]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/migrate.c
mm, thp: fix mlocking THP page with migration enabled
[thirdparty/kernel/stable.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
62 */
63 int migrate_prep(void)
64 {
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 lru_add_drain();
80
81 return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
135 return 0;
136
137 out_no_isolated:
138 unlock_page(page);
139 out_putpage:
140 put_page(page);
141 out:
142 return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157 }
158
159 /*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
166 */
167 void putback_movable_pages(struct list_head *l)
168 {
169 struct page *page;
170 struct page *page2;
171
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
177 list_del(&page->lru);
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
196 }
197 }
198 }
199
200 /*
201 * Restore a potential migration pte to a working pte entry
202 */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
205 {
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
214 swp_entry_t entry;
215
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231 #endif
232
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
237
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
244
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
252 }
253 } else
254 flush_dcache_page(new);
255
256 #ifdef CONFIG_HUGETLB_PAGE
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
265 } else
266 #endif
267 {
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
274 }
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
277
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
280
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 }
284
285 return true;
286 }
287
288 /*
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
291 */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
296 .arg = old,
297 };
298
299 if (locked)
300 rmap_walk_locked(new, &rwc);
301 else
302 rmap_walk(new, &rwc);
303 }
304
305 /*
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
309 */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311 spinlock_t *ptl)
312 {
313 pte_t pte;
314 swp_entry_t entry;
315 struct page *page;
316
317 spin_lock(ptl);
318 pte = *ptep;
319 if (!is_swap_pte(pte))
320 goto out;
321
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
324 goto out;
325
326 page = migration_entry_to_page(entry);
327
328 /*
329 * Once radix-tree replacement of page migration started, page_count
330 * *must* be zero. And, we don't want to call wait_on_page_locked()
331 * against a page without get_page().
332 * So, we use get_page_unless_zero(), here. Even failed, page fault
333 * will occur again.
334 */
335 if (!get_page_unless_zero(page))
336 goto out;
337 pte_unmap_unlock(ptep, ptl);
338 wait_on_page_locked(page);
339 put_page(page);
340 return;
341 out:
342 pte_unmap_unlock(ptep, ptl);
343 }
344
345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 unsigned long address)
347 {
348 spinlock_t *ptl = pte_lockptr(mm, pmd);
349 pte_t *ptep = pte_offset_map(pmd, address);
350 __migration_entry_wait(mm, ptep, ptl);
351 }
352
353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 struct mm_struct *mm, pte_t *pte)
355 {
356 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 __migration_entry_wait(mm, pte, ptl);
358 }
359
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 {
363 spinlock_t *ptl;
364 struct page *page;
365
366 ptl = pmd_lock(mm, pmd);
367 if (!is_pmd_migration_entry(*pmd))
368 goto unlock;
369 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 if (!get_page_unless_zero(page))
371 goto unlock;
372 spin_unlock(ptl);
373 wait_on_page_locked(page);
374 put_page(page);
375 return;
376 unlock:
377 spin_unlock(ptl);
378 }
379 #endif
380
381 #ifdef CONFIG_BLOCK
382 /* Returns true if all buffers are successfully locked */
383 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
384 enum migrate_mode mode)
385 {
386 struct buffer_head *bh = head;
387
388 /* Simple case, sync compaction */
389 if (mode != MIGRATE_ASYNC) {
390 do {
391 get_bh(bh);
392 lock_buffer(bh);
393 bh = bh->b_this_page;
394
395 } while (bh != head);
396
397 return true;
398 }
399
400 /* async case, we cannot block on lock_buffer so use trylock_buffer */
401 do {
402 get_bh(bh);
403 if (!trylock_buffer(bh)) {
404 /*
405 * We failed to lock the buffer and cannot stall in
406 * async migration. Release the taken locks
407 */
408 struct buffer_head *failed_bh = bh;
409 put_bh(failed_bh);
410 bh = head;
411 while (bh != failed_bh) {
412 unlock_buffer(bh);
413 put_bh(bh);
414 bh = bh->b_this_page;
415 }
416 return false;
417 }
418
419 bh = bh->b_this_page;
420 } while (bh != head);
421 return true;
422 }
423 #else
424 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
425 enum migrate_mode mode)
426 {
427 return true;
428 }
429 #endif /* CONFIG_BLOCK */
430
431 /*
432 * Replace the page in the mapping.
433 *
434 * The number of remaining references must be:
435 * 1 for anonymous pages without a mapping
436 * 2 for pages with a mapping
437 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
438 */
439 int migrate_page_move_mapping(struct address_space *mapping,
440 struct page *newpage, struct page *page,
441 struct buffer_head *head, enum migrate_mode mode,
442 int extra_count)
443 {
444 struct zone *oldzone, *newzone;
445 int dirty;
446 int expected_count = 1 + extra_count;
447 void **pslot;
448
449 /*
450 * Device public or private pages have an extra refcount as they are
451 * ZONE_DEVICE pages.
452 */
453 expected_count += is_device_private_page(page);
454 expected_count += is_device_public_page(page);
455
456 if (!mapping) {
457 /* Anonymous page without mapping */
458 if (page_count(page) != expected_count)
459 return -EAGAIN;
460
461 /* No turning back from here */
462 newpage->index = page->index;
463 newpage->mapping = page->mapping;
464 if (PageSwapBacked(page))
465 __SetPageSwapBacked(newpage);
466
467 return MIGRATEPAGE_SUCCESS;
468 }
469
470 oldzone = page_zone(page);
471 newzone = page_zone(newpage);
472
473 xa_lock_irq(&mapping->i_pages);
474
475 pslot = radix_tree_lookup_slot(&mapping->i_pages,
476 page_index(page));
477
478 expected_count += hpage_nr_pages(page) + page_has_private(page);
479 if (page_count(page) != expected_count ||
480 radix_tree_deref_slot_protected(pslot,
481 &mapping->i_pages.xa_lock) != page) {
482 xa_unlock_irq(&mapping->i_pages);
483 return -EAGAIN;
484 }
485
486 if (!page_ref_freeze(page, expected_count)) {
487 xa_unlock_irq(&mapping->i_pages);
488 return -EAGAIN;
489 }
490
491 /*
492 * In the async migration case of moving a page with buffers, lock the
493 * buffers using trylock before the mapping is moved. If the mapping
494 * was moved, we later failed to lock the buffers and could not move
495 * the mapping back due to an elevated page count, we would have to
496 * block waiting on other references to be dropped.
497 */
498 if (mode == MIGRATE_ASYNC && head &&
499 !buffer_migrate_lock_buffers(head, mode)) {
500 page_ref_unfreeze(page, expected_count);
501 xa_unlock_irq(&mapping->i_pages);
502 return -EAGAIN;
503 }
504
505 /*
506 * Now we know that no one else is looking at the page:
507 * no turning back from here.
508 */
509 newpage->index = page->index;
510 newpage->mapping = page->mapping;
511 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
512 if (PageSwapBacked(page)) {
513 __SetPageSwapBacked(newpage);
514 if (PageSwapCache(page)) {
515 SetPageSwapCache(newpage);
516 set_page_private(newpage, page_private(page));
517 }
518 } else {
519 VM_BUG_ON_PAGE(PageSwapCache(page), page);
520 }
521
522 /* Move dirty while page refs frozen and newpage not yet exposed */
523 dirty = PageDirty(page);
524 if (dirty) {
525 ClearPageDirty(page);
526 SetPageDirty(newpage);
527 }
528
529 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
530 if (PageTransHuge(page)) {
531 int i;
532 int index = page_index(page);
533
534 for (i = 1; i < HPAGE_PMD_NR; i++) {
535 pslot = radix_tree_lookup_slot(&mapping->i_pages,
536 index + i);
537 radix_tree_replace_slot(&mapping->i_pages, pslot,
538 newpage + i);
539 }
540 }
541
542 /*
543 * Drop cache reference from old page by unfreezing
544 * to one less reference.
545 * We know this isn't the last reference.
546 */
547 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
548
549 xa_unlock(&mapping->i_pages);
550 /* Leave irq disabled to prevent preemption while updating stats */
551
552 /*
553 * If moved to a different zone then also account
554 * the page for that zone. Other VM counters will be
555 * taken care of when we establish references to the
556 * new page and drop references to the old page.
557 *
558 * Note that anonymous pages are accounted for
559 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
560 * are mapped to swap space.
561 */
562 if (newzone != oldzone) {
563 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
564 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
565 if (PageSwapBacked(page) && !PageSwapCache(page)) {
566 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
567 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
568 }
569 if (dirty && mapping_cap_account_dirty(mapping)) {
570 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
571 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
572 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
573 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
574 }
575 }
576 local_irq_enable();
577
578 return MIGRATEPAGE_SUCCESS;
579 }
580 EXPORT_SYMBOL(migrate_page_move_mapping);
581
582 /*
583 * The expected number of remaining references is the same as that
584 * of migrate_page_move_mapping().
585 */
586 int migrate_huge_page_move_mapping(struct address_space *mapping,
587 struct page *newpage, struct page *page)
588 {
589 int expected_count;
590 void **pslot;
591
592 xa_lock_irq(&mapping->i_pages);
593
594 pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
595
596 expected_count = 2 + page_has_private(page);
597 if (page_count(page) != expected_count ||
598 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
599 xa_unlock_irq(&mapping->i_pages);
600 return -EAGAIN;
601 }
602
603 if (!page_ref_freeze(page, expected_count)) {
604 xa_unlock_irq(&mapping->i_pages);
605 return -EAGAIN;
606 }
607
608 newpage->index = page->index;
609 newpage->mapping = page->mapping;
610
611 get_page(newpage);
612
613 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
614
615 page_ref_unfreeze(page, expected_count - 1);
616
617 xa_unlock_irq(&mapping->i_pages);
618
619 return MIGRATEPAGE_SUCCESS;
620 }
621
622 /*
623 * Gigantic pages are so large that we do not guarantee that page++ pointer
624 * arithmetic will work across the entire page. We need something more
625 * specialized.
626 */
627 static void __copy_gigantic_page(struct page *dst, struct page *src,
628 int nr_pages)
629 {
630 int i;
631 struct page *dst_base = dst;
632 struct page *src_base = src;
633
634 for (i = 0; i < nr_pages; ) {
635 cond_resched();
636 copy_highpage(dst, src);
637
638 i++;
639 dst = mem_map_next(dst, dst_base, i);
640 src = mem_map_next(src, src_base, i);
641 }
642 }
643
644 static void copy_huge_page(struct page *dst, struct page *src)
645 {
646 int i;
647 int nr_pages;
648
649 if (PageHuge(src)) {
650 /* hugetlbfs page */
651 struct hstate *h = page_hstate(src);
652 nr_pages = pages_per_huge_page(h);
653
654 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
655 __copy_gigantic_page(dst, src, nr_pages);
656 return;
657 }
658 } else {
659 /* thp page */
660 BUG_ON(!PageTransHuge(src));
661 nr_pages = hpage_nr_pages(src);
662 }
663
664 for (i = 0; i < nr_pages; i++) {
665 cond_resched();
666 copy_highpage(dst + i, src + i);
667 }
668 }
669
670 /*
671 * Copy the page to its new location
672 */
673 void migrate_page_states(struct page *newpage, struct page *page)
674 {
675 int cpupid;
676
677 if (PageError(page))
678 SetPageError(newpage);
679 if (PageReferenced(page))
680 SetPageReferenced(newpage);
681 if (PageUptodate(page))
682 SetPageUptodate(newpage);
683 if (TestClearPageActive(page)) {
684 VM_BUG_ON_PAGE(PageUnevictable(page), page);
685 SetPageActive(newpage);
686 } else if (TestClearPageUnevictable(page))
687 SetPageUnevictable(newpage);
688 if (PageChecked(page))
689 SetPageChecked(newpage);
690 if (PageMappedToDisk(page))
691 SetPageMappedToDisk(newpage);
692
693 /* Move dirty on pages not done by migrate_page_move_mapping() */
694 if (PageDirty(page))
695 SetPageDirty(newpage);
696
697 if (page_is_young(page))
698 set_page_young(newpage);
699 if (page_is_idle(page))
700 set_page_idle(newpage);
701
702 /*
703 * Copy NUMA information to the new page, to prevent over-eager
704 * future migrations of this same page.
705 */
706 cpupid = page_cpupid_xchg_last(page, -1);
707 page_cpupid_xchg_last(newpage, cpupid);
708
709 ksm_migrate_page(newpage, page);
710 /*
711 * Please do not reorder this without considering how mm/ksm.c's
712 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
713 */
714 if (PageSwapCache(page))
715 ClearPageSwapCache(page);
716 ClearPagePrivate(page);
717 set_page_private(page, 0);
718
719 /*
720 * If any waiters have accumulated on the new page then
721 * wake them up.
722 */
723 if (PageWriteback(newpage))
724 end_page_writeback(newpage);
725
726 copy_page_owner(page, newpage);
727
728 mem_cgroup_migrate(page, newpage);
729 }
730 EXPORT_SYMBOL(migrate_page_states);
731
732 void migrate_page_copy(struct page *newpage, struct page *page)
733 {
734 if (PageHuge(page) || PageTransHuge(page))
735 copy_huge_page(newpage, page);
736 else
737 copy_highpage(newpage, page);
738
739 migrate_page_states(newpage, page);
740 }
741 EXPORT_SYMBOL(migrate_page_copy);
742
743 /************************************************************
744 * Migration functions
745 ***********************************************************/
746
747 /*
748 * Common logic to directly migrate a single LRU page suitable for
749 * pages that do not use PagePrivate/PagePrivate2.
750 *
751 * Pages are locked upon entry and exit.
752 */
753 int migrate_page(struct address_space *mapping,
754 struct page *newpage, struct page *page,
755 enum migrate_mode mode)
756 {
757 int rc;
758
759 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
760
761 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
762
763 if (rc != MIGRATEPAGE_SUCCESS)
764 return rc;
765
766 if (mode != MIGRATE_SYNC_NO_COPY)
767 migrate_page_copy(newpage, page);
768 else
769 migrate_page_states(newpage, page);
770 return MIGRATEPAGE_SUCCESS;
771 }
772 EXPORT_SYMBOL(migrate_page);
773
774 #ifdef CONFIG_BLOCK
775 /*
776 * Migration function for pages with buffers. This function can only be used
777 * if the underlying filesystem guarantees that no other references to "page"
778 * exist.
779 */
780 int buffer_migrate_page(struct address_space *mapping,
781 struct page *newpage, struct page *page, enum migrate_mode mode)
782 {
783 struct buffer_head *bh, *head;
784 int rc;
785
786 if (!page_has_buffers(page))
787 return migrate_page(mapping, newpage, page, mode);
788
789 head = page_buffers(page);
790
791 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
792
793 if (rc != MIGRATEPAGE_SUCCESS)
794 return rc;
795
796 /*
797 * In the async case, migrate_page_move_mapping locked the buffers
798 * with an IRQ-safe spinlock held. In the sync case, the buffers
799 * need to be locked now
800 */
801 if (mode != MIGRATE_ASYNC)
802 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
803
804 ClearPagePrivate(page);
805 set_page_private(newpage, page_private(page));
806 set_page_private(page, 0);
807 put_page(page);
808 get_page(newpage);
809
810 bh = head;
811 do {
812 set_bh_page(bh, newpage, bh_offset(bh));
813 bh = bh->b_this_page;
814
815 } while (bh != head);
816
817 SetPagePrivate(newpage);
818
819 if (mode != MIGRATE_SYNC_NO_COPY)
820 migrate_page_copy(newpage, page);
821 else
822 migrate_page_states(newpage, page);
823
824 bh = head;
825 do {
826 unlock_buffer(bh);
827 put_bh(bh);
828 bh = bh->b_this_page;
829
830 } while (bh != head);
831
832 return MIGRATEPAGE_SUCCESS;
833 }
834 EXPORT_SYMBOL(buffer_migrate_page);
835 #endif
836
837 /*
838 * Writeback a page to clean the dirty state
839 */
840 static int writeout(struct address_space *mapping, struct page *page)
841 {
842 struct writeback_control wbc = {
843 .sync_mode = WB_SYNC_NONE,
844 .nr_to_write = 1,
845 .range_start = 0,
846 .range_end = LLONG_MAX,
847 .for_reclaim = 1
848 };
849 int rc;
850
851 if (!mapping->a_ops->writepage)
852 /* No write method for the address space */
853 return -EINVAL;
854
855 if (!clear_page_dirty_for_io(page))
856 /* Someone else already triggered a write */
857 return -EAGAIN;
858
859 /*
860 * A dirty page may imply that the underlying filesystem has
861 * the page on some queue. So the page must be clean for
862 * migration. Writeout may mean we loose the lock and the
863 * page state is no longer what we checked for earlier.
864 * At this point we know that the migration attempt cannot
865 * be successful.
866 */
867 remove_migration_ptes(page, page, false);
868
869 rc = mapping->a_ops->writepage(page, &wbc);
870
871 if (rc != AOP_WRITEPAGE_ACTIVATE)
872 /* unlocked. Relock */
873 lock_page(page);
874
875 return (rc < 0) ? -EIO : -EAGAIN;
876 }
877
878 /*
879 * Default handling if a filesystem does not provide a migration function.
880 */
881 static int fallback_migrate_page(struct address_space *mapping,
882 struct page *newpage, struct page *page, enum migrate_mode mode)
883 {
884 if (PageDirty(page)) {
885 /* Only writeback pages in full synchronous migration */
886 switch (mode) {
887 case MIGRATE_SYNC:
888 case MIGRATE_SYNC_NO_COPY:
889 break;
890 default:
891 return -EBUSY;
892 }
893 return writeout(mapping, page);
894 }
895
896 /*
897 * Buffers may be managed in a filesystem specific way.
898 * We must have no buffers or drop them.
899 */
900 if (page_has_private(page) &&
901 !try_to_release_page(page, GFP_KERNEL))
902 return -EAGAIN;
903
904 return migrate_page(mapping, newpage, page, mode);
905 }
906
907 /*
908 * Move a page to a newly allocated page
909 * The page is locked and all ptes have been successfully removed.
910 *
911 * The new page will have replaced the old page if this function
912 * is successful.
913 *
914 * Return value:
915 * < 0 - error code
916 * MIGRATEPAGE_SUCCESS - success
917 */
918 static int move_to_new_page(struct page *newpage, struct page *page,
919 enum migrate_mode mode)
920 {
921 struct address_space *mapping;
922 int rc = -EAGAIN;
923 bool is_lru = !__PageMovable(page);
924
925 VM_BUG_ON_PAGE(!PageLocked(page), page);
926 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
927
928 mapping = page_mapping(page);
929
930 if (likely(is_lru)) {
931 if (!mapping)
932 rc = migrate_page(mapping, newpage, page, mode);
933 else if (mapping->a_ops->migratepage)
934 /*
935 * Most pages have a mapping and most filesystems
936 * provide a migratepage callback. Anonymous pages
937 * are part of swap space which also has its own
938 * migratepage callback. This is the most common path
939 * for page migration.
940 */
941 rc = mapping->a_ops->migratepage(mapping, newpage,
942 page, mode);
943 else
944 rc = fallback_migrate_page(mapping, newpage,
945 page, mode);
946 } else {
947 /*
948 * In case of non-lru page, it could be released after
949 * isolation step. In that case, we shouldn't try migration.
950 */
951 VM_BUG_ON_PAGE(!PageIsolated(page), page);
952 if (!PageMovable(page)) {
953 rc = MIGRATEPAGE_SUCCESS;
954 __ClearPageIsolated(page);
955 goto out;
956 }
957
958 rc = mapping->a_ops->migratepage(mapping, newpage,
959 page, mode);
960 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
961 !PageIsolated(page));
962 }
963
964 /*
965 * When successful, old pagecache page->mapping must be cleared before
966 * page is freed; but stats require that PageAnon be left as PageAnon.
967 */
968 if (rc == MIGRATEPAGE_SUCCESS) {
969 if (__PageMovable(page)) {
970 VM_BUG_ON_PAGE(!PageIsolated(page), page);
971
972 /*
973 * We clear PG_movable under page_lock so any compactor
974 * cannot try to migrate this page.
975 */
976 __ClearPageIsolated(page);
977 }
978
979 /*
980 * Anonymous and movable page->mapping will be cleard by
981 * free_pages_prepare so don't reset it here for keeping
982 * the type to work PageAnon, for example.
983 */
984 if (!PageMappingFlags(page))
985 page->mapping = NULL;
986 }
987 out:
988 return rc;
989 }
990
991 static int __unmap_and_move(struct page *page, struct page *newpage,
992 int force, enum migrate_mode mode)
993 {
994 int rc = -EAGAIN;
995 int page_was_mapped = 0;
996 struct anon_vma *anon_vma = NULL;
997 bool is_lru = !__PageMovable(page);
998
999 if (!trylock_page(page)) {
1000 if (!force || mode == MIGRATE_ASYNC)
1001 goto out;
1002
1003 /*
1004 * It's not safe for direct compaction to call lock_page.
1005 * For example, during page readahead pages are added locked
1006 * to the LRU. Later, when the IO completes the pages are
1007 * marked uptodate and unlocked. However, the queueing
1008 * could be merging multiple pages for one bio (e.g.
1009 * mpage_readpages). If an allocation happens for the
1010 * second or third page, the process can end up locking
1011 * the same page twice and deadlocking. Rather than
1012 * trying to be clever about what pages can be locked,
1013 * avoid the use of lock_page for direct compaction
1014 * altogether.
1015 */
1016 if (current->flags & PF_MEMALLOC)
1017 goto out;
1018
1019 lock_page(page);
1020 }
1021
1022 if (PageWriteback(page)) {
1023 /*
1024 * Only in the case of a full synchronous migration is it
1025 * necessary to wait for PageWriteback. In the async case,
1026 * the retry loop is too short and in the sync-light case,
1027 * the overhead of stalling is too much
1028 */
1029 switch (mode) {
1030 case MIGRATE_SYNC:
1031 case MIGRATE_SYNC_NO_COPY:
1032 break;
1033 default:
1034 rc = -EBUSY;
1035 goto out_unlock;
1036 }
1037 if (!force)
1038 goto out_unlock;
1039 wait_on_page_writeback(page);
1040 }
1041
1042 /*
1043 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1044 * we cannot notice that anon_vma is freed while we migrates a page.
1045 * This get_anon_vma() delays freeing anon_vma pointer until the end
1046 * of migration. File cache pages are no problem because of page_lock()
1047 * File Caches may use write_page() or lock_page() in migration, then,
1048 * just care Anon page here.
1049 *
1050 * Only page_get_anon_vma() understands the subtleties of
1051 * getting a hold on an anon_vma from outside one of its mms.
1052 * But if we cannot get anon_vma, then we won't need it anyway,
1053 * because that implies that the anon page is no longer mapped
1054 * (and cannot be remapped so long as we hold the page lock).
1055 */
1056 if (PageAnon(page) && !PageKsm(page))
1057 anon_vma = page_get_anon_vma(page);
1058
1059 /*
1060 * Block others from accessing the new page when we get around to
1061 * establishing additional references. We are usually the only one
1062 * holding a reference to newpage at this point. We used to have a BUG
1063 * here if trylock_page(newpage) fails, but would like to allow for
1064 * cases where there might be a race with the previous use of newpage.
1065 * This is much like races on refcount of oldpage: just don't BUG().
1066 */
1067 if (unlikely(!trylock_page(newpage)))
1068 goto out_unlock;
1069
1070 if (unlikely(!is_lru)) {
1071 rc = move_to_new_page(newpage, page, mode);
1072 goto out_unlock_both;
1073 }
1074
1075 /*
1076 * Corner case handling:
1077 * 1. When a new swap-cache page is read into, it is added to the LRU
1078 * and treated as swapcache but it has no rmap yet.
1079 * Calling try_to_unmap() against a page->mapping==NULL page will
1080 * trigger a BUG. So handle it here.
1081 * 2. An orphaned page (see truncate_complete_page) might have
1082 * fs-private metadata. The page can be picked up due to memory
1083 * offlining. Everywhere else except page reclaim, the page is
1084 * invisible to the vm, so the page can not be migrated. So try to
1085 * free the metadata, so the page can be freed.
1086 */
1087 if (!page->mapping) {
1088 VM_BUG_ON_PAGE(PageAnon(page), page);
1089 if (page_has_private(page)) {
1090 try_to_free_buffers(page);
1091 goto out_unlock_both;
1092 }
1093 } else if (page_mapped(page)) {
1094 /* Establish migration ptes */
1095 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1096 page);
1097 try_to_unmap(page,
1098 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1099 page_was_mapped = 1;
1100 }
1101
1102 if (!page_mapped(page))
1103 rc = move_to_new_page(newpage, page, mode);
1104
1105 if (page_was_mapped)
1106 remove_migration_ptes(page,
1107 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1108
1109 out_unlock_both:
1110 unlock_page(newpage);
1111 out_unlock:
1112 /* Drop an anon_vma reference if we took one */
1113 if (anon_vma)
1114 put_anon_vma(anon_vma);
1115 unlock_page(page);
1116 out:
1117 /*
1118 * If migration is successful, decrease refcount of the newpage
1119 * which will not free the page because new page owner increased
1120 * refcounter. As well, if it is LRU page, add the page to LRU
1121 * list in here.
1122 */
1123 if (rc == MIGRATEPAGE_SUCCESS) {
1124 if (unlikely(__PageMovable(newpage)))
1125 put_page(newpage);
1126 else
1127 putback_lru_page(newpage);
1128 }
1129
1130 return rc;
1131 }
1132
1133 /*
1134 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1135 * around it.
1136 */
1137 #if defined(CONFIG_ARM) && \
1138 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1139 #define ICE_noinline noinline
1140 #else
1141 #define ICE_noinline
1142 #endif
1143
1144 /*
1145 * Obtain the lock on page, remove all ptes and migrate the page
1146 * to the newly allocated page in newpage.
1147 */
1148 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1149 free_page_t put_new_page,
1150 unsigned long private, struct page *page,
1151 int force, enum migrate_mode mode,
1152 enum migrate_reason reason)
1153 {
1154 int rc = MIGRATEPAGE_SUCCESS;
1155 struct page *newpage;
1156
1157 if (!thp_migration_supported() && PageTransHuge(page))
1158 return -ENOMEM;
1159
1160 newpage = get_new_page(page, private);
1161 if (!newpage)
1162 return -ENOMEM;
1163
1164 if (page_count(page) == 1) {
1165 /* page was freed from under us. So we are done. */
1166 ClearPageActive(page);
1167 ClearPageUnevictable(page);
1168 if (unlikely(__PageMovable(page))) {
1169 lock_page(page);
1170 if (!PageMovable(page))
1171 __ClearPageIsolated(page);
1172 unlock_page(page);
1173 }
1174 if (put_new_page)
1175 put_new_page(newpage, private);
1176 else
1177 put_page(newpage);
1178 goto out;
1179 }
1180
1181 rc = __unmap_and_move(page, newpage, force, mode);
1182 if (rc == MIGRATEPAGE_SUCCESS)
1183 set_page_owner_migrate_reason(newpage, reason);
1184
1185 out:
1186 if (rc != -EAGAIN) {
1187 /*
1188 * A page that has been migrated has all references
1189 * removed and will be freed. A page that has not been
1190 * migrated will have kepts its references and be
1191 * restored.
1192 */
1193 list_del(&page->lru);
1194
1195 /*
1196 * Compaction can migrate also non-LRU pages which are
1197 * not accounted to NR_ISOLATED_*. They can be recognized
1198 * as __PageMovable
1199 */
1200 if (likely(!__PageMovable(page)))
1201 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1202 page_is_file_cache(page), -hpage_nr_pages(page));
1203 }
1204
1205 /*
1206 * If migration is successful, releases reference grabbed during
1207 * isolation. Otherwise, restore the page to right list unless
1208 * we want to retry.
1209 */
1210 if (rc == MIGRATEPAGE_SUCCESS) {
1211 put_page(page);
1212 if (reason == MR_MEMORY_FAILURE) {
1213 /*
1214 * Set PG_HWPoison on just freed page
1215 * intentionally. Although it's rather weird,
1216 * it's how HWPoison flag works at the moment.
1217 */
1218 if (set_hwpoison_free_buddy_page(page))
1219 num_poisoned_pages_inc();
1220 }
1221 } else {
1222 if (rc != -EAGAIN) {
1223 if (likely(!__PageMovable(page))) {
1224 putback_lru_page(page);
1225 goto put_new;
1226 }
1227
1228 lock_page(page);
1229 if (PageMovable(page))
1230 putback_movable_page(page);
1231 else
1232 __ClearPageIsolated(page);
1233 unlock_page(page);
1234 put_page(page);
1235 }
1236 put_new:
1237 if (put_new_page)
1238 put_new_page(newpage, private);
1239 else
1240 put_page(newpage);
1241 }
1242
1243 return rc;
1244 }
1245
1246 /*
1247 * Counterpart of unmap_and_move_page() for hugepage migration.
1248 *
1249 * This function doesn't wait the completion of hugepage I/O
1250 * because there is no race between I/O and migration for hugepage.
1251 * Note that currently hugepage I/O occurs only in direct I/O
1252 * where no lock is held and PG_writeback is irrelevant,
1253 * and writeback status of all subpages are counted in the reference
1254 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1255 * under direct I/O, the reference of the head page is 512 and a bit more.)
1256 * This means that when we try to migrate hugepage whose subpages are
1257 * doing direct I/O, some references remain after try_to_unmap() and
1258 * hugepage migration fails without data corruption.
1259 *
1260 * There is also no race when direct I/O is issued on the page under migration,
1261 * because then pte is replaced with migration swap entry and direct I/O code
1262 * will wait in the page fault for migration to complete.
1263 */
1264 static int unmap_and_move_huge_page(new_page_t get_new_page,
1265 free_page_t put_new_page, unsigned long private,
1266 struct page *hpage, int force,
1267 enum migrate_mode mode, int reason)
1268 {
1269 int rc = -EAGAIN;
1270 int page_was_mapped = 0;
1271 struct page *new_hpage;
1272 struct anon_vma *anon_vma = NULL;
1273
1274 /*
1275 * Movability of hugepages depends on architectures and hugepage size.
1276 * This check is necessary because some callers of hugepage migration
1277 * like soft offline and memory hotremove don't walk through page
1278 * tables or check whether the hugepage is pmd-based or not before
1279 * kicking migration.
1280 */
1281 if (!hugepage_migration_supported(page_hstate(hpage))) {
1282 putback_active_hugepage(hpage);
1283 return -ENOSYS;
1284 }
1285
1286 new_hpage = get_new_page(hpage, private);
1287 if (!new_hpage)
1288 return -ENOMEM;
1289
1290 if (!trylock_page(hpage)) {
1291 if (!force)
1292 goto out;
1293 switch (mode) {
1294 case MIGRATE_SYNC:
1295 case MIGRATE_SYNC_NO_COPY:
1296 break;
1297 default:
1298 goto out;
1299 }
1300 lock_page(hpage);
1301 }
1302
1303 if (PageAnon(hpage))
1304 anon_vma = page_get_anon_vma(hpage);
1305
1306 if (unlikely(!trylock_page(new_hpage)))
1307 goto put_anon;
1308
1309 if (page_mapped(hpage)) {
1310 try_to_unmap(hpage,
1311 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1312 page_was_mapped = 1;
1313 }
1314
1315 if (!page_mapped(hpage))
1316 rc = move_to_new_page(new_hpage, hpage, mode);
1317
1318 if (page_was_mapped)
1319 remove_migration_ptes(hpage,
1320 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1321
1322 unlock_page(new_hpage);
1323
1324 put_anon:
1325 if (anon_vma)
1326 put_anon_vma(anon_vma);
1327
1328 if (rc == MIGRATEPAGE_SUCCESS) {
1329 move_hugetlb_state(hpage, new_hpage, reason);
1330 put_new_page = NULL;
1331 }
1332
1333 unlock_page(hpage);
1334 out:
1335 if (rc != -EAGAIN)
1336 putback_active_hugepage(hpage);
1337
1338 /*
1339 * If migration was not successful and there's a freeing callback, use
1340 * it. Otherwise, put_page() will drop the reference grabbed during
1341 * isolation.
1342 */
1343 if (put_new_page)
1344 put_new_page(new_hpage, private);
1345 else
1346 putback_active_hugepage(new_hpage);
1347
1348 return rc;
1349 }
1350
1351 /*
1352 * migrate_pages - migrate the pages specified in a list, to the free pages
1353 * supplied as the target for the page migration
1354 *
1355 * @from: The list of pages to be migrated.
1356 * @get_new_page: The function used to allocate free pages to be used
1357 * as the target of the page migration.
1358 * @put_new_page: The function used to free target pages if migration
1359 * fails, or NULL if no special handling is necessary.
1360 * @private: Private data to be passed on to get_new_page()
1361 * @mode: The migration mode that specifies the constraints for
1362 * page migration, if any.
1363 * @reason: The reason for page migration.
1364 *
1365 * The function returns after 10 attempts or if no pages are movable any more
1366 * because the list has become empty or no retryable pages exist any more.
1367 * The caller should call putback_movable_pages() to return pages to the LRU
1368 * or free list only if ret != 0.
1369 *
1370 * Returns the number of pages that were not migrated, or an error code.
1371 */
1372 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1373 free_page_t put_new_page, unsigned long private,
1374 enum migrate_mode mode, int reason)
1375 {
1376 int retry = 1;
1377 int nr_failed = 0;
1378 int nr_succeeded = 0;
1379 int pass = 0;
1380 struct page *page;
1381 struct page *page2;
1382 int swapwrite = current->flags & PF_SWAPWRITE;
1383 int rc;
1384
1385 if (!swapwrite)
1386 current->flags |= PF_SWAPWRITE;
1387
1388 for(pass = 0; pass < 10 && retry; pass++) {
1389 retry = 0;
1390
1391 list_for_each_entry_safe(page, page2, from, lru) {
1392 retry:
1393 cond_resched();
1394
1395 if (PageHuge(page))
1396 rc = unmap_and_move_huge_page(get_new_page,
1397 put_new_page, private, page,
1398 pass > 2, mode, reason);
1399 else
1400 rc = unmap_and_move(get_new_page, put_new_page,
1401 private, page, pass > 2, mode,
1402 reason);
1403
1404 switch(rc) {
1405 case -ENOMEM:
1406 /*
1407 * THP migration might be unsupported or the
1408 * allocation could've failed so we should
1409 * retry on the same page with the THP split
1410 * to base pages.
1411 *
1412 * Head page is retried immediately and tail
1413 * pages are added to the tail of the list so
1414 * we encounter them after the rest of the list
1415 * is processed.
1416 */
1417 if (PageTransHuge(page)) {
1418 lock_page(page);
1419 rc = split_huge_page_to_list(page, from);
1420 unlock_page(page);
1421 if (!rc) {
1422 list_safe_reset_next(page, page2, lru);
1423 goto retry;
1424 }
1425 }
1426 nr_failed++;
1427 goto out;
1428 case -EAGAIN:
1429 retry++;
1430 break;
1431 case MIGRATEPAGE_SUCCESS:
1432 nr_succeeded++;
1433 break;
1434 default:
1435 /*
1436 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1437 * unlike -EAGAIN case, the failed page is
1438 * removed from migration page list and not
1439 * retried in the next outer loop.
1440 */
1441 nr_failed++;
1442 break;
1443 }
1444 }
1445 }
1446 nr_failed += retry;
1447 rc = nr_failed;
1448 out:
1449 if (nr_succeeded)
1450 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1451 if (nr_failed)
1452 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1453 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1454
1455 if (!swapwrite)
1456 current->flags &= ~PF_SWAPWRITE;
1457
1458 return rc;
1459 }
1460
1461 #ifdef CONFIG_NUMA
1462
1463 static int store_status(int __user *status, int start, int value, int nr)
1464 {
1465 while (nr-- > 0) {
1466 if (put_user(value, status + start))
1467 return -EFAULT;
1468 start++;
1469 }
1470
1471 return 0;
1472 }
1473
1474 static int do_move_pages_to_node(struct mm_struct *mm,
1475 struct list_head *pagelist, int node)
1476 {
1477 int err;
1478
1479 if (list_empty(pagelist))
1480 return 0;
1481
1482 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1483 MIGRATE_SYNC, MR_SYSCALL);
1484 if (err)
1485 putback_movable_pages(pagelist);
1486 return err;
1487 }
1488
1489 /*
1490 * Resolves the given address to a struct page, isolates it from the LRU and
1491 * puts it to the given pagelist.
1492 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1493 * queued or the page doesn't need to be migrated because it is already on
1494 * the target node
1495 */
1496 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1497 int node, struct list_head *pagelist, bool migrate_all)
1498 {
1499 struct vm_area_struct *vma;
1500 struct page *page;
1501 unsigned int follflags;
1502 int err;
1503
1504 down_read(&mm->mmap_sem);
1505 err = -EFAULT;
1506 vma = find_vma(mm, addr);
1507 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1508 goto out;
1509
1510 /* FOLL_DUMP to ignore special (like zero) pages */
1511 follflags = FOLL_GET | FOLL_DUMP;
1512 page = follow_page(vma, addr, follflags);
1513
1514 err = PTR_ERR(page);
1515 if (IS_ERR(page))
1516 goto out;
1517
1518 err = -ENOENT;
1519 if (!page)
1520 goto out;
1521
1522 err = 0;
1523 if (page_to_nid(page) == node)
1524 goto out_putpage;
1525
1526 err = -EACCES;
1527 if (page_mapcount(page) > 1 && !migrate_all)
1528 goto out_putpage;
1529
1530 if (PageHuge(page)) {
1531 if (PageHead(page)) {
1532 isolate_huge_page(page, pagelist);
1533 err = 0;
1534 }
1535 } else {
1536 struct page *head;
1537
1538 head = compound_head(page);
1539 err = isolate_lru_page(head);
1540 if (err)
1541 goto out_putpage;
1542
1543 err = 0;
1544 list_add_tail(&head->lru, pagelist);
1545 mod_node_page_state(page_pgdat(head),
1546 NR_ISOLATED_ANON + page_is_file_cache(head),
1547 hpage_nr_pages(head));
1548 }
1549 out_putpage:
1550 /*
1551 * Either remove the duplicate refcount from
1552 * isolate_lru_page() or drop the page ref if it was
1553 * not isolated.
1554 */
1555 put_page(page);
1556 out:
1557 up_read(&mm->mmap_sem);
1558 return err;
1559 }
1560
1561 /*
1562 * Migrate an array of page address onto an array of nodes and fill
1563 * the corresponding array of status.
1564 */
1565 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1566 unsigned long nr_pages,
1567 const void __user * __user *pages,
1568 const int __user *nodes,
1569 int __user *status, int flags)
1570 {
1571 int current_node = NUMA_NO_NODE;
1572 LIST_HEAD(pagelist);
1573 int start, i;
1574 int err = 0, err1;
1575
1576 migrate_prep();
1577
1578 for (i = start = 0; i < nr_pages; i++) {
1579 const void __user *p;
1580 unsigned long addr;
1581 int node;
1582
1583 err = -EFAULT;
1584 if (get_user(p, pages + i))
1585 goto out_flush;
1586 if (get_user(node, nodes + i))
1587 goto out_flush;
1588 addr = (unsigned long)p;
1589
1590 err = -ENODEV;
1591 if (node < 0 || node >= MAX_NUMNODES)
1592 goto out_flush;
1593 if (!node_state(node, N_MEMORY))
1594 goto out_flush;
1595
1596 err = -EACCES;
1597 if (!node_isset(node, task_nodes))
1598 goto out_flush;
1599
1600 if (current_node == NUMA_NO_NODE) {
1601 current_node = node;
1602 start = i;
1603 } else if (node != current_node) {
1604 err = do_move_pages_to_node(mm, &pagelist, current_node);
1605 if (err)
1606 goto out;
1607 err = store_status(status, start, current_node, i - start);
1608 if (err)
1609 goto out;
1610 start = i;
1611 current_node = node;
1612 }
1613
1614 /*
1615 * Errors in the page lookup or isolation are not fatal and we simply
1616 * report them via status
1617 */
1618 err = add_page_for_migration(mm, addr, current_node,
1619 &pagelist, flags & MPOL_MF_MOVE_ALL);
1620 if (!err)
1621 continue;
1622
1623 err = store_status(status, i, err, 1);
1624 if (err)
1625 goto out_flush;
1626
1627 err = do_move_pages_to_node(mm, &pagelist, current_node);
1628 if (err)
1629 goto out;
1630 if (i > start) {
1631 err = store_status(status, start, current_node, i - start);
1632 if (err)
1633 goto out;
1634 }
1635 current_node = NUMA_NO_NODE;
1636 }
1637 out_flush:
1638 if (list_empty(&pagelist))
1639 return err;
1640
1641 /* Make sure we do not overwrite the existing error */
1642 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1643 if (!err1)
1644 err1 = store_status(status, start, current_node, i - start);
1645 if (!err)
1646 err = err1;
1647 out:
1648 return err;
1649 }
1650
1651 /*
1652 * Determine the nodes of an array of pages and store it in an array of status.
1653 */
1654 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1655 const void __user **pages, int *status)
1656 {
1657 unsigned long i;
1658
1659 down_read(&mm->mmap_sem);
1660
1661 for (i = 0; i < nr_pages; i++) {
1662 unsigned long addr = (unsigned long)(*pages);
1663 struct vm_area_struct *vma;
1664 struct page *page;
1665 int err = -EFAULT;
1666
1667 vma = find_vma(mm, addr);
1668 if (!vma || addr < vma->vm_start)
1669 goto set_status;
1670
1671 /* FOLL_DUMP to ignore special (like zero) pages */
1672 page = follow_page(vma, addr, FOLL_DUMP);
1673
1674 err = PTR_ERR(page);
1675 if (IS_ERR(page))
1676 goto set_status;
1677
1678 err = page ? page_to_nid(page) : -ENOENT;
1679 set_status:
1680 *status = err;
1681
1682 pages++;
1683 status++;
1684 }
1685
1686 up_read(&mm->mmap_sem);
1687 }
1688
1689 /*
1690 * Determine the nodes of a user array of pages and store it in
1691 * a user array of status.
1692 */
1693 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1694 const void __user * __user *pages,
1695 int __user *status)
1696 {
1697 #define DO_PAGES_STAT_CHUNK_NR 16
1698 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1699 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1700
1701 while (nr_pages) {
1702 unsigned long chunk_nr;
1703
1704 chunk_nr = nr_pages;
1705 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1706 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1707
1708 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1709 break;
1710
1711 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1712
1713 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1714 break;
1715
1716 pages += chunk_nr;
1717 status += chunk_nr;
1718 nr_pages -= chunk_nr;
1719 }
1720 return nr_pages ? -EFAULT : 0;
1721 }
1722
1723 /*
1724 * Move a list of pages in the address space of the currently executing
1725 * process.
1726 */
1727 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1728 const void __user * __user *pages,
1729 const int __user *nodes,
1730 int __user *status, int flags)
1731 {
1732 struct task_struct *task;
1733 struct mm_struct *mm;
1734 int err;
1735 nodemask_t task_nodes;
1736
1737 /* Check flags */
1738 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1739 return -EINVAL;
1740
1741 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1742 return -EPERM;
1743
1744 /* Find the mm_struct */
1745 rcu_read_lock();
1746 task = pid ? find_task_by_vpid(pid) : current;
1747 if (!task) {
1748 rcu_read_unlock();
1749 return -ESRCH;
1750 }
1751 get_task_struct(task);
1752
1753 /*
1754 * Check if this process has the right to modify the specified
1755 * process. Use the regular "ptrace_may_access()" checks.
1756 */
1757 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1758 rcu_read_unlock();
1759 err = -EPERM;
1760 goto out;
1761 }
1762 rcu_read_unlock();
1763
1764 err = security_task_movememory(task);
1765 if (err)
1766 goto out;
1767
1768 task_nodes = cpuset_mems_allowed(task);
1769 mm = get_task_mm(task);
1770 put_task_struct(task);
1771
1772 if (!mm)
1773 return -EINVAL;
1774
1775 if (nodes)
1776 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1777 nodes, status, flags);
1778 else
1779 err = do_pages_stat(mm, nr_pages, pages, status);
1780
1781 mmput(mm);
1782 return err;
1783
1784 out:
1785 put_task_struct(task);
1786 return err;
1787 }
1788
1789 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1790 const void __user * __user *, pages,
1791 const int __user *, nodes,
1792 int __user *, status, int, flags)
1793 {
1794 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1795 }
1796
1797 #ifdef CONFIG_COMPAT
1798 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1799 compat_uptr_t __user *, pages32,
1800 const int __user *, nodes,
1801 int __user *, status,
1802 int, flags)
1803 {
1804 const void __user * __user *pages;
1805 int i;
1806
1807 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1808 for (i = 0; i < nr_pages; i++) {
1809 compat_uptr_t p;
1810
1811 if (get_user(p, pages32 + i) ||
1812 put_user(compat_ptr(p), pages + i))
1813 return -EFAULT;
1814 }
1815 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1816 }
1817 #endif /* CONFIG_COMPAT */
1818
1819 #ifdef CONFIG_NUMA_BALANCING
1820 /*
1821 * Returns true if this is a safe migration target node for misplaced NUMA
1822 * pages. Currently it only checks the watermarks which crude
1823 */
1824 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1825 unsigned long nr_migrate_pages)
1826 {
1827 int z;
1828
1829 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1830 struct zone *zone = pgdat->node_zones + z;
1831
1832 if (!populated_zone(zone))
1833 continue;
1834
1835 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1836 if (!zone_watermark_ok(zone, 0,
1837 high_wmark_pages(zone) +
1838 nr_migrate_pages,
1839 0, 0))
1840 continue;
1841 return true;
1842 }
1843 return false;
1844 }
1845
1846 static struct page *alloc_misplaced_dst_page(struct page *page,
1847 unsigned long data)
1848 {
1849 int nid = (int) data;
1850 struct page *newpage;
1851
1852 newpage = __alloc_pages_node(nid,
1853 (GFP_HIGHUSER_MOVABLE |
1854 __GFP_THISNODE | __GFP_NOMEMALLOC |
1855 __GFP_NORETRY | __GFP_NOWARN) &
1856 ~__GFP_RECLAIM, 0);
1857
1858 return newpage;
1859 }
1860
1861 /*
1862 * page migration rate limiting control.
1863 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1864 * window of time. Default here says do not migrate more than 1280M per second.
1865 */
1866 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1867 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1868
1869 /* Returns true if the node is migrate rate-limited after the update */
1870 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1871 unsigned long nr_pages)
1872 {
1873 /*
1874 * Rate-limit the amount of data that is being migrated to a node.
1875 * Optimal placement is no good if the memory bus is saturated and
1876 * all the time is being spent migrating!
1877 */
1878 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1879 spin_lock(&pgdat->numabalancing_migrate_lock);
1880 pgdat->numabalancing_migrate_nr_pages = 0;
1881 pgdat->numabalancing_migrate_next_window = jiffies +
1882 msecs_to_jiffies(migrate_interval_millisecs);
1883 spin_unlock(&pgdat->numabalancing_migrate_lock);
1884 }
1885 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1886 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1887 nr_pages);
1888 return true;
1889 }
1890
1891 /*
1892 * This is an unlocked non-atomic update so errors are possible.
1893 * The consequences are failing to migrate when we potentiall should
1894 * have which is not severe enough to warrant locking. If it is ever
1895 * a problem, it can be converted to a per-cpu counter.
1896 */
1897 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1898 return false;
1899 }
1900
1901 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1902 {
1903 int page_lru;
1904
1905 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1906
1907 /* Avoid migrating to a node that is nearly full */
1908 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1909 return 0;
1910
1911 if (isolate_lru_page(page))
1912 return 0;
1913
1914 /*
1915 * migrate_misplaced_transhuge_page() skips page migration's usual
1916 * check on page_count(), so we must do it here, now that the page
1917 * has been isolated: a GUP pin, or any other pin, prevents migration.
1918 * The expected page count is 3: 1 for page's mapcount and 1 for the
1919 * caller's pin and 1 for the reference taken by isolate_lru_page().
1920 */
1921 if (PageTransHuge(page) && page_count(page) != 3) {
1922 putback_lru_page(page);
1923 return 0;
1924 }
1925
1926 page_lru = page_is_file_cache(page);
1927 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1928 hpage_nr_pages(page));
1929
1930 /*
1931 * Isolating the page has taken another reference, so the
1932 * caller's reference can be safely dropped without the page
1933 * disappearing underneath us during migration.
1934 */
1935 put_page(page);
1936 return 1;
1937 }
1938
1939 bool pmd_trans_migrating(pmd_t pmd)
1940 {
1941 struct page *page = pmd_page(pmd);
1942 return PageLocked(page);
1943 }
1944
1945 /*
1946 * Attempt to migrate a misplaced page to the specified destination
1947 * node. Caller is expected to have an elevated reference count on
1948 * the page that will be dropped by this function before returning.
1949 */
1950 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1951 int node)
1952 {
1953 pg_data_t *pgdat = NODE_DATA(node);
1954 int isolated;
1955 int nr_remaining;
1956 LIST_HEAD(migratepages);
1957
1958 /*
1959 * Don't migrate file pages that are mapped in multiple processes
1960 * with execute permissions as they are probably shared libraries.
1961 */
1962 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1963 (vma->vm_flags & VM_EXEC))
1964 goto out;
1965
1966 /*
1967 * Also do not migrate dirty pages as not all filesystems can move
1968 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1969 */
1970 if (page_is_file_cache(page) && PageDirty(page))
1971 goto out;
1972
1973 /*
1974 * Rate-limit the amount of data that is being migrated to a node.
1975 * Optimal placement is no good if the memory bus is saturated and
1976 * all the time is being spent migrating!
1977 */
1978 if (numamigrate_update_ratelimit(pgdat, 1))
1979 goto out;
1980
1981 isolated = numamigrate_isolate_page(pgdat, page);
1982 if (!isolated)
1983 goto out;
1984
1985 list_add(&page->lru, &migratepages);
1986 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1987 NULL, node, MIGRATE_ASYNC,
1988 MR_NUMA_MISPLACED);
1989 if (nr_remaining) {
1990 if (!list_empty(&migratepages)) {
1991 list_del(&page->lru);
1992 dec_node_page_state(page, NR_ISOLATED_ANON +
1993 page_is_file_cache(page));
1994 putback_lru_page(page);
1995 }
1996 isolated = 0;
1997 } else
1998 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1999 BUG_ON(!list_empty(&migratepages));
2000 return isolated;
2001
2002 out:
2003 put_page(page);
2004 return 0;
2005 }
2006 #endif /* CONFIG_NUMA_BALANCING */
2007
2008 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2009 /*
2010 * Migrates a THP to a given target node. page must be locked and is unlocked
2011 * before returning.
2012 */
2013 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2014 struct vm_area_struct *vma,
2015 pmd_t *pmd, pmd_t entry,
2016 unsigned long address,
2017 struct page *page, int node)
2018 {
2019 spinlock_t *ptl;
2020 pg_data_t *pgdat = NODE_DATA(node);
2021 int isolated = 0;
2022 struct page *new_page = NULL;
2023 int page_lru = page_is_file_cache(page);
2024 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2025 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2026
2027 /*
2028 * Rate-limit the amount of data that is being migrated to a node.
2029 * Optimal placement is no good if the memory bus is saturated and
2030 * all the time is being spent migrating!
2031 */
2032 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2033 goto out_dropref;
2034
2035 new_page = alloc_pages_node(node,
2036 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2037 HPAGE_PMD_ORDER);
2038 if (!new_page)
2039 goto out_fail;
2040 prep_transhuge_page(new_page);
2041
2042 isolated = numamigrate_isolate_page(pgdat, page);
2043 if (!isolated) {
2044 put_page(new_page);
2045 goto out_fail;
2046 }
2047
2048 /* Prepare a page as a migration target */
2049 __SetPageLocked(new_page);
2050 if (PageSwapBacked(page))
2051 __SetPageSwapBacked(new_page);
2052
2053 /* anon mapping, we can simply copy page->mapping to the new page: */
2054 new_page->mapping = page->mapping;
2055 new_page->index = page->index;
2056 migrate_page_copy(new_page, page);
2057 WARN_ON(PageLRU(new_page));
2058
2059 /* Recheck the target PMD */
2060 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2061 ptl = pmd_lock(mm, pmd);
2062 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2063 spin_unlock(ptl);
2064 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2065
2066 /* Reverse changes made by migrate_page_copy() */
2067 if (TestClearPageActive(new_page))
2068 SetPageActive(page);
2069 if (TestClearPageUnevictable(new_page))
2070 SetPageUnevictable(page);
2071
2072 unlock_page(new_page);
2073 put_page(new_page); /* Free it */
2074
2075 /* Retake the callers reference and putback on LRU */
2076 get_page(page);
2077 putback_lru_page(page);
2078 mod_node_page_state(page_pgdat(page),
2079 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2080
2081 goto out_unlock;
2082 }
2083
2084 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2085 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2086
2087 /*
2088 * Clear the old entry under pagetable lock and establish the new PTE.
2089 * Any parallel GUP will either observe the old page blocking on the
2090 * page lock, block on the page table lock or observe the new page.
2091 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2092 * guarantee the copy is visible before the pagetable update.
2093 */
2094 flush_cache_range(vma, mmun_start, mmun_end);
2095 page_add_anon_rmap(new_page, vma, mmun_start, true);
2096 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2097 set_pmd_at(mm, mmun_start, pmd, entry);
2098 update_mmu_cache_pmd(vma, address, &entry);
2099
2100 page_ref_unfreeze(page, 2);
2101 mlock_migrate_page(new_page, page);
2102 page_remove_rmap(page, true);
2103 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2104
2105 spin_unlock(ptl);
2106 /*
2107 * No need to double call mmu_notifier->invalidate_range() callback as
2108 * the above pmdp_huge_clear_flush_notify() did already call it.
2109 */
2110 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2111
2112 /* Take an "isolate" reference and put new page on the LRU. */
2113 get_page(new_page);
2114 putback_lru_page(new_page);
2115
2116 unlock_page(new_page);
2117 unlock_page(page);
2118 put_page(page); /* Drop the rmap reference */
2119 put_page(page); /* Drop the LRU isolation reference */
2120
2121 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2122 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2123
2124 mod_node_page_state(page_pgdat(page),
2125 NR_ISOLATED_ANON + page_lru,
2126 -HPAGE_PMD_NR);
2127 return isolated;
2128
2129 out_fail:
2130 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2131 out_dropref:
2132 ptl = pmd_lock(mm, pmd);
2133 if (pmd_same(*pmd, entry)) {
2134 entry = pmd_modify(entry, vma->vm_page_prot);
2135 set_pmd_at(mm, mmun_start, pmd, entry);
2136 update_mmu_cache_pmd(vma, address, &entry);
2137 }
2138 spin_unlock(ptl);
2139
2140 out_unlock:
2141 unlock_page(page);
2142 put_page(page);
2143 return 0;
2144 }
2145 #endif /* CONFIG_NUMA_BALANCING */
2146
2147 #endif /* CONFIG_NUMA */
2148
2149 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2150 struct migrate_vma {
2151 struct vm_area_struct *vma;
2152 unsigned long *dst;
2153 unsigned long *src;
2154 unsigned long cpages;
2155 unsigned long npages;
2156 unsigned long start;
2157 unsigned long end;
2158 };
2159
2160 static int migrate_vma_collect_hole(unsigned long start,
2161 unsigned long end,
2162 struct mm_walk *walk)
2163 {
2164 struct migrate_vma *migrate = walk->private;
2165 unsigned long addr;
2166
2167 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2168 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2169 migrate->dst[migrate->npages] = 0;
2170 migrate->npages++;
2171 migrate->cpages++;
2172 }
2173
2174 return 0;
2175 }
2176
2177 static int migrate_vma_collect_skip(unsigned long start,
2178 unsigned long end,
2179 struct mm_walk *walk)
2180 {
2181 struct migrate_vma *migrate = walk->private;
2182 unsigned long addr;
2183
2184 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2185 migrate->dst[migrate->npages] = 0;
2186 migrate->src[migrate->npages++] = 0;
2187 }
2188
2189 return 0;
2190 }
2191
2192 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2193 unsigned long start,
2194 unsigned long end,
2195 struct mm_walk *walk)
2196 {
2197 struct migrate_vma *migrate = walk->private;
2198 struct vm_area_struct *vma = walk->vma;
2199 struct mm_struct *mm = vma->vm_mm;
2200 unsigned long addr = start, unmapped = 0;
2201 spinlock_t *ptl;
2202 pte_t *ptep;
2203
2204 again:
2205 if (pmd_none(*pmdp))
2206 return migrate_vma_collect_hole(start, end, walk);
2207
2208 if (pmd_trans_huge(*pmdp)) {
2209 struct page *page;
2210
2211 ptl = pmd_lock(mm, pmdp);
2212 if (unlikely(!pmd_trans_huge(*pmdp))) {
2213 spin_unlock(ptl);
2214 goto again;
2215 }
2216
2217 page = pmd_page(*pmdp);
2218 if (is_huge_zero_page(page)) {
2219 spin_unlock(ptl);
2220 split_huge_pmd(vma, pmdp, addr);
2221 if (pmd_trans_unstable(pmdp))
2222 return migrate_vma_collect_skip(start, end,
2223 walk);
2224 } else {
2225 int ret;
2226
2227 get_page(page);
2228 spin_unlock(ptl);
2229 if (unlikely(!trylock_page(page)))
2230 return migrate_vma_collect_skip(start, end,
2231 walk);
2232 ret = split_huge_page(page);
2233 unlock_page(page);
2234 put_page(page);
2235 if (ret)
2236 return migrate_vma_collect_skip(start, end,
2237 walk);
2238 if (pmd_none(*pmdp))
2239 return migrate_vma_collect_hole(start, end,
2240 walk);
2241 }
2242 }
2243
2244 if (unlikely(pmd_bad(*pmdp)))
2245 return migrate_vma_collect_skip(start, end, walk);
2246
2247 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2248 arch_enter_lazy_mmu_mode();
2249
2250 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2251 unsigned long mpfn, pfn;
2252 struct page *page;
2253 swp_entry_t entry;
2254 pte_t pte;
2255
2256 pte = *ptep;
2257 pfn = pte_pfn(pte);
2258
2259 if (pte_none(pte)) {
2260 mpfn = MIGRATE_PFN_MIGRATE;
2261 migrate->cpages++;
2262 pfn = 0;
2263 goto next;
2264 }
2265
2266 if (!pte_present(pte)) {
2267 mpfn = pfn = 0;
2268
2269 /*
2270 * Only care about unaddressable device page special
2271 * page table entry. Other special swap entries are not
2272 * migratable, and we ignore regular swapped page.
2273 */
2274 entry = pte_to_swp_entry(pte);
2275 if (!is_device_private_entry(entry))
2276 goto next;
2277
2278 page = device_private_entry_to_page(entry);
2279 mpfn = migrate_pfn(page_to_pfn(page))|
2280 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2281 if (is_write_device_private_entry(entry))
2282 mpfn |= MIGRATE_PFN_WRITE;
2283 } else {
2284 if (is_zero_pfn(pfn)) {
2285 mpfn = MIGRATE_PFN_MIGRATE;
2286 migrate->cpages++;
2287 pfn = 0;
2288 goto next;
2289 }
2290 page = _vm_normal_page(migrate->vma, addr, pte, true);
2291 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2292 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2293 }
2294
2295 /* FIXME support THP */
2296 if (!page || !page->mapping || PageTransCompound(page)) {
2297 mpfn = pfn = 0;
2298 goto next;
2299 }
2300 pfn = page_to_pfn(page);
2301
2302 /*
2303 * By getting a reference on the page we pin it and that blocks
2304 * any kind of migration. Side effect is that it "freezes" the
2305 * pte.
2306 *
2307 * We drop this reference after isolating the page from the lru
2308 * for non device page (device page are not on the lru and thus
2309 * can't be dropped from it).
2310 */
2311 get_page(page);
2312 migrate->cpages++;
2313
2314 /*
2315 * Optimize for the common case where page is only mapped once
2316 * in one process. If we can lock the page, then we can safely
2317 * set up a special migration page table entry now.
2318 */
2319 if (trylock_page(page)) {
2320 pte_t swp_pte;
2321
2322 mpfn |= MIGRATE_PFN_LOCKED;
2323 ptep_get_and_clear(mm, addr, ptep);
2324
2325 /* Setup special migration page table entry */
2326 entry = make_migration_entry(page, mpfn &
2327 MIGRATE_PFN_WRITE);
2328 swp_pte = swp_entry_to_pte(entry);
2329 if (pte_soft_dirty(pte))
2330 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2331 set_pte_at(mm, addr, ptep, swp_pte);
2332
2333 /*
2334 * This is like regular unmap: we remove the rmap and
2335 * drop page refcount. Page won't be freed, as we took
2336 * a reference just above.
2337 */
2338 page_remove_rmap(page, false);
2339 put_page(page);
2340
2341 if (pte_present(pte))
2342 unmapped++;
2343 }
2344
2345 next:
2346 migrate->dst[migrate->npages] = 0;
2347 migrate->src[migrate->npages++] = mpfn;
2348 }
2349 arch_leave_lazy_mmu_mode();
2350 pte_unmap_unlock(ptep - 1, ptl);
2351
2352 /* Only flush the TLB if we actually modified any entries */
2353 if (unmapped)
2354 flush_tlb_range(walk->vma, start, end);
2355
2356 return 0;
2357 }
2358
2359 /*
2360 * migrate_vma_collect() - collect pages over a range of virtual addresses
2361 * @migrate: migrate struct containing all migration information
2362 *
2363 * This will walk the CPU page table. For each virtual address backed by a
2364 * valid page, it updates the src array and takes a reference on the page, in
2365 * order to pin the page until we lock it and unmap it.
2366 */
2367 static void migrate_vma_collect(struct migrate_vma *migrate)
2368 {
2369 struct mm_walk mm_walk;
2370
2371 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2372 mm_walk.pte_entry = NULL;
2373 mm_walk.pte_hole = migrate_vma_collect_hole;
2374 mm_walk.hugetlb_entry = NULL;
2375 mm_walk.test_walk = NULL;
2376 mm_walk.vma = migrate->vma;
2377 mm_walk.mm = migrate->vma->vm_mm;
2378 mm_walk.private = migrate;
2379
2380 mmu_notifier_invalidate_range_start(mm_walk.mm,
2381 migrate->start,
2382 migrate->end);
2383 walk_page_range(migrate->start, migrate->end, &mm_walk);
2384 mmu_notifier_invalidate_range_end(mm_walk.mm,
2385 migrate->start,
2386 migrate->end);
2387
2388 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2389 }
2390
2391 /*
2392 * migrate_vma_check_page() - check if page is pinned or not
2393 * @page: struct page to check
2394 *
2395 * Pinned pages cannot be migrated. This is the same test as in
2396 * migrate_page_move_mapping(), except that here we allow migration of a
2397 * ZONE_DEVICE page.
2398 */
2399 static bool migrate_vma_check_page(struct page *page)
2400 {
2401 /*
2402 * One extra ref because caller holds an extra reference, either from
2403 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2404 * a device page.
2405 */
2406 int extra = 1;
2407
2408 /*
2409 * FIXME support THP (transparent huge page), it is bit more complex to
2410 * check them than regular pages, because they can be mapped with a pmd
2411 * or with a pte (split pte mapping).
2412 */
2413 if (PageCompound(page))
2414 return false;
2415
2416 /* Page from ZONE_DEVICE have one extra reference */
2417 if (is_zone_device_page(page)) {
2418 /*
2419 * Private page can never be pin as they have no valid pte and
2420 * GUP will fail for those. Yet if there is a pending migration
2421 * a thread might try to wait on the pte migration entry and
2422 * will bump the page reference count. Sadly there is no way to
2423 * differentiate a regular pin from migration wait. Hence to
2424 * avoid 2 racing thread trying to migrate back to CPU to enter
2425 * infinite loop (one stoping migration because the other is
2426 * waiting on pte migration entry). We always return true here.
2427 *
2428 * FIXME proper solution is to rework migration_entry_wait() so
2429 * it does not need to take a reference on page.
2430 */
2431 if (is_device_private_page(page))
2432 return true;
2433
2434 /*
2435 * Only allow device public page to be migrated and account for
2436 * the extra reference count imply by ZONE_DEVICE pages.
2437 */
2438 if (!is_device_public_page(page))
2439 return false;
2440 extra++;
2441 }
2442
2443 /* For file back page */
2444 if (page_mapping(page))
2445 extra += 1 + page_has_private(page);
2446
2447 if ((page_count(page) - extra) > page_mapcount(page))
2448 return false;
2449
2450 return true;
2451 }
2452
2453 /*
2454 * migrate_vma_prepare() - lock pages and isolate them from the lru
2455 * @migrate: migrate struct containing all migration information
2456 *
2457 * This locks pages that have been collected by migrate_vma_collect(). Once each
2458 * page is locked it is isolated from the lru (for non-device pages). Finally,
2459 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2460 * migrated by concurrent kernel threads.
2461 */
2462 static void migrate_vma_prepare(struct migrate_vma *migrate)
2463 {
2464 const unsigned long npages = migrate->npages;
2465 const unsigned long start = migrate->start;
2466 unsigned long addr, i, restore = 0;
2467 bool allow_drain = true;
2468
2469 lru_add_drain();
2470
2471 for (i = 0; (i < npages) && migrate->cpages; i++) {
2472 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2473 bool remap = true;
2474
2475 if (!page)
2476 continue;
2477
2478 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2479 /*
2480 * Because we are migrating several pages there can be
2481 * a deadlock between 2 concurrent migration where each
2482 * are waiting on each other page lock.
2483 *
2484 * Make migrate_vma() a best effort thing and backoff
2485 * for any page we can not lock right away.
2486 */
2487 if (!trylock_page(page)) {
2488 migrate->src[i] = 0;
2489 migrate->cpages--;
2490 put_page(page);
2491 continue;
2492 }
2493 remap = false;
2494 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2495 }
2496
2497 /* ZONE_DEVICE pages are not on LRU */
2498 if (!is_zone_device_page(page)) {
2499 if (!PageLRU(page) && allow_drain) {
2500 /* Drain CPU's pagevec */
2501 lru_add_drain_all();
2502 allow_drain = false;
2503 }
2504
2505 if (isolate_lru_page(page)) {
2506 if (remap) {
2507 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2508 migrate->cpages--;
2509 restore++;
2510 } else {
2511 migrate->src[i] = 0;
2512 unlock_page(page);
2513 migrate->cpages--;
2514 put_page(page);
2515 }
2516 continue;
2517 }
2518
2519 /* Drop the reference we took in collect */
2520 put_page(page);
2521 }
2522
2523 if (!migrate_vma_check_page(page)) {
2524 if (remap) {
2525 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2526 migrate->cpages--;
2527 restore++;
2528
2529 if (!is_zone_device_page(page)) {
2530 get_page(page);
2531 putback_lru_page(page);
2532 }
2533 } else {
2534 migrate->src[i] = 0;
2535 unlock_page(page);
2536 migrate->cpages--;
2537
2538 if (!is_zone_device_page(page))
2539 putback_lru_page(page);
2540 else
2541 put_page(page);
2542 }
2543 }
2544 }
2545
2546 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2547 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2548
2549 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2550 continue;
2551
2552 remove_migration_pte(page, migrate->vma, addr, page);
2553
2554 migrate->src[i] = 0;
2555 unlock_page(page);
2556 put_page(page);
2557 restore--;
2558 }
2559 }
2560
2561 /*
2562 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2563 * @migrate: migrate struct containing all migration information
2564 *
2565 * Replace page mapping (CPU page table pte) with a special migration pte entry
2566 * and check again if it has been pinned. Pinned pages are restored because we
2567 * cannot migrate them.
2568 *
2569 * This is the last step before we call the device driver callback to allocate
2570 * destination memory and copy contents of original page over to new page.
2571 */
2572 static void migrate_vma_unmap(struct migrate_vma *migrate)
2573 {
2574 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2575 const unsigned long npages = migrate->npages;
2576 const unsigned long start = migrate->start;
2577 unsigned long addr, i, restore = 0;
2578
2579 for (i = 0; i < npages; i++) {
2580 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2581
2582 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2583 continue;
2584
2585 if (page_mapped(page)) {
2586 try_to_unmap(page, flags);
2587 if (page_mapped(page))
2588 goto restore;
2589 }
2590
2591 if (migrate_vma_check_page(page))
2592 continue;
2593
2594 restore:
2595 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2596 migrate->cpages--;
2597 restore++;
2598 }
2599
2600 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2601 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2602
2603 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2604 continue;
2605
2606 remove_migration_ptes(page, page, false);
2607
2608 migrate->src[i] = 0;
2609 unlock_page(page);
2610 restore--;
2611
2612 if (is_zone_device_page(page))
2613 put_page(page);
2614 else
2615 putback_lru_page(page);
2616 }
2617 }
2618
2619 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2620 unsigned long addr,
2621 struct page *page,
2622 unsigned long *src,
2623 unsigned long *dst)
2624 {
2625 struct vm_area_struct *vma = migrate->vma;
2626 struct mm_struct *mm = vma->vm_mm;
2627 struct mem_cgroup *memcg;
2628 bool flush = false;
2629 spinlock_t *ptl;
2630 pte_t entry;
2631 pgd_t *pgdp;
2632 p4d_t *p4dp;
2633 pud_t *pudp;
2634 pmd_t *pmdp;
2635 pte_t *ptep;
2636
2637 /* Only allow populating anonymous memory */
2638 if (!vma_is_anonymous(vma))
2639 goto abort;
2640
2641 pgdp = pgd_offset(mm, addr);
2642 p4dp = p4d_alloc(mm, pgdp, addr);
2643 if (!p4dp)
2644 goto abort;
2645 pudp = pud_alloc(mm, p4dp, addr);
2646 if (!pudp)
2647 goto abort;
2648 pmdp = pmd_alloc(mm, pudp, addr);
2649 if (!pmdp)
2650 goto abort;
2651
2652 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2653 goto abort;
2654
2655 /*
2656 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2657 * pte_offset_map() on pmds where a huge pmd might be created
2658 * from a different thread.
2659 *
2660 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2661 * parallel threads are excluded by other means.
2662 *
2663 * Here we only have down_read(mmap_sem).
2664 */
2665 if (pte_alloc(mm, pmdp, addr))
2666 goto abort;
2667
2668 /* See the comment in pte_alloc_one_map() */
2669 if (unlikely(pmd_trans_unstable(pmdp)))
2670 goto abort;
2671
2672 if (unlikely(anon_vma_prepare(vma)))
2673 goto abort;
2674 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2675 goto abort;
2676
2677 /*
2678 * The memory barrier inside __SetPageUptodate makes sure that
2679 * preceding stores to the page contents become visible before
2680 * the set_pte_at() write.
2681 */
2682 __SetPageUptodate(page);
2683
2684 if (is_zone_device_page(page)) {
2685 if (is_device_private_page(page)) {
2686 swp_entry_t swp_entry;
2687
2688 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2689 entry = swp_entry_to_pte(swp_entry);
2690 } else if (is_device_public_page(page)) {
2691 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2692 if (vma->vm_flags & VM_WRITE)
2693 entry = pte_mkwrite(pte_mkdirty(entry));
2694 entry = pte_mkdevmap(entry);
2695 }
2696 } else {
2697 entry = mk_pte(page, vma->vm_page_prot);
2698 if (vma->vm_flags & VM_WRITE)
2699 entry = pte_mkwrite(pte_mkdirty(entry));
2700 }
2701
2702 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2703
2704 if (pte_present(*ptep)) {
2705 unsigned long pfn = pte_pfn(*ptep);
2706
2707 if (!is_zero_pfn(pfn)) {
2708 pte_unmap_unlock(ptep, ptl);
2709 mem_cgroup_cancel_charge(page, memcg, false);
2710 goto abort;
2711 }
2712 flush = true;
2713 } else if (!pte_none(*ptep)) {
2714 pte_unmap_unlock(ptep, ptl);
2715 mem_cgroup_cancel_charge(page, memcg, false);
2716 goto abort;
2717 }
2718
2719 /*
2720 * Check for usefaultfd but do not deliver the fault. Instead,
2721 * just back off.
2722 */
2723 if (userfaultfd_missing(vma)) {
2724 pte_unmap_unlock(ptep, ptl);
2725 mem_cgroup_cancel_charge(page, memcg, false);
2726 goto abort;
2727 }
2728
2729 inc_mm_counter(mm, MM_ANONPAGES);
2730 page_add_new_anon_rmap(page, vma, addr, false);
2731 mem_cgroup_commit_charge(page, memcg, false, false);
2732 if (!is_zone_device_page(page))
2733 lru_cache_add_active_or_unevictable(page, vma);
2734 get_page(page);
2735
2736 if (flush) {
2737 flush_cache_page(vma, addr, pte_pfn(*ptep));
2738 ptep_clear_flush_notify(vma, addr, ptep);
2739 set_pte_at_notify(mm, addr, ptep, entry);
2740 update_mmu_cache(vma, addr, ptep);
2741 } else {
2742 /* No need to invalidate - it was non-present before */
2743 set_pte_at(mm, addr, ptep, entry);
2744 update_mmu_cache(vma, addr, ptep);
2745 }
2746
2747 pte_unmap_unlock(ptep, ptl);
2748 *src = MIGRATE_PFN_MIGRATE;
2749 return;
2750
2751 abort:
2752 *src &= ~MIGRATE_PFN_MIGRATE;
2753 }
2754
2755 /*
2756 * migrate_vma_pages() - migrate meta-data from src page to dst page
2757 * @migrate: migrate struct containing all migration information
2758 *
2759 * This migrates struct page meta-data from source struct page to destination
2760 * struct page. This effectively finishes the migration from source page to the
2761 * destination page.
2762 */
2763 static void migrate_vma_pages(struct migrate_vma *migrate)
2764 {
2765 const unsigned long npages = migrate->npages;
2766 const unsigned long start = migrate->start;
2767 struct vm_area_struct *vma = migrate->vma;
2768 struct mm_struct *mm = vma->vm_mm;
2769 unsigned long addr, i, mmu_start;
2770 bool notified = false;
2771
2772 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2773 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2774 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2775 struct address_space *mapping;
2776 int r;
2777
2778 if (!newpage) {
2779 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2780 continue;
2781 }
2782
2783 if (!page) {
2784 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2785 continue;
2786 }
2787 if (!notified) {
2788 mmu_start = addr;
2789 notified = true;
2790 mmu_notifier_invalidate_range_start(mm,
2791 mmu_start,
2792 migrate->end);
2793 }
2794 migrate_vma_insert_page(migrate, addr, newpage,
2795 &migrate->src[i],
2796 &migrate->dst[i]);
2797 continue;
2798 }
2799
2800 mapping = page_mapping(page);
2801
2802 if (is_zone_device_page(newpage)) {
2803 if (is_device_private_page(newpage)) {
2804 /*
2805 * For now only support private anonymous when
2806 * migrating to un-addressable device memory.
2807 */
2808 if (mapping) {
2809 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2810 continue;
2811 }
2812 } else if (!is_device_public_page(newpage)) {
2813 /*
2814 * Other types of ZONE_DEVICE page are not
2815 * supported.
2816 */
2817 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2818 continue;
2819 }
2820 }
2821
2822 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2823 if (r != MIGRATEPAGE_SUCCESS)
2824 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2825 }
2826
2827 /*
2828 * No need to double call mmu_notifier->invalidate_range() callback as
2829 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2830 * did already call it.
2831 */
2832 if (notified)
2833 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2834 migrate->end);
2835 }
2836
2837 /*
2838 * migrate_vma_finalize() - restore CPU page table entry
2839 * @migrate: migrate struct containing all migration information
2840 *
2841 * This replaces the special migration pte entry with either a mapping to the
2842 * new page if migration was successful for that page, or to the original page
2843 * otherwise.
2844 *
2845 * This also unlocks the pages and puts them back on the lru, or drops the extra
2846 * refcount, for device pages.
2847 */
2848 static void migrate_vma_finalize(struct migrate_vma *migrate)
2849 {
2850 const unsigned long npages = migrate->npages;
2851 unsigned long i;
2852
2853 for (i = 0; i < npages; i++) {
2854 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2855 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2856
2857 if (!page) {
2858 if (newpage) {
2859 unlock_page(newpage);
2860 put_page(newpage);
2861 }
2862 continue;
2863 }
2864
2865 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2866 if (newpage) {
2867 unlock_page(newpage);
2868 put_page(newpage);
2869 }
2870 newpage = page;
2871 }
2872
2873 remove_migration_ptes(page, newpage, false);
2874 unlock_page(page);
2875 migrate->cpages--;
2876
2877 if (is_zone_device_page(page))
2878 put_page(page);
2879 else
2880 putback_lru_page(page);
2881
2882 if (newpage != page) {
2883 unlock_page(newpage);
2884 if (is_zone_device_page(newpage))
2885 put_page(newpage);
2886 else
2887 putback_lru_page(newpage);
2888 }
2889 }
2890 }
2891
2892 /*
2893 * migrate_vma() - migrate a range of memory inside vma
2894 *
2895 * @ops: migration callback for allocating destination memory and copying
2896 * @vma: virtual memory area containing the range to be migrated
2897 * @start: start address of the range to migrate (inclusive)
2898 * @end: end address of the range to migrate (exclusive)
2899 * @src: array of hmm_pfn_t containing source pfns
2900 * @dst: array of hmm_pfn_t containing destination pfns
2901 * @private: pointer passed back to each of the callback
2902 * Returns: 0 on success, error code otherwise
2903 *
2904 * This function tries to migrate a range of memory virtual address range, using
2905 * callbacks to allocate and copy memory from source to destination. First it
2906 * collects all the pages backing each virtual address in the range, saving this
2907 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2908 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2909 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2910 * in the corresponding src array entry. It then restores any pages that are
2911 * pinned, by remapping and unlocking those pages.
2912 *
2913 * At this point it calls the alloc_and_copy() callback. For documentation on
2914 * what is expected from that callback, see struct migrate_vma_ops comments in
2915 * include/linux/migrate.h
2916 *
2917 * After the alloc_and_copy() callback, this function goes over each entry in
2918 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2919 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2920 * then the function tries to migrate struct page information from the source
2921 * struct page to the destination struct page. If it fails to migrate the struct
2922 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2923 * array.
2924 *
2925 * At this point all successfully migrated pages have an entry in the src
2926 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2927 * array entry with MIGRATE_PFN_VALID flag set.
2928 *
2929 * It then calls the finalize_and_map() callback. See comments for "struct
2930 * migrate_vma_ops", in include/linux/migrate.h for details about
2931 * finalize_and_map() behavior.
2932 *
2933 * After the finalize_and_map() callback, for successfully migrated pages, this
2934 * function updates the CPU page table to point to new pages, otherwise it
2935 * restores the CPU page table to point to the original source pages.
2936 *
2937 * Function returns 0 after the above steps, even if no pages were migrated
2938 * (The function only returns an error if any of the arguments are invalid.)
2939 *
2940 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2941 * unsigned long entries.
2942 */
2943 int migrate_vma(const struct migrate_vma_ops *ops,
2944 struct vm_area_struct *vma,
2945 unsigned long start,
2946 unsigned long end,
2947 unsigned long *src,
2948 unsigned long *dst,
2949 void *private)
2950 {
2951 struct migrate_vma migrate;
2952
2953 /* Sanity check the arguments */
2954 start &= PAGE_MASK;
2955 end &= PAGE_MASK;
2956 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2957 vma_is_dax(vma))
2958 return -EINVAL;
2959 if (start < vma->vm_start || start >= vma->vm_end)
2960 return -EINVAL;
2961 if (end <= vma->vm_start || end > vma->vm_end)
2962 return -EINVAL;
2963 if (!ops || !src || !dst || start >= end)
2964 return -EINVAL;
2965
2966 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2967 migrate.src = src;
2968 migrate.dst = dst;
2969 migrate.start = start;
2970 migrate.npages = 0;
2971 migrate.cpages = 0;
2972 migrate.end = end;
2973 migrate.vma = vma;
2974
2975 /* Collect, and try to unmap source pages */
2976 migrate_vma_collect(&migrate);
2977 if (!migrate.cpages)
2978 return 0;
2979
2980 /* Lock and isolate page */
2981 migrate_vma_prepare(&migrate);
2982 if (!migrate.cpages)
2983 return 0;
2984
2985 /* Unmap pages */
2986 migrate_vma_unmap(&migrate);
2987 if (!migrate.cpages)
2988 return 0;
2989
2990 /*
2991 * At this point pages are locked and unmapped, and thus they have
2992 * stable content and can safely be copied to destination memory that
2993 * is allocated by the callback.
2994 *
2995 * Note that migration can fail in migrate_vma_struct_page() for each
2996 * individual page.
2997 */
2998 ops->alloc_and_copy(vma, src, dst, start, end, private);
2999
3000 /* This does the real migration of struct page */
3001 migrate_vma_pages(&migrate);
3002
3003 ops->finalize_and_map(vma, src, dst, start, end, private);
3004
3005 /* Unlock and remap pages */
3006 migrate_vma_finalize(&migrate);
3007
3008 return 0;
3009 }
3010 EXPORT_SYMBOL(migrate_vma);
3011 #endif /* defined(MIGRATE_VMA_HELPER) */