]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/mm_init.c
Merge tag 'vfs-6.10-rc4.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[thirdparty/kernel/stable.git] / mm / mm_init.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm_init.c - Memory initialisation verification and debugging
4 *
5 * Copyright 2008 IBM Corporation, 2008
6 * Author Mel Gorman <mel@csn.ul.ie>
7 *
8 */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include "internal.h"
33 #include "slab.h"
34 #include "shuffle.h"
35
36 #include <asm/setup.h>
37
38 #ifdef CONFIG_DEBUG_MEMORY_INIT
39 int __meminitdata mminit_loglevel;
40
41 /* The zonelists are simply reported, validation is manual. */
42 void __init mminit_verify_zonelist(void)
43 {
44 int nid;
45
46 if (mminit_loglevel < MMINIT_VERIFY)
47 return;
48
49 for_each_online_node(nid) {
50 pg_data_t *pgdat = NODE_DATA(nid);
51 struct zone *zone;
52 struct zoneref *z;
53 struct zonelist *zonelist;
54 int i, listid, zoneid;
55
56 BUILD_BUG_ON(MAX_ZONELISTS > 2);
57 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
58
59 /* Identify the zone and nodelist */
60 zoneid = i % MAX_NR_ZONES;
61 listid = i / MAX_NR_ZONES;
62 zonelist = &pgdat->node_zonelists[listid];
63 zone = &pgdat->node_zones[zoneid];
64 if (!populated_zone(zone))
65 continue;
66
67 /* Print information about the zonelist */
68 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
69 listid > 0 ? "thisnode" : "general", nid,
70 zone->name);
71
72 /* Iterate the zonelist */
73 for_each_zone_zonelist(zone, z, zonelist, zoneid)
74 pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
75 pr_cont("\n");
76 }
77 }
78 }
79
80 void __init mminit_verify_pageflags_layout(void)
81 {
82 int shift, width;
83 unsigned long or_mask, add_mask;
84
85 shift = BITS_PER_LONG;
86 width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
87 - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
88 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
89 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
90 SECTIONS_WIDTH,
91 NODES_WIDTH,
92 ZONES_WIDTH,
93 LAST_CPUPID_WIDTH,
94 KASAN_TAG_WIDTH,
95 LRU_GEN_WIDTH,
96 LRU_REFS_WIDTH,
97 NR_PAGEFLAGS);
98 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
99 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
100 SECTIONS_SHIFT,
101 NODES_SHIFT,
102 ZONES_SHIFT,
103 LAST_CPUPID_SHIFT,
104 KASAN_TAG_WIDTH);
105 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
106 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
107 (unsigned long)SECTIONS_PGSHIFT,
108 (unsigned long)NODES_PGSHIFT,
109 (unsigned long)ZONES_PGSHIFT,
110 (unsigned long)LAST_CPUPID_PGSHIFT,
111 (unsigned long)KASAN_TAG_PGSHIFT);
112 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
113 "Node/Zone ID: %lu -> %lu\n",
114 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
115 (unsigned long)ZONEID_PGOFF);
116 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
117 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
118 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
119 #ifdef NODE_NOT_IN_PAGE_FLAGS
120 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
121 "Node not in page flags");
122 #endif
123 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
124 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
125 "Last cpupid not in page flags");
126 #endif
127
128 if (SECTIONS_WIDTH) {
129 shift -= SECTIONS_WIDTH;
130 BUG_ON(shift != SECTIONS_PGSHIFT);
131 }
132 if (NODES_WIDTH) {
133 shift -= NODES_WIDTH;
134 BUG_ON(shift != NODES_PGSHIFT);
135 }
136 if (ZONES_WIDTH) {
137 shift -= ZONES_WIDTH;
138 BUG_ON(shift != ZONES_PGSHIFT);
139 }
140
141 /* Check for bitmask overlaps */
142 or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
143 (NODES_MASK << NODES_PGSHIFT) |
144 (SECTIONS_MASK << SECTIONS_PGSHIFT);
145 add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
146 (NODES_MASK << NODES_PGSHIFT) +
147 (SECTIONS_MASK << SECTIONS_PGSHIFT);
148 BUG_ON(or_mask != add_mask);
149 }
150
151 static __init int set_mminit_loglevel(char *str)
152 {
153 get_option(&str, &mminit_loglevel);
154 return 0;
155 }
156 early_param("mminit_loglevel", set_mminit_loglevel);
157 #endif /* CONFIG_DEBUG_MEMORY_INIT */
158
159 struct kobject *mm_kobj;
160
161 #ifdef CONFIG_SMP
162 s32 vm_committed_as_batch = 32;
163
164 void mm_compute_batch(int overcommit_policy)
165 {
166 u64 memsized_batch;
167 s32 nr = num_present_cpus();
168 s32 batch = max_t(s32, nr*2, 32);
169 unsigned long ram_pages = totalram_pages();
170
171 /*
172 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
173 * (total memory/#cpus), and lift it to 25% for other policies
174 * to easy the possible lock contention for percpu_counter
175 * vm_committed_as, while the max limit is INT_MAX
176 */
177 if (overcommit_policy == OVERCOMMIT_NEVER)
178 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
179 else
180 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
181
182 vm_committed_as_batch = max_t(s32, memsized_batch, batch);
183 }
184
185 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
186 unsigned long action, void *arg)
187 {
188 switch (action) {
189 case MEM_ONLINE:
190 case MEM_OFFLINE:
191 mm_compute_batch(sysctl_overcommit_memory);
192 break;
193 default:
194 break;
195 }
196 return NOTIFY_OK;
197 }
198
199 static int __init mm_compute_batch_init(void)
200 {
201 mm_compute_batch(sysctl_overcommit_memory);
202 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
203 return 0;
204 }
205
206 __initcall(mm_compute_batch_init);
207
208 #endif
209
210 static int __init mm_sysfs_init(void)
211 {
212 mm_kobj = kobject_create_and_add("mm", kernel_kobj);
213 if (!mm_kobj)
214 return -ENOMEM;
215
216 return 0;
217 }
218 postcore_initcall(mm_sysfs_init);
219
220 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
221 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
222 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
223
224 static unsigned long required_kernelcore __initdata;
225 static unsigned long required_kernelcore_percent __initdata;
226 static unsigned long required_movablecore __initdata;
227 static unsigned long required_movablecore_percent __initdata;
228
229 static unsigned long nr_kernel_pages __initdata;
230 static unsigned long nr_all_pages __initdata;
231
232 static bool deferred_struct_pages __meminitdata;
233
234 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
235
236 static int __init cmdline_parse_core(char *p, unsigned long *core,
237 unsigned long *percent)
238 {
239 unsigned long long coremem;
240 char *endptr;
241
242 if (!p)
243 return -EINVAL;
244
245 /* Value may be a percentage of total memory, otherwise bytes */
246 coremem = simple_strtoull(p, &endptr, 0);
247 if (*endptr == '%') {
248 /* Paranoid check for percent values greater than 100 */
249 WARN_ON(coremem > 100);
250
251 *percent = coremem;
252 } else {
253 coremem = memparse(p, &p);
254 /* Paranoid check that UL is enough for the coremem value */
255 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
256
257 *core = coremem >> PAGE_SHIFT;
258 *percent = 0UL;
259 }
260 return 0;
261 }
262
263 bool mirrored_kernelcore __initdata_memblock;
264
265 /*
266 * kernelcore=size sets the amount of memory for use for allocations that
267 * cannot be reclaimed or migrated.
268 */
269 static int __init cmdline_parse_kernelcore(char *p)
270 {
271 /* parse kernelcore=mirror */
272 if (parse_option_str(p, "mirror")) {
273 mirrored_kernelcore = true;
274 return 0;
275 }
276
277 return cmdline_parse_core(p, &required_kernelcore,
278 &required_kernelcore_percent);
279 }
280 early_param("kernelcore", cmdline_parse_kernelcore);
281
282 /*
283 * movablecore=size sets the amount of memory for use for allocations that
284 * can be reclaimed or migrated.
285 */
286 static int __init cmdline_parse_movablecore(char *p)
287 {
288 return cmdline_parse_core(p, &required_movablecore,
289 &required_movablecore_percent);
290 }
291 early_param("movablecore", cmdline_parse_movablecore);
292
293 /*
294 * early_calculate_totalpages()
295 * Sum pages in active regions for movable zone.
296 * Populate N_MEMORY for calculating usable_nodes.
297 */
298 static unsigned long __init early_calculate_totalpages(void)
299 {
300 unsigned long totalpages = 0;
301 unsigned long start_pfn, end_pfn;
302 int i, nid;
303
304 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
305 unsigned long pages = end_pfn - start_pfn;
306
307 totalpages += pages;
308 if (pages)
309 node_set_state(nid, N_MEMORY);
310 }
311 return totalpages;
312 }
313
314 /*
315 * This finds a zone that can be used for ZONE_MOVABLE pages. The
316 * assumption is made that zones within a node are ordered in monotonic
317 * increasing memory addresses so that the "highest" populated zone is used
318 */
319 static void __init find_usable_zone_for_movable(void)
320 {
321 int zone_index;
322 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
323 if (zone_index == ZONE_MOVABLE)
324 continue;
325
326 if (arch_zone_highest_possible_pfn[zone_index] >
327 arch_zone_lowest_possible_pfn[zone_index])
328 break;
329 }
330
331 VM_BUG_ON(zone_index == -1);
332 movable_zone = zone_index;
333 }
334
335 /*
336 * Find the PFN the Movable zone begins in each node. Kernel memory
337 * is spread evenly between nodes as long as the nodes have enough
338 * memory. When they don't, some nodes will have more kernelcore than
339 * others
340 */
341 static void __init find_zone_movable_pfns_for_nodes(void)
342 {
343 int i, nid;
344 unsigned long usable_startpfn;
345 unsigned long kernelcore_node, kernelcore_remaining;
346 /* save the state before borrow the nodemask */
347 nodemask_t saved_node_state = node_states[N_MEMORY];
348 unsigned long totalpages = early_calculate_totalpages();
349 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
350 struct memblock_region *r;
351
352 /* Need to find movable_zone earlier when movable_node is specified. */
353 find_usable_zone_for_movable();
354
355 /*
356 * If movable_node is specified, ignore kernelcore and movablecore
357 * options.
358 */
359 if (movable_node_is_enabled()) {
360 for_each_mem_region(r) {
361 if (!memblock_is_hotpluggable(r))
362 continue;
363
364 nid = memblock_get_region_node(r);
365
366 usable_startpfn = PFN_DOWN(r->base);
367 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
368 min(usable_startpfn, zone_movable_pfn[nid]) :
369 usable_startpfn;
370 }
371
372 goto out2;
373 }
374
375 /*
376 * If kernelcore=mirror is specified, ignore movablecore option
377 */
378 if (mirrored_kernelcore) {
379 bool mem_below_4gb_not_mirrored = false;
380
381 if (!memblock_has_mirror()) {
382 pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
383 goto out;
384 }
385
386 if (is_kdump_kernel()) {
387 pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
388 goto out;
389 }
390
391 for_each_mem_region(r) {
392 if (memblock_is_mirror(r))
393 continue;
394
395 nid = memblock_get_region_node(r);
396
397 usable_startpfn = memblock_region_memory_base_pfn(r);
398
399 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
400 mem_below_4gb_not_mirrored = true;
401 continue;
402 }
403
404 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
405 min(usable_startpfn, zone_movable_pfn[nid]) :
406 usable_startpfn;
407 }
408
409 if (mem_below_4gb_not_mirrored)
410 pr_warn("This configuration results in unmirrored kernel memory.\n");
411
412 goto out2;
413 }
414
415 /*
416 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
417 * amount of necessary memory.
418 */
419 if (required_kernelcore_percent)
420 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
421 10000UL;
422 if (required_movablecore_percent)
423 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
424 10000UL;
425
426 /*
427 * If movablecore= was specified, calculate what size of
428 * kernelcore that corresponds so that memory usable for
429 * any allocation type is evenly spread. If both kernelcore
430 * and movablecore are specified, then the value of kernelcore
431 * will be used for required_kernelcore if it's greater than
432 * what movablecore would have allowed.
433 */
434 if (required_movablecore) {
435 unsigned long corepages;
436
437 /*
438 * Round-up so that ZONE_MOVABLE is at least as large as what
439 * was requested by the user
440 */
441 required_movablecore =
442 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
443 required_movablecore = min(totalpages, required_movablecore);
444 corepages = totalpages - required_movablecore;
445
446 required_kernelcore = max(required_kernelcore, corepages);
447 }
448
449 /*
450 * If kernelcore was not specified or kernelcore size is larger
451 * than totalpages, there is no ZONE_MOVABLE.
452 */
453 if (!required_kernelcore || required_kernelcore >= totalpages)
454 goto out;
455
456 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
457 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
458
459 restart:
460 /* Spread kernelcore memory as evenly as possible throughout nodes */
461 kernelcore_node = required_kernelcore / usable_nodes;
462 for_each_node_state(nid, N_MEMORY) {
463 unsigned long start_pfn, end_pfn;
464
465 /*
466 * Recalculate kernelcore_node if the division per node
467 * now exceeds what is necessary to satisfy the requested
468 * amount of memory for the kernel
469 */
470 if (required_kernelcore < kernelcore_node)
471 kernelcore_node = required_kernelcore / usable_nodes;
472
473 /*
474 * As the map is walked, we track how much memory is usable
475 * by the kernel using kernelcore_remaining. When it is
476 * 0, the rest of the node is usable by ZONE_MOVABLE
477 */
478 kernelcore_remaining = kernelcore_node;
479
480 /* Go through each range of PFNs within this node */
481 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
482 unsigned long size_pages;
483
484 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
485 if (start_pfn >= end_pfn)
486 continue;
487
488 /* Account for what is only usable for kernelcore */
489 if (start_pfn < usable_startpfn) {
490 unsigned long kernel_pages;
491 kernel_pages = min(end_pfn, usable_startpfn)
492 - start_pfn;
493
494 kernelcore_remaining -= min(kernel_pages,
495 kernelcore_remaining);
496 required_kernelcore -= min(kernel_pages,
497 required_kernelcore);
498
499 /* Continue if range is now fully accounted */
500 if (end_pfn <= usable_startpfn) {
501
502 /*
503 * Push zone_movable_pfn to the end so
504 * that if we have to rebalance
505 * kernelcore across nodes, we will
506 * not double account here
507 */
508 zone_movable_pfn[nid] = end_pfn;
509 continue;
510 }
511 start_pfn = usable_startpfn;
512 }
513
514 /*
515 * The usable PFN range for ZONE_MOVABLE is from
516 * start_pfn->end_pfn. Calculate size_pages as the
517 * number of pages used as kernelcore
518 */
519 size_pages = end_pfn - start_pfn;
520 if (size_pages > kernelcore_remaining)
521 size_pages = kernelcore_remaining;
522 zone_movable_pfn[nid] = start_pfn + size_pages;
523
524 /*
525 * Some kernelcore has been met, update counts and
526 * break if the kernelcore for this node has been
527 * satisfied
528 */
529 required_kernelcore -= min(required_kernelcore,
530 size_pages);
531 kernelcore_remaining -= size_pages;
532 if (!kernelcore_remaining)
533 break;
534 }
535 }
536
537 /*
538 * If there is still required_kernelcore, we do another pass with one
539 * less node in the count. This will push zone_movable_pfn[nid] further
540 * along on the nodes that still have memory until kernelcore is
541 * satisfied
542 */
543 usable_nodes--;
544 if (usable_nodes && required_kernelcore > usable_nodes)
545 goto restart;
546
547 out2:
548 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
549 for (nid = 0; nid < MAX_NUMNODES; nid++) {
550 unsigned long start_pfn, end_pfn;
551
552 zone_movable_pfn[nid] =
553 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
554
555 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
556 if (zone_movable_pfn[nid] >= end_pfn)
557 zone_movable_pfn[nid] = 0;
558 }
559
560 out:
561 /* restore the node_state */
562 node_states[N_MEMORY] = saved_node_state;
563 }
564
565 void __meminit __init_single_page(struct page *page, unsigned long pfn,
566 unsigned long zone, int nid)
567 {
568 mm_zero_struct_page(page);
569 set_page_links(page, zone, nid, pfn);
570 init_page_count(page);
571 page_mapcount_reset(page);
572 page_cpupid_reset_last(page);
573 page_kasan_tag_reset(page);
574
575 INIT_LIST_HEAD(&page->lru);
576 #ifdef WANT_PAGE_VIRTUAL
577 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
578 if (!is_highmem_idx(zone))
579 set_page_address(page, __va(pfn << PAGE_SHIFT));
580 #endif
581 }
582
583 #ifdef CONFIG_NUMA
584 /*
585 * During memory init memblocks map pfns to nids. The search is expensive and
586 * this caches recent lookups. The implementation of __early_pfn_to_nid
587 * treats start/end as pfns.
588 */
589 struct mminit_pfnnid_cache {
590 unsigned long last_start;
591 unsigned long last_end;
592 int last_nid;
593 };
594
595 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
596
597 /*
598 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
599 */
600 static int __meminit __early_pfn_to_nid(unsigned long pfn,
601 struct mminit_pfnnid_cache *state)
602 {
603 unsigned long start_pfn, end_pfn;
604 int nid;
605
606 if (state->last_start <= pfn && pfn < state->last_end)
607 return state->last_nid;
608
609 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
610 if (nid != NUMA_NO_NODE) {
611 state->last_start = start_pfn;
612 state->last_end = end_pfn;
613 state->last_nid = nid;
614 }
615
616 return nid;
617 }
618
619 int __meminit early_pfn_to_nid(unsigned long pfn)
620 {
621 static DEFINE_SPINLOCK(early_pfn_lock);
622 int nid;
623
624 spin_lock(&early_pfn_lock);
625 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
626 if (nid < 0)
627 nid = first_online_node;
628 spin_unlock(&early_pfn_lock);
629
630 return nid;
631 }
632
633 int hashdist = HASHDIST_DEFAULT;
634
635 static int __init set_hashdist(char *str)
636 {
637 if (!str)
638 return 0;
639 hashdist = simple_strtoul(str, &str, 0);
640 return 1;
641 }
642 __setup("hashdist=", set_hashdist);
643
644 static inline void fixup_hashdist(void)
645 {
646 if (num_node_state(N_MEMORY) == 1)
647 hashdist = 0;
648 }
649 #else
650 static inline void fixup_hashdist(void) {}
651 #endif /* CONFIG_NUMA */
652
653 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
654 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
655 {
656 pgdat->first_deferred_pfn = ULONG_MAX;
657 }
658
659 /* Returns true if the struct page for the pfn is initialised */
660 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
661 {
662 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
663 return false;
664
665 return true;
666 }
667
668 /*
669 * Returns true when the remaining initialisation should be deferred until
670 * later in the boot cycle when it can be parallelised.
671 */
672 static bool __meminit
673 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
674 {
675 static unsigned long prev_end_pfn, nr_initialised;
676
677 if (early_page_ext_enabled())
678 return false;
679 /*
680 * prev_end_pfn static that contains the end of previous zone
681 * No need to protect because called very early in boot before smp_init.
682 */
683 if (prev_end_pfn != end_pfn) {
684 prev_end_pfn = end_pfn;
685 nr_initialised = 0;
686 }
687
688 /* Always populate low zones for address-constrained allocations */
689 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
690 return false;
691
692 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
693 return true;
694 /*
695 * We start only with one section of pages, more pages are added as
696 * needed until the rest of deferred pages are initialized.
697 */
698 nr_initialised++;
699 if ((nr_initialised > PAGES_PER_SECTION) &&
700 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
701 NODE_DATA(nid)->first_deferred_pfn = pfn;
702 return true;
703 }
704 return false;
705 }
706
707 static void __meminit init_reserved_page(unsigned long pfn, int nid)
708 {
709 pg_data_t *pgdat;
710 int zid;
711
712 if (early_page_initialised(pfn, nid))
713 return;
714
715 pgdat = NODE_DATA(nid);
716
717 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
718 struct zone *zone = &pgdat->node_zones[zid];
719
720 if (zone_spans_pfn(zone, pfn))
721 break;
722 }
723 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
724 }
725 #else
726 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
727
728 static inline bool early_page_initialised(unsigned long pfn, int nid)
729 {
730 return true;
731 }
732
733 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
734 {
735 return false;
736 }
737
738 static inline void init_reserved_page(unsigned long pfn, int nid)
739 {
740 }
741 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
742
743 /*
744 * Initialised pages do not have PageReserved set. This function is
745 * called for each range allocated by the bootmem allocator and
746 * marks the pages PageReserved. The remaining valid pages are later
747 * sent to the buddy page allocator.
748 */
749 void __meminit reserve_bootmem_region(phys_addr_t start,
750 phys_addr_t end, int nid)
751 {
752 unsigned long start_pfn = PFN_DOWN(start);
753 unsigned long end_pfn = PFN_UP(end);
754
755 for (; start_pfn < end_pfn; start_pfn++) {
756 if (pfn_valid(start_pfn)) {
757 struct page *page = pfn_to_page(start_pfn);
758
759 init_reserved_page(start_pfn, nid);
760
761 /* Avoid false-positive PageTail() */
762 INIT_LIST_HEAD(&page->lru);
763
764 /*
765 * no need for atomic set_bit because the struct
766 * page is not visible yet so nobody should
767 * access it yet.
768 */
769 __SetPageReserved(page);
770 }
771 }
772 }
773
774 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
775 static bool __meminit
776 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
777 {
778 static struct memblock_region *r;
779
780 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
781 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
782 for_each_mem_region(r) {
783 if (*pfn < memblock_region_memory_end_pfn(r))
784 break;
785 }
786 }
787 if (*pfn >= memblock_region_memory_base_pfn(r) &&
788 memblock_is_mirror(r)) {
789 *pfn = memblock_region_memory_end_pfn(r);
790 return true;
791 }
792 }
793 return false;
794 }
795
796 /*
797 * Only struct pages that correspond to ranges defined by memblock.memory
798 * are zeroed and initialized by going through __init_single_page() during
799 * memmap_init_zone_range().
800 *
801 * But, there could be struct pages that correspond to holes in
802 * memblock.memory. This can happen because of the following reasons:
803 * - physical memory bank size is not necessarily the exact multiple of the
804 * arbitrary section size
805 * - early reserved memory may not be listed in memblock.memory
806 * - non-memory regions covered by the contigious flatmem mapping
807 * - memory layouts defined with memmap= kernel parameter may not align
808 * nicely with memmap sections
809 *
810 * Explicitly initialize those struct pages so that:
811 * - PG_Reserved is set
812 * - zone and node links point to zone and node that span the page if the
813 * hole is in the middle of a zone
814 * - zone and node links point to adjacent zone/node if the hole falls on
815 * the zone boundary; the pages in such holes will be prepended to the
816 * zone/node above the hole except for the trailing pages in the last
817 * section that will be appended to the zone/node below.
818 */
819 static void __init init_unavailable_range(unsigned long spfn,
820 unsigned long epfn,
821 int zone, int node)
822 {
823 unsigned long pfn;
824 u64 pgcnt = 0;
825
826 for (pfn = spfn; pfn < epfn; pfn++) {
827 if (!pfn_valid(pageblock_start_pfn(pfn))) {
828 pfn = pageblock_end_pfn(pfn) - 1;
829 continue;
830 }
831 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
832 __SetPageReserved(pfn_to_page(pfn));
833 pgcnt++;
834 }
835
836 if (pgcnt)
837 pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
838 node, zone_names[zone], pgcnt);
839 }
840
841 /*
842 * Initially all pages are reserved - free ones are freed
843 * up by memblock_free_all() once the early boot process is
844 * done. Non-atomic initialization, single-pass.
845 *
846 * All aligned pageblocks are initialized to the specified migratetype
847 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
848 * zone stats (e.g., nr_isolate_pageblock) are touched.
849 */
850 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
851 unsigned long start_pfn, unsigned long zone_end_pfn,
852 enum meminit_context context,
853 struct vmem_altmap *altmap, int migratetype)
854 {
855 unsigned long pfn, end_pfn = start_pfn + size;
856 struct page *page;
857
858 if (highest_memmap_pfn < end_pfn - 1)
859 highest_memmap_pfn = end_pfn - 1;
860
861 #ifdef CONFIG_ZONE_DEVICE
862 /*
863 * Honor reservation requested by the driver for this ZONE_DEVICE
864 * memory. We limit the total number of pages to initialize to just
865 * those that might contain the memory mapping. We will defer the
866 * ZONE_DEVICE page initialization until after we have released
867 * the hotplug lock.
868 */
869 if (zone == ZONE_DEVICE) {
870 if (!altmap)
871 return;
872
873 if (start_pfn == altmap->base_pfn)
874 start_pfn += altmap->reserve;
875 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
876 }
877 #endif
878
879 for (pfn = start_pfn; pfn < end_pfn; ) {
880 /*
881 * There can be holes in boot-time mem_map[]s handed to this
882 * function. They do not exist on hotplugged memory.
883 */
884 if (context == MEMINIT_EARLY) {
885 if (overlap_memmap_init(zone, &pfn))
886 continue;
887 if (defer_init(nid, pfn, zone_end_pfn)) {
888 deferred_struct_pages = true;
889 break;
890 }
891 }
892
893 page = pfn_to_page(pfn);
894 __init_single_page(page, pfn, zone, nid);
895 if (context == MEMINIT_HOTPLUG)
896 __SetPageReserved(page);
897
898 /*
899 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
900 * such that unmovable allocations won't be scattered all
901 * over the place during system boot.
902 */
903 if (pageblock_aligned(pfn)) {
904 set_pageblock_migratetype(page, migratetype);
905 cond_resched();
906 }
907 pfn++;
908 }
909 }
910
911 static void __init memmap_init_zone_range(struct zone *zone,
912 unsigned long start_pfn,
913 unsigned long end_pfn,
914 unsigned long *hole_pfn)
915 {
916 unsigned long zone_start_pfn = zone->zone_start_pfn;
917 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
918 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
919
920 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
921 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
922
923 if (start_pfn >= end_pfn)
924 return;
925
926 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
927 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
928
929 if (*hole_pfn < start_pfn)
930 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
931
932 *hole_pfn = end_pfn;
933 }
934
935 static void __init memmap_init(void)
936 {
937 unsigned long start_pfn, end_pfn;
938 unsigned long hole_pfn = 0;
939 int i, j, zone_id = 0, nid;
940
941 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
942 struct pglist_data *node = NODE_DATA(nid);
943
944 for (j = 0; j < MAX_NR_ZONES; j++) {
945 struct zone *zone = node->node_zones + j;
946
947 if (!populated_zone(zone))
948 continue;
949
950 memmap_init_zone_range(zone, start_pfn, end_pfn,
951 &hole_pfn);
952 zone_id = j;
953 }
954 }
955
956 #ifdef CONFIG_SPARSEMEM
957 /*
958 * Initialize the memory map for hole in the range [memory_end,
959 * section_end].
960 * Append the pages in this hole to the highest zone in the last
961 * node.
962 * The call to init_unavailable_range() is outside the ifdef to
963 * silence the compiler warining about zone_id set but not used;
964 * for FLATMEM it is a nop anyway
965 */
966 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
967 if (hole_pfn < end_pfn)
968 #endif
969 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
970 }
971
972 #ifdef CONFIG_ZONE_DEVICE
973 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
974 unsigned long zone_idx, int nid,
975 struct dev_pagemap *pgmap)
976 {
977
978 __init_single_page(page, pfn, zone_idx, nid);
979
980 /*
981 * Mark page reserved as it will need to wait for onlining
982 * phase for it to be fully associated with a zone.
983 *
984 * We can use the non-atomic __set_bit operation for setting
985 * the flag as we are still initializing the pages.
986 */
987 __SetPageReserved(page);
988
989 /*
990 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
991 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
992 * ever freed or placed on a driver-private list.
993 */
994 page->pgmap = pgmap;
995 page->zone_device_data = NULL;
996
997 /*
998 * Mark the block movable so that blocks are reserved for
999 * movable at startup. This will force kernel allocations
1000 * to reserve their blocks rather than leaking throughout
1001 * the address space during boot when many long-lived
1002 * kernel allocations are made.
1003 *
1004 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1005 * because this is done early in section_activate()
1006 */
1007 if (pageblock_aligned(pfn)) {
1008 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1009 cond_resched();
1010 }
1011
1012 /*
1013 * ZONE_DEVICE pages are released directly to the driver page allocator
1014 * which will set the page count to 1 when allocating the page.
1015 */
1016 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1017 pgmap->type == MEMORY_DEVICE_COHERENT)
1018 set_page_count(page, 0);
1019 }
1020
1021 /*
1022 * With compound page geometry and when struct pages are stored in ram most
1023 * tail pages are reused. Consequently, the amount of unique struct pages to
1024 * initialize is a lot smaller that the total amount of struct pages being
1025 * mapped. This is a paired / mild layering violation with explicit knowledge
1026 * of how the sparse_vmemmap internals handle compound pages in the lack
1027 * of an altmap. See vmemmap_populate_compound_pages().
1028 */
1029 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1030 struct dev_pagemap *pgmap)
1031 {
1032 if (!vmemmap_can_optimize(altmap, pgmap))
1033 return pgmap_vmemmap_nr(pgmap);
1034
1035 return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1036 }
1037
1038 static void __ref memmap_init_compound(struct page *head,
1039 unsigned long head_pfn,
1040 unsigned long zone_idx, int nid,
1041 struct dev_pagemap *pgmap,
1042 unsigned long nr_pages)
1043 {
1044 unsigned long pfn, end_pfn = head_pfn + nr_pages;
1045 unsigned int order = pgmap->vmemmap_shift;
1046
1047 __SetPageHead(head);
1048 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1049 struct page *page = pfn_to_page(pfn);
1050
1051 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1052 prep_compound_tail(head, pfn - head_pfn);
1053 set_page_count(page, 0);
1054
1055 /*
1056 * The first tail page stores important compound page info.
1057 * Call prep_compound_head() after the first tail page has
1058 * been initialized, to not have the data overwritten.
1059 */
1060 if (pfn == head_pfn + 1)
1061 prep_compound_head(head, order);
1062 }
1063 }
1064
1065 void __ref memmap_init_zone_device(struct zone *zone,
1066 unsigned long start_pfn,
1067 unsigned long nr_pages,
1068 struct dev_pagemap *pgmap)
1069 {
1070 unsigned long pfn, end_pfn = start_pfn + nr_pages;
1071 struct pglist_data *pgdat = zone->zone_pgdat;
1072 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1073 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1074 unsigned long zone_idx = zone_idx(zone);
1075 unsigned long start = jiffies;
1076 int nid = pgdat->node_id;
1077
1078 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1079 return;
1080
1081 /*
1082 * The call to memmap_init should have already taken care
1083 * of the pages reserved for the memmap, so we can just jump to
1084 * the end of that region and start processing the device pages.
1085 */
1086 if (altmap) {
1087 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1088 nr_pages = end_pfn - start_pfn;
1089 }
1090
1091 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1092 struct page *page = pfn_to_page(pfn);
1093
1094 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1095
1096 if (pfns_per_compound == 1)
1097 continue;
1098
1099 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1100 compound_nr_pages(altmap, pgmap));
1101 }
1102
1103 pr_debug("%s initialised %lu pages in %ums\n", __func__,
1104 nr_pages, jiffies_to_msecs(jiffies - start));
1105 }
1106 #endif
1107
1108 /*
1109 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1110 * because it is sized independent of architecture. Unlike the other zones,
1111 * the starting point for ZONE_MOVABLE is not fixed. It may be different
1112 * in each node depending on the size of each node and how evenly kernelcore
1113 * is distributed. This helper function adjusts the zone ranges
1114 * provided by the architecture for a given node by using the end of the
1115 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1116 * zones within a node are in order of monotonic increases memory addresses
1117 */
1118 static void __init adjust_zone_range_for_zone_movable(int nid,
1119 unsigned long zone_type,
1120 unsigned long node_end_pfn,
1121 unsigned long *zone_start_pfn,
1122 unsigned long *zone_end_pfn)
1123 {
1124 /* Only adjust if ZONE_MOVABLE is on this node */
1125 if (zone_movable_pfn[nid]) {
1126 /* Size ZONE_MOVABLE */
1127 if (zone_type == ZONE_MOVABLE) {
1128 *zone_start_pfn = zone_movable_pfn[nid];
1129 *zone_end_pfn = min(node_end_pfn,
1130 arch_zone_highest_possible_pfn[movable_zone]);
1131
1132 /* Adjust for ZONE_MOVABLE starting within this range */
1133 } else if (!mirrored_kernelcore &&
1134 *zone_start_pfn < zone_movable_pfn[nid] &&
1135 *zone_end_pfn > zone_movable_pfn[nid]) {
1136 *zone_end_pfn = zone_movable_pfn[nid];
1137
1138 /* Check if this whole range is within ZONE_MOVABLE */
1139 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
1140 *zone_start_pfn = *zone_end_pfn;
1141 }
1142 }
1143
1144 /*
1145 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1146 * then all holes in the requested range will be accounted for.
1147 */
1148 static unsigned long __init __absent_pages_in_range(int nid,
1149 unsigned long range_start_pfn,
1150 unsigned long range_end_pfn)
1151 {
1152 unsigned long nr_absent = range_end_pfn - range_start_pfn;
1153 unsigned long start_pfn, end_pfn;
1154 int i;
1155
1156 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1157 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1158 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1159 nr_absent -= end_pfn - start_pfn;
1160 }
1161 return nr_absent;
1162 }
1163
1164 /**
1165 * absent_pages_in_range - Return number of page frames in holes within a range
1166 * @start_pfn: The start PFN to start searching for holes
1167 * @end_pfn: The end PFN to stop searching for holes
1168 *
1169 * Return: the number of pages frames in memory holes within a range.
1170 */
1171 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1172 unsigned long end_pfn)
1173 {
1174 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1175 }
1176
1177 /* Return the number of page frames in holes in a zone on a node */
1178 static unsigned long __init zone_absent_pages_in_node(int nid,
1179 unsigned long zone_type,
1180 unsigned long zone_start_pfn,
1181 unsigned long zone_end_pfn)
1182 {
1183 unsigned long nr_absent;
1184
1185 /* zone is empty, we don't have any absent pages */
1186 if (zone_start_pfn == zone_end_pfn)
1187 return 0;
1188
1189 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1190
1191 /*
1192 * ZONE_MOVABLE handling.
1193 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1194 * and vice versa.
1195 */
1196 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1197 unsigned long start_pfn, end_pfn;
1198 struct memblock_region *r;
1199
1200 for_each_mem_region(r) {
1201 start_pfn = clamp(memblock_region_memory_base_pfn(r),
1202 zone_start_pfn, zone_end_pfn);
1203 end_pfn = clamp(memblock_region_memory_end_pfn(r),
1204 zone_start_pfn, zone_end_pfn);
1205
1206 if (zone_type == ZONE_MOVABLE &&
1207 memblock_is_mirror(r))
1208 nr_absent += end_pfn - start_pfn;
1209
1210 if (zone_type == ZONE_NORMAL &&
1211 !memblock_is_mirror(r))
1212 nr_absent += end_pfn - start_pfn;
1213 }
1214 }
1215
1216 return nr_absent;
1217 }
1218
1219 /*
1220 * Return the number of pages a zone spans in a node, including holes
1221 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1222 */
1223 static unsigned long __init zone_spanned_pages_in_node(int nid,
1224 unsigned long zone_type,
1225 unsigned long node_start_pfn,
1226 unsigned long node_end_pfn,
1227 unsigned long *zone_start_pfn,
1228 unsigned long *zone_end_pfn)
1229 {
1230 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1231 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1232
1233 /* Get the start and end of the zone */
1234 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1235 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1236 adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1237 zone_start_pfn, zone_end_pfn);
1238
1239 /* Check that this node has pages within the zone's required range */
1240 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1241 return 0;
1242
1243 /* Move the zone boundaries inside the node if necessary */
1244 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1245 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1246
1247 /* Return the spanned pages */
1248 return *zone_end_pfn - *zone_start_pfn;
1249 }
1250
1251 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1252 {
1253 struct zone *z;
1254
1255 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1256 z->zone_start_pfn = 0;
1257 z->spanned_pages = 0;
1258 z->present_pages = 0;
1259 #if defined(CONFIG_MEMORY_HOTPLUG)
1260 z->present_early_pages = 0;
1261 #endif
1262 }
1263
1264 pgdat->node_spanned_pages = 0;
1265 pgdat->node_present_pages = 0;
1266 pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1267 }
1268
1269 static void __init calc_nr_kernel_pages(void)
1270 {
1271 unsigned long start_pfn, end_pfn;
1272 phys_addr_t start_addr, end_addr;
1273 u64 u;
1274 #ifdef CONFIG_HIGHMEM
1275 unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1276 #endif
1277
1278 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1279 start_pfn = PFN_UP(start_addr);
1280 end_pfn = PFN_DOWN(end_addr);
1281
1282 if (start_pfn < end_pfn) {
1283 nr_all_pages += end_pfn - start_pfn;
1284 #ifdef CONFIG_HIGHMEM
1285 start_pfn = clamp(start_pfn, 0, high_zone_low);
1286 end_pfn = clamp(end_pfn, 0, high_zone_low);
1287 #endif
1288 nr_kernel_pages += end_pfn - start_pfn;
1289 }
1290 }
1291 }
1292
1293 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1294 unsigned long node_start_pfn,
1295 unsigned long node_end_pfn)
1296 {
1297 unsigned long realtotalpages = 0, totalpages = 0;
1298 enum zone_type i;
1299
1300 for (i = 0; i < MAX_NR_ZONES; i++) {
1301 struct zone *zone = pgdat->node_zones + i;
1302 unsigned long zone_start_pfn, zone_end_pfn;
1303 unsigned long spanned, absent;
1304 unsigned long real_size;
1305
1306 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1307 node_start_pfn,
1308 node_end_pfn,
1309 &zone_start_pfn,
1310 &zone_end_pfn);
1311 absent = zone_absent_pages_in_node(pgdat->node_id, i,
1312 zone_start_pfn,
1313 zone_end_pfn);
1314
1315 real_size = spanned - absent;
1316
1317 if (spanned)
1318 zone->zone_start_pfn = zone_start_pfn;
1319 else
1320 zone->zone_start_pfn = 0;
1321 zone->spanned_pages = spanned;
1322 zone->present_pages = real_size;
1323 #if defined(CONFIG_MEMORY_HOTPLUG)
1324 zone->present_early_pages = real_size;
1325 #endif
1326
1327 totalpages += spanned;
1328 realtotalpages += real_size;
1329 }
1330
1331 pgdat->node_spanned_pages = totalpages;
1332 pgdat->node_present_pages = realtotalpages;
1333 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1334 }
1335
1336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1337 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1338 {
1339 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1340
1341 spin_lock_init(&ds_queue->split_queue_lock);
1342 INIT_LIST_HEAD(&ds_queue->split_queue);
1343 ds_queue->split_queue_len = 0;
1344 }
1345 #else
1346 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1347 #endif
1348
1349 #ifdef CONFIG_COMPACTION
1350 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1351 {
1352 init_waitqueue_head(&pgdat->kcompactd_wait);
1353 }
1354 #else
1355 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1356 #endif
1357
1358 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1359 {
1360 int i;
1361
1362 pgdat_resize_init(pgdat);
1363 pgdat_kswapd_lock_init(pgdat);
1364
1365 pgdat_init_split_queue(pgdat);
1366 pgdat_init_kcompactd(pgdat);
1367
1368 init_waitqueue_head(&pgdat->kswapd_wait);
1369 init_waitqueue_head(&pgdat->pfmemalloc_wait);
1370
1371 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1372 init_waitqueue_head(&pgdat->reclaim_wait[i]);
1373
1374 pgdat_page_ext_init(pgdat);
1375 lruvec_init(&pgdat->__lruvec);
1376 }
1377
1378 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1379 unsigned long remaining_pages)
1380 {
1381 atomic_long_set(&zone->managed_pages, remaining_pages);
1382 zone_set_nid(zone, nid);
1383 zone->name = zone_names[idx];
1384 zone->zone_pgdat = NODE_DATA(nid);
1385 spin_lock_init(&zone->lock);
1386 zone_seqlock_init(zone);
1387 zone_pcp_init(zone);
1388 }
1389
1390 static void __meminit zone_init_free_lists(struct zone *zone)
1391 {
1392 unsigned int order, t;
1393 for_each_migratetype_order(order, t) {
1394 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1395 zone->free_area[order].nr_free = 0;
1396 }
1397
1398 #ifdef CONFIG_UNACCEPTED_MEMORY
1399 INIT_LIST_HEAD(&zone->unaccepted_pages);
1400 #endif
1401 }
1402
1403 void __meminit init_currently_empty_zone(struct zone *zone,
1404 unsigned long zone_start_pfn,
1405 unsigned long size)
1406 {
1407 struct pglist_data *pgdat = zone->zone_pgdat;
1408 int zone_idx = zone_idx(zone) + 1;
1409
1410 if (zone_idx > pgdat->nr_zones)
1411 pgdat->nr_zones = zone_idx;
1412
1413 zone->zone_start_pfn = zone_start_pfn;
1414
1415 mminit_dprintk(MMINIT_TRACE, "memmap_init",
1416 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
1417 pgdat->node_id,
1418 (unsigned long)zone_idx(zone),
1419 zone_start_pfn, (zone_start_pfn + size));
1420
1421 zone_init_free_lists(zone);
1422 zone->initialized = 1;
1423 }
1424
1425 #ifndef CONFIG_SPARSEMEM
1426 /*
1427 * Calculate the size of the zone->blockflags rounded to an unsigned long
1428 * Start by making sure zonesize is a multiple of pageblock_order by rounding
1429 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1430 * round what is now in bits to nearest long in bits, then return it in
1431 * bytes.
1432 */
1433 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1434 {
1435 unsigned long usemapsize;
1436
1437 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1438 usemapsize = roundup(zonesize, pageblock_nr_pages);
1439 usemapsize = usemapsize >> pageblock_order;
1440 usemapsize *= NR_PAGEBLOCK_BITS;
1441 usemapsize = roundup(usemapsize, BITS_PER_LONG);
1442
1443 return usemapsize / BITS_PER_BYTE;
1444 }
1445
1446 static void __ref setup_usemap(struct zone *zone)
1447 {
1448 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1449 zone->spanned_pages);
1450 zone->pageblock_flags = NULL;
1451 if (usemapsize) {
1452 zone->pageblock_flags =
1453 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1454 zone_to_nid(zone));
1455 if (!zone->pageblock_flags)
1456 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1457 usemapsize, zone->name, zone_to_nid(zone));
1458 }
1459 }
1460 #else
1461 static inline void setup_usemap(struct zone *zone) {}
1462 #endif /* CONFIG_SPARSEMEM */
1463
1464 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1465
1466 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1467 void __init set_pageblock_order(void)
1468 {
1469 unsigned int order = MAX_PAGE_ORDER;
1470
1471 /* Check that pageblock_nr_pages has not already been setup */
1472 if (pageblock_order)
1473 return;
1474
1475 /* Don't let pageblocks exceed the maximum allocation granularity. */
1476 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1477 order = HUGETLB_PAGE_ORDER;
1478
1479 /*
1480 * Assume the largest contiguous order of interest is a huge page.
1481 * This value may be variable depending on boot parameters on powerpc.
1482 */
1483 pageblock_order = order;
1484 }
1485 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1486
1487 /*
1488 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1489 * is unused as pageblock_order is set at compile-time. See
1490 * include/linux/pageblock-flags.h for the values of pageblock_order based on
1491 * the kernel config
1492 */
1493 void __init set_pageblock_order(void)
1494 {
1495 }
1496
1497 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1498
1499 /*
1500 * Set up the zone data structures
1501 * - init pgdat internals
1502 * - init all zones belonging to this node
1503 *
1504 * NOTE: this function is only called during memory hotplug
1505 */
1506 #ifdef CONFIG_MEMORY_HOTPLUG
1507 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1508 {
1509 int nid = pgdat->node_id;
1510 enum zone_type z;
1511 int cpu;
1512
1513 pgdat_init_internals(pgdat);
1514
1515 if (pgdat->per_cpu_nodestats == &boot_nodestats)
1516 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1517
1518 /*
1519 * Reset the nr_zones, order and highest_zoneidx before reuse.
1520 * Note that kswapd will init kswapd_highest_zoneidx properly
1521 * when it starts in the near future.
1522 */
1523 pgdat->nr_zones = 0;
1524 pgdat->kswapd_order = 0;
1525 pgdat->kswapd_highest_zoneidx = 0;
1526 pgdat->node_start_pfn = 0;
1527 pgdat->node_present_pages = 0;
1528
1529 for_each_online_cpu(cpu) {
1530 struct per_cpu_nodestat *p;
1531
1532 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1533 memset(p, 0, sizeof(*p));
1534 }
1535
1536 /*
1537 * When memory is hot-added, all the memory is in offline state. So
1538 * clear all zones' present_pages and managed_pages because they will
1539 * be updated in online_pages() and offline_pages().
1540 */
1541 for (z = 0; z < MAX_NR_ZONES; z++) {
1542 struct zone *zone = pgdat->node_zones + z;
1543
1544 zone->present_pages = 0;
1545 zone_init_internals(zone, z, nid, 0);
1546 }
1547 }
1548 #endif
1549
1550 static void __init free_area_init_core(struct pglist_data *pgdat)
1551 {
1552 enum zone_type j;
1553 int nid = pgdat->node_id;
1554
1555 pgdat_init_internals(pgdat);
1556 pgdat->per_cpu_nodestats = &boot_nodestats;
1557
1558 for (j = 0; j < MAX_NR_ZONES; j++) {
1559 struct zone *zone = pgdat->node_zones + j;
1560 unsigned long size = zone->spanned_pages;
1561
1562 /*
1563 * Initialize zone->managed_pages as 0 , it will be reset
1564 * when memblock allocator frees pages into buddy system.
1565 */
1566 zone_init_internals(zone, j, nid, zone->present_pages);
1567
1568 if (!size)
1569 continue;
1570
1571 setup_usemap(zone);
1572 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1573 }
1574 }
1575
1576 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1577 phys_addr_t min_addr, int nid, bool exact_nid)
1578 {
1579 void *ptr;
1580
1581 if (exact_nid)
1582 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1583 MEMBLOCK_ALLOC_ACCESSIBLE,
1584 nid);
1585 else
1586 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1587 MEMBLOCK_ALLOC_ACCESSIBLE,
1588 nid);
1589
1590 if (ptr && size > 0)
1591 page_init_poison(ptr, size);
1592
1593 return ptr;
1594 }
1595
1596 #ifdef CONFIG_FLATMEM
1597 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1598 {
1599 unsigned long start, offset, size, end;
1600 struct page *map;
1601
1602 /* Skip empty nodes */
1603 if (!pgdat->node_spanned_pages)
1604 return;
1605
1606 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1607 offset = pgdat->node_start_pfn - start;
1608 /*
1609 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1610 * aligned but the node_mem_map endpoints must be in order
1611 * for the buddy allocator to function correctly.
1612 */
1613 end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1614 size = (end - start) * sizeof(struct page);
1615 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1616 pgdat->node_id, false);
1617 if (!map)
1618 panic("Failed to allocate %ld bytes for node %d memory map\n",
1619 size, pgdat->node_id);
1620 pgdat->node_mem_map = map + offset;
1621 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1622 __func__, pgdat->node_id, (unsigned long)pgdat,
1623 (unsigned long)pgdat->node_mem_map);
1624 #ifndef CONFIG_NUMA
1625 /* the global mem_map is just set as node 0's */
1626 if (pgdat == NODE_DATA(0)) {
1627 mem_map = NODE_DATA(0)->node_mem_map;
1628 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1629 mem_map -= offset;
1630 }
1631 #endif
1632 }
1633 #else
1634 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1635 #endif /* CONFIG_FLATMEM */
1636
1637 /**
1638 * get_pfn_range_for_nid - Return the start and end page frames for a node
1639 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1640 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1641 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1642 *
1643 * It returns the start and end page frame of a node based on information
1644 * provided by memblock_set_node(). If called for a node
1645 * with no available memory, the start and end PFNs will be 0.
1646 */
1647 void __init get_pfn_range_for_nid(unsigned int nid,
1648 unsigned long *start_pfn, unsigned long *end_pfn)
1649 {
1650 unsigned long this_start_pfn, this_end_pfn;
1651 int i;
1652
1653 *start_pfn = -1UL;
1654 *end_pfn = 0;
1655
1656 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1657 *start_pfn = min(*start_pfn, this_start_pfn);
1658 *end_pfn = max(*end_pfn, this_end_pfn);
1659 }
1660
1661 if (*start_pfn == -1UL)
1662 *start_pfn = 0;
1663 }
1664
1665 static void __init free_area_init_node(int nid)
1666 {
1667 pg_data_t *pgdat = NODE_DATA(nid);
1668 unsigned long start_pfn = 0;
1669 unsigned long end_pfn = 0;
1670
1671 /* pg_data_t should be reset to zero when it's allocated */
1672 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1673
1674 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1675
1676 pgdat->node_id = nid;
1677 pgdat->node_start_pfn = start_pfn;
1678 pgdat->per_cpu_nodestats = NULL;
1679
1680 if (start_pfn != end_pfn) {
1681 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1682 (u64)start_pfn << PAGE_SHIFT,
1683 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1684
1685 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1686 } else {
1687 pr_info("Initmem setup node %d as memoryless\n", nid);
1688
1689 reset_memoryless_node_totalpages(pgdat);
1690 }
1691
1692 alloc_node_mem_map(pgdat);
1693 pgdat_set_deferred_range(pgdat);
1694
1695 free_area_init_core(pgdat);
1696 lru_gen_init_pgdat(pgdat);
1697 }
1698
1699 /* Any regular or high memory on that node ? */
1700 static void __init check_for_memory(pg_data_t *pgdat)
1701 {
1702 enum zone_type zone_type;
1703
1704 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1705 struct zone *zone = &pgdat->node_zones[zone_type];
1706 if (populated_zone(zone)) {
1707 if (IS_ENABLED(CONFIG_HIGHMEM))
1708 node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1709 if (zone_type <= ZONE_NORMAL)
1710 node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1711 break;
1712 }
1713 }
1714 }
1715
1716 #if MAX_NUMNODES > 1
1717 /*
1718 * Figure out the number of possible node ids.
1719 */
1720 void __init setup_nr_node_ids(void)
1721 {
1722 unsigned int highest;
1723
1724 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1725 nr_node_ids = highest + 1;
1726 }
1727 #endif
1728
1729 /*
1730 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1731 * such cases we allow max_zone_pfn sorted in the descending order
1732 */
1733 static bool arch_has_descending_max_zone_pfns(void)
1734 {
1735 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1736 }
1737
1738 /**
1739 * free_area_init - Initialise all pg_data_t and zone data
1740 * @max_zone_pfn: an array of max PFNs for each zone
1741 *
1742 * This will call free_area_init_node() for each active node in the system.
1743 * Using the page ranges provided by memblock_set_node(), the size of each
1744 * zone in each node and their holes is calculated. If the maximum PFN
1745 * between two adjacent zones match, it is assumed that the zone is empty.
1746 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1747 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1748 * starts where the previous one ended. For example, ZONE_DMA32 starts
1749 * at arch_max_dma_pfn.
1750 */
1751 void __init free_area_init(unsigned long *max_zone_pfn)
1752 {
1753 unsigned long start_pfn, end_pfn;
1754 int i, nid, zone;
1755 bool descending;
1756
1757 /* Record where the zone boundaries are */
1758 memset(arch_zone_lowest_possible_pfn, 0,
1759 sizeof(arch_zone_lowest_possible_pfn));
1760 memset(arch_zone_highest_possible_pfn, 0,
1761 sizeof(arch_zone_highest_possible_pfn));
1762
1763 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1764 descending = arch_has_descending_max_zone_pfns();
1765
1766 for (i = 0; i < MAX_NR_ZONES; i++) {
1767 if (descending)
1768 zone = MAX_NR_ZONES - i - 1;
1769 else
1770 zone = i;
1771
1772 if (zone == ZONE_MOVABLE)
1773 continue;
1774
1775 end_pfn = max(max_zone_pfn[zone], start_pfn);
1776 arch_zone_lowest_possible_pfn[zone] = start_pfn;
1777 arch_zone_highest_possible_pfn[zone] = end_pfn;
1778
1779 start_pfn = end_pfn;
1780 }
1781
1782 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
1783 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1784 find_zone_movable_pfns_for_nodes();
1785
1786 /* Print out the zone ranges */
1787 pr_info("Zone ranges:\n");
1788 for (i = 0; i < MAX_NR_ZONES; i++) {
1789 if (i == ZONE_MOVABLE)
1790 continue;
1791 pr_info(" %-8s ", zone_names[i]);
1792 if (arch_zone_lowest_possible_pfn[i] ==
1793 arch_zone_highest_possible_pfn[i])
1794 pr_cont("empty\n");
1795 else
1796 pr_cont("[mem %#018Lx-%#018Lx]\n",
1797 (u64)arch_zone_lowest_possible_pfn[i]
1798 << PAGE_SHIFT,
1799 ((u64)arch_zone_highest_possible_pfn[i]
1800 << PAGE_SHIFT) - 1);
1801 }
1802
1803 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
1804 pr_info("Movable zone start for each node\n");
1805 for (i = 0; i < MAX_NUMNODES; i++) {
1806 if (zone_movable_pfn[i])
1807 pr_info(" Node %d: %#018Lx\n", i,
1808 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1809 }
1810
1811 /*
1812 * Print out the early node map, and initialize the
1813 * subsection-map relative to active online memory ranges to
1814 * enable future "sub-section" extensions of the memory map.
1815 */
1816 pr_info("Early memory node ranges\n");
1817 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1818 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1819 (u64)start_pfn << PAGE_SHIFT,
1820 ((u64)end_pfn << PAGE_SHIFT) - 1);
1821 subsection_map_init(start_pfn, end_pfn - start_pfn);
1822 }
1823
1824 /* Initialise every node */
1825 mminit_verify_pageflags_layout();
1826 setup_nr_node_ids();
1827 set_pageblock_order();
1828
1829 for_each_node(nid) {
1830 pg_data_t *pgdat;
1831
1832 if (!node_online(nid)) {
1833 /* Allocator not initialized yet */
1834 pgdat = arch_alloc_nodedata(nid);
1835 if (!pgdat)
1836 panic("Cannot allocate %zuB for node %d.\n",
1837 sizeof(*pgdat), nid);
1838 arch_refresh_nodedata(nid, pgdat);
1839 }
1840
1841 pgdat = NODE_DATA(nid);
1842 free_area_init_node(nid);
1843
1844 /*
1845 * No sysfs hierarcy will be created via register_one_node()
1846 *for memory-less node because here it's not marked as N_MEMORY
1847 *and won't be set online later. The benefit is userspace
1848 *program won't be confused by sysfs files/directories of
1849 *memory-less node. The pgdat will get fully initialized by
1850 *hotadd_init_pgdat() when memory is hotplugged into this node.
1851 */
1852 if (pgdat->node_present_pages) {
1853 node_set_state(nid, N_MEMORY);
1854 check_for_memory(pgdat);
1855 }
1856 }
1857
1858 calc_nr_kernel_pages();
1859 memmap_init();
1860
1861 /* disable hash distribution for systems with a single node */
1862 fixup_hashdist();
1863 }
1864
1865 /**
1866 * node_map_pfn_alignment - determine the maximum internode alignment
1867 *
1868 * This function should be called after node map is populated and sorted.
1869 * It calculates the maximum power of two alignment which can distinguish
1870 * all the nodes.
1871 *
1872 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1873 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
1874 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
1875 * shifted, 1GiB is enough and this function will indicate so.
1876 *
1877 * This is used to test whether pfn -> nid mapping of the chosen memory
1878 * model has fine enough granularity to avoid incorrect mapping for the
1879 * populated node map.
1880 *
1881 * Return: the determined alignment in pfn's. 0 if there is no alignment
1882 * requirement (single node).
1883 */
1884 unsigned long __init node_map_pfn_alignment(void)
1885 {
1886 unsigned long accl_mask = 0, last_end = 0;
1887 unsigned long start, end, mask;
1888 int last_nid = NUMA_NO_NODE;
1889 int i, nid;
1890
1891 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1892 if (!start || last_nid < 0 || last_nid == nid) {
1893 last_nid = nid;
1894 last_end = end;
1895 continue;
1896 }
1897
1898 /*
1899 * Start with a mask granular enough to pin-point to the
1900 * start pfn and tick off bits one-by-one until it becomes
1901 * too coarse to separate the current node from the last.
1902 */
1903 mask = ~((1 << __ffs(start)) - 1);
1904 while (mask && last_end <= (start & (mask << 1)))
1905 mask <<= 1;
1906
1907 /* accumulate all internode masks */
1908 accl_mask |= mask;
1909 }
1910
1911 /* convert mask to number of pages */
1912 return ~accl_mask + 1;
1913 }
1914
1915 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1916 static void __init deferred_free_range(unsigned long pfn,
1917 unsigned long nr_pages)
1918 {
1919 struct page *page;
1920 unsigned long i;
1921
1922 if (!nr_pages)
1923 return;
1924
1925 page = pfn_to_page(pfn);
1926
1927 /* Free a large naturally-aligned chunk if possible */
1928 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1929 for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1930 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1931 __free_pages_core(page, MAX_PAGE_ORDER);
1932 return;
1933 }
1934
1935 /* Accept chunks smaller than MAX_PAGE_ORDER upfront */
1936 accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
1937
1938 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1939 if (pageblock_aligned(pfn))
1940 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1941 __free_pages_core(page, 0);
1942 }
1943 }
1944
1945 /* Completion tracking for deferred_init_memmap() threads */
1946 static atomic_t pgdat_init_n_undone __initdata;
1947 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1948
1949 static inline void __init pgdat_init_report_one_done(void)
1950 {
1951 if (atomic_dec_and_test(&pgdat_init_n_undone))
1952 complete(&pgdat_init_all_done_comp);
1953 }
1954
1955 /*
1956 * Returns true if page needs to be initialized or freed to buddy allocator.
1957 *
1958 * We check if a current MAX_PAGE_ORDER block is valid by only checking the
1959 * validity of the head pfn.
1960 */
1961 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1962 {
1963 if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
1964 return false;
1965 return true;
1966 }
1967
1968 /*
1969 * Free pages to buddy allocator. Try to free aligned pages in
1970 * MAX_ORDER_NR_PAGES sizes.
1971 */
1972 static void __init deferred_free_pages(unsigned long pfn,
1973 unsigned long end_pfn)
1974 {
1975 unsigned long nr_free = 0;
1976
1977 for (; pfn < end_pfn; pfn++) {
1978 if (!deferred_pfn_valid(pfn)) {
1979 deferred_free_range(pfn - nr_free, nr_free);
1980 nr_free = 0;
1981 } else if (IS_MAX_ORDER_ALIGNED(pfn)) {
1982 deferred_free_range(pfn - nr_free, nr_free);
1983 nr_free = 1;
1984 } else {
1985 nr_free++;
1986 }
1987 }
1988 /* Free the last block of pages to allocator */
1989 deferred_free_range(pfn - nr_free, nr_free);
1990 }
1991
1992 /*
1993 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1994 * by performing it only once every MAX_ORDER_NR_PAGES.
1995 * Return number of pages initialized.
1996 */
1997 static unsigned long __init deferred_init_pages(struct zone *zone,
1998 unsigned long pfn,
1999 unsigned long end_pfn)
2000 {
2001 int nid = zone_to_nid(zone);
2002 unsigned long nr_pages = 0;
2003 int zid = zone_idx(zone);
2004 struct page *page = NULL;
2005
2006 for (; pfn < end_pfn; pfn++) {
2007 if (!deferred_pfn_valid(pfn)) {
2008 page = NULL;
2009 continue;
2010 } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
2011 page = pfn_to_page(pfn);
2012 } else {
2013 page++;
2014 }
2015 __init_single_page(page, pfn, zid, nid);
2016 nr_pages++;
2017 }
2018 return nr_pages;
2019 }
2020
2021 /*
2022 * This function is meant to pre-load the iterator for the zone init.
2023 * Specifically it walks through the ranges until we are caught up to the
2024 * first_init_pfn value and exits there. If we never encounter the value we
2025 * return false indicating there are no valid ranges left.
2026 */
2027 static bool __init
2028 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2029 unsigned long *spfn, unsigned long *epfn,
2030 unsigned long first_init_pfn)
2031 {
2032 u64 j;
2033
2034 /*
2035 * Start out by walking through the ranges in this zone that have
2036 * already been initialized. We don't need to do anything with them
2037 * so we just need to flush them out of the system.
2038 */
2039 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2040 if (*epfn <= first_init_pfn)
2041 continue;
2042 if (*spfn < first_init_pfn)
2043 *spfn = first_init_pfn;
2044 *i = j;
2045 return true;
2046 }
2047
2048 return false;
2049 }
2050
2051 /*
2052 * Initialize and free pages. We do it in two loops: first we initialize
2053 * struct page, then free to buddy allocator, because while we are
2054 * freeing pages we can access pages that are ahead (computing buddy
2055 * page in __free_one_page()).
2056 *
2057 * In order to try and keep some memory in the cache we have the loop
2058 * broken along max page order boundaries. This way we will not cause
2059 * any issues with the buddy page computation.
2060 */
2061 static unsigned long __init
2062 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2063 unsigned long *end_pfn)
2064 {
2065 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2066 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2067 unsigned long nr_pages = 0;
2068 u64 j = *i;
2069
2070 /* First we loop through and initialize the page values */
2071 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2072 unsigned long t;
2073
2074 if (mo_pfn <= *start_pfn)
2075 break;
2076
2077 t = min(mo_pfn, *end_pfn);
2078 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2079
2080 if (mo_pfn < *end_pfn) {
2081 *start_pfn = mo_pfn;
2082 break;
2083 }
2084 }
2085
2086 /* Reset values and now loop through freeing pages as needed */
2087 swap(j, *i);
2088
2089 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2090 unsigned long t;
2091
2092 if (mo_pfn <= spfn)
2093 break;
2094
2095 t = min(mo_pfn, epfn);
2096 deferred_free_pages(spfn, t);
2097
2098 if (mo_pfn <= epfn)
2099 break;
2100 }
2101
2102 return nr_pages;
2103 }
2104
2105 static void __init
2106 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2107 void *arg)
2108 {
2109 unsigned long spfn, epfn;
2110 struct zone *zone = arg;
2111 u64 i;
2112
2113 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2114
2115 /*
2116 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2117 * we can avoid introducing any issues with the buddy allocator.
2118 */
2119 while (spfn < end_pfn) {
2120 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2121 cond_resched();
2122 }
2123 }
2124
2125 /* An arch may override for more concurrency. */
2126 __weak int __init
2127 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2128 {
2129 return 1;
2130 }
2131
2132 /* Initialise remaining memory on a node */
2133 static int __init deferred_init_memmap(void *data)
2134 {
2135 pg_data_t *pgdat = data;
2136 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2137 unsigned long spfn = 0, epfn = 0;
2138 unsigned long first_init_pfn, flags;
2139 unsigned long start = jiffies;
2140 struct zone *zone;
2141 int zid, max_threads;
2142 u64 i;
2143
2144 /* Bind memory initialisation thread to a local node if possible */
2145 if (!cpumask_empty(cpumask))
2146 set_cpus_allowed_ptr(current, cpumask);
2147
2148 pgdat_resize_lock(pgdat, &flags);
2149 first_init_pfn = pgdat->first_deferred_pfn;
2150 if (first_init_pfn == ULONG_MAX) {
2151 pgdat_resize_unlock(pgdat, &flags);
2152 pgdat_init_report_one_done();
2153 return 0;
2154 }
2155
2156 /* Sanity check boundaries */
2157 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2158 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2159 pgdat->first_deferred_pfn = ULONG_MAX;
2160
2161 /*
2162 * Once we unlock here, the zone cannot be grown anymore, thus if an
2163 * interrupt thread must allocate this early in boot, zone must be
2164 * pre-grown prior to start of deferred page initialization.
2165 */
2166 pgdat_resize_unlock(pgdat, &flags);
2167
2168 /* Only the highest zone is deferred so find it */
2169 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2170 zone = pgdat->node_zones + zid;
2171 if (first_init_pfn < zone_end_pfn(zone))
2172 break;
2173 }
2174
2175 /* If the zone is empty somebody else may have cleared out the zone */
2176 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2177 first_init_pfn))
2178 goto zone_empty;
2179
2180 max_threads = deferred_page_init_max_threads(cpumask);
2181
2182 while (spfn < epfn) {
2183 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2184 struct padata_mt_job job = {
2185 .thread_fn = deferred_init_memmap_chunk,
2186 .fn_arg = zone,
2187 .start = spfn,
2188 .size = epfn_align - spfn,
2189 .align = PAGES_PER_SECTION,
2190 .min_chunk = PAGES_PER_SECTION,
2191 .max_threads = max_threads,
2192 .numa_aware = false,
2193 };
2194
2195 padata_do_multithreaded(&job);
2196 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2197 epfn_align);
2198 }
2199 zone_empty:
2200 /* Sanity check that the next zone really is unpopulated */
2201 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2202
2203 pr_info("node %d deferred pages initialised in %ums\n",
2204 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2205
2206 pgdat_init_report_one_done();
2207 return 0;
2208 }
2209
2210 /*
2211 * If this zone has deferred pages, try to grow it by initializing enough
2212 * deferred pages to satisfy the allocation specified by order, rounded up to
2213 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2214 * of SECTION_SIZE bytes by initializing struct pages in increments of
2215 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2216 *
2217 * Return true when zone was grown, otherwise return false. We return true even
2218 * when we grow less than requested, to let the caller decide if there are
2219 * enough pages to satisfy the allocation.
2220 */
2221 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2222 {
2223 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2224 pg_data_t *pgdat = zone->zone_pgdat;
2225 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2226 unsigned long spfn, epfn, flags;
2227 unsigned long nr_pages = 0;
2228 u64 i;
2229
2230 /* Only the last zone may have deferred pages */
2231 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2232 return false;
2233
2234 pgdat_resize_lock(pgdat, &flags);
2235
2236 /*
2237 * If someone grew this zone while we were waiting for spinlock, return
2238 * true, as there might be enough pages already.
2239 */
2240 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2241 pgdat_resize_unlock(pgdat, &flags);
2242 return true;
2243 }
2244
2245 /* If the zone is empty somebody else may have cleared out the zone */
2246 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2247 first_deferred_pfn)) {
2248 pgdat->first_deferred_pfn = ULONG_MAX;
2249 pgdat_resize_unlock(pgdat, &flags);
2250 /* Retry only once. */
2251 return first_deferred_pfn != ULONG_MAX;
2252 }
2253
2254 /*
2255 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2256 * that we can avoid introducing any issues with the buddy
2257 * allocator.
2258 */
2259 while (spfn < epfn) {
2260 /* update our first deferred PFN for this section */
2261 first_deferred_pfn = spfn;
2262
2263 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2264 touch_nmi_watchdog();
2265
2266 /* We should only stop along section boundaries */
2267 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2268 continue;
2269
2270 /* If our quota has been met we can stop here */
2271 if (nr_pages >= nr_pages_needed)
2272 break;
2273 }
2274
2275 pgdat->first_deferred_pfn = spfn;
2276 pgdat_resize_unlock(pgdat, &flags);
2277
2278 return nr_pages > 0;
2279 }
2280
2281 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2282
2283 #ifdef CONFIG_CMA
2284 void __init init_cma_reserved_pageblock(struct page *page)
2285 {
2286 unsigned i = pageblock_nr_pages;
2287 struct page *p = page;
2288
2289 do {
2290 __ClearPageReserved(p);
2291 set_page_count(p, 0);
2292 } while (++p, --i);
2293
2294 set_pageblock_migratetype(page, MIGRATE_CMA);
2295 set_page_refcounted(page);
2296 __free_pages(page, pageblock_order);
2297
2298 adjust_managed_page_count(page, pageblock_nr_pages);
2299 page_zone(page)->cma_pages += pageblock_nr_pages;
2300 }
2301 #endif
2302
2303 void set_zone_contiguous(struct zone *zone)
2304 {
2305 unsigned long block_start_pfn = zone->zone_start_pfn;
2306 unsigned long block_end_pfn;
2307
2308 block_end_pfn = pageblock_end_pfn(block_start_pfn);
2309 for (; block_start_pfn < zone_end_pfn(zone);
2310 block_start_pfn = block_end_pfn,
2311 block_end_pfn += pageblock_nr_pages) {
2312
2313 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2314
2315 if (!__pageblock_pfn_to_page(block_start_pfn,
2316 block_end_pfn, zone))
2317 return;
2318 cond_resched();
2319 }
2320
2321 /* We confirm that there is no hole */
2322 zone->contiguous = true;
2323 }
2324
2325 void __init page_alloc_init_late(void)
2326 {
2327 struct zone *zone;
2328 int nid;
2329
2330 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2331
2332 /* There will be num_node_state(N_MEMORY) threads */
2333 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2334 for_each_node_state(nid, N_MEMORY) {
2335 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2336 }
2337
2338 /* Block until all are initialised */
2339 wait_for_completion(&pgdat_init_all_done_comp);
2340
2341 /*
2342 * We initialized the rest of the deferred pages. Permanently disable
2343 * on-demand struct page initialization.
2344 */
2345 static_branch_disable(&deferred_pages);
2346
2347 /* Reinit limits that are based on free pages after the kernel is up */
2348 files_maxfiles_init();
2349 #endif
2350
2351 buffer_init();
2352
2353 /* Discard memblock private memory */
2354 memblock_discard();
2355
2356 for_each_node_state(nid, N_MEMORY)
2357 shuffle_free_memory(NODE_DATA(nid));
2358
2359 for_each_populated_zone(zone)
2360 set_zone_contiguous(zone);
2361
2362 /* Initialize page ext after all struct pages are initialized. */
2363 if (deferred_struct_pages)
2364 page_ext_init();
2365
2366 page_alloc_sysctl_init();
2367 }
2368
2369 /*
2370 * Adaptive scale is meant to reduce sizes of hash tables on large memory
2371 * machines. As memory size is increased the scale is also increased but at
2372 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
2373 * quadruples the scale is increased by one, which means the size of hash table
2374 * only doubles, instead of quadrupling as well.
2375 * Because 32-bit systems cannot have large physical memory, where this scaling
2376 * makes sense, it is disabled on such platforms.
2377 */
2378 #if __BITS_PER_LONG > 32
2379 #define ADAPT_SCALE_BASE (64ul << 30)
2380 #define ADAPT_SCALE_SHIFT 2
2381 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
2382 #endif
2383
2384 /*
2385 * allocate a large system hash table from bootmem
2386 * - it is assumed that the hash table must contain an exact power-of-2
2387 * quantity of entries
2388 * - limit is the number of hash buckets, not the total allocation size
2389 */
2390 void *__init alloc_large_system_hash(const char *tablename,
2391 unsigned long bucketsize,
2392 unsigned long numentries,
2393 int scale,
2394 int flags,
2395 unsigned int *_hash_shift,
2396 unsigned int *_hash_mask,
2397 unsigned long low_limit,
2398 unsigned long high_limit)
2399 {
2400 unsigned long long max = high_limit;
2401 unsigned long log2qty, size;
2402 void *table;
2403 gfp_t gfp_flags;
2404 bool virt;
2405 bool huge;
2406
2407 /* allow the kernel cmdline to have a say */
2408 if (!numentries) {
2409 /* round applicable memory size up to nearest megabyte */
2410 numentries = nr_kernel_pages;
2411
2412 /* It isn't necessary when PAGE_SIZE >= 1MB */
2413 if (PAGE_SIZE < SZ_1M)
2414 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2415
2416 #if __BITS_PER_LONG > 32
2417 if (!high_limit) {
2418 unsigned long adapt;
2419
2420 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2421 adapt <<= ADAPT_SCALE_SHIFT)
2422 scale++;
2423 }
2424 #endif
2425
2426 /* limit to 1 bucket per 2^scale bytes of low memory */
2427 if (scale > PAGE_SHIFT)
2428 numentries >>= (scale - PAGE_SHIFT);
2429 else
2430 numentries <<= (PAGE_SHIFT - scale);
2431
2432 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2433 numentries = PAGE_SIZE / bucketsize;
2434 }
2435 numentries = roundup_pow_of_two(numentries);
2436
2437 /* limit allocation size to 1/16 total memory by default */
2438 if (max == 0) {
2439 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2440 do_div(max, bucketsize);
2441 }
2442 max = min(max, 0x80000000ULL);
2443
2444 if (numentries < low_limit)
2445 numentries = low_limit;
2446 if (numentries > max)
2447 numentries = max;
2448
2449 log2qty = ilog2(numentries);
2450
2451 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2452 do {
2453 virt = false;
2454 size = bucketsize << log2qty;
2455 if (flags & HASH_EARLY) {
2456 if (flags & HASH_ZERO)
2457 table = memblock_alloc(size, SMP_CACHE_BYTES);
2458 else
2459 table = memblock_alloc_raw(size,
2460 SMP_CACHE_BYTES);
2461 } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2462 table = vmalloc_huge(size, gfp_flags);
2463 virt = true;
2464 if (table)
2465 huge = is_vm_area_hugepages(table);
2466 } else {
2467 /*
2468 * If bucketsize is not a power-of-two, we may free
2469 * some pages at the end of hash table which
2470 * alloc_pages_exact() automatically does
2471 */
2472 table = alloc_pages_exact(size, gfp_flags);
2473 kmemleak_alloc(table, size, 1, gfp_flags);
2474 }
2475 } while (!table && size > PAGE_SIZE && --log2qty);
2476
2477 if (!table)
2478 panic("Failed to allocate %s hash table\n", tablename);
2479
2480 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2481 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2482 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2483
2484 if (_hash_shift)
2485 *_hash_shift = log2qty;
2486 if (_hash_mask)
2487 *_hash_mask = (1 << log2qty) - 1;
2488
2489 return table;
2490 }
2491
2492 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2493 unsigned int order)
2494 {
2495 if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2496 int nid = early_pfn_to_nid(pfn);
2497
2498 if (!early_page_initialised(pfn, nid))
2499 return;
2500 }
2501
2502 if (!kmsan_memblock_free_pages(page, order)) {
2503 /* KMSAN will take care of these pages. */
2504 return;
2505 }
2506
2507 /* pages were reserved and not allocated */
2508 if (mem_alloc_profiling_enabled()) {
2509 union codetag_ref *ref = get_page_tag_ref(page);
2510
2511 if (ref) {
2512 set_codetag_empty(ref);
2513 put_page_tag_ref(ref);
2514 }
2515 }
2516
2517 __free_pages_core(page, order);
2518 }
2519
2520 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2521 EXPORT_SYMBOL(init_on_alloc);
2522
2523 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2524 EXPORT_SYMBOL(init_on_free);
2525
2526 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_MLOCKED_ON_FREE_DEFAULT_ON, init_mlocked_on_free);
2527 EXPORT_SYMBOL(init_mlocked_on_free);
2528
2529 static bool _init_on_alloc_enabled_early __read_mostly
2530 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2531 static int __init early_init_on_alloc(char *buf)
2532 {
2533
2534 return kstrtobool(buf, &_init_on_alloc_enabled_early);
2535 }
2536 early_param("init_on_alloc", early_init_on_alloc);
2537
2538 static bool _init_on_free_enabled_early __read_mostly
2539 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2540 static int __init early_init_on_free(char *buf)
2541 {
2542 return kstrtobool(buf, &_init_on_free_enabled_early);
2543 }
2544 early_param("init_on_free", early_init_on_free);
2545
2546 static bool _init_mlocked_on_free_enabled_early __read_mostly
2547 = IS_ENABLED(CONFIG_INIT_MLOCKED_ON_FREE_DEFAULT_ON);
2548 static int __init early_init_mlocked_on_free(char *buf)
2549 {
2550 return kstrtobool(buf, &_init_mlocked_on_free_enabled_early);
2551 }
2552 early_param("init_mlocked_on_free", early_init_mlocked_on_free);
2553
2554 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2555
2556 /*
2557 * Enable static keys related to various memory debugging and hardening options.
2558 * Some override others, and depend on early params that are evaluated in the
2559 * order of appearance. So we need to first gather the full picture of what was
2560 * enabled, and then make decisions.
2561 */
2562 static void __init mem_debugging_and_hardening_init(void)
2563 {
2564 bool page_poisoning_requested = false;
2565 bool want_check_pages = false;
2566
2567 #ifdef CONFIG_PAGE_POISONING
2568 /*
2569 * Page poisoning is debug page alloc for some arches. If
2570 * either of those options are enabled, enable poisoning.
2571 */
2572 if (page_poisoning_enabled() ||
2573 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2574 debug_pagealloc_enabled())) {
2575 static_branch_enable(&_page_poisoning_enabled);
2576 page_poisoning_requested = true;
2577 want_check_pages = true;
2578 }
2579 #endif
2580
2581 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early ||
2582 _init_mlocked_on_free_enabled_early) &&
2583 page_poisoning_requested) {
2584 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2585 "will take precedence over init_on_alloc, init_on_free "
2586 "and init_mlocked_on_free\n");
2587 _init_on_alloc_enabled_early = false;
2588 _init_on_free_enabled_early = false;
2589 _init_mlocked_on_free_enabled_early = false;
2590 }
2591
2592 if (_init_mlocked_on_free_enabled_early && _init_on_free_enabled_early) {
2593 pr_info("mem auto-init: init_on_free is on, "
2594 "will take precedence over init_mlocked_on_free\n");
2595 _init_mlocked_on_free_enabled_early = false;
2596 }
2597
2598 if (_init_on_alloc_enabled_early) {
2599 want_check_pages = true;
2600 static_branch_enable(&init_on_alloc);
2601 } else {
2602 static_branch_disable(&init_on_alloc);
2603 }
2604
2605 if (_init_on_free_enabled_early) {
2606 want_check_pages = true;
2607 static_branch_enable(&init_on_free);
2608 } else {
2609 static_branch_disable(&init_on_free);
2610 }
2611
2612 if (_init_mlocked_on_free_enabled_early) {
2613 want_check_pages = true;
2614 static_branch_enable(&init_mlocked_on_free);
2615 } else {
2616 static_branch_disable(&init_mlocked_on_free);
2617 }
2618
2619 if (IS_ENABLED(CONFIG_KMSAN) && (_init_on_alloc_enabled_early ||
2620 _init_on_free_enabled_early || _init_mlocked_on_free_enabled_early))
2621 pr_info("mem auto-init: please make sure init_on_alloc, init_on_free and "
2622 "init_mlocked_on_free are disabled when running KMSAN\n");
2623
2624 #ifdef CONFIG_DEBUG_PAGEALLOC
2625 if (debug_pagealloc_enabled()) {
2626 want_check_pages = true;
2627 static_branch_enable(&_debug_pagealloc_enabled);
2628
2629 if (debug_guardpage_minorder())
2630 static_branch_enable(&_debug_guardpage_enabled);
2631 }
2632 #endif
2633
2634 /*
2635 * Any page debugging or hardening option also enables sanity checking
2636 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2637 * enabled already.
2638 */
2639 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2640 static_branch_enable(&check_pages_enabled);
2641 }
2642
2643 /* Report memory auto-initialization states for this boot. */
2644 static void __init report_meminit(void)
2645 {
2646 const char *stack;
2647
2648 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2649 stack = "all(pattern)";
2650 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2651 stack = "all(zero)";
2652 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2653 stack = "byref_all(zero)";
2654 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2655 stack = "byref(zero)";
2656 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2657 stack = "__user(zero)";
2658 else
2659 stack = "off";
2660
2661 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s, mlocked free:%s\n",
2662 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2663 want_init_on_free() ? "on" : "off",
2664 want_init_mlocked_on_free() ? "on" : "off");
2665 if (want_init_on_free())
2666 pr_info("mem auto-init: clearing system memory may take some time...\n");
2667 }
2668
2669 static void __init mem_init_print_info(void)
2670 {
2671 unsigned long physpages, codesize, datasize, rosize, bss_size;
2672 unsigned long init_code_size, init_data_size;
2673
2674 physpages = get_num_physpages();
2675 codesize = _etext - _stext;
2676 datasize = _edata - _sdata;
2677 rosize = __end_rodata - __start_rodata;
2678 bss_size = __bss_stop - __bss_start;
2679 init_data_size = __init_end - __init_begin;
2680 init_code_size = _einittext - _sinittext;
2681
2682 /*
2683 * Detect special cases and adjust section sizes accordingly:
2684 * 1) .init.* may be embedded into .data sections
2685 * 2) .init.text.* may be out of [__init_begin, __init_end],
2686 * please refer to arch/tile/kernel/vmlinux.lds.S.
2687 * 3) .rodata.* may be embedded into .text or .data sections.
2688 */
2689 #define adj_init_size(start, end, size, pos, adj) \
2690 do { \
2691 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2692 size -= adj; \
2693 } while (0)
2694
2695 adj_init_size(__init_begin, __init_end, init_data_size,
2696 _sinittext, init_code_size);
2697 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2698 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2699 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2700 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2701
2702 #undef adj_init_size
2703
2704 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2705 #ifdef CONFIG_HIGHMEM
2706 ", %luK highmem"
2707 #endif
2708 ")\n",
2709 K(nr_free_pages()), K(physpages),
2710 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2711 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2712 K(physpages - totalram_pages() - totalcma_pages),
2713 K(totalcma_pages)
2714 #ifdef CONFIG_HIGHMEM
2715 , K(totalhigh_pages())
2716 #endif
2717 );
2718 }
2719
2720 /*
2721 * Set up kernel memory allocators
2722 */
2723 void __init mm_core_init(void)
2724 {
2725 /* Initializations relying on SMP setup */
2726 build_all_zonelists(NULL);
2727 page_alloc_init_cpuhp();
2728
2729 /*
2730 * page_ext requires contiguous pages,
2731 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2732 */
2733 page_ext_init_flatmem();
2734 mem_debugging_and_hardening_init();
2735 kfence_alloc_pool_and_metadata();
2736 report_meminit();
2737 kmsan_init_shadow();
2738 stack_depot_early_init();
2739 mem_init();
2740 mem_init_print_info();
2741 kmem_cache_init();
2742 /*
2743 * page_owner must be initialized after buddy is ready, and also after
2744 * slab is ready so that stack_depot_init() works properly
2745 */
2746 page_ext_init_flatmem_late();
2747 kmemleak_init();
2748 ptlock_cache_init();
2749 pgtable_cache_init();
2750 debug_objects_mem_init();
2751 vmalloc_init();
2752 /* If no deferred init page_ext now, as vmap is fully initialized */
2753 if (!deferred_struct_pages)
2754 page_ext_init();
2755 /* Should be run before the first non-init thread is created */
2756 init_espfix_bsp();
2757 /* Should be run after espfix64 is set up. */
2758 pti_init();
2759 kmsan_init_runtime();
2760 mm_cache_init();
2761 execmem_init();
2762 }