]> git.ipfire.org Git - people/ms/linux.git/blob - mm/mempolicy.c
[PATCH] mm: slab cache interleave rotor fix
[people/ms/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
67 */
68
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/mm.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
89
90 #include <asm/tlbflush.h>
91 #include <asm/uaccess.h>
92
93 /* Internal flags */
94 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
95 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
96 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
97
98 /* The number of pages to migrate per call to migrate_pages() */
99 #define MIGRATE_CHUNK_SIZE 256
100
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
103
104 #define PDprintk(fmt...)
105
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 int policy_zone = ZONE_DMA;
109
110 struct mempolicy default_policy = {
111 .refcnt = ATOMIC_INIT(1), /* never free it */
112 .policy = MPOL_DEFAULT,
113 };
114
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode, nodemask_t *nodes)
117 {
118 int empty = nodes_empty(*nodes);
119
120 switch (mode) {
121 case MPOL_DEFAULT:
122 if (!empty)
123 return -EINVAL;
124 break;
125 case MPOL_BIND:
126 case MPOL_INTERLEAVE:
127 /* Preferred will only use the first bit, but allow
128 more for now. */
129 if (empty)
130 return -EINVAL;
131 break;
132 }
133 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
134 }
135
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist *bind_zonelist(nodemask_t *nodes)
138 {
139 struct zonelist *zl;
140 int num, max, nd, k;
141
142 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
143 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
144 if (!zl)
145 return NULL;
146 num = 0;
147 /* First put in the highest zones from all nodes, then all the next
148 lower zones etc. Avoid empty zones because the memory allocator
149 doesn't like them. If you implement node hot removal you
150 have to fix that. */
151 for (k = policy_zone; k >= 0; k--) {
152 for_each_node_mask(nd, *nodes) {
153 struct zone *z = &NODE_DATA(nd)->node_zones[k];
154 if (z->present_pages > 0)
155 zl->zones[num++] = z;
156 }
157 }
158 zl->zones[num] = NULL;
159 return zl;
160 }
161
162 /* Create a new policy */
163 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
164 {
165 struct mempolicy *policy;
166
167 PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
168 if (mode == MPOL_DEFAULT)
169 return NULL;
170 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
171 if (!policy)
172 return ERR_PTR(-ENOMEM);
173 atomic_set(&policy->refcnt, 1);
174 switch (mode) {
175 case MPOL_INTERLEAVE:
176 policy->v.nodes = *nodes;
177 if (nodes_weight(*nodes) == 0) {
178 kmem_cache_free(policy_cache, policy);
179 return ERR_PTR(-EINVAL);
180 }
181 break;
182 case MPOL_PREFERRED:
183 policy->v.preferred_node = first_node(*nodes);
184 if (policy->v.preferred_node >= MAX_NUMNODES)
185 policy->v.preferred_node = -1;
186 break;
187 case MPOL_BIND:
188 policy->v.zonelist = bind_zonelist(nodes);
189 if (policy->v.zonelist == NULL) {
190 kmem_cache_free(policy_cache, policy);
191 return ERR_PTR(-ENOMEM);
192 }
193 break;
194 }
195 policy->policy = mode;
196 policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
197 return policy;
198 }
199
200 static void gather_stats(struct page *, void *, int pte_dirty);
201 static void migrate_page_add(struct page *page, struct list_head *pagelist,
202 unsigned long flags);
203
204 /* Scan through pages checking if pages follow certain conditions. */
205 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
206 unsigned long addr, unsigned long end,
207 const nodemask_t *nodes, unsigned long flags,
208 void *private)
209 {
210 pte_t *orig_pte;
211 pte_t *pte;
212 spinlock_t *ptl;
213
214 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
215 do {
216 struct page *page;
217 unsigned int nid;
218
219 if (!pte_present(*pte))
220 continue;
221 page = vm_normal_page(vma, addr, *pte);
222 if (!page)
223 continue;
224 /*
225 * The check for PageReserved here is important to avoid
226 * handling zero pages and other pages that may have been
227 * marked special by the system.
228 *
229 * If the PageReserved would not be checked here then f.e.
230 * the location of the zero page could have an influence
231 * on MPOL_MF_STRICT, zero pages would be counted for
232 * the per node stats, and there would be useless attempts
233 * to put zero pages on the migration list.
234 */
235 if (PageReserved(page))
236 continue;
237 nid = page_to_nid(page);
238 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
239 continue;
240
241 if (flags & MPOL_MF_STATS)
242 gather_stats(page, private, pte_dirty(*pte));
243 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
244 migrate_page_add(page, private, flags);
245 else
246 break;
247 } while (pte++, addr += PAGE_SIZE, addr != end);
248 pte_unmap_unlock(orig_pte, ptl);
249 return addr != end;
250 }
251
252 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
253 unsigned long addr, unsigned long end,
254 const nodemask_t *nodes, unsigned long flags,
255 void *private)
256 {
257 pmd_t *pmd;
258 unsigned long next;
259
260 pmd = pmd_offset(pud, addr);
261 do {
262 next = pmd_addr_end(addr, end);
263 if (pmd_none_or_clear_bad(pmd))
264 continue;
265 if (check_pte_range(vma, pmd, addr, next, nodes,
266 flags, private))
267 return -EIO;
268 } while (pmd++, addr = next, addr != end);
269 return 0;
270 }
271
272 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 const nodemask_t *nodes, unsigned long flags,
275 void *private)
276 {
277 pud_t *pud;
278 unsigned long next;
279
280 pud = pud_offset(pgd, addr);
281 do {
282 next = pud_addr_end(addr, end);
283 if (pud_none_or_clear_bad(pud))
284 continue;
285 if (check_pmd_range(vma, pud, addr, next, nodes,
286 flags, private))
287 return -EIO;
288 } while (pud++, addr = next, addr != end);
289 return 0;
290 }
291
292 static inline int check_pgd_range(struct vm_area_struct *vma,
293 unsigned long addr, unsigned long end,
294 const nodemask_t *nodes, unsigned long flags,
295 void *private)
296 {
297 pgd_t *pgd;
298 unsigned long next;
299
300 pgd = pgd_offset(vma->vm_mm, addr);
301 do {
302 next = pgd_addr_end(addr, end);
303 if (pgd_none_or_clear_bad(pgd))
304 continue;
305 if (check_pud_range(vma, pgd, addr, next, nodes,
306 flags, private))
307 return -EIO;
308 } while (pgd++, addr = next, addr != end);
309 return 0;
310 }
311
312 /* Check if a vma is migratable */
313 static inline int vma_migratable(struct vm_area_struct *vma)
314 {
315 if (vma->vm_flags & (
316 VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED))
317 return 0;
318 return 1;
319 }
320
321 /*
322 * Check if all pages in a range are on a set of nodes.
323 * If pagelist != NULL then isolate pages from the LRU and
324 * put them on the pagelist.
325 */
326 static struct vm_area_struct *
327 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
328 const nodemask_t *nodes, unsigned long flags, void *private)
329 {
330 int err;
331 struct vm_area_struct *first, *vma, *prev;
332
333 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
334 /* Must have swap device for migration */
335 if (nr_swap_pages <= 0)
336 return ERR_PTR(-ENODEV);
337
338 /*
339 * Clear the LRU lists so pages can be isolated.
340 * Note that pages may be moved off the LRU after we have
341 * drained them. Those pages will fail to migrate like other
342 * pages that may be busy.
343 */
344 lru_add_drain_all();
345 }
346
347 first = find_vma(mm, start);
348 if (!first)
349 return ERR_PTR(-EFAULT);
350 prev = NULL;
351 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
352 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
353 if (!vma->vm_next && vma->vm_end < end)
354 return ERR_PTR(-EFAULT);
355 if (prev && prev->vm_end < vma->vm_start)
356 return ERR_PTR(-EFAULT);
357 }
358 if (!is_vm_hugetlb_page(vma) &&
359 ((flags & MPOL_MF_STRICT) ||
360 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
361 vma_migratable(vma)))) {
362 unsigned long endvma = vma->vm_end;
363
364 if (endvma > end)
365 endvma = end;
366 if (vma->vm_start > start)
367 start = vma->vm_start;
368 err = check_pgd_range(vma, start, endvma, nodes,
369 flags, private);
370 if (err) {
371 first = ERR_PTR(err);
372 break;
373 }
374 }
375 prev = vma;
376 }
377 return first;
378 }
379
380 /* Apply policy to a single VMA */
381 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
382 {
383 int err = 0;
384 struct mempolicy *old = vma->vm_policy;
385
386 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
387 vma->vm_start, vma->vm_end, vma->vm_pgoff,
388 vma->vm_ops, vma->vm_file,
389 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
390
391 if (vma->vm_ops && vma->vm_ops->set_policy)
392 err = vma->vm_ops->set_policy(vma, new);
393 if (!err) {
394 mpol_get(new);
395 vma->vm_policy = new;
396 mpol_free(old);
397 }
398 return err;
399 }
400
401 /* Step 2: apply policy to a range and do splits. */
402 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
403 unsigned long end, struct mempolicy *new)
404 {
405 struct vm_area_struct *next;
406 int err;
407
408 err = 0;
409 for (; vma && vma->vm_start < end; vma = next) {
410 next = vma->vm_next;
411 if (vma->vm_start < start)
412 err = split_vma(vma->vm_mm, vma, start, 1);
413 if (!err && vma->vm_end > end)
414 err = split_vma(vma->vm_mm, vma, end, 0);
415 if (!err)
416 err = policy_vma(vma, new);
417 if (err)
418 break;
419 }
420 return err;
421 }
422
423 static int contextualize_policy(int mode, nodemask_t *nodes)
424 {
425 if (!nodes)
426 return 0;
427
428 cpuset_update_task_memory_state();
429 if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
430 return -EINVAL;
431 return mpol_check_policy(mode, nodes);
432 }
433
434 /* Set the process memory policy */
435 long do_set_mempolicy(int mode, nodemask_t *nodes)
436 {
437 struct mempolicy *new;
438
439 if (contextualize_policy(mode, nodes))
440 return -EINVAL;
441 new = mpol_new(mode, nodes);
442 if (IS_ERR(new))
443 return PTR_ERR(new);
444 mpol_free(current->mempolicy);
445 current->mempolicy = new;
446 if (new && new->policy == MPOL_INTERLEAVE)
447 current->il_next = first_node(new->v.nodes);
448 return 0;
449 }
450
451 /* Fill a zone bitmap for a policy */
452 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
453 {
454 int i;
455
456 nodes_clear(*nodes);
457 switch (p->policy) {
458 case MPOL_BIND:
459 for (i = 0; p->v.zonelist->zones[i]; i++)
460 node_set(p->v.zonelist->zones[i]->zone_pgdat->node_id,
461 *nodes);
462 break;
463 case MPOL_DEFAULT:
464 break;
465 case MPOL_INTERLEAVE:
466 *nodes = p->v.nodes;
467 break;
468 case MPOL_PREFERRED:
469 /* or use current node instead of online map? */
470 if (p->v.preferred_node < 0)
471 *nodes = node_online_map;
472 else
473 node_set(p->v.preferred_node, *nodes);
474 break;
475 default:
476 BUG();
477 }
478 }
479
480 static int lookup_node(struct mm_struct *mm, unsigned long addr)
481 {
482 struct page *p;
483 int err;
484
485 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
486 if (err >= 0) {
487 err = page_to_nid(p);
488 put_page(p);
489 }
490 return err;
491 }
492
493 /* Retrieve NUMA policy */
494 long do_get_mempolicy(int *policy, nodemask_t *nmask,
495 unsigned long addr, unsigned long flags)
496 {
497 int err;
498 struct mm_struct *mm = current->mm;
499 struct vm_area_struct *vma = NULL;
500 struct mempolicy *pol = current->mempolicy;
501
502 cpuset_update_task_memory_state();
503 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
504 return -EINVAL;
505 if (flags & MPOL_F_ADDR) {
506 down_read(&mm->mmap_sem);
507 vma = find_vma_intersection(mm, addr, addr+1);
508 if (!vma) {
509 up_read(&mm->mmap_sem);
510 return -EFAULT;
511 }
512 if (vma->vm_ops && vma->vm_ops->get_policy)
513 pol = vma->vm_ops->get_policy(vma, addr);
514 else
515 pol = vma->vm_policy;
516 } else if (addr)
517 return -EINVAL;
518
519 if (!pol)
520 pol = &default_policy;
521
522 if (flags & MPOL_F_NODE) {
523 if (flags & MPOL_F_ADDR) {
524 err = lookup_node(mm, addr);
525 if (err < 0)
526 goto out;
527 *policy = err;
528 } else if (pol == current->mempolicy &&
529 pol->policy == MPOL_INTERLEAVE) {
530 *policy = current->il_next;
531 } else {
532 err = -EINVAL;
533 goto out;
534 }
535 } else
536 *policy = pol->policy;
537
538 if (vma) {
539 up_read(&current->mm->mmap_sem);
540 vma = NULL;
541 }
542
543 err = 0;
544 if (nmask)
545 get_zonemask(pol, nmask);
546
547 out:
548 if (vma)
549 up_read(&current->mm->mmap_sem);
550 return err;
551 }
552
553 /*
554 * page migration
555 */
556
557 static void migrate_page_add(struct page *page, struct list_head *pagelist,
558 unsigned long flags)
559 {
560 /*
561 * Avoid migrating a page that is shared with others.
562 */
563 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
564 if (isolate_lru_page(page))
565 list_add_tail(&page->lru, pagelist);
566 }
567 }
568
569 /*
570 * Migrate the list 'pagelist' of pages to a certain destination.
571 *
572 * Specify destination with either non-NULL vma or dest_node >= 0
573 * Return the number of pages not migrated or error code
574 */
575 static int migrate_pages_to(struct list_head *pagelist,
576 struct vm_area_struct *vma, int dest)
577 {
578 LIST_HEAD(newlist);
579 LIST_HEAD(moved);
580 LIST_HEAD(failed);
581 int err = 0;
582 unsigned long offset = 0;
583 int nr_pages;
584 struct page *page;
585 struct list_head *p;
586
587 redo:
588 nr_pages = 0;
589 list_for_each(p, pagelist) {
590 if (vma) {
591 /*
592 * The address passed to alloc_page_vma is used to
593 * generate the proper interleave behavior. We fake
594 * the address here by an increasing offset in order
595 * to get the proper distribution of pages.
596 *
597 * No decision has been made as to which page
598 * a certain old page is moved to so we cannot
599 * specify the correct address.
600 */
601 page = alloc_page_vma(GFP_HIGHUSER, vma,
602 offset + vma->vm_start);
603 offset += PAGE_SIZE;
604 }
605 else
606 page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
607
608 if (!page) {
609 err = -ENOMEM;
610 goto out;
611 }
612 list_add_tail(&page->lru, &newlist);
613 nr_pages++;
614 if (nr_pages > MIGRATE_CHUNK_SIZE)
615 break;
616 }
617 err = migrate_pages(pagelist, &newlist, &moved, &failed);
618
619 putback_lru_pages(&moved); /* Call release pages instead ?? */
620
621 if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
622 goto redo;
623 out:
624 /* Return leftover allocated pages */
625 while (!list_empty(&newlist)) {
626 page = list_entry(newlist.next, struct page, lru);
627 list_del(&page->lru);
628 __free_page(page);
629 }
630 list_splice(&failed, pagelist);
631 if (err < 0)
632 return err;
633
634 /* Calculate number of leftover pages */
635 nr_pages = 0;
636 list_for_each(p, pagelist)
637 nr_pages++;
638 return nr_pages;
639 }
640
641 /*
642 * Migrate pages from one node to a target node.
643 * Returns error or the number of pages not migrated.
644 */
645 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
646 {
647 nodemask_t nmask;
648 LIST_HEAD(pagelist);
649 int err = 0;
650
651 nodes_clear(nmask);
652 node_set(source, nmask);
653
654 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
655 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
656
657 if (!list_empty(&pagelist)) {
658 err = migrate_pages_to(&pagelist, NULL, dest);
659 if (!list_empty(&pagelist))
660 putback_lru_pages(&pagelist);
661 }
662 return err;
663 }
664
665 /*
666 * Move pages between the two nodesets so as to preserve the physical
667 * layout as much as possible.
668 *
669 * Returns the number of page that could not be moved.
670 */
671 int do_migrate_pages(struct mm_struct *mm,
672 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
673 {
674 LIST_HEAD(pagelist);
675 int busy = 0;
676 int err = 0;
677 nodemask_t tmp;
678
679 down_read(&mm->mmap_sem);
680
681 /*
682 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
683 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
684 * bit in 'tmp', and return that <source, dest> pair for migration.
685 * The pair of nodemasks 'to' and 'from' define the map.
686 *
687 * If no pair of bits is found that way, fallback to picking some
688 * pair of 'source' and 'dest' bits that are not the same. If the
689 * 'source' and 'dest' bits are the same, this represents a node
690 * that will be migrating to itself, so no pages need move.
691 *
692 * If no bits are left in 'tmp', or if all remaining bits left
693 * in 'tmp' correspond to the same bit in 'to', return false
694 * (nothing left to migrate).
695 *
696 * This lets us pick a pair of nodes to migrate between, such that
697 * if possible the dest node is not already occupied by some other
698 * source node, minimizing the risk of overloading the memory on a
699 * node that would happen if we migrated incoming memory to a node
700 * before migrating outgoing memory source that same node.
701 *
702 * A single scan of tmp is sufficient. As we go, we remember the
703 * most recent <s, d> pair that moved (s != d). If we find a pair
704 * that not only moved, but what's better, moved to an empty slot
705 * (d is not set in tmp), then we break out then, with that pair.
706 * Otherwise when we finish scannng from_tmp, we at least have the
707 * most recent <s, d> pair that moved. If we get all the way through
708 * the scan of tmp without finding any node that moved, much less
709 * moved to an empty node, then there is nothing left worth migrating.
710 */
711
712 tmp = *from_nodes;
713 while (!nodes_empty(tmp)) {
714 int s,d;
715 int source = -1;
716 int dest = 0;
717
718 for_each_node_mask(s, tmp) {
719 d = node_remap(s, *from_nodes, *to_nodes);
720 if (s == d)
721 continue;
722
723 source = s; /* Node moved. Memorize */
724 dest = d;
725
726 /* dest not in remaining from nodes? */
727 if (!node_isset(dest, tmp))
728 break;
729 }
730 if (source == -1)
731 break;
732
733 node_clear(source, tmp);
734 err = migrate_to_node(mm, source, dest, flags);
735 if (err > 0)
736 busy += err;
737 if (err < 0)
738 break;
739 }
740
741 up_read(&mm->mmap_sem);
742 if (err < 0)
743 return err;
744 return busy;
745 }
746
747 long do_mbind(unsigned long start, unsigned long len,
748 unsigned long mode, nodemask_t *nmask, unsigned long flags)
749 {
750 struct vm_area_struct *vma;
751 struct mm_struct *mm = current->mm;
752 struct mempolicy *new;
753 unsigned long end;
754 int err;
755 LIST_HEAD(pagelist);
756
757 if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
758 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
759 || mode > MPOL_MAX)
760 return -EINVAL;
761 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
762 return -EPERM;
763
764 if (start & ~PAGE_MASK)
765 return -EINVAL;
766
767 if (mode == MPOL_DEFAULT)
768 flags &= ~MPOL_MF_STRICT;
769
770 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
771 end = start + len;
772
773 if (end < start)
774 return -EINVAL;
775 if (end == start)
776 return 0;
777
778 if (mpol_check_policy(mode, nmask))
779 return -EINVAL;
780
781 new = mpol_new(mode, nmask);
782 if (IS_ERR(new))
783 return PTR_ERR(new);
784
785 /*
786 * If we are using the default policy then operation
787 * on discontinuous address spaces is okay after all
788 */
789 if (!new)
790 flags |= MPOL_MF_DISCONTIG_OK;
791
792 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
793 mode,nodes_addr(nodes)[0]);
794
795 down_write(&mm->mmap_sem);
796 vma = check_range(mm, start, end, nmask,
797 flags | MPOL_MF_INVERT, &pagelist);
798
799 err = PTR_ERR(vma);
800 if (!IS_ERR(vma)) {
801 int nr_failed = 0;
802
803 err = mbind_range(vma, start, end, new);
804
805 if (!list_empty(&pagelist))
806 nr_failed = migrate_pages_to(&pagelist, vma, -1);
807
808 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
809 err = -EIO;
810 }
811 if (!list_empty(&pagelist))
812 putback_lru_pages(&pagelist);
813
814 up_write(&mm->mmap_sem);
815 mpol_free(new);
816 return err;
817 }
818
819 /*
820 * User space interface with variable sized bitmaps for nodelists.
821 */
822
823 /* Copy a node mask from user space. */
824 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
825 unsigned long maxnode)
826 {
827 unsigned long k;
828 unsigned long nlongs;
829 unsigned long endmask;
830
831 --maxnode;
832 nodes_clear(*nodes);
833 if (maxnode == 0 || !nmask)
834 return 0;
835 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
836 return -EINVAL;
837
838 nlongs = BITS_TO_LONGS(maxnode);
839 if ((maxnode % BITS_PER_LONG) == 0)
840 endmask = ~0UL;
841 else
842 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
843
844 /* When the user specified more nodes than supported just check
845 if the non supported part is all zero. */
846 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
847 if (nlongs > PAGE_SIZE/sizeof(long))
848 return -EINVAL;
849 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
850 unsigned long t;
851 if (get_user(t, nmask + k))
852 return -EFAULT;
853 if (k == nlongs - 1) {
854 if (t & endmask)
855 return -EINVAL;
856 } else if (t)
857 return -EINVAL;
858 }
859 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
860 endmask = ~0UL;
861 }
862
863 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
864 return -EFAULT;
865 nodes_addr(*nodes)[nlongs-1] &= endmask;
866 return 0;
867 }
868
869 /* Copy a kernel node mask to user space */
870 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
871 nodemask_t *nodes)
872 {
873 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
874 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
875
876 if (copy > nbytes) {
877 if (copy > PAGE_SIZE)
878 return -EINVAL;
879 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
880 return -EFAULT;
881 copy = nbytes;
882 }
883 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
884 }
885
886 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
887 unsigned long mode,
888 unsigned long __user *nmask, unsigned long maxnode,
889 unsigned flags)
890 {
891 nodemask_t nodes;
892 int err;
893
894 err = get_nodes(&nodes, nmask, maxnode);
895 if (err)
896 return err;
897 return do_mbind(start, len, mode, &nodes, flags);
898 }
899
900 /* Set the process memory policy */
901 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
902 unsigned long maxnode)
903 {
904 int err;
905 nodemask_t nodes;
906
907 if (mode < 0 || mode > MPOL_MAX)
908 return -EINVAL;
909 err = get_nodes(&nodes, nmask, maxnode);
910 if (err)
911 return err;
912 return do_set_mempolicy(mode, &nodes);
913 }
914
915 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
916 const unsigned long __user *old_nodes,
917 const unsigned long __user *new_nodes)
918 {
919 struct mm_struct *mm;
920 struct task_struct *task;
921 nodemask_t old;
922 nodemask_t new;
923 nodemask_t task_nodes;
924 int err;
925
926 err = get_nodes(&old, old_nodes, maxnode);
927 if (err)
928 return err;
929
930 err = get_nodes(&new, new_nodes, maxnode);
931 if (err)
932 return err;
933
934 /* Find the mm_struct */
935 read_lock(&tasklist_lock);
936 task = pid ? find_task_by_pid(pid) : current;
937 if (!task) {
938 read_unlock(&tasklist_lock);
939 return -ESRCH;
940 }
941 mm = get_task_mm(task);
942 read_unlock(&tasklist_lock);
943
944 if (!mm)
945 return -EINVAL;
946
947 /*
948 * Check if this process has the right to modify the specified
949 * process. The right exists if the process has administrative
950 * capabilities, superuser priviledges or the same
951 * userid as the target process.
952 */
953 if ((current->euid != task->suid) && (current->euid != task->uid) &&
954 (current->uid != task->suid) && (current->uid != task->uid) &&
955 !capable(CAP_SYS_NICE)) {
956 err = -EPERM;
957 goto out;
958 }
959
960 task_nodes = cpuset_mems_allowed(task);
961 /* Is the user allowed to access the target nodes? */
962 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
963 err = -EPERM;
964 goto out;
965 }
966
967 err = do_migrate_pages(mm, &old, &new,
968 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
969 out:
970 mmput(mm);
971 return err;
972 }
973
974
975 /* Retrieve NUMA policy */
976 asmlinkage long sys_get_mempolicy(int __user *policy,
977 unsigned long __user *nmask,
978 unsigned long maxnode,
979 unsigned long addr, unsigned long flags)
980 {
981 int err, pval;
982 nodemask_t nodes;
983
984 if (nmask != NULL && maxnode < MAX_NUMNODES)
985 return -EINVAL;
986
987 err = do_get_mempolicy(&pval, &nodes, addr, flags);
988
989 if (err)
990 return err;
991
992 if (policy && put_user(pval, policy))
993 return -EFAULT;
994
995 if (nmask)
996 err = copy_nodes_to_user(nmask, maxnode, &nodes);
997
998 return err;
999 }
1000
1001 #ifdef CONFIG_COMPAT
1002
1003 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1004 compat_ulong_t __user *nmask,
1005 compat_ulong_t maxnode,
1006 compat_ulong_t addr, compat_ulong_t flags)
1007 {
1008 long err;
1009 unsigned long __user *nm = NULL;
1010 unsigned long nr_bits, alloc_size;
1011 DECLARE_BITMAP(bm, MAX_NUMNODES);
1012
1013 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1014 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1015
1016 if (nmask)
1017 nm = compat_alloc_user_space(alloc_size);
1018
1019 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1020
1021 if (!err && nmask) {
1022 err = copy_from_user(bm, nm, alloc_size);
1023 /* ensure entire bitmap is zeroed */
1024 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1025 err |= compat_put_bitmap(nmask, bm, nr_bits);
1026 }
1027
1028 return err;
1029 }
1030
1031 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1032 compat_ulong_t maxnode)
1033 {
1034 long err = 0;
1035 unsigned long __user *nm = NULL;
1036 unsigned long nr_bits, alloc_size;
1037 DECLARE_BITMAP(bm, MAX_NUMNODES);
1038
1039 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1040 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1041
1042 if (nmask) {
1043 err = compat_get_bitmap(bm, nmask, nr_bits);
1044 nm = compat_alloc_user_space(alloc_size);
1045 err |= copy_to_user(nm, bm, alloc_size);
1046 }
1047
1048 if (err)
1049 return -EFAULT;
1050
1051 return sys_set_mempolicy(mode, nm, nr_bits+1);
1052 }
1053
1054 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1055 compat_ulong_t mode, compat_ulong_t __user *nmask,
1056 compat_ulong_t maxnode, compat_ulong_t flags)
1057 {
1058 long err = 0;
1059 unsigned long __user *nm = NULL;
1060 unsigned long nr_bits, alloc_size;
1061 nodemask_t bm;
1062
1063 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1064 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1065
1066 if (nmask) {
1067 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1068 nm = compat_alloc_user_space(alloc_size);
1069 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1070 }
1071
1072 if (err)
1073 return -EFAULT;
1074
1075 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1076 }
1077
1078 #endif
1079
1080 /* Return effective policy for a VMA */
1081 static struct mempolicy * get_vma_policy(struct task_struct *task,
1082 struct vm_area_struct *vma, unsigned long addr)
1083 {
1084 struct mempolicy *pol = task->mempolicy;
1085
1086 if (vma) {
1087 if (vma->vm_ops && vma->vm_ops->get_policy)
1088 pol = vma->vm_ops->get_policy(vma, addr);
1089 else if (vma->vm_policy &&
1090 vma->vm_policy->policy != MPOL_DEFAULT)
1091 pol = vma->vm_policy;
1092 }
1093 if (!pol)
1094 pol = &default_policy;
1095 return pol;
1096 }
1097
1098 /* Return a zonelist representing a mempolicy */
1099 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1100 {
1101 int nd;
1102
1103 switch (policy->policy) {
1104 case MPOL_PREFERRED:
1105 nd = policy->v.preferred_node;
1106 if (nd < 0)
1107 nd = numa_node_id();
1108 break;
1109 case MPOL_BIND:
1110 /* Lower zones don't get a policy applied */
1111 /* Careful: current->mems_allowed might have moved */
1112 if (gfp_zone(gfp) >= policy_zone)
1113 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1114 return policy->v.zonelist;
1115 /*FALL THROUGH*/
1116 case MPOL_INTERLEAVE: /* should not happen */
1117 case MPOL_DEFAULT:
1118 nd = numa_node_id();
1119 break;
1120 default:
1121 nd = 0;
1122 BUG();
1123 }
1124 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1125 }
1126
1127 /* Do dynamic interleaving for a process */
1128 static unsigned interleave_nodes(struct mempolicy *policy)
1129 {
1130 unsigned nid, next;
1131 struct task_struct *me = current;
1132
1133 nid = me->il_next;
1134 next = next_node(nid, policy->v.nodes);
1135 if (next >= MAX_NUMNODES)
1136 next = first_node(policy->v.nodes);
1137 me->il_next = next;
1138 return nid;
1139 }
1140
1141 /*
1142 * Depending on the memory policy provide a node from which to allocate the
1143 * next slab entry.
1144 */
1145 unsigned slab_node(struct mempolicy *policy)
1146 {
1147 switch (policy->policy) {
1148 case MPOL_INTERLEAVE:
1149 return interleave_nodes(policy);
1150
1151 case MPOL_BIND:
1152 /*
1153 * Follow bind policy behavior and start allocation at the
1154 * first node.
1155 */
1156 return policy->v.zonelist->zones[0]->zone_pgdat->node_id;
1157
1158 case MPOL_PREFERRED:
1159 if (policy->v.preferred_node >= 0)
1160 return policy->v.preferred_node;
1161 /* Fall through */
1162
1163 default:
1164 return numa_node_id();
1165 }
1166 }
1167
1168 /* Do static interleaving for a VMA with known offset. */
1169 static unsigned offset_il_node(struct mempolicy *pol,
1170 struct vm_area_struct *vma, unsigned long off)
1171 {
1172 unsigned nnodes = nodes_weight(pol->v.nodes);
1173 unsigned target = (unsigned)off % nnodes;
1174 int c;
1175 int nid = -1;
1176
1177 c = 0;
1178 do {
1179 nid = next_node(nid, pol->v.nodes);
1180 c++;
1181 } while (c <= target);
1182 return nid;
1183 }
1184
1185 /* Determine a node number for interleave */
1186 static inline unsigned interleave_nid(struct mempolicy *pol,
1187 struct vm_area_struct *vma, unsigned long addr, int shift)
1188 {
1189 if (vma) {
1190 unsigned long off;
1191
1192 off = vma->vm_pgoff;
1193 off += (addr - vma->vm_start) >> shift;
1194 return offset_il_node(pol, vma, off);
1195 } else
1196 return interleave_nodes(pol);
1197 }
1198
1199 #ifdef CONFIG_HUGETLBFS
1200 /* Return a zonelist suitable for a huge page allocation. */
1201 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
1202 {
1203 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1204
1205 if (pol->policy == MPOL_INTERLEAVE) {
1206 unsigned nid;
1207
1208 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1209 return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
1210 }
1211 return zonelist_policy(GFP_HIGHUSER, pol);
1212 }
1213 #endif
1214
1215 /* Allocate a page in interleaved policy.
1216 Own path because it needs to do special accounting. */
1217 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1218 unsigned nid)
1219 {
1220 struct zonelist *zl;
1221 struct page *page;
1222
1223 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1224 page = __alloc_pages(gfp, order, zl);
1225 if (page && page_zone(page) == zl->zones[0]) {
1226 zone_pcp(zl->zones[0],get_cpu())->interleave_hit++;
1227 put_cpu();
1228 }
1229 return page;
1230 }
1231
1232 /**
1233 * alloc_page_vma - Allocate a page for a VMA.
1234 *
1235 * @gfp:
1236 * %GFP_USER user allocation.
1237 * %GFP_KERNEL kernel allocations,
1238 * %GFP_HIGHMEM highmem/user allocations,
1239 * %GFP_FS allocation should not call back into a file system.
1240 * %GFP_ATOMIC don't sleep.
1241 *
1242 * @vma: Pointer to VMA or NULL if not available.
1243 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1244 *
1245 * This function allocates a page from the kernel page pool and applies
1246 * a NUMA policy associated with the VMA or the current process.
1247 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1248 * mm_struct of the VMA to prevent it from going away. Should be used for
1249 * all allocations for pages that will be mapped into
1250 * user space. Returns NULL when no page can be allocated.
1251 *
1252 * Should be called with the mm_sem of the vma hold.
1253 */
1254 struct page *
1255 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1256 {
1257 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1258
1259 cpuset_update_task_memory_state();
1260
1261 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1262 unsigned nid;
1263
1264 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1265 return alloc_page_interleave(gfp, 0, nid);
1266 }
1267 return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
1268 }
1269
1270 /**
1271 * alloc_pages_current - Allocate pages.
1272 *
1273 * @gfp:
1274 * %GFP_USER user allocation,
1275 * %GFP_KERNEL kernel allocation,
1276 * %GFP_HIGHMEM highmem allocation,
1277 * %GFP_FS don't call back into a file system.
1278 * %GFP_ATOMIC don't sleep.
1279 * @order: Power of two of allocation size in pages. 0 is a single page.
1280 *
1281 * Allocate a page from the kernel page pool. When not in
1282 * interrupt context and apply the current process NUMA policy.
1283 * Returns NULL when no page can be allocated.
1284 *
1285 * Don't call cpuset_update_task_memory_state() unless
1286 * 1) it's ok to take cpuset_sem (can WAIT), and
1287 * 2) allocating for current task (not interrupt).
1288 */
1289 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1290 {
1291 struct mempolicy *pol = current->mempolicy;
1292
1293 if ((gfp & __GFP_WAIT) && !in_interrupt())
1294 cpuset_update_task_memory_state();
1295 if (!pol || in_interrupt())
1296 pol = &default_policy;
1297 if (pol->policy == MPOL_INTERLEAVE)
1298 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1299 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1300 }
1301 EXPORT_SYMBOL(alloc_pages_current);
1302
1303 /*
1304 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1305 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1306 * with the mems_allowed returned by cpuset_mems_allowed(). This
1307 * keeps mempolicies cpuset relative after its cpuset moves. See
1308 * further kernel/cpuset.c update_nodemask().
1309 */
1310 void *cpuset_being_rebound;
1311
1312 /* Slow path of a mempolicy copy */
1313 struct mempolicy *__mpol_copy(struct mempolicy *old)
1314 {
1315 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1316
1317 if (!new)
1318 return ERR_PTR(-ENOMEM);
1319 if (current_cpuset_is_being_rebound()) {
1320 nodemask_t mems = cpuset_mems_allowed(current);
1321 mpol_rebind_policy(old, &mems);
1322 }
1323 *new = *old;
1324 atomic_set(&new->refcnt, 1);
1325 if (new->policy == MPOL_BIND) {
1326 int sz = ksize(old->v.zonelist);
1327 new->v.zonelist = kmalloc(sz, SLAB_KERNEL);
1328 if (!new->v.zonelist) {
1329 kmem_cache_free(policy_cache, new);
1330 return ERR_PTR(-ENOMEM);
1331 }
1332 memcpy(new->v.zonelist, old->v.zonelist, sz);
1333 }
1334 return new;
1335 }
1336
1337 /* Slow path of a mempolicy comparison */
1338 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1339 {
1340 if (!a || !b)
1341 return 0;
1342 if (a->policy != b->policy)
1343 return 0;
1344 switch (a->policy) {
1345 case MPOL_DEFAULT:
1346 return 1;
1347 case MPOL_INTERLEAVE:
1348 return nodes_equal(a->v.nodes, b->v.nodes);
1349 case MPOL_PREFERRED:
1350 return a->v.preferred_node == b->v.preferred_node;
1351 case MPOL_BIND: {
1352 int i;
1353 for (i = 0; a->v.zonelist->zones[i]; i++)
1354 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1355 return 0;
1356 return b->v.zonelist->zones[i] == NULL;
1357 }
1358 default:
1359 BUG();
1360 return 0;
1361 }
1362 }
1363
1364 /* Slow path of a mpol destructor. */
1365 void __mpol_free(struct mempolicy *p)
1366 {
1367 if (!atomic_dec_and_test(&p->refcnt))
1368 return;
1369 if (p->policy == MPOL_BIND)
1370 kfree(p->v.zonelist);
1371 p->policy = MPOL_DEFAULT;
1372 kmem_cache_free(policy_cache, p);
1373 }
1374
1375 /*
1376 * Shared memory backing store policy support.
1377 *
1378 * Remember policies even when nobody has shared memory mapped.
1379 * The policies are kept in Red-Black tree linked from the inode.
1380 * They are protected by the sp->lock spinlock, which should be held
1381 * for any accesses to the tree.
1382 */
1383
1384 /* lookup first element intersecting start-end */
1385 /* Caller holds sp->lock */
1386 static struct sp_node *
1387 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1388 {
1389 struct rb_node *n = sp->root.rb_node;
1390
1391 while (n) {
1392 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1393
1394 if (start >= p->end)
1395 n = n->rb_right;
1396 else if (end <= p->start)
1397 n = n->rb_left;
1398 else
1399 break;
1400 }
1401 if (!n)
1402 return NULL;
1403 for (;;) {
1404 struct sp_node *w = NULL;
1405 struct rb_node *prev = rb_prev(n);
1406 if (!prev)
1407 break;
1408 w = rb_entry(prev, struct sp_node, nd);
1409 if (w->end <= start)
1410 break;
1411 n = prev;
1412 }
1413 return rb_entry(n, struct sp_node, nd);
1414 }
1415
1416 /* Insert a new shared policy into the list. */
1417 /* Caller holds sp->lock */
1418 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1419 {
1420 struct rb_node **p = &sp->root.rb_node;
1421 struct rb_node *parent = NULL;
1422 struct sp_node *nd;
1423
1424 while (*p) {
1425 parent = *p;
1426 nd = rb_entry(parent, struct sp_node, nd);
1427 if (new->start < nd->start)
1428 p = &(*p)->rb_left;
1429 else if (new->end > nd->end)
1430 p = &(*p)->rb_right;
1431 else
1432 BUG();
1433 }
1434 rb_link_node(&new->nd, parent, p);
1435 rb_insert_color(&new->nd, &sp->root);
1436 PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
1437 new->policy ? new->policy->policy : 0);
1438 }
1439
1440 /* Find shared policy intersecting idx */
1441 struct mempolicy *
1442 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1443 {
1444 struct mempolicy *pol = NULL;
1445 struct sp_node *sn;
1446
1447 if (!sp->root.rb_node)
1448 return NULL;
1449 spin_lock(&sp->lock);
1450 sn = sp_lookup(sp, idx, idx+1);
1451 if (sn) {
1452 mpol_get(sn->policy);
1453 pol = sn->policy;
1454 }
1455 spin_unlock(&sp->lock);
1456 return pol;
1457 }
1458
1459 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1460 {
1461 PDprintk("deleting %lx-l%x\n", n->start, n->end);
1462 rb_erase(&n->nd, &sp->root);
1463 mpol_free(n->policy);
1464 kmem_cache_free(sn_cache, n);
1465 }
1466
1467 struct sp_node *
1468 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1469 {
1470 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1471
1472 if (!n)
1473 return NULL;
1474 n->start = start;
1475 n->end = end;
1476 mpol_get(pol);
1477 n->policy = pol;
1478 return n;
1479 }
1480
1481 /* Replace a policy range. */
1482 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1483 unsigned long end, struct sp_node *new)
1484 {
1485 struct sp_node *n, *new2 = NULL;
1486
1487 restart:
1488 spin_lock(&sp->lock);
1489 n = sp_lookup(sp, start, end);
1490 /* Take care of old policies in the same range. */
1491 while (n && n->start < end) {
1492 struct rb_node *next = rb_next(&n->nd);
1493 if (n->start >= start) {
1494 if (n->end <= end)
1495 sp_delete(sp, n);
1496 else
1497 n->start = end;
1498 } else {
1499 /* Old policy spanning whole new range. */
1500 if (n->end > end) {
1501 if (!new2) {
1502 spin_unlock(&sp->lock);
1503 new2 = sp_alloc(end, n->end, n->policy);
1504 if (!new2)
1505 return -ENOMEM;
1506 goto restart;
1507 }
1508 n->end = start;
1509 sp_insert(sp, new2);
1510 new2 = NULL;
1511 break;
1512 } else
1513 n->end = start;
1514 }
1515 if (!next)
1516 break;
1517 n = rb_entry(next, struct sp_node, nd);
1518 }
1519 if (new)
1520 sp_insert(sp, new);
1521 spin_unlock(&sp->lock);
1522 if (new2) {
1523 mpol_free(new2->policy);
1524 kmem_cache_free(sn_cache, new2);
1525 }
1526 return 0;
1527 }
1528
1529 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1530 nodemask_t *policy_nodes)
1531 {
1532 info->root = RB_ROOT;
1533 spin_lock_init(&info->lock);
1534
1535 if (policy != MPOL_DEFAULT) {
1536 struct mempolicy *newpol;
1537
1538 /* Falls back to MPOL_DEFAULT on any error */
1539 newpol = mpol_new(policy, policy_nodes);
1540 if (!IS_ERR(newpol)) {
1541 /* Create pseudo-vma that contains just the policy */
1542 struct vm_area_struct pvma;
1543
1544 memset(&pvma, 0, sizeof(struct vm_area_struct));
1545 /* Policy covers entire file */
1546 pvma.vm_end = TASK_SIZE;
1547 mpol_set_shared_policy(info, &pvma, newpol);
1548 mpol_free(newpol);
1549 }
1550 }
1551 }
1552
1553 int mpol_set_shared_policy(struct shared_policy *info,
1554 struct vm_area_struct *vma, struct mempolicy *npol)
1555 {
1556 int err;
1557 struct sp_node *new = NULL;
1558 unsigned long sz = vma_pages(vma);
1559
1560 PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1561 vma->vm_pgoff,
1562 sz, npol? npol->policy : -1,
1563 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1564
1565 if (npol) {
1566 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1567 if (!new)
1568 return -ENOMEM;
1569 }
1570 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1571 if (err && new)
1572 kmem_cache_free(sn_cache, new);
1573 return err;
1574 }
1575
1576 /* Free a backing policy store on inode delete. */
1577 void mpol_free_shared_policy(struct shared_policy *p)
1578 {
1579 struct sp_node *n;
1580 struct rb_node *next;
1581
1582 if (!p->root.rb_node)
1583 return;
1584 spin_lock(&p->lock);
1585 next = rb_first(&p->root);
1586 while (next) {
1587 n = rb_entry(next, struct sp_node, nd);
1588 next = rb_next(&n->nd);
1589 rb_erase(&n->nd, &p->root);
1590 mpol_free(n->policy);
1591 kmem_cache_free(sn_cache, n);
1592 }
1593 spin_unlock(&p->lock);
1594 }
1595
1596 /* assumes fs == KERNEL_DS */
1597 void __init numa_policy_init(void)
1598 {
1599 policy_cache = kmem_cache_create("numa_policy",
1600 sizeof(struct mempolicy),
1601 0, SLAB_PANIC, NULL, NULL);
1602
1603 sn_cache = kmem_cache_create("shared_policy_node",
1604 sizeof(struct sp_node),
1605 0, SLAB_PANIC, NULL, NULL);
1606
1607 /* Set interleaving policy for system init. This way not all
1608 the data structures allocated at system boot end up in node zero. */
1609
1610 if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
1611 printk("numa_policy_init: interleaving failed\n");
1612 }
1613
1614 /* Reset policy of current process to default */
1615 void numa_default_policy(void)
1616 {
1617 do_set_mempolicy(MPOL_DEFAULT, NULL);
1618 }
1619
1620 /* Migrate a policy to a different set of nodes */
1621 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1622 {
1623 nodemask_t *mpolmask;
1624 nodemask_t tmp;
1625
1626 if (!pol)
1627 return;
1628 mpolmask = &pol->cpuset_mems_allowed;
1629 if (nodes_equal(*mpolmask, *newmask))
1630 return;
1631
1632 switch (pol->policy) {
1633 case MPOL_DEFAULT:
1634 break;
1635 case MPOL_INTERLEAVE:
1636 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1637 pol->v.nodes = tmp;
1638 *mpolmask = *newmask;
1639 current->il_next = node_remap(current->il_next,
1640 *mpolmask, *newmask);
1641 break;
1642 case MPOL_PREFERRED:
1643 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1644 *mpolmask, *newmask);
1645 *mpolmask = *newmask;
1646 break;
1647 case MPOL_BIND: {
1648 nodemask_t nodes;
1649 struct zone **z;
1650 struct zonelist *zonelist;
1651
1652 nodes_clear(nodes);
1653 for (z = pol->v.zonelist->zones; *z; z++)
1654 node_set((*z)->zone_pgdat->node_id, nodes);
1655 nodes_remap(tmp, nodes, *mpolmask, *newmask);
1656 nodes = tmp;
1657
1658 zonelist = bind_zonelist(&nodes);
1659
1660 /* If no mem, then zonelist is NULL and we keep old zonelist.
1661 * If that old zonelist has no remaining mems_allowed nodes,
1662 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1663 */
1664
1665 if (zonelist) {
1666 /* Good - got mem - substitute new zonelist */
1667 kfree(pol->v.zonelist);
1668 pol->v.zonelist = zonelist;
1669 }
1670 *mpolmask = *newmask;
1671 break;
1672 }
1673 default:
1674 BUG();
1675 break;
1676 }
1677 }
1678
1679 /*
1680 * Wrapper for mpol_rebind_policy() that just requires task
1681 * pointer, and updates task mempolicy.
1682 */
1683
1684 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1685 {
1686 mpol_rebind_policy(tsk->mempolicy, new);
1687 }
1688
1689 /*
1690 * Rebind each vma in mm to new nodemask.
1691 *
1692 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1693 */
1694
1695 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1696 {
1697 struct vm_area_struct *vma;
1698
1699 down_write(&mm->mmap_sem);
1700 for (vma = mm->mmap; vma; vma = vma->vm_next)
1701 mpol_rebind_policy(vma->vm_policy, new);
1702 up_write(&mm->mmap_sem);
1703 }
1704
1705 /*
1706 * Display pages allocated per node and memory policy via /proc.
1707 */
1708
1709 static const char *policy_types[] = { "default", "prefer", "bind",
1710 "interleave" };
1711
1712 /*
1713 * Convert a mempolicy into a string.
1714 * Returns the number of characters in buffer (if positive)
1715 * or an error (negative)
1716 */
1717 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1718 {
1719 char *p = buffer;
1720 int l;
1721 nodemask_t nodes;
1722 int mode = pol ? pol->policy : MPOL_DEFAULT;
1723
1724 switch (mode) {
1725 case MPOL_DEFAULT:
1726 nodes_clear(nodes);
1727 break;
1728
1729 case MPOL_PREFERRED:
1730 nodes_clear(nodes);
1731 node_set(pol->v.preferred_node, nodes);
1732 break;
1733
1734 case MPOL_BIND:
1735 get_zonemask(pol, &nodes);
1736 break;
1737
1738 case MPOL_INTERLEAVE:
1739 nodes = pol->v.nodes;
1740 break;
1741
1742 default:
1743 BUG();
1744 return -EFAULT;
1745 }
1746
1747 l = strlen(policy_types[mode]);
1748 if (buffer + maxlen < p + l + 1)
1749 return -ENOSPC;
1750
1751 strcpy(p, policy_types[mode]);
1752 p += l;
1753
1754 if (!nodes_empty(nodes)) {
1755 if (buffer + maxlen < p + 2)
1756 return -ENOSPC;
1757 *p++ = '=';
1758 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1759 }
1760 return p - buffer;
1761 }
1762
1763 struct numa_maps {
1764 unsigned long pages;
1765 unsigned long anon;
1766 unsigned long active;
1767 unsigned long writeback;
1768 unsigned long mapcount_max;
1769 unsigned long dirty;
1770 unsigned long swapcache;
1771 unsigned long node[MAX_NUMNODES];
1772 };
1773
1774 static void gather_stats(struct page *page, void *private, int pte_dirty)
1775 {
1776 struct numa_maps *md = private;
1777 int count = page_mapcount(page);
1778
1779 md->pages++;
1780 if (pte_dirty || PageDirty(page))
1781 md->dirty++;
1782
1783 if (PageSwapCache(page))
1784 md->swapcache++;
1785
1786 if (PageActive(page))
1787 md->active++;
1788
1789 if (PageWriteback(page))
1790 md->writeback++;
1791
1792 if (PageAnon(page))
1793 md->anon++;
1794
1795 if (count > md->mapcount_max)
1796 md->mapcount_max = count;
1797
1798 md->node[page_to_nid(page)]++;
1799 cond_resched();
1800 }
1801
1802 #ifdef CONFIG_HUGETLB_PAGE
1803 static void check_huge_range(struct vm_area_struct *vma,
1804 unsigned long start, unsigned long end,
1805 struct numa_maps *md)
1806 {
1807 unsigned long addr;
1808 struct page *page;
1809
1810 for (addr = start; addr < end; addr += HPAGE_SIZE) {
1811 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1812 pte_t pte;
1813
1814 if (!ptep)
1815 continue;
1816
1817 pte = *ptep;
1818 if (pte_none(pte))
1819 continue;
1820
1821 page = pte_page(pte);
1822 if (!page)
1823 continue;
1824
1825 gather_stats(page, md, pte_dirty(*ptep));
1826 }
1827 }
1828 #else
1829 static inline void check_huge_range(struct vm_area_struct *vma,
1830 unsigned long start, unsigned long end,
1831 struct numa_maps *md)
1832 {
1833 }
1834 #endif
1835
1836 int show_numa_map(struct seq_file *m, void *v)
1837 {
1838 struct task_struct *task = m->private;
1839 struct vm_area_struct *vma = v;
1840 struct numa_maps *md;
1841 struct file *file = vma->vm_file;
1842 struct mm_struct *mm = vma->vm_mm;
1843 int n;
1844 char buffer[50];
1845
1846 if (!mm)
1847 return 0;
1848
1849 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1850 if (!md)
1851 return 0;
1852
1853 mpol_to_str(buffer, sizeof(buffer),
1854 get_vma_policy(task, vma, vma->vm_start));
1855
1856 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1857
1858 if (file) {
1859 seq_printf(m, " file=");
1860 seq_path(m, file->f_vfsmnt, file->f_dentry, "\n\t= ");
1861 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1862 seq_printf(m, " heap");
1863 } else if (vma->vm_start <= mm->start_stack &&
1864 vma->vm_end >= mm->start_stack) {
1865 seq_printf(m, " stack");
1866 }
1867
1868 if (is_vm_hugetlb_page(vma)) {
1869 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1870 seq_printf(m, " huge");
1871 } else {
1872 check_pgd_range(vma, vma->vm_start, vma->vm_end,
1873 &node_online_map, MPOL_MF_STATS, md);
1874 }
1875
1876 if (!md->pages)
1877 goto out;
1878
1879 if (md->anon)
1880 seq_printf(m," anon=%lu",md->anon);
1881
1882 if (md->dirty)
1883 seq_printf(m," dirty=%lu",md->dirty);
1884
1885 if (md->pages != md->anon && md->pages != md->dirty)
1886 seq_printf(m, " mapped=%lu", md->pages);
1887
1888 if (md->mapcount_max > 1)
1889 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1890
1891 if (md->swapcache)
1892 seq_printf(m," swapcache=%lu", md->swapcache);
1893
1894 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1895 seq_printf(m," active=%lu", md->active);
1896
1897 if (md->writeback)
1898 seq_printf(m," writeback=%lu", md->writeback);
1899
1900 for_each_online_node(n)
1901 if (md->node[n])
1902 seq_printf(m, " N%d=%lu", n, md->node[n]);
1903 out:
1904 seq_putc(m, '\n');
1905 kfree(md);
1906
1907 if (m->count < m->size)
1908 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
1909 return 0;
1910 }
1911