]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/memory_hotplug.c
Merge tag 'perf-tools-fixes-for-v6.10-1-2024-05-26' of git://git.kernel.org/pub/scm...
[thirdparty/kernel/stable.git] / mm / memory_hotplug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/compaction.h>
36 #include <linux/rmap.h>
37 #include <linux/module.h>
38
39 #include <asm/tlbflush.h>
40
41 #include "internal.h"
42 #include "shuffle.h"
43
44 enum {
45 MEMMAP_ON_MEMORY_DISABLE = 0,
46 MEMMAP_ON_MEMORY_ENABLE,
47 MEMMAP_ON_MEMORY_FORCE,
48 };
49
50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51
52 static inline unsigned long memory_block_memmap_size(void)
53 {
54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55 }
56
57 static inline unsigned long memory_block_memmap_on_memory_pages(void)
58 {
59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60
61 /*
62 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 * vmemmap size to cover full pageblocks. That way, we can add memory
64 * even if the vmemmap size is not properly aligned, however, we might waste
65 * memory.
66 */
67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 return pageblock_align(nr_pages);
69 return nr_pages;
70 }
71
72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73 /*
74 * memory_hotplug.memmap_on_memory parameter
75 */
76 static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77 {
78 int ret, mode;
79 bool enabled;
80
81 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) {
82 mode = MEMMAP_ON_MEMORY_FORCE;
83 } else {
84 ret = kstrtobool(val, &enabled);
85 if (ret < 0)
86 return ret;
87 if (enabled)
88 mode = MEMMAP_ON_MEMORY_ENABLE;
89 else
90 mode = MEMMAP_ON_MEMORY_DISABLE;
91 }
92 *((int *)kp->arg) = mode;
93 if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95
96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 memmap_pages - PFN_UP(memory_block_memmap_size()));
98 }
99 return 0;
100 }
101
102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103 {
104 int mode = *((int *)kp->arg);
105
106 if (mode == MEMMAP_ON_MEMORY_FORCE)
107 return sprintf(buffer, "force\n");
108 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
109 }
110
111 static const struct kernel_param_ops memmap_mode_ops = {
112 .set = set_memmap_mode,
113 .get = get_memmap_mode,
114 };
115 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117 "With value \"force\" it could result in memory wastage due "
118 "to memmap size limitations (Y/N/force)");
119
120 static inline bool mhp_memmap_on_memory(void)
121 {
122 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
123 }
124 #else
125 static inline bool mhp_memmap_on_memory(void)
126 {
127 return false;
128 }
129 #endif
130
131 enum {
132 ONLINE_POLICY_CONTIG_ZONES = 0,
133 ONLINE_POLICY_AUTO_MOVABLE,
134 };
135
136 static const char * const online_policy_to_str[] = {
137 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
139 };
140
141 static int set_online_policy(const char *val, const struct kernel_param *kp)
142 {
143 int ret = sysfs_match_string(online_policy_to_str, val);
144
145 if (ret < 0)
146 return ret;
147 *((int *)kp->arg) = ret;
148 return 0;
149 }
150
151 static int get_online_policy(char *buffer, const struct kernel_param *kp)
152 {
153 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
154 }
155
156 /*
157 * memory_hotplug.online_policy: configure online behavior when onlining without
158 * specifying a zone (MMOP_ONLINE)
159 *
160 * "contig-zones": keep zone contiguous
161 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
163 */
164 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165 static const struct kernel_param_ops online_policy_ops = {
166 .set = set_online_policy,
167 .get = get_online_policy,
168 };
169 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170 MODULE_PARM_DESC(online_policy,
171 "Set the online policy (\"contig-zones\", \"auto-movable\") "
172 "Default: \"contig-zones\"");
173
174 /*
175 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
176 *
177 * The ratio represent an upper limit and the kernel might decide to not
178 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179 * doesn't allow for more MOVABLE memory.
180 */
181 static unsigned int auto_movable_ratio __read_mostly = 301;
182 module_param(auto_movable_ratio, uint, 0644);
183 MODULE_PARM_DESC(auto_movable_ratio,
184 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185 "in percent for \"auto-movable\" online policy. Default: 301");
186
187 /*
188 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
189 */
190 #ifdef CONFIG_NUMA
191 static bool auto_movable_numa_aware __read_mostly = true;
192 module_param(auto_movable_numa_aware, bool, 0644);
193 MODULE_PARM_DESC(auto_movable_numa_aware,
194 "Consider numa node stats in addition to global stats in "
195 "\"auto-movable\" online policy. Default: true");
196 #endif /* CONFIG_NUMA */
197
198 /*
199 * online_page_callback contains pointer to current page onlining function.
200 * Initially it is generic_online_page(). If it is required it could be
201 * changed by calling set_online_page_callback() for callback registration
202 * and restore_online_page_callback() for generic callback restore.
203 */
204
205 static online_page_callback_t online_page_callback = generic_online_page;
206 static DEFINE_MUTEX(online_page_callback_lock);
207
208 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
209
210 void get_online_mems(void)
211 {
212 percpu_down_read(&mem_hotplug_lock);
213 }
214
215 void put_online_mems(void)
216 {
217 percpu_up_read(&mem_hotplug_lock);
218 }
219
220 bool movable_node_enabled = false;
221
222 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
223 int mhp_default_online_type = MMOP_OFFLINE;
224 #else
225 int mhp_default_online_type = MMOP_ONLINE;
226 #endif
227
228 static int __init setup_memhp_default_state(char *str)
229 {
230 const int online_type = mhp_online_type_from_str(str);
231
232 if (online_type >= 0)
233 mhp_default_online_type = online_type;
234
235 return 1;
236 }
237 __setup("memhp_default_state=", setup_memhp_default_state);
238
239 void mem_hotplug_begin(void)
240 {
241 cpus_read_lock();
242 percpu_down_write(&mem_hotplug_lock);
243 }
244
245 void mem_hotplug_done(void)
246 {
247 percpu_up_write(&mem_hotplug_lock);
248 cpus_read_unlock();
249 }
250
251 u64 max_mem_size = U64_MAX;
252
253 /* add this memory to iomem resource */
254 static struct resource *register_memory_resource(u64 start, u64 size,
255 const char *resource_name)
256 {
257 struct resource *res;
258 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
259
260 if (strcmp(resource_name, "System RAM"))
261 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
262
263 if (!mhp_range_allowed(start, size, true))
264 return ERR_PTR(-E2BIG);
265
266 /*
267 * Make sure value parsed from 'mem=' only restricts memory adding
268 * while booting, so that memory hotplug won't be impacted. Please
269 * refer to document of 'mem=' in kernel-parameters.txt for more
270 * details.
271 */
272 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
273 return ERR_PTR(-E2BIG);
274
275 /*
276 * Request ownership of the new memory range. This might be
277 * a child of an existing resource that was present but
278 * not marked as busy.
279 */
280 res = __request_region(&iomem_resource, start, size,
281 resource_name, flags);
282
283 if (!res) {
284 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
285 start, start + size);
286 return ERR_PTR(-EEXIST);
287 }
288 return res;
289 }
290
291 static void release_memory_resource(struct resource *res)
292 {
293 if (!res)
294 return;
295 release_resource(res);
296 kfree(res);
297 }
298
299 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
300 {
301 /*
302 * Disallow all operations smaller than a sub-section and only
303 * allow operations smaller than a section for
304 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
305 * enforces a larger memory_block_size_bytes() granularity for
306 * memory that will be marked online, so this check should only
307 * fire for direct arch_{add,remove}_memory() users outside of
308 * add_memory_resource().
309 */
310 unsigned long min_align;
311
312 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
313 min_align = PAGES_PER_SUBSECTION;
314 else
315 min_align = PAGES_PER_SECTION;
316 if (!IS_ALIGNED(pfn | nr_pages, min_align))
317 return -EINVAL;
318 return 0;
319 }
320
321 /*
322 * Return page for the valid pfn only if the page is online. All pfn
323 * walkers which rely on the fully initialized page->flags and others
324 * should use this rather than pfn_valid && pfn_to_page
325 */
326 struct page *pfn_to_online_page(unsigned long pfn)
327 {
328 unsigned long nr = pfn_to_section_nr(pfn);
329 struct dev_pagemap *pgmap;
330 struct mem_section *ms;
331
332 if (nr >= NR_MEM_SECTIONS)
333 return NULL;
334
335 ms = __nr_to_section(nr);
336 if (!online_section(ms))
337 return NULL;
338
339 /*
340 * Save some code text when online_section() +
341 * pfn_section_valid() are sufficient.
342 */
343 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
344 return NULL;
345
346 if (!pfn_section_valid(ms, pfn))
347 return NULL;
348
349 if (!online_device_section(ms))
350 return pfn_to_page(pfn);
351
352 /*
353 * Slowpath: when ZONE_DEVICE collides with
354 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
355 * the section may be 'offline' but 'valid'. Only
356 * get_dev_pagemap() can determine sub-section online status.
357 */
358 pgmap = get_dev_pagemap(pfn, NULL);
359 put_dev_pagemap(pgmap);
360
361 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
362 if (pgmap)
363 return NULL;
364
365 return pfn_to_page(pfn);
366 }
367 EXPORT_SYMBOL_GPL(pfn_to_online_page);
368
369 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
370 struct mhp_params *params)
371 {
372 const unsigned long end_pfn = pfn + nr_pages;
373 unsigned long cur_nr_pages;
374 int err;
375 struct vmem_altmap *altmap = params->altmap;
376
377 if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
378 return -EINVAL;
379
380 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
381
382 if (altmap) {
383 /*
384 * Validate altmap is within bounds of the total request
385 */
386 if (altmap->base_pfn != pfn
387 || vmem_altmap_offset(altmap) > nr_pages) {
388 pr_warn_once("memory add fail, invalid altmap\n");
389 return -EINVAL;
390 }
391 altmap->alloc = 0;
392 }
393
394 if (check_pfn_span(pfn, nr_pages)) {
395 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
396 return -EINVAL;
397 }
398
399 for (; pfn < end_pfn; pfn += cur_nr_pages) {
400 /* Select all remaining pages up to the next section boundary */
401 cur_nr_pages = min(end_pfn - pfn,
402 SECTION_ALIGN_UP(pfn + 1) - pfn);
403 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
404 params->pgmap);
405 if (err)
406 break;
407 cond_resched();
408 }
409 vmemmap_populate_print_last();
410 return err;
411 }
412
413 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
414 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
415 unsigned long start_pfn,
416 unsigned long end_pfn)
417 {
418 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
419 if (unlikely(!pfn_to_online_page(start_pfn)))
420 continue;
421
422 if (unlikely(pfn_to_nid(start_pfn) != nid))
423 continue;
424
425 if (zone != page_zone(pfn_to_page(start_pfn)))
426 continue;
427
428 return start_pfn;
429 }
430
431 return 0;
432 }
433
434 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
435 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
436 unsigned long start_pfn,
437 unsigned long end_pfn)
438 {
439 unsigned long pfn;
440
441 /* pfn is the end pfn of a memory section. */
442 pfn = end_pfn - 1;
443 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
444 if (unlikely(!pfn_to_online_page(pfn)))
445 continue;
446
447 if (unlikely(pfn_to_nid(pfn) != nid))
448 continue;
449
450 if (zone != page_zone(pfn_to_page(pfn)))
451 continue;
452
453 return pfn;
454 }
455
456 return 0;
457 }
458
459 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
460 unsigned long end_pfn)
461 {
462 unsigned long pfn;
463 int nid = zone_to_nid(zone);
464
465 if (zone->zone_start_pfn == start_pfn) {
466 /*
467 * If the section is smallest section in the zone, it need
468 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
469 * In this case, we find second smallest valid mem_section
470 * for shrinking zone.
471 */
472 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
473 zone_end_pfn(zone));
474 if (pfn) {
475 zone->spanned_pages = zone_end_pfn(zone) - pfn;
476 zone->zone_start_pfn = pfn;
477 } else {
478 zone->zone_start_pfn = 0;
479 zone->spanned_pages = 0;
480 }
481 } else if (zone_end_pfn(zone) == end_pfn) {
482 /*
483 * If the section is biggest section in the zone, it need
484 * shrink zone->spanned_pages.
485 * In this case, we find second biggest valid mem_section for
486 * shrinking zone.
487 */
488 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
489 start_pfn);
490 if (pfn)
491 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
492 else {
493 zone->zone_start_pfn = 0;
494 zone->spanned_pages = 0;
495 }
496 }
497 }
498
499 static void update_pgdat_span(struct pglist_data *pgdat)
500 {
501 unsigned long node_start_pfn = 0, node_end_pfn = 0;
502 struct zone *zone;
503
504 for (zone = pgdat->node_zones;
505 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
506 unsigned long end_pfn = zone_end_pfn(zone);
507
508 /* No need to lock the zones, they can't change. */
509 if (!zone->spanned_pages)
510 continue;
511 if (!node_end_pfn) {
512 node_start_pfn = zone->zone_start_pfn;
513 node_end_pfn = end_pfn;
514 continue;
515 }
516
517 if (end_pfn > node_end_pfn)
518 node_end_pfn = end_pfn;
519 if (zone->zone_start_pfn < node_start_pfn)
520 node_start_pfn = zone->zone_start_pfn;
521 }
522
523 pgdat->node_start_pfn = node_start_pfn;
524 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
525 }
526
527 void __ref remove_pfn_range_from_zone(struct zone *zone,
528 unsigned long start_pfn,
529 unsigned long nr_pages)
530 {
531 const unsigned long end_pfn = start_pfn + nr_pages;
532 struct pglist_data *pgdat = zone->zone_pgdat;
533 unsigned long pfn, cur_nr_pages;
534
535 /* Poison struct pages because they are now uninitialized again. */
536 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
537 cond_resched();
538
539 /* Select all remaining pages up to the next section boundary */
540 cur_nr_pages =
541 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
542 page_init_poison(pfn_to_page(pfn),
543 sizeof(struct page) * cur_nr_pages);
544 }
545
546 /*
547 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
548 * we will not try to shrink the zones - which is okay as
549 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
550 */
551 if (zone_is_zone_device(zone))
552 return;
553
554 clear_zone_contiguous(zone);
555
556 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
557 update_pgdat_span(pgdat);
558
559 set_zone_contiguous(zone);
560 }
561
562 /**
563 * __remove_pages() - remove sections of pages
564 * @pfn: starting pageframe (must be aligned to start of a section)
565 * @nr_pages: number of pages to remove (must be multiple of section size)
566 * @altmap: alternative device page map or %NULL if default memmap is used
567 *
568 * Generic helper function to remove section mappings and sysfs entries
569 * for the section of the memory we are removing. Caller needs to make
570 * sure that pages are marked reserved and zones are adjust properly by
571 * calling offline_pages().
572 */
573 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
574 struct vmem_altmap *altmap)
575 {
576 const unsigned long end_pfn = pfn + nr_pages;
577 unsigned long cur_nr_pages;
578
579 if (check_pfn_span(pfn, nr_pages)) {
580 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
581 return;
582 }
583
584 for (; pfn < end_pfn; pfn += cur_nr_pages) {
585 cond_resched();
586 /* Select all remaining pages up to the next section boundary */
587 cur_nr_pages = min(end_pfn - pfn,
588 SECTION_ALIGN_UP(pfn + 1) - pfn);
589 sparse_remove_section(pfn, cur_nr_pages, altmap);
590 }
591 }
592
593 int set_online_page_callback(online_page_callback_t callback)
594 {
595 int rc = -EINVAL;
596
597 get_online_mems();
598 mutex_lock(&online_page_callback_lock);
599
600 if (online_page_callback == generic_online_page) {
601 online_page_callback = callback;
602 rc = 0;
603 }
604
605 mutex_unlock(&online_page_callback_lock);
606 put_online_mems();
607
608 return rc;
609 }
610 EXPORT_SYMBOL_GPL(set_online_page_callback);
611
612 int restore_online_page_callback(online_page_callback_t callback)
613 {
614 int rc = -EINVAL;
615
616 get_online_mems();
617 mutex_lock(&online_page_callback_lock);
618
619 if (online_page_callback == callback) {
620 online_page_callback = generic_online_page;
621 rc = 0;
622 }
623
624 mutex_unlock(&online_page_callback_lock);
625 put_online_mems();
626
627 return rc;
628 }
629 EXPORT_SYMBOL_GPL(restore_online_page_callback);
630
631 void generic_online_page(struct page *page, unsigned int order)
632 {
633 /*
634 * Freeing the page with debug_pagealloc enabled will try to unmap it,
635 * so we should map it first. This is better than introducing a special
636 * case in page freeing fast path.
637 */
638 debug_pagealloc_map_pages(page, 1 << order);
639 __free_pages_core(page, order);
640 totalram_pages_add(1UL << order);
641 }
642 EXPORT_SYMBOL_GPL(generic_online_page);
643
644 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
645 {
646 const unsigned long end_pfn = start_pfn + nr_pages;
647 unsigned long pfn;
648
649 /*
650 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
651 * decide to not expose all pages to the buddy (e.g., expose them
652 * later). We account all pages as being online and belonging to this
653 * zone ("present").
654 * When using memmap_on_memory, the range might not be aligned to
655 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
656 * this and the first chunk to online will be pageblock_nr_pages.
657 */
658 for (pfn = start_pfn; pfn < end_pfn;) {
659 int order;
660
661 /*
662 * Free to online pages in the largest chunks alignment allows.
663 *
664 * __ffs() behaviour is undefined for 0. start == 0 is
665 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
666 * the case.
667 */
668 if (pfn)
669 order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
670 else
671 order = MAX_PAGE_ORDER;
672
673 (*online_page_callback)(pfn_to_page(pfn), order);
674 pfn += (1UL << order);
675 }
676
677 /* mark all involved sections as online */
678 online_mem_sections(start_pfn, end_pfn);
679 }
680
681 /* check which state of node_states will be changed when online memory */
682 static void node_states_check_changes_online(unsigned long nr_pages,
683 struct zone *zone, struct memory_notify *arg)
684 {
685 int nid = zone_to_nid(zone);
686
687 arg->status_change_nid = NUMA_NO_NODE;
688 arg->status_change_nid_normal = NUMA_NO_NODE;
689
690 if (!node_state(nid, N_MEMORY))
691 arg->status_change_nid = nid;
692 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
693 arg->status_change_nid_normal = nid;
694 }
695
696 static void node_states_set_node(int node, struct memory_notify *arg)
697 {
698 if (arg->status_change_nid_normal >= 0)
699 node_set_state(node, N_NORMAL_MEMORY);
700
701 if (arg->status_change_nid >= 0)
702 node_set_state(node, N_MEMORY);
703 }
704
705 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
706 unsigned long nr_pages)
707 {
708 unsigned long old_end_pfn = zone_end_pfn(zone);
709
710 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
711 zone->zone_start_pfn = start_pfn;
712
713 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
714 }
715
716 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
717 unsigned long nr_pages)
718 {
719 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
720
721 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
722 pgdat->node_start_pfn = start_pfn;
723
724 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
725
726 }
727
728 #ifdef CONFIG_ZONE_DEVICE
729 static void section_taint_zone_device(unsigned long pfn)
730 {
731 struct mem_section *ms = __pfn_to_section(pfn);
732
733 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
734 }
735 #else
736 static inline void section_taint_zone_device(unsigned long pfn)
737 {
738 }
739 #endif
740
741 /*
742 * Associate the pfn range with the given zone, initializing the memmaps
743 * and resizing the pgdat/zone data to span the added pages. After this
744 * call, all affected pages are PG_reserved.
745 *
746 * All aligned pageblocks are initialized to the specified migratetype
747 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
748 * zone stats (e.g., nr_isolate_pageblock) are touched.
749 */
750 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
751 unsigned long nr_pages,
752 struct vmem_altmap *altmap, int migratetype)
753 {
754 struct pglist_data *pgdat = zone->zone_pgdat;
755 int nid = pgdat->node_id;
756
757 clear_zone_contiguous(zone);
758
759 if (zone_is_empty(zone))
760 init_currently_empty_zone(zone, start_pfn, nr_pages);
761 resize_zone_range(zone, start_pfn, nr_pages);
762 resize_pgdat_range(pgdat, start_pfn, nr_pages);
763
764 /*
765 * Subsection population requires care in pfn_to_online_page().
766 * Set the taint to enable the slow path detection of
767 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
768 * section.
769 */
770 if (zone_is_zone_device(zone)) {
771 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
772 section_taint_zone_device(start_pfn);
773 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
774 section_taint_zone_device(start_pfn + nr_pages);
775 }
776
777 /*
778 * TODO now we have a visible range of pages which are not associated
779 * with their zone properly. Not nice but set_pfnblock_flags_mask
780 * expects the zone spans the pfn range. All the pages in the range
781 * are reserved so nobody should be touching them so we should be safe
782 */
783 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
784 MEMINIT_HOTPLUG, altmap, migratetype);
785
786 set_zone_contiguous(zone);
787 }
788
789 struct auto_movable_stats {
790 unsigned long kernel_early_pages;
791 unsigned long movable_pages;
792 };
793
794 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
795 struct zone *zone)
796 {
797 if (zone_idx(zone) == ZONE_MOVABLE) {
798 stats->movable_pages += zone->present_pages;
799 } else {
800 stats->kernel_early_pages += zone->present_early_pages;
801 #ifdef CONFIG_CMA
802 /*
803 * CMA pages (never on hotplugged memory) behave like
804 * ZONE_MOVABLE.
805 */
806 stats->movable_pages += zone->cma_pages;
807 stats->kernel_early_pages -= zone->cma_pages;
808 #endif /* CONFIG_CMA */
809 }
810 }
811 struct auto_movable_group_stats {
812 unsigned long movable_pages;
813 unsigned long req_kernel_early_pages;
814 };
815
816 static int auto_movable_stats_account_group(struct memory_group *group,
817 void *arg)
818 {
819 const int ratio = READ_ONCE(auto_movable_ratio);
820 struct auto_movable_group_stats *stats = arg;
821 long pages;
822
823 /*
824 * We don't support modifying the config while the auto-movable online
825 * policy is already enabled. Just avoid the division by zero below.
826 */
827 if (!ratio)
828 return 0;
829
830 /*
831 * Calculate how many early kernel pages this group requires to
832 * satisfy the configured zone ratio.
833 */
834 pages = group->present_movable_pages * 100 / ratio;
835 pages -= group->present_kernel_pages;
836
837 if (pages > 0)
838 stats->req_kernel_early_pages += pages;
839 stats->movable_pages += group->present_movable_pages;
840 return 0;
841 }
842
843 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
844 unsigned long nr_pages)
845 {
846 unsigned long kernel_early_pages, movable_pages;
847 struct auto_movable_group_stats group_stats = {};
848 struct auto_movable_stats stats = {};
849 pg_data_t *pgdat = NODE_DATA(nid);
850 struct zone *zone;
851 int i;
852
853 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
854 if (nid == NUMA_NO_NODE) {
855 /* TODO: cache values */
856 for_each_populated_zone(zone)
857 auto_movable_stats_account_zone(&stats, zone);
858 } else {
859 for (i = 0; i < MAX_NR_ZONES; i++) {
860 zone = pgdat->node_zones + i;
861 if (populated_zone(zone))
862 auto_movable_stats_account_zone(&stats, zone);
863 }
864 }
865
866 kernel_early_pages = stats.kernel_early_pages;
867 movable_pages = stats.movable_pages;
868
869 /*
870 * Kernel memory inside dynamic memory group allows for more MOVABLE
871 * memory within the same group. Remove the effect of all but the
872 * current group from the stats.
873 */
874 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
875 group, &group_stats);
876 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
877 return false;
878 kernel_early_pages -= group_stats.req_kernel_early_pages;
879 movable_pages -= group_stats.movable_pages;
880
881 if (group && group->is_dynamic)
882 kernel_early_pages += group->present_kernel_pages;
883
884 /*
885 * Test if we could online the given number of pages to ZONE_MOVABLE
886 * and still stay in the configured ratio.
887 */
888 movable_pages += nr_pages;
889 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
890 }
891
892 /*
893 * Returns a default kernel memory zone for the given pfn range.
894 * If no kernel zone covers this pfn range it will automatically go
895 * to the ZONE_NORMAL.
896 */
897 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
898 unsigned long nr_pages)
899 {
900 struct pglist_data *pgdat = NODE_DATA(nid);
901 int zid;
902
903 for (zid = 0; zid < ZONE_NORMAL; zid++) {
904 struct zone *zone = &pgdat->node_zones[zid];
905
906 if (zone_intersects(zone, start_pfn, nr_pages))
907 return zone;
908 }
909
910 return &pgdat->node_zones[ZONE_NORMAL];
911 }
912
913 /*
914 * Determine to which zone to online memory dynamically based on user
915 * configuration and system stats. We care about the following ratio:
916 *
917 * MOVABLE : KERNEL
918 *
919 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
920 * one of the kernel zones. CMA pages inside one of the kernel zones really
921 * behaves like ZONE_MOVABLE, so we treat them accordingly.
922 *
923 * We don't allow for hotplugged memory in a KERNEL zone to increase the
924 * amount of MOVABLE memory we can have, so we end up with:
925 *
926 * MOVABLE : KERNEL_EARLY
927 *
928 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
929 * boot. We base our calculation on KERNEL_EARLY internally, because:
930 *
931 * a) Hotplugged memory in one of the kernel zones can sometimes still get
932 * hotunplugged, especially when hot(un)plugging individual memory blocks.
933 * There is no coordination across memory devices, therefore "automatic"
934 * hotunplugging, as implemented in hypervisors, could result in zone
935 * imbalances.
936 * b) Early/boot memory in one of the kernel zones can usually not get
937 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
938 * with unmovable allocations). While there are corner cases where it might
939 * still work, it is barely relevant in practice.
940 *
941 * Exceptions are dynamic memory groups, which allow for more MOVABLE
942 * memory within the same memory group -- because in that case, there is
943 * coordination within the single memory device managed by a single driver.
944 *
945 * We rely on "present pages" instead of "managed pages", as the latter is
946 * highly unreliable and dynamic in virtualized environments, and does not
947 * consider boot time allocations. For example, memory ballooning adjusts the
948 * managed pages when inflating/deflating the balloon, and balloon compaction
949 * can even migrate inflated pages between zones.
950 *
951 * Using "present pages" is better but some things to keep in mind are:
952 *
953 * a) Some memblock allocations, such as for the crashkernel area, are
954 * effectively unused by the kernel, yet they account to "present pages".
955 * Fortunately, these allocations are comparatively small in relevant setups
956 * (e.g., fraction of system memory).
957 * b) Some hotplugged memory blocks in virtualized environments, esecially
958 * hotplugged by virtio-mem, look like they are completely present, however,
959 * only parts of the memory block are actually currently usable.
960 * "present pages" is an upper limit that can get reached at runtime. As
961 * we base our calculations on KERNEL_EARLY, this is not an issue.
962 */
963 static struct zone *auto_movable_zone_for_pfn(int nid,
964 struct memory_group *group,
965 unsigned long pfn,
966 unsigned long nr_pages)
967 {
968 unsigned long online_pages = 0, max_pages, end_pfn;
969 struct page *page;
970
971 if (!auto_movable_ratio)
972 goto kernel_zone;
973
974 if (group && !group->is_dynamic) {
975 max_pages = group->s.max_pages;
976 online_pages = group->present_movable_pages;
977
978 /* If anything is !MOVABLE online the rest !MOVABLE. */
979 if (group->present_kernel_pages)
980 goto kernel_zone;
981 } else if (!group || group->d.unit_pages == nr_pages) {
982 max_pages = nr_pages;
983 } else {
984 max_pages = group->d.unit_pages;
985 /*
986 * Take a look at all online sections in the current unit.
987 * We can safely assume that all pages within a section belong
988 * to the same zone, because dynamic memory groups only deal
989 * with hotplugged memory.
990 */
991 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
992 end_pfn = pfn + group->d.unit_pages;
993 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
994 page = pfn_to_online_page(pfn);
995 if (!page)
996 continue;
997 /* If anything is !MOVABLE online the rest !MOVABLE. */
998 if (!is_zone_movable_page(page))
999 goto kernel_zone;
1000 online_pages += PAGES_PER_SECTION;
1001 }
1002 }
1003
1004 /*
1005 * Online MOVABLE if we could *currently* online all remaining parts
1006 * MOVABLE. We expect to (add+) online them immediately next, so if
1007 * nobody interferes, all will be MOVABLE if possible.
1008 */
1009 nr_pages = max_pages - online_pages;
1010 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1011 goto kernel_zone;
1012
1013 #ifdef CONFIG_NUMA
1014 if (auto_movable_numa_aware &&
1015 !auto_movable_can_online_movable(nid, group, nr_pages))
1016 goto kernel_zone;
1017 #endif /* CONFIG_NUMA */
1018
1019 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1020 kernel_zone:
1021 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1022 }
1023
1024 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1025 unsigned long nr_pages)
1026 {
1027 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1028 nr_pages);
1029 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1030 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1031 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1032
1033 /*
1034 * We inherit the existing zone in a simple case where zones do not
1035 * overlap in the given range
1036 */
1037 if (in_kernel ^ in_movable)
1038 return (in_kernel) ? kernel_zone : movable_zone;
1039
1040 /*
1041 * If the range doesn't belong to any zone or two zones overlap in the
1042 * given range then we use movable zone only if movable_node is
1043 * enabled because we always online to a kernel zone by default.
1044 */
1045 return movable_node_enabled ? movable_zone : kernel_zone;
1046 }
1047
1048 struct zone *zone_for_pfn_range(int online_type, int nid,
1049 struct memory_group *group, unsigned long start_pfn,
1050 unsigned long nr_pages)
1051 {
1052 if (online_type == MMOP_ONLINE_KERNEL)
1053 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1054
1055 if (online_type == MMOP_ONLINE_MOVABLE)
1056 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1057
1058 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1059 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1060
1061 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1062 }
1063
1064 /*
1065 * This function should only be called by memory_block_{online,offline},
1066 * and {online,offline}_pages.
1067 */
1068 void adjust_present_page_count(struct page *page, struct memory_group *group,
1069 long nr_pages)
1070 {
1071 struct zone *zone = page_zone(page);
1072 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1073
1074 /*
1075 * We only support onlining/offlining/adding/removing of complete
1076 * memory blocks; therefore, either all is either early or hotplugged.
1077 */
1078 if (early_section(__pfn_to_section(page_to_pfn(page))))
1079 zone->present_early_pages += nr_pages;
1080 zone->present_pages += nr_pages;
1081 zone->zone_pgdat->node_present_pages += nr_pages;
1082
1083 if (group && movable)
1084 group->present_movable_pages += nr_pages;
1085 else if (group && !movable)
1086 group->present_kernel_pages += nr_pages;
1087 }
1088
1089 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1090 struct zone *zone, bool mhp_off_inaccessible)
1091 {
1092 unsigned long end_pfn = pfn + nr_pages;
1093 int ret, i;
1094
1095 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1096 if (ret)
1097 return ret;
1098
1099 /*
1100 * Memory block is accessible at this stage and hence poison the struct
1101 * pages now. If the memory block is accessible during memory hotplug
1102 * addition phase, then page poisining is already performed in
1103 * sparse_add_section().
1104 */
1105 if (mhp_off_inaccessible)
1106 page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages);
1107
1108 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1109
1110 for (i = 0; i < nr_pages; i++)
1111 SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1112
1113 /*
1114 * It might be that the vmemmap_pages fully span sections. If that is
1115 * the case, mark those sections online here as otherwise they will be
1116 * left offline.
1117 */
1118 if (nr_pages >= PAGES_PER_SECTION)
1119 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1120
1121 return ret;
1122 }
1123
1124 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1125 {
1126 unsigned long end_pfn = pfn + nr_pages;
1127
1128 /*
1129 * It might be that the vmemmap_pages fully span sections. If that is
1130 * the case, mark those sections offline here as otherwise they will be
1131 * left online.
1132 */
1133 if (nr_pages >= PAGES_PER_SECTION)
1134 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1135
1136 /*
1137 * The pages associated with this vmemmap have been offlined, so
1138 * we can reset its state here.
1139 */
1140 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1141 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1142 }
1143
1144 /*
1145 * Must be called with mem_hotplug_lock in write mode.
1146 */
1147 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1148 struct zone *zone, struct memory_group *group)
1149 {
1150 unsigned long flags;
1151 int need_zonelists_rebuild = 0;
1152 const int nid = zone_to_nid(zone);
1153 int ret;
1154 struct memory_notify arg;
1155
1156 /*
1157 * {on,off}lining is constrained to full memory sections (or more
1158 * precisely to memory blocks from the user space POV).
1159 * memmap_on_memory is an exception because it reserves initial part
1160 * of the physical memory space for vmemmaps. That space is pageblock
1161 * aligned.
1162 */
1163 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1164 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1165 return -EINVAL;
1166
1167
1168 /* associate pfn range with the zone */
1169 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1170
1171 arg.start_pfn = pfn;
1172 arg.nr_pages = nr_pages;
1173 node_states_check_changes_online(nr_pages, zone, &arg);
1174
1175 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1176 ret = notifier_to_errno(ret);
1177 if (ret)
1178 goto failed_addition;
1179
1180 /*
1181 * Fixup the number of isolated pageblocks before marking the sections
1182 * onlining, such that undo_isolate_page_range() works correctly.
1183 */
1184 spin_lock_irqsave(&zone->lock, flags);
1185 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1186 spin_unlock_irqrestore(&zone->lock, flags);
1187
1188 /*
1189 * If this zone is not populated, then it is not in zonelist.
1190 * This means the page allocator ignores this zone.
1191 * So, zonelist must be updated after online.
1192 */
1193 if (!populated_zone(zone)) {
1194 need_zonelists_rebuild = 1;
1195 setup_zone_pageset(zone);
1196 }
1197
1198 online_pages_range(pfn, nr_pages);
1199 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1200
1201 node_states_set_node(nid, &arg);
1202 if (need_zonelists_rebuild)
1203 build_all_zonelists(NULL);
1204
1205 /* Basic onlining is complete, allow allocation of onlined pages. */
1206 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1207
1208 /*
1209 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1210 * the tail of the freelist when undoing isolation). Shuffle the whole
1211 * zone to make sure the just onlined pages are properly distributed
1212 * across the whole freelist - to create an initial shuffle.
1213 */
1214 shuffle_zone(zone);
1215
1216 /* reinitialise watermarks and update pcp limits */
1217 init_per_zone_wmark_min();
1218
1219 kswapd_run(nid);
1220 kcompactd_run(nid);
1221
1222 writeback_set_ratelimit();
1223
1224 memory_notify(MEM_ONLINE, &arg);
1225 return 0;
1226
1227 failed_addition:
1228 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1229 (unsigned long long) pfn << PAGE_SHIFT,
1230 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1231 memory_notify(MEM_CANCEL_ONLINE, &arg);
1232 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1233 return ret;
1234 }
1235
1236 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1237 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1238 {
1239 struct pglist_data *pgdat;
1240
1241 /*
1242 * NODE_DATA is preallocated (free_area_init) but its internal
1243 * state is not allocated completely. Add missing pieces.
1244 * Completely offline nodes stay around and they just need
1245 * reintialization.
1246 */
1247 pgdat = NODE_DATA(nid);
1248
1249 /* init node's zones as empty zones, we don't have any present pages.*/
1250 free_area_init_core_hotplug(pgdat);
1251
1252 /*
1253 * The node we allocated has no zone fallback lists. For avoiding
1254 * to access not-initialized zonelist, build here.
1255 */
1256 build_all_zonelists(pgdat);
1257
1258 return pgdat;
1259 }
1260
1261 /*
1262 * __try_online_node - online a node if offlined
1263 * @nid: the node ID
1264 * @set_node_online: Whether we want to online the node
1265 * called by cpu_up() to online a node without onlined memory.
1266 *
1267 * Returns:
1268 * 1 -> a new node has been allocated
1269 * 0 -> the node is already online
1270 * -ENOMEM -> the node could not be allocated
1271 */
1272 static int __try_online_node(int nid, bool set_node_online)
1273 {
1274 pg_data_t *pgdat;
1275 int ret = 1;
1276
1277 if (node_online(nid))
1278 return 0;
1279
1280 pgdat = hotadd_init_pgdat(nid);
1281 if (!pgdat) {
1282 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1283 ret = -ENOMEM;
1284 goto out;
1285 }
1286
1287 if (set_node_online) {
1288 node_set_online(nid);
1289 ret = register_one_node(nid);
1290 BUG_ON(ret);
1291 }
1292 out:
1293 return ret;
1294 }
1295
1296 /*
1297 * Users of this function always want to online/register the node
1298 */
1299 int try_online_node(int nid)
1300 {
1301 int ret;
1302
1303 mem_hotplug_begin();
1304 ret = __try_online_node(nid, true);
1305 mem_hotplug_done();
1306 return ret;
1307 }
1308
1309 static int check_hotplug_memory_range(u64 start, u64 size)
1310 {
1311 /* memory range must be block size aligned */
1312 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1313 !IS_ALIGNED(size, memory_block_size_bytes())) {
1314 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1315 memory_block_size_bytes(), start, size);
1316 return -EINVAL;
1317 }
1318
1319 return 0;
1320 }
1321
1322 static int online_memory_block(struct memory_block *mem, void *arg)
1323 {
1324 mem->online_type = mhp_default_online_type;
1325 return device_online(&mem->dev);
1326 }
1327
1328 #ifndef arch_supports_memmap_on_memory
1329 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1330 {
1331 /*
1332 * As default, we want the vmemmap to span a complete PMD such that we
1333 * can map the vmemmap using a single PMD if supported by the
1334 * architecture.
1335 */
1336 return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1337 }
1338 #endif
1339
1340 bool mhp_supports_memmap_on_memory(void)
1341 {
1342 unsigned long vmemmap_size = memory_block_memmap_size();
1343 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1344
1345 /*
1346 * Besides having arch support and the feature enabled at runtime, we
1347 * need a few more assumptions to hold true:
1348 *
1349 * a) The vmemmap pages span complete PMDs: We don't want vmemmap code
1350 * to populate memory from the altmap for unrelated parts (i.e.,
1351 * other memory blocks)
1352 *
1353 * b) The vmemmap pages (and thereby the pages that will be exposed to
1354 * the buddy) have to cover full pageblocks: memory onlining/offlining
1355 * code requires applicable ranges to be page-aligned, for example, to
1356 * set the migratetypes properly.
1357 *
1358 * TODO: Although we have a check here to make sure that vmemmap pages
1359 * fully populate a PMD, it is not the right place to check for
1360 * this. A much better solution involves improving vmemmap code
1361 * to fallback to base pages when trying to populate vmemmap using
1362 * altmap as an alternative source of memory, and we do not exactly
1363 * populate a single PMD.
1364 */
1365 if (!mhp_memmap_on_memory())
1366 return false;
1367
1368 /*
1369 * Make sure the vmemmap allocation is fully contained
1370 * so that we always allocate vmemmap memory from altmap area.
1371 */
1372 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1373 return false;
1374
1375 /*
1376 * start pfn should be pageblock_nr_pages aligned for correctly
1377 * setting migrate types
1378 */
1379 if (!pageblock_aligned(memmap_pages))
1380 return false;
1381
1382 if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1383 /* No effective hotplugged memory doesn't make sense. */
1384 return false;
1385
1386 return arch_supports_memmap_on_memory(vmemmap_size);
1387 }
1388 EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory);
1389
1390 static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size)
1391 {
1392 unsigned long memblock_size = memory_block_size_bytes();
1393 u64 cur_start;
1394
1395 /*
1396 * For memmap_on_memory, the altmaps were added on a per-memblock
1397 * basis; we have to process each individual memory block.
1398 */
1399 for (cur_start = start; cur_start < start + size;
1400 cur_start += memblock_size) {
1401 struct vmem_altmap *altmap = NULL;
1402 struct memory_block *mem;
1403
1404 mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1405 if (WARN_ON_ONCE(!mem))
1406 continue;
1407
1408 altmap = mem->altmap;
1409 mem->altmap = NULL;
1410
1411 remove_memory_block_devices(cur_start, memblock_size);
1412
1413 arch_remove_memory(cur_start, memblock_size, altmap);
1414
1415 /* Verify that all vmemmap pages have actually been freed. */
1416 WARN(altmap->alloc, "Altmap not fully unmapped");
1417 kfree(altmap);
1418 }
1419 }
1420
1421 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1422 u64 start, u64 size, mhp_t mhp_flags)
1423 {
1424 unsigned long memblock_size = memory_block_size_bytes();
1425 u64 cur_start;
1426 int ret;
1427
1428 for (cur_start = start; cur_start < start + size;
1429 cur_start += memblock_size) {
1430 struct mhp_params params = { .pgprot =
1431 pgprot_mhp(PAGE_KERNEL) };
1432 struct vmem_altmap mhp_altmap = {
1433 .base_pfn = PHYS_PFN(cur_start),
1434 .end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1435 };
1436
1437 mhp_altmap.free = memory_block_memmap_on_memory_pages();
1438 if (mhp_flags & MHP_OFFLINE_INACCESSIBLE)
1439 mhp_altmap.inaccessible = true;
1440 params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1441 GFP_KERNEL);
1442 if (!params.altmap) {
1443 ret = -ENOMEM;
1444 goto out;
1445 }
1446
1447 /* call arch's memory hotadd */
1448 ret = arch_add_memory(nid, cur_start, memblock_size, &params);
1449 if (ret < 0) {
1450 kfree(params.altmap);
1451 goto out;
1452 }
1453
1454 /* create memory block devices after memory was added */
1455 ret = create_memory_block_devices(cur_start, memblock_size,
1456 params.altmap, group);
1457 if (ret) {
1458 arch_remove_memory(cur_start, memblock_size, NULL);
1459 kfree(params.altmap);
1460 goto out;
1461 }
1462 }
1463
1464 return 0;
1465 out:
1466 if (ret && cur_start != start)
1467 remove_memory_blocks_and_altmaps(start, cur_start - start);
1468 return ret;
1469 }
1470
1471 /*
1472 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1473 * and online/offline operations (triggered e.g. by sysfs).
1474 *
1475 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1476 */
1477 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1478 {
1479 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1480 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1481 struct memory_group *group = NULL;
1482 u64 start, size;
1483 bool new_node = false;
1484 int ret;
1485
1486 start = res->start;
1487 size = resource_size(res);
1488
1489 ret = check_hotplug_memory_range(start, size);
1490 if (ret)
1491 return ret;
1492
1493 if (mhp_flags & MHP_NID_IS_MGID) {
1494 group = memory_group_find_by_id(nid);
1495 if (!group)
1496 return -EINVAL;
1497 nid = group->nid;
1498 }
1499
1500 if (!node_possible(nid)) {
1501 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1502 return -EINVAL;
1503 }
1504
1505 mem_hotplug_begin();
1506
1507 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1508 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1509 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1510 ret = memblock_add_node(start, size, nid, memblock_flags);
1511 if (ret)
1512 goto error_mem_hotplug_end;
1513 }
1514
1515 ret = __try_online_node(nid, false);
1516 if (ret < 0)
1517 goto error;
1518 new_node = ret;
1519
1520 /*
1521 * Self hosted memmap array
1522 */
1523 if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1524 mhp_supports_memmap_on_memory()) {
1525 ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags);
1526 if (ret)
1527 goto error;
1528 } else {
1529 ret = arch_add_memory(nid, start, size, &params);
1530 if (ret < 0)
1531 goto error;
1532
1533 /* create memory block devices after memory was added */
1534 ret = create_memory_block_devices(start, size, NULL, group);
1535 if (ret) {
1536 arch_remove_memory(start, size, params.altmap);
1537 goto error;
1538 }
1539 }
1540
1541 if (new_node) {
1542 /* If sysfs file of new node can't be created, cpu on the node
1543 * can't be hot-added. There is no rollback way now.
1544 * So, check by BUG_ON() to catch it reluctantly..
1545 * We online node here. We can't roll back from here.
1546 */
1547 node_set_online(nid);
1548 ret = __register_one_node(nid);
1549 BUG_ON(ret);
1550 }
1551
1552 register_memory_blocks_under_node(nid, PFN_DOWN(start),
1553 PFN_UP(start + size - 1),
1554 MEMINIT_HOTPLUG);
1555
1556 /* create new memmap entry */
1557 if (!strcmp(res->name, "System RAM"))
1558 firmware_map_add_hotplug(start, start + size, "System RAM");
1559
1560 /* device_online() will take the lock when calling online_pages() */
1561 mem_hotplug_done();
1562
1563 /*
1564 * In case we're allowed to merge the resource, flag it and trigger
1565 * merging now that adding succeeded.
1566 */
1567 if (mhp_flags & MHP_MERGE_RESOURCE)
1568 merge_system_ram_resource(res);
1569
1570 /* online pages if requested */
1571 if (mhp_default_online_type != MMOP_OFFLINE)
1572 walk_memory_blocks(start, size, NULL, online_memory_block);
1573
1574 return ret;
1575 error:
1576 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1577 memblock_remove(start, size);
1578 error_mem_hotplug_end:
1579 mem_hotplug_done();
1580 return ret;
1581 }
1582
1583 /* requires device_hotplug_lock, see add_memory_resource() */
1584 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1585 {
1586 struct resource *res;
1587 int ret;
1588
1589 res = register_memory_resource(start, size, "System RAM");
1590 if (IS_ERR(res))
1591 return PTR_ERR(res);
1592
1593 ret = add_memory_resource(nid, res, mhp_flags);
1594 if (ret < 0)
1595 release_memory_resource(res);
1596 return ret;
1597 }
1598
1599 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1600 {
1601 int rc;
1602
1603 lock_device_hotplug();
1604 rc = __add_memory(nid, start, size, mhp_flags);
1605 unlock_device_hotplug();
1606
1607 return rc;
1608 }
1609 EXPORT_SYMBOL_GPL(add_memory);
1610
1611 /*
1612 * Add special, driver-managed memory to the system as system RAM. Such
1613 * memory is not exposed via the raw firmware-provided memmap as system
1614 * RAM, instead, it is detected and added by a driver - during cold boot,
1615 * after a reboot, and after kexec.
1616 *
1617 * Reasons why this memory should not be used for the initial memmap of a
1618 * kexec kernel or for placing kexec images:
1619 * - The booting kernel is in charge of determining how this memory will be
1620 * used (e.g., use persistent memory as system RAM)
1621 * - Coordination with a hypervisor is required before this memory
1622 * can be used (e.g., inaccessible parts).
1623 *
1624 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1625 * memory map") are created. Also, the created memory resource is flagged
1626 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1627 * this memory as well (esp., not place kexec images onto it).
1628 *
1629 * The resource_name (visible via /proc/iomem) has to have the format
1630 * "System RAM ($DRIVER)".
1631 */
1632 int add_memory_driver_managed(int nid, u64 start, u64 size,
1633 const char *resource_name, mhp_t mhp_flags)
1634 {
1635 struct resource *res;
1636 int rc;
1637
1638 if (!resource_name ||
1639 strstr(resource_name, "System RAM (") != resource_name ||
1640 resource_name[strlen(resource_name) - 1] != ')')
1641 return -EINVAL;
1642
1643 lock_device_hotplug();
1644
1645 res = register_memory_resource(start, size, resource_name);
1646 if (IS_ERR(res)) {
1647 rc = PTR_ERR(res);
1648 goto out_unlock;
1649 }
1650
1651 rc = add_memory_resource(nid, res, mhp_flags);
1652 if (rc < 0)
1653 release_memory_resource(res);
1654
1655 out_unlock:
1656 unlock_device_hotplug();
1657 return rc;
1658 }
1659 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1660
1661 /*
1662 * Platforms should define arch_get_mappable_range() that provides
1663 * maximum possible addressable physical memory range for which the
1664 * linear mapping could be created. The platform returned address
1665 * range must adhere to these following semantics.
1666 *
1667 * - range.start <= range.end
1668 * - Range includes both end points [range.start..range.end]
1669 *
1670 * There is also a fallback definition provided here, allowing the
1671 * entire possible physical address range in case any platform does
1672 * not define arch_get_mappable_range().
1673 */
1674 struct range __weak arch_get_mappable_range(void)
1675 {
1676 struct range mhp_range = {
1677 .start = 0UL,
1678 .end = -1ULL,
1679 };
1680 return mhp_range;
1681 }
1682
1683 struct range mhp_get_pluggable_range(bool need_mapping)
1684 {
1685 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1686 struct range mhp_range;
1687
1688 if (need_mapping) {
1689 mhp_range = arch_get_mappable_range();
1690 if (mhp_range.start > max_phys) {
1691 mhp_range.start = 0;
1692 mhp_range.end = 0;
1693 }
1694 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1695 } else {
1696 mhp_range.start = 0;
1697 mhp_range.end = max_phys;
1698 }
1699 return mhp_range;
1700 }
1701 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1702
1703 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1704 {
1705 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1706 u64 end = start + size;
1707
1708 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1709 return true;
1710
1711 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1712 start, end, mhp_range.start, mhp_range.end);
1713 return false;
1714 }
1715
1716 #ifdef CONFIG_MEMORY_HOTREMOVE
1717 /*
1718 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1719 * non-lru movable pages and hugepages). Will skip over most unmovable
1720 * pages (esp., pages that can be skipped when offlining), but bail out on
1721 * definitely unmovable pages.
1722 *
1723 * Returns:
1724 * 0 in case a movable page is found and movable_pfn was updated.
1725 * -ENOENT in case no movable page was found.
1726 * -EBUSY in case a definitely unmovable page was found.
1727 */
1728 static int scan_movable_pages(unsigned long start, unsigned long end,
1729 unsigned long *movable_pfn)
1730 {
1731 unsigned long pfn;
1732
1733 for (pfn = start; pfn < end; pfn++) {
1734 struct page *page, *head;
1735 unsigned long skip;
1736
1737 if (!pfn_valid(pfn))
1738 continue;
1739 page = pfn_to_page(pfn);
1740 if (PageLRU(page))
1741 goto found;
1742 if (__PageMovable(page))
1743 goto found;
1744
1745 /*
1746 * PageOffline() pages that are not marked __PageMovable() and
1747 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1748 * definitely unmovable. If their reference count would be 0,
1749 * they could at least be skipped when offlining memory.
1750 */
1751 if (PageOffline(page) && page_count(page))
1752 return -EBUSY;
1753
1754 if (!PageHuge(page))
1755 continue;
1756 head = compound_head(page);
1757 /*
1758 * This test is racy as we hold no reference or lock. The
1759 * hugetlb page could have been free'ed and head is no longer
1760 * a hugetlb page before the following check. In such unlikely
1761 * cases false positives and negatives are possible. Calling
1762 * code must deal with these scenarios.
1763 */
1764 if (HPageMigratable(head))
1765 goto found;
1766 skip = compound_nr(head) - (pfn - page_to_pfn(head));
1767 pfn += skip - 1;
1768 }
1769 return -ENOENT;
1770 found:
1771 *movable_pfn = pfn;
1772 return 0;
1773 }
1774
1775 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1776 {
1777 unsigned long pfn;
1778 struct page *page, *head;
1779 LIST_HEAD(source);
1780 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1781 DEFAULT_RATELIMIT_BURST);
1782
1783 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1784 struct folio *folio;
1785 bool isolated;
1786
1787 if (!pfn_valid(pfn))
1788 continue;
1789 page = pfn_to_page(pfn);
1790 folio = page_folio(page);
1791 head = &folio->page;
1792
1793 if (PageHuge(page)) {
1794 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1795 isolate_hugetlb(folio, &source);
1796 continue;
1797 } else if (PageTransHuge(page))
1798 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1799
1800 /*
1801 * HWPoison pages have elevated reference counts so the migration would
1802 * fail on them. It also doesn't make any sense to migrate them in the
1803 * first place. Still try to unmap such a page in case it is still mapped
1804 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1805 * the unmap as the catch all safety net).
1806 */
1807 if (PageHWPoison(page)) {
1808 if (WARN_ON(folio_test_lru(folio)))
1809 folio_isolate_lru(folio);
1810 if (folio_mapped(folio))
1811 try_to_unmap(folio, TTU_IGNORE_MLOCK);
1812 continue;
1813 }
1814
1815 if (!get_page_unless_zero(page))
1816 continue;
1817 /*
1818 * We can skip free pages. And we can deal with pages on
1819 * LRU and non-lru movable pages.
1820 */
1821 if (PageLRU(page))
1822 isolated = isolate_lru_page(page);
1823 else
1824 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1825 if (isolated) {
1826 list_add_tail(&page->lru, &source);
1827 if (!__PageMovable(page))
1828 inc_node_page_state(page, NR_ISOLATED_ANON +
1829 page_is_file_lru(page));
1830
1831 } else {
1832 if (__ratelimit(&migrate_rs)) {
1833 pr_warn("failed to isolate pfn %lx\n", pfn);
1834 dump_page(page, "isolation failed");
1835 }
1836 }
1837 put_page(page);
1838 }
1839 if (!list_empty(&source)) {
1840 nodemask_t nmask = node_states[N_MEMORY];
1841 struct migration_target_control mtc = {
1842 .nmask = &nmask,
1843 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1844 .reason = MR_MEMORY_HOTPLUG,
1845 };
1846 int ret;
1847
1848 /*
1849 * We have checked that migration range is on a single zone so
1850 * we can use the nid of the first page to all the others.
1851 */
1852 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1853
1854 /*
1855 * try to allocate from a different node but reuse this node
1856 * if there are no other online nodes to be used (e.g. we are
1857 * offlining a part of the only existing node)
1858 */
1859 node_clear(mtc.nid, nmask);
1860 if (nodes_empty(nmask))
1861 node_set(mtc.nid, nmask);
1862 ret = migrate_pages(&source, alloc_migration_target, NULL,
1863 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1864 if (ret) {
1865 list_for_each_entry(page, &source, lru) {
1866 if (__ratelimit(&migrate_rs)) {
1867 pr_warn("migrating pfn %lx failed ret:%d\n",
1868 page_to_pfn(page), ret);
1869 dump_page(page, "migration failure");
1870 }
1871 }
1872 putback_movable_pages(&source);
1873 }
1874 }
1875 }
1876
1877 static int __init cmdline_parse_movable_node(char *p)
1878 {
1879 movable_node_enabled = true;
1880 return 0;
1881 }
1882 early_param("movable_node", cmdline_parse_movable_node);
1883
1884 /* check which state of node_states will be changed when offline memory */
1885 static void node_states_check_changes_offline(unsigned long nr_pages,
1886 struct zone *zone, struct memory_notify *arg)
1887 {
1888 struct pglist_data *pgdat = zone->zone_pgdat;
1889 unsigned long present_pages = 0;
1890 enum zone_type zt;
1891
1892 arg->status_change_nid = NUMA_NO_NODE;
1893 arg->status_change_nid_normal = NUMA_NO_NODE;
1894
1895 /*
1896 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1897 * If the memory to be offline is within the range
1898 * [0..ZONE_NORMAL], and it is the last present memory there,
1899 * the zones in that range will become empty after the offlining,
1900 * thus we can determine that we need to clear the node from
1901 * node_states[N_NORMAL_MEMORY].
1902 */
1903 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1904 present_pages += pgdat->node_zones[zt].present_pages;
1905 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1906 arg->status_change_nid_normal = zone_to_nid(zone);
1907
1908 /*
1909 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1910 * does not apply as we don't support 32bit.
1911 * Here we count the possible pages from ZONE_MOVABLE.
1912 * If after having accounted all the pages, we see that the nr_pages
1913 * to be offlined is over or equal to the accounted pages,
1914 * we know that the node will become empty, and so, we can clear
1915 * it for N_MEMORY as well.
1916 */
1917 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1918
1919 if (nr_pages >= present_pages)
1920 arg->status_change_nid = zone_to_nid(zone);
1921 }
1922
1923 static void node_states_clear_node(int node, struct memory_notify *arg)
1924 {
1925 if (arg->status_change_nid_normal >= 0)
1926 node_clear_state(node, N_NORMAL_MEMORY);
1927
1928 if (arg->status_change_nid >= 0)
1929 node_clear_state(node, N_MEMORY);
1930 }
1931
1932 static int count_system_ram_pages_cb(unsigned long start_pfn,
1933 unsigned long nr_pages, void *data)
1934 {
1935 unsigned long *nr_system_ram_pages = data;
1936
1937 *nr_system_ram_pages += nr_pages;
1938 return 0;
1939 }
1940
1941 /*
1942 * Must be called with mem_hotplug_lock in write mode.
1943 */
1944 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1945 struct zone *zone, struct memory_group *group)
1946 {
1947 const unsigned long end_pfn = start_pfn + nr_pages;
1948 unsigned long pfn, system_ram_pages = 0;
1949 const int node = zone_to_nid(zone);
1950 unsigned long flags;
1951 struct memory_notify arg;
1952 char *reason;
1953 int ret;
1954
1955 /*
1956 * {on,off}lining is constrained to full memory sections (or more
1957 * precisely to memory blocks from the user space POV).
1958 * memmap_on_memory is an exception because it reserves initial part
1959 * of the physical memory space for vmemmaps. That space is pageblock
1960 * aligned.
1961 */
1962 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1963 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1964 return -EINVAL;
1965
1966 /*
1967 * Don't allow to offline memory blocks that contain holes.
1968 * Consequently, memory blocks with holes can never get onlined
1969 * via the hotplug path - online_pages() - as hotplugged memory has
1970 * no holes. This way, we e.g., don't have to worry about marking
1971 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1972 * avoid using walk_system_ram_range() later.
1973 */
1974 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1975 count_system_ram_pages_cb);
1976 if (system_ram_pages != nr_pages) {
1977 ret = -EINVAL;
1978 reason = "memory holes";
1979 goto failed_removal;
1980 }
1981
1982 /*
1983 * We only support offlining of memory blocks managed by a single zone,
1984 * checked by calling code. This is just a sanity check that we might
1985 * want to remove in the future.
1986 */
1987 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1988 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1989 ret = -EINVAL;
1990 reason = "multizone range";
1991 goto failed_removal;
1992 }
1993
1994 /*
1995 * Disable pcplists so that page isolation cannot race with freeing
1996 * in a way that pages from isolated pageblock are left on pcplists.
1997 */
1998 zone_pcp_disable(zone);
1999 lru_cache_disable();
2000
2001 /* set above range as isolated */
2002 ret = start_isolate_page_range(start_pfn, end_pfn,
2003 MIGRATE_MOVABLE,
2004 MEMORY_OFFLINE | REPORT_FAILURE,
2005 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
2006 if (ret) {
2007 reason = "failure to isolate range";
2008 goto failed_removal_pcplists_disabled;
2009 }
2010
2011 arg.start_pfn = start_pfn;
2012 arg.nr_pages = nr_pages;
2013 node_states_check_changes_offline(nr_pages, zone, &arg);
2014
2015 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2016 ret = notifier_to_errno(ret);
2017 if (ret) {
2018 reason = "notifier failure";
2019 goto failed_removal_isolated;
2020 }
2021
2022 do {
2023 pfn = start_pfn;
2024 do {
2025 /*
2026 * Historically we always checked for any signal and
2027 * can't limit it to fatal signals without eventually
2028 * breaking user space.
2029 */
2030 if (signal_pending(current)) {
2031 ret = -EINTR;
2032 reason = "signal backoff";
2033 goto failed_removal_isolated;
2034 }
2035
2036 cond_resched();
2037
2038 ret = scan_movable_pages(pfn, end_pfn, &pfn);
2039 if (!ret) {
2040 /*
2041 * TODO: fatal migration failures should bail
2042 * out
2043 */
2044 do_migrate_range(pfn, end_pfn);
2045 }
2046 } while (!ret);
2047
2048 if (ret != -ENOENT) {
2049 reason = "unmovable page";
2050 goto failed_removal_isolated;
2051 }
2052
2053 /*
2054 * Dissolve free hugetlb folios in the memory block before doing
2055 * offlining actually in order to make hugetlbfs's object
2056 * counting consistent.
2057 */
2058 ret = dissolve_free_hugetlb_folios(start_pfn, end_pfn);
2059 if (ret) {
2060 reason = "failure to dissolve huge pages";
2061 goto failed_removal_isolated;
2062 }
2063
2064 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2065
2066 } while (ret);
2067
2068 /* Mark all sections offline and remove free pages from the buddy. */
2069 __offline_isolated_pages(start_pfn, end_pfn);
2070 pr_debug("Offlined Pages %ld\n", nr_pages);
2071
2072 /*
2073 * The memory sections are marked offline, and the pageblock flags
2074 * effectively stale; nobody should be touching them. Fixup the number
2075 * of isolated pageblocks, memory onlining will properly revert this.
2076 */
2077 spin_lock_irqsave(&zone->lock, flags);
2078 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2079 spin_unlock_irqrestore(&zone->lock, flags);
2080
2081 lru_cache_enable();
2082 zone_pcp_enable(zone);
2083
2084 /* removal success */
2085 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2086 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2087
2088 /* reinitialise watermarks and update pcp limits */
2089 init_per_zone_wmark_min();
2090
2091 /*
2092 * Make sure to mark the node as memory-less before rebuilding the zone
2093 * list. Otherwise this node would still appear in the fallback lists.
2094 */
2095 node_states_clear_node(node, &arg);
2096 if (!populated_zone(zone)) {
2097 zone_pcp_reset(zone);
2098 build_all_zonelists(NULL);
2099 }
2100
2101 if (arg.status_change_nid >= 0) {
2102 kcompactd_stop(node);
2103 kswapd_stop(node);
2104 }
2105
2106 writeback_set_ratelimit();
2107
2108 memory_notify(MEM_OFFLINE, &arg);
2109 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2110 return 0;
2111
2112 failed_removal_isolated:
2113 /* pushback to free area */
2114 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2115 memory_notify(MEM_CANCEL_OFFLINE, &arg);
2116 failed_removal_pcplists_disabled:
2117 lru_cache_enable();
2118 zone_pcp_enable(zone);
2119 failed_removal:
2120 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2121 (unsigned long long) start_pfn << PAGE_SHIFT,
2122 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2123 reason);
2124 return ret;
2125 }
2126
2127 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2128 {
2129 int *nid = arg;
2130
2131 *nid = mem->nid;
2132 if (unlikely(mem->state != MEM_OFFLINE)) {
2133 phys_addr_t beginpa, endpa;
2134
2135 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2136 endpa = beginpa + memory_block_size_bytes() - 1;
2137 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2138 &beginpa, &endpa);
2139
2140 return -EBUSY;
2141 }
2142 return 0;
2143 }
2144
2145 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2146 {
2147 u64 *num_altmaps = (u64 *)arg;
2148
2149 if (mem->altmap)
2150 *num_altmaps += 1;
2151
2152 return 0;
2153 }
2154
2155 static int check_cpu_on_node(int nid)
2156 {
2157 int cpu;
2158
2159 for_each_present_cpu(cpu) {
2160 if (cpu_to_node(cpu) == nid)
2161 /*
2162 * the cpu on this node isn't removed, and we can't
2163 * offline this node.
2164 */
2165 return -EBUSY;
2166 }
2167
2168 return 0;
2169 }
2170
2171 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2172 {
2173 int nid = *(int *)arg;
2174
2175 /*
2176 * If a memory block belongs to multiple nodes, the stored nid is not
2177 * reliable. However, such blocks are always online (e.g., cannot get
2178 * offlined) and, therefore, are still spanned by the node.
2179 */
2180 return mem->nid == nid ? -EEXIST : 0;
2181 }
2182
2183 /**
2184 * try_offline_node
2185 * @nid: the node ID
2186 *
2187 * Offline a node if all memory sections and cpus of the node are removed.
2188 *
2189 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2190 * and online/offline operations before this call.
2191 */
2192 void try_offline_node(int nid)
2193 {
2194 int rc;
2195
2196 /*
2197 * If the node still spans pages (especially ZONE_DEVICE), don't
2198 * offline it. A node spans memory after move_pfn_range_to_zone(),
2199 * e.g., after the memory block was onlined.
2200 */
2201 if (node_spanned_pages(nid))
2202 return;
2203
2204 /*
2205 * Especially offline memory blocks might not be spanned by the
2206 * node. They will get spanned by the node once they get onlined.
2207 * However, they link to the node in sysfs and can get onlined later.
2208 */
2209 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2210 if (rc)
2211 return;
2212
2213 if (check_cpu_on_node(nid))
2214 return;
2215
2216 /*
2217 * all memory/cpu of this node are removed, we can offline this
2218 * node now.
2219 */
2220 node_set_offline(nid);
2221 unregister_one_node(nid);
2222 }
2223 EXPORT_SYMBOL(try_offline_node);
2224
2225 static int memory_blocks_have_altmaps(u64 start, u64 size)
2226 {
2227 u64 num_memblocks = size / memory_block_size_bytes();
2228 u64 num_altmaps = 0;
2229
2230 if (!mhp_memmap_on_memory())
2231 return 0;
2232
2233 walk_memory_blocks(start, size, &num_altmaps,
2234 count_memory_range_altmaps_cb);
2235
2236 if (num_altmaps == 0)
2237 return 0;
2238
2239 if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2240 return -EINVAL;
2241
2242 return 1;
2243 }
2244
2245 static int __ref try_remove_memory(u64 start, u64 size)
2246 {
2247 int rc, nid = NUMA_NO_NODE;
2248
2249 BUG_ON(check_hotplug_memory_range(start, size));
2250
2251 /*
2252 * All memory blocks must be offlined before removing memory. Check
2253 * whether all memory blocks in question are offline and return error
2254 * if this is not the case.
2255 *
2256 * While at it, determine the nid. Note that if we'd have mixed nodes,
2257 * we'd only try to offline the last determined one -- which is good
2258 * enough for the cases we care about.
2259 */
2260 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2261 if (rc)
2262 return rc;
2263
2264 /* remove memmap entry */
2265 firmware_map_remove(start, start + size, "System RAM");
2266
2267 mem_hotplug_begin();
2268
2269 rc = memory_blocks_have_altmaps(start, size);
2270 if (rc < 0) {
2271 mem_hotplug_done();
2272 return rc;
2273 } else if (!rc) {
2274 /*
2275 * Memory block device removal under the device_hotplug_lock is
2276 * a barrier against racing online attempts.
2277 * No altmaps present, do the removal directly
2278 */
2279 remove_memory_block_devices(start, size);
2280 arch_remove_memory(start, size, NULL);
2281 } else {
2282 /* all memblocks in the range have altmaps */
2283 remove_memory_blocks_and_altmaps(start, size);
2284 }
2285
2286 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2287 memblock_phys_free(start, size);
2288 memblock_remove(start, size);
2289 }
2290
2291 release_mem_region_adjustable(start, size);
2292
2293 if (nid != NUMA_NO_NODE)
2294 try_offline_node(nid);
2295
2296 mem_hotplug_done();
2297 return 0;
2298 }
2299
2300 /**
2301 * __remove_memory - Remove memory if every memory block is offline
2302 * @start: physical address of the region to remove
2303 * @size: size of the region to remove
2304 *
2305 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2306 * and online/offline operations before this call, as required by
2307 * try_offline_node().
2308 */
2309 void __remove_memory(u64 start, u64 size)
2310 {
2311
2312 /*
2313 * trigger BUG() if some memory is not offlined prior to calling this
2314 * function
2315 */
2316 if (try_remove_memory(start, size))
2317 BUG();
2318 }
2319
2320 /*
2321 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2322 * some memory is not offline
2323 */
2324 int remove_memory(u64 start, u64 size)
2325 {
2326 int rc;
2327
2328 lock_device_hotplug();
2329 rc = try_remove_memory(start, size);
2330 unlock_device_hotplug();
2331
2332 return rc;
2333 }
2334 EXPORT_SYMBOL_GPL(remove_memory);
2335
2336 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2337 {
2338 uint8_t online_type = MMOP_ONLINE_KERNEL;
2339 uint8_t **online_types = arg;
2340 struct page *page;
2341 int rc;
2342
2343 /*
2344 * Sense the online_type via the zone of the memory block. Offlining
2345 * with multiple zones within one memory block will be rejected
2346 * by offlining code ... so we don't care about that.
2347 */
2348 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2349 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2350 online_type = MMOP_ONLINE_MOVABLE;
2351
2352 rc = device_offline(&mem->dev);
2353 /*
2354 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2355 * so try_reonline_memory_block() can do the right thing.
2356 */
2357 if (!rc)
2358 **online_types = online_type;
2359
2360 (*online_types)++;
2361 /* Ignore if already offline. */
2362 return rc < 0 ? rc : 0;
2363 }
2364
2365 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2366 {
2367 uint8_t **online_types = arg;
2368 int rc;
2369
2370 if (**online_types != MMOP_OFFLINE) {
2371 mem->online_type = **online_types;
2372 rc = device_online(&mem->dev);
2373 if (rc < 0)
2374 pr_warn("%s: Failed to re-online memory: %d",
2375 __func__, rc);
2376 }
2377
2378 /* Continue processing all remaining memory blocks. */
2379 (*online_types)++;
2380 return 0;
2381 }
2382
2383 /*
2384 * Try to offline and remove memory. Might take a long time to finish in case
2385 * memory is still in use. Primarily useful for memory devices that logically
2386 * unplugged all memory (so it's no longer in use) and want to offline + remove
2387 * that memory.
2388 */
2389 int offline_and_remove_memory(u64 start, u64 size)
2390 {
2391 const unsigned long mb_count = size / memory_block_size_bytes();
2392 uint8_t *online_types, *tmp;
2393 int rc;
2394
2395 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2396 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2397 return -EINVAL;
2398
2399 /*
2400 * We'll remember the old online type of each memory block, so we can
2401 * try to revert whatever we did when offlining one memory block fails
2402 * after offlining some others succeeded.
2403 */
2404 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2405 GFP_KERNEL);
2406 if (!online_types)
2407 return -ENOMEM;
2408 /*
2409 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2410 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2411 * try_reonline_memory_block().
2412 */
2413 memset(online_types, MMOP_OFFLINE, mb_count);
2414
2415 lock_device_hotplug();
2416
2417 tmp = online_types;
2418 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2419
2420 /*
2421 * In case we succeeded to offline all memory, remove it.
2422 * This cannot fail as it cannot get onlined in the meantime.
2423 */
2424 if (!rc) {
2425 rc = try_remove_memory(start, size);
2426 if (rc)
2427 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2428 }
2429
2430 /*
2431 * Rollback what we did. While memory onlining might theoretically fail
2432 * (nacked by a notifier), it barely ever happens.
2433 */
2434 if (rc) {
2435 tmp = online_types;
2436 walk_memory_blocks(start, size, &tmp,
2437 try_reonline_memory_block);
2438 }
2439 unlock_device_hotplug();
2440
2441 kfree(online_types);
2442 return rc;
2443 }
2444 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2445 #endif /* CONFIG_MEMORY_HOTREMOVE */