]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/mlock.c
Merge branch 'drm-fixes-4.14' of git://people.freedesktop.org/~agd5f/linux into drm...
[people/arne_f/kernel.git] / mm / mlock.c
1 /*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/sched/user.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/pagemap.h>
15 #include <linux/pagevec.h>
16 #include <linux/mempolicy.h>
17 #include <linux/syscalls.h>
18 #include <linux/sched.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>
21 #include <linux/mmzone.h>
22 #include <linux/hugetlb.h>
23 #include <linux/memcontrol.h>
24 #include <linux/mm_inline.h>
25
26 #include "internal.h"
27
28 bool can_do_mlock(void)
29 {
30 if (rlimit(RLIMIT_MEMLOCK) != 0)
31 return true;
32 if (capable(CAP_IPC_LOCK))
33 return true;
34 return false;
35 }
36 EXPORT_SYMBOL(can_do_mlock);
37
38 /*
39 * Mlocked pages are marked with PageMlocked() flag for efficient testing
40 * in vmscan and, possibly, the fault path; and to support semi-accurate
41 * statistics.
42 *
43 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
44 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
45 * The unevictable list is an LRU sibling list to the [in]active lists.
46 * PageUnevictable is set to indicate the unevictable state.
47 *
48 * When lazy mlocking via vmscan, it is important to ensure that the
49 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
50 * may have mlocked a page that is being munlocked. So lazy mlock must take
51 * the mmap_sem for read, and verify that the vma really is locked
52 * (see mm/rmap.c).
53 */
54
55 /*
56 * LRU accounting for clear_page_mlock()
57 */
58 void clear_page_mlock(struct page *page)
59 {
60 if (!TestClearPageMlocked(page))
61 return;
62
63 mod_zone_page_state(page_zone(page), NR_MLOCK,
64 -hpage_nr_pages(page));
65 count_vm_event(UNEVICTABLE_PGCLEARED);
66 if (!isolate_lru_page(page)) {
67 putback_lru_page(page);
68 } else {
69 /*
70 * We lost the race. the page already moved to evictable list.
71 */
72 if (PageUnevictable(page))
73 count_vm_event(UNEVICTABLE_PGSTRANDED);
74 }
75 }
76
77 /*
78 * Mark page as mlocked if not already.
79 * If page on LRU, isolate and putback to move to unevictable list.
80 */
81 void mlock_vma_page(struct page *page)
82 {
83 /* Serialize with page migration */
84 BUG_ON(!PageLocked(page));
85
86 VM_BUG_ON_PAGE(PageTail(page), page);
87 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
88
89 if (!TestSetPageMlocked(page)) {
90 mod_zone_page_state(page_zone(page), NR_MLOCK,
91 hpage_nr_pages(page));
92 count_vm_event(UNEVICTABLE_PGMLOCKED);
93 if (!isolate_lru_page(page))
94 putback_lru_page(page);
95 }
96 }
97
98 /*
99 * Isolate a page from LRU with optional get_page() pin.
100 * Assumes lru_lock already held and page already pinned.
101 */
102 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
103 {
104 if (PageLRU(page)) {
105 struct lruvec *lruvec;
106
107 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
108 if (getpage)
109 get_page(page);
110 ClearPageLRU(page);
111 del_page_from_lru_list(page, lruvec, page_lru(page));
112 return true;
113 }
114
115 return false;
116 }
117
118 /*
119 * Finish munlock after successful page isolation
120 *
121 * Page must be locked. This is a wrapper for try_to_munlock()
122 * and putback_lru_page() with munlock accounting.
123 */
124 static void __munlock_isolated_page(struct page *page)
125 {
126 /*
127 * Optimization: if the page was mapped just once, that's our mapping
128 * and we don't need to check all the other vmas.
129 */
130 if (page_mapcount(page) > 1)
131 try_to_munlock(page);
132
133 /* Did try_to_unlock() succeed or punt? */
134 if (!PageMlocked(page))
135 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
136
137 putback_lru_page(page);
138 }
139
140 /*
141 * Accounting for page isolation fail during munlock
142 *
143 * Performs accounting when page isolation fails in munlock. There is nothing
144 * else to do because it means some other task has already removed the page
145 * from the LRU. putback_lru_page() will take care of removing the page from
146 * the unevictable list, if necessary. vmscan [page_referenced()] will move
147 * the page back to the unevictable list if some other vma has it mlocked.
148 */
149 static void __munlock_isolation_failed(struct page *page)
150 {
151 if (PageUnevictable(page))
152 __count_vm_event(UNEVICTABLE_PGSTRANDED);
153 else
154 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
155 }
156
157 /**
158 * munlock_vma_page - munlock a vma page
159 * @page - page to be unlocked, either a normal page or THP page head
160 *
161 * returns the size of the page as a page mask (0 for normal page,
162 * HPAGE_PMD_NR - 1 for THP head page)
163 *
164 * called from munlock()/munmap() path with page supposedly on the LRU.
165 * When we munlock a page, because the vma where we found the page is being
166 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
167 * page locked so that we can leave it on the unevictable lru list and not
168 * bother vmscan with it. However, to walk the page's rmap list in
169 * try_to_munlock() we must isolate the page from the LRU. If some other
170 * task has removed the page from the LRU, we won't be able to do that.
171 * So we clear the PageMlocked as we might not get another chance. If we
172 * can't isolate the page, we leave it for putback_lru_page() and vmscan
173 * [page_referenced()/try_to_unmap()] to deal with.
174 */
175 unsigned int munlock_vma_page(struct page *page)
176 {
177 int nr_pages;
178 struct zone *zone = page_zone(page);
179
180 /* For try_to_munlock() and to serialize with page migration */
181 BUG_ON(!PageLocked(page));
182
183 VM_BUG_ON_PAGE(PageTail(page), page);
184
185 /*
186 * Serialize with any parallel __split_huge_page_refcount() which
187 * might otherwise copy PageMlocked to part of the tail pages before
188 * we clear it in the head page. It also stabilizes hpage_nr_pages().
189 */
190 spin_lock_irq(zone_lru_lock(zone));
191
192 if (!TestClearPageMlocked(page)) {
193 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
194 nr_pages = 1;
195 goto unlock_out;
196 }
197
198 nr_pages = hpage_nr_pages(page);
199 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
200
201 if (__munlock_isolate_lru_page(page, true)) {
202 spin_unlock_irq(zone_lru_lock(zone));
203 __munlock_isolated_page(page);
204 goto out;
205 }
206 __munlock_isolation_failed(page);
207
208 unlock_out:
209 spin_unlock_irq(zone_lru_lock(zone));
210
211 out:
212 return nr_pages - 1;
213 }
214
215 /*
216 * convert get_user_pages() return value to posix mlock() error
217 */
218 static int __mlock_posix_error_return(long retval)
219 {
220 if (retval == -EFAULT)
221 retval = -ENOMEM;
222 else if (retval == -ENOMEM)
223 retval = -EAGAIN;
224 return retval;
225 }
226
227 /*
228 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
229 *
230 * The fast path is available only for evictable pages with single mapping.
231 * Then we can bypass the per-cpu pvec and get better performance.
232 * when mapcount > 1 we need try_to_munlock() which can fail.
233 * when !page_evictable(), we need the full redo logic of putback_lru_page to
234 * avoid leaving evictable page in unevictable list.
235 *
236 * In case of success, @page is added to @pvec and @pgrescued is incremented
237 * in case that the page was previously unevictable. @page is also unlocked.
238 */
239 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
240 int *pgrescued)
241 {
242 VM_BUG_ON_PAGE(PageLRU(page), page);
243 VM_BUG_ON_PAGE(!PageLocked(page), page);
244
245 if (page_mapcount(page) <= 1 && page_evictable(page)) {
246 pagevec_add(pvec, page);
247 if (TestClearPageUnevictable(page))
248 (*pgrescued)++;
249 unlock_page(page);
250 return true;
251 }
252
253 return false;
254 }
255
256 /*
257 * Putback multiple evictable pages to the LRU
258 *
259 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
260 * the pages might have meanwhile become unevictable but that is OK.
261 */
262 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
263 {
264 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
265 /*
266 *__pagevec_lru_add() calls release_pages() so we don't call
267 * put_page() explicitly
268 */
269 __pagevec_lru_add(pvec);
270 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
271 }
272
273 /*
274 * Munlock a batch of pages from the same zone
275 *
276 * The work is split to two main phases. First phase clears the Mlocked flag
277 * and attempts to isolate the pages, all under a single zone lru lock.
278 * The second phase finishes the munlock only for pages where isolation
279 * succeeded.
280 *
281 * Note that the pagevec may be modified during the process.
282 */
283 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
284 {
285 int i;
286 int nr = pagevec_count(pvec);
287 int delta_munlocked = -nr;
288 struct pagevec pvec_putback;
289 int pgrescued = 0;
290
291 pagevec_init(&pvec_putback, 0);
292
293 /* Phase 1: page isolation */
294 spin_lock_irq(zone_lru_lock(zone));
295 for (i = 0; i < nr; i++) {
296 struct page *page = pvec->pages[i];
297
298 if (TestClearPageMlocked(page)) {
299 /*
300 * We already have pin from follow_page_mask()
301 * so we can spare the get_page() here.
302 */
303 if (__munlock_isolate_lru_page(page, false))
304 continue;
305 else
306 __munlock_isolation_failed(page);
307 } else {
308 delta_munlocked++;
309 }
310
311 /*
312 * We won't be munlocking this page in the next phase
313 * but we still need to release the follow_page_mask()
314 * pin. We cannot do it under lru_lock however. If it's
315 * the last pin, __page_cache_release() would deadlock.
316 */
317 pagevec_add(&pvec_putback, pvec->pages[i]);
318 pvec->pages[i] = NULL;
319 }
320 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
321 spin_unlock_irq(zone_lru_lock(zone));
322
323 /* Now we can release pins of pages that we are not munlocking */
324 pagevec_release(&pvec_putback);
325
326 /* Phase 2: page munlock */
327 for (i = 0; i < nr; i++) {
328 struct page *page = pvec->pages[i];
329
330 if (page) {
331 lock_page(page);
332 if (!__putback_lru_fast_prepare(page, &pvec_putback,
333 &pgrescued)) {
334 /*
335 * Slow path. We don't want to lose the last
336 * pin before unlock_page()
337 */
338 get_page(page); /* for putback_lru_page() */
339 __munlock_isolated_page(page);
340 unlock_page(page);
341 put_page(page); /* from follow_page_mask() */
342 }
343 }
344 }
345
346 /*
347 * Phase 3: page putback for pages that qualified for the fast path
348 * This will also call put_page() to return pin from follow_page_mask()
349 */
350 if (pagevec_count(&pvec_putback))
351 __putback_lru_fast(&pvec_putback, pgrescued);
352 }
353
354 /*
355 * Fill up pagevec for __munlock_pagevec using pte walk
356 *
357 * The function expects that the struct page corresponding to @start address is
358 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
359 *
360 * The rest of @pvec is filled by subsequent pages within the same pmd and same
361 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
362 * pages also get pinned.
363 *
364 * Returns the address of the next page that should be scanned. This equals
365 * @start + PAGE_SIZE when no page could be added by the pte walk.
366 */
367 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
368 struct vm_area_struct *vma, struct zone *zone,
369 unsigned long start, unsigned long end)
370 {
371 pte_t *pte;
372 spinlock_t *ptl;
373
374 /*
375 * Initialize pte walk starting at the already pinned page where we
376 * are sure that there is a pte, as it was pinned under the same
377 * mmap_sem write op.
378 */
379 pte = get_locked_pte(vma->vm_mm, start, &ptl);
380 /* Make sure we do not cross the page table boundary */
381 end = pgd_addr_end(start, end);
382 end = p4d_addr_end(start, end);
383 end = pud_addr_end(start, end);
384 end = pmd_addr_end(start, end);
385
386 /* The page next to the pinned page is the first we will try to get */
387 start += PAGE_SIZE;
388 while (start < end) {
389 struct page *page = NULL;
390 pte++;
391 if (pte_present(*pte))
392 page = vm_normal_page(vma, start, *pte);
393 /*
394 * Break if page could not be obtained or the page's node+zone does not
395 * match
396 */
397 if (!page || page_zone(page) != zone)
398 break;
399
400 /*
401 * Do not use pagevec for PTE-mapped THP,
402 * munlock_vma_pages_range() will handle them.
403 */
404 if (PageTransCompound(page))
405 break;
406
407 get_page(page);
408 /*
409 * Increase the address that will be returned *before* the
410 * eventual break due to pvec becoming full by adding the page
411 */
412 start += PAGE_SIZE;
413 if (pagevec_add(pvec, page) == 0)
414 break;
415 }
416 pte_unmap_unlock(pte, ptl);
417 return start;
418 }
419
420 /*
421 * munlock_vma_pages_range() - munlock all pages in the vma range.'
422 * @vma - vma containing range to be munlock()ed.
423 * @start - start address in @vma of the range
424 * @end - end of range in @vma.
425 *
426 * For mremap(), munmap() and exit().
427 *
428 * Called with @vma VM_LOCKED.
429 *
430 * Returns with VM_LOCKED cleared. Callers must be prepared to
431 * deal with this.
432 *
433 * We don't save and restore VM_LOCKED here because pages are
434 * still on lru. In unmap path, pages might be scanned by reclaim
435 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
436 * free them. This will result in freeing mlocked pages.
437 */
438 void munlock_vma_pages_range(struct vm_area_struct *vma,
439 unsigned long start, unsigned long end)
440 {
441 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
442
443 while (start < end) {
444 struct page *page;
445 unsigned int page_mask = 0;
446 unsigned long page_increm;
447 struct pagevec pvec;
448 struct zone *zone;
449
450 pagevec_init(&pvec, 0);
451 /*
452 * Although FOLL_DUMP is intended for get_dump_page(),
453 * it just so happens that its special treatment of the
454 * ZERO_PAGE (returning an error instead of doing get_page)
455 * suits munlock very well (and if somehow an abnormal page
456 * has sneaked into the range, we won't oops here: great).
457 */
458 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
459
460 if (page && !IS_ERR(page)) {
461 if (PageTransTail(page)) {
462 VM_BUG_ON_PAGE(PageMlocked(page), page);
463 put_page(page); /* follow_page_mask() */
464 } else if (PageTransHuge(page)) {
465 lock_page(page);
466 /*
467 * Any THP page found by follow_page_mask() may
468 * have gotten split before reaching
469 * munlock_vma_page(), so we need to compute
470 * the page_mask here instead.
471 */
472 page_mask = munlock_vma_page(page);
473 unlock_page(page);
474 put_page(page); /* follow_page_mask() */
475 } else {
476 /*
477 * Non-huge pages are handled in batches via
478 * pagevec. The pin from follow_page_mask()
479 * prevents them from collapsing by THP.
480 */
481 pagevec_add(&pvec, page);
482 zone = page_zone(page);
483
484 /*
485 * Try to fill the rest of pagevec using fast
486 * pte walk. This will also update start to
487 * the next page to process. Then munlock the
488 * pagevec.
489 */
490 start = __munlock_pagevec_fill(&pvec, vma,
491 zone, start, end);
492 __munlock_pagevec(&pvec, zone);
493 goto next;
494 }
495 }
496 page_increm = 1 + page_mask;
497 start += page_increm * PAGE_SIZE;
498 next:
499 cond_resched();
500 }
501 }
502
503 /*
504 * mlock_fixup - handle mlock[all]/munlock[all] requests.
505 *
506 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
507 * munlock is a no-op. However, for some special vmas, we go ahead and
508 * populate the ptes.
509 *
510 * For vmas that pass the filters, merge/split as appropriate.
511 */
512 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
513 unsigned long start, unsigned long end, vm_flags_t newflags)
514 {
515 struct mm_struct *mm = vma->vm_mm;
516 pgoff_t pgoff;
517 int nr_pages;
518 int ret = 0;
519 int lock = !!(newflags & VM_LOCKED);
520 vm_flags_t old_flags = vma->vm_flags;
521
522 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
523 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
524 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
525 goto out;
526
527 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
528 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
529 vma->vm_file, pgoff, vma_policy(vma),
530 vma->vm_userfaultfd_ctx);
531 if (*prev) {
532 vma = *prev;
533 goto success;
534 }
535
536 if (start != vma->vm_start) {
537 ret = split_vma(mm, vma, start, 1);
538 if (ret)
539 goto out;
540 }
541
542 if (end != vma->vm_end) {
543 ret = split_vma(mm, vma, end, 0);
544 if (ret)
545 goto out;
546 }
547
548 success:
549 /*
550 * Keep track of amount of locked VM.
551 */
552 nr_pages = (end - start) >> PAGE_SHIFT;
553 if (!lock)
554 nr_pages = -nr_pages;
555 else if (old_flags & VM_LOCKED)
556 nr_pages = 0;
557 mm->locked_vm += nr_pages;
558
559 /*
560 * vm_flags is protected by the mmap_sem held in write mode.
561 * It's okay if try_to_unmap_one unmaps a page just after we
562 * set VM_LOCKED, populate_vma_page_range will bring it back.
563 */
564
565 if (lock)
566 vma->vm_flags = newflags;
567 else
568 munlock_vma_pages_range(vma, start, end);
569
570 out:
571 *prev = vma;
572 return ret;
573 }
574
575 static int apply_vma_lock_flags(unsigned long start, size_t len,
576 vm_flags_t flags)
577 {
578 unsigned long nstart, end, tmp;
579 struct vm_area_struct * vma, * prev;
580 int error;
581
582 VM_BUG_ON(offset_in_page(start));
583 VM_BUG_ON(len != PAGE_ALIGN(len));
584 end = start + len;
585 if (end < start)
586 return -EINVAL;
587 if (end == start)
588 return 0;
589 vma = find_vma(current->mm, start);
590 if (!vma || vma->vm_start > start)
591 return -ENOMEM;
592
593 prev = vma->vm_prev;
594 if (start > vma->vm_start)
595 prev = vma;
596
597 for (nstart = start ; ; ) {
598 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
599
600 newflags |= flags;
601
602 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
603 tmp = vma->vm_end;
604 if (tmp > end)
605 tmp = end;
606 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
607 if (error)
608 break;
609 nstart = tmp;
610 if (nstart < prev->vm_end)
611 nstart = prev->vm_end;
612 if (nstart >= end)
613 break;
614
615 vma = prev->vm_next;
616 if (!vma || vma->vm_start != nstart) {
617 error = -ENOMEM;
618 break;
619 }
620 }
621 return error;
622 }
623
624 /*
625 * Go through vma areas and sum size of mlocked
626 * vma pages, as return value.
627 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
628 * is also counted.
629 * Return value: previously mlocked page counts
630 */
631 static int count_mm_mlocked_page_nr(struct mm_struct *mm,
632 unsigned long start, size_t len)
633 {
634 struct vm_area_struct *vma;
635 int count = 0;
636
637 if (mm == NULL)
638 mm = current->mm;
639
640 vma = find_vma(mm, start);
641 if (vma == NULL)
642 vma = mm->mmap;
643
644 for (; vma ; vma = vma->vm_next) {
645 if (start >= vma->vm_end)
646 continue;
647 if (start + len <= vma->vm_start)
648 break;
649 if (vma->vm_flags & VM_LOCKED) {
650 if (start > vma->vm_start)
651 count -= (start - vma->vm_start);
652 if (start + len < vma->vm_end) {
653 count += start + len - vma->vm_start;
654 break;
655 }
656 count += vma->vm_end - vma->vm_start;
657 }
658 }
659
660 return count >> PAGE_SHIFT;
661 }
662
663 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
664 {
665 unsigned long locked;
666 unsigned long lock_limit;
667 int error = -ENOMEM;
668
669 if (!can_do_mlock())
670 return -EPERM;
671
672 lru_add_drain_all(); /* flush pagevec */
673
674 len = PAGE_ALIGN(len + (offset_in_page(start)));
675 start &= PAGE_MASK;
676
677 lock_limit = rlimit(RLIMIT_MEMLOCK);
678 lock_limit >>= PAGE_SHIFT;
679 locked = len >> PAGE_SHIFT;
680
681 if (down_write_killable(&current->mm->mmap_sem))
682 return -EINTR;
683
684 locked += current->mm->locked_vm;
685 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
686 /*
687 * It is possible that the regions requested intersect with
688 * previously mlocked areas, that part area in "mm->locked_vm"
689 * should not be counted to new mlock increment count. So check
690 * and adjust locked count if necessary.
691 */
692 locked -= count_mm_mlocked_page_nr(current->mm,
693 start, len);
694 }
695
696 /* check against resource limits */
697 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
698 error = apply_vma_lock_flags(start, len, flags);
699
700 up_write(&current->mm->mmap_sem);
701 if (error)
702 return error;
703
704 error = __mm_populate(start, len, 0);
705 if (error)
706 return __mlock_posix_error_return(error);
707 return 0;
708 }
709
710 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
711 {
712 return do_mlock(start, len, VM_LOCKED);
713 }
714
715 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
716 {
717 vm_flags_t vm_flags = VM_LOCKED;
718
719 if (flags & ~MLOCK_ONFAULT)
720 return -EINVAL;
721
722 if (flags & MLOCK_ONFAULT)
723 vm_flags |= VM_LOCKONFAULT;
724
725 return do_mlock(start, len, vm_flags);
726 }
727
728 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
729 {
730 int ret;
731
732 len = PAGE_ALIGN(len + (offset_in_page(start)));
733 start &= PAGE_MASK;
734
735 if (down_write_killable(&current->mm->mmap_sem))
736 return -EINTR;
737 ret = apply_vma_lock_flags(start, len, 0);
738 up_write(&current->mm->mmap_sem);
739
740 return ret;
741 }
742
743 /*
744 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
745 * and translate into the appropriate modifications to mm->def_flags and/or the
746 * flags for all current VMAs.
747 *
748 * There are a couple of subtleties with this. If mlockall() is called multiple
749 * times with different flags, the values do not necessarily stack. If mlockall
750 * is called once including the MCL_FUTURE flag and then a second time without
751 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
752 */
753 static int apply_mlockall_flags(int flags)
754 {
755 struct vm_area_struct * vma, * prev = NULL;
756 vm_flags_t to_add = 0;
757
758 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
759 if (flags & MCL_FUTURE) {
760 current->mm->def_flags |= VM_LOCKED;
761
762 if (flags & MCL_ONFAULT)
763 current->mm->def_flags |= VM_LOCKONFAULT;
764
765 if (!(flags & MCL_CURRENT))
766 goto out;
767 }
768
769 if (flags & MCL_CURRENT) {
770 to_add |= VM_LOCKED;
771 if (flags & MCL_ONFAULT)
772 to_add |= VM_LOCKONFAULT;
773 }
774
775 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
776 vm_flags_t newflags;
777
778 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
779 newflags |= to_add;
780
781 /* Ignore errors */
782 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
783 cond_resched_rcu_qs();
784 }
785 out:
786 return 0;
787 }
788
789 SYSCALL_DEFINE1(mlockall, int, flags)
790 {
791 unsigned long lock_limit;
792 int ret;
793
794 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
795 return -EINVAL;
796
797 if (!can_do_mlock())
798 return -EPERM;
799
800 if (flags & MCL_CURRENT)
801 lru_add_drain_all(); /* flush pagevec */
802
803 lock_limit = rlimit(RLIMIT_MEMLOCK);
804 lock_limit >>= PAGE_SHIFT;
805
806 if (down_write_killable(&current->mm->mmap_sem))
807 return -EINTR;
808
809 ret = -ENOMEM;
810 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
811 capable(CAP_IPC_LOCK))
812 ret = apply_mlockall_flags(flags);
813 up_write(&current->mm->mmap_sem);
814 if (!ret && (flags & MCL_CURRENT))
815 mm_populate(0, TASK_SIZE);
816
817 return ret;
818 }
819
820 SYSCALL_DEFINE0(munlockall)
821 {
822 int ret;
823
824 if (down_write_killable(&current->mm->mmap_sem))
825 return -EINTR;
826 ret = apply_mlockall_flags(0);
827 up_write(&current->mm->mmap_sem);
828 return ret;
829 }
830
831 /*
832 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
833 * shm segments) get accounted against the user_struct instead.
834 */
835 static DEFINE_SPINLOCK(shmlock_user_lock);
836
837 int user_shm_lock(size_t size, struct user_struct *user)
838 {
839 unsigned long lock_limit, locked;
840 int allowed = 0;
841
842 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
843 lock_limit = rlimit(RLIMIT_MEMLOCK);
844 if (lock_limit == RLIM_INFINITY)
845 allowed = 1;
846 lock_limit >>= PAGE_SHIFT;
847 spin_lock(&shmlock_user_lock);
848 if (!allowed &&
849 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
850 goto out;
851 get_uid(user);
852 user->locked_shm += locked;
853 allowed = 1;
854 out:
855 spin_unlock(&shmlock_user_lock);
856 return allowed;
857 }
858
859 void user_shm_unlock(size_t size, struct user_struct *user)
860 {
861 spin_lock(&shmlock_user_lock);
862 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
863 spin_unlock(&shmlock_user_lock);
864 free_uid(user);
865 }