void *arg
)
7103 struct copy_subpage_arg
*copy_arg
= arg
;
7104 struct page
*dst
= folio_page(copy_arg
->dst
, idx
);
7105 struct page
*src
= folio_page(copy_arg
->src
, idx
);
7107 if (copy_mc_user_highpage(dst
, src
, addr
, copy_arg
->vma
))
7112 int copy_user_large_folio(struct folio
*dst
, struct folio
*src
,
7113 unsigned long addr_hint
, struct vm_area_struct
*vma
)
7115 unsigned int nr_pages
= folio_nr_pages(dst
);
7116 struct copy_subpage_arg arg
= {
7122 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
))
7123 return copy_user_gigantic_page(dst
, src
, addr_hint
, vma
, nr_pages
);
7125 return process_huge_page(addr_hint
, nr_pages
, copy_subpage
, &arg
);
7128 long copy_folio_from_user(struct folio
*dst_folio
,
7129 const void __user
*usr_src
,
7130 bool allow_pagefault
)
7133 unsigned long i
, rc
= 0;
7134 unsigned int nr_pages
= folio_nr_pages(dst_folio
);
7135 unsigned long ret_val
= nr_pages
* PAGE_SIZE
;
7136 struct page
*subpage
;
7138 for (i
= 0; i
< nr_pages
; i
++) {
7139 subpage
= folio_page(dst_folio
, i
);
7140 kaddr
= kmap_local_page(subpage
);
7141 if (!allow_pagefault
)
7142 pagefault_disable();
7143 rc
= copy_from_user(kaddr
, usr_src
+ i
* PAGE_SIZE
, PAGE_SIZE
);
7144 if (!allow_pagefault
)
7146 kunmap_local(kaddr
);
7148 ret_val
-= (PAGE_SIZE
- rc
);
7152 flush_dcache_page(subpage
);
7158 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7160 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7162 static struct kmem_cache
*page_ptl_cachep
;
7164 void __init
ptlock_cache_init(void)
7166 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
7170 bool ptlock_alloc(struct ptdesc
*ptdesc
)
7174 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
7181 void ptlock_free(struct ptdesc
*ptdesc
)
7184 kmem_cache_free(page_ptl_cachep
, ptdesc
->ptl
);
7188 void vma_pgtable_walk_begin(struct vm_area_struct
*vma
)
7190 if (is_vm_hugetlb_page(vma
))
7191 hugetlb_vma_lock_read(vma
);
7194 void vma_pgtable_walk_end(struct vm_area_struct
*vma
)
7196 if (is_vm_hugetlb_page(vma
))
7197 hugetlb_vma_unlock_read(vma
);