]> git.ipfire.org Git - people/ms/linux.git/blob - mm/mempolicy.c
Merge tag 'mediatek-drm-fixes-6.0' of https://git.kernel.org/pub/scm/linux/kernel...
[people/ms/linux.git] / mm / mempolicy.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
36 *
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
40 *
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
45 *
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
49 *
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
54 *
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
57 */
58
59 /* Notebook:
60 fix mmap readahead to honour policy and enable policy for any page cache
61 object
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
64 first item above.
65 handle mremap for shared memory (currently ignored for the policy)
66 grows down?
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
69 */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105
106 #include <asm/tlbflush.h>
107 #include <asm/tlb.h>
108 #include <linux/uaccess.h>
109
110 #include "internal.h"
111
112 /* Internal flags */
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
115
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
118
119 /* Highest zone. An specific allocation for a zone below that is not
120 policied. */
121 enum zone_type policy_zone = 0;
122
123 /*
124 * run-time system-wide default policy => local allocation
125 */
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
128 .mode = MPOL_LOCAL,
129 };
130
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
132
133 /**
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
136 *
137 * Lookup the next closest node by distance if @nid is not online.
138 *
139 * Return: this @node if it is online, otherwise the closest node by distance
140 */
141 int numa_map_to_online_node(int node)
142 {
143 int min_dist = INT_MAX, dist, n, min_node;
144
145 if (node == NUMA_NO_NODE || node_online(node))
146 return node;
147
148 min_node = node;
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
152 min_dist = dist;
153 min_node = n;
154 }
155 }
156
157 return min_node;
158 }
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
160
161 struct mempolicy *get_task_policy(struct task_struct *p)
162 {
163 struct mempolicy *pol = p->mempolicy;
164 int node;
165
166 if (pol)
167 return pol;
168
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
173 if (pol->mode)
174 return pol;
175 }
176
177 return &default_policy;
178 }
179
180 static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
184
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
186 {
187 return pol->flags & MPOL_MODE_FLAGS;
188 }
189
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
192 {
193 nodemask_t tmp;
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
196 }
197
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 if (nodes_empty(*nodes))
201 return -EINVAL;
202 pol->nodes = *nodes;
203 return 0;
204 }
205
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
207 {
208 if (nodes_empty(*nodes))
209 return -EINVAL;
210
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
213 return 0;
214 }
215
216 /*
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
220 *
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
223 */
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
226 {
227 int ret;
228
229 /*
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
232 * constructor.
233 */
234 if (!pol || pol->mode == MPOL_LOCAL)
235 return 0;
236
237 /* Check N_MEMORY */
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
240
241 VM_BUG_ON(!nodes);
242
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
245 else
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
247
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
250 else
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
252
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
254 return ret;
255 }
256
257 /*
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
260 */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 nodemask_t *nodes)
263 {
264 struct mempolicy *policy;
265
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
272 return NULL;
273 }
274 VM_BUG_ON(!nodes);
275
276 /*
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
280 */
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
286
287 mode = MPOL_LOCAL;
288 }
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
297 if (!policy)
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
300 policy->mode = mode;
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
303
304 return policy;
305 }
306
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
309 {
310 if (!atomic_dec_and_test(&p->refcnt))
311 return;
312 kmem_cache_free(policy_cache, p);
313 }
314
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 }
318
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
320 {
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 else {
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
329 *nodes);
330 pol->w.cpuset_mems_allowed = *nodes;
331 }
332
333 if (nodes_empty(tmp))
334 tmp = *nodes;
335
336 pol->nodes = tmp;
337 }
338
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
341 {
342 pol->w.cpuset_mems_allowed = *nodes;
343 }
344
345 /*
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
347 *
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
351 */
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 {
354 if (!pol || pol->mode == MPOL_LOCAL)
355 return;
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
358 return;
359
360 mpol_ops[pol->mode].rebind(pol, newmask);
361 }
362
363 /*
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
366 *
367 * Called with task's alloc_lock held.
368 */
369
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
371 {
372 mpol_rebind_policy(tsk->mempolicy, new);
373 }
374
375 /*
376 * Rebind each vma in mm to new nodemask.
377 *
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
379 */
380
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
382 {
383 struct vm_area_struct *vma;
384
385 mmap_write_lock(mm);
386 for (vma = mm->mmap; vma; vma = vma->vm_next)
387 mpol_rebind_policy(vma->vm_policy, new);
388 mmap_write_unlock(mm);
389 }
390
391 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
392 [MPOL_DEFAULT] = {
393 .rebind = mpol_rebind_default,
394 },
395 [MPOL_INTERLEAVE] = {
396 .create = mpol_new_nodemask,
397 .rebind = mpol_rebind_nodemask,
398 },
399 [MPOL_PREFERRED] = {
400 .create = mpol_new_preferred,
401 .rebind = mpol_rebind_preferred,
402 },
403 [MPOL_BIND] = {
404 .create = mpol_new_nodemask,
405 .rebind = mpol_rebind_nodemask,
406 },
407 [MPOL_LOCAL] = {
408 .rebind = mpol_rebind_default,
409 },
410 [MPOL_PREFERRED_MANY] = {
411 .create = mpol_new_nodemask,
412 .rebind = mpol_rebind_preferred,
413 },
414 };
415
416 static int migrate_page_add(struct page *page, struct list_head *pagelist,
417 unsigned long flags);
418
419 struct queue_pages {
420 struct list_head *pagelist;
421 unsigned long flags;
422 nodemask_t *nmask;
423 unsigned long start;
424 unsigned long end;
425 struct vm_area_struct *first;
426 };
427
428 /*
429 * Check if the page's nid is in qp->nmask.
430 *
431 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
432 * in the invert of qp->nmask.
433 */
434 static inline bool queue_pages_required(struct page *page,
435 struct queue_pages *qp)
436 {
437 int nid = page_to_nid(page);
438 unsigned long flags = qp->flags;
439
440 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
441 }
442
443 /*
444 * queue_pages_pmd() has three possible return values:
445 * 0 - pages are placed on the right node or queued successfully, or
446 * special page is met, i.e. huge zero page.
447 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
448 * specified.
449 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
450 * existing page was already on a node that does not follow the
451 * policy.
452 */
453 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
454 unsigned long end, struct mm_walk *walk)
455 __releases(ptl)
456 {
457 int ret = 0;
458 struct page *page;
459 struct queue_pages *qp = walk->private;
460 unsigned long flags;
461
462 if (unlikely(is_pmd_migration_entry(*pmd))) {
463 ret = -EIO;
464 goto unlock;
465 }
466 page = pmd_page(*pmd);
467 if (is_huge_zero_page(page)) {
468 walk->action = ACTION_CONTINUE;
469 goto unlock;
470 }
471 if (!queue_pages_required(page, qp))
472 goto unlock;
473
474 flags = qp->flags;
475 /* go to thp migration */
476 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
477 if (!vma_migratable(walk->vma) ||
478 migrate_page_add(page, qp->pagelist, flags)) {
479 ret = 1;
480 goto unlock;
481 }
482 } else
483 ret = -EIO;
484 unlock:
485 spin_unlock(ptl);
486 return ret;
487 }
488
489 /*
490 * Scan through pages checking if pages follow certain conditions,
491 * and move them to the pagelist if they do.
492 *
493 * queue_pages_pte_range() has three possible return values:
494 * 0 - pages are placed on the right node or queued successfully, or
495 * special page is met, i.e. zero page.
496 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
497 * specified.
498 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
499 * on a node that does not follow the policy.
500 */
501 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
502 unsigned long end, struct mm_walk *walk)
503 {
504 struct vm_area_struct *vma = walk->vma;
505 struct page *page;
506 struct queue_pages *qp = walk->private;
507 unsigned long flags = qp->flags;
508 bool has_unmovable = false;
509 pte_t *pte, *mapped_pte;
510 spinlock_t *ptl;
511
512 ptl = pmd_trans_huge_lock(pmd, vma);
513 if (ptl)
514 return queue_pages_pmd(pmd, ptl, addr, end, walk);
515
516 if (pmd_trans_unstable(pmd))
517 return 0;
518
519 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
520 for (; addr != end; pte++, addr += PAGE_SIZE) {
521 if (!pte_present(*pte))
522 continue;
523 page = vm_normal_page(vma, addr, *pte);
524 if (!page || is_zone_device_page(page))
525 continue;
526 /*
527 * vm_normal_page() filters out zero pages, but there might
528 * still be PageReserved pages to skip, perhaps in a VDSO.
529 */
530 if (PageReserved(page))
531 continue;
532 if (!queue_pages_required(page, qp))
533 continue;
534 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
535 /* MPOL_MF_STRICT must be specified if we get here */
536 if (!vma_migratable(vma)) {
537 has_unmovable = true;
538 break;
539 }
540
541 /*
542 * Do not abort immediately since there may be
543 * temporary off LRU pages in the range. Still
544 * need migrate other LRU pages.
545 */
546 if (migrate_page_add(page, qp->pagelist, flags))
547 has_unmovable = true;
548 } else
549 break;
550 }
551 pte_unmap_unlock(mapped_pte, ptl);
552 cond_resched();
553
554 if (has_unmovable)
555 return 1;
556
557 return addr != end ? -EIO : 0;
558 }
559
560 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
561 unsigned long addr, unsigned long end,
562 struct mm_walk *walk)
563 {
564 int ret = 0;
565 #ifdef CONFIG_HUGETLB_PAGE
566 struct queue_pages *qp = walk->private;
567 unsigned long flags = (qp->flags & MPOL_MF_VALID);
568 struct page *page;
569 spinlock_t *ptl;
570 pte_t entry;
571
572 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
573 entry = huge_ptep_get(pte);
574 if (!pte_present(entry))
575 goto unlock;
576 page = pte_page(entry);
577 if (!queue_pages_required(page, qp))
578 goto unlock;
579
580 if (flags == MPOL_MF_STRICT) {
581 /*
582 * STRICT alone means only detecting misplaced page and no
583 * need to further check other vma.
584 */
585 ret = -EIO;
586 goto unlock;
587 }
588
589 if (!vma_migratable(walk->vma)) {
590 /*
591 * Must be STRICT with MOVE*, otherwise .test_walk() have
592 * stopped walking current vma.
593 * Detecting misplaced page but allow migrating pages which
594 * have been queued.
595 */
596 ret = 1;
597 goto unlock;
598 }
599
600 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
601 if (flags & (MPOL_MF_MOVE_ALL) ||
602 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
603 if (isolate_hugetlb(page, qp->pagelist) &&
604 (flags & MPOL_MF_STRICT))
605 /*
606 * Failed to isolate page but allow migrating pages
607 * which have been queued.
608 */
609 ret = 1;
610 }
611 unlock:
612 spin_unlock(ptl);
613 #else
614 BUG();
615 #endif
616 return ret;
617 }
618
619 #ifdef CONFIG_NUMA_BALANCING
620 /*
621 * This is used to mark a range of virtual addresses to be inaccessible.
622 * These are later cleared by a NUMA hinting fault. Depending on these
623 * faults, pages may be migrated for better NUMA placement.
624 *
625 * This is assuming that NUMA faults are handled using PROT_NONE. If
626 * an architecture makes a different choice, it will need further
627 * changes to the core.
628 */
629 unsigned long change_prot_numa(struct vm_area_struct *vma,
630 unsigned long addr, unsigned long end)
631 {
632 struct mmu_gather tlb;
633 int nr_updated;
634
635 tlb_gather_mmu(&tlb, vma->vm_mm);
636
637 nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
638 MM_CP_PROT_NUMA);
639 if (nr_updated)
640 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
641
642 tlb_finish_mmu(&tlb);
643
644 return nr_updated;
645 }
646 #else
647 static unsigned long change_prot_numa(struct vm_area_struct *vma,
648 unsigned long addr, unsigned long end)
649 {
650 return 0;
651 }
652 #endif /* CONFIG_NUMA_BALANCING */
653
654 static int queue_pages_test_walk(unsigned long start, unsigned long end,
655 struct mm_walk *walk)
656 {
657 struct vm_area_struct *vma = walk->vma;
658 struct queue_pages *qp = walk->private;
659 unsigned long endvma = vma->vm_end;
660 unsigned long flags = qp->flags;
661
662 /* range check first */
663 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
664
665 if (!qp->first) {
666 qp->first = vma;
667 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
668 (qp->start < vma->vm_start))
669 /* hole at head side of range */
670 return -EFAULT;
671 }
672 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
673 ((vma->vm_end < qp->end) &&
674 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
675 /* hole at middle or tail of range */
676 return -EFAULT;
677
678 /*
679 * Need check MPOL_MF_STRICT to return -EIO if possible
680 * regardless of vma_migratable
681 */
682 if (!vma_migratable(vma) &&
683 !(flags & MPOL_MF_STRICT))
684 return 1;
685
686 if (endvma > end)
687 endvma = end;
688
689 if (flags & MPOL_MF_LAZY) {
690 /* Similar to task_numa_work, skip inaccessible VMAs */
691 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
692 !(vma->vm_flags & VM_MIXEDMAP))
693 change_prot_numa(vma, start, endvma);
694 return 1;
695 }
696
697 /* queue pages from current vma */
698 if (flags & MPOL_MF_VALID)
699 return 0;
700 return 1;
701 }
702
703 static const struct mm_walk_ops queue_pages_walk_ops = {
704 .hugetlb_entry = queue_pages_hugetlb,
705 .pmd_entry = queue_pages_pte_range,
706 .test_walk = queue_pages_test_walk,
707 };
708
709 /*
710 * Walk through page tables and collect pages to be migrated.
711 *
712 * If pages found in a given range are on a set of nodes (determined by
713 * @nodes and @flags,) it's isolated and queued to the pagelist which is
714 * passed via @private.
715 *
716 * queue_pages_range() has three possible return values:
717 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
718 * specified.
719 * 0 - queue pages successfully or no misplaced page.
720 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
721 * memory range specified by nodemask and maxnode points outside
722 * your accessible address space (-EFAULT)
723 */
724 static int
725 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
726 nodemask_t *nodes, unsigned long flags,
727 struct list_head *pagelist)
728 {
729 int err;
730 struct queue_pages qp = {
731 .pagelist = pagelist,
732 .flags = flags,
733 .nmask = nodes,
734 .start = start,
735 .end = end,
736 .first = NULL,
737 };
738
739 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
740
741 if (!qp.first)
742 /* whole range in hole */
743 err = -EFAULT;
744
745 return err;
746 }
747
748 /*
749 * Apply policy to a single VMA
750 * This must be called with the mmap_lock held for writing.
751 */
752 static int vma_replace_policy(struct vm_area_struct *vma,
753 struct mempolicy *pol)
754 {
755 int err;
756 struct mempolicy *old;
757 struct mempolicy *new;
758
759 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
760 vma->vm_start, vma->vm_end, vma->vm_pgoff,
761 vma->vm_ops, vma->vm_file,
762 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
763
764 new = mpol_dup(pol);
765 if (IS_ERR(new))
766 return PTR_ERR(new);
767
768 if (vma->vm_ops && vma->vm_ops->set_policy) {
769 err = vma->vm_ops->set_policy(vma, new);
770 if (err)
771 goto err_out;
772 }
773
774 old = vma->vm_policy;
775 vma->vm_policy = new; /* protected by mmap_lock */
776 mpol_put(old);
777
778 return 0;
779 err_out:
780 mpol_put(new);
781 return err;
782 }
783
784 /* Step 2: apply policy to a range and do splits. */
785 static int mbind_range(struct mm_struct *mm, unsigned long start,
786 unsigned long end, struct mempolicy *new_pol)
787 {
788 struct vm_area_struct *prev;
789 struct vm_area_struct *vma;
790 int err = 0;
791 pgoff_t pgoff;
792 unsigned long vmstart;
793 unsigned long vmend;
794
795 vma = find_vma(mm, start);
796 VM_BUG_ON(!vma);
797
798 prev = vma->vm_prev;
799 if (start > vma->vm_start)
800 prev = vma;
801
802 for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
803 vmstart = max(start, vma->vm_start);
804 vmend = min(end, vma->vm_end);
805
806 if (mpol_equal(vma_policy(vma), new_pol))
807 continue;
808
809 pgoff = vma->vm_pgoff +
810 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
811 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
812 vma->anon_vma, vma->vm_file, pgoff,
813 new_pol, vma->vm_userfaultfd_ctx,
814 anon_vma_name(vma));
815 if (prev) {
816 vma = prev;
817 goto replace;
818 }
819 if (vma->vm_start != vmstart) {
820 err = split_vma(vma->vm_mm, vma, vmstart, 1);
821 if (err)
822 goto out;
823 }
824 if (vma->vm_end != vmend) {
825 err = split_vma(vma->vm_mm, vma, vmend, 0);
826 if (err)
827 goto out;
828 }
829 replace:
830 err = vma_replace_policy(vma, new_pol);
831 if (err)
832 goto out;
833 }
834
835 out:
836 return err;
837 }
838
839 /* Set the process memory policy */
840 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
841 nodemask_t *nodes)
842 {
843 struct mempolicy *new, *old;
844 NODEMASK_SCRATCH(scratch);
845 int ret;
846
847 if (!scratch)
848 return -ENOMEM;
849
850 new = mpol_new(mode, flags, nodes);
851 if (IS_ERR(new)) {
852 ret = PTR_ERR(new);
853 goto out;
854 }
855
856 ret = mpol_set_nodemask(new, nodes, scratch);
857 if (ret) {
858 mpol_put(new);
859 goto out;
860 }
861 task_lock(current);
862 old = current->mempolicy;
863 current->mempolicy = new;
864 if (new && new->mode == MPOL_INTERLEAVE)
865 current->il_prev = MAX_NUMNODES-1;
866 task_unlock(current);
867 mpol_put(old);
868 ret = 0;
869 out:
870 NODEMASK_SCRATCH_FREE(scratch);
871 return ret;
872 }
873
874 /*
875 * Return nodemask for policy for get_mempolicy() query
876 *
877 * Called with task's alloc_lock held
878 */
879 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
880 {
881 nodes_clear(*nodes);
882 if (p == &default_policy)
883 return;
884
885 switch (p->mode) {
886 case MPOL_BIND:
887 case MPOL_INTERLEAVE:
888 case MPOL_PREFERRED:
889 case MPOL_PREFERRED_MANY:
890 *nodes = p->nodes;
891 break;
892 case MPOL_LOCAL:
893 /* return empty node mask for local allocation */
894 break;
895 default:
896 BUG();
897 }
898 }
899
900 static int lookup_node(struct mm_struct *mm, unsigned long addr)
901 {
902 struct page *p = NULL;
903 int ret;
904
905 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
906 if (ret > 0) {
907 ret = page_to_nid(p);
908 put_page(p);
909 }
910 return ret;
911 }
912
913 /* Retrieve NUMA policy */
914 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
915 unsigned long addr, unsigned long flags)
916 {
917 int err;
918 struct mm_struct *mm = current->mm;
919 struct vm_area_struct *vma = NULL;
920 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
921
922 if (flags &
923 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
924 return -EINVAL;
925
926 if (flags & MPOL_F_MEMS_ALLOWED) {
927 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
928 return -EINVAL;
929 *policy = 0; /* just so it's initialized */
930 task_lock(current);
931 *nmask = cpuset_current_mems_allowed;
932 task_unlock(current);
933 return 0;
934 }
935
936 if (flags & MPOL_F_ADDR) {
937 /*
938 * Do NOT fall back to task policy if the
939 * vma/shared policy at addr is NULL. We
940 * want to return MPOL_DEFAULT in this case.
941 */
942 mmap_read_lock(mm);
943 vma = vma_lookup(mm, addr);
944 if (!vma) {
945 mmap_read_unlock(mm);
946 return -EFAULT;
947 }
948 if (vma->vm_ops && vma->vm_ops->get_policy)
949 pol = vma->vm_ops->get_policy(vma, addr);
950 else
951 pol = vma->vm_policy;
952 } else if (addr)
953 return -EINVAL;
954
955 if (!pol)
956 pol = &default_policy; /* indicates default behavior */
957
958 if (flags & MPOL_F_NODE) {
959 if (flags & MPOL_F_ADDR) {
960 /*
961 * Take a refcount on the mpol, because we are about to
962 * drop the mmap_lock, after which only "pol" remains
963 * valid, "vma" is stale.
964 */
965 pol_refcount = pol;
966 vma = NULL;
967 mpol_get(pol);
968 mmap_read_unlock(mm);
969 err = lookup_node(mm, addr);
970 if (err < 0)
971 goto out;
972 *policy = err;
973 } else if (pol == current->mempolicy &&
974 pol->mode == MPOL_INTERLEAVE) {
975 *policy = next_node_in(current->il_prev, pol->nodes);
976 } else {
977 err = -EINVAL;
978 goto out;
979 }
980 } else {
981 *policy = pol == &default_policy ? MPOL_DEFAULT :
982 pol->mode;
983 /*
984 * Internal mempolicy flags must be masked off before exposing
985 * the policy to userspace.
986 */
987 *policy |= (pol->flags & MPOL_MODE_FLAGS);
988 }
989
990 err = 0;
991 if (nmask) {
992 if (mpol_store_user_nodemask(pol)) {
993 *nmask = pol->w.user_nodemask;
994 } else {
995 task_lock(current);
996 get_policy_nodemask(pol, nmask);
997 task_unlock(current);
998 }
999 }
1000
1001 out:
1002 mpol_cond_put(pol);
1003 if (vma)
1004 mmap_read_unlock(mm);
1005 if (pol_refcount)
1006 mpol_put(pol_refcount);
1007 return err;
1008 }
1009
1010 #ifdef CONFIG_MIGRATION
1011 /*
1012 * page migration, thp tail pages can be passed.
1013 */
1014 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1015 unsigned long flags)
1016 {
1017 struct page *head = compound_head(page);
1018 /*
1019 * Avoid migrating a page that is shared with others.
1020 */
1021 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1022 if (!isolate_lru_page(head)) {
1023 list_add_tail(&head->lru, pagelist);
1024 mod_node_page_state(page_pgdat(head),
1025 NR_ISOLATED_ANON + page_is_file_lru(head),
1026 thp_nr_pages(head));
1027 } else if (flags & MPOL_MF_STRICT) {
1028 /*
1029 * Non-movable page may reach here. And, there may be
1030 * temporary off LRU pages or non-LRU movable pages.
1031 * Treat them as unmovable pages since they can't be
1032 * isolated, so they can't be moved at the moment. It
1033 * should return -EIO for this case too.
1034 */
1035 return -EIO;
1036 }
1037 }
1038
1039 return 0;
1040 }
1041
1042 /*
1043 * Migrate pages from one node to a target node.
1044 * Returns error or the number of pages not migrated.
1045 */
1046 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1047 int flags)
1048 {
1049 nodemask_t nmask;
1050 LIST_HEAD(pagelist);
1051 int err = 0;
1052 struct migration_target_control mtc = {
1053 .nid = dest,
1054 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1055 };
1056
1057 nodes_clear(nmask);
1058 node_set(source, nmask);
1059
1060 /*
1061 * This does not "check" the range but isolates all pages that
1062 * need migration. Between passing in the full user address
1063 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1064 */
1065 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1066 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1067 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1068
1069 if (!list_empty(&pagelist)) {
1070 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1071 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1072 if (err)
1073 putback_movable_pages(&pagelist);
1074 }
1075
1076 return err;
1077 }
1078
1079 /*
1080 * Move pages between the two nodesets so as to preserve the physical
1081 * layout as much as possible.
1082 *
1083 * Returns the number of page that could not be moved.
1084 */
1085 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1086 const nodemask_t *to, int flags)
1087 {
1088 int busy = 0;
1089 int err = 0;
1090 nodemask_t tmp;
1091
1092 lru_cache_disable();
1093
1094 mmap_read_lock(mm);
1095
1096 /*
1097 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1098 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1099 * bit in 'tmp', and return that <source, dest> pair for migration.
1100 * The pair of nodemasks 'to' and 'from' define the map.
1101 *
1102 * If no pair of bits is found that way, fallback to picking some
1103 * pair of 'source' and 'dest' bits that are not the same. If the
1104 * 'source' and 'dest' bits are the same, this represents a node
1105 * that will be migrating to itself, so no pages need move.
1106 *
1107 * If no bits are left in 'tmp', or if all remaining bits left
1108 * in 'tmp' correspond to the same bit in 'to', return false
1109 * (nothing left to migrate).
1110 *
1111 * This lets us pick a pair of nodes to migrate between, such that
1112 * if possible the dest node is not already occupied by some other
1113 * source node, minimizing the risk of overloading the memory on a
1114 * node that would happen if we migrated incoming memory to a node
1115 * before migrating outgoing memory source that same node.
1116 *
1117 * A single scan of tmp is sufficient. As we go, we remember the
1118 * most recent <s, d> pair that moved (s != d). If we find a pair
1119 * that not only moved, but what's better, moved to an empty slot
1120 * (d is not set in tmp), then we break out then, with that pair.
1121 * Otherwise when we finish scanning from_tmp, we at least have the
1122 * most recent <s, d> pair that moved. If we get all the way through
1123 * the scan of tmp without finding any node that moved, much less
1124 * moved to an empty node, then there is nothing left worth migrating.
1125 */
1126
1127 tmp = *from;
1128 while (!nodes_empty(tmp)) {
1129 int s, d;
1130 int source = NUMA_NO_NODE;
1131 int dest = 0;
1132
1133 for_each_node_mask(s, tmp) {
1134
1135 /*
1136 * do_migrate_pages() tries to maintain the relative
1137 * node relationship of the pages established between
1138 * threads and memory areas.
1139 *
1140 * However if the number of source nodes is not equal to
1141 * the number of destination nodes we can not preserve
1142 * this node relative relationship. In that case, skip
1143 * copying memory from a node that is in the destination
1144 * mask.
1145 *
1146 * Example: [2,3,4] -> [3,4,5] moves everything.
1147 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1148 */
1149
1150 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1151 (node_isset(s, *to)))
1152 continue;
1153
1154 d = node_remap(s, *from, *to);
1155 if (s == d)
1156 continue;
1157
1158 source = s; /* Node moved. Memorize */
1159 dest = d;
1160
1161 /* dest not in remaining from nodes? */
1162 if (!node_isset(dest, tmp))
1163 break;
1164 }
1165 if (source == NUMA_NO_NODE)
1166 break;
1167
1168 node_clear(source, tmp);
1169 err = migrate_to_node(mm, source, dest, flags);
1170 if (err > 0)
1171 busy += err;
1172 if (err < 0)
1173 break;
1174 }
1175 mmap_read_unlock(mm);
1176
1177 lru_cache_enable();
1178 if (err < 0)
1179 return err;
1180 return busy;
1181
1182 }
1183
1184 /*
1185 * Allocate a new page for page migration based on vma policy.
1186 * Start by assuming the page is mapped by the same vma as contains @start.
1187 * Search forward from there, if not. N.B., this assumes that the
1188 * list of pages handed to migrate_pages()--which is how we get here--
1189 * is in virtual address order.
1190 */
1191 static struct page *new_page(struct page *page, unsigned long start)
1192 {
1193 struct folio *dst, *src = page_folio(page);
1194 struct vm_area_struct *vma;
1195 unsigned long address;
1196 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1197
1198 vma = find_vma(current->mm, start);
1199 while (vma) {
1200 address = page_address_in_vma(page, vma);
1201 if (address != -EFAULT)
1202 break;
1203 vma = vma->vm_next;
1204 }
1205
1206 if (folio_test_hugetlb(src))
1207 return alloc_huge_page_vma(page_hstate(&src->page),
1208 vma, address);
1209
1210 if (folio_test_large(src))
1211 gfp = GFP_TRANSHUGE;
1212
1213 /*
1214 * if !vma, vma_alloc_folio() will use task or system default policy
1215 */
1216 dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1217 folio_test_large(src));
1218 return &dst->page;
1219 }
1220 #else
1221
1222 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1223 unsigned long flags)
1224 {
1225 return -EIO;
1226 }
1227
1228 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1229 const nodemask_t *to, int flags)
1230 {
1231 return -ENOSYS;
1232 }
1233
1234 static struct page *new_page(struct page *page, unsigned long start)
1235 {
1236 return NULL;
1237 }
1238 #endif
1239
1240 static long do_mbind(unsigned long start, unsigned long len,
1241 unsigned short mode, unsigned short mode_flags,
1242 nodemask_t *nmask, unsigned long flags)
1243 {
1244 struct mm_struct *mm = current->mm;
1245 struct mempolicy *new;
1246 unsigned long end;
1247 int err;
1248 int ret;
1249 LIST_HEAD(pagelist);
1250
1251 if (flags & ~(unsigned long)MPOL_MF_VALID)
1252 return -EINVAL;
1253 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1254 return -EPERM;
1255
1256 if (start & ~PAGE_MASK)
1257 return -EINVAL;
1258
1259 if (mode == MPOL_DEFAULT)
1260 flags &= ~MPOL_MF_STRICT;
1261
1262 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1263 end = start + len;
1264
1265 if (end < start)
1266 return -EINVAL;
1267 if (end == start)
1268 return 0;
1269
1270 new = mpol_new(mode, mode_flags, nmask);
1271 if (IS_ERR(new))
1272 return PTR_ERR(new);
1273
1274 if (flags & MPOL_MF_LAZY)
1275 new->flags |= MPOL_F_MOF;
1276
1277 /*
1278 * If we are using the default policy then operation
1279 * on discontinuous address spaces is okay after all
1280 */
1281 if (!new)
1282 flags |= MPOL_MF_DISCONTIG_OK;
1283
1284 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1285 start, start + len, mode, mode_flags,
1286 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1287
1288 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1289
1290 lru_cache_disable();
1291 }
1292 {
1293 NODEMASK_SCRATCH(scratch);
1294 if (scratch) {
1295 mmap_write_lock(mm);
1296 err = mpol_set_nodemask(new, nmask, scratch);
1297 if (err)
1298 mmap_write_unlock(mm);
1299 } else
1300 err = -ENOMEM;
1301 NODEMASK_SCRATCH_FREE(scratch);
1302 }
1303 if (err)
1304 goto mpol_out;
1305
1306 ret = queue_pages_range(mm, start, end, nmask,
1307 flags | MPOL_MF_INVERT, &pagelist);
1308
1309 if (ret < 0) {
1310 err = ret;
1311 goto up_out;
1312 }
1313
1314 err = mbind_range(mm, start, end, new);
1315
1316 if (!err) {
1317 int nr_failed = 0;
1318
1319 if (!list_empty(&pagelist)) {
1320 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1321 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1322 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1323 if (nr_failed)
1324 putback_movable_pages(&pagelist);
1325 }
1326
1327 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1328 err = -EIO;
1329 } else {
1330 up_out:
1331 if (!list_empty(&pagelist))
1332 putback_movable_pages(&pagelist);
1333 }
1334
1335 mmap_write_unlock(mm);
1336 mpol_out:
1337 mpol_put(new);
1338 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1339 lru_cache_enable();
1340 return err;
1341 }
1342
1343 /*
1344 * User space interface with variable sized bitmaps for nodelists.
1345 */
1346 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1347 unsigned long maxnode)
1348 {
1349 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1350 int ret;
1351
1352 if (in_compat_syscall())
1353 ret = compat_get_bitmap(mask,
1354 (const compat_ulong_t __user *)nmask,
1355 maxnode);
1356 else
1357 ret = copy_from_user(mask, nmask,
1358 nlongs * sizeof(unsigned long));
1359
1360 if (ret)
1361 return -EFAULT;
1362
1363 if (maxnode % BITS_PER_LONG)
1364 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1365
1366 return 0;
1367 }
1368
1369 /* Copy a node mask from user space. */
1370 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1371 unsigned long maxnode)
1372 {
1373 --maxnode;
1374 nodes_clear(*nodes);
1375 if (maxnode == 0 || !nmask)
1376 return 0;
1377 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1378 return -EINVAL;
1379
1380 /*
1381 * When the user specified more nodes than supported just check
1382 * if the non supported part is all zero, one word at a time,
1383 * starting at the end.
1384 */
1385 while (maxnode > MAX_NUMNODES) {
1386 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1387 unsigned long t;
1388
1389 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1390 return -EFAULT;
1391
1392 if (maxnode - bits >= MAX_NUMNODES) {
1393 maxnode -= bits;
1394 } else {
1395 maxnode = MAX_NUMNODES;
1396 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1397 }
1398 if (t)
1399 return -EINVAL;
1400 }
1401
1402 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1403 }
1404
1405 /* Copy a kernel node mask to user space */
1406 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1407 nodemask_t *nodes)
1408 {
1409 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1410 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1411 bool compat = in_compat_syscall();
1412
1413 if (compat)
1414 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1415
1416 if (copy > nbytes) {
1417 if (copy > PAGE_SIZE)
1418 return -EINVAL;
1419 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1420 return -EFAULT;
1421 copy = nbytes;
1422 maxnode = nr_node_ids;
1423 }
1424
1425 if (compat)
1426 return compat_put_bitmap((compat_ulong_t __user *)mask,
1427 nodes_addr(*nodes), maxnode);
1428
1429 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1430 }
1431
1432 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1433 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1434 {
1435 *flags = *mode & MPOL_MODE_FLAGS;
1436 *mode &= ~MPOL_MODE_FLAGS;
1437
1438 if ((unsigned int)(*mode) >= MPOL_MAX)
1439 return -EINVAL;
1440 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1441 return -EINVAL;
1442 if (*flags & MPOL_F_NUMA_BALANCING) {
1443 if (*mode != MPOL_BIND)
1444 return -EINVAL;
1445 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1446 }
1447 return 0;
1448 }
1449
1450 static long kernel_mbind(unsigned long start, unsigned long len,
1451 unsigned long mode, const unsigned long __user *nmask,
1452 unsigned long maxnode, unsigned int flags)
1453 {
1454 unsigned short mode_flags;
1455 nodemask_t nodes;
1456 int lmode = mode;
1457 int err;
1458
1459 start = untagged_addr(start);
1460 err = sanitize_mpol_flags(&lmode, &mode_flags);
1461 if (err)
1462 return err;
1463
1464 err = get_nodes(&nodes, nmask, maxnode);
1465 if (err)
1466 return err;
1467
1468 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1469 }
1470
1471 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1472 unsigned long, home_node, unsigned long, flags)
1473 {
1474 struct mm_struct *mm = current->mm;
1475 struct vm_area_struct *vma;
1476 struct mempolicy *new;
1477 unsigned long vmstart;
1478 unsigned long vmend;
1479 unsigned long end;
1480 int err = -ENOENT;
1481
1482 start = untagged_addr(start);
1483 if (start & ~PAGE_MASK)
1484 return -EINVAL;
1485 /*
1486 * flags is used for future extension if any.
1487 */
1488 if (flags != 0)
1489 return -EINVAL;
1490
1491 /*
1492 * Check home_node is online to avoid accessing uninitialized
1493 * NODE_DATA.
1494 */
1495 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1496 return -EINVAL;
1497
1498 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1499 end = start + len;
1500
1501 if (end < start)
1502 return -EINVAL;
1503 if (end == start)
1504 return 0;
1505 mmap_write_lock(mm);
1506 vma = find_vma(mm, start);
1507 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
1508
1509 vmstart = max(start, vma->vm_start);
1510 vmend = min(end, vma->vm_end);
1511 new = mpol_dup(vma_policy(vma));
1512 if (IS_ERR(new)) {
1513 err = PTR_ERR(new);
1514 break;
1515 }
1516 /*
1517 * Only update home node if there is an existing vma policy
1518 */
1519 if (!new)
1520 continue;
1521
1522 /*
1523 * If any vma in the range got policy other than MPOL_BIND
1524 * or MPOL_PREFERRED_MANY we return error. We don't reset
1525 * the home node for vmas we already updated before.
1526 */
1527 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1528 err = -EOPNOTSUPP;
1529 break;
1530 }
1531
1532 new->home_node = home_node;
1533 err = mbind_range(mm, vmstart, vmend, new);
1534 mpol_put(new);
1535 if (err)
1536 break;
1537 }
1538 mmap_write_unlock(mm);
1539 return err;
1540 }
1541
1542 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1543 unsigned long, mode, const unsigned long __user *, nmask,
1544 unsigned long, maxnode, unsigned int, flags)
1545 {
1546 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1547 }
1548
1549 /* Set the process memory policy */
1550 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1551 unsigned long maxnode)
1552 {
1553 unsigned short mode_flags;
1554 nodemask_t nodes;
1555 int lmode = mode;
1556 int err;
1557
1558 err = sanitize_mpol_flags(&lmode, &mode_flags);
1559 if (err)
1560 return err;
1561
1562 err = get_nodes(&nodes, nmask, maxnode);
1563 if (err)
1564 return err;
1565
1566 return do_set_mempolicy(lmode, mode_flags, &nodes);
1567 }
1568
1569 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1570 unsigned long, maxnode)
1571 {
1572 return kernel_set_mempolicy(mode, nmask, maxnode);
1573 }
1574
1575 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1576 const unsigned long __user *old_nodes,
1577 const unsigned long __user *new_nodes)
1578 {
1579 struct mm_struct *mm = NULL;
1580 struct task_struct *task;
1581 nodemask_t task_nodes;
1582 int err;
1583 nodemask_t *old;
1584 nodemask_t *new;
1585 NODEMASK_SCRATCH(scratch);
1586
1587 if (!scratch)
1588 return -ENOMEM;
1589
1590 old = &scratch->mask1;
1591 new = &scratch->mask2;
1592
1593 err = get_nodes(old, old_nodes, maxnode);
1594 if (err)
1595 goto out;
1596
1597 err = get_nodes(new, new_nodes, maxnode);
1598 if (err)
1599 goto out;
1600
1601 /* Find the mm_struct */
1602 rcu_read_lock();
1603 task = pid ? find_task_by_vpid(pid) : current;
1604 if (!task) {
1605 rcu_read_unlock();
1606 err = -ESRCH;
1607 goto out;
1608 }
1609 get_task_struct(task);
1610
1611 err = -EINVAL;
1612
1613 /*
1614 * Check if this process has the right to modify the specified process.
1615 * Use the regular "ptrace_may_access()" checks.
1616 */
1617 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1618 rcu_read_unlock();
1619 err = -EPERM;
1620 goto out_put;
1621 }
1622 rcu_read_unlock();
1623
1624 task_nodes = cpuset_mems_allowed(task);
1625 /* Is the user allowed to access the target nodes? */
1626 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1627 err = -EPERM;
1628 goto out_put;
1629 }
1630
1631 task_nodes = cpuset_mems_allowed(current);
1632 nodes_and(*new, *new, task_nodes);
1633 if (nodes_empty(*new))
1634 goto out_put;
1635
1636 err = security_task_movememory(task);
1637 if (err)
1638 goto out_put;
1639
1640 mm = get_task_mm(task);
1641 put_task_struct(task);
1642
1643 if (!mm) {
1644 err = -EINVAL;
1645 goto out;
1646 }
1647
1648 err = do_migrate_pages(mm, old, new,
1649 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1650
1651 mmput(mm);
1652 out:
1653 NODEMASK_SCRATCH_FREE(scratch);
1654
1655 return err;
1656
1657 out_put:
1658 put_task_struct(task);
1659 goto out;
1660
1661 }
1662
1663 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1664 const unsigned long __user *, old_nodes,
1665 const unsigned long __user *, new_nodes)
1666 {
1667 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1668 }
1669
1670
1671 /* Retrieve NUMA policy */
1672 static int kernel_get_mempolicy(int __user *policy,
1673 unsigned long __user *nmask,
1674 unsigned long maxnode,
1675 unsigned long addr,
1676 unsigned long flags)
1677 {
1678 int err;
1679 int pval;
1680 nodemask_t nodes;
1681
1682 if (nmask != NULL && maxnode < nr_node_ids)
1683 return -EINVAL;
1684
1685 addr = untagged_addr(addr);
1686
1687 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1688
1689 if (err)
1690 return err;
1691
1692 if (policy && put_user(pval, policy))
1693 return -EFAULT;
1694
1695 if (nmask)
1696 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1697
1698 return err;
1699 }
1700
1701 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1702 unsigned long __user *, nmask, unsigned long, maxnode,
1703 unsigned long, addr, unsigned long, flags)
1704 {
1705 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1706 }
1707
1708 bool vma_migratable(struct vm_area_struct *vma)
1709 {
1710 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1711 return false;
1712
1713 /*
1714 * DAX device mappings require predictable access latency, so avoid
1715 * incurring periodic faults.
1716 */
1717 if (vma_is_dax(vma))
1718 return false;
1719
1720 if (is_vm_hugetlb_page(vma) &&
1721 !hugepage_migration_supported(hstate_vma(vma)))
1722 return false;
1723
1724 /*
1725 * Migration allocates pages in the highest zone. If we cannot
1726 * do so then migration (at least from node to node) is not
1727 * possible.
1728 */
1729 if (vma->vm_file &&
1730 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1731 < policy_zone)
1732 return false;
1733 return true;
1734 }
1735
1736 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1737 unsigned long addr)
1738 {
1739 struct mempolicy *pol = NULL;
1740
1741 if (vma) {
1742 if (vma->vm_ops && vma->vm_ops->get_policy) {
1743 pol = vma->vm_ops->get_policy(vma, addr);
1744 } else if (vma->vm_policy) {
1745 pol = vma->vm_policy;
1746
1747 /*
1748 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1749 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1750 * count on these policies which will be dropped by
1751 * mpol_cond_put() later
1752 */
1753 if (mpol_needs_cond_ref(pol))
1754 mpol_get(pol);
1755 }
1756 }
1757
1758 return pol;
1759 }
1760
1761 /*
1762 * get_vma_policy(@vma, @addr)
1763 * @vma: virtual memory area whose policy is sought
1764 * @addr: address in @vma for shared policy lookup
1765 *
1766 * Returns effective policy for a VMA at specified address.
1767 * Falls back to current->mempolicy or system default policy, as necessary.
1768 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1769 * count--added by the get_policy() vm_op, as appropriate--to protect against
1770 * freeing by another task. It is the caller's responsibility to free the
1771 * extra reference for shared policies.
1772 */
1773 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1774 unsigned long addr)
1775 {
1776 struct mempolicy *pol = __get_vma_policy(vma, addr);
1777
1778 if (!pol)
1779 pol = get_task_policy(current);
1780
1781 return pol;
1782 }
1783
1784 bool vma_policy_mof(struct vm_area_struct *vma)
1785 {
1786 struct mempolicy *pol;
1787
1788 if (vma->vm_ops && vma->vm_ops->get_policy) {
1789 bool ret = false;
1790
1791 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1792 if (pol && (pol->flags & MPOL_F_MOF))
1793 ret = true;
1794 mpol_cond_put(pol);
1795
1796 return ret;
1797 }
1798
1799 pol = vma->vm_policy;
1800 if (!pol)
1801 pol = get_task_policy(current);
1802
1803 return pol->flags & MPOL_F_MOF;
1804 }
1805
1806 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1807 {
1808 enum zone_type dynamic_policy_zone = policy_zone;
1809
1810 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1811
1812 /*
1813 * if policy->nodes has movable memory only,
1814 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1815 *
1816 * policy->nodes is intersect with node_states[N_MEMORY].
1817 * so if the following test fails, it implies
1818 * policy->nodes has movable memory only.
1819 */
1820 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1821 dynamic_policy_zone = ZONE_MOVABLE;
1822
1823 return zone >= dynamic_policy_zone;
1824 }
1825
1826 /*
1827 * Return a nodemask representing a mempolicy for filtering nodes for
1828 * page allocation
1829 */
1830 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1831 {
1832 int mode = policy->mode;
1833
1834 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1835 if (unlikely(mode == MPOL_BIND) &&
1836 apply_policy_zone(policy, gfp_zone(gfp)) &&
1837 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1838 return &policy->nodes;
1839
1840 if (mode == MPOL_PREFERRED_MANY)
1841 return &policy->nodes;
1842
1843 return NULL;
1844 }
1845
1846 /*
1847 * Return the preferred node id for 'prefer' mempolicy, and return
1848 * the given id for all other policies.
1849 *
1850 * policy_node() is always coupled with policy_nodemask(), which
1851 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1852 */
1853 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1854 {
1855 if (policy->mode == MPOL_PREFERRED) {
1856 nd = first_node(policy->nodes);
1857 } else {
1858 /*
1859 * __GFP_THISNODE shouldn't even be used with the bind policy
1860 * because we might easily break the expectation to stay on the
1861 * requested node and not break the policy.
1862 */
1863 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1864 }
1865
1866 if ((policy->mode == MPOL_BIND ||
1867 policy->mode == MPOL_PREFERRED_MANY) &&
1868 policy->home_node != NUMA_NO_NODE)
1869 return policy->home_node;
1870
1871 return nd;
1872 }
1873
1874 /* Do dynamic interleaving for a process */
1875 static unsigned interleave_nodes(struct mempolicy *policy)
1876 {
1877 unsigned next;
1878 struct task_struct *me = current;
1879
1880 next = next_node_in(me->il_prev, policy->nodes);
1881 if (next < MAX_NUMNODES)
1882 me->il_prev = next;
1883 return next;
1884 }
1885
1886 /*
1887 * Depending on the memory policy provide a node from which to allocate the
1888 * next slab entry.
1889 */
1890 unsigned int mempolicy_slab_node(void)
1891 {
1892 struct mempolicy *policy;
1893 int node = numa_mem_id();
1894
1895 if (!in_task())
1896 return node;
1897
1898 policy = current->mempolicy;
1899 if (!policy)
1900 return node;
1901
1902 switch (policy->mode) {
1903 case MPOL_PREFERRED:
1904 return first_node(policy->nodes);
1905
1906 case MPOL_INTERLEAVE:
1907 return interleave_nodes(policy);
1908
1909 case MPOL_BIND:
1910 case MPOL_PREFERRED_MANY:
1911 {
1912 struct zoneref *z;
1913
1914 /*
1915 * Follow bind policy behavior and start allocation at the
1916 * first node.
1917 */
1918 struct zonelist *zonelist;
1919 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1920 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1921 z = first_zones_zonelist(zonelist, highest_zoneidx,
1922 &policy->nodes);
1923 return z->zone ? zone_to_nid(z->zone) : node;
1924 }
1925 case MPOL_LOCAL:
1926 return node;
1927
1928 default:
1929 BUG();
1930 }
1931 }
1932
1933 /*
1934 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1935 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1936 * number of present nodes.
1937 */
1938 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1939 {
1940 nodemask_t nodemask = pol->nodes;
1941 unsigned int target, nnodes;
1942 int i;
1943 int nid;
1944 /*
1945 * The barrier will stabilize the nodemask in a register or on
1946 * the stack so that it will stop changing under the code.
1947 *
1948 * Between first_node() and next_node(), pol->nodes could be changed
1949 * by other threads. So we put pol->nodes in a local stack.
1950 */
1951 barrier();
1952
1953 nnodes = nodes_weight(nodemask);
1954 if (!nnodes)
1955 return numa_node_id();
1956 target = (unsigned int)n % nnodes;
1957 nid = first_node(nodemask);
1958 for (i = 0; i < target; i++)
1959 nid = next_node(nid, nodemask);
1960 return nid;
1961 }
1962
1963 /* Determine a node number for interleave */
1964 static inline unsigned interleave_nid(struct mempolicy *pol,
1965 struct vm_area_struct *vma, unsigned long addr, int shift)
1966 {
1967 if (vma) {
1968 unsigned long off;
1969
1970 /*
1971 * for small pages, there is no difference between
1972 * shift and PAGE_SHIFT, so the bit-shift is safe.
1973 * for huge pages, since vm_pgoff is in units of small
1974 * pages, we need to shift off the always 0 bits to get
1975 * a useful offset.
1976 */
1977 BUG_ON(shift < PAGE_SHIFT);
1978 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1979 off += (addr - vma->vm_start) >> shift;
1980 return offset_il_node(pol, off);
1981 } else
1982 return interleave_nodes(pol);
1983 }
1984
1985 #ifdef CONFIG_HUGETLBFS
1986 /*
1987 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1988 * @vma: virtual memory area whose policy is sought
1989 * @addr: address in @vma for shared policy lookup and interleave policy
1990 * @gfp_flags: for requested zone
1991 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1992 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1993 *
1994 * Returns a nid suitable for a huge page allocation and a pointer
1995 * to the struct mempolicy for conditional unref after allocation.
1996 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1997 * to the mempolicy's @nodemask for filtering the zonelist.
1998 *
1999 * Must be protected by read_mems_allowed_begin()
2000 */
2001 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2002 struct mempolicy **mpol, nodemask_t **nodemask)
2003 {
2004 int nid;
2005 int mode;
2006
2007 *mpol = get_vma_policy(vma, addr);
2008 *nodemask = NULL;
2009 mode = (*mpol)->mode;
2010
2011 if (unlikely(mode == MPOL_INTERLEAVE)) {
2012 nid = interleave_nid(*mpol, vma, addr,
2013 huge_page_shift(hstate_vma(vma)));
2014 } else {
2015 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2016 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2017 *nodemask = &(*mpol)->nodes;
2018 }
2019 return nid;
2020 }
2021
2022 /*
2023 * init_nodemask_of_mempolicy
2024 *
2025 * If the current task's mempolicy is "default" [NULL], return 'false'
2026 * to indicate default policy. Otherwise, extract the policy nodemask
2027 * for 'bind' or 'interleave' policy into the argument nodemask, or
2028 * initialize the argument nodemask to contain the single node for
2029 * 'preferred' or 'local' policy and return 'true' to indicate presence
2030 * of non-default mempolicy.
2031 *
2032 * We don't bother with reference counting the mempolicy [mpol_get/put]
2033 * because the current task is examining it's own mempolicy and a task's
2034 * mempolicy is only ever changed by the task itself.
2035 *
2036 * N.B., it is the caller's responsibility to free a returned nodemask.
2037 */
2038 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2039 {
2040 struct mempolicy *mempolicy;
2041
2042 if (!(mask && current->mempolicy))
2043 return false;
2044
2045 task_lock(current);
2046 mempolicy = current->mempolicy;
2047 switch (mempolicy->mode) {
2048 case MPOL_PREFERRED:
2049 case MPOL_PREFERRED_MANY:
2050 case MPOL_BIND:
2051 case MPOL_INTERLEAVE:
2052 *mask = mempolicy->nodes;
2053 break;
2054
2055 case MPOL_LOCAL:
2056 init_nodemask_of_node(mask, numa_node_id());
2057 break;
2058
2059 default:
2060 BUG();
2061 }
2062 task_unlock(current);
2063
2064 return true;
2065 }
2066 #endif
2067
2068 /*
2069 * mempolicy_in_oom_domain
2070 *
2071 * If tsk's mempolicy is "bind", check for intersection between mask and
2072 * the policy nodemask. Otherwise, return true for all other policies
2073 * including "interleave", as a tsk with "interleave" policy may have
2074 * memory allocated from all nodes in system.
2075 *
2076 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2077 */
2078 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2079 const nodemask_t *mask)
2080 {
2081 struct mempolicy *mempolicy;
2082 bool ret = true;
2083
2084 if (!mask)
2085 return ret;
2086
2087 task_lock(tsk);
2088 mempolicy = tsk->mempolicy;
2089 if (mempolicy && mempolicy->mode == MPOL_BIND)
2090 ret = nodes_intersects(mempolicy->nodes, *mask);
2091 task_unlock(tsk);
2092
2093 return ret;
2094 }
2095
2096 /* Allocate a page in interleaved policy.
2097 Own path because it needs to do special accounting. */
2098 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2099 unsigned nid)
2100 {
2101 struct page *page;
2102
2103 page = __alloc_pages(gfp, order, nid, NULL);
2104 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2105 if (!static_branch_likely(&vm_numa_stat_key))
2106 return page;
2107 if (page && page_to_nid(page) == nid) {
2108 preempt_disable();
2109 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2110 preempt_enable();
2111 }
2112 return page;
2113 }
2114
2115 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2116 int nid, struct mempolicy *pol)
2117 {
2118 struct page *page;
2119 gfp_t preferred_gfp;
2120
2121 /*
2122 * This is a two pass approach. The first pass will only try the
2123 * preferred nodes but skip the direct reclaim and allow the
2124 * allocation to fail, while the second pass will try all the
2125 * nodes in system.
2126 */
2127 preferred_gfp = gfp | __GFP_NOWARN;
2128 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2129 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2130 if (!page)
2131 page = __alloc_pages(gfp, order, nid, NULL);
2132
2133 return page;
2134 }
2135
2136 /**
2137 * vma_alloc_folio - Allocate a folio for a VMA.
2138 * @gfp: GFP flags.
2139 * @order: Order of the folio.
2140 * @vma: Pointer to VMA or NULL if not available.
2141 * @addr: Virtual address of the allocation. Must be inside @vma.
2142 * @hugepage: For hugepages try only the preferred node if possible.
2143 *
2144 * Allocate a folio for a specific address in @vma, using the appropriate
2145 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2146 * of the mm_struct of the VMA to prevent it from going away. Should be
2147 * used for all allocations for folios that will be mapped into user space.
2148 *
2149 * Return: The folio on success or NULL if allocation fails.
2150 */
2151 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2152 unsigned long addr, bool hugepage)
2153 {
2154 struct mempolicy *pol;
2155 int node = numa_node_id();
2156 struct folio *folio;
2157 int preferred_nid;
2158 nodemask_t *nmask;
2159
2160 pol = get_vma_policy(vma, addr);
2161
2162 if (pol->mode == MPOL_INTERLEAVE) {
2163 struct page *page;
2164 unsigned nid;
2165
2166 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2167 mpol_cond_put(pol);
2168 gfp |= __GFP_COMP;
2169 page = alloc_page_interleave(gfp, order, nid);
2170 if (page && order > 1)
2171 prep_transhuge_page(page);
2172 folio = (struct folio *)page;
2173 goto out;
2174 }
2175
2176 if (pol->mode == MPOL_PREFERRED_MANY) {
2177 struct page *page;
2178
2179 node = policy_node(gfp, pol, node);
2180 gfp |= __GFP_COMP;
2181 page = alloc_pages_preferred_many(gfp, order, node, pol);
2182 mpol_cond_put(pol);
2183 if (page && order > 1)
2184 prep_transhuge_page(page);
2185 folio = (struct folio *)page;
2186 goto out;
2187 }
2188
2189 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2190 int hpage_node = node;
2191
2192 /*
2193 * For hugepage allocation and non-interleave policy which
2194 * allows the current node (or other explicitly preferred
2195 * node) we only try to allocate from the current/preferred
2196 * node and don't fall back to other nodes, as the cost of
2197 * remote accesses would likely offset THP benefits.
2198 *
2199 * If the policy is interleave or does not allow the current
2200 * node in its nodemask, we allocate the standard way.
2201 */
2202 if (pol->mode == MPOL_PREFERRED)
2203 hpage_node = first_node(pol->nodes);
2204
2205 nmask = policy_nodemask(gfp, pol);
2206 if (!nmask || node_isset(hpage_node, *nmask)) {
2207 mpol_cond_put(pol);
2208 /*
2209 * First, try to allocate THP only on local node, but
2210 * don't reclaim unnecessarily, just compact.
2211 */
2212 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2213 __GFP_NORETRY, order, hpage_node);
2214
2215 /*
2216 * If hugepage allocations are configured to always
2217 * synchronous compact or the vma has been madvised
2218 * to prefer hugepage backing, retry allowing remote
2219 * memory with both reclaim and compact as well.
2220 */
2221 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2222 folio = __folio_alloc(gfp, order, hpage_node,
2223 nmask);
2224
2225 goto out;
2226 }
2227 }
2228
2229 nmask = policy_nodemask(gfp, pol);
2230 preferred_nid = policy_node(gfp, pol, node);
2231 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2232 mpol_cond_put(pol);
2233 out:
2234 return folio;
2235 }
2236 EXPORT_SYMBOL(vma_alloc_folio);
2237
2238 /**
2239 * alloc_pages - Allocate pages.
2240 * @gfp: GFP flags.
2241 * @order: Power of two of number of pages to allocate.
2242 *
2243 * Allocate 1 << @order contiguous pages. The physical address of the
2244 * first page is naturally aligned (eg an order-3 allocation will be aligned
2245 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2246 * process is honoured when in process context.
2247 *
2248 * Context: Can be called from any context, providing the appropriate GFP
2249 * flags are used.
2250 * Return: The page on success or NULL if allocation fails.
2251 */
2252 struct page *alloc_pages(gfp_t gfp, unsigned order)
2253 {
2254 struct mempolicy *pol = &default_policy;
2255 struct page *page;
2256
2257 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2258 pol = get_task_policy(current);
2259
2260 /*
2261 * No reference counting needed for current->mempolicy
2262 * nor system default_policy
2263 */
2264 if (pol->mode == MPOL_INTERLEAVE)
2265 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2266 else if (pol->mode == MPOL_PREFERRED_MANY)
2267 page = alloc_pages_preferred_many(gfp, order,
2268 policy_node(gfp, pol, numa_node_id()), pol);
2269 else
2270 page = __alloc_pages(gfp, order,
2271 policy_node(gfp, pol, numa_node_id()),
2272 policy_nodemask(gfp, pol));
2273
2274 return page;
2275 }
2276 EXPORT_SYMBOL(alloc_pages);
2277
2278 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2279 {
2280 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2281
2282 if (page && order > 1)
2283 prep_transhuge_page(page);
2284 return (struct folio *)page;
2285 }
2286 EXPORT_SYMBOL(folio_alloc);
2287
2288 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2289 struct mempolicy *pol, unsigned long nr_pages,
2290 struct page **page_array)
2291 {
2292 int nodes;
2293 unsigned long nr_pages_per_node;
2294 int delta;
2295 int i;
2296 unsigned long nr_allocated;
2297 unsigned long total_allocated = 0;
2298
2299 nodes = nodes_weight(pol->nodes);
2300 nr_pages_per_node = nr_pages / nodes;
2301 delta = nr_pages - nodes * nr_pages_per_node;
2302
2303 for (i = 0; i < nodes; i++) {
2304 if (delta) {
2305 nr_allocated = __alloc_pages_bulk(gfp,
2306 interleave_nodes(pol), NULL,
2307 nr_pages_per_node + 1, NULL,
2308 page_array);
2309 delta--;
2310 } else {
2311 nr_allocated = __alloc_pages_bulk(gfp,
2312 interleave_nodes(pol), NULL,
2313 nr_pages_per_node, NULL, page_array);
2314 }
2315
2316 page_array += nr_allocated;
2317 total_allocated += nr_allocated;
2318 }
2319
2320 return total_allocated;
2321 }
2322
2323 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2324 struct mempolicy *pol, unsigned long nr_pages,
2325 struct page **page_array)
2326 {
2327 gfp_t preferred_gfp;
2328 unsigned long nr_allocated = 0;
2329
2330 preferred_gfp = gfp | __GFP_NOWARN;
2331 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2332
2333 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2334 nr_pages, NULL, page_array);
2335
2336 if (nr_allocated < nr_pages)
2337 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2338 nr_pages - nr_allocated, NULL,
2339 page_array + nr_allocated);
2340 return nr_allocated;
2341 }
2342
2343 /* alloc pages bulk and mempolicy should be considered at the
2344 * same time in some situation such as vmalloc.
2345 *
2346 * It can accelerate memory allocation especially interleaving
2347 * allocate memory.
2348 */
2349 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2350 unsigned long nr_pages, struct page **page_array)
2351 {
2352 struct mempolicy *pol = &default_policy;
2353
2354 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2355 pol = get_task_policy(current);
2356
2357 if (pol->mode == MPOL_INTERLEAVE)
2358 return alloc_pages_bulk_array_interleave(gfp, pol,
2359 nr_pages, page_array);
2360
2361 if (pol->mode == MPOL_PREFERRED_MANY)
2362 return alloc_pages_bulk_array_preferred_many(gfp,
2363 numa_node_id(), pol, nr_pages, page_array);
2364
2365 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2366 policy_nodemask(gfp, pol), nr_pages, NULL,
2367 page_array);
2368 }
2369
2370 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2371 {
2372 struct mempolicy *pol = mpol_dup(vma_policy(src));
2373
2374 if (IS_ERR(pol))
2375 return PTR_ERR(pol);
2376 dst->vm_policy = pol;
2377 return 0;
2378 }
2379
2380 /*
2381 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2382 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2383 * with the mems_allowed returned by cpuset_mems_allowed(). This
2384 * keeps mempolicies cpuset relative after its cpuset moves. See
2385 * further kernel/cpuset.c update_nodemask().
2386 *
2387 * current's mempolicy may be rebinded by the other task(the task that changes
2388 * cpuset's mems), so we needn't do rebind work for current task.
2389 */
2390
2391 /* Slow path of a mempolicy duplicate */
2392 struct mempolicy *__mpol_dup(struct mempolicy *old)
2393 {
2394 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2395
2396 if (!new)
2397 return ERR_PTR(-ENOMEM);
2398
2399 /* task's mempolicy is protected by alloc_lock */
2400 if (old == current->mempolicy) {
2401 task_lock(current);
2402 *new = *old;
2403 task_unlock(current);
2404 } else
2405 *new = *old;
2406
2407 if (current_cpuset_is_being_rebound()) {
2408 nodemask_t mems = cpuset_mems_allowed(current);
2409 mpol_rebind_policy(new, &mems);
2410 }
2411 atomic_set(&new->refcnt, 1);
2412 return new;
2413 }
2414
2415 /* Slow path of a mempolicy comparison */
2416 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2417 {
2418 if (!a || !b)
2419 return false;
2420 if (a->mode != b->mode)
2421 return false;
2422 if (a->flags != b->flags)
2423 return false;
2424 if (a->home_node != b->home_node)
2425 return false;
2426 if (mpol_store_user_nodemask(a))
2427 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2428 return false;
2429
2430 switch (a->mode) {
2431 case MPOL_BIND:
2432 case MPOL_INTERLEAVE:
2433 case MPOL_PREFERRED:
2434 case MPOL_PREFERRED_MANY:
2435 return !!nodes_equal(a->nodes, b->nodes);
2436 case MPOL_LOCAL:
2437 return true;
2438 default:
2439 BUG();
2440 return false;
2441 }
2442 }
2443
2444 /*
2445 * Shared memory backing store policy support.
2446 *
2447 * Remember policies even when nobody has shared memory mapped.
2448 * The policies are kept in Red-Black tree linked from the inode.
2449 * They are protected by the sp->lock rwlock, which should be held
2450 * for any accesses to the tree.
2451 */
2452
2453 /*
2454 * lookup first element intersecting start-end. Caller holds sp->lock for
2455 * reading or for writing
2456 */
2457 static struct sp_node *
2458 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2459 {
2460 struct rb_node *n = sp->root.rb_node;
2461
2462 while (n) {
2463 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2464
2465 if (start >= p->end)
2466 n = n->rb_right;
2467 else if (end <= p->start)
2468 n = n->rb_left;
2469 else
2470 break;
2471 }
2472 if (!n)
2473 return NULL;
2474 for (;;) {
2475 struct sp_node *w = NULL;
2476 struct rb_node *prev = rb_prev(n);
2477 if (!prev)
2478 break;
2479 w = rb_entry(prev, struct sp_node, nd);
2480 if (w->end <= start)
2481 break;
2482 n = prev;
2483 }
2484 return rb_entry(n, struct sp_node, nd);
2485 }
2486
2487 /*
2488 * Insert a new shared policy into the list. Caller holds sp->lock for
2489 * writing.
2490 */
2491 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2492 {
2493 struct rb_node **p = &sp->root.rb_node;
2494 struct rb_node *parent = NULL;
2495 struct sp_node *nd;
2496
2497 while (*p) {
2498 parent = *p;
2499 nd = rb_entry(parent, struct sp_node, nd);
2500 if (new->start < nd->start)
2501 p = &(*p)->rb_left;
2502 else if (new->end > nd->end)
2503 p = &(*p)->rb_right;
2504 else
2505 BUG();
2506 }
2507 rb_link_node(&new->nd, parent, p);
2508 rb_insert_color(&new->nd, &sp->root);
2509 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2510 new->policy ? new->policy->mode : 0);
2511 }
2512
2513 /* Find shared policy intersecting idx */
2514 struct mempolicy *
2515 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2516 {
2517 struct mempolicy *pol = NULL;
2518 struct sp_node *sn;
2519
2520 if (!sp->root.rb_node)
2521 return NULL;
2522 read_lock(&sp->lock);
2523 sn = sp_lookup(sp, idx, idx+1);
2524 if (sn) {
2525 mpol_get(sn->policy);
2526 pol = sn->policy;
2527 }
2528 read_unlock(&sp->lock);
2529 return pol;
2530 }
2531
2532 static void sp_free(struct sp_node *n)
2533 {
2534 mpol_put(n->policy);
2535 kmem_cache_free(sn_cache, n);
2536 }
2537
2538 /**
2539 * mpol_misplaced - check whether current page node is valid in policy
2540 *
2541 * @page: page to be checked
2542 * @vma: vm area where page mapped
2543 * @addr: virtual address where page mapped
2544 *
2545 * Lookup current policy node id for vma,addr and "compare to" page's
2546 * node id. Policy determination "mimics" alloc_page_vma().
2547 * Called from fault path where we know the vma and faulting address.
2548 *
2549 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2550 * policy, or a suitable node ID to allocate a replacement page from.
2551 */
2552 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2553 {
2554 struct mempolicy *pol;
2555 struct zoneref *z;
2556 int curnid = page_to_nid(page);
2557 unsigned long pgoff;
2558 int thiscpu = raw_smp_processor_id();
2559 int thisnid = cpu_to_node(thiscpu);
2560 int polnid = NUMA_NO_NODE;
2561 int ret = NUMA_NO_NODE;
2562
2563 pol = get_vma_policy(vma, addr);
2564 if (!(pol->flags & MPOL_F_MOF))
2565 goto out;
2566
2567 switch (pol->mode) {
2568 case MPOL_INTERLEAVE:
2569 pgoff = vma->vm_pgoff;
2570 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2571 polnid = offset_il_node(pol, pgoff);
2572 break;
2573
2574 case MPOL_PREFERRED:
2575 if (node_isset(curnid, pol->nodes))
2576 goto out;
2577 polnid = first_node(pol->nodes);
2578 break;
2579
2580 case MPOL_LOCAL:
2581 polnid = numa_node_id();
2582 break;
2583
2584 case MPOL_BIND:
2585 /* Optimize placement among multiple nodes via NUMA balancing */
2586 if (pol->flags & MPOL_F_MORON) {
2587 if (node_isset(thisnid, pol->nodes))
2588 break;
2589 goto out;
2590 }
2591 fallthrough;
2592
2593 case MPOL_PREFERRED_MANY:
2594 /*
2595 * use current page if in policy nodemask,
2596 * else select nearest allowed node, if any.
2597 * If no allowed nodes, use current [!misplaced].
2598 */
2599 if (node_isset(curnid, pol->nodes))
2600 goto out;
2601 z = first_zones_zonelist(
2602 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2603 gfp_zone(GFP_HIGHUSER),
2604 &pol->nodes);
2605 polnid = zone_to_nid(z->zone);
2606 break;
2607
2608 default:
2609 BUG();
2610 }
2611
2612 /* Migrate the page towards the node whose CPU is referencing it */
2613 if (pol->flags & MPOL_F_MORON) {
2614 polnid = thisnid;
2615
2616 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2617 goto out;
2618 }
2619
2620 if (curnid != polnid)
2621 ret = polnid;
2622 out:
2623 mpol_cond_put(pol);
2624
2625 return ret;
2626 }
2627
2628 /*
2629 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2630 * dropped after task->mempolicy is set to NULL so that any allocation done as
2631 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2632 * policy.
2633 */
2634 void mpol_put_task_policy(struct task_struct *task)
2635 {
2636 struct mempolicy *pol;
2637
2638 task_lock(task);
2639 pol = task->mempolicy;
2640 task->mempolicy = NULL;
2641 task_unlock(task);
2642 mpol_put(pol);
2643 }
2644
2645 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2646 {
2647 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2648 rb_erase(&n->nd, &sp->root);
2649 sp_free(n);
2650 }
2651
2652 static void sp_node_init(struct sp_node *node, unsigned long start,
2653 unsigned long end, struct mempolicy *pol)
2654 {
2655 node->start = start;
2656 node->end = end;
2657 node->policy = pol;
2658 }
2659
2660 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2661 struct mempolicy *pol)
2662 {
2663 struct sp_node *n;
2664 struct mempolicy *newpol;
2665
2666 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2667 if (!n)
2668 return NULL;
2669
2670 newpol = mpol_dup(pol);
2671 if (IS_ERR(newpol)) {
2672 kmem_cache_free(sn_cache, n);
2673 return NULL;
2674 }
2675 newpol->flags |= MPOL_F_SHARED;
2676 sp_node_init(n, start, end, newpol);
2677
2678 return n;
2679 }
2680
2681 /* Replace a policy range. */
2682 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2683 unsigned long end, struct sp_node *new)
2684 {
2685 struct sp_node *n;
2686 struct sp_node *n_new = NULL;
2687 struct mempolicy *mpol_new = NULL;
2688 int ret = 0;
2689
2690 restart:
2691 write_lock(&sp->lock);
2692 n = sp_lookup(sp, start, end);
2693 /* Take care of old policies in the same range. */
2694 while (n && n->start < end) {
2695 struct rb_node *next = rb_next(&n->nd);
2696 if (n->start >= start) {
2697 if (n->end <= end)
2698 sp_delete(sp, n);
2699 else
2700 n->start = end;
2701 } else {
2702 /* Old policy spanning whole new range. */
2703 if (n->end > end) {
2704 if (!n_new)
2705 goto alloc_new;
2706
2707 *mpol_new = *n->policy;
2708 atomic_set(&mpol_new->refcnt, 1);
2709 sp_node_init(n_new, end, n->end, mpol_new);
2710 n->end = start;
2711 sp_insert(sp, n_new);
2712 n_new = NULL;
2713 mpol_new = NULL;
2714 break;
2715 } else
2716 n->end = start;
2717 }
2718 if (!next)
2719 break;
2720 n = rb_entry(next, struct sp_node, nd);
2721 }
2722 if (new)
2723 sp_insert(sp, new);
2724 write_unlock(&sp->lock);
2725 ret = 0;
2726
2727 err_out:
2728 if (mpol_new)
2729 mpol_put(mpol_new);
2730 if (n_new)
2731 kmem_cache_free(sn_cache, n_new);
2732
2733 return ret;
2734
2735 alloc_new:
2736 write_unlock(&sp->lock);
2737 ret = -ENOMEM;
2738 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2739 if (!n_new)
2740 goto err_out;
2741 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2742 if (!mpol_new)
2743 goto err_out;
2744 atomic_set(&mpol_new->refcnt, 1);
2745 goto restart;
2746 }
2747
2748 /**
2749 * mpol_shared_policy_init - initialize shared policy for inode
2750 * @sp: pointer to inode shared policy
2751 * @mpol: struct mempolicy to install
2752 *
2753 * Install non-NULL @mpol in inode's shared policy rb-tree.
2754 * On entry, the current task has a reference on a non-NULL @mpol.
2755 * This must be released on exit.
2756 * This is called at get_inode() calls and we can use GFP_KERNEL.
2757 */
2758 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2759 {
2760 int ret;
2761
2762 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2763 rwlock_init(&sp->lock);
2764
2765 if (mpol) {
2766 struct vm_area_struct pvma;
2767 struct mempolicy *new;
2768 NODEMASK_SCRATCH(scratch);
2769
2770 if (!scratch)
2771 goto put_mpol;
2772 /* contextualize the tmpfs mount point mempolicy */
2773 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2774 if (IS_ERR(new))
2775 goto free_scratch; /* no valid nodemask intersection */
2776
2777 task_lock(current);
2778 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2779 task_unlock(current);
2780 if (ret)
2781 goto put_new;
2782
2783 /* Create pseudo-vma that contains just the policy */
2784 vma_init(&pvma, NULL);
2785 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2786 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2787
2788 put_new:
2789 mpol_put(new); /* drop initial ref */
2790 free_scratch:
2791 NODEMASK_SCRATCH_FREE(scratch);
2792 put_mpol:
2793 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2794 }
2795 }
2796
2797 int mpol_set_shared_policy(struct shared_policy *info,
2798 struct vm_area_struct *vma, struct mempolicy *npol)
2799 {
2800 int err;
2801 struct sp_node *new = NULL;
2802 unsigned long sz = vma_pages(vma);
2803
2804 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2805 vma->vm_pgoff,
2806 sz, npol ? npol->mode : -1,
2807 npol ? npol->flags : -1,
2808 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2809
2810 if (npol) {
2811 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2812 if (!new)
2813 return -ENOMEM;
2814 }
2815 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2816 if (err && new)
2817 sp_free(new);
2818 return err;
2819 }
2820
2821 /* Free a backing policy store on inode delete. */
2822 void mpol_free_shared_policy(struct shared_policy *p)
2823 {
2824 struct sp_node *n;
2825 struct rb_node *next;
2826
2827 if (!p->root.rb_node)
2828 return;
2829 write_lock(&p->lock);
2830 next = rb_first(&p->root);
2831 while (next) {
2832 n = rb_entry(next, struct sp_node, nd);
2833 next = rb_next(&n->nd);
2834 sp_delete(p, n);
2835 }
2836 write_unlock(&p->lock);
2837 }
2838
2839 #ifdef CONFIG_NUMA_BALANCING
2840 static int __initdata numabalancing_override;
2841
2842 static void __init check_numabalancing_enable(void)
2843 {
2844 bool numabalancing_default = false;
2845
2846 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2847 numabalancing_default = true;
2848
2849 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2850 if (numabalancing_override)
2851 set_numabalancing_state(numabalancing_override == 1);
2852
2853 if (num_online_nodes() > 1 && !numabalancing_override) {
2854 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2855 numabalancing_default ? "Enabling" : "Disabling");
2856 set_numabalancing_state(numabalancing_default);
2857 }
2858 }
2859
2860 static int __init setup_numabalancing(char *str)
2861 {
2862 int ret = 0;
2863 if (!str)
2864 goto out;
2865
2866 if (!strcmp(str, "enable")) {
2867 numabalancing_override = 1;
2868 ret = 1;
2869 } else if (!strcmp(str, "disable")) {
2870 numabalancing_override = -1;
2871 ret = 1;
2872 }
2873 out:
2874 if (!ret)
2875 pr_warn("Unable to parse numa_balancing=\n");
2876
2877 return ret;
2878 }
2879 __setup("numa_balancing=", setup_numabalancing);
2880 #else
2881 static inline void __init check_numabalancing_enable(void)
2882 {
2883 }
2884 #endif /* CONFIG_NUMA_BALANCING */
2885
2886 /* assumes fs == KERNEL_DS */
2887 void __init numa_policy_init(void)
2888 {
2889 nodemask_t interleave_nodes;
2890 unsigned long largest = 0;
2891 int nid, prefer = 0;
2892
2893 policy_cache = kmem_cache_create("numa_policy",
2894 sizeof(struct mempolicy),
2895 0, SLAB_PANIC, NULL);
2896
2897 sn_cache = kmem_cache_create("shared_policy_node",
2898 sizeof(struct sp_node),
2899 0, SLAB_PANIC, NULL);
2900
2901 for_each_node(nid) {
2902 preferred_node_policy[nid] = (struct mempolicy) {
2903 .refcnt = ATOMIC_INIT(1),
2904 .mode = MPOL_PREFERRED,
2905 .flags = MPOL_F_MOF | MPOL_F_MORON,
2906 .nodes = nodemask_of_node(nid),
2907 };
2908 }
2909
2910 /*
2911 * Set interleaving policy for system init. Interleaving is only
2912 * enabled across suitably sized nodes (default is >= 16MB), or
2913 * fall back to the largest node if they're all smaller.
2914 */
2915 nodes_clear(interleave_nodes);
2916 for_each_node_state(nid, N_MEMORY) {
2917 unsigned long total_pages = node_present_pages(nid);
2918
2919 /* Preserve the largest node */
2920 if (largest < total_pages) {
2921 largest = total_pages;
2922 prefer = nid;
2923 }
2924
2925 /* Interleave this node? */
2926 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2927 node_set(nid, interleave_nodes);
2928 }
2929
2930 /* All too small, use the largest */
2931 if (unlikely(nodes_empty(interleave_nodes)))
2932 node_set(prefer, interleave_nodes);
2933
2934 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2935 pr_err("%s: interleaving failed\n", __func__);
2936
2937 check_numabalancing_enable();
2938 }
2939
2940 /* Reset policy of current process to default */
2941 void numa_default_policy(void)
2942 {
2943 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2944 }
2945
2946 /*
2947 * Parse and format mempolicy from/to strings
2948 */
2949
2950 static const char * const policy_modes[] =
2951 {
2952 [MPOL_DEFAULT] = "default",
2953 [MPOL_PREFERRED] = "prefer",
2954 [MPOL_BIND] = "bind",
2955 [MPOL_INTERLEAVE] = "interleave",
2956 [MPOL_LOCAL] = "local",
2957 [MPOL_PREFERRED_MANY] = "prefer (many)",
2958 };
2959
2960
2961 #ifdef CONFIG_TMPFS
2962 /**
2963 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2964 * @str: string containing mempolicy to parse
2965 * @mpol: pointer to struct mempolicy pointer, returned on success.
2966 *
2967 * Format of input:
2968 * <mode>[=<flags>][:<nodelist>]
2969 *
2970 * Return: %0 on success, else %1
2971 */
2972 int mpol_parse_str(char *str, struct mempolicy **mpol)
2973 {
2974 struct mempolicy *new = NULL;
2975 unsigned short mode_flags;
2976 nodemask_t nodes;
2977 char *nodelist = strchr(str, ':');
2978 char *flags = strchr(str, '=');
2979 int err = 1, mode;
2980
2981 if (flags)
2982 *flags++ = '\0'; /* terminate mode string */
2983
2984 if (nodelist) {
2985 /* NUL-terminate mode or flags string */
2986 *nodelist++ = '\0';
2987 if (nodelist_parse(nodelist, nodes))
2988 goto out;
2989 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2990 goto out;
2991 } else
2992 nodes_clear(nodes);
2993
2994 mode = match_string(policy_modes, MPOL_MAX, str);
2995 if (mode < 0)
2996 goto out;
2997
2998 switch (mode) {
2999 case MPOL_PREFERRED:
3000 /*
3001 * Insist on a nodelist of one node only, although later
3002 * we use first_node(nodes) to grab a single node, so here
3003 * nodelist (or nodes) cannot be empty.
3004 */
3005 if (nodelist) {
3006 char *rest = nodelist;
3007 while (isdigit(*rest))
3008 rest++;
3009 if (*rest)
3010 goto out;
3011 if (nodes_empty(nodes))
3012 goto out;
3013 }
3014 break;
3015 case MPOL_INTERLEAVE:
3016 /*
3017 * Default to online nodes with memory if no nodelist
3018 */
3019 if (!nodelist)
3020 nodes = node_states[N_MEMORY];
3021 break;
3022 case MPOL_LOCAL:
3023 /*
3024 * Don't allow a nodelist; mpol_new() checks flags
3025 */
3026 if (nodelist)
3027 goto out;
3028 break;
3029 case MPOL_DEFAULT:
3030 /*
3031 * Insist on a empty nodelist
3032 */
3033 if (!nodelist)
3034 err = 0;
3035 goto out;
3036 case MPOL_PREFERRED_MANY:
3037 case MPOL_BIND:
3038 /*
3039 * Insist on a nodelist
3040 */
3041 if (!nodelist)
3042 goto out;
3043 }
3044
3045 mode_flags = 0;
3046 if (flags) {
3047 /*
3048 * Currently, we only support two mutually exclusive
3049 * mode flags.
3050 */
3051 if (!strcmp(flags, "static"))
3052 mode_flags |= MPOL_F_STATIC_NODES;
3053 else if (!strcmp(flags, "relative"))
3054 mode_flags |= MPOL_F_RELATIVE_NODES;
3055 else
3056 goto out;
3057 }
3058
3059 new = mpol_new(mode, mode_flags, &nodes);
3060 if (IS_ERR(new))
3061 goto out;
3062
3063 /*
3064 * Save nodes for mpol_to_str() to show the tmpfs mount options
3065 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3066 */
3067 if (mode != MPOL_PREFERRED) {
3068 new->nodes = nodes;
3069 } else if (nodelist) {
3070 nodes_clear(new->nodes);
3071 node_set(first_node(nodes), new->nodes);
3072 } else {
3073 new->mode = MPOL_LOCAL;
3074 }
3075
3076 /*
3077 * Save nodes for contextualization: this will be used to "clone"
3078 * the mempolicy in a specific context [cpuset] at a later time.
3079 */
3080 new->w.user_nodemask = nodes;
3081
3082 err = 0;
3083
3084 out:
3085 /* Restore string for error message */
3086 if (nodelist)
3087 *--nodelist = ':';
3088 if (flags)
3089 *--flags = '=';
3090 if (!err)
3091 *mpol = new;
3092 return err;
3093 }
3094 #endif /* CONFIG_TMPFS */
3095
3096 /**
3097 * mpol_to_str - format a mempolicy structure for printing
3098 * @buffer: to contain formatted mempolicy string
3099 * @maxlen: length of @buffer
3100 * @pol: pointer to mempolicy to be formatted
3101 *
3102 * Convert @pol into a string. If @buffer is too short, truncate the string.
3103 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3104 * longest flag, "relative", and to display at least a few node ids.
3105 */
3106 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3107 {
3108 char *p = buffer;
3109 nodemask_t nodes = NODE_MASK_NONE;
3110 unsigned short mode = MPOL_DEFAULT;
3111 unsigned short flags = 0;
3112
3113 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3114 mode = pol->mode;
3115 flags = pol->flags;
3116 }
3117
3118 switch (mode) {
3119 case MPOL_DEFAULT:
3120 case MPOL_LOCAL:
3121 break;
3122 case MPOL_PREFERRED:
3123 case MPOL_PREFERRED_MANY:
3124 case MPOL_BIND:
3125 case MPOL_INTERLEAVE:
3126 nodes = pol->nodes;
3127 break;
3128 default:
3129 WARN_ON_ONCE(1);
3130 snprintf(p, maxlen, "unknown");
3131 return;
3132 }
3133
3134 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3135
3136 if (flags & MPOL_MODE_FLAGS) {
3137 p += snprintf(p, buffer + maxlen - p, "=");
3138
3139 /*
3140 * Currently, the only defined flags are mutually exclusive
3141 */
3142 if (flags & MPOL_F_STATIC_NODES)
3143 p += snprintf(p, buffer + maxlen - p, "static");
3144 else if (flags & MPOL_F_RELATIVE_NODES)
3145 p += snprintf(p, buffer + maxlen - p, "relative");
3146 }
3147
3148 if (!nodes_empty(nodes))
3149 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3150 nodemask_pr_args(&nodes));
3151 }