]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/migrate.c
Merge tag 'drm/tegra/for-5.1-rc5' of git://anongit.freedesktop.org/tegra/linux into...
[thirdparty/kernel/stable.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
62 */
63 int migrate_prep(void)
64 {
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 lru_add_drain();
80
81 return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grabbing the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
135 return 0;
136
137 out_no_isolated:
138 unlock_page(page);
139 out_putpage:
140 put_page(page);
141 out:
142 return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157 }
158
159 /*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
166 */
167 void putback_movable_pages(struct list_head *l)
168 {
169 struct page *page;
170 struct page *page2;
171
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
177 list_del(&page->lru);
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
196 }
197 }
198 }
199
200 /*
201 * Restore a potential migration pte to a working pte entry
202 */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
205 {
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
214 swp_entry_t entry;
215
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231 #endif
232
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
237
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
244
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 }
252 }
253
254 #ifdef CONFIG_HUGETLB_PAGE
255 if (PageHuge(new)) {
256 pte = pte_mkhuge(pte);
257 pte = arch_make_huge_pte(pte, vma, new, 0);
258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 if (PageAnon(new))
260 hugepage_add_anon_rmap(new, vma, pvmw.address);
261 else
262 page_dup_rmap(new, true);
263 } else
264 #endif
265 {
266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267
268 if (PageAnon(new))
269 page_add_anon_rmap(new, vma, pvmw.address, false);
270 else
271 page_add_file_rmap(new, false);
272 }
273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 mlock_vma_page(new);
275
276 if (PageTransHuge(page) && PageMlocked(page))
277 clear_page_mlock(page);
278
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281 }
282
283 return true;
284 }
285
286 /*
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
289 */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292 struct rmap_walk_control rwc = {
293 .rmap_one = remove_migration_pte,
294 .arg = old,
295 };
296
297 if (locked)
298 rmap_walk_locked(new, &rwc);
299 else
300 rmap_walk(new, &rwc);
301 }
302
303 /*
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
307 */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309 spinlock_t *ptl)
310 {
311 pte_t pte;
312 swp_entry_t entry;
313 struct page *page;
314
315 spin_lock(ptl);
316 pte = *ptep;
317 if (!is_swap_pte(pte))
318 goto out;
319
320 entry = pte_to_swp_entry(pte);
321 if (!is_migration_entry(entry))
322 goto out;
323
324 page = migration_entry_to_page(entry);
325
326 /*
327 * Once page cache replacement of page migration started, page_count
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330 */
331 if (!get_page_unless_zero(page))
332 goto out;
333 pte_unmap_unlock(ptep, ptl);
334 put_and_wait_on_page_locked(page);
335 return;
336 out:
337 pte_unmap_unlock(ptep, ptl);
338 }
339
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 unsigned long address)
342 {
343 spinlock_t *ptl = pte_lockptr(mm, pmd);
344 pte_t *ptep = pte_offset_map(pmd, address);
345 __migration_entry_wait(mm, ptep, ptl);
346 }
347
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 struct mm_struct *mm, pte_t *pte)
350 {
351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 __migration_entry_wait(mm, pte, ptl);
353 }
354
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358 spinlock_t *ptl;
359 struct page *page;
360
361 ptl = pmd_lock(mm, pmd);
362 if (!is_pmd_migration_entry(*pmd))
363 goto unlock;
364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 if (!get_page_unless_zero(page))
366 goto unlock;
367 spin_unlock(ptl);
368 put_and_wait_on_page_locked(page);
369 return;
370 unlock:
371 spin_unlock(ptl);
372 }
373 #endif
374
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377 int expected_count = 1;
378
379 /*
380 * Device public or private pages have an extra refcount as they are
381 * ZONE_DEVICE pages.
382 */
383 expected_count += is_device_private_page(page);
384 expected_count += is_device_public_page(page);
385 if (mapping)
386 expected_count += hpage_nr_pages(page) + page_has_private(page);
387
388 return expected_count;
389 }
390
391 /*
392 * Replace the page in the mapping.
393 *
394 * The number of remaining references must be:
395 * 1 for anonymous pages without a mapping
396 * 2 for pages with a mapping
397 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
398 */
399 int migrate_page_move_mapping(struct address_space *mapping,
400 struct page *newpage, struct page *page, enum migrate_mode mode,
401 int extra_count)
402 {
403 XA_STATE(xas, &mapping->i_pages, page_index(page));
404 struct zone *oldzone, *newzone;
405 int dirty;
406 int expected_count = expected_page_refs(mapping, page) + extra_count;
407
408 if (!mapping) {
409 /* Anonymous page without mapping */
410 if (page_count(page) != expected_count)
411 return -EAGAIN;
412
413 /* No turning back from here */
414 newpage->index = page->index;
415 newpage->mapping = page->mapping;
416 if (PageSwapBacked(page))
417 __SetPageSwapBacked(newpage);
418
419 return MIGRATEPAGE_SUCCESS;
420 }
421
422 oldzone = page_zone(page);
423 newzone = page_zone(newpage);
424
425 xas_lock_irq(&xas);
426 if (page_count(page) != expected_count || xas_load(&xas) != page) {
427 xas_unlock_irq(&xas);
428 return -EAGAIN;
429 }
430
431 if (!page_ref_freeze(page, expected_count)) {
432 xas_unlock_irq(&xas);
433 return -EAGAIN;
434 }
435
436 /*
437 * Now we know that no one else is looking at the page:
438 * no turning back from here.
439 */
440 newpage->index = page->index;
441 newpage->mapping = page->mapping;
442 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
443 if (PageSwapBacked(page)) {
444 __SetPageSwapBacked(newpage);
445 if (PageSwapCache(page)) {
446 SetPageSwapCache(newpage);
447 set_page_private(newpage, page_private(page));
448 }
449 } else {
450 VM_BUG_ON_PAGE(PageSwapCache(page), page);
451 }
452
453 /* Move dirty while page refs frozen and newpage not yet exposed */
454 dirty = PageDirty(page);
455 if (dirty) {
456 ClearPageDirty(page);
457 SetPageDirty(newpage);
458 }
459
460 xas_store(&xas, newpage);
461 if (PageTransHuge(page)) {
462 int i;
463
464 for (i = 1; i < HPAGE_PMD_NR; i++) {
465 xas_next(&xas);
466 xas_store(&xas, newpage + i);
467 }
468 }
469
470 /*
471 * Drop cache reference from old page by unfreezing
472 * to one less reference.
473 * We know this isn't the last reference.
474 */
475 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
476
477 xas_unlock(&xas);
478 /* Leave irq disabled to prevent preemption while updating stats */
479
480 /*
481 * If moved to a different zone then also account
482 * the page for that zone. Other VM counters will be
483 * taken care of when we establish references to the
484 * new page and drop references to the old page.
485 *
486 * Note that anonymous pages are accounted for
487 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
488 * are mapped to swap space.
489 */
490 if (newzone != oldzone) {
491 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
492 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
493 if (PageSwapBacked(page) && !PageSwapCache(page)) {
494 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
495 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
496 }
497 if (dirty && mapping_cap_account_dirty(mapping)) {
498 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
499 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
500 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
501 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
502 }
503 }
504 local_irq_enable();
505
506 return MIGRATEPAGE_SUCCESS;
507 }
508 EXPORT_SYMBOL(migrate_page_move_mapping);
509
510 /*
511 * The expected number of remaining references is the same as that
512 * of migrate_page_move_mapping().
513 */
514 int migrate_huge_page_move_mapping(struct address_space *mapping,
515 struct page *newpage, struct page *page)
516 {
517 XA_STATE(xas, &mapping->i_pages, page_index(page));
518 int expected_count;
519
520 xas_lock_irq(&xas);
521 expected_count = 2 + page_has_private(page);
522 if (page_count(page) != expected_count || xas_load(&xas) != page) {
523 xas_unlock_irq(&xas);
524 return -EAGAIN;
525 }
526
527 if (!page_ref_freeze(page, expected_count)) {
528 xas_unlock_irq(&xas);
529 return -EAGAIN;
530 }
531
532 newpage->index = page->index;
533 newpage->mapping = page->mapping;
534
535 get_page(newpage);
536
537 xas_store(&xas, newpage);
538
539 page_ref_unfreeze(page, expected_count - 1);
540
541 xas_unlock_irq(&xas);
542
543 return MIGRATEPAGE_SUCCESS;
544 }
545
546 /*
547 * Gigantic pages are so large that we do not guarantee that page++ pointer
548 * arithmetic will work across the entire page. We need something more
549 * specialized.
550 */
551 static void __copy_gigantic_page(struct page *dst, struct page *src,
552 int nr_pages)
553 {
554 int i;
555 struct page *dst_base = dst;
556 struct page *src_base = src;
557
558 for (i = 0; i < nr_pages; ) {
559 cond_resched();
560 copy_highpage(dst, src);
561
562 i++;
563 dst = mem_map_next(dst, dst_base, i);
564 src = mem_map_next(src, src_base, i);
565 }
566 }
567
568 static void copy_huge_page(struct page *dst, struct page *src)
569 {
570 int i;
571 int nr_pages;
572
573 if (PageHuge(src)) {
574 /* hugetlbfs page */
575 struct hstate *h = page_hstate(src);
576 nr_pages = pages_per_huge_page(h);
577
578 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
579 __copy_gigantic_page(dst, src, nr_pages);
580 return;
581 }
582 } else {
583 /* thp page */
584 BUG_ON(!PageTransHuge(src));
585 nr_pages = hpage_nr_pages(src);
586 }
587
588 for (i = 0; i < nr_pages; i++) {
589 cond_resched();
590 copy_highpage(dst + i, src + i);
591 }
592 }
593
594 /*
595 * Copy the page to its new location
596 */
597 void migrate_page_states(struct page *newpage, struct page *page)
598 {
599 int cpupid;
600
601 if (PageError(page))
602 SetPageError(newpage);
603 if (PageReferenced(page))
604 SetPageReferenced(newpage);
605 if (PageUptodate(page))
606 SetPageUptodate(newpage);
607 if (TestClearPageActive(page)) {
608 VM_BUG_ON_PAGE(PageUnevictable(page), page);
609 SetPageActive(newpage);
610 } else if (TestClearPageUnevictable(page))
611 SetPageUnevictable(newpage);
612 if (PageWorkingset(page))
613 SetPageWorkingset(newpage);
614 if (PageChecked(page))
615 SetPageChecked(newpage);
616 if (PageMappedToDisk(page))
617 SetPageMappedToDisk(newpage);
618
619 /* Move dirty on pages not done by migrate_page_move_mapping() */
620 if (PageDirty(page))
621 SetPageDirty(newpage);
622
623 if (page_is_young(page))
624 set_page_young(newpage);
625 if (page_is_idle(page))
626 set_page_idle(newpage);
627
628 /*
629 * Copy NUMA information to the new page, to prevent over-eager
630 * future migrations of this same page.
631 */
632 cpupid = page_cpupid_xchg_last(page, -1);
633 page_cpupid_xchg_last(newpage, cpupid);
634
635 ksm_migrate_page(newpage, page);
636 /*
637 * Please do not reorder this without considering how mm/ksm.c's
638 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
639 */
640 if (PageSwapCache(page))
641 ClearPageSwapCache(page);
642 ClearPagePrivate(page);
643 set_page_private(page, 0);
644
645 /*
646 * If any waiters have accumulated on the new page then
647 * wake them up.
648 */
649 if (PageWriteback(newpage))
650 end_page_writeback(newpage);
651
652 copy_page_owner(page, newpage);
653
654 mem_cgroup_migrate(page, newpage);
655 }
656 EXPORT_SYMBOL(migrate_page_states);
657
658 void migrate_page_copy(struct page *newpage, struct page *page)
659 {
660 if (PageHuge(page) || PageTransHuge(page))
661 copy_huge_page(newpage, page);
662 else
663 copy_highpage(newpage, page);
664
665 migrate_page_states(newpage, page);
666 }
667 EXPORT_SYMBOL(migrate_page_copy);
668
669 /************************************************************
670 * Migration functions
671 ***********************************************************/
672
673 /*
674 * Common logic to directly migrate a single LRU page suitable for
675 * pages that do not use PagePrivate/PagePrivate2.
676 *
677 * Pages are locked upon entry and exit.
678 */
679 int migrate_page(struct address_space *mapping,
680 struct page *newpage, struct page *page,
681 enum migrate_mode mode)
682 {
683 int rc;
684
685 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
686
687 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
688
689 if (rc != MIGRATEPAGE_SUCCESS)
690 return rc;
691
692 if (mode != MIGRATE_SYNC_NO_COPY)
693 migrate_page_copy(newpage, page);
694 else
695 migrate_page_states(newpage, page);
696 return MIGRATEPAGE_SUCCESS;
697 }
698 EXPORT_SYMBOL(migrate_page);
699
700 #ifdef CONFIG_BLOCK
701 /* Returns true if all buffers are successfully locked */
702 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
703 enum migrate_mode mode)
704 {
705 struct buffer_head *bh = head;
706
707 /* Simple case, sync compaction */
708 if (mode != MIGRATE_ASYNC) {
709 do {
710 lock_buffer(bh);
711 bh = bh->b_this_page;
712
713 } while (bh != head);
714
715 return true;
716 }
717
718 /* async case, we cannot block on lock_buffer so use trylock_buffer */
719 do {
720 if (!trylock_buffer(bh)) {
721 /*
722 * We failed to lock the buffer and cannot stall in
723 * async migration. Release the taken locks
724 */
725 struct buffer_head *failed_bh = bh;
726 bh = head;
727 while (bh != failed_bh) {
728 unlock_buffer(bh);
729 bh = bh->b_this_page;
730 }
731 return false;
732 }
733
734 bh = bh->b_this_page;
735 } while (bh != head);
736 return true;
737 }
738
739 static int __buffer_migrate_page(struct address_space *mapping,
740 struct page *newpage, struct page *page, enum migrate_mode mode,
741 bool check_refs)
742 {
743 struct buffer_head *bh, *head;
744 int rc;
745 int expected_count;
746
747 if (!page_has_buffers(page))
748 return migrate_page(mapping, newpage, page, mode);
749
750 /* Check whether page does not have extra refs before we do more work */
751 expected_count = expected_page_refs(mapping, page);
752 if (page_count(page) != expected_count)
753 return -EAGAIN;
754
755 head = page_buffers(page);
756 if (!buffer_migrate_lock_buffers(head, mode))
757 return -EAGAIN;
758
759 if (check_refs) {
760 bool busy;
761 bool invalidated = false;
762
763 recheck_buffers:
764 busy = false;
765 spin_lock(&mapping->private_lock);
766 bh = head;
767 do {
768 if (atomic_read(&bh->b_count)) {
769 busy = true;
770 break;
771 }
772 bh = bh->b_this_page;
773 } while (bh != head);
774 spin_unlock(&mapping->private_lock);
775 if (busy) {
776 if (invalidated) {
777 rc = -EAGAIN;
778 goto unlock_buffers;
779 }
780 invalidate_bh_lrus();
781 invalidated = true;
782 goto recheck_buffers;
783 }
784 }
785
786 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
787 if (rc != MIGRATEPAGE_SUCCESS)
788 goto unlock_buffers;
789
790 ClearPagePrivate(page);
791 set_page_private(newpage, page_private(page));
792 set_page_private(page, 0);
793 put_page(page);
794 get_page(newpage);
795
796 bh = head;
797 do {
798 set_bh_page(bh, newpage, bh_offset(bh));
799 bh = bh->b_this_page;
800
801 } while (bh != head);
802
803 SetPagePrivate(newpage);
804
805 if (mode != MIGRATE_SYNC_NO_COPY)
806 migrate_page_copy(newpage, page);
807 else
808 migrate_page_states(newpage, page);
809
810 rc = MIGRATEPAGE_SUCCESS;
811 unlock_buffers:
812 bh = head;
813 do {
814 unlock_buffer(bh);
815 bh = bh->b_this_page;
816
817 } while (bh != head);
818
819 return rc;
820 }
821
822 /*
823 * Migration function for pages with buffers. This function can only be used
824 * if the underlying filesystem guarantees that no other references to "page"
825 * exist. For example attached buffer heads are accessed only under page lock.
826 */
827 int buffer_migrate_page(struct address_space *mapping,
828 struct page *newpage, struct page *page, enum migrate_mode mode)
829 {
830 return __buffer_migrate_page(mapping, newpage, page, mode, false);
831 }
832 EXPORT_SYMBOL(buffer_migrate_page);
833
834 /*
835 * Same as above except that this variant is more careful and checks that there
836 * are also no buffer head references. This function is the right one for
837 * mappings where buffer heads are directly looked up and referenced (such as
838 * block device mappings).
839 */
840 int buffer_migrate_page_norefs(struct address_space *mapping,
841 struct page *newpage, struct page *page, enum migrate_mode mode)
842 {
843 return __buffer_migrate_page(mapping, newpage, page, mode, true);
844 }
845 #endif
846
847 /*
848 * Writeback a page to clean the dirty state
849 */
850 static int writeout(struct address_space *mapping, struct page *page)
851 {
852 struct writeback_control wbc = {
853 .sync_mode = WB_SYNC_NONE,
854 .nr_to_write = 1,
855 .range_start = 0,
856 .range_end = LLONG_MAX,
857 .for_reclaim = 1
858 };
859 int rc;
860
861 if (!mapping->a_ops->writepage)
862 /* No write method for the address space */
863 return -EINVAL;
864
865 if (!clear_page_dirty_for_io(page))
866 /* Someone else already triggered a write */
867 return -EAGAIN;
868
869 /*
870 * A dirty page may imply that the underlying filesystem has
871 * the page on some queue. So the page must be clean for
872 * migration. Writeout may mean we loose the lock and the
873 * page state is no longer what we checked for earlier.
874 * At this point we know that the migration attempt cannot
875 * be successful.
876 */
877 remove_migration_ptes(page, page, false);
878
879 rc = mapping->a_ops->writepage(page, &wbc);
880
881 if (rc != AOP_WRITEPAGE_ACTIVATE)
882 /* unlocked. Relock */
883 lock_page(page);
884
885 return (rc < 0) ? -EIO : -EAGAIN;
886 }
887
888 /*
889 * Default handling if a filesystem does not provide a migration function.
890 */
891 static int fallback_migrate_page(struct address_space *mapping,
892 struct page *newpage, struct page *page, enum migrate_mode mode)
893 {
894 if (PageDirty(page)) {
895 /* Only writeback pages in full synchronous migration */
896 switch (mode) {
897 case MIGRATE_SYNC:
898 case MIGRATE_SYNC_NO_COPY:
899 break;
900 default:
901 return -EBUSY;
902 }
903 return writeout(mapping, page);
904 }
905
906 /*
907 * Buffers may be managed in a filesystem specific way.
908 * We must have no buffers or drop them.
909 */
910 if (page_has_private(page) &&
911 !try_to_release_page(page, GFP_KERNEL))
912 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
913
914 return migrate_page(mapping, newpage, page, mode);
915 }
916
917 /*
918 * Move a page to a newly allocated page
919 * The page is locked and all ptes have been successfully removed.
920 *
921 * The new page will have replaced the old page if this function
922 * is successful.
923 *
924 * Return value:
925 * < 0 - error code
926 * MIGRATEPAGE_SUCCESS - success
927 */
928 static int move_to_new_page(struct page *newpage, struct page *page,
929 enum migrate_mode mode)
930 {
931 struct address_space *mapping;
932 int rc = -EAGAIN;
933 bool is_lru = !__PageMovable(page);
934
935 VM_BUG_ON_PAGE(!PageLocked(page), page);
936 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
937
938 mapping = page_mapping(page);
939
940 if (likely(is_lru)) {
941 if (!mapping)
942 rc = migrate_page(mapping, newpage, page, mode);
943 else if (mapping->a_ops->migratepage)
944 /*
945 * Most pages have a mapping and most filesystems
946 * provide a migratepage callback. Anonymous pages
947 * are part of swap space which also has its own
948 * migratepage callback. This is the most common path
949 * for page migration.
950 */
951 rc = mapping->a_ops->migratepage(mapping, newpage,
952 page, mode);
953 else
954 rc = fallback_migrate_page(mapping, newpage,
955 page, mode);
956 } else {
957 /*
958 * In case of non-lru page, it could be released after
959 * isolation step. In that case, we shouldn't try migration.
960 */
961 VM_BUG_ON_PAGE(!PageIsolated(page), page);
962 if (!PageMovable(page)) {
963 rc = MIGRATEPAGE_SUCCESS;
964 __ClearPageIsolated(page);
965 goto out;
966 }
967
968 rc = mapping->a_ops->migratepage(mapping, newpage,
969 page, mode);
970 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
971 !PageIsolated(page));
972 }
973
974 /*
975 * When successful, old pagecache page->mapping must be cleared before
976 * page is freed; but stats require that PageAnon be left as PageAnon.
977 */
978 if (rc == MIGRATEPAGE_SUCCESS) {
979 if (__PageMovable(page)) {
980 VM_BUG_ON_PAGE(!PageIsolated(page), page);
981
982 /*
983 * We clear PG_movable under page_lock so any compactor
984 * cannot try to migrate this page.
985 */
986 __ClearPageIsolated(page);
987 }
988
989 /*
990 * Anonymous and movable page->mapping will be cleard by
991 * free_pages_prepare so don't reset it here for keeping
992 * the type to work PageAnon, for example.
993 */
994 if (!PageMappingFlags(page))
995 page->mapping = NULL;
996
997 if (unlikely(is_zone_device_page(newpage))) {
998 if (is_device_public_page(newpage))
999 flush_dcache_page(newpage);
1000 } else
1001 flush_dcache_page(newpage);
1002
1003 }
1004 out:
1005 return rc;
1006 }
1007
1008 static int __unmap_and_move(struct page *page, struct page *newpage,
1009 int force, enum migrate_mode mode)
1010 {
1011 int rc = -EAGAIN;
1012 int page_was_mapped = 0;
1013 struct anon_vma *anon_vma = NULL;
1014 bool is_lru = !__PageMovable(page);
1015
1016 if (!trylock_page(page)) {
1017 if (!force || mode == MIGRATE_ASYNC)
1018 goto out;
1019
1020 /*
1021 * It's not safe for direct compaction to call lock_page.
1022 * For example, during page readahead pages are added locked
1023 * to the LRU. Later, when the IO completes the pages are
1024 * marked uptodate and unlocked. However, the queueing
1025 * could be merging multiple pages for one bio (e.g.
1026 * mpage_readpages). If an allocation happens for the
1027 * second or third page, the process can end up locking
1028 * the same page twice and deadlocking. Rather than
1029 * trying to be clever about what pages can be locked,
1030 * avoid the use of lock_page for direct compaction
1031 * altogether.
1032 */
1033 if (current->flags & PF_MEMALLOC)
1034 goto out;
1035
1036 lock_page(page);
1037 }
1038
1039 if (PageWriteback(page)) {
1040 /*
1041 * Only in the case of a full synchronous migration is it
1042 * necessary to wait for PageWriteback. In the async case,
1043 * the retry loop is too short and in the sync-light case,
1044 * the overhead of stalling is too much
1045 */
1046 switch (mode) {
1047 case MIGRATE_SYNC:
1048 case MIGRATE_SYNC_NO_COPY:
1049 break;
1050 default:
1051 rc = -EBUSY;
1052 goto out_unlock;
1053 }
1054 if (!force)
1055 goto out_unlock;
1056 wait_on_page_writeback(page);
1057 }
1058
1059 /*
1060 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1061 * we cannot notice that anon_vma is freed while we migrates a page.
1062 * This get_anon_vma() delays freeing anon_vma pointer until the end
1063 * of migration. File cache pages are no problem because of page_lock()
1064 * File Caches may use write_page() or lock_page() in migration, then,
1065 * just care Anon page here.
1066 *
1067 * Only page_get_anon_vma() understands the subtleties of
1068 * getting a hold on an anon_vma from outside one of its mms.
1069 * But if we cannot get anon_vma, then we won't need it anyway,
1070 * because that implies that the anon page is no longer mapped
1071 * (and cannot be remapped so long as we hold the page lock).
1072 */
1073 if (PageAnon(page) && !PageKsm(page))
1074 anon_vma = page_get_anon_vma(page);
1075
1076 /*
1077 * Block others from accessing the new page when we get around to
1078 * establishing additional references. We are usually the only one
1079 * holding a reference to newpage at this point. We used to have a BUG
1080 * here if trylock_page(newpage) fails, but would like to allow for
1081 * cases where there might be a race with the previous use of newpage.
1082 * This is much like races on refcount of oldpage: just don't BUG().
1083 */
1084 if (unlikely(!trylock_page(newpage)))
1085 goto out_unlock;
1086
1087 if (unlikely(!is_lru)) {
1088 rc = move_to_new_page(newpage, page, mode);
1089 goto out_unlock_both;
1090 }
1091
1092 /*
1093 * Corner case handling:
1094 * 1. When a new swap-cache page is read into, it is added to the LRU
1095 * and treated as swapcache but it has no rmap yet.
1096 * Calling try_to_unmap() against a page->mapping==NULL page will
1097 * trigger a BUG. So handle it here.
1098 * 2. An orphaned page (see truncate_complete_page) might have
1099 * fs-private metadata. The page can be picked up due to memory
1100 * offlining. Everywhere else except page reclaim, the page is
1101 * invisible to the vm, so the page can not be migrated. So try to
1102 * free the metadata, so the page can be freed.
1103 */
1104 if (!page->mapping) {
1105 VM_BUG_ON_PAGE(PageAnon(page), page);
1106 if (page_has_private(page)) {
1107 try_to_free_buffers(page);
1108 goto out_unlock_both;
1109 }
1110 } else if (page_mapped(page)) {
1111 /* Establish migration ptes */
1112 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1113 page);
1114 try_to_unmap(page,
1115 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1116 page_was_mapped = 1;
1117 }
1118
1119 if (!page_mapped(page))
1120 rc = move_to_new_page(newpage, page, mode);
1121
1122 if (page_was_mapped)
1123 remove_migration_ptes(page,
1124 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1125
1126 out_unlock_both:
1127 unlock_page(newpage);
1128 out_unlock:
1129 /* Drop an anon_vma reference if we took one */
1130 if (anon_vma)
1131 put_anon_vma(anon_vma);
1132 unlock_page(page);
1133 out:
1134 /*
1135 * If migration is successful, decrease refcount of the newpage
1136 * which will not free the page because new page owner increased
1137 * refcounter. As well, if it is LRU page, add the page to LRU
1138 * list in here. Use the old state of the isolated source page to
1139 * determine if we migrated a LRU page. newpage was already unlocked
1140 * and possibly modified by its owner - don't rely on the page
1141 * state.
1142 */
1143 if (rc == MIGRATEPAGE_SUCCESS) {
1144 if (unlikely(!is_lru))
1145 put_page(newpage);
1146 else
1147 putback_lru_page(newpage);
1148 }
1149
1150 return rc;
1151 }
1152
1153 /*
1154 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1155 * around it.
1156 */
1157 #if defined(CONFIG_ARM) && \
1158 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1159 #define ICE_noinline noinline
1160 #else
1161 #define ICE_noinline
1162 #endif
1163
1164 /*
1165 * Obtain the lock on page, remove all ptes and migrate the page
1166 * to the newly allocated page in newpage.
1167 */
1168 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1169 free_page_t put_new_page,
1170 unsigned long private, struct page *page,
1171 int force, enum migrate_mode mode,
1172 enum migrate_reason reason)
1173 {
1174 int rc = MIGRATEPAGE_SUCCESS;
1175 struct page *newpage;
1176
1177 if (!thp_migration_supported() && PageTransHuge(page))
1178 return -ENOMEM;
1179
1180 newpage = get_new_page(page, private);
1181 if (!newpage)
1182 return -ENOMEM;
1183
1184 if (page_count(page) == 1) {
1185 /* page was freed from under us. So we are done. */
1186 ClearPageActive(page);
1187 ClearPageUnevictable(page);
1188 if (unlikely(__PageMovable(page))) {
1189 lock_page(page);
1190 if (!PageMovable(page))
1191 __ClearPageIsolated(page);
1192 unlock_page(page);
1193 }
1194 if (put_new_page)
1195 put_new_page(newpage, private);
1196 else
1197 put_page(newpage);
1198 goto out;
1199 }
1200
1201 rc = __unmap_and_move(page, newpage, force, mode);
1202 if (rc == MIGRATEPAGE_SUCCESS)
1203 set_page_owner_migrate_reason(newpage, reason);
1204
1205 out:
1206 if (rc != -EAGAIN) {
1207 /*
1208 * A page that has been migrated has all references
1209 * removed and will be freed. A page that has not been
1210 * migrated will have kepts its references and be
1211 * restored.
1212 */
1213 list_del(&page->lru);
1214
1215 /*
1216 * Compaction can migrate also non-LRU pages which are
1217 * not accounted to NR_ISOLATED_*. They can be recognized
1218 * as __PageMovable
1219 */
1220 if (likely(!__PageMovable(page)))
1221 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1222 page_is_file_cache(page), -hpage_nr_pages(page));
1223 }
1224
1225 /*
1226 * If migration is successful, releases reference grabbed during
1227 * isolation. Otherwise, restore the page to right list unless
1228 * we want to retry.
1229 */
1230 if (rc == MIGRATEPAGE_SUCCESS) {
1231 put_page(page);
1232 if (reason == MR_MEMORY_FAILURE) {
1233 /*
1234 * Set PG_HWPoison on just freed page
1235 * intentionally. Although it's rather weird,
1236 * it's how HWPoison flag works at the moment.
1237 */
1238 if (set_hwpoison_free_buddy_page(page))
1239 num_poisoned_pages_inc();
1240 }
1241 } else {
1242 if (rc != -EAGAIN) {
1243 if (likely(!__PageMovable(page))) {
1244 putback_lru_page(page);
1245 goto put_new;
1246 }
1247
1248 lock_page(page);
1249 if (PageMovable(page))
1250 putback_movable_page(page);
1251 else
1252 __ClearPageIsolated(page);
1253 unlock_page(page);
1254 put_page(page);
1255 }
1256 put_new:
1257 if (put_new_page)
1258 put_new_page(newpage, private);
1259 else
1260 put_page(newpage);
1261 }
1262
1263 return rc;
1264 }
1265
1266 /*
1267 * Counterpart of unmap_and_move_page() for hugepage migration.
1268 *
1269 * This function doesn't wait the completion of hugepage I/O
1270 * because there is no race between I/O and migration for hugepage.
1271 * Note that currently hugepage I/O occurs only in direct I/O
1272 * where no lock is held and PG_writeback is irrelevant,
1273 * and writeback status of all subpages are counted in the reference
1274 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1275 * under direct I/O, the reference of the head page is 512 and a bit more.)
1276 * This means that when we try to migrate hugepage whose subpages are
1277 * doing direct I/O, some references remain after try_to_unmap() and
1278 * hugepage migration fails without data corruption.
1279 *
1280 * There is also no race when direct I/O is issued on the page under migration,
1281 * because then pte is replaced with migration swap entry and direct I/O code
1282 * will wait in the page fault for migration to complete.
1283 */
1284 static int unmap_and_move_huge_page(new_page_t get_new_page,
1285 free_page_t put_new_page, unsigned long private,
1286 struct page *hpage, int force,
1287 enum migrate_mode mode, int reason)
1288 {
1289 int rc = -EAGAIN;
1290 int page_was_mapped = 0;
1291 struct page *new_hpage;
1292 struct anon_vma *anon_vma = NULL;
1293
1294 /*
1295 * Migratability of hugepages depends on architectures and their size.
1296 * This check is necessary because some callers of hugepage migration
1297 * like soft offline and memory hotremove don't walk through page
1298 * tables or check whether the hugepage is pmd-based or not before
1299 * kicking migration.
1300 */
1301 if (!hugepage_migration_supported(page_hstate(hpage))) {
1302 putback_active_hugepage(hpage);
1303 return -ENOSYS;
1304 }
1305
1306 new_hpage = get_new_page(hpage, private);
1307 if (!new_hpage)
1308 return -ENOMEM;
1309
1310 if (!trylock_page(hpage)) {
1311 if (!force)
1312 goto out;
1313 switch (mode) {
1314 case MIGRATE_SYNC:
1315 case MIGRATE_SYNC_NO_COPY:
1316 break;
1317 default:
1318 goto out;
1319 }
1320 lock_page(hpage);
1321 }
1322
1323 /*
1324 * Check for pages which are in the process of being freed. Without
1325 * page_mapping() set, hugetlbfs specific move page routine will not
1326 * be called and we could leak usage counts for subpools.
1327 */
1328 if (page_private(hpage) && !page_mapping(hpage)) {
1329 rc = -EBUSY;
1330 goto out_unlock;
1331 }
1332
1333 if (PageAnon(hpage))
1334 anon_vma = page_get_anon_vma(hpage);
1335
1336 if (unlikely(!trylock_page(new_hpage)))
1337 goto put_anon;
1338
1339 if (page_mapped(hpage)) {
1340 try_to_unmap(hpage,
1341 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1342 page_was_mapped = 1;
1343 }
1344
1345 if (!page_mapped(hpage))
1346 rc = move_to_new_page(new_hpage, hpage, mode);
1347
1348 if (page_was_mapped)
1349 remove_migration_ptes(hpage,
1350 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1351
1352 unlock_page(new_hpage);
1353
1354 put_anon:
1355 if (anon_vma)
1356 put_anon_vma(anon_vma);
1357
1358 if (rc == MIGRATEPAGE_SUCCESS) {
1359 move_hugetlb_state(hpage, new_hpage, reason);
1360 put_new_page = NULL;
1361 }
1362
1363 out_unlock:
1364 unlock_page(hpage);
1365 out:
1366 if (rc != -EAGAIN)
1367 putback_active_hugepage(hpage);
1368
1369 /*
1370 * If migration was not successful and there's a freeing callback, use
1371 * it. Otherwise, put_page() will drop the reference grabbed during
1372 * isolation.
1373 */
1374 if (put_new_page)
1375 put_new_page(new_hpage, private);
1376 else
1377 putback_active_hugepage(new_hpage);
1378
1379 return rc;
1380 }
1381
1382 /*
1383 * migrate_pages - migrate the pages specified in a list, to the free pages
1384 * supplied as the target for the page migration
1385 *
1386 * @from: The list of pages to be migrated.
1387 * @get_new_page: The function used to allocate free pages to be used
1388 * as the target of the page migration.
1389 * @put_new_page: The function used to free target pages if migration
1390 * fails, or NULL if no special handling is necessary.
1391 * @private: Private data to be passed on to get_new_page()
1392 * @mode: The migration mode that specifies the constraints for
1393 * page migration, if any.
1394 * @reason: The reason for page migration.
1395 *
1396 * The function returns after 10 attempts or if no pages are movable any more
1397 * because the list has become empty or no retryable pages exist any more.
1398 * The caller should call putback_movable_pages() to return pages to the LRU
1399 * or free list only if ret != 0.
1400 *
1401 * Returns the number of pages that were not migrated, or an error code.
1402 */
1403 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1404 free_page_t put_new_page, unsigned long private,
1405 enum migrate_mode mode, int reason)
1406 {
1407 int retry = 1;
1408 int nr_failed = 0;
1409 int nr_succeeded = 0;
1410 int pass = 0;
1411 struct page *page;
1412 struct page *page2;
1413 int swapwrite = current->flags & PF_SWAPWRITE;
1414 int rc;
1415
1416 if (!swapwrite)
1417 current->flags |= PF_SWAPWRITE;
1418
1419 for(pass = 0; pass < 10 && retry; pass++) {
1420 retry = 0;
1421
1422 list_for_each_entry_safe(page, page2, from, lru) {
1423 retry:
1424 cond_resched();
1425
1426 if (PageHuge(page))
1427 rc = unmap_and_move_huge_page(get_new_page,
1428 put_new_page, private, page,
1429 pass > 2, mode, reason);
1430 else
1431 rc = unmap_and_move(get_new_page, put_new_page,
1432 private, page, pass > 2, mode,
1433 reason);
1434
1435 switch(rc) {
1436 case -ENOMEM:
1437 /*
1438 * THP migration might be unsupported or the
1439 * allocation could've failed so we should
1440 * retry on the same page with the THP split
1441 * to base pages.
1442 *
1443 * Head page is retried immediately and tail
1444 * pages are added to the tail of the list so
1445 * we encounter them after the rest of the list
1446 * is processed.
1447 */
1448 if (PageTransHuge(page) && !PageHuge(page)) {
1449 lock_page(page);
1450 rc = split_huge_page_to_list(page, from);
1451 unlock_page(page);
1452 if (!rc) {
1453 list_safe_reset_next(page, page2, lru);
1454 goto retry;
1455 }
1456 }
1457 nr_failed++;
1458 goto out;
1459 case -EAGAIN:
1460 retry++;
1461 break;
1462 case MIGRATEPAGE_SUCCESS:
1463 nr_succeeded++;
1464 break;
1465 default:
1466 /*
1467 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1468 * unlike -EAGAIN case, the failed page is
1469 * removed from migration page list and not
1470 * retried in the next outer loop.
1471 */
1472 nr_failed++;
1473 break;
1474 }
1475 }
1476 }
1477 nr_failed += retry;
1478 rc = nr_failed;
1479 out:
1480 if (nr_succeeded)
1481 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1482 if (nr_failed)
1483 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1484 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1485
1486 if (!swapwrite)
1487 current->flags &= ~PF_SWAPWRITE;
1488
1489 return rc;
1490 }
1491
1492 #ifdef CONFIG_NUMA
1493
1494 static int store_status(int __user *status, int start, int value, int nr)
1495 {
1496 while (nr-- > 0) {
1497 if (put_user(value, status + start))
1498 return -EFAULT;
1499 start++;
1500 }
1501
1502 return 0;
1503 }
1504
1505 static int do_move_pages_to_node(struct mm_struct *mm,
1506 struct list_head *pagelist, int node)
1507 {
1508 int err;
1509
1510 if (list_empty(pagelist))
1511 return 0;
1512
1513 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1514 MIGRATE_SYNC, MR_SYSCALL);
1515 if (err)
1516 putback_movable_pages(pagelist);
1517 return err;
1518 }
1519
1520 /*
1521 * Resolves the given address to a struct page, isolates it from the LRU and
1522 * puts it to the given pagelist.
1523 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1524 * queued or the page doesn't need to be migrated because it is already on
1525 * the target node
1526 */
1527 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1528 int node, struct list_head *pagelist, bool migrate_all)
1529 {
1530 struct vm_area_struct *vma;
1531 struct page *page;
1532 unsigned int follflags;
1533 int err;
1534
1535 down_read(&mm->mmap_sem);
1536 err = -EFAULT;
1537 vma = find_vma(mm, addr);
1538 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1539 goto out;
1540
1541 /* FOLL_DUMP to ignore special (like zero) pages */
1542 follflags = FOLL_GET | FOLL_DUMP;
1543 page = follow_page(vma, addr, follflags);
1544
1545 err = PTR_ERR(page);
1546 if (IS_ERR(page))
1547 goto out;
1548
1549 err = -ENOENT;
1550 if (!page)
1551 goto out;
1552
1553 err = 0;
1554 if (page_to_nid(page) == node)
1555 goto out_putpage;
1556
1557 err = -EACCES;
1558 if (page_mapcount(page) > 1 && !migrate_all)
1559 goto out_putpage;
1560
1561 if (PageHuge(page)) {
1562 if (PageHead(page)) {
1563 isolate_huge_page(page, pagelist);
1564 err = 0;
1565 }
1566 } else {
1567 struct page *head;
1568
1569 head = compound_head(page);
1570 err = isolate_lru_page(head);
1571 if (err)
1572 goto out_putpage;
1573
1574 err = 0;
1575 list_add_tail(&head->lru, pagelist);
1576 mod_node_page_state(page_pgdat(head),
1577 NR_ISOLATED_ANON + page_is_file_cache(head),
1578 hpage_nr_pages(head));
1579 }
1580 out_putpage:
1581 /*
1582 * Either remove the duplicate refcount from
1583 * isolate_lru_page() or drop the page ref if it was
1584 * not isolated.
1585 */
1586 put_page(page);
1587 out:
1588 up_read(&mm->mmap_sem);
1589 return err;
1590 }
1591
1592 /*
1593 * Migrate an array of page address onto an array of nodes and fill
1594 * the corresponding array of status.
1595 */
1596 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1597 unsigned long nr_pages,
1598 const void __user * __user *pages,
1599 const int __user *nodes,
1600 int __user *status, int flags)
1601 {
1602 int current_node = NUMA_NO_NODE;
1603 LIST_HEAD(pagelist);
1604 int start, i;
1605 int err = 0, err1;
1606
1607 migrate_prep();
1608
1609 for (i = start = 0; i < nr_pages; i++) {
1610 const void __user *p;
1611 unsigned long addr;
1612 int node;
1613
1614 err = -EFAULT;
1615 if (get_user(p, pages + i))
1616 goto out_flush;
1617 if (get_user(node, nodes + i))
1618 goto out_flush;
1619 addr = (unsigned long)p;
1620
1621 err = -ENODEV;
1622 if (node < 0 || node >= MAX_NUMNODES)
1623 goto out_flush;
1624 if (!node_state(node, N_MEMORY))
1625 goto out_flush;
1626
1627 err = -EACCES;
1628 if (!node_isset(node, task_nodes))
1629 goto out_flush;
1630
1631 if (current_node == NUMA_NO_NODE) {
1632 current_node = node;
1633 start = i;
1634 } else if (node != current_node) {
1635 err = do_move_pages_to_node(mm, &pagelist, current_node);
1636 if (err)
1637 goto out;
1638 err = store_status(status, start, current_node, i - start);
1639 if (err)
1640 goto out;
1641 start = i;
1642 current_node = node;
1643 }
1644
1645 /*
1646 * Errors in the page lookup or isolation are not fatal and we simply
1647 * report them via status
1648 */
1649 err = add_page_for_migration(mm, addr, current_node,
1650 &pagelist, flags & MPOL_MF_MOVE_ALL);
1651 if (!err)
1652 continue;
1653
1654 err = store_status(status, i, err, 1);
1655 if (err)
1656 goto out_flush;
1657
1658 err = do_move_pages_to_node(mm, &pagelist, current_node);
1659 if (err)
1660 goto out;
1661 if (i > start) {
1662 err = store_status(status, start, current_node, i - start);
1663 if (err)
1664 goto out;
1665 }
1666 current_node = NUMA_NO_NODE;
1667 }
1668 out_flush:
1669 if (list_empty(&pagelist))
1670 return err;
1671
1672 /* Make sure we do not overwrite the existing error */
1673 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1674 if (!err1)
1675 err1 = store_status(status, start, current_node, i - start);
1676 if (!err)
1677 err = err1;
1678 out:
1679 return err;
1680 }
1681
1682 /*
1683 * Determine the nodes of an array of pages and store it in an array of status.
1684 */
1685 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1686 const void __user **pages, int *status)
1687 {
1688 unsigned long i;
1689
1690 down_read(&mm->mmap_sem);
1691
1692 for (i = 0; i < nr_pages; i++) {
1693 unsigned long addr = (unsigned long)(*pages);
1694 struct vm_area_struct *vma;
1695 struct page *page;
1696 int err = -EFAULT;
1697
1698 vma = find_vma(mm, addr);
1699 if (!vma || addr < vma->vm_start)
1700 goto set_status;
1701
1702 /* FOLL_DUMP to ignore special (like zero) pages */
1703 page = follow_page(vma, addr, FOLL_DUMP);
1704
1705 err = PTR_ERR(page);
1706 if (IS_ERR(page))
1707 goto set_status;
1708
1709 err = page ? page_to_nid(page) : -ENOENT;
1710 set_status:
1711 *status = err;
1712
1713 pages++;
1714 status++;
1715 }
1716
1717 up_read(&mm->mmap_sem);
1718 }
1719
1720 /*
1721 * Determine the nodes of a user array of pages and store it in
1722 * a user array of status.
1723 */
1724 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1725 const void __user * __user *pages,
1726 int __user *status)
1727 {
1728 #define DO_PAGES_STAT_CHUNK_NR 16
1729 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1730 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1731
1732 while (nr_pages) {
1733 unsigned long chunk_nr;
1734
1735 chunk_nr = nr_pages;
1736 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1737 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1738
1739 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1740 break;
1741
1742 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1743
1744 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1745 break;
1746
1747 pages += chunk_nr;
1748 status += chunk_nr;
1749 nr_pages -= chunk_nr;
1750 }
1751 return nr_pages ? -EFAULT : 0;
1752 }
1753
1754 /*
1755 * Move a list of pages in the address space of the currently executing
1756 * process.
1757 */
1758 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1759 const void __user * __user *pages,
1760 const int __user *nodes,
1761 int __user *status, int flags)
1762 {
1763 struct task_struct *task;
1764 struct mm_struct *mm;
1765 int err;
1766 nodemask_t task_nodes;
1767
1768 /* Check flags */
1769 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1770 return -EINVAL;
1771
1772 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1773 return -EPERM;
1774
1775 /* Find the mm_struct */
1776 rcu_read_lock();
1777 task = pid ? find_task_by_vpid(pid) : current;
1778 if (!task) {
1779 rcu_read_unlock();
1780 return -ESRCH;
1781 }
1782 get_task_struct(task);
1783
1784 /*
1785 * Check if this process has the right to modify the specified
1786 * process. Use the regular "ptrace_may_access()" checks.
1787 */
1788 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1789 rcu_read_unlock();
1790 err = -EPERM;
1791 goto out;
1792 }
1793 rcu_read_unlock();
1794
1795 err = security_task_movememory(task);
1796 if (err)
1797 goto out;
1798
1799 task_nodes = cpuset_mems_allowed(task);
1800 mm = get_task_mm(task);
1801 put_task_struct(task);
1802
1803 if (!mm)
1804 return -EINVAL;
1805
1806 if (nodes)
1807 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1808 nodes, status, flags);
1809 else
1810 err = do_pages_stat(mm, nr_pages, pages, status);
1811
1812 mmput(mm);
1813 return err;
1814
1815 out:
1816 put_task_struct(task);
1817 return err;
1818 }
1819
1820 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1821 const void __user * __user *, pages,
1822 const int __user *, nodes,
1823 int __user *, status, int, flags)
1824 {
1825 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1826 }
1827
1828 #ifdef CONFIG_COMPAT
1829 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1830 compat_uptr_t __user *, pages32,
1831 const int __user *, nodes,
1832 int __user *, status,
1833 int, flags)
1834 {
1835 const void __user * __user *pages;
1836 int i;
1837
1838 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1839 for (i = 0; i < nr_pages; i++) {
1840 compat_uptr_t p;
1841
1842 if (get_user(p, pages32 + i) ||
1843 put_user(compat_ptr(p), pages + i))
1844 return -EFAULT;
1845 }
1846 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1847 }
1848 #endif /* CONFIG_COMPAT */
1849
1850 #ifdef CONFIG_NUMA_BALANCING
1851 /*
1852 * Returns true if this is a safe migration target node for misplaced NUMA
1853 * pages. Currently it only checks the watermarks which crude
1854 */
1855 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1856 unsigned long nr_migrate_pages)
1857 {
1858 int z;
1859
1860 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1861 struct zone *zone = pgdat->node_zones + z;
1862
1863 if (!populated_zone(zone))
1864 continue;
1865
1866 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1867 if (!zone_watermark_ok(zone, 0,
1868 high_wmark_pages(zone) +
1869 nr_migrate_pages,
1870 0, 0))
1871 continue;
1872 return true;
1873 }
1874 return false;
1875 }
1876
1877 static struct page *alloc_misplaced_dst_page(struct page *page,
1878 unsigned long data)
1879 {
1880 int nid = (int) data;
1881 struct page *newpage;
1882
1883 newpage = __alloc_pages_node(nid,
1884 (GFP_HIGHUSER_MOVABLE |
1885 __GFP_THISNODE | __GFP_NOMEMALLOC |
1886 __GFP_NORETRY | __GFP_NOWARN) &
1887 ~__GFP_RECLAIM, 0);
1888
1889 return newpage;
1890 }
1891
1892 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1893 {
1894 int page_lru;
1895
1896 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1897
1898 /* Avoid migrating to a node that is nearly full */
1899 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1900 return 0;
1901
1902 if (isolate_lru_page(page))
1903 return 0;
1904
1905 /*
1906 * migrate_misplaced_transhuge_page() skips page migration's usual
1907 * check on page_count(), so we must do it here, now that the page
1908 * has been isolated: a GUP pin, or any other pin, prevents migration.
1909 * The expected page count is 3: 1 for page's mapcount and 1 for the
1910 * caller's pin and 1 for the reference taken by isolate_lru_page().
1911 */
1912 if (PageTransHuge(page) && page_count(page) != 3) {
1913 putback_lru_page(page);
1914 return 0;
1915 }
1916
1917 page_lru = page_is_file_cache(page);
1918 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1919 hpage_nr_pages(page));
1920
1921 /*
1922 * Isolating the page has taken another reference, so the
1923 * caller's reference can be safely dropped without the page
1924 * disappearing underneath us during migration.
1925 */
1926 put_page(page);
1927 return 1;
1928 }
1929
1930 bool pmd_trans_migrating(pmd_t pmd)
1931 {
1932 struct page *page = pmd_page(pmd);
1933 return PageLocked(page);
1934 }
1935
1936 /*
1937 * Attempt to migrate a misplaced page to the specified destination
1938 * node. Caller is expected to have an elevated reference count on
1939 * the page that will be dropped by this function before returning.
1940 */
1941 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1942 int node)
1943 {
1944 pg_data_t *pgdat = NODE_DATA(node);
1945 int isolated;
1946 int nr_remaining;
1947 LIST_HEAD(migratepages);
1948
1949 /*
1950 * Don't migrate file pages that are mapped in multiple processes
1951 * with execute permissions as they are probably shared libraries.
1952 */
1953 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1954 (vma->vm_flags & VM_EXEC))
1955 goto out;
1956
1957 /*
1958 * Also do not migrate dirty pages as not all filesystems can move
1959 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1960 */
1961 if (page_is_file_cache(page) && PageDirty(page))
1962 goto out;
1963
1964 isolated = numamigrate_isolate_page(pgdat, page);
1965 if (!isolated)
1966 goto out;
1967
1968 list_add(&page->lru, &migratepages);
1969 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1970 NULL, node, MIGRATE_ASYNC,
1971 MR_NUMA_MISPLACED);
1972 if (nr_remaining) {
1973 if (!list_empty(&migratepages)) {
1974 list_del(&page->lru);
1975 dec_node_page_state(page, NR_ISOLATED_ANON +
1976 page_is_file_cache(page));
1977 putback_lru_page(page);
1978 }
1979 isolated = 0;
1980 } else
1981 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1982 BUG_ON(!list_empty(&migratepages));
1983 return isolated;
1984
1985 out:
1986 put_page(page);
1987 return 0;
1988 }
1989 #endif /* CONFIG_NUMA_BALANCING */
1990
1991 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1992 /*
1993 * Migrates a THP to a given target node. page must be locked and is unlocked
1994 * before returning.
1995 */
1996 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1997 struct vm_area_struct *vma,
1998 pmd_t *pmd, pmd_t entry,
1999 unsigned long address,
2000 struct page *page, int node)
2001 {
2002 spinlock_t *ptl;
2003 pg_data_t *pgdat = NODE_DATA(node);
2004 int isolated = 0;
2005 struct page *new_page = NULL;
2006 int page_lru = page_is_file_cache(page);
2007 unsigned long start = address & HPAGE_PMD_MASK;
2008
2009 new_page = alloc_pages_node(node,
2010 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2011 HPAGE_PMD_ORDER);
2012 if (!new_page)
2013 goto out_fail;
2014 prep_transhuge_page(new_page);
2015
2016 isolated = numamigrate_isolate_page(pgdat, page);
2017 if (!isolated) {
2018 put_page(new_page);
2019 goto out_fail;
2020 }
2021
2022 /* Prepare a page as a migration target */
2023 __SetPageLocked(new_page);
2024 if (PageSwapBacked(page))
2025 __SetPageSwapBacked(new_page);
2026
2027 /* anon mapping, we can simply copy page->mapping to the new page: */
2028 new_page->mapping = page->mapping;
2029 new_page->index = page->index;
2030 /* flush the cache before copying using the kernel virtual address */
2031 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2032 migrate_page_copy(new_page, page);
2033 WARN_ON(PageLRU(new_page));
2034
2035 /* Recheck the target PMD */
2036 ptl = pmd_lock(mm, pmd);
2037 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2038 spin_unlock(ptl);
2039
2040 /* Reverse changes made by migrate_page_copy() */
2041 if (TestClearPageActive(new_page))
2042 SetPageActive(page);
2043 if (TestClearPageUnevictable(new_page))
2044 SetPageUnevictable(page);
2045
2046 unlock_page(new_page);
2047 put_page(new_page); /* Free it */
2048
2049 /* Retake the callers reference and putback on LRU */
2050 get_page(page);
2051 putback_lru_page(page);
2052 mod_node_page_state(page_pgdat(page),
2053 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2054
2055 goto out_unlock;
2056 }
2057
2058 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2059 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2060
2061 /*
2062 * Overwrite the old entry under pagetable lock and establish
2063 * the new PTE. Any parallel GUP will either observe the old
2064 * page blocking on the page lock, block on the page table
2065 * lock or observe the new page. The SetPageUptodate on the
2066 * new page and page_add_new_anon_rmap guarantee the copy is
2067 * visible before the pagetable update.
2068 */
2069 page_add_anon_rmap(new_page, vma, start, true);
2070 /*
2071 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2072 * has already been flushed globally. So no TLB can be currently
2073 * caching this non present pmd mapping. There's no need to clear the
2074 * pmd before doing set_pmd_at(), nor to flush the TLB after
2075 * set_pmd_at(). Clearing the pmd here would introduce a race
2076 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2077 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2078 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2079 * pmd.
2080 */
2081 set_pmd_at(mm, start, pmd, entry);
2082 update_mmu_cache_pmd(vma, address, &entry);
2083
2084 page_ref_unfreeze(page, 2);
2085 mlock_migrate_page(new_page, page);
2086 page_remove_rmap(page, true);
2087 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2088
2089 spin_unlock(ptl);
2090
2091 /* Take an "isolate" reference and put new page on the LRU. */
2092 get_page(new_page);
2093 putback_lru_page(new_page);
2094
2095 unlock_page(new_page);
2096 unlock_page(page);
2097 put_page(page); /* Drop the rmap reference */
2098 put_page(page); /* Drop the LRU isolation reference */
2099
2100 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2101 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2102
2103 mod_node_page_state(page_pgdat(page),
2104 NR_ISOLATED_ANON + page_lru,
2105 -HPAGE_PMD_NR);
2106 return isolated;
2107
2108 out_fail:
2109 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2110 ptl = pmd_lock(mm, pmd);
2111 if (pmd_same(*pmd, entry)) {
2112 entry = pmd_modify(entry, vma->vm_page_prot);
2113 set_pmd_at(mm, start, pmd, entry);
2114 update_mmu_cache_pmd(vma, address, &entry);
2115 }
2116 spin_unlock(ptl);
2117
2118 out_unlock:
2119 unlock_page(page);
2120 put_page(page);
2121 return 0;
2122 }
2123 #endif /* CONFIG_NUMA_BALANCING */
2124
2125 #endif /* CONFIG_NUMA */
2126
2127 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2128 struct migrate_vma {
2129 struct vm_area_struct *vma;
2130 unsigned long *dst;
2131 unsigned long *src;
2132 unsigned long cpages;
2133 unsigned long npages;
2134 unsigned long start;
2135 unsigned long end;
2136 };
2137
2138 static int migrate_vma_collect_hole(unsigned long start,
2139 unsigned long end,
2140 struct mm_walk *walk)
2141 {
2142 struct migrate_vma *migrate = walk->private;
2143 unsigned long addr;
2144
2145 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2146 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2147 migrate->dst[migrate->npages] = 0;
2148 migrate->npages++;
2149 migrate->cpages++;
2150 }
2151
2152 return 0;
2153 }
2154
2155 static int migrate_vma_collect_skip(unsigned long start,
2156 unsigned long end,
2157 struct mm_walk *walk)
2158 {
2159 struct migrate_vma *migrate = walk->private;
2160 unsigned long addr;
2161
2162 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2163 migrate->dst[migrate->npages] = 0;
2164 migrate->src[migrate->npages++] = 0;
2165 }
2166
2167 return 0;
2168 }
2169
2170 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2171 unsigned long start,
2172 unsigned long end,
2173 struct mm_walk *walk)
2174 {
2175 struct migrate_vma *migrate = walk->private;
2176 struct vm_area_struct *vma = walk->vma;
2177 struct mm_struct *mm = vma->vm_mm;
2178 unsigned long addr = start, unmapped = 0;
2179 spinlock_t *ptl;
2180 pte_t *ptep;
2181
2182 again:
2183 if (pmd_none(*pmdp))
2184 return migrate_vma_collect_hole(start, end, walk);
2185
2186 if (pmd_trans_huge(*pmdp)) {
2187 struct page *page;
2188
2189 ptl = pmd_lock(mm, pmdp);
2190 if (unlikely(!pmd_trans_huge(*pmdp))) {
2191 spin_unlock(ptl);
2192 goto again;
2193 }
2194
2195 page = pmd_page(*pmdp);
2196 if (is_huge_zero_page(page)) {
2197 spin_unlock(ptl);
2198 split_huge_pmd(vma, pmdp, addr);
2199 if (pmd_trans_unstable(pmdp))
2200 return migrate_vma_collect_skip(start, end,
2201 walk);
2202 } else {
2203 int ret;
2204
2205 get_page(page);
2206 spin_unlock(ptl);
2207 if (unlikely(!trylock_page(page)))
2208 return migrate_vma_collect_skip(start, end,
2209 walk);
2210 ret = split_huge_page(page);
2211 unlock_page(page);
2212 put_page(page);
2213 if (ret)
2214 return migrate_vma_collect_skip(start, end,
2215 walk);
2216 if (pmd_none(*pmdp))
2217 return migrate_vma_collect_hole(start, end,
2218 walk);
2219 }
2220 }
2221
2222 if (unlikely(pmd_bad(*pmdp)))
2223 return migrate_vma_collect_skip(start, end, walk);
2224
2225 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2226 arch_enter_lazy_mmu_mode();
2227
2228 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2229 unsigned long mpfn, pfn;
2230 struct page *page;
2231 swp_entry_t entry;
2232 pte_t pte;
2233
2234 pte = *ptep;
2235 pfn = pte_pfn(pte);
2236
2237 if (pte_none(pte)) {
2238 mpfn = MIGRATE_PFN_MIGRATE;
2239 migrate->cpages++;
2240 pfn = 0;
2241 goto next;
2242 }
2243
2244 if (!pte_present(pte)) {
2245 mpfn = pfn = 0;
2246
2247 /*
2248 * Only care about unaddressable device page special
2249 * page table entry. Other special swap entries are not
2250 * migratable, and we ignore regular swapped page.
2251 */
2252 entry = pte_to_swp_entry(pte);
2253 if (!is_device_private_entry(entry))
2254 goto next;
2255
2256 page = device_private_entry_to_page(entry);
2257 mpfn = migrate_pfn(page_to_pfn(page))|
2258 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2259 if (is_write_device_private_entry(entry))
2260 mpfn |= MIGRATE_PFN_WRITE;
2261 } else {
2262 if (is_zero_pfn(pfn)) {
2263 mpfn = MIGRATE_PFN_MIGRATE;
2264 migrate->cpages++;
2265 pfn = 0;
2266 goto next;
2267 }
2268 page = _vm_normal_page(migrate->vma, addr, pte, true);
2269 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2270 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2271 }
2272
2273 /* FIXME support THP */
2274 if (!page || !page->mapping || PageTransCompound(page)) {
2275 mpfn = pfn = 0;
2276 goto next;
2277 }
2278 pfn = page_to_pfn(page);
2279
2280 /*
2281 * By getting a reference on the page we pin it and that blocks
2282 * any kind of migration. Side effect is that it "freezes" the
2283 * pte.
2284 *
2285 * We drop this reference after isolating the page from the lru
2286 * for non device page (device page are not on the lru and thus
2287 * can't be dropped from it).
2288 */
2289 get_page(page);
2290 migrate->cpages++;
2291
2292 /*
2293 * Optimize for the common case where page is only mapped once
2294 * in one process. If we can lock the page, then we can safely
2295 * set up a special migration page table entry now.
2296 */
2297 if (trylock_page(page)) {
2298 pte_t swp_pte;
2299
2300 mpfn |= MIGRATE_PFN_LOCKED;
2301 ptep_get_and_clear(mm, addr, ptep);
2302
2303 /* Setup special migration page table entry */
2304 entry = make_migration_entry(page, mpfn &
2305 MIGRATE_PFN_WRITE);
2306 swp_pte = swp_entry_to_pte(entry);
2307 if (pte_soft_dirty(pte))
2308 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2309 set_pte_at(mm, addr, ptep, swp_pte);
2310
2311 /*
2312 * This is like regular unmap: we remove the rmap and
2313 * drop page refcount. Page won't be freed, as we took
2314 * a reference just above.
2315 */
2316 page_remove_rmap(page, false);
2317 put_page(page);
2318
2319 if (pte_present(pte))
2320 unmapped++;
2321 }
2322
2323 next:
2324 migrate->dst[migrate->npages] = 0;
2325 migrate->src[migrate->npages++] = mpfn;
2326 }
2327 arch_leave_lazy_mmu_mode();
2328 pte_unmap_unlock(ptep - 1, ptl);
2329
2330 /* Only flush the TLB if we actually modified any entries */
2331 if (unmapped)
2332 flush_tlb_range(walk->vma, start, end);
2333
2334 return 0;
2335 }
2336
2337 /*
2338 * migrate_vma_collect() - collect pages over a range of virtual addresses
2339 * @migrate: migrate struct containing all migration information
2340 *
2341 * This will walk the CPU page table. For each virtual address backed by a
2342 * valid page, it updates the src array and takes a reference on the page, in
2343 * order to pin the page until we lock it and unmap it.
2344 */
2345 static void migrate_vma_collect(struct migrate_vma *migrate)
2346 {
2347 struct mmu_notifier_range range;
2348 struct mm_walk mm_walk;
2349
2350 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2351 mm_walk.pte_entry = NULL;
2352 mm_walk.pte_hole = migrate_vma_collect_hole;
2353 mm_walk.hugetlb_entry = NULL;
2354 mm_walk.test_walk = NULL;
2355 mm_walk.vma = migrate->vma;
2356 mm_walk.mm = migrate->vma->vm_mm;
2357 mm_walk.private = migrate;
2358
2359 mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2360 migrate->end);
2361 mmu_notifier_invalidate_range_start(&range);
2362 walk_page_range(migrate->start, migrate->end, &mm_walk);
2363 mmu_notifier_invalidate_range_end(&range);
2364
2365 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2366 }
2367
2368 /*
2369 * migrate_vma_check_page() - check if page is pinned or not
2370 * @page: struct page to check
2371 *
2372 * Pinned pages cannot be migrated. This is the same test as in
2373 * migrate_page_move_mapping(), except that here we allow migration of a
2374 * ZONE_DEVICE page.
2375 */
2376 static bool migrate_vma_check_page(struct page *page)
2377 {
2378 /*
2379 * One extra ref because caller holds an extra reference, either from
2380 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2381 * a device page.
2382 */
2383 int extra = 1;
2384
2385 /*
2386 * FIXME support THP (transparent huge page), it is bit more complex to
2387 * check them than regular pages, because they can be mapped with a pmd
2388 * or with a pte (split pte mapping).
2389 */
2390 if (PageCompound(page))
2391 return false;
2392
2393 /* Page from ZONE_DEVICE have one extra reference */
2394 if (is_zone_device_page(page)) {
2395 /*
2396 * Private page can never be pin as they have no valid pte and
2397 * GUP will fail for those. Yet if there is a pending migration
2398 * a thread might try to wait on the pte migration entry and
2399 * will bump the page reference count. Sadly there is no way to
2400 * differentiate a regular pin from migration wait. Hence to
2401 * avoid 2 racing thread trying to migrate back to CPU to enter
2402 * infinite loop (one stoping migration because the other is
2403 * waiting on pte migration entry). We always return true here.
2404 *
2405 * FIXME proper solution is to rework migration_entry_wait() so
2406 * it does not need to take a reference on page.
2407 */
2408 if (is_device_private_page(page))
2409 return true;
2410
2411 /*
2412 * Only allow device public page to be migrated and account for
2413 * the extra reference count imply by ZONE_DEVICE pages.
2414 */
2415 if (!is_device_public_page(page))
2416 return false;
2417 extra++;
2418 }
2419
2420 /* For file back page */
2421 if (page_mapping(page))
2422 extra += 1 + page_has_private(page);
2423
2424 if ((page_count(page) - extra) > page_mapcount(page))
2425 return false;
2426
2427 return true;
2428 }
2429
2430 /*
2431 * migrate_vma_prepare() - lock pages and isolate them from the lru
2432 * @migrate: migrate struct containing all migration information
2433 *
2434 * This locks pages that have been collected by migrate_vma_collect(). Once each
2435 * page is locked it is isolated from the lru (for non-device pages). Finally,
2436 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2437 * migrated by concurrent kernel threads.
2438 */
2439 static void migrate_vma_prepare(struct migrate_vma *migrate)
2440 {
2441 const unsigned long npages = migrate->npages;
2442 const unsigned long start = migrate->start;
2443 unsigned long addr, i, restore = 0;
2444 bool allow_drain = true;
2445
2446 lru_add_drain();
2447
2448 for (i = 0; (i < npages) && migrate->cpages; i++) {
2449 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2450 bool remap = true;
2451
2452 if (!page)
2453 continue;
2454
2455 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2456 /*
2457 * Because we are migrating several pages there can be
2458 * a deadlock between 2 concurrent migration where each
2459 * are waiting on each other page lock.
2460 *
2461 * Make migrate_vma() a best effort thing and backoff
2462 * for any page we can not lock right away.
2463 */
2464 if (!trylock_page(page)) {
2465 migrate->src[i] = 0;
2466 migrate->cpages--;
2467 put_page(page);
2468 continue;
2469 }
2470 remap = false;
2471 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2472 }
2473
2474 /* ZONE_DEVICE pages are not on LRU */
2475 if (!is_zone_device_page(page)) {
2476 if (!PageLRU(page) && allow_drain) {
2477 /* Drain CPU's pagevec */
2478 lru_add_drain_all();
2479 allow_drain = false;
2480 }
2481
2482 if (isolate_lru_page(page)) {
2483 if (remap) {
2484 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2485 migrate->cpages--;
2486 restore++;
2487 } else {
2488 migrate->src[i] = 0;
2489 unlock_page(page);
2490 migrate->cpages--;
2491 put_page(page);
2492 }
2493 continue;
2494 }
2495
2496 /* Drop the reference we took in collect */
2497 put_page(page);
2498 }
2499
2500 if (!migrate_vma_check_page(page)) {
2501 if (remap) {
2502 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2503 migrate->cpages--;
2504 restore++;
2505
2506 if (!is_zone_device_page(page)) {
2507 get_page(page);
2508 putback_lru_page(page);
2509 }
2510 } else {
2511 migrate->src[i] = 0;
2512 unlock_page(page);
2513 migrate->cpages--;
2514
2515 if (!is_zone_device_page(page))
2516 putback_lru_page(page);
2517 else
2518 put_page(page);
2519 }
2520 }
2521 }
2522
2523 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2524 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2525
2526 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2527 continue;
2528
2529 remove_migration_pte(page, migrate->vma, addr, page);
2530
2531 migrate->src[i] = 0;
2532 unlock_page(page);
2533 put_page(page);
2534 restore--;
2535 }
2536 }
2537
2538 /*
2539 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2540 * @migrate: migrate struct containing all migration information
2541 *
2542 * Replace page mapping (CPU page table pte) with a special migration pte entry
2543 * and check again if it has been pinned. Pinned pages are restored because we
2544 * cannot migrate them.
2545 *
2546 * This is the last step before we call the device driver callback to allocate
2547 * destination memory and copy contents of original page over to new page.
2548 */
2549 static void migrate_vma_unmap(struct migrate_vma *migrate)
2550 {
2551 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2552 const unsigned long npages = migrate->npages;
2553 const unsigned long start = migrate->start;
2554 unsigned long addr, i, restore = 0;
2555
2556 for (i = 0; i < npages; i++) {
2557 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2558
2559 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2560 continue;
2561
2562 if (page_mapped(page)) {
2563 try_to_unmap(page, flags);
2564 if (page_mapped(page))
2565 goto restore;
2566 }
2567
2568 if (migrate_vma_check_page(page))
2569 continue;
2570
2571 restore:
2572 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2573 migrate->cpages--;
2574 restore++;
2575 }
2576
2577 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2578 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2579
2580 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2581 continue;
2582
2583 remove_migration_ptes(page, page, false);
2584
2585 migrate->src[i] = 0;
2586 unlock_page(page);
2587 restore--;
2588
2589 if (is_zone_device_page(page))
2590 put_page(page);
2591 else
2592 putback_lru_page(page);
2593 }
2594 }
2595
2596 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2597 unsigned long addr,
2598 struct page *page,
2599 unsigned long *src,
2600 unsigned long *dst)
2601 {
2602 struct vm_area_struct *vma = migrate->vma;
2603 struct mm_struct *mm = vma->vm_mm;
2604 struct mem_cgroup *memcg;
2605 bool flush = false;
2606 spinlock_t *ptl;
2607 pte_t entry;
2608 pgd_t *pgdp;
2609 p4d_t *p4dp;
2610 pud_t *pudp;
2611 pmd_t *pmdp;
2612 pte_t *ptep;
2613
2614 /* Only allow populating anonymous memory */
2615 if (!vma_is_anonymous(vma))
2616 goto abort;
2617
2618 pgdp = pgd_offset(mm, addr);
2619 p4dp = p4d_alloc(mm, pgdp, addr);
2620 if (!p4dp)
2621 goto abort;
2622 pudp = pud_alloc(mm, p4dp, addr);
2623 if (!pudp)
2624 goto abort;
2625 pmdp = pmd_alloc(mm, pudp, addr);
2626 if (!pmdp)
2627 goto abort;
2628
2629 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2630 goto abort;
2631
2632 /*
2633 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2634 * pte_offset_map() on pmds where a huge pmd might be created
2635 * from a different thread.
2636 *
2637 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2638 * parallel threads are excluded by other means.
2639 *
2640 * Here we only have down_read(mmap_sem).
2641 */
2642 if (pte_alloc(mm, pmdp))
2643 goto abort;
2644
2645 /* See the comment in pte_alloc_one_map() */
2646 if (unlikely(pmd_trans_unstable(pmdp)))
2647 goto abort;
2648
2649 if (unlikely(anon_vma_prepare(vma)))
2650 goto abort;
2651 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2652 goto abort;
2653
2654 /*
2655 * The memory barrier inside __SetPageUptodate makes sure that
2656 * preceding stores to the page contents become visible before
2657 * the set_pte_at() write.
2658 */
2659 __SetPageUptodate(page);
2660
2661 if (is_zone_device_page(page)) {
2662 if (is_device_private_page(page)) {
2663 swp_entry_t swp_entry;
2664
2665 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2666 entry = swp_entry_to_pte(swp_entry);
2667 } else if (is_device_public_page(page)) {
2668 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2669 if (vma->vm_flags & VM_WRITE)
2670 entry = pte_mkwrite(pte_mkdirty(entry));
2671 entry = pte_mkdevmap(entry);
2672 }
2673 } else {
2674 entry = mk_pte(page, vma->vm_page_prot);
2675 if (vma->vm_flags & VM_WRITE)
2676 entry = pte_mkwrite(pte_mkdirty(entry));
2677 }
2678
2679 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2680
2681 if (pte_present(*ptep)) {
2682 unsigned long pfn = pte_pfn(*ptep);
2683
2684 if (!is_zero_pfn(pfn)) {
2685 pte_unmap_unlock(ptep, ptl);
2686 mem_cgroup_cancel_charge(page, memcg, false);
2687 goto abort;
2688 }
2689 flush = true;
2690 } else if (!pte_none(*ptep)) {
2691 pte_unmap_unlock(ptep, ptl);
2692 mem_cgroup_cancel_charge(page, memcg, false);
2693 goto abort;
2694 }
2695
2696 /*
2697 * Check for usefaultfd but do not deliver the fault. Instead,
2698 * just back off.
2699 */
2700 if (userfaultfd_missing(vma)) {
2701 pte_unmap_unlock(ptep, ptl);
2702 mem_cgroup_cancel_charge(page, memcg, false);
2703 goto abort;
2704 }
2705
2706 inc_mm_counter(mm, MM_ANONPAGES);
2707 page_add_new_anon_rmap(page, vma, addr, false);
2708 mem_cgroup_commit_charge(page, memcg, false, false);
2709 if (!is_zone_device_page(page))
2710 lru_cache_add_active_or_unevictable(page, vma);
2711 get_page(page);
2712
2713 if (flush) {
2714 flush_cache_page(vma, addr, pte_pfn(*ptep));
2715 ptep_clear_flush_notify(vma, addr, ptep);
2716 set_pte_at_notify(mm, addr, ptep, entry);
2717 update_mmu_cache(vma, addr, ptep);
2718 } else {
2719 /* No need to invalidate - it was non-present before */
2720 set_pte_at(mm, addr, ptep, entry);
2721 update_mmu_cache(vma, addr, ptep);
2722 }
2723
2724 pte_unmap_unlock(ptep, ptl);
2725 *src = MIGRATE_PFN_MIGRATE;
2726 return;
2727
2728 abort:
2729 *src &= ~MIGRATE_PFN_MIGRATE;
2730 }
2731
2732 /*
2733 * migrate_vma_pages() - migrate meta-data from src page to dst page
2734 * @migrate: migrate struct containing all migration information
2735 *
2736 * This migrates struct page meta-data from source struct page to destination
2737 * struct page. This effectively finishes the migration from source page to the
2738 * destination page.
2739 */
2740 static void migrate_vma_pages(struct migrate_vma *migrate)
2741 {
2742 const unsigned long npages = migrate->npages;
2743 const unsigned long start = migrate->start;
2744 struct mmu_notifier_range range;
2745 unsigned long addr, i;
2746 bool notified = false;
2747
2748 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2749 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2750 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2751 struct address_space *mapping;
2752 int r;
2753
2754 if (!newpage) {
2755 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2756 continue;
2757 }
2758
2759 if (!page) {
2760 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2761 continue;
2762 }
2763 if (!notified) {
2764 notified = true;
2765
2766 mmu_notifier_range_init(&range,
2767 migrate->vma->vm_mm,
2768 addr, migrate->end);
2769 mmu_notifier_invalidate_range_start(&range);
2770 }
2771 migrate_vma_insert_page(migrate, addr, newpage,
2772 &migrate->src[i],
2773 &migrate->dst[i]);
2774 continue;
2775 }
2776
2777 mapping = page_mapping(page);
2778
2779 if (is_zone_device_page(newpage)) {
2780 if (is_device_private_page(newpage)) {
2781 /*
2782 * For now only support private anonymous when
2783 * migrating to un-addressable device memory.
2784 */
2785 if (mapping) {
2786 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2787 continue;
2788 }
2789 } else if (!is_device_public_page(newpage)) {
2790 /*
2791 * Other types of ZONE_DEVICE page are not
2792 * supported.
2793 */
2794 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2795 continue;
2796 }
2797 }
2798
2799 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2800 if (r != MIGRATEPAGE_SUCCESS)
2801 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2802 }
2803
2804 /*
2805 * No need to double call mmu_notifier->invalidate_range() callback as
2806 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2807 * did already call it.
2808 */
2809 if (notified)
2810 mmu_notifier_invalidate_range_only_end(&range);
2811 }
2812
2813 /*
2814 * migrate_vma_finalize() - restore CPU page table entry
2815 * @migrate: migrate struct containing all migration information
2816 *
2817 * This replaces the special migration pte entry with either a mapping to the
2818 * new page if migration was successful for that page, or to the original page
2819 * otherwise.
2820 *
2821 * This also unlocks the pages and puts them back on the lru, or drops the extra
2822 * refcount, for device pages.
2823 */
2824 static void migrate_vma_finalize(struct migrate_vma *migrate)
2825 {
2826 const unsigned long npages = migrate->npages;
2827 unsigned long i;
2828
2829 for (i = 0; i < npages; i++) {
2830 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2831 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2832
2833 if (!page) {
2834 if (newpage) {
2835 unlock_page(newpage);
2836 put_page(newpage);
2837 }
2838 continue;
2839 }
2840
2841 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2842 if (newpage) {
2843 unlock_page(newpage);
2844 put_page(newpage);
2845 }
2846 newpage = page;
2847 }
2848
2849 remove_migration_ptes(page, newpage, false);
2850 unlock_page(page);
2851 migrate->cpages--;
2852
2853 if (is_zone_device_page(page))
2854 put_page(page);
2855 else
2856 putback_lru_page(page);
2857
2858 if (newpage != page) {
2859 unlock_page(newpage);
2860 if (is_zone_device_page(newpage))
2861 put_page(newpage);
2862 else
2863 putback_lru_page(newpage);
2864 }
2865 }
2866 }
2867
2868 /*
2869 * migrate_vma() - migrate a range of memory inside vma
2870 *
2871 * @ops: migration callback for allocating destination memory and copying
2872 * @vma: virtual memory area containing the range to be migrated
2873 * @start: start address of the range to migrate (inclusive)
2874 * @end: end address of the range to migrate (exclusive)
2875 * @src: array of hmm_pfn_t containing source pfns
2876 * @dst: array of hmm_pfn_t containing destination pfns
2877 * @private: pointer passed back to each of the callback
2878 * Returns: 0 on success, error code otherwise
2879 *
2880 * This function tries to migrate a range of memory virtual address range, using
2881 * callbacks to allocate and copy memory from source to destination. First it
2882 * collects all the pages backing each virtual address in the range, saving this
2883 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2884 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2885 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2886 * in the corresponding src array entry. It then restores any pages that are
2887 * pinned, by remapping and unlocking those pages.
2888 *
2889 * At this point it calls the alloc_and_copy() callback. For documentation on
2890 * what is expected from that callback, see struct migrate_vma_ops comments in
2891 * include/linux/migrate.h
2892 *
2893 * After the alloc_and_copy() callback, this function goes over each entry in
2894 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2895 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2896 * then the function tries to migrate struct page information from the source
2897 * struct page to the destination struct page. If it fails to migrate the struct
2898 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2899 * array.
2900 *
2901 * At this point all successfully migrated pages have an entry in the src
2902 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2903 * array entry with MIGRATE_PFN_VALID flag set.
2904 *
2905 * It then calls the finalize_and_map() callback. See comments for "struct
2906 * migrate_vma_ops", in include/linux/migrate.h for details about
2907 * finalize_and_map() behavior.
2908 *
2909 * After the finalize_and_map() callback, for successfully migrated pages, this
2910 * function updates the CPU page table to point to new pages, otherwise it
2911 * restores the CPU page table to point to the original source pages.
2912 *
2913 * Function returns 0 after the above steps, even if no pages were migrated
2914 * (The function only returns an error if any of the arguments are invalid.)
2915 *
2916 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2917 * unsigned long entries.
2918 */
2919 int migrate_vma(const struct migrate_vma_ops *ops,
2920 struct vm_area_struct *vma,
2921 unsigned long start,
2922 unsigned long end,
2923 unsigned long *src,
2924 unsigned long *dst,
2925 void *private)
2926 {
2927 struct migrate_vma migrate;
2928
2929 /* Sanity check the arguments */
2930 start &= PAGE_MASK;
2931 end &= PAGE_MASK;
2932 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2933 vma_is_dax(vma))
2934 return -EINVAL;
2935 if (start < vma->vm_start || start >= vma->vm_end)
2936 return -EINVAL;
2937 if (end <= vma->vm_start || end > vma->vm_end)
2938 return -EINVAL;
2939 if (!ops || !src || !dst || start >= end)
2940 return -EINVAL;
2941
2942 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2943 migrate.src = src;
2944 migrate.dst = dst;
2945 migrate.start = start;
2946 migrate.npages = 0;
2947 migrate.cpages = 0;
2948 migrate.end = end;
2949 migrate.vma = vma;
2950
2951 /* Collect, and try to unmap source pages */
2952 migrate_vma_collect(&migrate);
2953 if (!migrate.cpages)
2954 return 0;
2955
2956 /* Lock and isolate page */
2957 migrate_vma_prepare(&migrate);
2958 if (!migrate.cpages)
2959 return 0;
2960
2961 /* Unmap pages */
2962 migrate_vma_unmap(&migrate);
2963 if (!migrate.cpages)
2964 return 0;
2965
2966 /*
2967 * At this point pages are locked and unmapped, and thus they have
2968 * stable content and can safely be copied to destination memory that
2969 * is allocated by the callback.
2970 *
2971 * Note that migration can fail in migrate_vma_struct_page() for each
2972 * individual page.
2973 */
2974 ops->alloc_and_copy(vma, src, dst, start, end, private);
2975
2976 /* This does the real migration of struct page */
2977 migrate_vma_pages(&migrate);
2978
2979 ops->finalize_and_map(vma, src, dst, start, end, private);
2980
2981 /* Unlock and remap pages */
2982 migrate_vma_finalize(&migrate);
2983
2984 return 0;
2985 }
2986 EXPORT_SYMBOL(migrate_vma);
2987 #endif /* defined(MIGRATE_VMA_HELPER) */