]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/migrate_device.c
Merge branch 'for-6.2/sony' into for-linus
[thirdparty/linux.git] / mm / migrate_device.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Device Memory Migration functionality.
4 *
5 * Originally written by Jérôme Glisse.
6 */
7 #include <linux/export.h>
8 #include <linux/memremap.h>
9 #include <linux/migrate.h>
10 #include <linux/mm.h>
11 #include <linux/mm_inline.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/oom.h>
14 #include <linux/pagewalk.h>
15 #include <linux/rmap.h>
16 #include <linux/swapops.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
19
20 static int migrate_vma_collect_skip(unsigned long start,
21 unsigned long end,
22 struct mm_walk *walk)
23 {
24 struct migrate_vma *migrate = walk->private;
25 unsigned long addr;
26
27 for (addr = start; addr < end; addr += PAGE_SIZE) {
28 migrate->dst[migrate->npages] = 0;
29 migrate->src[migrate->npages++] = 0;
30 }
31
32 return 0;
33 }
34
35 static int migrate_vma_collect_hole(unsigned long start,
36 unsigned long end,
37 __always_unused int depth,
38 struct mm_walk *walk)
39 {
40 struct migrate_vma *migrate = walk->private;
41 unsigned long addr;
42
43 /* Only allow populating anonymous memory. */
44 if (!vma_is_anonymous(walk->vma))
45 return migrate_vma_collect_skip(start, end, walk);
46
47 for (addr = start; addr < end; addr += PAGE_SIZE) {
48 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
49 migrate->dst[migrate->npages] = 0;
50 migrate->npages++;
51 migrate->cpages++;
52 }
53
54 return 0;
55 }
56
57 static int migrate_vma_collect_pmd(pmd_t *pmdp,
58 unsigned long start,
59 unsigned long end,
60 struct mm_walk *walk)
61 {
62 struct migrate_vma *migrate = walk->private;
63 struct vm_area_struct *vma = walk->vma;
64 struct mm_struct *mm = vma->vm_mm;
65 unsigned long addr = start, unmapped = 0;
66 spinlock_t *ptl;
67 pte_t *ptep;
68
69 again:
70 if (pmd_none(*pmdp))
71 return migrate_vma_collect_hole(start, end, -1, walk);
72
73 if (pmd_trans_huge(*pmdp)) {
74 struct page *page;
75
76 ptl = pmd_lock(mm, pmdp);
77 if (unlikely(!pmd_trans_huge(*pmdp))) {
78 spin_unlock(ptl);
79 goto again;
80 }
81
82 page = pmd_page(*pmdp);
83 if (is_huge_zero_page(page)) {
84 spin_unlock(ptl);
85 split_huge_pmd(vma, pmdp, addr);
86 if (pmd_trans_unstable(pmdp))
87 return migrate_vma_collect_skip(start, end,
88 walk);
89 } else {
90 int ret;
91
92 get_page(page);
93 spin_unlock(ptl);
94 if (unlikely(!trylock_page(page)))
95 return migrate_vma_collect_skip(start, end,
96 walk);
97 ret = split_huge_page(page);
98 unlock_page(page);
99 put_page(page);
100 if (ret)
101 return migrate_vma_collect_skip(start, end,
102 walk);
103 if (pmd_none(*pmdp))
104 return migrate_vma_collect_hole(start, end, -1,
105 walk);
106 }
107 }
108
109 if (unlikely(pmd_bad(*pmdp)))
110 return migrate_vma_collect_skip(start, end, walk);
111
112 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
113 arch_enter_lazy_mmu_mode();
114
115 for (; addr < end; addr += PAGE_SIZE, ptep++) {
116 unsigned long mpfn = 0, pfn;
117 struct page *page;
118 swp_entry_t entry;
119 pte_t pte;
120
121 pte = *ptep;
122
123 if (pte_none(pte)) {
124 if (vma_is_anonymous(vma)) {
125 mpfn = MIGRATE_PFN_MIGRATE;
126 migrate->cpages++;
127 }
128 goto next;
129 }
130
131 if (!pte_present(pte)) {
132 /*
133 * Only care about unaddressable device page special
134 * page table entry. Other special swap entries are not
135 * migratable, and we ignore regular swapped page.
136 */
137 entry = pte_to_swp_entry(pte);
138 if (!is_device_private_entry(entry))
139 goto next;
140
141 page = pfn_swap_entry_to_page(entry);
142 if (!(migrate->flags &
143 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
144 page->pgmap->owner != migrate->pgmap_owner)
145 goto next;
146
147 mpfn = migrate_pfn(page_to_pfn(page)) |
148 MIGRATE_PFN_MIGRATE;
149 if (is_writable_device_private_entry(entry))
150 mpfn |= MIGRATE_PFN_WRITE;
151 } else {
152 pfn = pte_pfn(pte);
153 if (is_zero_pfn(pfn) &&
154 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
155 mpfn = MIGRATE_PFN_MIGRATE;
156 migrate->cpages++;
157 goto next;
158 }
159 page = vm_normal_page(migrate->vma, addr, pte);
160 if (page && !is_zone_device_page(page) &&
161 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
162 goto next;
163 else if (page && is_device_coherent_page(page) &&
164 (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
165 page->pgmap->owner != migrate->pgmap_owner))
166 goto next;
167 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
168 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
169 }
170
171 /* FIXME support THP */
172 if (!page || !page->mapping || PageTransCompound(page)) {
173 mpfn = 0;
174 goto next;
175 }
176
177 /*
178 * By getting a reference on the page we pin it and that blocks
179 * any kind of migration. Side effect is that it "freezes" the
180 * pte.
181 *
182 * We drop this reference after isolating the page from the lru
183 * for non device page (device page are not on the lru and thus
184 * can't be dropped from it).
185 */
186 get_page(page);
187
188 /*
189 * We rely on trylock_page() to avoid deadlock between
190 * concurrent migrations where each is waiting on the others
191 * page lock. If we can't immediately lock the page we fail this
192 * migration as it is only best effort anyway.
193 *
194 * If we can lock the page it's safe to set up a migration entry
195 * now. In the common case where the page is mapped once in a
196 * single process setting up the migration entry now is an
197 * optimisation to avoid walking the rmap later with
198 * try_to_migrate().
199 */
200 if (trylock_page(page)) {
201 bool anon_exclusive;
202 pte_t swp_pte;
203
204 flush_cache_page(vma, addr, pte_pfn(*ptep));
205 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
206 if (anon_exclusive) {
207 pte = ptep_clear_flush(vma, addr, ptep);
208
209 if (page_try_share_anon_rmap(page)) {
210 set_pte_at(mm, addr, ptep, pte);
211 unlock_page(page);
212 put_page(page);
213 mpfn = 0;
214 goto next;
215 }
216 } else {
217 pte = ptep_get_and_clear(mm, addr, ptep);
218 }
219
220 migrate->cpages++;
221
222 /* Set the dirty flag on the folio now the pte is gone. */
223 if (pte_dirty(pte))
224 folio_mark_dirty(page_folio(page));
225
226 /* Setup special migration page table entry */
227 if (mpfn & MIGRATE_PFN_WRITE)
228 entry = make_writable_migration_entry(
229 page_to_pfn(page));
230 else if (anon_exclusive)
231 entry = make_readable_exclusive_migration_entry(
232 page_to_pfn(page));
233 else
234 entry = make_readable_migration_entry(
235 page_to_pfn(page));
236 if (pte_present(pte)) {
237 if (pte_young(pte))
238 entry = make_migration_entry_young(entry);
239 if (pte_dirty(pte))
240 entry = make_migration_entry_dirty(entry);
241 }
242 swp_pte = swp_entry_to_pte(entry);
243 if (pte_present(pte)) {
244 if (pte_soft_dirty(pte))
245 swp_pte = pte_swp_mksoft_dirty(swp_pte);
246 if (pte_uffd_wp(pte))
247 swp_pte = pte_swp_mkuffd_wp(swp_pte);
248 } else {
249 if (pte_swp_soft_dirty(pte))
250 swp_pte = pte_swp_mksoft_dirty(swp_pte);
251 if (pte_swp_uffd_wp(pte))
252 swp_pte = pte_swp_mkuffd_wp(swp_pte);
253 }
254 set_pte_at(mm, addr, ptep, swp_pte);
255
256 /*
257 * This is like regular unmap: we remove the rmap and
258 * drop page refcount. Page won't be freed, as we took
259 * a reference just above.
260 */
261 page_remove_rmap(page, vma, false);
262 put_page(page);
263
264 if (pte_present(pte))
265 unmapped++;
266 } else {
267 put_page(page);
268 mpfn = 0;
269 }
270
271 next:
272 migrate->dst[migrate->npages] = 0;
273 migrate->src[migrate->npages++] = mpfn;
274 }
275
276 /* Only flush the TLB if we actually modified any entries */
277 if (unmapped)
278 flush_tlb_range(walk->vma, start, end);
279
280 arch_leave_lazy_mmu_mode();
281 pte_unmap_unlock(ptep - 1, ptl);
282
283 return 0;
284 }
285
286 static const struct mm_walk_ops migrate_vma_walk_ops = {
287 .pmd_entry = migrate_vma_collect_pmd,
288 .pte_hole = migrate_vma_collect_hole,
289 };
290
291 /*
292 * migrate_vma_collect() - collect pages over a range of virtual addresses
293 * @migrate: migrate struct containing all migration information
294 *
295 * This will walk the CPU page table. For each virtual address backed by a
296 * valid page, it updates the src array and takes a reference on the page, in
297 * order to pin the page until we lock it and unmap it.
298 */
299 static void migrate_vma_collect(struct migrate_vma *migrate)
300 {
301 struct mmu_notifier_range range;
302
303 /*
304 * Note that the pgmap_owner is passed to the mmu notifier callback so
305 * that the registered device driver can skip invalidating device
306 * private page mappings that won't be migrated.
307 */
308 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
309 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
310 migrate->pgmap_owner);
311 mmu_notifier_invalidate_range_start(&range);
312
313 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
314 &migrate_vma_walk_ops, migrate);
315
316 mmu_notifier_invalidate_range_end(&range);
317 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
318 }
319
320 /*
321 * migrate_vma_check_page() - check if page is pinned or not
322 * @page: struct page to check
323 *
324 * Pinned pages cannot be migrated. This is the same test as in
325 * folio_migrate_mapping(), except that here we allow migration of a
326 * ZONE_DEVICE page.
327 */
328 static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
329 {
330 /*
331 * One extra ref because caller holds an extra reference, either from
332 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
333 * a device page.
334 */
335 int extra = 1 + (page == fault_page);
336
337 /*
338 * FIXME support THP (transparent huge page), it is bit more complex to
339 * check them than regular pages, because they can be mapped with a pmd
340 * or with a pte (split pte mapping).
341 */
342 if (PageCompound(page))
343 return false;
344
345 /* Page from ZONE_DEVICE have one extra reference */
346 if (is_zone_device_page(page))
347 extra++;
348
349 /* For file back page */
350 if (page_mapping(page))
351 extra += 1 + page_has_private(page);
352
353 if ((page_count(page) - extra) > page_mapcount(page))
354 return false;
355
356 return true;
357 }
358
359 /*
360 * Unmaps pages for migration. Returns number of unmapped pages.
361 */
362 static unsigned long migrate_device_unmap(unsigned long *src_pfns,
363 unsigned long npages,
364 struct page *fault_page)
365 {
366 unsigned long i, restore = 0;
367 bool allow_drain = true;
368 unsigned long unmapped = 0;
369
370 lru_add_drain();
371
372 for (i = 0; i < npages; i++) {
373 struct page *page = migrate_pfn_to_page(src_pfns[i]);
374 struct folio *folio;
375
376 if (!page)
377 continue;
378
379 /* ZONE_DEVICE pages are not on LRU */
380 if (!is_zone_device_page(page)) {
381 if (!PageLRU(page) && allow_drain) {
382 /* Drain CPU's pagevec */
383 lru_add_drain_all();
384 allow_drain = false;
385 }
386
387 if (isolate_lru_page(page)) {
388 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
389 restore++;
390 continue;
391 }
392
393 /* Drop the reference we took in collect */
394 put_page(page);
395 }
396
397 folio = page_folio(page);
398 if (folio_mapped(folio))
399 try_to_migrate(folio, 0);
400
401 if (page_mapped(page) ||
402 !migrate_vma_check_page(page, fault_page)) {
403 if (!is_zone_device_page(page)) {
404 get_page(page);
405 putback_lru_page(page);
406 }
407
408 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
409 restore++;
410 continue;
411 }
412
413 unmapped++;
414 }
415
416 for (i = 0; i < npages && restore; i++) {
417 struct page *page = migrate_pfn_to_page(src_pfns[i]);
418 struct folio *folio;
419
420 if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
421 continue;
422
423 folio = page_folio(page);
424 remove_migration_ptes(folio, folio, false);
425
426 src_pfns[i] = 0;
427 folio_unlock(folio);
428 folio_put(folio);
429 restore--;
430 }
431
432 return unmapped;
433 }
434
435 /*
436 * migrate_vma_unmap() - replace page mapping with special migration pte entry
437 * @migrate: migrate struct containing all migration information
438 *
439 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
440 * special migration pte entry and check if it has been pinned. Pinned pages are
441 * restored because we cannot migrate them.
442 *
443 * This is the last step before we call the device driver callback to allocate
444 * destination memory and copy contents of original page over to new page.
445 */
446 static void migrate_vma_unmap(struct migrate_vma *migrate)
447 {
448 migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
449 migrate->fault_page);
450 }
451
452 /**
453 * migrate_vma_setup() - prepare to migrate a range of memory
454 * @args: contains the vma, start, and pfns arrays for the migration
455 *
456 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
457 * without an error.
458 *
459 * Prepare to migrate a range of memory virtual address range by collecting all
460 * the pages backing each virtual address in the range, saving them inside the
461 * src array. Then lock those pages and unmap them. Once the pages are locked
462 * and unmapped, check whether each page is pinned or not. Pages that aren't
463 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
464 * corresponding src array entry. Then restores any pages that are pinned, by
465 * remapping and unlocking those pages.
466 *
467 * The caller should then allocate destination memory and copy source memory to
468 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
469 * flag set). Once these are allocated and copied, the caller must update each
470 * corresponding entry in the dst array with the pfn value of the destination
471 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
472 * lock_page().
473 *
474 * Note that the caller does not have to migrate all the pages that are marked
475 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
476 * device memory to system memory. If the caller cannot migrate a device page
477 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
478 * consequences for the userspace process, so it must be avoided if at all
479 * possible.
480 *
481 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
482 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
483 * allowing the caller to allocate device memory for those unbacked virtual
484 * addresses. For this the caller simply has to allocate device memory and
485 * properly set the destination entry like for regular migration. Note that
486 * this can still fail, and thus inside the device driver you must check if the
487 * migration was successful for those entries after calling migrate_vma_pages(),
488 * just like for regular migration.
489 *
490 * After that, the callers must call migrate_vma_pages() to go over each entry
491 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
492 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
493 * then migrate_vma_pages() to migrate struct page information from the source
494 * struct page to the destination struct page. If it fails to migrate the
495 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
496 * src array.
497 *
498 * At this point all successfully migrated pages have an entry in the src
499 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
500 * array entry with MIGRATE_PFN_VALID flag set.
501 *
502 * Once migrate_vma_pages() returns the caller may inspect which pages were
503 * successfully migrated, and which were not. Successfully migrated pages will
504 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
505 *
506 * It is safe to update device page table after migrate_vma_pages() because
507 * both destination and source page are still locked, and the mmap_lock is held
508 * in read mode (hence no one can unmap the range being migrated).
509 *
510 * Once the caller is done cleaning up things and updating its page table (if it
511 * chose to do so, this is not an obligation) it finally calls
512 * migrate_vma_finalize() to update the CPU page table to point to new pages
513 * for successfully migrated pages or otherwise restore the CPU page table to
514 * point to the original source pages.
515 */
516 int migrate_vma_setup(struct migrate_vma *args)
517 {
518 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
519
520 args->start &= PAGE_MASK;
521 args->end &= PAGE_MASK;
522 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
523 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
524 return -EINVAL;
525 if (nr_pages <= 0)
526 return -EINVAL;
527 if (args->start < args->vma->vm_start ||
528 args->start >= args->vma->vm_end)
529 return -EINVAL;
530 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
531 return -EINVAL;
532 if (!args->src || !args->dst)
533 return -EINVAL;
534 if (args->fault_page && !is_device_private_page(args->fault_page))
535 return -EINVAL;
536
537 memset(args->src, 0, sizeof(*args->src) * nr_pages);
538 args->cpages = 0;
539 args->npages = 0;
540
541 migrate_vma_collect(args);
542
543 if (args->cpages)
544 migrate_vma_unmap(args);
545
546 /*
547 * At this point pages are locked and unmapped, and thus they have
548 * stable content and can safely be copied to destination memory that
549 * is allocated by the drivers.
550 */
551 return 0;
552
553 }
554 EXPORT_SYMBOL(migrate_vma_setup);
555
556 /*
557 * This code closely matches the code in:
558 * __handle_mm_fault()
559 * handle_pte_fault()
560 * do_anonymous_page()
561 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
562 * private or coherent page.
563 */
564 static void migrate_vma_insert_page(struct migrate_vma *migrate,
565 unsigned long addr,
566 struct page *page,
567 unsigned long *src)
568 {
569 struct vm_area_struct *vma = migrate->vma;
570 struct mm_struct *mm = vma->vm_mm;
571 bool flush = false;
572 spinlock_t *ptl;
573 pte_t entry;
574 pgd_t *pgdp;
575 p4d_t *p4dp;
576 pud_t *pudp;
577 pmd_t *pmdp;
578 pte_t *ptep;
579
580 /* Only allow populating anonymous memory */
581 if (!vma_is_anonymous(vma))
582 goto abort;
583
584 pgdp = pgd_offset(mm, addr);
585 p4dp = p4d_alloc(mm, pgdp, addr);
586 if (!p4dp)
587 goto abort;
588 pudp = pud_alloc(mm, p4dp, addr);
589 if (!pudp)
590 goto abort;
591 pmdp = pmd_alloc(mm, pudp, addr);
592 if (!pmdp)
593 goto abort;
594
595 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
596 goto abort;
597
598 /*
599 * Use pte_alloc() instead of pte_alloc_map(). We can't run
600 * pte_offset_map() on pmds where a huge pmd might be created
601 * from a different thread.
602 *
603 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
604 * parallel threads are excluded by other means.
605 *
606 * Here we only have mmap_read_lock(mm).
607 */
608 if (pte_alloc(mm, pmdp))
609 goto abort;
610
611 /* See the comment in pte_alloc_one_map() */
612 if (unlikely(pmd_trans_unstable(pmdp)))
613 goto abort;
614
615 if (unlikely(anon_vma_prepare(vma)))
616 goto abort;
617 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
618 goto abort;
619
620 /*
621 * The memory barrier inside __SetPageUptodate makes sure that
622 * preceding stores to the page contents become visible before
623 * the set_pte_at() write.
624 */
625 __SetPageUptodate(page);
626
627 if (is_device_private_page(page)) {
628 swp_entry_t swp_entry;
629
630 if (vma->vm_flags & VM_WRITE)
631 swp_entry = make_writable_device_private_entry(
632 page_to_pfn(page));
633 else
634 swp_entry = make_readable_device_private_entry(
635 page_to_pfn(page));
636 entry = swp_entry_to_pte(swp_entry);
637 } else {
638 if (is_zone_device_page(page) &&
639 !is_device_coherent_page(page)) {
640 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
641 goto abort;
642 }
643 entry = mk_pte(page, vma->vm_page_prot);
644 if (vma->vm_flags & VM_WRITE)
645 entry = pte_mkwrite(pte_mkdirty(entry));
646 }
647
648 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
649
650 if (check_stable_address_space(mm))
651 goto unlock_abort;
652
653 if (pte_present(*ptep)) {
654 unsigned long pfn = pte_pfn(*ptep);
655
656 if (!is_zero_pfn(pfn))
657 goto unlock_abort;
658 flush = true;
659 } else if (!pte_none(*ptep))
660 goto unlock_abort;
661
662 /*
663 * Check for userfaultfd but do not deliver the fault. Instead,
664 * just back off.
665 */
666 if (userfaultfd_missing(vma))
667 goto unlock_abort;
668
669 inc_mm_counter(mm, MM_ANONPAGES);
670 page_add_new_anon_rmap(page, vma, addr);
671 if (!is_zone_device_page(page))
672 lru_cache_add_inactive_or_unevictable(page, vma);
673 get_page(page);
674
675 if (flush) {
676 flush_cache_page(vma, addr, pte_pfn(*ptep));
677 ptep_clear_flush_notify(vma, addr, ptep);
678 set_pte_at_notify(mm, addr, ptep, entry);
679 update_mmu_cache(vma, addr, ptep);
680 } else {
681 /* No need to invalidate - it was non-present before */
682 set_pte_at(mm, addr, ptep, entry);
683 update_mmu_cache(vma, addr, ptep);
684 }
685
686 pte_unmap_unlock(ptep, ptl);
687 *src = MIGRATE_PFN_MIGRATE;
688 return;
689
690 unlock_abort:
691 pte_unmap_unlock(ptep, ptl);
692 abort:
693 *src &= ~MIGRATE_PFN_MIGRATE;
694 }
695
696 static void __migrate_device_pages(unsigned long *src_pfns,
697 unsigned long *dst_pfns, unsigned long npages,
698 struct migrate_vma *migrate)
699 {
700 struct mmu_notifier_range range;
701 unsigned long i;
702 bool notified = false;
703
704 for (i = 0; i < npages; i++) {
705 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
706 struct page *page = migrate_pfn_to_page(src_pfns[i]);
707 struct address_space *mapping;
708 int r;
709
710 if (!newpage) {
711 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
712 continue;
713 }
714
715 if (!page) {
716 unsigned long addr;
717
718 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
719 continue;
720
721 /*
722 * The only time there is no vma is when called from
723 * migrate_device_coherent_page(). However this isn't
724 * called if the page could not be unmapped.
725 */
726 VM_BUG_ON(!migrate);
727 addr = migrate->start + i*PAGE_SIZE;
728 if (!notified) {
729 notified = true;
730
731 mmu_notifier_range_init_owner(&range,
732 MMU_NOTIFY_MIGRATE, 0, migrate->vma,
733 migrate->vma->vm_mm, addr, migrate->end,
734 migrate->pgmap_owner);
735 mmu_notifier_invalidate_range_start(&range);
736 }
737 migrate_vma_insert_page(migrate, addr, newpage,
738 &src_pfns[i]);
739 continue;
740 }
741
742 mapping = page_mapping(page);
743
744 if (is_device_private_page(newpage) ||
745 is_device_coherent_page(newpage)) {
746 /*
747 * For now only support anonymous memory migrating to
748 * device private or coherent memory.
749 */
750 if (mapping) {
751 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
752 continue;
753 }
754 } else if (is_zone_device_page(newpage)) {
755 /*
756 * Other types of ZONE_DEVICE page are not supported.
757 */
758 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
759 continue;
760 }
761
762 if (migrate && migrate->fault_page == page)
763 r = migrate_folio_extra(mapping, page_folio(newpage),
764 page_folio(page),
765 MIGRATE_SYNC_NO_COPY, 1);
766 else
767 r = migrate_folio(mapping, page_folio(newpage),
768 page_folio(page), MIGRATE_SYNC_NO_COPY);
769 if (r != MIGRATEPAGE_SUCCESS)
770 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
771 }
772
773 /*
774 * No need to double call mmu_notifier->invalidate_range() callback as
775 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
776 * did already call it.
777 */
778 if (notified)
779 mmu_notifier_invalidate_range_only_end(&range);
780 }
781
782 /**
783 * migrate_device_pages() - migrate meta-data from src page to dst page
784 * @src_pfns: src_pfns returned from migrate_device_range()
785 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
786 * @npages: number of pages in the range
787 *
788 * Equivalent to migrate_vma_pages(). This is called to migrate struct page
789 * meta-data from source struct page to destination.
790 */
791 void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
792 unsigned long npages)
793 {
794 __migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
795 }
796 EXPORT_SYMBOL(migrate_device_pages);
797
798 /**
799 * migrate_vma_pages() - migrate meta-data from src page to dst page
800 * @migrate: migrate struct containing all migration information
801 *
802 * This migrates struct page meta-data from source struct page to destination
803 * struct page. This effectively finishes the migration from source page to the
804 * destination page.
805 */
806 void migrate_vma_pages(struct migrate_vma *migrate)
807 {
808 __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
809 }
810 EXPORT_SYMBOL(migrate_vma_pages);
811
812 /*
813 * migrate_device_finalize() - complete page migration
814 * @src_pfns: src_pfns returned from migrate_device_range()
815 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
816 * @npages: number of pages in the range
817 *
818 * Completes migration of the page by removing special migration entries.
819 * Drivers must ensure copying of page data is complete and visible to the CPU
820 * before calling this.
821 */
822 void migrate_device_finalize(unsigned long *src_pfns,
823 unsigned long *dst_pfns, unsigned long npages)
824 {
825 unsigned long i;
826
827 for (i = 0; i < npages; i++) {
828 struct folio *dst, *src;
829 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
830 struct page *page = migrate_pfn_to_page(src_pfns[i]);
831
832 if (!page) {
833 if (newpage) {
834 unlock_page(newpage);
835 put_page(newpage);
836 }
837 continue;
838 }
839
840 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
841 if (newpage) {
842 unlock_page(newpage);
843 put_page(newpage);
844 }
845 newpage = page;
846 }
847
848 src = page_folio(page);
849 dst = page_folio(newpage);
850 remove_migration_ptes(src, dst, false);
851 folio_unlock(src);
852
853 if (is_zone_device_page(page))
854 put_page(page);
855 else
856 putback_lru_page(page);
857
858 if (newpage != page) {
859 unlock_page(newpage);
860 if (is_zone_device_page(newpage))
861 put_page(newpage);
862 else
863 putback_lru_page(newpage);
864 }
865 }
866 }
867 EXPORT_SYMBOL(migrate_device_finalize);
868
869 /**
870 * migrate_vma_finalize() - restore CPU page table entry
871 * @migrate: migrate struct containing all migration information
872 *
873 * This replaces the special migration pte entry with either a mapping to the
874 * new page if migration was successful for that page, or to the original page
875 * otherwise.
876 *
877 * This also unlocks the pages and puts them back on the lru, or drops the extra
878 * refcount, for device pages.
879 */
880 void migrate_vma_finalize(struct migrate_vma *migrate)
881 {
882 migrate_device_finalize(migrate->src, migrate->dst, migrate->npages);
883 }
884 EXPORT_SYMBOL(migrate_vma_finalize);
885
886 /**
887 * migrate_device_range() - migrate device private pfns to normal memory.
888 * @src_pfns: array large enough to hold migrating source device private pfns.
889 * @start: starting pfn in the range to migrate.
890 * @npages: number of pages to migrate.
891 *
892 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
893 * instead of looking up pages based on virtual address mappings a range of
894 * device pfns that should be migrated to system memory is used instead.
895 *
896 * This is useful when a driver needs to free device memory but doesn't know the
897 * virtual mappings of every page that may be in device memory. For example this
898 * is often the case when a driver is being unloaded or unbound from a device.
899 *
900 * Like migrate_vma_setup() this function will take a reference and lock any
901 * migrating pages that aren't free before unmapping them. Drivers may then
902 * allocate destination pages and start copying data from the device to CPU
903 * memory before calling migrate_device_pages().
904 */
905 int migrate_device_range(unsigned long *src_pfns, unsigned long start,
906 unsigned long npages)
907 {
908 unsigned long i, pfn;
909
910 for (pfn = start, i = 0; i < npages; pfn++, i++) {
911 struct page *page = pfn_to_page(pfn);
912
913 if (!get_page_unless_zero(page)) {
914 src_pfns[i] = 0;
915 continue;
916 }
917
918 if (!trylock_page(page)) {
919 src_pfns[i] = 0;
920 put_page(page);
921 continue;
922 }
923
924 src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
925 }
926
927 migrate_device_unmap(src_pfns, npages, NULL);
928
929 return 0;
930 }
931 EXPORT_SYMBOL(migrate_device_range);
932
933 /*
934 * Migrate a device coherent page back to normal memory. The caller should have
935 * a reference on page which will be copied to the new page if migration is
936 * successful or dropped on failure.
937 */
938 int migrate_device_coherent_page(struct page *page)
939 {
940 unsigned long src_pfn, dst_pfn = 0;
941 struct page *dpage;
942
943 WARN_ON_ONCE(PageCompound(page));
944
945 lock_page(page);
946 src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
947
948 /*
949 * We don't have a VMA and don't need to walk the page tables to find
950 * the source page. So call migrate_vma_unmap() directly to unmap the
951 * page as migrate_vma_setup() will fail if args.vma == NULL.
952 */
953 migrate_device_unmap(&src_pfn, 1, NULL);
954 if (!(src_pfn & MIGRATE_PFN_MIGRATE))
955 return -EBUSY;
956
957 dpage = alloc_page(GFP_USER | __GFP_NOWARN);
958 if (dpage) {
959 lock_page(dpage);
960 dst_pfn = migrate_pfn(page_to_pfn(dpage));
961 }
962
963 migrate_device_pages(&src_pfn, &dst_pfn, 1);
964 if (src_pfn & MIGRATE_PFN_MIGRATE)
965 copy_highpage(dpage, page);
966 migrate_device_finalize(&src_pfn, &dst_pfn, 1);
967
968 if (src_pfn & MIGRATE_PFN_MIGRATE)
969 return 0;
970 return -EBUSY;
971 }