]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/mempolicy.c
userfaultfd: shmem/hugetlbfs: only allow to register VM_MAYWRITE vmas
[thirdparty/kernel/stable.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/swap.h>
89 #include <linux/seq_file.h>
90 #include <linux/proc_fs.h>
91 #include <linux/migrate.h>
92 #include <linux/ksm.h>
93 #include <linux/rmap.h>
94 #include <linux/security.h>
95 #include <linux/syscalls.h>
96 #include <linux/ctype.h>
97 #include <linux/mm_inline.h>
98 #include <linux/mmu_notifier.h>
99 #include <linux/printk.h>
100 #include <linux/swapops.h>
101
102 #include <asm/tlbflush.h>
103 #include <linux/uaccess.h>
104
105 #include "internal.h"
106
107 /* Internal flags */
108 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
109 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
110
111 static struct kmem_cache *policy_cache;
112 static struct kmem_cache *sn_cache;
113
114 /* Highest zone. An specific allocation for a zone below that is not
115 policied. */
116 enum zone_type policy_zone = 0;
117
118 /*
119 * run-time system-wide default policy => local allocation
120 */
121 static struct mempolicy default_policy = {
122 .refcnt = ATOMIC_INIT(1), /* never free it */
123 .mode = MPOL_PREFERRED,
124 .flags = MPOL_F_LOCAL,
125 };
126
127 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
128
129 struct mempolicy *get_task_policy(struct task_struct *p)
130 {
131 struct mempolicy *pol = p->mempolicy;
132 int node;
133
134 if (pol)
135 return pol;
136
137 node = numa_node_id();
138 if (node != NUMA_NO_NODE) {
139 pol = &preferred_node_policy[node];
140 /* preferred_node_policy is not initialised early in boot */
141 if (pol->mode)
142 return pol;
143 }
144
145 return &default_policy;
146 }
147
148 static const struct mempolicy_operations {
149 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
150 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
151 } mpol_ops[MPOL_MAX];
152
153 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
154 {
155 return pol->flags & MPOL_MODE_FLAGS;
156 }
157
158 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
159 const nodemask_t *rel)
160 {
161 nodemask_t tmp;
162 nodes_fold(tmp, *orig, nodes_weight(*rel));
163 nodes_onto(*ret, tmp, *rel);
164 }
165
166 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
167 {
168 if (nodes_empty(*nodes))
169 return -EINVAL;
170 pol->v.nodes = *nodes;
171 return 0;
172 }
173
174 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
175 {
176 if (!nodes)
177 pol->flags |= MPOL_F_LOCAL; /* local allocation */
178 else if (nodes_empty(*nodes))
179 return -EINVAL; /* no allowed nodes */
180 else
181 pol->v.preferred_node = first_node(*nodes);
182 return 0;
183 }
184
185 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
186 {
187 if (nodes_empty(*nodes))
188 return -EINVAL;
189 pol->v.nodes = *nodes;
190 return 0;
191 }
192
193 /*
194 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
195 * any, for the new policy. mpol_new() has already validated the nodes
196 * parameter with respect to the policy mode and flags. But, we need to
197 * handle an empty nodemask with MPOL_PREFERRED here.
198 *
199 * Must be called holding task's alloc_lock to protect task's mems_allowed
200 * and mempolicy. May also be called holding the mmap_semaphore for write.
201 */
202 static int mpol_set_nodemask(struct mempolicy *pol,
203 const nodemask_t *nodes, struct nodemask_scratch *nsc)
204 {
205 int ret;
206
207 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
208 if (pol == NULL)
209 return 0;
210 /* Check N_MEMORY */
211 nodes_and(nsc->mask1,
212 cpuset_current_mems_allowed, node_states[N_MEMORY]);
213
214 VM_BUG_ON(!nodes);
215 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
216 nodes = NULL; /* explicit local allocation */
217 else {
218 if (pol->flags & MPOL_F_RELATIVE_NODES)
219 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
220 else
221 nodes_and(nsc->mask2, *nodes, nsc->mask1);
222
223 if (mpol_store_user_nodemask(pol))
224 pol->w.user_nodemask = *nodes;
225 else
226 pol->w.cpuset_mems_allowed =
227 cpuset_current_mems_allowed;
228 }
229
230 if (nodes)
231 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
232 else
233 ret = mpol_ops[pol->mode].create(pol, NULL);
234 return ret;
235 }
236
237 /*
238 * This function just creates a new policy, does some check and simple
239 * initialization. You must invoke mpol_set_nodemask() to set nodes.
240 */
241 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
242 nodemask_t *nodes)
243 {
244 struct mempolicy *policy;
245
246 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
247 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
248
249 if (mode == MPOL_DEFAULT) {
250 if (nodes && !nodes_empty(*nodes))
251 return ERR_PTR(-EINVAL);
252 return NULL;
253 }
254 VM_BUG_ON(!nodes);
255
256 /*
257 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
258 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
259 * All other modes require a valid pointer to a non-empty nodemask.
260 */
261 if (mode == MPOL_PREFERRED) {
262 if (nodes_empty(*nodes)) {
263 if (((flags & MPOL_F_STATIC_NODES) ||
264 (flags & MPOL_F_RELATIVE_NODES)))
265 return ERR_PTR(-EINVAL);
266 }
267 } else if (mode == MPOL_LOCAL) {
268 if (!nodes_empty(*nodes) ||
269 (flags & MPOL_F_STATIC_NODES) ||
270 (flags & MPOL_F_RELATIVE_NODES))
271 return ERR_PTR(-EINVAL);
272 mode = MPOL_PREFERRED;
273 } else if (nodes_empty(*nodes))
274 return ERR_PTR(-EINVAL);
275 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
276 if (!policy)
277 return ERR_PTR(-ENOMEM);
278 atomic_set(&policy->refcnt, 1);
279 policy->mode = mode;
280 policy->flags = flags;
281
282 return policy;
283 }
284
285 /* Slow path of a mpol destructor. */
286 void __mpol_put(struct mempolicy *p)
287 {
288 if (!atomic_dec_and_test(&p->refcnt))
289 return;
290 kmem_cache_free(policy_cache, p);
291 }
292
293 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
294 {
295 }
296
297 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
298 {
299 nodemask_t tmp;
300
301 if (pol->flags & MPOL_F_STATIC_NODES)
302 nodes_and(tmp, pol->w.user_nodemask, *nodes);
303 else if (pol->flags & MPOL_F_RELATIVE_NODES)
304 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
305 else {
306 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
307 *nodes);
308 pol->w.cpuset_mems_allowed = tmp;
309 }
310
311 if (nodes_empty(tmp))
312 tmp = *nodes;
313
314 pol->v.nodes = tmp;
315 }
316
317 static void mpol_rebind_preferred(struct mempolicy *pol,
318 const nodemask_t *nodes)
319 {
320 nodemask_t tmp;
321
322 if (pol->flags & MPOL_F_STATIC_NODES) {
323 int node = first_node(pol->w.user_nodemask);
324
325 if (node_isset(node, *nodes)) {
326 pol->v.preferred_node = node;
327 pol->flags &= ~MPOL_F_LOCAL;
328 } else
329 pol->flags |= MPOL_F_LOCAL;
330 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 pol->v.preferred_node = first_node(tmp);
333 } else if (!(pol->flags & MPOL_F_LOCAL)) {
334 pol->v.preferred_node = node_remap(pol->v.preferred_node,
335 pol->w.cpuset_mems_allowed,
336 *nodes);
337 pol->w.cpuset_mems_allowed = *nodes;
338 }
339 }
340
341 /*
342 * mpol_rebind_policy - Migrate a policy to a different set of nodes
343 *
344 * Per-vma policies are protected by mmap_sem. Allocations using per-task
345 * policies are protected by task->mems_allowed_seq to prevent a premature
346 * OOM/allocation failure due to parallel nodemask modification.
347 */
348 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
349 {
350 if (!pol)
351 return;
352 if (!mpol_store_user_nodemask(pol) &&
353 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
354 return;
355
356 mpol_ops[pol->mode].rebind(pol, newmask);
357 }
358
359 /*
360 * Wrapper for mpol_rebind_policy() that just requires task
361 * pointer, and updates task mempolicy.
362 *
363 * Called with task's alloc_lock held.
364 */
365
366 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
367 {
368 mpol_rebind_policy(tsk->mempolicy, new);
369 }
370
371 /*
372 * Rebind each vma in mm to new nodemask.
373 *
374 * Call holding a reference to mm. Takes mm->mmap_sem during call.
375 */
376
377 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
378 {
379 struct vm_area_struct *vma;
380
381 down_write(&mm->mmap_sem);
382 for (vma = mm->mmap; vma; vma = vma->vm_next)
383 mpol_rebind_policy(vma->vm_policy, new);
384 up_write(&mm->mmap_sem);
385 }
386
387 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
388 [MPOL_DEFAULT] = {
389 .rebind = mpol_rebind_default,
390 },
391 [MPOL_INTERLEAVE] = {
392 .create = mpol_new_interleave,
393 .rebind = mpol_rebind_nodemask,
394 },
395 [MPOL_PREFERRED] = {
396 .create = mpol_new_preferred,
397 .rebind = mpol_rebind_preferred,
398 },
399 [MPOL_BIND] = {
400 .create = mpol_new_bind,
401 .rebind = mpol_rebind_nodemask,
402 },
403 };
404
405 static void migrate_page_add(struct page *page, struct list_head *pagelist,
406 unsigned long flags);
407
408 struct queue_pages {
409 struct list_head *pagelist;
410 unsigned long flags;
411 nodemask_t *nmask;
412 struct vm_area_struct *prev;
413 };
414
415 /*
416 * Check if the page's nid is in qp->nmask.
417 *
418 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
419 * in the invert of qp->nmask.
420 */
421 static inline bool queue_pages_required(struct page *page,
422 struct queue_pages *qp)
423 {
424 int nid = page_to_nid(page);
425 unsigned long flags = qp->flags;
426
427 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
428 }
429
430 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
431 unsigned long end, struct mm_walk *walk)
432 {
433 int ret = 0;
434 struct page *page;
435 struct queue_pages *qp = walk->private;
436 unsigned long flags;
437
438 if (unlikely(is_pmd_migration_entry(*pmd))) {
439 ret = 1;
440 goto unlock;
441 }
442 page = pmd_page(*pmd);
443 if (is_huge_zero_page(page)) {
444 spin_unlock(ptl);
445 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
446 goto out;
447 }
448 if (!thp_migration_supported()) {
449 get_page(page);
450 spin_unlock(ptl);
451 lock_page(page);
452 ret = split_huge_page(page);
453 unlock_page(page);
454 put_page(page);
455 goto out;
456 }
457 if (!queue_pages_required(page, qp)) {
458 ret = 1;
459 goto unlock;
460 }
461
462 ret = 1;
463 flags = qp->flags;
464 /* go to thp migration */
465 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
466 migrate_page_add(page, qp->pagelist, flags);
467 unlock:
468 spin_unlock(ptl);
469 out:
470 return ret;
471 }
472
473 /*
474 * Scan through pages checking if pages follow certain conditions,
475 * and move them to the pagelist if they do.
476 */
477 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
478 unsigned long end, struct mm_walk *walk)
479 {
480 struct vm_area_struct *vma = walk->vma;
481 struct page *page;
482 struct queue_pages *qp = walk->private;
483 unsigned long flags = qp->flags;
484 int ret;
485 pte_t *pte;
486 spinlock_t *ptl;
487
488 ptl = pmd_trans_huge_lock(pmd, vma);
489 if (ptl) {
490 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
491 if (ret)
492 return 0;
493 }
494
495 if (pmd_trans_unstable(pmd))
496 return 0;
497 retry:
498 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
499 for (; addr != end; pte++, addr += PAGE_SIZE) {
500 if (!pte_present(*pte))
501 continue;
502 page = vm_normal_page(vma, addr, *pte);
503 if (!page)
504 continue;
505 /*
506 * vm_normal_page() filters out zero pages, but there might
507 * still be PageReserved pages to skip, perhaps in a VDSO.
508 */
509 if (PageReserved(page))
510 continue;
511 if (!queue_pages_required(page, qp))
512 continue;
513 if (PageTransCompound(page) && !thp_migration_supported()) {
514 get_page(page);
515 pte_unmap_unlock(pte, ptl);
516 lock_page(page);
517 ret = split_huge_page(page);
518 unlock_page(page);
519 put_page(page);
520 /* Failed to split -- skip. */
521 if (ret) {
522 pte = pte_offset_map_lock(walk->mm, pmd,
523 addr, &ptl);
524 continue;
525 }
526 goto retry;
527 }
528
529 migrate_page_add(page, qp->pagelist, flags);
530 }
531 pte_unmap_unlock(pte - 1, ptl);
532 cond_resched();
533 return 0;
534 }
535
536 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
537 unsigned long addr, unsigned long end,
538 struct mm_walk *walk)
539 {
540 #ifdef CONFIG_HUGETLB_PAGE
541 struct queue_pages *qp = walk->private;
542 unsigned long flags = qp->flags;
543 struct page *page;
544 spinlock_t *ptl;
545 pte_t entry;
546
547 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
548 entry = huge_ptep_get(pte);
549 if (!pte_present(entry))
550 goto unlock;
551 page = pte_page(entry);
552 if (!queue_pages_required(page, qp))
553 goto unlock;
554 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
555 if (flags & (MPOL_MF_MOVE_ALL) ||
556 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
557 isolate_huge_page(page, qp->pagelist);
558 unlock:
559 spin_unlock(ptl);
560 #else
561 BUG();
562 #endif
563 return 0;
564 }
565
566 #ifdef CONFIG_NUMA_BALANCING
567 /*
568 * This is used to mark a range of virtual addresses to be inaccessible.
569 * These are later cleared by a NUMA hinting fault. Depending on these
570 * faults, pages may be migrated for better NUMA placement.
571 *
572 * This is assuming that NUMA faults are handled using PROT_NONE. If
573 * an architecture makes a different choice, it will need further
574 * changes to the core.
575 */
576 unsigned long change_prot_numa(struct vm_area_struct *vma,
577 unsigned long addr, unsigned long end)
578 {
579 int nr_updated;
580
581 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
582 if (nr_updated)
583 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
584
585 return nr_updated;
586 }
587 #else
588 static unsigned long change_prot_numa(struct vm_area_struct *vma,
589 unsigned long addr, unsigned long end)
590 {
591 return 0;
592 }
593 #endif /* CONFIG_NUMA_BALANCING */
594
595 static int queue_pages_test_walk(unsigned long start, unsigned long end,
596 struct mm_walk *walk)
597 {
598 struct vm_area_struct *vma = walk->vma;
599 struct queue_pages *qp = walk->private;
600 unsigned long endvma = vma->vm_end;
601 unsigned long flags = qp->flags;
602
603 if (!vma_migratable(vma))
604 return 1;
605
606 if (endvma > end)
607 endvma = end;
608 if (vma->vm_start > start)
609 start = vma->vm_start;
610
611 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
612 if (!vma->vm_next && vma->vm_end < end)
613 return -EFAULT;
614 if (qp->prev && qp->prev->vm_end < vma->vm_start)
615 return -EFAULT;
616 }
617
618 qp->prev = vma;
619
620 if (flags & MPOL_MF_LAZY) {
621 /* Similar to task_numa_work, skip inaccessible VMAs */
622 if (!is_vm_hugetlb_page(vma) &&
623 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
624 !(vma->vm_flags & VM_MIXEDMAP))
625 change_prot_numa(vma, start, endvma);
626 return 1;
627 }
628
629 /* queue pages from current vma */
630 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
631 return 0;
632 return 1;
633 }
634
635 /*
636 * Walk through page tables and collect pages to be migrated.
637 *
638 * If pages found in a given range are on a set of nodes (determined by
639 * @nodes and @flags,) it's isolated and queued to the pagelist which is
640 * passed via @private.)
641 */
642 static int
643 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
644 nodemask_t *nodes, unsigned long flags,
645 struct list_head *pagelist)
646 {
647 struct queue_pages qp = {
648 .pagelist = pagelist,
649 .flags = flags,
650 .nmask = nodes,
651 .prev = NULL,
652 };
653 struct mm_walk queue_pages_walk = {
654 .hugetlb_entry = queue_pages_hugetlb,
655 .pmd_entry = queue_pages_pte_range,
656 .test_walk = queue_pages_test_walk,
657 .mm = mm,
658 .private = &qp,
659 };
660
661 return walk_page_range(start, end, &queue_pages_walk);
662 }
663
664 /*
665 * Apply policy to a single VMA
666 * This must be called with the mmap_sem held for writing.
667 */
668 static int vma_replace_policy(struct vm_area_struct *vma,
669 struct mempolicy *pol)
670 {
671 int err;
672 struct mempolicy *old;
673 struct mempolicy *new;
674
675 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
676 vma->vm_start, vma->vm_end, vma->vm_pgoff,
677 vma->vm_ops, vma->vm_file,
678 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
679
680 new = mpol_dup(pol);
681 if (IS_ERR(new))
682 return PTR_ERR(new);
683
684 if (vma->vm_ops && vma->vm_ops->set_policy) {
685 err = vma->vm_ops->set_policy(vma, new);
686 if (err)
687 goto err_out;
688 }
689
690 old = vma->vm_policy;
691 vma->vm_policy = new; /* protected by mmap_sem */
692 mpol_put(old);
693
694 return 0;
695 err_out:
696 mpol_put(new);
697 return err;
698 }
699
700 /* Step 2: apply policy to a range and do splits. */
701 static int mbind_range(struct mm_struct *mm, unsigned long start,
702 unsigned long end, struct mempolicy *new_pol)
703 {
704 struct vm_area_struct *next;
705 struct vm_area_struct *prev;
706 struct vm_area_struct *vma;
707 int err = 0;
708 pgoff_t pgoff;
709 unsigned long vmstart;
710 unsigned long vmend;
711
712 vma = find_vma(mm, start);
713 if (!vma || vma->vm_start > start)
714 return -EFAULT;
715
716 prev = vma->vm_prev;
717 if (start > vma->vm_start)
718 prev = vma;
719
720 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
721 next = vma->vm_next;
722 vmstart = max(start, vma->vm_start);
723 vmend = min(end, vma->vm_end);
724
725 if (mpol_equal(vma_policy(vma), new_pol))
726 continue;
727
728 pgoff = vma->vm_pgoff +
729 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
730 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
731 vma->anon_vma, vma->vm_file, pgoff,
732 new_pol, vma->vm_userfaultfd_ctx);
733 if (prev) {
734 vma = prev;
735 next = vma->vm_next;
736 if (mpol_equal(vma_policy(vma), new_pol))
737 continue;
738 /* vma_merge() joined vma && vma->next, case 8 */
739 goto replace;
740 }
741 if (vma->vm_start != vmstart) {
742 err = split_vma(vma->vm_mm, vma, vmstart, 1);
743 if (err)
744 goto out;
745 }
746 if (vma->vm_end != vmend) {
747 err = split_vma(vma->vm_mm, vma, vmend, 0);
748 if (err)
749 goto out;
750 }
751 replace:
752 err = vma_replace_policy(vma, new_pol);
753 if (err)
754 goto out;
755 }
756
757 out:
758 return err;
759 }
760
761 /* Set the process memory policy */
762 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
763 nodemask_t *nodes)
764 {
765 struct mempolicy *new, *old;
766 NODEMASK_SCRATCH(scratch);
767 int ret;
768
769 if (!scratch)
770 return -ENOMEM;
771
772 new = mpol_new(mode, flags, nodes);
773 if (IS_ERR(new)) {
774 ret = PTR_ERR(new);
775 goto out;
776 }
777
778 task_lock(current);
779 ret = mpol_set_nodemask(new, nodes, scratch);
780 if (ret) {
781 task_unlock(current);
782 mpol_put(new);
783 goto out;
784 }
785 old = current->mempolicy;
786 current->mempolicy = new;
787 if (new && new->mode == MPOL_INTERLEAVE)
788 current->il_prev = MAX_NUMNODES-1;
789 task_unlock(current);
790 mpol_put(old);
791 ret = 0;
792 out:
793 NODEMASK_SCRATCH_FREE(scratch);
794 return ret;
795 }
796
797 /*
798 * Return nodemask for policy for get_mempolicy() query
799 *
800 * Called with task's alloc_lock held
801 */
802 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
803 {
804 nodes_clear(*nodes);
805 if (p == &default_policy)
806 return;
807
808 switch (p->mode) {
809 case MPOL_BIND:
810 /* Fall through */
811 case MPOL_INTERLEAVE:
812 *nodes = p->v.nodes;
813 break;
814 case MPOL_PREFERRED:
815 if (!(p->flags & MPOL_F_LOCAL))
816 node_set(p->v.preferred_node, *nodes);
817 /* else return empty node mask for local allocation */
818 break;
819 default:
820 BUG();
821 }
822 }
823
824 static int lookup_node(unsigned long addr)
825 {
826 struct page *p;
827 int err;
828
829 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
830 if (err >= 0) {
831 err = page_to_nid(p);
832 put_page(p);
833 }
834 return err;
835 }
836
837 /* Retrieve NUMA policy */
838 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
839 unsigned long addr, unsigned long flags)
840 {
841 int err;
842 struct mm_struct *mm = current->mm;
843 struct vm_area_struct *vma = NULL;
844 struct mempolicy *pol = current->mempolicy;
845
846 if (flags &
847 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
848 return -EINVAL;
849
850 if (flags & MPOL_F_MEMS_ALLOWED) {
851 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
852 return -EINVAL;
853 *policy = 0; /* just so it's initialized */
854 task_lock(current);
855 *nmask = cpuset_current_mems_allowed;
856 task_unlock(current);
857 return 0;
858 }
859
860 if (flags & MPOL_F_ADDR) {
861 /*
862 * Do NOT fall back to task policy if the
863 * vma/shared policy at addr is NULL. We
864 * want to return MPOL_DEFAULT in this case.
865 */
866 down_read(&mm->mmap_sem);
867 vma = find_vma_intersection(mm, addr, addr+1);
868 if (!vma) {
869 up_read(&mm->mmap_sem);
870 return -EFAULT;
871 }
872 if (vma->vm_ops && vma->vm_ops->get_policy)
873 pol = vma->vm_ops->get_policy(vma, addr);
874 else
875 pol = vma->vm_policy;
876 } else if (addr)
877 return -EINVAL;
878
879 if (!pol)
880 pol = &default_policy; /* indicates default behavior */
881
882 if (flags & MPOL_F_NODE) {
883 if (flags & MPOL_F_ADDR) {
884 err = lookup_node(addr);
885 if (err < 0)
886 goto out;
887 *policy = err;
888 } else if (pol == current->mempolicy &&
889 pol->mode == MPOL_INTERLEAVE) {
890 *policy = next_node_in(current->il_prev, pol->v.nodes);
891 } else {
892 err = -EINVAL;
893 goto out;
894 }
895 } else {
896 *policy = pol == &default_policy ? MPOL_DEFAULT :
897 pol->mode;
898 /*
899 * Internal mempolicy flags must be masked off before exposing
900 * the policy to userspace.
901 */
902 *policy |= (pol->flags & MPOL_MODE_FLAGS);
903 }
904
905 err = 0;
906 if (nmask) {
907 if (mpol_store_user_nodemask(pol)) {
908 *nmask = pol->w.user_nodemask;
909 } else {
910 task_lock(current);
911 get_policy_nodemask(pol, nmask);
912 task_unlock(current);
913 }
914 }
915
916 out:
917 mpol_cond_put(pol);
918 if (vma)
919 up_read(&current->mm->mmap_sem);
920 return err;
921 }
922
923 #ifdef CONFIG_MIGRATION
924 /*
925 * page migration, thp tail pages can be passed.
926 */
927 static void migrate_page_add(struct page *page, struct list_head *pagelist,
928 unsigned long flags)
929 {
930 struct page *head = compound_head(page);
931 /*
932 * Avoid migrating a page that is shared with others.
933 */
934 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
935 if (!isolate_lru_page(head)) {
936 list_add_tail(&head->lru, pagelist);
937 mod_node_page_state(page_pgdat(head),
938 NR_ISOLATED_ANON + page_is_file_cache(head),
939 hpage_nr_pages(head));
940 }
941 }
942 }
943
944 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
945 {
946 if (PageHuge(page))
947 return alloc_huge_page_node(page_hstate(compound_head(page)),
948 node);
949 else if (thp_migration_supported() && PageTransHuge(page)) {
950 struct page *thp;
951
952 thp = alloc_pages_node(node,
953 (GFP_TRANSHUGE | __GFP_THISNODE),
954 HPAGE_PMD_ORDER);
955 if (!thp)
956 return NULL;
957 prep_transhuge_page(thp);
958 return thp;
959 } else
960 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
961 __GFP_THISNODE, 0);
962 }
963
964 /*
965 * Migrate pages from one node to a target node.
966 * Returns error or the number of pages not migrated.
967 */
968 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
969 int flags)
970 {
971 nodemask_t nmask;
972 LIST_HEAD(pagelist);
973 int err = 0;
974
975 nodes_clear(nmask);
976 node_set(source, nmask);
977
978 /*
979 * This does not "check" the range but isolates all pages that
980 * need migration. Between passing in the full user address
981 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
982 */
983 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
984 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
985 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
986
987 if (!list_empty(&pagelist)) {
988 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
989 MIGRATE_SYNC, MR_SYSCALL);
990 if (err)
991 putback_movable_pages(&pagelist);
992 }
993
994 return err;
995 }
996
997 /*
998 * Move pages between the two nodesets so as to preserve the physical
999 * layout as much as possible.
1000 *
1001 * Returns the number of page that could not be moved.
1002 */
1003 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1004 const nodemask_t *to, int flags)
1005 {
1006 int busy = 0;
1007 int err;
1008 nodemask_t tmp;
1009
1010 err = migrate_prep();
1011 if (err)
1012 return err;
1013
1014 down_read(&mm->mmap_sem);
1015
1016 /*
1017 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1018 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1019 * bit in 'tmp', and return that <source, dest> pair for migration.
1020 * The pair of nodemasks 'to' and 'from' define the map.
1021 *
1022 * If no pair of bits is found that way, fallback to picking some
1023 * pair of 'source' and 'dest' bits that are not the same. If the
1024 * 'source' and 'dest' bits are the same, this represents a node
1025 * that will be migrating to itself, so no pages need move.
1026 *
1027 * If no bits are left in 'tmp', or if all remaining bits left
1028 * in 'tmp' correspond to the same bit in 'to', return false
1029 * (nothing left to migrate).
1030 *
1031 * This lets us pick a pair of nodes to migrate between, such that
1032 * if possible the dest node is not already occupied by some other
1033 * source node, minimizing the risk of overloading the memory on a
1034 * node that would happen if we migrated incoming memory to a node
1035 * before migrating outgoing memory source that same node.
1036 *
1037 * A single scan of tmp is sufficient. As we go, we remember the
1038 * most recent <s, d> pair that moved (s != d). If we find a pair
1039 * that not only moved, but what's better, moved to an empty slot
1040 * (d is not set in tmp), then we break out then, with that pair.
1041 * Otherwise when we finish scanning from_tmp, we at least have the
1042 * most recent <s, d> pair that moved. If we get all the way through
1043 * the scan of tmp without finding any node that moved, much less
1044 * moved to an empty node, then there is nothing left worth migrating.
1045 */
1046
1047 tmp = *from;
1048 while (!nodes_empty(tmp)) {
1049 int s,d;
1050 int source = NUMA_NO_NODE;
1051 int dest = 0;
1052
1053 for_each_node_mask(s, tmp) {
1054
1055 /*
1056 * do_migrate_pages() tries to maintain the relative
1057 * node relationship of the pages established between
1058 * threads and memory areas.
1059 *
1060 * However if the number of source nodes is not equal to
1061 * the number of destination nodes we can not preserve
1062 * this node relative relationship. In that case, skip
1063 * copying memory from a node that is in the destination
1064 * mask.
1065 *
1066 * Example: [2,3,4] -> [3,4,5] moves everything.
1067 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1068 */
1069
1070 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1071 (node_isset(s, *to)))
1072 continue;
1073
1074 d = node_remap(s, *from, *to);
1075 if (s == d)
1076 continue;
1077
1078 source = s; /* Node moved. Memorize */
1079 dest = d;
1080
1081 /* dest not in remaining from nodes? */
1082 if (!node_isset(dest, tmp))
1083 break;
1084 }
1085 if (source == NUMA_NO_NODE)
1086 break;
1087
1088 node_clear(source, tmp);
1089 err = migrate_to_node(mm, source, dest, flags);
1090 if (err > 0)
1091 busy += err;
1092 if (err < 0)
1093 break;
1094 }
1095 up_read(&mm->mmap_sem);
1096 if (err < 0)
1097 return err;
1098 return busy;
1099
1100 }
1101
1102 /*
1103 * Allocate a new page for page migration based on vma policy.
1104 * Start by assuming the page is mapped by the same vma as contains @start.
1105 * Search forward from there, if not. N.B., this assumes that the
1106 * list of pages handed to migrate_pages()--which is how we get here--
1107 * is in virtual address order.
1108 */
1109 static struct page *new_page(struct page *page, unsigned long start, int **x)
1110 {
1111 struct vm_area_struct *vma;
1112 unsigned long uninitialized_var(address);
1113
1114 vma = find_vma(current->mm, start);
1115 while (vma) {
1116 address = page_address_in_vma(page, vma);
1117 if (address != -EFAULT)
1118 break;
1119 vma = vma->vm_next;
1120 }
1121
1122 if (PageHuge(page)) {
1123 BUG_ON(!vma);
1124 return alloc_huge_page_noerr(vma, address, 1);
1125 } else if (thp_migration_supported() && PageTransHuge(page)) {
1126 struct page *thp;
1127
1128 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1129 HPAGE_PMD_ORDER);
1130 if (!thp)
1131 return NULL;
1132 prep_transhuge_page(thp);
1133 return thp;
1134 }
1135 /*
1136 * if !vma, alloc_page_vma() will use task or system default policy
1137 */
1138 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1139 vma, address);
1140 }
1141 #else
1142
1143 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1144 unsigned long flags)
1145 {
1146 }
1147
1148 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1149 const nodemask_t *to, int flags)
1150 {
1151 return -ENOSYS;
1152 }
1153
1154 static struct page *new_page(struct page *page, unsigned long start, int **x)
1155 {
1156 return NULL;
1157 }
1158 #endif
1159
1160 static long do_mbind(unsigned long start, unsigned long len,
1161 unsigned short mode, unsigned short mode_flags,
1162 nodemask_t *nmask, unsigned long flags)
1163 {
1164 struct mm_struct *mm = current->mm;
1165 struct mempolicy *new;
1166 unsigned long end;
1167 int err;
1168 LIST_HEAD(pagelist);
1169
1170 if (flags & ~(unsigned long)MPOL_MF_VALID)
1171 return -EINVAL;
1172 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1173 return -EPERM;
1174
1175 if (start & ~PAGE_MASK)
1176 return -EINVAL;
1177
1178 if (mode == MPOL_DEFAULT)
1179 flags &= ~MPOL_MF_STRICT;
1180
1181 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1182 end = start + len;
1183
1184 if (end < start)
1185 return -EINVAL;
1186 if (end == start)
1187 return 0;
1188
1189 new = mpol_new(mode, mode_flags, nmask);
1190 if (IS_ERR(new))
1191 return PTR_ERR(new);
1192
1193 if (flags & MPOL_MF_LAZY)
1194 new->flags |= MPOL_F_MOF;
1195
1196 /*
1197 * If we are using the default policy then operation
1198 * on discontinuous address spaces is okay after all
1199 */
1200 if (!new)
1201 flags |= MPOL_MF_DISCONTIG_OK;
1202
1203 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1204 start, start + len, mode, mode_flags,
1205 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1206
1207 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1208
1209 err = migrate_prep();
1210 if (err)
1211 goto mpol_out;
1212 }
1213 {
1214 NODEMASK_SCRATCH(scratch);
1215 if (scratch) {
1216 down_write(&mm->mmap_sem);
1217 task_lock(current);
1218 err = mpol_set_nodemask(new, nmask, scratch);
1219 task_unlock(current);
1220 if (err)
1221 up_write(&mm->mmap_sem);
1222 } else
1223 err = -ENOMEM;
1224 NODEMASK_SCRATCH_FREE(scratch);
1225 }
1226 if (err)
1227 goto mpol_out;
1228
1229 err = queue_pages_range(mm, start, end, nmask,
1230 flags | MPOL_MF_INVERT, &pagelist);
1231 if (!err)
1232 err = mbind_range(mm, start, end, new);
1233
1234 if (!err) {
1235 int nr_failed = 0;
1236
1237 if (!list_empty(&pagelist)) {
1238 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1239 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1240 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1241 if (nr_failed)
1242 putback_movable_pages(&pagelist);
1243 }
1244
1245 if (nr_failed && (flags & MPOL_MF_STRICT))
1246 err = -EIO;
1247 } else
1248 putback_movable_pages(&pagelist);
1249
1250 up_write(&mm->mmap_sem);
1251 mpol_out:
1252 mpol_put(new);
1253 return err;
1254 }
1255
1256 /*
1257 * User space interface with variable sized bitmaps for nodelists.
1258 */
1259
1260 /* Copy a node mask from user space. */
1261 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1262 unsigned long maxnode)
1263 {
1264 unsigned long k;
1265 unsigned long t;
1266 unsigned long nlongs;
1267 unsigned long endmask;
1268
1269 --maxnode;
1270 nodes_clear(*nodes);
1271 if (maxnode == 0 || !nmask)
1272 return 0;
1273 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1274 return -EINVAL;
1275
1276 nlongs = BITS_TO_LONGS(maxnode);
1277 if ((maxnode % BITS_PER_LONG) == 0)
1278 endmask = ~0UL;
1279 else
1280 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1281
1282 /*
1283 * When the user specified more nodes than supported just check
1284 * if the non supported part is all zero.
1285 *
1286 * If maxnode have more longs than MAX_NUMNODES, check
1287 * the bits in that area first. And then go through to
1288 * check the rest bits which equal or bigger than MAX_NUMNODES.
1289 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1290 */
1291 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1292 if (nlongs > PAGE_SIZE/sizeof(long))
1293 return -EINVAL;
1294 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1295 if (get_user(t, nmask + k))
1296 return -EFAULT;
1297 if (k == nlongs - 1) {
1298 if (t & endmask)
1299 return -EINVAL;
1300 } else if (t)
1301 return -EINVAL;
1302 }
1303 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1304 endmask = ~0UL;
1305 }
1306
1307 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1308 unsigned long valid_mask = endmask;
1309
1310 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1311 if (get_user(t, nmask + nlongs - 1))
1312 return -EFAULT;
1313 if (t & valid_mask)
1314 return -EINVAL;
1315 }
1316
1317 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1318 return -EFAULT;
1319 nodes_addr(*nodes)[nlongs-1] &= endmask;
1320 return 0;
1321 }
1322
1323 /* Copy a kernel node mask to user space */
1324 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1325 nodemask_t *nodes)
1326 {
1327 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1328 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1329
1330 if (copy > nbytes) {
1331 if (copy > PAGE_SIZE)
1332 return -EINVAL;
1333 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1334 return -EFAULT;
1335 copy = nbytes;
1336 }
1337 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1338 }
1339
1340 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1341 unsigned long, mode, const unsigned long __user *, nmask,
1342 unsigned long, maxnode, unsigned, flags)
1343 {
1344 nodemask_t nodes;
1345 int err;
1346 unsigned short mode_flags;
1347
1348 mode_flags = mode & MPOL_MODE_FLAGS;
1349 mode &= ~MPOL_MODE_FLAGS;
1350 if (mode >= MPOL_MAX)
1351 return -EINVAL;
1352 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1353 (mode_flags & MPOL_F_RELATIVE_NODES))
1354 return -EINVAL;
1355 err = get_nodes(&nodes, nmask, maxnode);
1356 if (err)
1357 return err;
1358 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1359 }
1360
1361 /* Set the process memory policy */
1362 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1363 unsigned long, maxnode)
1364 {
1365 int err;
1366 nodemask_t nodes;
1367 unsigned short flags;
1368
1369 flags = mode & MPOL_MODE_FLAGS;
1370 mode &= ~MPOL_MODE_FLAGS;
1371 if ((unsigned int)mode >= MPOL_MAX)
1372 return -EINVAL;
1373 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1374 return -EINVAL;
1375 err = get_nodes(&nodes, nmask, maxnode);
1376 if (err)
1377 return err;
1378 return do_set_mempolicy(mode, flags, &nodes);
1379 }
1380
1381 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1382 const unsigned long __user *, old_nodes,
1383 const unsigned long __user *, new_nodes)
1384 {
1385 const struct cred *cred = current_cred(), *tcred;
1386 struct mm_struct *mm = NULL;
1387 struct task_struct *task;
1388 nodemask_t task_nodes;
1389 int err;
1390 nodemask_t *old;
1391 nodemask_t *new;
1392 NODEMASK_SCRATCH(scratch);
1393
1394 if (!scratch)
1395 return -ENOMEM;
1396
1397 old = &scratch->mask1;
1398 new = &scratch->mask2;
1399
1400 err = get_nodes(old, old_nodes, maxnode);
1401 if (err)
1402 goto out;
1403
1404 err = get_nodes(new, new_nodes, maxnode);
1405 if (err)
1406 goto out;
1407
1408 /* Find the mm_struct */
1409 rcu_read_lock();
1410 task = pid ? find_task_by_vpid(pid) : current;
1411 if (!task) {
1412 rcu_read_unlock();
1413 err = -ESRCH;
1414 goto out;
1415 }
1416 get_task_struct(task);
1417
1418 err = -EINVAL;
1419
1420 /*
1421 * Check if this process has the right to modify the specified
1422 * process. The right exists if the process has administrative
1423 * capabilities, superuser privileges or the same
1424 * userid as the target process.
1425 */
1426 tcred = __task_cred(task);
1427 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1428 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1429 !capable(CAP_SYS_NICE)) {
1430 rcu_read_unlock();
1431 err = -EPERM;
1432 goto out_put;
1433 }
1434 rcu_read_unlock();
1435
1436 task_nodes = cpuset_mems_allowed(task);
1437 /* Is the user allowed to access the target nodes? */
1438 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1439 err = -EPERM;
1440 goto out_put;
1441 }
1442
1443 task_nodes = cpuset_mems_allowed(current);
1444 nodes_and(*new, *new, task_nodes);
1445 if (nodes_empty(*new))
1446 goto out_put;
1447
1448 nodes_and(*new, *new, node_states[N_MEMORY]);
1449 if (nodes_empty(*new))
1450 goto out_put;
1451
1452 err = security_task_movememory(task);
1453 if (err)
1454 goto out_put;
1455
1456 mm = get_task_mm(task);
1457 put_task_struct(task);
1458
1459 if (!mm) {
1460 err = -EINVAL;
1461 goto out;
1462 }
1463
1464 err = do_migrate_pages(mm, old, new,
1465 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1466
1467 mmput(mm);
1468 out:
1469 NODEMASK_SCRATCH_FREE(scratch);
1470
1471 return err;
1472
1473 out_put:
1474 put_task_struct(task);
1475 goto out;
1476
1477 }
1478
1479
1480 /* Retrieve NUMA policy */
1481 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1482 unsigned long __user *, nmask, unsigned long, maxnode,
1483 unsigned long, addr, unsigned long, flags)
1484 {
1485 int err;
1486 int uninitialized_var(pval);
1487 nodemask_t nodes;
1488
1489 if (nmask != NULL && maxnode < MAX_NUMNODES)
1490 return -EINVAL;
1491
1492 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1493
1494 if (err)
1495 return err;
1496
1497 if (policy && put_user(pval, policy))
1498 return -EFAULT;
1499
1500 if (nmask)
1501 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1502
1503 return err;
1504 }
1505
1506 #ifdef CONFIG_COMPAT
1507
1508 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1509 compat_ulong_t __user *, nmask,
1510 compat_ulong_t, maxnode,
1511 compat_ulong_t, addr, compat_ulong_t, flags)
1512 {
1513 long err;
1514 unsigned long __user *nm = NULL;
1515 unsigned long nr_bits, alloc_size;
1516 DECLARE_BITMAP(bm, MAX_NUMNODES);
1517
1518 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1519 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1520
1521 if (nmask)
1522 nm = compat_alloc_user_space(alloc_size);
1523
1524 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1525
1526 if (!err && nmask) {
1527 unsigned long copy_size;
1528 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1529 err = copy_from_user(bm, nm, copy_size);
1530 /* ensure entire bitmap is zeroed */
1531 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1532 err |= compat_put_bitmap(nmask, bm, nr_bits);
1533 }
1534
1535 return err;
1536 }
1537
1538 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1539 compat_ulong_t, maxnode)
1540 {
1541 unsigned long __user *nm = NULL;
1542 unsigned long nr_bits, alloc_size;
1543 DECLARE_BITMAP(bm, MAX_NUMNODES);
1544
1545 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1546 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1547
1548 if (nmask) {
1549 if (compat_get_bitmap(bm, nmask, nr_bits))
1550 return -EFAULT;
1551 nm = compat_alloc_user_space(alloc_size);
1552 if (copy_to_user(nm, bm, alloc_size))
1553 return -EFAULT;
1554 }
1555
1556 return sys_set_mempolicy(mode, nm, nr_bits+1);
1557 }
1558
1559 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1560 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1561 compat_ulong_t, maxnode, compat_ulong_t, flags)
1562 {
1563 unsigned long __user *nm = NULL;
1564 unsigned long nr_bits, alloc_size;
1565 nodemask_t bm;
1566
1567 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1568 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1569
1570 if (nmask) {
1571 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1572 return -EFAULT;
1573 nm = compat_alloc_user_space(alloc_size);
1574 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1575 return -EFAULT;
1576 }
1577
1578 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1579 }
1580
1581 #endif
1582
1583 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1584 unsigned long addr)
1585 {
1586 struct mempolicy *pol = NULL;
1587
1588 if (vma) {
1589 if (vma->vm_ops && vma->vm_ops->get_policy) {
1590 pol = vma->vm_ops->get_policy(vma, addr);
1591 } else if (vma->vm_policy) {
1592 pol = vma->vm_policy;
1593
1594 /*
1595 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1596 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1597 * count on these policies which will be dropped by
1598 * mpol_cond_put() later
1599 */
1600 if (mpol_needs_cond_ref(pol))
1601 mpol_get(pol);
1602 }
1603 }
1604
1605 return pol;
1606 }
1607
1608 /*
1609 * get_vma_policy(@vma, @addr)
1610 * @vma: virtual memory area whose policy is sought
1611 * @addr: address in @vma for shared policy lookup
1612 *
1613 * Returns effective policy for a VMA at specified address.
1614 * Falls back to current->mempolicy or system default policy, as necessary.
1615 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1616 * count--added by the get_policy() vm_op, as appropriate--to protect against
1617 * freeing by another task. It is the caller's responsibility to free the
1618 * extra reference for shared policies.
1619 */
1620 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1621 unsigned long addr)
1622 {
1623 struct mempolicy *pol = __get_vma_policy(vma, addr);
1624
1625 if (!pol)
1626 pol = get_task_policy(current);
1627
1628 return pol;
1629 }
1630
1631 bool vma_policy_mof(struct vm_area_struct *vma)
1632 {
1633 struct mempolicy *pol;
1634
1635 if (vma->vm_ops && vma->vm_ops->get_policy) {
1636 bool ret = false;
1637
1638 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1639 if (pol && (pol->flags & MPOL_F_MOF))
1640 ret = true;
1641 mpol_cond_put(pol);
1642
1643 return ret;
1644 }
1645
1646 pol = vma->vm_policy;
1647 if (!pol)
1648 pol = get_task_policy(current);
1649
1650 return pol->flags & MPOL_F_MOF;
1651 }
1652
1653 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1654 {
1655 enum zone_type dynamic_policy_zone = policy_zone;
1656
1657 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1658
1659 /*
1660 * if policy->v.nodes has movable memory only,
1661 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1662 *
1663 * policy->v.nodes is intersect with node_states[N_MEMORY].
1664 * so if the following test faile, it implies
1665 * policy->v.nodes has movable memory only.
1666 */
1667 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1668 dynamic_policy_zone = ZONE_MOVABLE;
1669
1670 return zone >= dynamic_policy_zone;
1671 }
1672
1673 /*
1674 * Return a nodemask representing a mempolicy for filtering nodes for
1675 * page allocation
1676 */
1677 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1678 {
1679 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1680 if (unlikely(policy->mode == MPOL_BIND) &&
1681 apply_policy_zone(policy, gfp_zone(gfp)) &&
1682 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1683 return &policy->v.nodes;
1684
1685 return NULL;
1686 }
1687
1688 /* Return the node id preferred by the given mempolicy, or the given id */
1689 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1690 int nd)
1691 {
1692 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1693 nd = policy->v.preferred_node;
1694 else {
1695 /*
1696 * __GFP_THISNODE shouldn't even be used with the bind policy
1697 * because we might easily break the expectation to stay on the
1698 * requested node and not break the policy.
1699 */
1700 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1701 }
1702
1703 return nd;
1704 }
1705
1706 /* Do dynamic interleaving for a process */
1707 static unsigned interleave_nodes(struct mempolicy *policy)
1708 {
1709 unsigned next;
1710 struct task_struct *me = current;
1711
1712 next = next_node_in(me->il_prev, policy->v.nodes);
1713 if (next < MAX_NUMNODES)
1714 me->il_prev = next;
1715 return next;
1716 }
1717
1718 /*
1719 * Depending on the memory policy provide a node from which to allocate the
1720 * next slab entry.
1721 */
1722 unsigned int mempolicy_slab_node(void)
1723 {
1724 struct mempolicy *policy;
1725 int node = numa_mem_id();
1726
1727 if (in_interrupt())
1728 return node;
1729
1730 policy = current->mempolicy;
1731 if (!policy || policy->flags & MPOL_F_LOCAL)
1732 return node;
1733
1734 switch (policy->mode) {
1735 case MPOL_PREFERRED:
1736 /*
1737 * handled MPOL_F_LOCAL above
1738 */
1739 return policy->v.preferred_node;
1740
1741 case MPOL_INTERLEAVE:
1742 return interleave_nodes(policy);
1743
1744 case MPOL_BIND: {
1745 struct zoneref *z;
1746
1747 /*
1748 * Follow bind policy behavior and start allocation at the
1749 * first node.
1750 */
1751 struct zonelist *zonelist;
1752 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1753 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1754 z = first_zones_zonelist(zonelist, highest_zoneidx,
1755 &policy->v.nodes);
1756 return z->zone ? z->zone->node : node;
1757 }
1758
1759 default:
1760 BUG();
1761 }
1762 }
1763
1764 /*
1765 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1766 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1767 * number of present nodes.
1768 */
1769 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1770 {
1771 unsigned nnodes = nodes_weight(pol->v.nodes);
1772 unsigned target;
1773 int i;
1774 int nid;
1775
1776 if (!nnodes)
1777 return numa_node_id();
1778 target = (unsigned int)n % nnodes;
1779 nid = first_node(pol->v.nodes);
1780 for (i = 0; i < target; i++)
1781 nid = next_node(nid, pol->v.nodes);
1782 return nid;
1783 }
1784
1785 /* Determine a node number for interleave */
1786 static inline unsigned interleave_nid(struct mempolicy *pol,
1787 struct vm_area_struct *vma, unsigned long addr, int shift)
1788 {
1789 if (vma) {
1790 unsigned long off;
1791
1792 /*
1793 * for small pages, there is no difference between
1794 * shift and PAGE_SHIFT, so the bit-shift is safe.
1795 * for huge pages, since vm_pgoff is in units of small
1796 * pages, we need to shift off the always 0 bits to get
1797 * a useful offset.
1798 */
1799 BUG_ON(shift < PAGE_SHIFT);
1800 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1801 off += (addr - vma->vm_start) >> shift;
1802 return offset_il_node(pol, off);
1803 } else
1804 return interleave_nodes(pol);
1805 }
1806
1807 #ifdef CONFIG_HUGETLBFS
1808 /*
1809 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1810 * @vma: virtual memory area whose policy is sought
1811 * @addr: address in @vma for shared policy lookup and interleave policy
1812 * @gfp_flags: for requested zone
1813 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1814 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1815 *
1816 * Returns a nid suitable for a huge page allocation and a pointer
1817 * to the struct mempolicy for conditional unref after allocation.
1818 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1819 * @nodemask for filtering the zonelist.
1820 *
1821 * Must be protected by read_mems_allowed_begin()
1822 */
1823 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1824 struct mempolicy **mpol, nodemask_t **nodemask)
1825 {
1826 int nid;
1827
1828 *mpol = get_vma_policy(vma, addr);
1829 *nodemask = NULL; /* assume !MPOL_BIND */
1830
1831 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1832 nid = interleave_nid(*mpol, vma, addr,
1833 huge_page_shift(hstate_vma(vma)));
1834 } else {
1835 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1836 if ((*mpol)->mode == MPOL_BIND)
1837 *nodemask = &(*mpol)->v.nodes;
1838 }
1839 return nid;
1840 }
1841
1842 /*
1843 * init_nodemask_of_mempolicy
1844 *
1845 * If the current task's mempolicy is "default" [NULL], return 'false'
1846 * to indicate default policy. Otherwise, extract the policy nodemask
1847 * for 'bind' or 'interleave' policy into the argument nodemask, or
1848 * initialize the argument nodemask to contain the single node for
1849 * 'preferred' or 'local' policy and return 'true' to indicate presence
1850 * of non-default mempolicy.
1851 *
1852 * We don't bother with reference counting the mempolicy [mpol_get/put]
1853 * because the current task is examining it's own mempolicy and a task's
1854 * mempolicy is only ever changed by the task itself.
1855 *
1856 * N.B., it is the caller's responsibility to free a returned nodemask.
1857 */
1858 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1859 {
1860 struct mempolicy *mempolicy;
1861 int nid;
1862
1863 if (!(mask && current->mempolicy))
1864 return false;
1865
1866 task_lock(current);
1867 mempolicy = current->mempolicy;
1868 switch (mempolicy->mode) {
1869 case MPOL_PREFERRED:
1870 if (mempolicy->flags & MPOL_F_LOCAL)
1871 nid = numa_node_id();
1872 else
1873 nid = mempolicy->v.preferred_node;
1874 init_nodemask_of_node(mask, nid);
1875 break;
1876
1877 case MPOL_BIND:
1878 /* Fall through */
1879 case MPOL_INTERLEAVE:
1880 *mask = mempolicy->v.nodes;
1881 break;
1882
1883 default:
1884 BUG();
1885 }
1886 task_unlock(current);
1887
1888 return true;
1889 }
1890 #endif
1891
1892 /*
1893 * mempolicy_nodemask_intersects
1894 *
1895 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1896 * policy. Otherwise, check for intersection between mask and the policy
1897 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1898 * policy, always return true since it may allocate elsewhere on fallback.
1899 *
1900 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1901 */
1902 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1903 const nodemask_t *mask)
1904 {
1905 struct mempolicy *mempolicy;
1906 bool ret = true;
1907
1908 if (!mask)
1909 return ret;
1910 task_lock(tsk);
1911 mempolicy = tsk->mempolicy;
1912 if (!mempolicy)
1913 goto out;
1914
1915 switch (mempolicy->mode) {
1916 case MPOL_PREFERRED:
1917 /*
1918 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1919 * allocate from, they may fallback to other nodes when oom.
1920 * Thus, it's possible for tsk to have allocated memory from
1921 * nodes in mask.
1922 */
1923 break;
1924 case MPOL_BIND:
1925 case MPOL_INTERLEAVE:
1926 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1927 break;
1928 default:
1929 BUG();
1930 }
1931 out:
1932 task_unlock(tsk);
1933 return ret;
1934 }
1935
1936 /* Allocate a page in interleaved policy.
1937 Own path because it needs to do special accounting. */
1938 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1939 unsigned nid)
1940 {
1941 struct page *page;
1942
1943 page = __alloc_pages(gfp, order, nid);
1944 if (page && page_to_nid(page) == nid) {
1945 preempt_disable();
1946 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1947 preempt_enable();
1948 }
1949 return page;
1950 }
1951
1952 /**
1953 * alloc_pages_vma - Allocate a page for a VMA.
1954 *
1955 * @gfp:
1956 * %GFP_USER user allocation.
1957 * %GFP_KERNEL kernel allocations,
1958 * %GFP_HIGHMEM highmem/user allocations,
1959 * %GFP_FS allocation should not call back into a file system.
1960 * %GFP_ATOMIC don't sleep.
1961 *
1962 * @order:Order of the GFP allocation.
1963 * @vma: Pointer to VMA or NULL if not available.
1964 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1965 * @node: Which node to prefer for allocation (modulo policy).
1966 * @hugepage: for hugepages try only the preferred node if possible
1967 *
1968 * This function allocates a page from the kernel page pool and applies
1969 * a NUMA policy associated with the VMA or the current process.
1970 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1971 * mm_struct of the VMA to prevent it from going away. Should be used for
1972 * all allocations for pages that will be mapped into user space. Returns
1973 * NULL when no page can be allocated.
1974 */
1975 struct page *
1976 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1977 unsigned long addr, int node, bool hugepage)
1978 {
1979 struct mempolicy *pol;
1980 struct page *page;
1981 int preferred_nid;
1982 nodemask_t *nmask;
1983
1984 pol = get_vma_policy(vma, addr);
1985
1986 if (pol->mode == MPOL_INTERLEAVE) {
1987 unsigned nid;
1988
1989 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1990 mpol_cond_put(pol);
1991 page = alloc_page_interleave(gfp, order, nid);
1992 goto out;
1993 }
1994
1995 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1996 int hpage_node = node;
1997
1998 /*
1999 * For hugepage allocation and non-interleave policy which
2000 * allows the current node (or other explicitly preferred
2001 * node) we only try to allocate from the current/preferred
2002 * node and don't fall back to other nodes, as the cost of
2003 * remote accesses would likely offset THP benefits.
2004 *
2005 * If the policy is interleave, or does not allow the current
2006 * node in its nodemask, we allocate the standard way.
2007 */
2008 if (pol->mode == MPOL_PREFERRED &&
2009 !(pol->flags & MPOL_F_LOCAL))
2010 hpage_node = pol->v.preferred_node;
2011
2012 nmask = policy_nodemask(gfp, pol);
2013 if (!nmask || node_isset(hpage_node, *nmask)) {
2014 mpol_cond_put(pol);
2015 /*
2016 * We cannot invoke reclaim if __GFP_THISNODE
2017 * is set. Invoking reclaim with
2018 * __GFP_THISNODE set, would cause THP
2019 * allocations to trigger heavy swapping
2020 * despite there may be tons of free memory
2021 * (including potentially plenty of THP
2022 * already available in the buddy) on all the
2023 * other NUMA nodes.
2024 *
2025 * At most we could invoke compaction when
2026 * __GFP_THISNODE is set (but we would need to
2027 * refrain from invoking reclaim even if
2028 * compaction returned COMPACT_SKIPPED because
2029 * there wasn't not enough memory to succeed
2030 * compaction). For now just avoid
2031 * __GFP_THISNODE instead of limiting the
2032 * allocation path to a strict and single
2033 * compaction invocation.
2034 *
2035 * Supposedly if direct reclaim was enabled by
2036 * the caller, the app prefers THP regardless
2037 * of the node it comes from so this would be
2038 * more desiderable behavior than only
2039 * providing THP originated from the local
2040 * node in such case.
2041 */
2042 if (!(gfp & __GFP_DIRECT_RECLAIM))
2043 gfp |= __GFP_THISNODE;
2044 page = __alloc_pages_node(hpage_node, gfp, order);
2045 goto out;
2046 }
2047 }
2048
2049 nmask = policy_nodemask(gfp, pol);
2050 preferred_nid = policy_node(gfp, pol, node);
2051 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2052 mpol_cond_put(pol);
2053 out:
2054 return page;
2055 }
2056
2057 /**
2058 * alloc_pages_current - Allocate pages.
2059 *
2060 * @gfp:
2061 * %GFP_USER user allocation,
2062 * %GFP_KERNEL kernel allocation,
2063 * %GFP_HIGHMEM highmem allocation,
2064 * %GFP_FS don't call back into a file system.
2065 * %GFP_ATOMIC don't sleep.
2066 * @order: Power of two of allocation size in pages. 0 is a single page.
2067 *
2068 * Allocate a page from the kernel page pool. When not in
2069 * interrupt context and apply the current process NUMA policy.
2070 * Returns NULL when no page can be allocated.
2071 */
2072 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2073 {
2074 struct mempolicy *pol = &default_policy;
2075 struct page *page;
2076
2077 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2078 pol = get_task_policy(current);
2079
2080 /*
2081 * No reference counting needed for current->mempolicy
2082 * nor system default_policy
2083 */
2084 if (pol->mode == MPOL_INTERLEAVE)
2085 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2086 else
2087 page = __alloc_pages_nodemask(gfp, order,
2088 policy_node(gfp, pol, numa_node_id()),
2089 policy_nodemask(gfp, pol));
2090
2091 return page;
2092 }
2093 EXPORT_SYMBOL(alloc_pages_current);
2094
2095 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2096 {
2097 struct mempolicy *pol = mpol_dup(vma_policy(src));
2098
2099 if (IS_ERR(pol))
2100 return PTR_ERR(pol);
2101 dst->vm_policy = pol;
2102 return 0;
2103 }
2104
2105 /*
2106 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2107 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2108 * with the mems_allowed returned by cpuset_mems_allowed(). This
2109 * keeps mempolicies cpuset relative after its cpuset moves. See
2110 * further kernel/cpuset.c update_nodemask().
2111 *
2112 * current's mempolicy may be rebinded by the other task(the task that changes
2113 * cpuset's mems), so we needn't do rebind work for current task.
2114 */
2115
2116 /* Slow path of a mempolicy duplicate */
2117 struct mempolicy *__mpol_dup(struct mempolicy *old)
2118 {
2119 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2120
2121 if (!new)
2122 return ERR_PTR(-ENOMEM);
2123
2124 /* task's mempolicy is protected by alloc_lock */
2125 if (old == current->mempolicy) {
2126 task_lock(current);
2127 *new = *old;
2128 task_unlock(current);
2129 } else
2130 *new = *old;
2131
2132 if (current_cpuset_is_being_rebound()) {
2133 nodemask_t mems = cpuset_mems_allowed(current);
2134 mpol_rebind_policy(new, &mems);
2135 }
2136 atomic_set(&new->refcnt, 1);
2137 return new;
2138 }
2139
2140 /* Slow path of a mempolicy comparison */
2141 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2142 {
2143 if (!a || !b)
2144 return false;
2145 if (a->mode != b->mode)
2146 return false;
2147 if (a->flags != b->flags)
2148 return false;
2149 if (mpol_store_user_nodemask(a))
2150 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2151 return false;
2152
2153 switch (a->mode) {
2154 case MPOL_BIND:
2155 /* Fall through */
2156 case MPOL_INTERLEAVE:
2157 return !!nodes_equal(a->v.nodes, b->v.nodes);
2158 case MPOL_PREFERRED:
2159 /* a's ->flags is the same as b's */
2160 if (a->flags & MPOL_F_LOCAL)
2161 return true;
2162 return a->v.preferred_node == b->v.preferred_node;
2163 default:
2164 BUG();
2165 return false;
2166 }
2167 }
2168
2169 /*
2170 * Shared memory backing store policy support.
2171 *
2172 * Remember policies even when nobody has shared memory mapped.
2173 * The policies are kept in Red-Black tree linked from the inode.
2174 * They are protected by the sp->lock rwlock, which should be held
2175 * for any accesses to the tree.
2176 */
2177
2178 /*
2179 * lookup first element intersecting start-end. Caller holds sp->lock for
2180 * reading or for writing
2181 */
2182 static struct sp_node *
2183 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2184 {
2185 struct rb_node *n = sp->root.rb_node;
2186
2187 while (n) {
2188 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2189
2190 if (start >= p->end)
2191 n = n->rb_right;
2192 else if (end <= p->start)
2193 n = n->rb_left;
2194 else
2195 break;
2196 }
2197 if (!n)
2198 return NULL;
2199 for (;;) {
2200 struct sp_node *w = NULL;
2201 struct rb_node *prev = rb_prev(n);
2202 if (!prev)
2203 break;
2204 w = rb_entry(prev, struct sp_node, nd);
2205 if (w->end <= start)
2206 break;
2207 n = prev;
2208 }
2209 return rb_entry(n, struct sp_node, nd);
2210 }
2211
2212 /*
2213 * Insert a new shared policy into the list. Caller holds sp->lock for
2214 * writing.
2215 */
2216 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2217 {
2218 struct rb_node **p = &sp->root.rb_node;
2219 struct rb_node *parent = NULL;
2220 struct sp_node *nd;
2221
2222 while (*p) {
2223 parent = *p;
2224 nd = rb_entry(parent, struct sp_node, nd);
2225 if (new->start < nd->start)
2226 p = &(*p)->rb_left;
2227 else if (new->end > nd->end)
2228 p = &(*p)->rb_right;
2229 else
2230 BUG();
2231 }
2232 rb_link_node(&new->nd, parent, p);
2233 rb_insert_color(&new->nd, &sp->root);
2234 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2235 new->policy ? new->policy->mode : 0);
2236 }
2237
2238 /* Find shared policy intersecting idx */
2239 struct mempolicy *
2240 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2241 {
2242 struct mempolicy *pol = NULL;
2243 struct sp_node *sn;
2244
2245 if (!sp->root.rb_node)
2246 return NULL;
2247 read_lock(&sp->lock);
2248 sn = sp_lookup(sp, idx, idx+1);
2249 if (sn) {
2250 mpol_get(sn->policy);
2251 pol = sn->policy;
2252 }
2253 read_unlock(&sp->lock);
2254 return pol;
2255 }
2256
2257 static void sp_free(struct sp_node *n)
2258 {
2259 mpol_put(n->policy);
2260 kmem_cache_free(sn_cache, n);
2261 }
2262
2263 /**
2264 * mpol_misplaced - check whether current page node is valid in policy
2265 *
2266 * @page: page to be checked
2267 * @vma: vm area where page mapped
2268 * @addr: virtual address where page mapped
2269 *
2270 * Lookup current policy node id for vma,addr and "compare to" page's
2271 * node id.
2272 *
2273 * Returns:
2274 * -1 - not misplaced, page is in the right node
2275 * node - node id where the page should be
2276 *
2277 * Policy determination "mimics" alloc_page_vma().
2278 * Called from fault path where we know the vma and faulting address.
2279 */
2280 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2281 {
2282 struct mempolicy *pol;
2283 struct zoneref *z;
2284 int curnid = page_to_nid(page);
2285 unsigned long pgoff;
2286 int thiscpu = raw_smp_processor_id();
2287 int thisnid = cpu_to_node(thiscpu);
2288 int polnid = -1;
2289 int ret = -1;
2290
2291 pol = get_vma_policy(vma, addr);
2292 if (!(pol->flags & MPOL_F_MOF))
2293 goto out;
2294
2295 switch (pol->mode) {
2296 case MPOL_INTERLEAVE:
2297 pgoff = vma->vm_pgoff;
2298 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2299 polnid = offset_il_node(pol, pgoff);
2300 break;
2301
2302 case MPOL_PREFERRED:
2303 if (pol->flags & MPOL_F_LOCAL)
2304 polnid = numa_node_id();
2305 else
2306 polnid = pol->v.preferred_node;
2307 break;
2308
2309 case MPOL_BIND:
2310
2311 /*
2312 * allows binding to multiple nodes.
2313 * use current page if in policy nodemask,
2314 * else select nearest allowed node, if any.
2315 * If no allowed nodes, use current [!misplaced].
2316 */
2317 if (node_isset(curnid, pol->v.nodes))
2318 goto out;
2319 z = first_zones_zonelist(
2320 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2321 gfp_zone(GFP_HIGHUSER),
2322 &pol->v.nodes);
2323 polnid = z->zone->node;
2324 break;
2325
2326 default:
2327 BUG();
2328 }
2329
2330 /* Migrate the page towards the node whose CPU is referencing it */
2331 if (pol->flags & MPOL_F_MORON) {
2332 polnid = thisnid;
2333
2334 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2335 goto out;
2336 }
2337
2338 if (curnid != polnid)
2339 ret = polnid;
2340 out:
2341 mpol_cond_put(pol);
2342
2343 return ret;
2344 }
2345
2346 /*
2347 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2348 * dropped after task->mempolicy is set to NULL so that any allocation done as
2349 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2350 * policy.
2351 */
2352 void mpol_put_task_policy(struct task_struct *task)
2353 {
2354 struct mempolicy *pol;
2355
2356 task_lock(task);
2357 pol = task->mempolicy;
2358 task->mempolicy = NULL;
2359 task_unlock(task);
2360 mpol_put(pol);
2361 }
2362
2363 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2364 {
2365 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2366 rb_erase(&n->nd, &sp->root);
2367 sp_free(n);
2368 }
2369
2370 static void sp_node_init(struct sp_node *node, unsigned long start,
2371 unsigned long end, struct mempolicy *pol)
2372 {
2373 node->start = start;
2374 node->end = end;
2375 node->policy = pol;
2376 }
2377
2378 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2379 struct mempolicy *pol)
2380 {
2381 struct sp_node *n;
2382 struct mempolicy *newpol;
2383
2384 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2385 if (!n)
2386 return NULL;
2387
2388 newpol = mpol_dup(pol);
2389 if (IS_ERR(newpol)) {
2390 kmem_cache_free(sn_cache, n);
2391 return NULL;
2392 }
2393 newpol->flags |= MPOL_F_SHARED;
2394 sp_node_init(n, start, end, newpol);
2395
2396 return n;
2397 }
2398
2399 /* Replace a policy range. */
2400 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2401 unsigned long end, struct sp_node *new)
2402 {
2403 struct sp_node *n;
2404 struct sp_node *n_new = NULL;
2405 struct mempolicy *mpol_new = NULL;
2406 int ret = 0;
2407
2408 restart:
2409 write_lock(&sp->lock);
2410 n = sp_lookup(sp, start, end);
2411 /* Take care of old policies in the same range. */
2412 while (n && n->start < end) {
2413 struct rb_node *next = rb_next(&n->nd);
2414 if (n->start >= start) {
2415 if (n->end <= end)
2416 sp_delete(sp, n);
2417 else
2418 n->start = end;
2419 } else {
2420 /* Old policy spanning whole new range. */
2421 if (n->end > end) {
2422 if (!n_new)
2423 goto alloc_new;
2424
2425 *mpol_new = *n->policy;
2426 atomic_set(&mpol_new->refcnt, 1);
2427 sp_node_init(n_new, end, n->end, mpol_new);
2428 n->end = start;
2429 sp_insert(sp, n_new);
2430 n_new = NULL;
2431 mpol_new = NULL;
2432 break;
2433 } else
2434 n->end = start;
2435 }
2436 if (!next)
2437 break;
2438 n = rb_entry(next, struct sp_node, nd);
2439 }
2440 if (new)
2441 sp_insert(sp, new);
2442 write_unlock(&sp->lock);
2443 ret = 0;
2444
2445 err_out:
2446 if (mpol_new)
2447 mpol_put(mpol_new);
2448 if (n_new)
2449 kmem_cache_free(sn_cache, n_new);
2450
2451 return ret;
2452
2453 alloc_new:
2454 write_unlock(&sp->lock);
2455 ret = -ENOMEM;
2456 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2457 if (!n_new)
2458 goto err_out;
2459 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2460 if (!mpol_new)
2461 goto err_out;
2462 goto restart;
2463 }
2464
2465 /**
2466 * mpol_shared_policy_init - initialize shared policy for inode
2467 * @sp: pointer to inode shared policy
2468 * @mpol: struct mempolicy to install
2469 *
2470 * Install non-NULL @mpol in inode's shared policy rb-tree.
2471 * On entry, the current task has a reference on a non-NULL @mpol.
2472 * This must be released on exit.
2473 * This is called at get_inode() calls and we can use GFP_KERNEL.
2474 */
2475 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2476 {
2477 int ret;
2478
2479 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2480 rwlock_init(&sp->lock);
2481
2482 if (mpol) {
2483 struct vm_area_struct pvma;
2484 struct mempolicy *new;
2485 NODEMASK_SCRATCH(scratch);
2486
2487 if (!scratch)
2488 goto put_mpol;
2489 /* contextualize the tmpfs mount point mempolicy */
2490 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2491 if (IS_ERR(new))
2492 goto free_scratch; /* no valid nodemask intersection */
2493
2494 task_lock(current);
2495 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2496 task_unlock(current);
2497 if (ret)
2498 goto put_new;
2499
2500 /* Create pseudo-vma that contains just the policy */
2501 memset(&pvma, 0, sizeof(struct vm_area_struct));
2502 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2503 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2504
2505 put_new:
2506 mpol_put(new); /* drop initial ref */
2507 free_scratch:
2508 NODEMASK_SCRATCH_FREE(scratch);
2509 put_mpol:
2510 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2511 }
2512 }
2513
2514 int mpol_set_shared_policy(struct shared_policy *info,
2515 struct vm_area_struct *vma, struct mempolicy *npol)
2516 {
2517 int err;
2518 struct sp_node *new = NULL;
2519 unsigned long sz = vma_pages(vma);
2520
2521 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2522 vma->vm_pgoff,
2523 sz, npol ? npol->mode : -1,
2524 npol ? npol->flags : -1,
2525 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2526
2527 if (npol) {
2528 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2529 if (!new)
2530 return -ENOMEM;
2531 }
2532 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2533 if (err && new)
2534 sp_free(new);
2535 return err;
2536 }
2537
2538 /* Free a backing policy store on inode delete. */
2539 void mpol_free_shared_policy(struct shared_policy *p)
2540 {
2541 struct sp_node *n;
2542 struct rb_node *next;
2543
2544 if (!p->root.rb_node)
2545 return;
2546 write_lock(&p->lock);
2547 next = rb_first(&p->root);
2548 while (next) {
2549 n = rb_entry(next, struct sp_node, nd);
2550 next = rb_next(&n->nd);
2551 sp_delete(p, n);
2552 }
2553 write_unlock(&p->lock);
2554 }
2555
2556 #ifdef CONFIG_NUMA_BALANCING
2557 static int __initdata numabalancing_override;
2558
2559 static void __init check_numabalancing_enable(void)
2560 {
2561 bool numabalancing_default = false;
2562
2563 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2564 numabalancing_default = true;
2565
2566 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2567 if (numabalancing_override)
2568 set_numabalancing_state(numabalancing_override == 1);
2569
2570 if (num_online_nodes() > 1 && !numabalancing_override) {
2571 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2572 numabalancing_default ? "Enabling" : "Disabling");
2573 set_numabalancing_state(numabalancing_default);
2574 }
2575 }
2576
2577 static int __init setup_numabalancing(char *str)
2578 {
2579 int ret = 0;
2580 if (!str)
2581 goto out;
2582
2583 if (!strcmp(str, "enable")) {
2584 numabalancing_override = 1;
2585 ret = 1;
2586 } else if (!strcmp(str, "disable")) {
2587 numabalancing_override = -1;
2588 ret = 1;
2589 }
2590 out:
2591 if (!ret)
2592 pr_warn("Unable to parse numa_balancing=\n");
2593
2594 return ret;
2595 }
2596 __setup("numa_balancing=", setup_numabalancing);
2597 #else
2598 static inline void __init check_numabalancing_enable(void)
2599 {
2600 }
2601 #endif /* CONFIG_NUMA_BALANCING */
2602
2603 /* assumes fs == KERNEL_DS */
2604 void __init numa_policy_init(void)
2605 {
2606 nodemask_t interleave_nodes;
2607 unsigned long largest = 0;
2608 int nid, prefer = 0;
2609
2610 policy_cache = kmem_cache_create("numa_policy",
2611 sizeof(struct mempolicy),
2612 0, SLAB_PANIC, NULL);
2613
2614 sn_cache = kmem_cache_create("shared_policy_node",
2615 sizeof(struct sp_node),
2616 0, SLAB_PANIC, NULL);
2617
2618 for_each_node(nid) {
2619 preferred_node_policy[nid] = (struct mempolicy) {
2620 .refcnt = ATOMIC_INIT(1),
2621 .mode = MPOL_PREFERRED,
2622 .flags = MPOL_F_MOF | MPOL_F_MORON,
2623 .v = { .preferred_node = nid, },
2624 };
2625 }
2626
2627 /*
2628 * Set interleaving policy for system init. Interleaving is only
2629 * enabled across suitably sized nodes (default is >= 16MB), or
2630 * fall back to the largest node if they're all smaller.
2631 */
2632 nodes_clear(interleave_nodes);
2633 for_each_node_state(nid, N_MEMORY) {
2634 unsigned long total_pages = node_present_pages(nid);
2635
2636 /* Preserve the largest node */
2637 if (largest < total_pages) {
2638 largest = total_pages;
2639 prefer = nid;
2640 }
2641
2642 /* Interleave this node? */
2643 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2644 node_set(nid, interleave_nodes);
2645 }
2646
2647 /* All too small, use the largest */
2648 if (unlikely(nodes_empty(interleave_nodes)))
2649 node_set(prefer, interleave_nodes);
2650
2651 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2652 pr_err("%s: interleaving failed\n", __func__);
2653
2654 check_numabalancing_enable();
2655 }
2656
2657 /* Reset policy of current process to default */
2658 void numa_default_policy(void)
2659 {
2660 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2661 }
2662
2663 /*
2664 * Parse and format mempolicy from/to strings
2665 */
2666
2667 /*
2668 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2669 */
2670 static const char * const policy_modes[] =
2671 {
2672 [MPOL_DEFAULT] = "default",
2673 [MPOL_PREFERRED] = "prefer",
2674 [MPOL_BIND] = "bind",
2675 [MPOL_INTERLEAVE] = "interleave",
2676 [MPOL_LOCAL] = "local",
2677 };
2678
2679
2680 #ifdef CONFIG_TMPFS
2681 /**
2682 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2683 * @str: string containing mempolicy to parse
2684 * @mpol: pointer to struct mempolicy pointer, returned on success.
2685 *
2686 * Format of input:
2687 * <mode>[=<flags>][:<nodelist>]
2688 *
2689 * On success, returns 0, else 1
2690 */
2691 int mpol_parse_str(char *str, struct mempolicy **mpol)
2692 {
2693 struct mempolicy *new = NULL;
2694 unsigned short mode;
2695 unsigned short mode_flags;
2696 nodemask_t nodes;
2697 char *nodelist = strchr(str, ':');
2698 char *flags = strchr(str, '=');
2699 int err = 1;
2700
2701 if (nodelist) {
2702 /* NUL-terminate mode or flags string */
2703 *nodelist++ = '\0';
2704 if (nodelist_parse(nodelist, nodes))
2705 goto out;
2706 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2707 goto out;
2708 } else
2709 nodes_clear(nodes);
2710
2711 if (flags)
2712 *flags++ = '\0'; /* terminate mode string */
2713
2714 for (mode = 0; mode < MPOL_MAX; mode++) {
2715 if (!strcmp(str, policy_modes[mode])) {
2716 break;
2717 }
2718 }
2719 if (mode >= MPOL_MAX)
2720 goto out;
2721
2722 switch (mode) {
2723 case MPOL_PREFERRED:
2724 /*
2725 * Insist on a nodelist of one node only
2726 */
2727 if (nodelist) {
2728 char *rest = nodelist;
2729 while (isdigit(*rest))
2730 rest++;
2731 if (*rest)
2732 goto out;
2733 }
2734 break;
2735 case MPOL_INTERLEAVE:
2736 /*
2737 * Default to online nodes with memory if no nodelist
2738 */
2739 if (!nodelist)
2740 nodes = node_states[N_MEMORY];
2741 break;
2742 case MPOL_LOCAL:
2743 /*
2744 * Don't allow a nodelist; mpol_new() checks flags
2745 */
2746 if (nodelist)
2747 goto out;
2748 mode = MPOL_PREFERRED;
2749 break;
2750 case MPOL_DEFAULT:
2751 /*
2752 * Insist on a empty nodelist
2753 */
2754 if (!nodelist)
2755 err = 0;
2756 goto out;
2757 case MPOL_BIND:
2758 /*
2759 * Insist on a nodelist
2760 */
2761 if (!nodelist)
2762 goto out;
2763 }
2764
2765 mode_flags = 0;
2766 if (flags) {
2767 /*
2768 * Currently, we only support two mutually exclusive
2769 * mode flags.
2770 */
2771 if (!strcmp(flags, "static"))
2772 mode_flags |= MPOL_F_STATIC_NODES;
2773 else if (!strcmp(flags, "relative"))
2774 mode_flags |= MPOL_F_RELATIVE_NODES;
2775 else
2776 goto out;
2777 }
2778
2779 new = mpol_new(mode, mode_flags, &nodes);
2780 if (IS_ERR(new))
2781 goto out;
2782
2783 /*
2784 * Save nodes for mpol_to_str() to show the tmpfs mount options
2785 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2786 */
2787 if (mode != MPOL_PREFERRED)
2788 new->v.nodes = nodes;
2789 else if (nodelist)
2790 new->v.preferred_node = first_node(nodes);
2791 else
2792 new->flags |= MPOL_F_LOCAL;
2793
2794 /*
2795 * Save nodes for contextualization: this will be used to "clone"
2796 * the mempolicy in a specific context [cpuset] at a later time.
2797 */
2798 new->w.user_nodemask = nodes;
2799
2800 err = 0;
2801
2802 out:
2803 /* Restore string for error message */
2804 if (nodelist)
2805 *--nodelist = ':';
2806 if (flags)
2807 *--flags = '=';
2808 if (!err)
2809 *mpol = new;
2810 return err;
2811 }
2812 #endif /* CONFIG_TMPFS */
2813
2814 /**
2815 * mpol_to_str - format a mempolicy structure for printing
2816 * @buffer: to contain formatted mempolicy string
2817 * @maxlen: length of @buffer
2818 * @pol: pointer to mempolicy to be formatted
2819 *
2820 * Convert @pol into a string. If @buffer is too short, truncate the string.
2821 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2822 * longest flag, "relative", and to display at least a few node ids.
2823 */
2824 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2825 {
2826 char *p = buffer;
2827 nodemask_t nodes = NODE_MASK_NONE;
2828 unsigned short mode = MPOL_DEFAULT;
2829 unsigned short flags = 0;
2830
2831 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2832 mode = pol->mode;
2833 flags = pol->flags;
2834 }
2835
2836 switch (mode) {
2837 case MPOL_DEFAULT:
2838 break;
2839 case MPOL_PREFERRED:
2840 if (flags & MPOL_F_LOCAL)
2841 mode = MPOL_LOCAL;
2842 else
2843 node_set(pol->v.preferred_node, nodes);
2844 break;
2845 case MPOL_BIND:
2846 case MPOL_INTERLEAVE:
2847 nodes = pol->v.nodes;
2848 break;
2849 default:
2850 WARN_ON_ONCE(1);
2851 snprintf(p, maxlen, "unknown");
2852 return;
2853 }
2854
2855 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2856
2857 if (flags & MPOL_MODE_FLAGS) {
2858 p += snprintf(p, buffer + maxlen - p, "=");
2859
2860 /*
2861 * Currently, the only defined flags are mutually exclusive
2862 */
2863 if (flags & MPOL_F_STATIC_NODES)
2864 p += snprintf(p, buffer + maxlen - p, "static");
2865 else if (flags & MPOL_F_RELATIVE_NODES)
2866 p += snprintf(p, buffer + maxlen - p, "relative");
2867 }
2868
2869 if (!nodes_empty(nodes))
2870 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2871 nodemask_pr_args(&nodes));
2872 }