]> git.ipfire.org Git - people/ms/linux.git/blob - mm/mempolicy.c
[PATCH] GFP_THISNODE for the slab allocator
[people/ms/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
67 */
68
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/mm.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
89 #include <linux/migrate.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
95
96 /* Internal flags */
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
100
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
103
104 #define PDprintk(fmt...)
105
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 enum zone_type policy_zone = ZONE_DMA;
109
110 struct mempolicy default_policy = {
111 .refcnt = ATOMIC_INIT(1), /* never free it */
112 .policy = MPOL_DEFAULT,
113 };
114
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode, nodemask_t *nodes)
117 {
118 int empty = nodes_empty(*nodes);
119
120 switch (mode) {
121 case MPOL_DEFAULT:
122 if (!empty)
123 return -EINVAL;
124 break;
125 case MPOL_BIND:
126 case MPOL_INTERLEAVE:
127 /* Preferred will only use the first bit, but allow
128 more for now. */
129 if (empty)
130 return -EINVAL;
131 break;
132 }
133 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
134 }
135
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist *bind_zonelist(nodemask_t *nodes)
138 {
139 struct zonelist *zl;
140 int num, max, nd;
141 enum zone_type k;
142
143 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
144 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
145 if (!zl)
146 return NULL;
147 num = 0;
148 /* First put in the highest zones from all nodes, then all the next
149 lower zones etc. Avoid empty zones because the memory allocator
150 doesn't like them. If you implement node hot removal you
151 have to fix that. */
152 k = policy_zone;
153 while (1) {
154 for_each_node_mask(nd, *nodes) {
155 struct zone *z = &NODE_DATA(nd)->node_zones[k];
156 if (z->present_pages > 0)
157 zl->zones[num++] = z;
158 }
159 if (k == 0)
160 break;
161 k--;
162 }
163 zl->zones[num] = NULL;
164 return zl;
165 }
166
167 /* Create a new policy */
168 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
169 {
170 struct mempolicy *policy;
171
172 PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
173 if (mode == MPOL_DEFAULT)
174 return NULL;
175 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
176 if (!policy)
177 return ERR_PTR(-ENOMEM);
178 atomic_set(&policy->refcnt, 1);
179 switch (mode) {
180 case MPOL_INTERLEAVE:
181 policy->v.nodes = *nodes;
182 if (nodes_weight(*nodes) == 0) {
183 kmem_cache_free(policy_cache, policy);
184 return ERR_PTR(-EINVAL);
185 }
186 break;
187 case MPOL_PREFERRED:
188 policy->v.preferred_node = first_node(*nodes);
189 if (policy->v.preferred_node >= MAX_NUMNODES)
190 policy->v.preferred_node = -1;
191 break;
192 case MPOL_BIND:
193 policy->v.zonelist = bind_zonelist(nodes);
194 if (policy->v.zonelist == NULL) {
195 kmem_cache_free(policy_cache, policy);
196 return ERR_PTR(-ENOMEM);
197 }
198 break;
199 }
200 policy->policy = mode;
201 policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
202 return policy;
203 }
204
205 static void gather_stats(struct page *, void *, int pte_dirty);
206 static void migrate_page_add(struct page *page, struct list_head *pagelist,
207 unsigned long flags);
208
209 /* Scan through pages checking if pages follow certain conditions. */
210 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
211 unsigned long addr, unsigned long end,
212 const nodemask_t *nodes, unsigned long flags,
213 void *private)
214 {
215 pte_t *orig_pte;
216 pte_t *pte;
217 spinlock_t *ptl;
218
219 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
220 do {
221 struct page *page;
222 unsigned int nid;
223
224 if (!pte_present(*pte))
225 continue;
226 page = vm_normal_page(vma, addr, *pte);
227 if (!page)
228 continue;
229 /*
230 * The check for PageReserved here is important to avoid
231 * handling zero pages and other pages that may have been
232 * marked special by the system.
233 *
234 * If the PageReserved would not be checked here then f.e.
235 * the location of the zero page could have an influence
236 * on MPOL_MF_STRICT, zero pages would be counted for
237 * the per node stats, and there would be useless attempts
238 * to put zero pages on the migration list.
239 */
240 if (PageReserved(page))
241 continue;
242 nid = page_to_nid(page);
243 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
244 continue;
245
246 if (flags & MPOL_MF_STATS)
247 gather_stats(page, private, pte_dirty(*pte));
248 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
249 migrate_page_add(page, private, flags);
250 else
251 break;
252 } while (pte++, addr += PAGE_SIZE, addr != end);
253 pte_unmap_unlock(orig_pte, ptl);
254 return addr != end;
255 }
256
257 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
258 unsigned long addr, unsigned long end,
259 const nodemask_t *nodes, unsigned long flags,
260 void *private)
261 {
262 pmd_t *pmd;
263 unsigned long next;
264
265 pmd = pmd_offset(pud, addr);
266 do {
267 next = pmd_addr_end(addr, end);
268 if (pmd_none_or_clear_bad(pmd))
269 continue;
270 if (check_pte_range(vma, pmd, addr, next, nodes,
271 flags, private))
272 return -EIO;
273 } while (pmd++, addr = next, addr != end);
274 return 0;
275 }
276
277 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
278 unsigned long addr, unsigned long end,
279 const nodemask_t *nodes, unsigned long flags,
280 void *private)
281 {
282 pud_t *pud;
283 unsigned long next;
284
285 pud = pud_offset(pgd, addr);
286 do {
287 next = pud_addr_end(addr, end);
288 if (pud_none_or_clear_bad(pud))
289 continue;
290 if (check_pmd_range(vma, pud, addr, next, nodes,
291 flags, private))
292 return -EIO;
293 } while (pud++, addr = next, addr != end);
294 return 0;
295 }
296
297 static inline int check_pgd_range(struct vm_area_struct *vma,
298 unsigned long addr, unsigned long end,
299 const nodemask_t *nodes, unsigned long flags,
300 void *private)
301 {
302 pgd_t *pgd;
303 unsigned long next;
304
305 pgd = pgd_offset(vma->vm_mm, addr);
306 do {
307 next = pgd_addr_end(addr, end);
308 if (pgd_none_or_clear_bad(pgd))
309 continue;
310 if (check_pud_range(vma, pgd, addr, next, nodes,
311 flags, private))
312 return -EIO;
313 } while (pgd++, addr = next, addr != end);
314 return 0;
315 }
316
317 /* Check if a vma is migratable */
318 static inline int vma_migratable(struct vm_area_struct *vma)
319 {
320 if (vma->vm_flags & (
321 VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED))
322 return 0;
323 return 1;
324 }
325
326 /*
327 * Check if all pages in a range are on a set of nodes.
328 * If pagelist != NULL then isolate pages from the LRU and
329 * put them on the pagelist.
330 */
331 static struct vm_area_struct *
332 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
333 const nodemask_t *nodes, unsigned long flags, void *private)
334 {
335 int err;
336 struct vm_area_struct *first, *vma, *prev;
337
338 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
339
340 err = migrate_prep();
341 if (err)
342 return ERR_PTR(err);
343 }
344
345 first = find_vma(mm, start);
346 if (!first)
347 return ERR_PTR(-EFAULT);
348 prev = NULL;
349 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
350 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
351 if (!vma->vm_next && vma->vm_end < end)
352 return ERR_PTR(-EFAULT);
353 if (prev && prev->vm_end < vma->vm_start)
354 return ERR_PTR(-EFAULT);
355 }
356 if (!is_vm_hugetlb_page(vma) &&
357 ((flags & MPOL_MF_STRICT) ||
358 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
359 vma_migratable(vma)))) {
360 unsigned long endvma = vma->vm_end;
361
362 if (endvma > end)
363 endvma = end;
364 if (vma->vm_start > start)
365 start = vma->vm_start;
366 err = check_pgd_range(vma, start, endvma, nodes,
367 flags, private);
368 if (err) {
369 first = ERR_PTR(err);
370 break;
371 }
372 }
373 prev = vma;
374 }
375 return first;
376 }
377
378 /* Apply policy to a single VMA */
379 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
380 {
381 int err = 0;
382 struct mempolicy *old = vma->vm_policy;
383
384 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
385 vma->vm_start, vma->vm_end, vma->vm_pgoff,
386 vma->vm_ops, vma->vm_file,
387 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
388
389 if (vma->vm_ops && vma->vm_ops->set_policy)
390 err = vma->vm_ops->set_policy(vma, new);
391 if (!err) {
392 mpol_get(new);
393 vma->vm_policy = new;
394 mpol_free(old);
395 }
396 return err;
397 }
398
399 /* Step 2: apply policy to a range and do splits. */
400 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
401 unsigned long end, struct mempolicy *new)
402 {
403 struct vm_area_struct *next;
404 int err;
405
406 err = 0;
407 for (; vma && vma->vm_start < end; vma = next) {
408 next = vma->vm_next;
409 if (vma->vm_start < start)
410 err = split_vma(vma->vm_mm, vma, start, 1);
411 if (!err && vma->vm_end > end)
412 err = split_vma(vma->vm_mm, vma, end, 0);
413 if (!err)
414 err = policy_vma(vma, new);
415 if (err)
416 break;
417 }
418 return err;
419 }
420
421 static int contextualize_policy(int mode, nodemask_t *nodes)
422 {
423 if (!nodes)
424 return 0;
425
426 cpuset_update_task_memory_state();
427 if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
428 return -EINVAL;
429 return mpol_check_policy(mode, nodes);
430 }
431
432
433 /*
434 * Update task->flags PF_MEMPOLICY bit: set iff non-default
435 * mempolicy. Allows more rapid checking of this (combined perhaps
436 * with other PF_* flag bits) on memory allocation hot code paths.
437 *
438 * If called from outside this file, the task 'p' should -only- be
439 * a newly forked child not yet visible on the task list, because
440 * manipulating the task flags of a visible task is not safe.
441 *
442 * The above limitation is why this routine has the funny name
443 * mpol_fix_fork_child_flag().
444 *
445 * It is also safe to call this with a task pointer of current,
446 * which the static wrapper mpol_set_task_struct_flag() does,
447 * for use within this file.
448 */
449
450 void mpol_fix_fork_child_flag(struct task_struct *p)
451 {
452 if (p->mempolicy)
453 p->flags |= PF_MEMPOLICY;
454 else
455 p->flags &= ~PF_MEMPOLICY;
456 }
457
458 static void mpol_set_task_struct_flag(void)
459 {
460 mpol_fix_fork_child_flag(current);
461 }
462
463 /* Set the process memory policy */
464 long do_set_mempolicy(int mode, nodemask_t *nodes)
465 {
466 struct mempolicy *new;
467
468 if (contextualize_policy(mode, nodes))
469 return -EINVAL;
470 new = mpol_new(mode, nodes);
471 if (IS_ERR(new))
472 return PTR_ERR(new);
473 mpol_free(current->mempolicy);
474 current->mempolicy = new;
475 mpol_set_task_struct_flag();
476 if (new && new->policy == MPOL_INTERLEAVE)
477 current->il_next = first_node(new->v.nodes);
478 return 0;
479 }
480
481 /* Fill a zone bitmap for a policy */
482 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
483 {
484 int i;
485
486 nodes_clear(*nodes);
487 switch (p->policy) {
488 case MPOL_BIND:
489 for (i = 0; p->v.zonelist->zones[i]; i++)
490 node_set(zone_to_nid(p->v.zonelist->zones[i]),
491 *nodes);
492 break;
493 case MPOL_DEFAULT:
494 break;
495 case MPOL_INTERLEAVE:
496 *nodes = p->v.nodes;
497 break;
498 case MPOL_PREFERRED:
499 /* or use current node instead of online map? */
500 if (p->v.preferred_node < 0)
501 *nodes = node_online_map;
502 else
503 node_set(p->v.preferred_node, *nodes);
504 break;
505 default:
506 BUG();
507 }
508 }
509
510 static int lookup_node(struct mm_struct *mm, unsigned long addr)
511 {
512 struct page *p;
513 int err;
514
515 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
516 if (err >= 0) {
517 err = page_to_nid(p);
518 put_page(p);
519 }
520 return err;
521 }
522
523 /* Retrieve NUMA policy */
524 long do_get_mempolicy(int *policy, nodemask_t *nmask,
525 unsigned long addr, unsigned long flags)
526 {
527 int err;
528 struct mm_struct *mm = current->mm;
529 struct vm_area_struct *vma = NULL;
530 struct mempolicy *pol = current->mempolicy;
531
532 cpuset_update_task_memory_state();
533 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
534 return -EINVAL;
535 if (flags & MPOL_F_ADDR) {
536 down_read(&mm->mmap_sem);
537 vma = find_vma_intersection(mm, addr, addr+1);
538 if (!vma) {
539 up_read(&mm->mmap_sem);
540 return -EFAULT;
541 }
542 if (vma->vm_ops && vma->vm_ops->get_policy)
543 pol = vma->vm_ops->get_policy(vma, addr);
544 else
545 pol = vma->vm_policy;
546 } else if (addr)
547 return -EINVAL;
548
549 if (!pol)
550 pol = &default_policy;
551
552 if (flags & MPOL_F_NODE) {
553 if (flags & MPOL_F_ADDR) {
554 err = lookup_node(mm, addr);
555 if (err < 0)
556 goto out;
557 *policy = err;
558 } else if (pol == current->mempolicy &&
559 pol->policy == MPOL_INTERLEAVE) {
560 *policy = current->il_next;
561 } else {
562 err = -EINVAL;
563 goto out;
564 }
565 } else
566 *policy = pol->policy;
567
568 if (vma) {
569 up_read(&current->mm->mmap_sem);
570 vma = NULL;
571 }
572
573 err = 0;
574 if (nmask)
575 get_zonemask(pol, nmask);
576
577 out:
578 if (vma)
579 up_read(&current->mm->mmap_sem);
580 return err;
581 }
582
583 #ifdef CONFIG_MIGRATION
584 /*
585 * page migration
586 */
587 static void migrate_page_add(struct page *page, struct list_head *pagelist,
588 unsigned long flags)
589 {
590 /*
591 * Avoid migrating a page that is shared with others.
592 */
593 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
594 isolate_lru_page(page, pagelist);
595 }
596
597 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
598 {
599 return alloc_pages_node(node, GFP_HIGHUSER, 0);
600 }
601
602 /*
603 * Migrate pages from one node to a target node.
604 * Returns error or the number of pages not migrated.
605 */
606 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
607 {
608 nodemask_t nmask;
609 LIST_HEAD(pagelist);
610 int err = 0;
611
612 nodes_clear(nmask);
613 node_set(source, nmask);
614
615 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
616 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
617
618 if (!list_empty(&pagelist))
619 err = migrate_pages(&pagelist, new_node_page, dest);
620
621 return err;
622 }
623
624 /*
625 * Move pages between the two nodesets so as to preserve the physical
626 * layout as much as possible.
627 *
628 * Returns the number of page that could not be moved.
629 */
630 int do_migrate_pages(struct mm_struct *mm,
631 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
632 {
633 LIST_HEAD(pagelist);
634 int busy = 0;
635 int err = 0;
636 nodemask_t tmp;
637
638 down_read(&mm->mmap_sem);
639
640 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
641 if (err)
642 goto out;
643
644 /*
645 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
646 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
647 * bit in 'tmp', and return that <source, dest> pair for migration.
648 * The pair of nodemasks 'to' and 'from' define the map.
649 *
650 * If no pair of bits is found that way, fallback to picking some
651 * pair of 'source' and 'dest' bits that are not the same. If the
652 * 'source' and 'dest' bits are the same, this represents a node
653 * that will be migrating to itself, so no pages need move.
654 *
655 * If no bits are left in 'tmp', or if all remaining bits left
656 * in 'tmp' correspond to the same bit in 'to', return false
657 * (nothing left to migrate).
658 *
659 * This lets us pick a pair of nodes to migrate between, such that
660 * if possible the dest node is not already occupied by some other
661 * source node, minimizing the risk of overloading the memory on a
662 * node that would happen if we migrated incoming memory to a node
663 * before migrating outgoing memory source that same node.
664 *
665 * A single scan of tmp is sufficient. As we go, we remember the
666 * most recent <s, d> pair that moved (s != d). If we find a pair
667 * that not only moved, but what's better, moved to an empty slot
668 * (d is not set in tmp), then we break out then, with that pair.
669 * Otherwise when we finish scannng from_tmp, we at least have the
670 * most recent <s, d> pair that moved. If we get all the way through
671 * the scan of tmp without finding any node that moved, much less
672 * moved to an empty node, then there is nothing left worth migrating.
673 */
674
675 tmp = *from_nodes;
676 while (!nodes_empty(tmp)) {
677 int s,d;
678 int source = -1;
679 int dest = 0;
680
681 for_each_node_mask(s, tmp) {
682 d = node_remap(s, *from_nodes, *to_nodes);
683 if (s == d)
684 continue;
685
686 source = s; /* Node moved. Memorize */
687 dest = d;
688
689 /* dest not in remaining from nodes? */
690 if (!node_isset(dest, tmp))
691 break;
692 }
693 if (source == -1)
694 break;
695
696 node_clear(source, tmp);
697 err = migrate_to_node(mm, source, dest, flags);
698 if (err > 0)
699 busy += err;
700 if (err < 0)
701 break;
702 }
703 out:
704 up_read(&mm->mmap_sem);
705 if (err < 0)
706 return err;
707 return busy;
708
709 }
710
711 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
712 {
713 struct vm_area_struct *vma = (struct vm_area_struct *)private;
714
715 return alloc_page_vma(GFP_HIGHUSER, vma, page_address_in_vma(page, vma));
716 }
717 #else
718
719 static void migrate_page_add(struct page *page, struct list_head *pagelist,
720 unsigned long flags)
721 {
722 }
723
724 int do_migrate_pages(struct mm_struct *mm,
725 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
726 {
727 return -ENOSYS;
728 }
729
730 static struct page *new_vma_page(struct page *page, unsigned long private)
731 {
732 return NULL;
733 }
734 #endif
735
736 long do_mbind(unsigned long start, unsigned long len,
737 unsigned long mode, nodemask_t *nmask, unsigned long flags)
738 {
739 struct vm_area_struct *vma;
740 struct mm_struct *mm = current->mm;
741 struct mempolicy *new;
742 unsigned long end;
743 int err;
744 LIST_HEAD(pagelist);
745
746 if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
747 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
748 || mode > MPOL_MAX)
749 return -EINVAL;
750 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
751 return -EPERM;
752
753 if (start & ~PAGE_MASK)
754 return -EINVAL;
755
756 if (mode == MPOL_DEFAULT)
757 flags &= ~MPOL_MF_STRICT;
758
759 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
760 end = start + len;
761
762 if (end < start)
763 return -EINVAL;
764 if (end == start)
765 return 0;
766
767 if (mpol_check_policy(mode, nmask))
768 return -EINVAL;
769
770 new = mpol_new(mode, nmask);
771 if (IS_ERR(new))
772 return PTR_ERR(new);
773
774 /*
775 * If we are using the default policy then operation
776 * on discontinuous address spaces is okay after all
777 */
778 if (!new)
779 flags |= MPOL_MF_DISCONTIG_OK;
780
781 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
782 mode,nodes_addr(nodes)[0]);
783
784 down_write(&mm->mmap_sem);
785 vma = check_range(mm, start, end, nmask,
786 flags | MPOL_MF_INVERT, &pagelist);
787
788 err = PTR_ERR(vma);
789 if (!IS_ERR(vma)) {
790 int nr_failed = 0;
791
792 err = mbind_range(vma, start, end, new);
793
794 if (!list_empty(&pagelist))
795 nr_failed = migrate_pages(&pagelist, new_vma_page,
796 (unsigned long)vma);
797
798 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
799 err = -EIO;
800 }
801
802 up_write(&mm->mmap_sem);
803 mpol_free(new);
804 return err;
805 }
806
807 /*
808 * User space interface with variable sized bitmaps for nodelists.
809 */
810
811 /* Copy a node mask from user space. */
812 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
813 unsigned long maxnode)
814 {
815 unsigned long k;
816 unsigned long nlongs;
817 unsigned long endmask;
818
819 --maxnode;
820 nodes_clear(*nodes);
821 if (maxnode == 0 || !nmask)
822 return 0;
823 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
824 return -EINVAL;
825
826 nlongs = BITS_TO_LONGS(maxnode);
827 if ((maxnode % BITS_PER_LONG) == 0)
828 endmask = ~0UL;
829 else
830 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
831
832 /* When the user specified more nodes than supported just check
833 if the non supported part is all zero. */
834 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
835 if (nlongs > PAGE_SIZE/sizeof(long))
836 return -EINVAL;
837 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
838 unsigned long t;
839 if (get_user(t, nmask + k))
840 return -EFAULT;
841 if (k == nlongs - 1) {
842 if (t & endmask)
843 return -EINVAL;
844 } else if (t)
845 return -EINVAL;
846 }
847 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
848 endmask = ~0UL;
849 }
850
851 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
852 return -EFAULT;
853 nodes_addr(*nodes)[nlongs-1] &= endmask;
854 return 0;
855 }
856
857 /* Copy a kernel node mask to user space */
858 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
859 nodemask_t *nodes)
860 {
861 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
862 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
863
864 if (copy > nbytes) {
865 if (copy > PAGE_SIZE)
866 return -EINVAL;
867 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
868 return -EFAULT;
869 copy = nbytes;
870 }
871 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
872 }
873
874 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
875 unsigned long mode,
876 unsigned long __user *nmask, unsigned long maxnode,
877 unsigned flags)
878 {
879 nodemask_t nodes;
880 int err;
881
882 err = get_nodes(&nodes, nmask, maxnode);
883 if (err)
884 return err;
885 return do_mbind(start, len, mode, &nodes, flags);
886 }
887
888 /* Set the process memory policy */
889 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
890 unsigned long maxnode)
891 {
892 int err;
893 nodemask_t nodes;
894
895 if (mode < 0 || mode > MPOL_MAX)
896 return -EINVAL;
897 err = get_nodes(&nodes, nmask, maxnode);
898 if (err)
899 return err;
900 return do_set_mempolicy(mode, &nodes);
901 }
902
903 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
904 const unsigned long __user *old_nodes,
905 const unsigned long __user *new_nodes)
906 {
907 struct mm_struct *mm;
908 struct task_struct *task;
909 nodemask_t old;
910 nodemask_t new;
911 nodemask_t task_nodes;
912 int err;
913
914 err = get_nodes(&old, old_nodes, maxnode);
915 if (err)
916 return err;
917
918 err = get_nodes(&new, new_nodes, maxnode);
919 if (err)
920 return err;
921
922 /* Find the mm_struct */
923 read_lock(&tasklist_lock);
924 task = pid ? find_task_by_pid(pid) : current;
925 if (!task) {
926 read_unlock(&tasklist_lock);
927 return -ESRCH;
928 }
929 mm = get_task_mm(task);
930 read_unlock(&tasklist_lock);
931
932 if (!mm)
933 return -EINVAL;
934
935 /*
936 * Check if this process has the right to modify the specified
937 * process. The right exists if the process has administrative
938 * capabilities, superuser privileges or the same
939 * userid as the target process.
940 */
941 if ((current->euid != task->suid) && (current->euid != task->uid) &&
942 (current->uid != task->suid) && (current->uid != task->uid) &&
943 !capable(CAP_SYS_NICE)) {
944 err = -EPERM;
945 goto out;
946 }
947
948 task_nodes = cpuset_mems_allowed(task);
949 /* Is the user allowed to access the target nodes? */
950 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
951 err = -EPERM;
952 goto out;
953 }
954
955 err = security_task_movememory(task);
956 if (err)
957 goto out;
958
959 err = do_migrate_pages(mm, &old, &new,
960 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
961 out:
962 mmput(mm);
963 return err;
964 }
965
966
967 /* Retrieve NUMA policy */
968 asmlinkage long sys_get_mempolicy(int __user *policy,
969 unsigned long __user *nmask,
970 unsigned long maxnode,
971 unsigned long addr, unsigned long flags)
972 {
973 int err, pval;
974 nodemask_t nodes;
975
976 if (nmask != NULL && maxnode < MAX_NUMNODES)
977 return -EINVAL;
978
979 err = do_get_mempolicy(&pval, &nodes, addr, flags);
980
981 if (err)
982 return err;
983
984 if (policy && put_user(pval, policy))
985 return -EFAULT;
986
987 if (nmask)
988 err = copy_nodes_to_user(nmask, maxnode, &nodes);
989
990 return err;
991 }
992
993 #ifdef CONFIG_COMPAT
994
995 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
996 compat_ulong_t __user *nmask,
997 compat_ulong_t maxnode,
998 compat_ulong_t addr, compat_ulong_t flags)
999 {
1000 long err;
1001 unsigned long __user *nm = NULL;
1002 unsigned long nr_bits, alloc_size;
1003 DECLARE_BITMAP(bm, MAX_NUMNODES);
1004
1005 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1006 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1007
1008 if (nmask)
1009 nm = compat_alloc_user_space(alloc_size);
1010
1011 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1012
1013 if (!err && nmask) {
1014 err = copy_from_user(bm, nm, alloc_size);
1015 /* ensure entire bitmap is zeroed */
1016 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1017 err |= compat_put_bitmap(nmask, bm, nr_bits);
1018 }
1019
1020 return err;
1021 }
1022
1023 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1024 compat_ulong_t maxnode)
1025 {
1026 long err = 0;
1027 unsigned long __user *nm = NULL;
1028 unsigned long nr_bits, alloc_size;
1029 DECLARE_BITMAP(bm, MAX_NUMNODES);
1030
1031 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1032 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1033
1034 if (nmask) {
1035 err = compat_get_bitmap(bm, nmask, nr_bits);
1036 nm = compat_alloc_user_space(alloc_size);
1037 err |= copy_to_user(nm, bm, alloc_size);
1038 }
1039
1040 if (err)
1041 return -EFAULT;
1042
1043 return sys_set_mempolicy(mode, nm, nr_bits+1);
1044 }
1045
1046 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1047 compat_ulong_t mode, compat_ulong_t __user *nmask,
1048 compat_ulong_t maxnode, compat_ulong_t flags)
1049 {
1050 long err = 0;
1051 unsigned long __user *nm = NULL;
1052 unsigned long nr_bits, alloc_size;
1053 nodemask_t bm;
1054
1055 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1056 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1057
1058 if (nmask) {
1059 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1060 nm = compat_alloc_user_space(alloc_size);
1061 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1062 }
1063
1064 if (err)
1065 return -EFAULT;
1066
1067 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1068 }
1069
1070 #endif
1071
1072 /* Return effective policy for a VMA */
1073 static struct mempolicy * get_vma_policy(struct task_struct *task,
1074 struct vm_area_struct *vma, unsigned long addr)
1075 {
1076 struct mempolicy *pol = task->mempolicy;
1077
1078 if (vma) {
1079 if (vma->vm_ops && vma->vm_ops->get_policy)
1080 pol = vma->vm_ops->get_policy(vma, addr);
1081 else if (vma->vm_policy &&
1082 vma->vm_policy->policy != MPOL_DEFAULT)
1083 pol = vma->vm_policy;
1084 }
1085 if (!pol)
1086 pol = &default_policy;
1087 return pol;
1088 }
1089
1090 /* Return a zonelist representing a mempolicy */
1091 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1092 {
1093 int nd;
1094
1095 switch (policy->policy) {
1096 case MPOL_PREFERRED:
1097 nd = policy->v.preferred_node;
1098 if (nd < 0)
1099 nd = numa_node_id();
1100 break;
1101 case MPOL_BIND:
1102 /* Lower zones don't get a policy applied */
1103 /* Careful: current->mems_allowed might have moved */
1104 if (gfp_zone(gfp) >= policy_zone)
1105 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1106 return policy->v.zonelist;
1107 /*FALL THROUGH*/
1108 case MPOL_INTERLEAVE: /* should not happen */
1109 case MPOL_DEFAULT:
1110 nd = numa_node_id();
1111 break;
1112 default:
1113 nd = 0;
1114 BUG();
1115 }
1116 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1117 }
1118
1119 /* Do dynamic interleaving for a process */
1120 static unsigned interleave_nodes(struct mempolicy *policy)
1121 {
1122 unsigned nid, next;
1123 struct task_struct *me = current;
1124
1125 nid = me->il_next;
1126 next = next_node(nid, policy->v.nodes);
1127 if (next >= MAX_NUMNODES)
1128 next = first_node(policy->v.nodes);
1129 me->il_next = next;
1130 return nid;
1131 }
1132
1133 /*
1134 * Depending on the memory policy provide a node from which to allocate the
1135 * next slab entry.
1136 */
1137 unsigned slab_node(struct mempolicy *policy)
1138 {
1139 int pol = policy ? policy->policy : MPOL_DEFAULT;
1140
1141 switch (pol) {
1142 case MPOL_INTERLEAVE:
1143 return interleave_nodes(policy);
1144
1145 case MPOL_BIND:
1146 /*
1147 * Follow bind policy behavior and start allocation at the
1148 * first node.
1149 */
1150 return zone_to_nid(policy->v.zonelist->zones[0]);
1151
1152 case MPOL_PREFERRED:
1153 if (policy->v.preferred_node >= 0)
1154 return policy->v.preferred_node;
1155 /* Fall through */
1156
1157 default:
1158 return numa_node_id();
1159 }
1160 }
1161
1162 /* Do static interleaving for a VMA with known offset. */
1163 static unsigned offset_il_node(struct mempolicy *pol,
1164 struct vm_area_struct *vma, unsigned long off)
1165 {
1166 unsigned nnodes = nodes_weight(pol->v.nodes);
1167 unsigned target = (unsigned)off % nnodes;
1168 int c;
1169 int nid = -1;
1170
1171 c = 0;
1172 do {
1173 nid = next_node(nid, pol->v.nodes);
1174 c++;
1175 } while (c <= target);
1176 return nid;
1177 }
1178
1179 /* Determine a node number for interleave */
1180 static inline unsigned interleave_nid(struct mempolicy *pol,
1181 struct vm_area_struct *vma, unsigned long addr, int shift)
1182 {
1183 if (vma) {
1184 unsigned long off;
1185
1186 /*
1187 * for small pages, there is no difference between
1188 * shift and PAGE_SHIFT, so the bit-shift is safe.
1189 * for huge pages, since vm_pgoff is in units of small
1190 * pages, we need to shift off the always 0 bits to get
1191 * a useful offset.
1192 */
1193 BUG_ON(shift < PAGE_SHIFT);
1194 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1195 off += (addr - vma->vm_start) >> shift;
1196 return offset_il_node(pol, vma, off);
1197 } else
1198 return interleave_nodes(pol);
1199 }
1200
1201 #ifdef CONFIG_HUGETLBFS
1202 /* Return a zonelist suitable for a huge page allocation. */
1203 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
1204 {
1205 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1206
1207 if (pol->policy == MPOL_INTERLEAVE) {
1208 unsigned nid;
1209
1210 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1211 return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
1212 }
1213 return zonelist_policy(GFP_HIGHUSER, pol);
1214 }
1215 #endif
1216
1217 /* Allocate a page in interleaved policy.
1218 Own path because it needs to do special accounting. */
1219 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1220 unsigned nid)
1221 {
1222 struct zonelist *zl;
1223 struct page *page;
1224
1225 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1226 page = __alloc_pages(gfp, order, zl);
1227 if (page && page_zone(page) == zl->zones[0])
1228 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1229 return page;
1230 }
1231
1232 /**
1233 * alloc_page_vma - Allocate a page for a VMA.
1234 *
1235 * @gfp:
1236 * %GFP_USER user allocation.
1237 * %GFP_KERNEL kernel allocations,
1238 * %GFP_HIGHMEM highmem/user allocations,
1239 * %GFP_FS allocation should not call back into a file system.
1240 * %GFP_ATOMIC don't sleep.
1241 *
1242 * @vma: Pointer to VMA or NULL if not available.
1243 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1244 *
1245 * This function allocates a page from the kernel page pool and applies
1246 * a NUMA policy associated with the VMA or the current process.
1247 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1248 * mm_struct of the VMA to prevent it from going away. Should be used for
1249 * all allocations for pages that will be mapped into
1250 * user space. Returns NULL when no page can be allocated.
1251 *
1252 * Should be called with the mm_sem of the vma hold.
1253 */
1254 struct page *
1255 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1256 {
1257 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1258
1259 cpuset_update_task_memory_state();
1260
1261 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1262 unsigned nid;
1263
1264 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1265 return alloc_page_interleave(gfp, 0, nid);
1266 }
1267 return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
1268 }
1269
1270 /**
1271 * alloc_pages_current - Allocate pages.
1272 *
1273 * @gfp:
1274 * %GFP_USER user allocation,
1275 * %GFP_KERNEL kernel allocation,
1276 * %GFP_HIGHMEM highmem allocation,
1277 * %GFP_FS don't call back into a file system.
1278 * %GFP_ATOMIC don't sleep.
1279 * @order: Power of two of allocation size in pages. 0 is a single page.
1280 *
1281 * Allocate a page from the kernel page pool. When not in
1282 * interrupt context and apply the current process NUMA policy.
1283 * Returns NULL when no page can be allocated.
1284 *
1285 * Don't call cpuset_update_task_memory_state() unless
1286 * 1) it's ok to take cpuset_sem (can WAIT), and
1287 * 2) allocating for current task (not interrupt).
1288 */
1289 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1290 {
1291 struct mempolicy *pol = current->mempolicy;
1292
1293 if ((gfp & __GFP_WAIT) && !in_interrupt())
1294 cpuset_update_task_memory_state();
1295 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1296 pol = &default_policy;
1297 if (pol->policy == MPOL_INTERLEAVE)
1298 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1299 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1300 }
1301 EXPORT_SYMBOL(alloc_pages_current);
1302
1303 /*
1304 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1305 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1306 * with the mems_allowed returned by cpuset_mems_allowed(). This
1307 * keeps mempolicies cpuset relative after its cpuset moves. See
1308 * further kernel/cpuset.c update_nodemask().
1309 */
1310 void *cpuset_being_rebound;
1311
1312 /* Slow path of a mempolicy copy */
1313 struct mempolicy *__mpol_copy(struct mempolicy *old)
1314 {
1315 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1316
1317 if (!new)
1318 return ERR_PTR(-ENOMEM);
1319 if (current_cpuset_is_being_rebound()) {
1320 nodemask_t mems = cpuset_mems_allowed(current);
1321 mpol_rebind_policy(old, &mems);
1322 }
1323 *new = *old;
1324 atomic_set(&new->refcnt, 1);
1325 if (new->policy == MPOL_BIND) {
1326 int sz = ksize(old->v.zonelist);
1327 new->v.zonelist = kmalloc(sz, SLAB_KERNEL);
1328 if (!new->v.zonelist) {
1329 kmem_cache_free(policy_cache, new);
1330 return ERR_PTR(-ENOMEM);
1331 }
1332 memcpy(new->v.zonelist, old->v.zonelist, sz);
1333 }
1334 return new;
1335 }
1336
1337 /* Slow path of a mempolicy comparison */
1338 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1339 {
1340 if (!a || !b)
1341 return 0;
1342 if (a->policy != b->policy)
1343 return 0;
1344 switch (a->policy) {
1345 case MPOL_DEFAULT:
1346 return 1;
1347 case MPOL_INTERLEAVE:
1348 return nodes_equal(a->v.nodes, b->v.nodes);
1349 case MPOL_PREFERRED:
1350 return a->v.preferred_node == b->v.preferred_node;
1351 case MPOL_BIND: {
1352 int i;
1353 for (i = 0; a->v.zonelist->zones[i]; i++)
1354 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1355 return 0;
1356 return b->v.zonelist->zones[i] == NULL;
1357 }
1358 default:
1359 BUG();
1360 return 0;
1361 }
1362 }
1363
1364 /* Slow path of a mpol destructor. */
1365 void __mpol_free(struct mempolicy *p)
1366 {
1367 if (!atomic_dec_and_test(&p->refcnt))
1368 return;
1369 if (p->policy == MPOL_BIND)
1370 kfree(p->v.zonelist);
1371 p->policy = MPOL_DEFAULT;
1372 kmem_cache_free(policy_cache, p);
1373 }
1374
1375 /*
1376 * Shared memory backing store policy support.
1377 *
1378 * Remember policies even when nobody has shared memory mapped.
1379 * The policies are kept in Red-Black tree linked from the inode.
1380 * They are protected by the sp->lock spinlock, which should be held
1381 * for any accesses to the tree.
1382 */
1383
1384 /* lookup first element intersecting start-end */
1385 /* Caller holds sp->lock */
1386 static struct sp_node *
1387 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1388 {
1389 struct rb_node *n = sp->root.rb_node;
1390
1391 while (n) {
1392 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1393
1394 if (start >= p->end)
1395 n = n->rb_right;
1396 else if (end <= p->start)
1397 n = n->rb_left;
1398 else
1399 break;
1400 }
1401 if (!n)
1402 return NULL;
1403 for (;;) {
1404 struct sp_node *w = NULL;
1405 struct rb_node *prev = rb_prev(n);
1406 if (!prev)
1407 break;
1408 w = rb_entry(prev, struct sp_node, nd);
1409 if (w->end <= start)
1410 break;
1411 n = prev;
1412 }
1413 return rb_entry(n, struct sp_node, nd);
1414 }
1415
1416 /* Insert a new shared policy into the list. */
1417 /* Caller holds sp->lock */
1418 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1419 {
1420 struct rb_node **p = &sp->root.rb_node;
1421 struct rb_node *parent = NULL;
1422 struct sp_node *nd;
1423
1424 while (*p) {
1425 parent = *p;
1426 nd = rb_entry(parent, struct sp_node, nd);
1427 if (new->start < nd->start)
1428 p = &(*p)->rb_left;
1429 else if (new->end > nd->end)
1430 p = &(*p)->rb_right;
1431 else
1432 BUG();
1433 }
1434 rb_link_node(&new->nd, parent, p);
1435 rb_insert_color(&new->nd, &sp->root);
1436 PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
1437 new->policy ? new->policy->policy : 0);
1438 }
1439
1440 /* Find shared policy intersecting idx */
1441 struct mempolicy *
1442 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1443 {
1444 struct mempolicy *pol = NULL;
1445 struct sp_node *sn;
1446
1447 if (!sp->root.rb_node)
1448 return NULL;
1449 spin_lock(&sp->lock);
1450 sn = sp_lookup(sp, idx, idx+1);
1451 if (sn) {
1452 mpol_get(sn->policy);
1453 pol = sn->policy;
1454 }
1455 spin_unlock(&sp->lock);
1456 return pol;
1457 }
1458
1459 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1460 {
1461 PDprintk("deleting %lx-l%x\n", n->start, n->end);
1462 rb_erase(&n->nd, &sp->root);
1463 mpol_free(n->policy);
1464 kmem_cache_free(sn_cache, n);
1465 }
1466
1467 struct sp_node *
1468 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1469 {
1470 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1471
1472 if (!n)
1473 return NULL;
1474 n->start = start;
1475 n->end = end;
1476 mpol_get(pol);
1477 n->policy = pol;
1478 return n;
1479 }
1480
1481 /* Replace a policy range. */
1482 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1483 unsigned long end, struct sp_node *new)
1484 {
1485 struct sp_node *n, *new2 = NULL;
1486
1487 restart:
1488 spin_lock(&sp->lock);
1489 n = sp_lookup(sp, start, end);
1490 /* Take care of old policies in the same range. */
1491 while (n && n->start < end) {
1492 struct rb_node *next = rb_next(&n->nd);
1493 if (n->start >= start) {
1494 if (n->end <= end)
1495 sp_delete(sp, n);
1496 else
1497 n->start = end;
1498 } else {
1499 /* Old policy spanning whole new range. */
1500 if (n->end > end) {
1501 if (!new2) {
1502 spin_unlock(&sp->lock);
1503 new2 = sp_alloc(end, n->end, n->policy);
1504 if (!new2)
1505 return -ENOMEM;
1506 goto restart;
1507 }
1508 n->end = start;
1509 sp_insert(sp, new2);
1510 new2 = NULL;
1511 break;
1512 } else
1513 n->end = start;
1514 }
1515 if (!next)
1516 break;
1517 n = rb_entry(next, struct sp_node, nd);
1518 }
1519 if (new)
1520 sp_insert(sp, new);
1521 spin_unlock(&sp->lock);
1522 if (new2) {
1523 mpol_free(new2->policy);
1524 kmem_cache_free(sn_cache, new2);
1525 }
1526 return 0;
1527 }
1528
1529 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1530 nodemask_t *policy_nodes)
1531 {
1532 info->root = RB_ROOT;
1533 spin_lock_init(&info->lock);
1534
1535 if (policy != MPOL_DEFAULT) {
1536 struct mempolicy *newpol;
1537
1538 /* Falls back to MPOL_DEFAULT on any error */
1539 newpol = mpol_new(policy, policy_nodes);
1540 if (!IS_ERR(newpol)) {
1541 /* Create pseudo-vma that contains just the policy */
1542 struct vm_area_struct pvma;
1543
1544 memset(&pvma, 0, sizeof(struct vm_area_struct));
1545 /* Policy covers entire file */
1546 pvma.vm_end = TASK_SIZE;
1547 mpol_set_shared_policy(info, &pvma, newpol);
1548 mpol_free(newpol);
1549 }
1550 }
1551 }
1552
1553 int mpol_set_shared_policy(struct shared_policy *info,
1554 struct vm_area_struct *vma, struct mempolicy *npol)
1555 {
1556 int err;
1557 struct sp_node *new = NULL;
1558 unsigned long sz = vma_pages(vma);
1559
1560 PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1561 vma->vm_pgoff,
1562 sz, npol? npol->policy : -1,
1563 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1564
1565 if (npol) {
1566 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1567 if (!new)
1568 return -ENOMEM;
1569 }
1570 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1571 if (err && new)
1572 kmem_cache_free(sn_cache, new);
1573 return err;
1574 }
1575
1576 /* Free a backing policy store on inode delete. */
1577 void mpol_free_shared_policy(struct shared_policy *p)
1578 {
1579 struct sp_node *n;
1580 struct rb_node *next;
1581
1582 if (!p->root.rb_node)
1583 return;
1584 spin_lock(&p->lock);
1585 next = rb_first(&p->root);
1586 while (next) {
1587 n = rb_entry(next, struct sp_node, nd);
1588 next = rb_next(&n->nd);
1589 rb_erase(&n->nd, &p->root);
1590 mpol_free(n->policy);
1591 kmem_cache_free(sn_cache, n);
1592 }
1593 spin_unlock(&p->lock);
1594 }
1595
1596 /* assumes fs == KERNEL_DS */
1597 void __init numa_policy_init(void)
1598 {
1599 policy_cache = kmem_cache_create("numa_policy",
1600 sizeof(struct mempolicy),
1601 0, SLAB_PANIC, NULL, NULL);
1602
1603 sn_cache = kmem_cache_create("shared_policy_node",
1604 sizeof(struct sp_node),
1605 0, SLAB_PANIC, NULL, NULL);
1606
1607 /* Set interleaving policy for system init. This way not all
1608 the data structures allocated at system boot end up in node zero. */
1609
1610 if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
1611 printk("numa_policy_init: interleaving failed\n");
1612 }
1613
1614 /* Reset policy of current process to default */
1615 void numa_default_policy(void)
1616 {
1617 do_set_mempolicy(MPOL_DEFAULT, NULL);
1618 }
1619
1620 /* Migrate a policy to a different set of nodes */
1621 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1622 {
1623 nodemask_t *mpolmask;
1624 nodemask_t tmp;
1625
1626 if (!pol)
1627 return;
1628 mpolmask = &pol->cpuset_mems_allowed;
1629 if (nodes_equal(*mpolmask, *newmask))
1630 return;
1631
1632 switch (pol->policy) {
1633 case MPOL_DEFAULT:
1634 break;
1635 case MPOL_INTERLEAVE:
1636 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1637 pol->v.nodes = tmp;
1638 *mpolmask = *newmask;
1639 current->il_next = node_remap(current->il_next,
1640 *mpolmask, *newmask);
1641 break;
1642 case MPOL_PREFERRED:
1643 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1644 *mpolmask, *newmask);
1645 *mpolmask = *newmask;
1646 break;
1647 case MPOL_BIND: {
1648 nodemask_t nodes;
1649 struct zone **z;
1650 struct zonelist *zonelist;
1651
1652 nodes_clear(nodes);
1653 for (z = pol->v.zonelist->zones; *z; z++)
1654 node_set(zone_to_nid(*z), nodes);
1655 nodes_remap(tmp, nodes, *mpolmask, *newmask);
1656 nodes = tmp;
1657
1658 zonelist = bind_zonelist(&nodes);
1659
1660 /* If no mem, then zonelist is NULL and we keep old zonelist.
1661 * If that old zonelist has no remaining mems_allowed nodes,
1662 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1663 */
1664
1665 if (zonelist) {
1666 /* Good - got mem - substitute new zonelist */
1667 kfree(pol->v.zonelist);
1668 pol->v.zonelist = zonelist;
1669 }
1670 *mpolmask = *newmask;
1671 break;
1672 }
1673 default:
1674 BUG();
1675 break;
1676 }
1677 }
1678
1679 /*
1680 * Wrapper for mpol_rebind_policy() that just requires task
1681 * pointer, and updates task mempolicy.
1682 */
1683
1684 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1685 {
1686 mpol_rebind_policy(tsk->mempolicy, new);
1687 }
1688
1689 /*
1690 * Rebind each vma in mm to new nodemask.
1691 *
1692 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1693 */
1694
1695 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1696 {
1697 struct vm_area_struct *vma;
1698
1699 down_write(&mm->mmap_sem);
1700 for (vma = mm->mmap; vma; vma = vma->vm_next)
1701 mpol_rebind_policy(vma->vm_policy, new);
1702 up_write(&mm->mmap_sem);
1703 }
1704
1705 /*
1706 * Display pages allocated per node and memory policy via /proc.
1707 */
1708
1709 static const char *policy_types[] = { "default", "prefer", "bind",
1710 "interleave" };
1711
1712 /*
1713 * Convert a mempolicy into a string.
1714 * Returns the number of characters in buffer (if positive)
1715 * or an error (negative)
1716 */
1717 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1718 {
1719 char *p = buffer;
1720 int l;
1721 nodemask_t nodes;
1722 int mode = pol ? pol->policy : MPOL_DEFAULT;
1723
1724 switch (mode) {
1725 case MPOL_DEFAULT:
1726 nodes_clear(nodes);
1727 break;
1728
1729 case MPOL_PREFERRED:
1730 nodes_clear(nodes);
1731 node_set(pol->v.preferred_node, nodes);
1732 break;
1733
1734 case MPOL_BIND:
1735 get_zonemask(pol, &nodes);
1736 break;
1737
1738 case MPOL_INTERLEAVE:
1739 nodes = pol->v.nodes;
1740 break;
1741
1742 default:
1743 BUG();
1744 return -EFAULT;
1745 }
1746
1747 l = strlen(policy_types[mode]);
1748 if (buffer + maxlen < p + l + 1)
1749 return -ENOSPC;
1750
1751 strcpy(p, policy_types[mode]);
1752 p += l;
1753
1754 if (!nodes_empty(nodes)) {
1755 if (buffer + maxlen < p + 2)
1756 return -ENOSPC;
1757 *p++ = '=';
1758 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1759 }
1760 return p - buffer;
1761 }
1762
1763 struct numa_maps {
1764 unsigned long pages;
1765 unsigned long anon;
1766 unsigned long active;
1767 unsigned long writeback;
1768 unsigned long mapcount_max;
1769 unsigned long dirty;
1770 unsigned long swapcache;
1771 unsigned long node[MAX_NUMNODES];
1772 };
1773
1774 static void gather_stats(struct page *page, void *private, int pte_dirty)
1775 {
1776 struct numa_maps *md = private;
1777 int count = page_mapcount(page);
1778
1779 md->pages++;
1780 if (pte_dirty || PageDirty(page))
1781 md->dirty++;
1782
1783 if (PageSwapCache(page))
1784 md->swapcache++;
1785
1786 if (PageActive(page))
1787 md->active++;
1788
1789 if (PageWriteback(page))
1790 md->writeback++;
1791
1792 if (PageAnon(page))
1793 md->anon++;
1794
1795 if (count > md->mapcount_max)
1796 md->mapcount_max = count;
1797
1798 md->node[page_to_nid(page)]++;
1799 }
1800
1801 #ifdef CONFIG_HUGETLB_PAGE
1802 static void check_huge_range(struct vm_area_struct *vma,
1803 unsigned long start, unsigned long end,
1804 struct numa_maps *md)
1805 {
1806 unsigned long addr;
1807 struct page *page;
1808
1809 for (addr = start; addr < end; addr += HPAGE_SIZE) {
1810 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1811 pte_t pte;
1812
1813 if (!ptep)
1814 continue;
1815
1816 pte = *ptep;
1817 if (pte_none(pte))
1818 continue;
1819
1820 page = pte_page(pte);
1821 if (!page)
1822 continue;
1823
1824 gather_stats(page, md, pte_dirty(*ptep));
1825 }
1826 }
1827 #else
1828 static inline void check_huge_range(struct vm_area_struct *vma,
1829 unsigned long start, unsigned long end,
1830 struct numa_maps *md)
1831 {
1832 }
1833 #endif
1834
1835 int show_numa_map(struct seq_file *m, void *v)
1836 {
1837 struct proc_maps_private *priv = m->private;
1838 struct vm_area_struct *vma = v;
1839 struct numa_maps *md;
1840 struct file *file = vma->vm_file;
1841 struct mm_struct *mm = vma->vm_mm;
1842 int n;
1843 char buffer[50];
1844
1845 if (!mm)
1846 return 0;
1847
1848 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1849 if (!md)
1850 return 0;
1851
1852 mpol_to_str(buffer, sizeof(buffer),
1853 get_vma_policy(priv->task, vma, vma->vm_start));
1854
1855 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1856
1857 if (file) {
1858 seq_printf(m, " file=");
1859 seq_path(m, file->f_vfsmnt, file->f_dentry, "\n\t= ");
1860 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1861 seq_printf(m, " heap");
1862 } else if (vma->vm_start <= mm->start_stack &&
1863 vma->vm_end >= mm->start_stack) {
1864 seq_printf(m, " stack");
1865 }
1866
1867 if (is_vm_hugetlb_page(vma)) {
1868 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1869 seq_printf(m, " huge");
1870 } else {
1871 check_pgd_range(vma, vma->vm_start, vma->vm_end,
1872 &node_online_map, MPOL_MF_STATS, md);
1873 }
1874
1875 if (!md->pages)
1876 goto out;
1877
1878 if (md->anon)
1879 seq_printf(m," anon=%lu",md->anon);
1880
1881 if (md->dirty)
1882 seq_printf(m," dirty=%lu",md->dirty);
1883
1884 if (md->pages != md->anon && md->pages != md->dirty)
1885 seq_printf(m, " mapped=%lu", md->pages);
1886
1887 if (md->mapcount_max > 1)
1888 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1889
1890 if (md->swapcache)
1891 seq_printf(m," swapcache=%lu", md->swapcache);
1892
1893 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1894 seq_printf(m," active=%lu", md->active);
1895
1896 if (md->writeback)
1897 seq_printf(m," writeback=%lu", md->writeback);
1898
1899 for_each_online_node(n)
1900 if (md->node[n])
1901 seq_printf(m, " N%d=%lu", n, md->node[n]);
1902 out:
1903 seq_putc(m, '\n');
1904 kfree(md);
1905
1906 if (m->count < m->size)
1907 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
1908 return 0;
1909 }
1910