]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/mempolicy.c
badpage: keep any bad page out of circulation
[thirdparty/kernel/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
95
96 #include "internal.h"
97
98 /* Internal flags */
99 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
100 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
101 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
102
103 static struct kmem_cache *policy_cache;
104 static struct kmem_cache *sn_cache;
105
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 enum zone_type policy_zone = 0;
109
110 /*
111 * run-time system-wide default policy => local allocation
112 */
113 struct mempolicy default_policy = {
114 .refcnt = ATOMIC_INIT(1), /* never free it */
115 .mode = MPOL_PREFERRED,
116 .flags = MPOL_F_LOCAL,
117 };
118
119 static const struct mempolicy_operations {
120 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
121 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
122 } mpol_ops[MPOL_MAX];
123
124 /* Check that the nodemask contains at least one populated zone */
125 static int is_valid_nodemask(const nodemask_t *nodemask)
126 {
127 int nd, k;
128
129 /* Check that there is something useful in this mask */
130 k = policy_zone;
131
132 for_each_node_mask(nd, *nodemask) {
133 struct zone *z;
134
135 for (k = 0; k <= policy_zone; k++) {
136 z = &NODE_DATA(nd)->node_zones[k];
137 if (z->present_pages > 0)
138 return 1;
139 }
140 }
141
142 return 0;
143 }
144
145 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
146 {
147 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
148 }
149
150 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
151 const nodemask_t *rel)
152 {
153 nodemask_t tmp;
154 nodes_fold(tmp, *orig, nodes_weight(*rel));
155 nodes_onto(*ret, tmp, *rel);
156 }
157
158 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
159 {
160 if (nodes_empty(*nodes))
161 return -EINVAL;
162 pol->v.nodes = *nodes;
163 return 0;
164 }
165
166 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
167 {
168 if (!nodes)
169 pol->flags |= MPOL_F_LOCAL; /* local allocation */
170 else if (nodes_empty(*nodes))
171 return -EINVAL; /* no allowed nodes */
172 else
173 pol->v.preferred_node = first_node(*nodes);
174 return 0;
175 }
176
177 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
178 {
179 if (!is_valid_nodemask(nodes))
180 return -EINVAL;
181 pol->v.nodes = *nodes;
182 return 0;
183 }
184
185 /* Create a new policy */
186 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
187 nodemask_t *nodes)
188 {
189 struct mempolicy *policy;
190 nodemask_t cpuset_context_nmask;
191 int ret;
192
193 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
194 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
195
196 if (mode == MPOL_DEFAULT) {
197 if (nodes && !nodes_empty(*nodes))
198 return ERR_PTR(-EINVAL);
199 return NULL; /* simply delete any existing policy */
200 }
201 VM_BUG_ON(!nodes);
202
203 /*
204 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
205 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
206 * All other modes require a valid pointer to a non-empty nodemask.
207 */
208 if (mode == MPOL_PREFERRED) {
209 if (nodes_empty(*nodes)) {
210 if (((flags & MPOL_F_STATIC_NODES) ||
211 (flags & MPOL_F_RELATIVE_NODES)))
212 return ERR_PTR(-EINVAL);
213 nodes = NULL; /* flag local alloc */
214 }
215 } else if (nodes_empty(*nodes))
216 return ERR_PTR(-EINVAL);
217 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
218 if (!policy)
219 return ERR_PTR(-ENOMEM);
220 atomic_set(&policy->refcnt, 1);
221 policy->mode = mode;
222 policy->flags = flags;
223
224 if (nodes) {
225 /*
226 * cpuset related setup doesn't apply to local allocation
227 */
228 cpuset_update_task_memory_state();
229 if (flags & MPOL_F_RELATIVE_NODES)
230 mpol_relative_nodemask(&cpuset_context_nmask, nodes,
231 &cpuset_current_mems_allowed);
232 else
233 nodes_and(cpuset_context_nmask, *nodes,
234 cpuset_current_mems_allowed);
235 if (mpol_store_user_nodemask(policy))
236 policy->w.user_nodemask = *nodes;
237 else
238 policy->w.cpuset_mems_allowed =
239 cpuset_mems_allowed(current);
240 }
241
242 ret = mpol_ops[mode].create(policy,
243 nodes ? &cpuset_context_nmask : NULL);
244 if (ret < 0) {
245 kmem_cache_free(policy_cache, policy);
246 return ERR_PTR(ret);
247 }
248 return policy;
249 }
250
251 /* Slow path of a mpol destructor. */
252 void __mpol_put(struct mempolicy *p)
253 {
254 if (!atomic_dec_and_test(&p->refcnt))
255 return;
256 kmem_cache_free(policy_cache, p);
257 }
258
259 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
260 {
261 }
262
263 static void mpol_rebind_nodemask(struct mempolicy *pol,
264 const nodemask_t *nodes)
265 {
266 nodemask_t tmp;
267
268 if (pol->flags & MPOL_F_STATIC_NODES)
269 nodes_and(tmp, pol->w.user_nodemask, *nodes);
270 else if (pol->flags & MPOL_F_RELATIVE_NODES)
271 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
272 else {
273 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
274 *nodes);
275 pol->w.cpuset_mems_allowed = *nodes;
276 }
277
278 pol->v.nodes = tmp;
279 if (!node_isset(current->il_next, tmp)) {
280 current->il_next = next_node(current->il_next, tmp);
281 if (current->il_next >= MAX_NUMNODES)
282 current->il_next = first_node(tmp);
283 if (current->il_next >= MAX_NUMNODES)
284 current->il_next = numa_node_id();
285 }
286 }
287
288 static void mpol_rebind_preferred(struct mempolicy *pol,
289 const nodemask_t *nodes)
290 {
291 nodemask_t tmp;
292
293 if (pol->flags & MPOL_F_STATIC_NODES) {
294 int node = first_node(pol->w.user_nodemask);
295
296 if (node_isset(node, *nodes)) {
297 pol->v.preferred_node = node;
298 pol->flags &= ~MPOL_F_LOCAL;
299 } else
300 pol->flags |= MPOL_F_LOCAL;
301 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
302 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
303 pol->v.preferred_node = first_node(tmp);
304 } else if (!(pol->flags & MPOL_F_LOCAL)) {
305 pol->v.preferred_node = node_remap(pol->v.preferred_node,
306 pol->w.cpuset_mems_allowed,
307 *nodes);
308 pol->w.cpuset_mems_allowed = *nodes;
309 }
310 }
311
312 /* Migrate a policy to a different set of nodes */
313 static void mpol_rebind_policy(struct mempolicy *pol,
314 const nodemask_t *newmask)
315 {
316 if (!pol)
317 return;
318 if (!mpol_store_user_nodemask(pol) &&
319 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
320 return;
321 mpol_ops[pol->mode].rebind(pol, newmask);
322 }
323
324 /*
325 * Wrapper for mpol_rebind_policy() that just requires task
326 * pointer, and updates task mempolicy.
327 */
328
329 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
330 {
331 mpol_rebind_policy(tsk->mempolicy, new);
332 }
333
334 /*
335 * Rebind each vma in mm to new nodemask.
336 *
337 * Call holding a reference to mm. Takes mm->mmap_sem during call.
338 */
339
340 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
341 {
342 struct vm_area_struct *vma;
343
344 down_write(&mm->mmap_sem);
345 for (vma = mm->mmap; vma; vma = vma->vm_next)
346 mpol_rebind_policy(vma->vm_policy, new);
347 up_write(&mm->mmap_sem);
348 }
349
350 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
351 [MPOL_DEFAULT] = {
352 .rebind = mpol_rebind_default,
353 },
354 [MPOL_INTERLEAVE] = {
355 .create = mpol_new_interleave,
356 .rebind = mpol_rebind_nodemask,
357 },
358 [MPOL_PREFERRED] = {
359 .create = mpol_new_preferred,
360 .rebind = mpol_rebind_preferred,
361 },
362 [MPOL_BIND] = {
363 .create = mpol_new_bind,
364 .rebind = mpol_rebind_nodemask,
365 },
366 };
367
368 static void gather_stats(struct page *, void *, int pte_dirty);
369 static void migrate_page_add(struct page *page, struct list_head *pagelist,
370 unsigned long flags);
371
372 /* Scan through pages checking if pages follow certain conditions. */
373 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
374 unsigned long addr, unsigned long end,
375 const nodemask_t *nodes, unsigned long flags,
376 void *private)
377 {
378 pte_t *orig_pte;
379 pte_t *pte;
380 spinlock_t *ptl;
381
382 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
383 do {
384 struct page *page;
385 int nid;
386
387 if (!pte_present(*pte))
388 continue;
389 page = vm_normal_page(vma, addr, *pte);
390 if (!page)
391 continue;
392 /*
393 * The check for PageReserved here is important to avoid
394 * handling zero pages and other pages that may have been
395 * marked special by the system.
396 *
397 * If the PageReserved would not be checked here then f.e.
398 * the location of the zero page could have an influence
399 * on MPOL_MF_STRICT, zero pages would be counted for
400 * the per node stats, and there would be useless attempts
401 * to put zero pages on the migration list.
402 */
403 if (PageReserved(page))
404 continue;
405 nid = page_to_nid(page);
406 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
407 continue;
408
409 if (flags & MPOL_MF_STATS)
410 gather_stats(page, private, pte_dirty(*pte));
411 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
412 migrate_page_add(page, private, flags);
413 else
414 break;
415 } while (pte++, addr += PAGE_SIZE, addr != end);
416 pte_unmap_unlock(orig_pte, ptl);
417 return addr != end;
418 }
419
420 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
421 unsigned long addr, unsigned long end,
422 const nodemask_t *nodes, unsigned long flags,
423 void *private)
424 {
425 pmd_t *pmd;
426 unsigned long next;
427
428 pmd = pmd_offset(pud, addr);
429 do {
430 next = pmd_addr_end(addr, end);
431 if (pmd_none_or_clear_bad(pmd))
432 continue;
433 if (check_pte_range(vma, pmd, addr, next, nodes,
434 flags, private))
435 return -EIO;
436 } while (pmd++, addr = next, addr != end);
437 return 0;
438 }
439
440 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
441 unsigned long addr, unsigned long end,
442 const nodemask_t *nodes, unsigned long flags,
443 void *private)
444 {
445 pud_t *pud;
446 unsigned long next;
447
448 pud = pud_offset(pgd, addr);
449 do {
450 next = pud_addr_end(addr, end);
451 if (pud_none_or_clear_bad(pud))
452 continue;
453 if (check_pmd_range(vma, pud, addr, next, nodes,
454 flags, private))
455 return -EIO;
456 } while (pud++, addr = next, addr != end);
457 return 0;
458 }
459
460 static inline int check_pgd_range(struct vm_area_struct *vma,
461 unsigned long addr, unsigned long end,
462 const nodemask_t *nodes, unsigned long flags,
463 void *private)
464 {
465 pgd_t *pgd;
466 unsigned long next;
467
468 pgd = pgd_offset(vma->vm_mm, addr);
469 do {
470 next = pgd_addr_end(addr, end);
471 if (pgd_none_or_clear_bad(pgd))
472 continue;
473 if (check_pud_range(vma, pgd, addr, next, nodes,
474 flags, private))
475 return -EIO;
476 } while (pgd++, addr = next, addr != end);
477 return 0;
478 }
479
480 /*
481 * Check if all pages in a range are on a set of nodes.
482 * If pagelist != NULL then isolate pages from the LRU and
483 * put them on the pagelist.
484 */
485 static struct vm_area_struct *
486 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
487 const nodemask_t *nodes, unsigned long flags, void *private)
488 {
489 int err;
490 struct vm_area_struct *first, *vma, *prev;
491
492
493 first = find_vma(mm, start);
494 if (!first)
495 return ERR_PTR(-EFAULT);
496 prev = NULL;
497 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
498 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
499 if (!vma->vm_next && vma->vm_end < end)
500 return ERR_PTR(-EFAULT);
501 if (prev && prev->vm_end < vma->vm_start)
502 return ERR_PTR(-EFAULT);
503 }
504 if (!is_vm_hugetlb_page(vma) &&
505 ((flags & MPOL_MF_STRICT) ||
506 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
507 vma_migratable(vma)))) {
508 unsigned long endvma = vma->vm_end;
509
510 if (endvma > end)
511 endvma = end;
512 if (vma->vm_start > start)
513 start = vma->vm_start;
514 err = check_pgd_range(vma, start, endvma, nodes,
515 flags, private);
516 if (err) {
517 first = ERR_PTR(err);
518 break;
519 }
520 }
521 prev = vma;
522 }
523 return first;
524 }
525
526 /* Apply policy to a single VMA */
527 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
528 {
529 int err = 0;
530 struct mempolicy *old = vma->vm_policy;
531
532 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
533 vma->vm_start, vma->vm_end, vma->vm_pgoff,
534 vma->vm_ops, vma->vm_file,
535 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
536
537 if (vma->vm_ops && vma->vm_ops->set_policy)
538 err = vma->vm_ops->set_policy(vma, new);
539 if (!err) {
540 mpol_get(new);
541 vma->vm_policy = new;
542 mpol_put(old);
543 }
544 return err;
545 }
546
547 /* Step 2: apply policy to a range and do splits. */
548 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
549 unsigned long end, struct mempolicy *new)
550 {
551 struct vm_area_struct *next;
552 int err;
553
554 err = 0;
555 for (; vma && vma->vm_start < end; vma = next) {
556 next = vma->vm_next;
557 if (vma->vm_start < start)
558 err = split_vma(vma->vm_mm, vma, start, 1);
559 if (!err && vma->vm_end > end)
560 err = split_vma(vma->vm_mm, vma, end, 0);
561 if (!err)
562 err = policy_vma(vma, new);
563 if (err)
564 break;
565 }
566 return err;
567 }
568
569 /*
570 * Update task->flags PF_MEMPOLICY bit: set iff non-default
571 * mempolicy. Allows more rapid checking of this (combined perhaps
572 * with other PF_* flag bits) on memory allocation hot code paths.
573 *
574 * If called from outside this file, the task 'p' should -only- be
575 * a newly forked child not yet visible on the task list, because
576 * manipulating the task flags of a visible task is not safe.
577 *
578 * The above limitation is why this routine has the funny name
579 * mpol_fix_fork_child_flag().
580 *
581 * It is also safe to call this with a task pointer of current,
582 * which the static wrapper mpol_set_task_struct_flag() does,
583 * for use within this file.
584 */
585
586 void mpol_fix_fork_child_flag(struct task_struct *p)
587 {
588 if (p->mempolicy)
589 p->flags |= PF_MEMPOLICY;
590 else
591 p->flags &= ~PF_MEMPOLICY;
592 }
593
594 static void mpol_set_task_struct_flag(void)
595 {
596 mpol_fix_fork_child_flag(current);
597 }
598
599 /* Set the process memory policy */
600 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
601 nodemask_t *nodes)
602 {
603 struct mempolicy *new;
604 struct mm_struct *mm = current->mm;
605
606 new = mpol_new(mode, flags, nodes);
607 if (IS_ERR(new))
608 return PTR_ERR(new);
609
610 /*
611 * prevent changing our mempolicy while show_numa_maps()
612 * is using it.
613 * Note: do_set_mempolicy() can be called at init time
614 * with no 'mm'.
615 */
616 if (mm)
617 down_write(&mm->mmap_sem);
618 mpol_put(current->mempolicy);
619 current->mempolicy = new;
620 mpol_set_task_struct_flag();
621 if (new && new->mode == MPOL_INTERLEAVE &&
622 nodes_weight(new->v.nodes))
623 current->il_next = first_node(new->v.nodes);
624 if (mm)
625 up_write(&mm->mmap_sem);
626
627 return 0;
628 }
629
630 /*
631 * Return nodemask for policy for get_mempolicy() query
632 */
633 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
634 {
635 nodes_clear(*nodes);
636 if (p == &default_policy)
637 return;
638
639 switch (p->mode) {
640 case MPOL_BIND:
641 /* Fall through */
642 case MPOL_INTERLEAVE:
643 *nodes = p->v.nodes;
644 break;
645 case MPOL_PREFERRED:
646 if (!(p->flags & MPOL_F_LOCAL))
647 node_set(p->v.preferred_node, *nodes);
648 /* else return empty node mask for local allocation */
649 break;
650 default:
651 BUG();
652 }
653 }
654
655 static int lookup_node(struct mm_struct *mm, unsigned long addr)
656 {
657 struct page *p;
658 int err;
659
660 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
661 if (err >= 0) {
662 err = page_to_nid(p);
663 put_page(p);
664 }
665 return err;
666 }
667
668 /* Retrieve NUMA policy */
669 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
670 unsigned long addr, unsigned long flags)
671 {
672 int err;
673 struct mm_struct *mm = current->mm;
674 struct vm_area_struct *vma = NULL;
675 struct mempolicy *pol = current->mempolicy;
676
677 cpuset_update_task_memory_state();
678 if (flags &
679 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
680 return -EINVAL;
681
682 if (flags & MPOL_F_MEMS_ALLOWED) {
683 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
684 return -EINVAL;
685 *policy = 0; /* just so it's initialized */
686 *nmask = cpuset_current_mems_allowed;
687 return 0;
688 }
689
690 if (flags & MPOL_F_ADDR) {
691 /*
692 * Do NOT fall back to task policy if the
693 * vma/shared policy at addr is NULL. We
694 * want to return MPOL_DEFAULT in this case.
695 */
696 down_read(&mm->mmap_sem);
697 vma = find_vma_intersection(mm, addr, addr+1);
698 if (!vma) {
699 up_read(&mm->mmap_sem);
700 return -EFAULT;
701 }
702 if (vma->vm_ops && vma->vm_ops->get_policy)
703 pol = vma->vm_ops->get_policy(vma, addr);
704 else
705 pol = vma->vm_policy;
706 } else if (addr)
707 return -EINVAL;
708
709 if (!pol)
710 pol = &default_policy; /* indicates default behavior */
711
712 if (flags & MPOL_F_NODE) {
713 if (flags & MPOL_F_ADDR) {
714 err = lookup_node(mm, addr);
715 if (err < 0)
716 goto out;
717 *policy = err;
718 } else if (pol == current->mempolicy &&
719 pol->mode == MPOL_INTERLEAVE) {
720 *policy = current->il_next;
721 } else {
722 err = -EINVAL;
723 goto out;
724 }
725 } else {
726 *policy = pol == &default_policy ? MPOL_DEFAULT :
727 pol->mode;
728 /*
729 * Internal mempolicy flags must be masked off before exposing
730 * the policy to userspace.
731 */
732 *policy |= (pol->flags & MPOL_MODE_FLAGS);
733 }
734
735 if (vma) {
736 up_read(&current->mm->mmap_sem);
737 vma = NULL;
738 }
739
740 err = 0;
741 if (nmask)
742 get_policy_nodemask(pol, nmask);
743
744 out:
745 mpol_cond_put(pol);
746 if (vma)
747 up_read(&current->mm->mmap_sem);
748 return err;
749 }
750
751 #ifdef CONFIG_MIGRATION
752 /*
753 * page migration
754 */
755 static void migrate_page_add(struct page *page, struct list_head *pagelist,
756 unsigned long flags)
757 {
758 /*
759 * Avoid migrating a page that is shared with others.
760 */
761 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
762 if (!isolate_lru_page(page)) {
763 list_add_tail(&page->lru, pagelist);
764 }
765 }
766 }
767
768 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
769 {
770 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
771 }
772
773 /*
774 * Migrate pages from one node to a target node.
775 * Returns error or the number of pages not migrated.
776 */
777 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
778 int flags)
779 {
780 nodemask_t nmask;
781 LIST_HEAD(pagelist);
782 int err = 0;
783
784 nodes_clear(nmask);
785 node_set(source, nmask);
786
787 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
788 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
789
790 if (!list_empty(&pagelist))
791 err = migrate_pages(&pagelist, new_node_page, dest);
792
793 return err;
794 }
795
796 /*
797 * Move pages between the two nodesets so as to preserve the physical
798 * layout as much as possible.
799 *
800 * Returns the number of page that could not be moved.
801 */
802 int do_migrate_pages(struct mm_struct *mm,
803 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
804 {
805 int busy = 0;
806 int err;
807 nodemask_t tmp;
808
809 err = migrate_prep();
810 if (err)
811 return err;
812
813 down_read(&mm->mmap_sem);
814
815 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
816 if (err)
817 goto out;
818
819 /*
820 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
821 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
822 * bit in 'tmp', and return that <source, dest> pair for migration.
823 * The pair of nodemasks 'to' and 'from' define the map.
824 *
825 * If no pair of bits is found that way, fallback to picking some
826 * pair of 'source' and 'dest' bits that are not the same. If the
827 * 'source' and 'dest' bits are the same, this represents a node
828 * that will be migrating to itself, so no pages need move.
829 *
830 * If no bits are left in 'tmp', or if all remaining bits left
831 * in 'tmp' correspond to the same bit in 'to', return false
832 * (nothing left to migrate).
833 *
834 * This lets us pick a pair of nodes to migrate between, such that
835 * if possible the dest node is not already occupied by some other
836 * source node, minimizing the risk of overloading the memory on a
837 * node that would happen if we migrated incoming memory to a node
838 * before migrating outgoing memory source that same node.
839 *
840 * A single scan of tmp is sufficient. As we go, we remember the
841 * most recent <s, d> pair that moved (s != d). If we find a pair
842 * that not only moved, but what's better, moved to an empty slot
843 * (d is not set in tmp), then we break out then, with that pair.
844 * Otherwise when we finish scannng from_tmp, we at least have the
845 * most recent <s, d> pair that moved. If we get all the way through
846 * the scan of tmp without finding any node that moved, much less
847 * moved to an empty node, then there is nothing left worth migrating.
848 */
849
850 tmp = *from_nodes;
851 while (!nodes_empty(tmp)) {
852 int s,d;
853 int source = -1;
854 int dest = 0;
855
856 for_each_node_mask(s, tmp) {
857 d = node_remap(s, *from_nodes, *to_nodes);
858 if (s == d)
859 continue;
860
861 source = s; /* Node moved. Memorize */
862 dest = d;
863
864 /* dest not in remaining from nodes? */
865 if (!node_isset(dest, tmp))
866 break;
867 }
868 if (source == -1)
869 break;
870
871 node_clear(source, tmp);
872 err = migrate_to_node(mm, source, dest, flags);
873 if (err > 0)
874 busy += err;
875 if (err < 0)
876 break;
877 }
878 out:
879 up_read(&mm->mmap_sem);
880 if (err < 0)
881 return err;
882 return busy;
883
884 }
885
886 /*
887 * Allocate a new page for page migration based on vma policy.
888 * Start assuming that page is mapped by vma pointed to by @private.
889 * Search forward from there, if not. N.B., this assumes that the
890 * list of pages handed to migrate_pages()--which is how we get here--
891 * is in virtual address order.
892 */
893 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
894 {
895 struct vm_area_struct *vma = (struct vm_area_struct *)private;
896 unsigned long uninitialized_var(address);
897
898 while (vma) {
899 address = page_address_in_vma(page, vma);
900 if (address != -EFAULT)
901 break;
902 vma = vma->vm_next;
903 }
904
905 /*
906 * if !vma, alloc_page_vma() will use task or system default policy
907 */
908 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
909 }
910 #else
911
912 static void migrate_page_add(struct page *page, struct list_head *pagelist,
913 unsigned long flags)
914 {
915 }
916
917 int do_migrate_pages(struct mm_struct *mm,
918 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
919 {
920 return -ENOSYS;
921 }
922
923 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
924 {
925 return NULL;
926 }
927 #endif
928
929 static long do_mbind(unsigned long start, unsigned long len,
930 unsigned short mode, unsigned short mode_flags,
931 nodemask_t *nmask, unsigned long flags)
932 {
933 struct vm_area_struct *vma;
934 struct mm_struct *mm = current->mm;
935 struct mempolicy *new;
936 unsigned long end;
937 int err;
938 LIST_HEAD(pagelist);
939
940 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
941 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
942 return -EINVAL;
943 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
944 return -EPERM;
945
946 if (start & ~PAGE_MASK)
947 return -EINVAL;
948
949 if (mode == MPOL_DEFAULT)
950 flags &= ~MPOL_MF_STRICT;
951
952 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
953 end = start + len;
954
955 if (end < start)
956 return -EINVAL;
957 if (end == start)
958 return 0;
959
960 new = mpol_new(mode, mode_flags, nmask);
961 if (IS_ERR(new))
962 return PTR_ERR(new);
963
964 /*
965 * If we are using the default policy then operation
966 * on discontinuous address spaces is okay after all
967 */
968 if (!new)
969 flags |= MPOL_MF_DISCONTIG_OK;
970
971 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
972 start, start + len, mode, mode_flags,
973 nmask ? nodes_addr(*nmask)[0] : -1);
974
975 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
976
977 err = migrate_prep();
978 if (err)
979 return err;
980 }
981 down_write(&mm->mmap_sem);
982 vma = check_range(mm, start, end, nmask,
983 flags | MPOL_MF_INVERT, &pagelist);
984
985 err = PTR_ERR(vma);
986 if (!IS_ERR(vma)) {
987 int nr_failed = 0;
988
989 err = mbind_range(vma, start, end, new);
990
991 if (!list_empty(&pagelist))
992 nr_failed = migrate_pages(&pagelist, new_vma_page,
993 (unsigned long)vma);
994
995 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
996 err = -EIO;
997 }
998
999 up_write(&mm->mmap_sem);
1000 mpol_put(new);
1001 return err;
1002 }
1003
1004 /*
1005 * User space interface with variable sized bitmaps for nodelists.
1006 */
1007
1008 /* Copy a node mask from user space. */
1009 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1010 unsigned long maxnode)
1011 {
1012 unsigned long k;
1013 unsigned long nlongs;
1014 unsigned long endmask;
1015
1016 --maxnode;
1017 nodes_clear(*nodes);
1018 if (maxnode == 0 || !nmask)
1019 return 0;
1020 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1021 return -EINVAL;
1022
1023 nlongs = BITS_TO_LONGS(maxnode);
1024 if ((maxnode % BITS_PER_LONG) == 0)
1025 endmask = ~0UL;
1026 else
1027 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1028
1029 /* When the user specified more nodes than supported just check
1030 if the non supported part is all zero. */
1031 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1032 if (nlongs > PAGE_SIZE/sizeof(long))
1033 return -EINVAL;
1034 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1035 unsigned long t;
1036 if (get_user(t, nmask + k))
1037 return -EFAULT;
1038 if (k == nlongs - 1) {
1039 if (t & endmask)
1040 return -EINVAL;
1041 } else if (t)
1042 return -EINVAL;
1043 }
1044 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1045 endmask = ~0UL;
1046 }
1047
1048 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1049 return -EFAULT;
1050 nodes_addr(*nodes)[nlongs-1] &= endmask;
1051 return 0;
1052 }
1053
1054 /* Copy a kernel node mask to user space */
1055 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1056 nodemask_t *nodes)
1057 {
1058 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1059 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1060
1061 if (copy > nbytes) {
1062 if (copy > PAGE_SIZE)
1063 return -EINVAL;
1064 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1065 return -EFAULT;
1066 copy = nbytes;
1067 }
1068 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1069 }
1070
1071 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
1072 unsigned long mode,
1073 unsigned long __user *nmask, unsigned long maxnode,
1074 unsigned flags)
1075 {
1076 nodemask_t nodes;
1077 int err;
1078 unsigned short mode_flags;
1079
1080 mode_flags = mode & MPOL_MODE_FLAGS;
1081 mode &= ~MPOL_MODE_FLAGS;
1082 if (mode >= MPOL_MAX)
1083 return -EINVAL;
1084 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1085 (mode_flags & MPOL_F_RELATIVE_NODES))
1086 return -EINVAL;
1087 err = get_nodes(&nodes, nmask, maxnode);
1088 if (err)
1089 return err;
1090 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1091 }
1092
1093 /* Set the process memory policy */
1094 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
1095 unsigned long maxnode)
1096 {
1097 int err;
1098 nodemask_t nodes;
1099 unsigned short flags;
1100
1101 flags = mode & MPOL_MODE_FLAGS;
1102 mode &= ~MPOL_MODE_FLAGS;
1103 if ((unsigned int)mode >= MPOL_MAX)
1104 return -EINVAL;
1105 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1106 return -EINVAL;
1107 err = get_nodes(&nodes, nmask, maxnode);
1108 if (err)
1109 return err;
1110 return do_set_mempolicy(mode, flags, &nodes);
1111 }
1112
1113 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
1114 const unsigned long __user *old_nodes,
1115 const unsigned long __user *new_nodes)
1116 {
1117 const struct cred *cred = current_cred(), *tcred;
1118 struct mm_struct *mm;
1119 struct task_struct *task;
1120 nodemask_t old;
1121 nodemask_t new;
1122 nodemask_t task_nodes;
1123 int err;
1124
1125 err = get_nodes(&old, old_nodes, maxnode);
1126 if (err)
1127 return err;
1128
1129 err = get_nodes(&new, new_nodes, maxnode);
1130 if (err)
1131 return err;
1132
1133 /* Find the mm_struct */
1134 read_lock(&tasklist_lock);
1135 task = pid ? find_task_by_vpid(pid) : current;
1136 if (!task) {
1137 read_unlock(&tasklist_lock);
1138 return -ESRCH;
1139 }
1140 mm = get_task_mm(task);
1141 read_unlock(&tasklist_lock);
1142
1143 if (!mm)
1144 return -EINVAL;
1145
1146 /*
1147 * Check if this process has the right to modify the specified
1148 * process. The right exists if the process has administrative
1149 * capabilities, superuser privileges or the same
1150 * userid as the target process.
1151 */
1152 rcu_read_lock();
1153 tcred = __task_cred(task);
1154 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1155 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1156 !capable(CAP_SYS_NICE)) {
1157 rcu_read_unlock();
1158 err = -EPERM;
1159 goto out;
1160 }
1161 rcu_read_unlock();
1162
1163 task_nodes = cpuset_mems_allowed(task);
1164 /* Is the user allowed to access the target nodes? */
1165 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1166 err = -EPERM;
1167 goto out;
1168 }
1169
1170 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1171 err = -EINVAL;
1172 goto out;
1173 }
1174
1175 err = security_task_movememory(task);
1176 if (err)
1177 goto out;
1178
1179 err = do_migrate_pages(mm, &old, &new,
1180 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1181 out:
1182 mmput(mm);
1183 return err;
1184 }
1185
1186
1187 /* Retrieve NUMA policy */
1188 asmlinkage long sys_get_mempolicy(int __user *policy,
1189 unsigned long __user *nmask,
1190 unsigned long maxnode,
1191 unsigned long addr, unsigned long flags)
1192 {
1193 int err;
1194 int uninitialized_var(pval);
1195 nodemask_t nodes;
1196
1197 if (nmask != NULL && maxnode < MAX_NUMNODES)
1198 return -EINVAL;
1199
1200 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1201
1202 if (err)
1203 return err;
1204
1205 if (policy && put_user(pval, policy))
1206 return -EFAULT;
1207
1208 if (nmask)
1209 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1210
1211 return err;
1212 }
1213
1214 #ifdef CONFIG_COMPAT
1215
1216 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1217 compat_ulong_t __user *nmask,
1218 compat_ulong_t maxnode,
1219 compat_ulong_t addr, compat_ulong_t flags)
1220 {
1221 long err;
1222 unsigned long __user *nm = NULL;
1223 unsigned long nr_bits, alloc_size;
1224 DECLARE_BITMAP(bm, MAX_NUMNODES);
1225
1226 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1227 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1228
1229 if (nmask)
1230 nm = compat_alloc_user_space(alloc_size);
1231
1232 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1233
1234 if (!err && nmask) {
1235 err = copy_from_user(bm, nm, alloc_size);
1236 /* ensure entire bitmap is zeroed */
1237 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1238 err |= compat_put_bitmap(nmask, bm, nr_bits);
1239 }
1240
1241 return err;
1242 }
1243
1244 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1245 compat_ulong_t maxnode)
1246 {
1247 long err = 0;
1248 unsigned long __user *nm = NULL;
1249 unsigned long nr_bits, alloc_size;
1250 DECLARE_BITMAP(bm, MAX_NUMNODES);
1251
1252 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1253 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1254
1255 if (nmask) {
1256 err = compat_get_bitmap(bm, nmask, nr_bits);
1257 nm = compat_alloc_user_space(alloc_size);
1258 err |= copy_to_user(nm, bm, alloc_size);
1259 }
1260
1261 if (err)
1262 return -EFAULT;
1263
1264 return sys_set_mempolicy(mode, nm, nr_bits+1);
1265 }
1266
1267 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1268 compat_ulong_t mode, compat_ulong_t __user *nmask,
1269 compat_ulong_t maxnode, compat_ulong_t flags)
1270 {
1271 long err = 0;
1272 unsigned long __user *nm = NULL;
1273 unsigned long nr_bits, alloc_size;
1274 nodemask_t bm;
1275
1276 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1277 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1278
1279 if (nmask) {
1280 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1281 nm = compat_alloc_user_space(alloc_size);
1282 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1283 }
1284
1285 if (err)
1286 return -EFAULT;
1287
1288 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1289 }
1290
1291 #endif
1292
1293 /*
1294 * get_vma_policy(@task, @vma, @addr)
1295 * @task - task for fallback if vma policy == default
1296 * @vma - virtual memory area whose policy is sought
1297 * @addr - address in @vma for shared policy lookup
1298 *
1299 * Returns effective policy for a VMA at specified address.
1300 * Falls back to @task or system default policy, as necessary.
1301 * Current or other task's task mempolicy and non-shared vma policies
1302 * are protected by the task's mmap_sem, which must be held for read by
1303 * the caller.
1304 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1305 * count--added by the get_policy() vm_op, as appropriate--to protect against
1306 * freeing by another task. It is the caller's responsibility to free the
1307 * extra reference for shared policies.
1308 */
1309 static struct mempolicy *get_vma_policy(struct task_struct *task,
1310 struct vm_area_struct *vma, unsigned long addr)
1311 {
1312 struct mempolicy *pol = task->mempolicy;
1313
1314 if (vma) {
1315 if (vma->vm_ops && vma->vm_ops->get_policy) {
1316 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1317 addr);
1318 if (vpol)
1319 pol = vpol;
1320 } else if (vma->vm_policy)
1321 pol = vma->vm_policy;
1322 }
1323 if (!pol)
1324 pol = &default_policy;
1325 return pol;
1326 }
1327
1328 /*
1329 * Return a nodemask representing a mempolicy for filtering nodes for
1330 * page allocation
1331 */
1332 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1333 {
1334 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1335 if (unlikely(policy->mode == MPOL_BIND) &&
1336 gfp_zone(gfp) >= policy_zone &&
1337 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1338 return &policy->v.nodes;
1339
1340 return NULL;
1341 }
1342
1343 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1344 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1345 {
1346 int nd = numa_node_id();
1347
1348 switch (policy->mode) {
1349 case MPOL_PREFERRED:
1350 if (!(policy->flags & MPOL_F_LOCAL))
1351 nd = policy->v.preferred_node;
1352 break;
1353 case MPOL_BIND:
1354 /*
1355 * Normally, MPOL_BIND allocations are node-local within the
1356 * allowed nodemask. However, if __GFP_THISNODE is set and the
1357 * current node is part of the mask, we use the zonelist for
1358 * the first node in the mask instead.
1359 */
1360 if (unlikely(gfp & __GFP_THISNODE) &&
1361 unlikely(!node_isset(nd, policy->v.nodes)))
1362 nd = first_node(policy->v.nodes);
1363 break;
1364 case MPOL_INTERLEAVE: /* should not happen */
1365 break;
1366 default:
1367 BUG();
1368 }
1369 return node_zonelist(nd, gfp);
1370 }
1371
1372 /* Do dynamic interleaving for a process */
1373 static unsigned interleave_nodes(struct mempolicy *policy)
1374 {
1375 unsigned nid, next;
1376 struct task_struct *me = current;
1377
1378 nid = me->il_next;
1379 next = next_node(nid, policy->v.nodes);
1380 if (next >= MAX_NUMNODES)
1381 next = first_node(policy->v.nodes);
1382 if (next < MAX_NUMNODES)
1383 me->il_next = next;
1384 return nid;
1385 }
1386
1387 /*
1388 * Depending on the memory policy provide a node from which to allocate the
1389 * next slab entry.
1390 * @policy must be protected by freeing by the caller. If @policy is
1391 * the current task's mempolicy, this protection is implicit, as only the
1392 * task can change it's policy. The system default policy requires no
1393 * such protection.
1394 */
1395 unsigned slab_node(struct mempolicy *policy)
1396 {
1397 if (!policy || policy->flags & MPOL_F_LOCAL)
1398 return numa_node_id();
1399
1400 switch (policy->mode) {
1401 case MPOL_PREFERRED:
1402 /*
1403 * handled MPOL_F_LOCAL above
1404 */
1405 return policy->v.preferred_node;
1406
1407 case MPOL_INTERLEAVE:
1408 return interleave_nodes(policy);
1409
1410 case MPOL_BIND: {
1411 /*
1412 * Follow bind policy behavior and start allocation at the
1413 * first node.
1414 */
1415 struct zonelist *zonelist;
1416 struct zone *zone;
1417 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1418 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1419 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1420 &policy->v.nodes,
1421 &zone);
1422 return zone->node;
1423 }
1424
1425 default:
1426 BUG();
1427 }
1428 }
1429
1430 /* Do static interleaving for a VMA with known offset. */
1431 static unsigned offset_il_node(struct mempolicy *pol,
1432 struct vm_area_struct *vma, unsigned long off)
1433 {
1434 unsigned nnodes = nodes_weight(pol->v.nodes);
1435 unsigned target;
1436 int c;
1437 int nid = -1;
1438
1439 if (!nnodes)
1440 return numa_node_id();
1441 target = (unsigned int)off % nnodes;
1442 c = 0;
1443 do {
1444 nid = next_node(nid, pol->v.nodes);
1445 c++;
1446 } while (c <= target);
1447 return nid;
1448 }
1449
1450 /* Determine a node number for interleave */
1451 static inline unsigned interleave_nid(struct mempolicy *pol,
1452 struct vm_area_struct *vma, unsigned long addr, int shift)
1453 {
1454 if (vma) {
1455 unsigned long off;
1456
1457 /*
1458 * for small pages, there is no difference between
1459 * shift and PAGE_SHIFT, so the bit-shift is safe.
1460 * for huge pages, since vm_pgoff is in units of small
1461 * pages, we need to shift off the always 0 bits to get
1462 * a useful offset.
1463 */
1464 BUG_ON(shift < PAGE_SHIFT);
1465 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1466 off += (addr - vma->vm_start) >> shift;
1467 return offset_il_node(pol, vma, off);
1468 } else
1469 return interleave_nodes(pol);
1470 }
1471
1472 #ifdef CONFIG_HUGETLBFS
1473 /*
1474 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1475 * @vma = virtual memory area whose policy is sought
1476 * @addr = address in @vma for shared policy lookup and interleave policy
1477 * @gfp_flags = for requested zone
1478 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1479 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1480 *
1481 * Returns a zonelist suitable for a huge page allocation and a pointer
1482 * to the struct mempolicy for conditional unref after allocation.
1483 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1484 * @nodemask for filtering the zonelist.
1485 */
1486 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1487 gfp_t gfp_flags, struct mempolicy **mpol,
1488 nodemask_t **nodemask)
1489 {
1490 struct zonelist *zl;
1491
1492 *mpol = get_vma_policy(current, vma, addr);
1493 *nodemask = NULL; /* assume !MPOL_BIND */
1494
1495 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1496 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1497 huge_page_shift(hstate_vma(vma))), gfp_flags);
1498 } else {
1499 zl = policy_zonelist(gfp_flags, *mpol);
1500 if ((*mpol)->mode == MPOL_BIND)
1501 *nodemask = &(*mpol)->v.nodes;
1502 }
1503 return zl;
1504 }
1505 #endif
1506
1507 /* Allocate a page in interleaved policy.
1508 Own path because it needs to do special accounting. */
1509 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1510 unsigned nid)
1511 {
1512 struct zonelist *zl;
1513 struct page *page;
1514
1515 zl = node_zonelist(nid, gfp);
1516 page = __alloc_pages(gfp, order, zl);
1517 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1518 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1519 return page;
1520 }
1521
1522 /**
1523 * alloc_page_vma - Allocate a page for a VMA.
1524 *
1525 * @gfp:
1526 * %GFP_USER user allocation.
1527 * %GFP_KERNEL kernel allocations,
1528 * %GFP_HIGHMEM highmem/user allocations,
1529 * %GFP_FS allocation should not call back into a file system.
1530 * %GFP_ATOMIC don't sleep.
1531 *
1532 * @vma: Pointer to VMA or NULL if not available.
1533 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1534 *
1535 * This function allocates a page from the kernel page pool and applies
1536 * a NUMA policy associated with the VMA or the current process.
1537 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1538 * mm_struct of the VMA to prevent it from going away. Should be used for
1539 * all allocations for pages that will be mapped into
1540 * user space. Returns NULL when no page can be allocated.
1541 *
1542 * Should be called with the mm_sem of the vma hold.
1543 */
1544 struct page *
1545 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1546 {
1547 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1548 struct zonelist *zl;
1549
1550 cpuset_update_task_memory_state();
1551
1552 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1553 unsigned nid;
1554
1555 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1556 mpol_cond_put(pol);
1557 return alloc_page_interleave(gfp, 0, nid);
1558 }
1559 zl = policy_zonelist(gfp, pol);
1560 if (unlikely(mpol_needs_cond_ref(pol))) {
1561 /*
1562 * slow path: ref counted shared policy
1563 */
1564 struct page *page = __alloc_pages_nodemask(gfp, 0,
1565 zl, policy_nodemask(gfp, pol));
1566 __mpol_put(pol);
1567 return page;
1568 }
1569 /*
1570 * fast path: default or task policy
1571 */
1572 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1573 }
1574
1575 /**
1576 * alloc_pages_current - Allocate pages.
1577 *
1578 * @gfp:
1579 * %GFP_USER user allocation,
1580 * %GFP_KERNEL kernel allocation,
1581 * %GFP_HIGHMEM highmem allocation,
1582 * %GFP_FS don't call back into a file system.
1583 * %GFP_ATOMIC don't sleep.
1584 * @order: Power of two of allocation size in pages. 0 is a single page.
1585 *
1586 * Allocate a page from the kernel page pool. When not in
1587 * interrupt context and apply the current process NUMA policy.
1588 * Returns NULL when no page can be allocated.
1589 *
1590 * Don't call cpuset_update_task_memory_state() unless
1591 * 1) it's ok to take cpuset_sem (can WAIT), and
1592 * 2) allocating for current task (not interrupt).
1593 */
1594 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1595 {
1596 struct mempolicy *pol = current->mempolicy;
1597
1598 if ((gfp & __GFP_WAIT) && !in_interrupt())
1599 cpuset_update_task_memory_state();
1600 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1601 pol = &default_policy;
1602
1603 /*
1604 * No reference counting needed for current->mempolicy
1605 * nor system default_policy
1606 */
1607 if (pol->mode == MPOL_INTERLEAVE)
1608 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1609 return __alloc_pages_nodemask(gfp, order,
1610 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1611 }
1612 EXPORT_SYMBOL(alloc_pages_current);
1613
1614 /*
1615 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1616 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1617 * with the mems_allowed returned by cpuset_mems_allowed(). This
1618 * keeps mempolicies cpuset relative after its cpuset moves. See
1619 * further kernel/cpuset.c update_nodemask().
1620 */
1621
1622 /* Slow path of a mempolicy duplicate */
1623 struct mempolicy *__mpol_dup(struct mempolicy *old)
1624 {
1625 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1626
1627 if (!new)
1628 return ERR_PTR(-ENOMEM);
1629 if (current_cpuset_is_being_rebound()) {
1630 nodemask_t mems = cpuset_mems_allowed(current);
1631 mpol_rebind_policy(old, &mems);
1632 }
1633 *new = *old;
1634 atomic_set(&new->refcnt, 1);
1635 return new;
1636 }
1637
1638 /*
1639 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1640 * eliminate the * MPOL_F_* flags that require conditional ref and
1641 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1642 * after return. Use the returned value.
1643 *
1644 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1645 * policy lookup, even if the policy needs/has extra ref on lookup.
1646 * shmem_readahead needs this.
1647 */
1648 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1649 struct mempolicy *frompol)
1650 {
1651 if (!mpol_needs_cond_ref(frompol))
1652 return frompol;
1653
1654 *tompol = *frompol;
1655 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1656 __mpol_put(frompol);
1657 return tompol;
1658 }
1659
1660 static int mpol_match_intent(const struct mempolicy *a,
1661 const struct mempolicy *b)
1662 {
1663 if (a->flags != b->flags)
1664 return 0;
1665 if (!mpol_store_user_nodemask(a))
1666 return 1;
1667 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1668 }
1669
1670 /* Slow path of a mempolicy comparison */
1671 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1672 {
1673 if (!a || !b)
1674 return 0;
1675 if (a->mode != b->mode)
1676 return 0;
1677 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1678 return 0;
1679 switch (a->mode) {
1680 case MPOL_BIND:
1681 /* Fall through */
1682 case MPOL_INTERLEAVE:
1683 return nodes_equal(a->v.nodes, b->v.nodes);
1684 case MPOL_PREFERRED:
1685 return a->v.preferred_node == b->v.preferred_node &&
1686 a->flags == b->flags;
1687 default:
1688 BUG();
1689 return 0;
1690 }
1691 }
1692
1693 /*
1694 * Shared memory backing store policy support.
1695 *
1696 * Remember policies even when nobody has shared memory mapped.
1697 * The policies are kept in Red-Black tree linked from the inode.
1698 * They are protected by the sp->lock spinlock, which should be held
1699 * for any accesses to the tree.
1700 */
1701
1702 /* lookup first element intersecting start-end */
1703 /* Caller holds sp->lock */
1704 static struct sp_node *
1705 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1706 {
1707 struct rb_node *n = sp->root.rb_node;
1708
1709 while (n) {
1710 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1711
1712 if (start >= p->end)
1713 n = n->rb_right;
1714 else if (end <= p->start)
1715 n = n->rb_left;
1716 else
1717 break;
1718 }
1719 if (!n)
1720 return NULL;
1721 for (;;) {
1722 struct sp_node *w = NULL;
1723 struct rb_node *prev = rb_prev(n);
1724 if (!prev)
1725 break;
1726 w = rb_entry(prev, struct sp_node, nd);
1727 if (w->end <= start)
1728 break;
1729 n = prev;
1730 }
1731 return rb_entry(n, struct sp_node, nd);
1732 }
1733
1734 /* Insert a new shared policy into the list. */
1735 /* Caller holds sp->lock */
1736 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1737 {
1738 struct rb_node **p = &sp->root.rb_node;
1739 struct rb_node *parent = NULL;
1740 struct sp_node *nd;
1741
1742 while (*p) {
1743 parent = *p;
1744 nd = rb_entry(parent, struct sp_node, nd);
1745 if (new->start < nd->start)
1746 p = &(*p)->rb_left;
1747 else if (new->end > nd->end)
1748 p = &(*p)->rb_right;
1749 else
1750 BUG();
1751 }
1752 rb_link_node(&new->nd, parent, p);
1753 rb_insert_color(&new->nd, &sp->root);
1754 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1755 new->policy ? new->policy->mode : 0);
1756 }
1757
1758 /* Find shared policy intersecting idx */
1759 struct mempolicy *
1760 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1761 {
1762 struct mempolicy *pol = NULL;
1763 struct sp_node *sn;
1764
1765 if (!sp->root.rb_node)
1766 return NULL;
1767 spin_lock(&sp->lock);
1768 sn = sp_lookup(sp, idx, idx+1);
1769 if (sn) {
1770 mpol_get(sn->policy);
1771 pol = sn->policy;
1772 }
1773 spin_unlock(&sp->lock);
1774 return pol;
1775 }
1776
1777 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1778 {
1779 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1780 rb_erase(&n->nd, &sp->root);
1781 mpol_put(n->policy);
1782 kmem_cache_free(sn_cache, n);
1783 }
1784
1785 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1786 struct mempolicy *pol)
1787 {
1788 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1789
1790 if (!n)
1791 return NULL;
1792 n->start = start;
1793 n->end = end;
1794 mpol_get(pol);
1795 pol->flags |= MPOL_F_SHARED; /* for unref */
1796 n->policy = pol;
1797 return n;
1798 }
1799
1800 /* Replace a policy range. */
1801 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1802 unsigned long end, struct sp_node *new)
1803 {
1804 struct sp_node *n, *new2 = NULL;
1805
1806 restart:
1807 spin_lock(&sp->lock);
1808 n = sp_lookup(sp, start, end);
1809 /* Take care of old policies in the same range. */
1810 while (n && n->start < end) {
1811 struct rb_node *next = rb_next(&n->nd);
1812 if (n->start >= start) {
1813 if (n->end <= end)
1814 sp_delete(sp, n);
1815 else
1816 n->start = end;
1817 } else {
1818 /* Old policy spanning whole new range. */
1819 if (n->end > end) {
1820 if (!new2) {
1821 spin_unlock(&sp->lock);
1822 new2 = sp_alloc(end, n->end, n->policy);
1823 if (!new2)
1824 return -ENOMEM;
1825 goto restart;
1826 }
1827 n->end = start;
1828 sp_insert(sp, new2);
1829 new2 = NULL;
1830 break;
1831 } else
1832 n->end = start;
1833 }
1834 if (!next)
1835 break;
1836 n = rb_entry(next, struct sp_node, nd);
1837 }
1838 if (new)
1839 sp_insert(sp, new);
1840 spin_unlock(&sp->lock);
1841 if (new2) {
1842 mpol_put(new2->policy);
1843 kmem_cache_free(sn_cache, new2);
1844 }
1845 return 0;
1846 }
1847
1848 /**
1849 * mpol_shared_policy_init - initialize shared policy for inode
1850 * @sp: pointer to inode shared policy
1851 * @mpol: struct mempolicy to install
1852 *
1853 * Install non-NULL @mpol in inode's shared policy rb-tree.
1854 * On entry, the current task has a reference on a non-NULL @mpol.
1855 * This must be released on exit.
1856 */
1857 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1858 {
1859 sp->root = RB_ROOT; /* empty tree == default mempolicy */
1860 spin_lock_init(&sp->lock);
1861
1862 if (mpol) {
1863 struct vm_area_struct pvma;
1864 struct mempolicy *new;
1865
1866 /* contextualize the tmpfs mount point mempolicy */
1867 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
1868 mpol_put(mpol); /* drop our ref on sb mpol */
1869 if (IS_ERR(new))
1870 return; /* no valid nodemask intersection */
1871
1872 /* Create pseudo-vma that contains just the policy */
1873 memset(&pvma, 0, sizeof(struct vm_area_struct));
1874 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
1875 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
1876 mpol_put(new); /* drop initial ref */
1877 }
1878 }
1879
1880 int mpol_set_shared_policy(struct shared_policy *info,
1881 struct vm_area_struct *vma, struct mempolicy *npol)
1882 {
1883 int err;
1884 struct sp_node *new = NULL;
1885 unsigned long sz = vma_pages(vma);
1886
1887 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1888 vma->vm_pgoff,
1889 sz, npol ? npol->mode : -1,
1890 npol ? npol->flags : -1,
1891 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1892
1893 if (npol) {
1894 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1895 if (!new)
1896 return -ENOMEM;
1897 }
1898 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1899 if (err && new)
1900 kmem_cache_free(sn_cache, new);
1901 return err;
1902 }
1903
1904 /* Free a backing policy store on inode delete. */
1905 void mpol_free_shared_policy(struct shared_policy *p)
1906 {
1907 struct sp_node *n;
1908 struct rb_node *next;
1909
1910 if (!p->root.rb_node)
1911 return;
1912 spin_lock(&p->lock);
1913 next = rb_first(&p->root);
1914 while (next) {
1915 n = rb_entry(next, struct sp_node, nd);
1916 next = rb_next(&n->nd);
1917 rb_erase(&n->nd, &p->root);
1918 mpol_put(n->policy);
1919 kmem_cache_free(sn_cache, n);
1920 }
1921 spin_unlock(&p->lock);
1922 }
1923
1924 /* assumes fs == KERNEL_DS */
1925 void __init numa_policy_init(void)
1926 {
1927 nodemask_t interleave_nodes;
1928 unsigned long largest = 0;
1929 int nid, prefer = 0;
1930
1931 policy_cache = kmem_cache_create("numa_policy",
1932 sizeof(struct mempolicy),
1933 0, SLAB_PANIC, NULL);
1934
1935 sn_cache = kmem_cache_create("shared_policy_node",
1936 sizeof(struct sp_node),
1937 0, SLAB_PANIC, NULL);
1938
1939 /*
1940 * Set interleaving policy for system init. Interleaving is only
1941 * enabled across suitably sized nodes (default is >= 16MB), or
1942 * fall back to the largest node if they're all smaller.
1943 */
1944 nodes_clear(interleave_nodes);
1945 for_each_node_state(nid, N_HIGH_MEMORY) {
1946 unsigned long total_pages = node_present_pages(nid);
1947
1948 /* Preserve the largest node */
1949 if (largest < total_pages) {
1950 largest = total_pages;
1951 prefer = nid;
1952 }
1953
1954 /* Interleave this node? */
1955 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1956 node_set(nid, interleave_nodes);
1957 }
1958
1959 /* All too small, use the largest */
1960 if (unlikely(nodes_empty(interleave_nodes)))
1961 node_set(prefer, interleave_nodes);
1962
1963 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1964 printk("numa_policy_init: interleaving failed\n");
1965 }
1966
1967 /* Reset policy of current process to default */
1968 void numa_default_policy(void)
1969 {
1970 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1971 }
1972
1973 /*
1974 * Parse and format mempolicy from/to strings
1975 */
1976
1977 /*
1978 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
1979 * Used only for mpol_parse_str() and mpol_to_str()
1980 */
1981 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
1982 static const char * const policy_types[] =
1983 { "default", "prefer", "bind", "interleave", "local" };
1984
1985
1986 #ifdef CONFIG_TMPFS
1987 /**
1988 * mpol_parse_str - parse string to mempolicy
1989 * @str: string containing mempolicy to parse
1990 * @mpol: pointer to struct mempolicy pointer, returned on success.
1991 * @no_context: flag whether to "contextualize" the mempolicy
1992 *
1993 * Format of input:
1994 * <mode>[=<flags>][:<nodelist>]
1995 *
1996 * if @no_context is true, save the input nodemask in w.user_nodemask in
1997 * the returned mempolicy. This will be used to "clone" the mempolicy in
1998 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
1999 * mount option. Note that if 'static' or 'relative' mode flags were
2000 * specified, the input nodemask will already have been saved. Saving
2001 * it again is redundant, but safe.
2002 *
2003 * On success, returns 0, else 1
2004 */
2005 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2006 {
2007 struct mempolicy *new = NULL;
2008 unsigned short uninitialized_var(mode);
2009 unsigned short uninitialized_var(mode_flags);
2010 nodemask_t nodes;
2011 char *nodelist = strchr(str, ':');
2012 char *flags = strchr(str, '=');
2013 int i;
2014 int err = 1;
2015
2016 if (nodelist) {
2017 /* NUL-terminate mode or flags string */
2018 *nodelist++ = '\0';
2019 if (nodelist_parse(nodelist, nodes))
2020 goto out;
2021 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2022 goto out;
2023 } else
2024 nodes_clear(nodes);
2025
2026 if (flags)
2027 *flags++ = '\0'; /* terminate mode string */
2028
2029 for (i = 0; i <= MPOL_LOCAL; i++) {
2030 if (!strcmp(str, policy_types[i])) {
2031 mode = i;
2032 break;
2033 }
2034 }
2035 if (i > MPOL_LOCAL)
2036 goto out;
2037
2038 switch (mode) {
2039 case MPOL_PREFERRED:
2040 /*
2041 * Insist on a nodelist of one node only
2042 */
2043 if (nodelist) {
2044 char *rest = nodelist;
2045 while (isdigit(*rest))
2046 rest++;
2047 if (!*rest)
2048 err = 0;
2049 }
2050 break;
2051 case MPOL_INTERLEAVE:
2052 /*
2053 * Default to online nodes with memory if no nodelist
2054 */
2055 if (!nodelist)
2056 nodes = node_states[N_HIGH_MEMORY];
2057 err = 0;
2058 break;
2059 case MPOL_LOCAL:
2060 /*
2061 * Don't allow a nodelist; mpol_new() checks flags
2062 */
2063 if (nodelist)
2064 goto out;
2065 mode = MPOL_PREFERRED;
2066 break;
2067
2068 /*
2069 * case MPOL_BIND: mpol_new() enforces non-empty nodemask.
2070 * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags.
2071 */
2072 }
2073
2074 mode_flags = 0;
2075 if (flags) {
2076 /*
2077 * Currently, we only support two mutually exclusive
2078 * mode flags.
2079 */
2080 if (!strcmp(flags, "static"))
2081 mode_flags |= MPOL_F_STATIC_NODES;
2082 else if (!strcmp(flags, "relative"))
2083 mode_flags |= MPOL_F_RELATIVE_NODES;
2084 else
2085 err = 1;
2086 }
2087
2088 new = mpol_new(mode, mode_flags, &nodes);
2089 if (IS_ERR(new))
2090 err = 1;
2091 else if (no_context)
2092 new->w.user_nodemask = nodes; /* save for contextualization */
2093
2094 out:
2095 /* Restore string for error message */
2096 if (nodelist)
2097 *--nodelist = ':';
2098 if (flags)
2099 *--flags = '=';
2100 if (!err)
2101 *mpol = new;
2102 return err;
2103 }
2104 #endif /* CONFIG_TMPFS */
2105
2106 /**
2107 * mpol_to_str - format a mempolicy structure for printing
2108 * @buffer: to contain formatted mempolicy string
2109 * @maxlen: length of @buffer
2110 * @pol: pointer to mempolicy to be formatted
2111 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2112 *
2113 * Convert a mempolicy into a string.
2114 * Returns the number of characters in buffer (if positive)
2115 * or an error (negative)
2116 */
2117 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2118 {
2119 char *p = buffer;
2120 int l;
2121 nodemask_t nodes;
2122 unsigned short mode;
2123 unsigned short flags = pol ? pol->flags : 0;
2124
2125 /*
2126 * Sanity check: room for longest mode, flag and some nodes
2127 */
2128 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2129
2130 if (!pol || pol == &default_policy)
2131 mode = MPOL_DEFAULT;
2132 else
2133 mode = pol->mode;
2134
2135 switch (mode) {
2136 case MPOL_DEFAULT:
2137 nodes_clear(nodes);
2138 break;
2139
2140 case MPOL_PREFERRED:
2141 nodes_clear(nodes);
2142 if (flags & MPOL_F_LOCAL)
2143 mode = MPOL_LOCAL; /* pseudo-policy */
2144 else
2145 node_set(pol->v.preferred_node, nodes);
2146 break;
2147
2148 case MPOL_BIND:
2149 /* Fall through */
2150 case MPOL_INTERLEAVE:
2151 if (no_context)
2152 nodes = pol->w.user_nodemask;
2153 else
2154 nodes = pol->v.nodes;
2155 break;
2156
2157 default:
2158 BUG();
2159 }
2160
2161 l = strlen(policy_types[mode]);
2162 if (buffer + maxlen < p + l + 1)
2163 return -ENOSPC;
2164
2165 strcpy(p, policy_types[mode]);
2166 p += l;
2167
2168 if (flags & MPOL_MODE_FLAGS) {
2169 if (buffer + maxlen < p + 2)
2170 return -ENOSPC;
2171 *p++ = '=';
2172
2173 /*
2174 * Currently, the only defined flags are mutually exclusive
2175 */
2176 if (flags & MPOL_F_STATIC_NODES)
2177 p += snprintf(p, buffer + maxlen - p, "static");
2178 else if (flags & MPOL_F_RELATIVE_NODES)
2179 p += snprintf(p, buffer + maxlen - p, "relative");
2180 }
2181
2182 if (!nodes_empty(nodes)) {
2183 if (buffer + maxlen < p + 2)
2184 return -ENOSPC;
2185 *p++ = ':';
2186 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2187 }
2188 return p - buffer;
2189 }
2190
2191 struct numa_maps {
2192 unsigned long pages;
2193 unsigned long anon;
2194 unsigned long active;
2195 unsigned long writeback;
2196 unsigned long mapcount_max;
2197 unsigned long dirty;
2198 unsigned long swapcache;
2199 unsigned long node[MAX_NUMNODES];
2200 };
2201
2202 static void gather_stats(struct page *page, void *private, int pte_dirty)
2203 {
2204 struct numa_maps *md = private;
2205 int count = page_mapcount(page);
2206
2207 md->pages++;
2208 if (pte_dirty || PageDirty(page))
2209 md->dirty++;
2210
2211 if (PageSwapCache(page))
2212 md->swapcache++;
2213
2214 if (PageActive(page) || PageUnevictable(page))
2215 md->active++;
2216
2217 if (PageWriteback(page))
2218 md->writeback++;
2219
2220 if (PageAnon(page))
2221 md->anon++;
2222
2223 if (count > md->mapcount_max)
2224 md->mapcount_max = count;
2225
2226 md->node[page_to_nid(page)]++;
2227 }
2228
2229 #ifdef CONFIG_HUGETLB_PAGE
2230 static void check_huge_range(struct vm_area_struct *vma,
2231 unsigned long start, unsigned long end,
2232 struct numa_maps *md)
2233 {
2234 unsigned long addr;
2235 struct page *page;
2236 struct hstate *h = hstate_vma(vma);
2237 unsigned long sz = huge_page_size(h);
2238
2239 for (addr = start; addr < end; addr += sz) {
2240 pte_t *ptep = huge_pte_offset(vma->vm_mm,
2241 addr & huge_page_mask(h));
2242 pte_t pte;
2243
2244 if (!ptep)
2245 continue;
2246
2247 pte = *ptep;
2248 if (pte_none(pte))
2249 continue;
2250
2251 page = pte_page(pte);
2252 if (!page)
2253 continue;
2254
2255 gather_stats(page, md, pte_dirty(*ptep));
2256 }
2257 }
2258 #else
2259 static inline void check_huge_range(struct vm_area_struct *vma,
2260 unsigned long start, unsigned long end,
2261 struct numa_maps *md)
2262 {
2263 }
2264 #endif
2265
2266 /*
2267 * Display pages allocated per node and memory policy via /proc.
2268 */
2269 int show_numa_map(struct seq_file *m, void *v)
2270 {
2271 struct proc_maps_private *priv = m->private;
2272 struct vm_area_struct *vma = v;
2273 struct numa_maps *md;
2274 struct file *file = vma->vm_file;
2275 struct mm_struct *mm = vma->vm_mm;
2276 struct mempolicy *pol;
2277 int n;
2278 char buffer[50];
2279
2280 if (!mm)
2281 return 0;
2282
2283 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2284 if (!md)
2285 return 0;
2286
2287 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2288 mpol_to_str(buffer, sizeof(buffer), pol, 0);
2289 mpol_cond_put(pol);
2290
2291 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2292
2293 if (file) {
2294 seq_printf(m, " file=");
2295 seq_path(m, &file->f_path, "\n\t= ");
2296 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2297 seq_printf(m, " heap");
2298 } else if (vma->vm_start <= mm->start_stack &&
2299 vma->vm_end >= mm->start_stack) {
2300 seq_printf(m, " stack");
2301 }
2302
2303 if (is_vm_hugetlb_page(vma)) {
2304 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2305 seq_printf(m, " huge");
2306 } else {
2307 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2308 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2309 }
2310
2311 if (!md->pages)
2312 goto out;
2313
2314 if (md->anon)
2315 seq_printf(m," anon=%lu",md->anon);
2316
2317 if (md->dirty)
2318 seq_printf(m," dirty=%lu",md->dirty);
2319
2320 if (md->pages != md->anon && md->pages != md->dirty)
2321 seq_printf(m, " mapped=%lu", md->pages);
2322
2323 if (md->mapcount_max > 1)
2324 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2325
2326 if (md->swapcache)
2327 seq_printf(m," swapcache=%lu", md->swapcache);
2328
2329 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2330 seq_printf(m," active=%lu", md->active);
2331
2332 if (md->writeback)
2333 seq_printf(m," writeback=%lu", md->writeback);
2334
2335 for_each_node_state(n, N_HIGH_MEMORY)
2336 if (md->node[n])
2337 seq_printf(m, " N%d=%lu", n, md->node[n]);
2338 out:
2339 seq_putc(m, '\n');
2340 kfree(md);
2341
2342 if (m->count < m->size)
2343 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2344 return 0;
2345 }