]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/mmap.c
tracing: Fix very unlikely race of registering two stat tracers
[thirdparty/kernel/stable.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/perf_event.h>
35 #include <linux/audit.h>
36 #include <linux/khugepaged.h>
37 #include <linux/uprobes.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/sched/sysctl.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 #include <linux/sched.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49
50 #include "internal.h"
51
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags) (0)
54 #endif
55
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len) (addr)
58 #endif
59
60 static void unmap_region(struct mm_struct *mm,
61 struct vm_area_struct *vma, struct vm_area_struct *prev,
62 unsigned long start, unsigned long end);
63
64 /* description of effects of mapping type and prot in current implementation.
65 * this is due to the limited x86 page protection hardware. The expected
66 * behavior is in parens:
67 *
68 * map_type prot
69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (yes) yes w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 *
74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
75 * w: (no) no w: (no) no w: (copy) copy w: (no) no
76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
77 *
78 */
79 pgprot_t protection_map[16] = {
80 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86 return __pgprot(pgprot_val(protection_map[vm_flags &
87 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88 pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91
92 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
93 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
94 unsigned long sysctl_overcommit_kbytes __read_mostly;
95 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
96 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
97 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
98 /*
99 * Make sure vm_committed_as in one cacheline and not cacheline shared with
100 * other variables. It can be updated by several CPUs frequently.
101 */
102 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
103
104 /*
105 * The global memory commitment made in the system can be a metric
106 * that can be used to drive ballooning decisions when Linux is hosted
107 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
108 * balancing memory across competing virtual machines that are hosted.
109 * Several metrics drive this policy engine including the guest reported
110 * memory commitment.
111 */
112 unsigned long vm_memory_committed(void)
113 {
114 return percpu_counter_read_positive(&vm_committed_as);
115 }
116 EXPORT_SYMBOL_GPL(vm_memory_committed);
117
118 /*
119 * Check that a process has enough memory to allocate a new virtual
120 * mapping. 0 means there is enough memory for the allocation to
121 * succeed and -ENOMEM implies there is not.
122 *
123 * We currently support three overcommit policies, which are set via the
124 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
125 *
126 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
127 * Additional code 2002 Jul 20 by Robert Love.
128 *
129 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
130 *
131 * Note this is a helper function intended to be used by LSMs which
132 * wish to use this logic.
133 */
134 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
135 {
136 long free, allowed, reserve;
137
138 vm_acct_memory(pages);
139
140 /*
141 * Sometimes we want to use more memory than we have
142 */
143 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
144 return 0;
145
146 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
147 free = global_page_state(NR_FREE_PAGES);
148 free += global_page_state(NR_FILE_PAGES);
149
150 /*
151 * shmem pages shouldn't be counted as free in this
152 * case, they can't be purged, only swapped out, and
153 * that won't affect the overall amount of available
154 * memory in the system.
155 */
156 free -= global_page_state(NR_SHMEM);
157
158 free += get_nr_swap_pages();
159
160 /*
161 * Any slabs which are created with the
162 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
163 * which are reclaimable, under pressure. The dentry
164 * cache and most inode caches should fall into this
165 */
166 free += global_page_state(NR_SLAB_RECLAIMABLE);
167
168 /*
169 * Leave reserved pages. The pages are not for anonymous pages.
170 */
171 if (free <= totalreserve_pages)
172 goto error;
173 else
174 free -= totalreserve_pages;
175
176 /*
177 * Reserve some for root
178 */
179 if (!cap_sys_admin)
180 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
181
182 if (free > pages)
183 return 0;
184
185 goto error;
186 }
187
188 allowed = vm_commit_limit();
189 /*
190 * Reserve some for root
191 */
192 if (!cap_sys_admin)
193 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
194
195 /*
196 * Don't let a single process grow so big a user can't recover
197 */
198 if (mm) {
199 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
200 allowed -= min_t(long, mm->total_vm / 32, reserve);
201 }
202
203 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
204 return 0;
205 error:
206 vm_unacct_memory(pages);
207
208 return -ENOMEM;
209 }
210
211 /*
212 * Requires inode->i_mapping->i_mmap_mutex
213 */
214 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
215 struct file *file, struct address_space *mapping)
216 {
217 if (vma->vm_flags & VM_DENYWRITE)
218 atomic_inc(&file_inode(file)->i_writecount);
219 if (vma->vm_flags & VM_SHARED)
220 mapping->i_mmap_writable--;
221
222 flush_dcache_mmap_lock(mapping);
223 vma_interval_tree_remove(vma, &mapping->i_mmap);
224 flush_dcache_mmap_unlock(mapping);
225 }
226
227 /*
228 * Unlink a file-based vm structure from its interval tree, to hide
229 * vma from rmap and vmtruncate before freeing its page tables.
230 */
231 void unlink_file_vma(struct vm_area_struct *vma)
232 {
233 struct file *file = vma->vm_file;
234
235 if (file) {
236 struct address_space *mapping = file->f_mapping;
237 mutex_lock(&mapping->i_mmap_mutex);
238 __remove_shared_vm_struct(vma, file, mapping);
239 mutex_unlock(&mapping->i_mmap_mutex);
240 }
241 }
242
243 /*
244 * Close a vm structure and free it, returning the next.
245 */
246 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
247 {
248 struct vm_area_struct *next = vma->vm_next;
249
250 might_sleep();
251 if (vma->vm_ops && vma->vm_ops->close)
252 vma->vm_ops->close(vma);
253 if (vma->vm_file)
254 fput(vma->vm_file);
255 mpol_put(vma_policy(vma));
256 kmem_cache_free(vm_area_cachep, vma);
257 return next;
258 }
259
260 static unsigned long do_brk(unsigned long addr, unsigned long len);
261
262 SYSCALL_DEFINE1(brk, unsigned long, brk)
263 {
264 unsigned long rlim, retval;
265 unsigned long newbrk, oldbrk;
266 struct mm_struct *mm = current->mm;
267 struct vm_area_struct *next;
268 unsigned long min_brk;
269 bool populate;
270
271 down_write(&mm->mmap_sem);
272
273 #ifdef CONFIG_COMPAT_BRK
274 /*
275 * CONFIG_COMPAT_BRK can still be overridden by setting
276 * randomize_va_space to 2, which will still cause mm->start_brk
277 * to be arbitrarily shifted
278 */
279 if (current->brk_randomized)
280 min_brk = mm->start_brk;
281 else
282 min_brk = mm->end_data;
283 #else
284 min_brk = mm->start_brk;
285 #endif
286 if (brk < min_brk)
287 goto out;
288
289 /*
290 * Check against rlimit here. If this check is done later after the test
291 * of oldbrk with newbrk then it can escape the test and let the data
292 * segment grow beyond its set limit the in case where the limit is
293 * not page aligned -Ram Gupta
294 */
295 rlim = rlimit(RLIMIT_DATA);
296 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
297 (mm->end_data - mm->start_data) > rlim)
298 goto out;
299
300 newbrk = PAGE_ALIGN(brk);
301 oldbrk = PAGE_ALIGN(mm->brk);
302 if (oldbrk == newbrk)
303 goto set_brk;
304
305 /* Always allow shrinking brk. */
306 if (brk <= mm->brk) {
307 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
308 goto set_brk;
309 goto out;
310 }
311
312 /* Check against existing mmap mappings. */
313 next = find_vma(mm, oldbrk);
314 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
315 goto out;
316
317 /* Ok, looks good - let it rip. */
318 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
319 goto out;
320
321 set_brk:
322 mm->brk = brk;
323 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
324 up_write(&mm->mmap_sem);
325 if (populate)
326 mm_populate(oldbrk, newbrk - oldbrk);
327 return brk;
328
329 out:
330 retval = mm->brk;
331 up_write(&mm->mmap_sem);
332 return retval;
333 }
334
335 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
336 {
337 unsigned long max, prev_end, subtree_gap;
338
339 /*
340 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
341 * allow two stack_guard_gaps between them here, and when choosing
342 * an unmapped area; whereas when expanding we only require one.
343 * That's a little inconsistent, but keeps the code here simpler.
344 */
345 max = vm_start_gap(vma);
346 if (vma->vm_prev) {
347 prev_end = vm_end_gap(vma->vm_prev);
348 if (max > prev_end)
349 max -= prev_end;
350 else
351 max = 0;
352 }
353 if (vma->vm_rb.rb_left) {
354 subtree_gap = rb_entry(vma->vm_rb.rb_left,
355 struct vm_area_struct, vm_rb)->rb_subtree_gap;
356 if (subtree_gap > max)
357 max = subtree_gap;
358 }
359 if (vma->vm_rb.rb_right) {
360 subtree_gap = rb_entry(vma->vm_rb.rb_right,
361 struct vm_area_struct, vm_rb)->rb_subtree_gap;
362 if (subtree_gap > max)
363 max = subtree_gap;
364 }
365 return max;
366 }
367
368 #ifdef CONFIG_DEBUG_VM_RB
369 static int browse_rb(struct rb_root *root)
370 {
371 int i = 0, j, bug = 0;
372 struct rb_node *nd, *pn = NULL;
373 unsigned long prev = 0, pend = 0;
374
375 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
376 struct vm_area_struct *vma;
377 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
378 if (vma->vm_start < prev) {
379 pr_info("vm_start %lx prev %lx\n", vma->vm_start, prev);
380 bug = 1;
381 }
382 if (vma->vm_start < pend) {
383 pr_info("vm_start %lx pend %lx\n", vma->vm_start, pend);
384 bug = 1;
385 }
386 if (vma->vm_start > vma->vm_end) {
387 pr_info("vm_end %lx < vm_start %lx\n",
388 vma->vm_end, vma->vm_start);
389 bug = 1;
390 }
391 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
392 pr_info("free gap %lx, correct %lx\n",
393 vma->rb_subtree_gap,
394 vma_compute_subtree_gap(vma));
395 bug = 1;
396 }
397 i++;
398 pn = nd;
399 prev = vma->vm_start;
400 pend = vma->vm_end;
401 }
402 j = 0;
403 for (nd = pn; nd; nd = rb_prev(nd))
404 j++;
405 if (i != j) {
406 pr_info("backwards %d, forwards %d\n", j, i);
407 bug = 1;
408 }
409 return bug ? -1 : i;
410 }
411
412 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
413 {
414 struct rb_node *nd;
415
416 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
417 struct vm_area_struct *vma;
418 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
419 BUG_ON(vma != ignore &&
420 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
421 }
422 }
423
424 static void validate_mm(struct mm_struct *mm)
425 {
426 int bug = 0;
427 int i = 0;
428 unsigned long highest_address = 0;
429 struct vm_area_struct *vma = mm->mmap;
430 while (vma) {
431 struct anon_vma *anon_vma = vma->anon_vma;
432 struct anon_vma_chain *avc;
433
434 if (anon_vma) {
435 anon_vma_lock_read(anon_vma);
436 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
437 anon_vma_interval_tree_verify(avc);
438 anon_vma_unlock_read(anon_vma);
439 }
440
441 highest_address = vm_end_gap(vma);
442 vma = vma->vm_next;
443 i++;
444 }
445 if (i != mm->map_count) {
446 pr_info("map_count %d vm_next %d\n", mm->map_count, i);
447 bug = 1;
448 }
449 if (highest_address != mm->highest_vm_end) {
450 pr_info("mm->highest_vm_end %lx, found %lx\n",
451 mm->highest_vm_end, highest_address);
452 bug = 1;
453 }
454 i = browse_rb(&mm->mm_rb);
455 if (i != mm->map_count) {
456 pr_info("map_count %d rb %d\n", mm->map_count, i);
457 bug = 1;
458 }
459 BUG_ON(bug);
460 }
461 #else
462 #define validate_mm_rb(root, ignore) do { } while (0)
463 #define validate_mm(mm) do { } while (0)
464 #endif
465
466 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
467 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
468
469 /*
470 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
471 * vma->vm_prev->vm_end values changed, without modifying the vma's position
472 * in the rbtree.
473 */
474 static void vma_gap_update(struct vm_area_struct *vma)
475 {
476 /*
477 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
478 * function that does exacltly what we want.
479 */
480 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
481 }
482
483 static inline void vma_rb_insert(struct vm_area_struct *vma,
484 struct rb_root *root)
485 {
486 /* All rb_subtree_gap values must be consistent prior to insertion */
487 validate_mm_rb(root, NULL);
488
489 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
490 }
491
492 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
493 {
494 /*
495 * All rb_subtree_gap values must be consistent prior to erase,
496 * with the possible exception of the vma being erased.
497 */
498 validate_mm_rb(root, vma);
499
500 /*
501 * Note rb_erase_augmented is a fairly large inline function,
502 * so make sure we instantiate it only once with our desired
503 * augmented rbtree callbacks.
504 */
505 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
506 }
507
508 /*
509 * vma has some anon_vma assigned, and is already inserted on that
510 * anon_vma's interval trees.
511 *
512 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
513 * vma must be removed from the anon_vma's interval trees using
514 * anon_vma_interval_tree_pre_update_vma().
515 *
516 * After the update, the vma will be reinserted using
517 * anon_vma_interval_tree_post_update_vma().
518 *
519 * The entire update must be protected by exclusive mmap_sem and by
520 * the root anon_vma's mutex.
521 */
522 static inline void
523 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
524 {
525 struct anon_vma_chain *avc;
526
527 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
529 }
530
531 static inline void
532 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
533 {
534 struct anon_vma_chain *avc;
535
536 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
537 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
538 }
539
540 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
541 unsigned long end, struct vm_area_struct **pprev,
542 struct rb_node ***rb_link, struct rb_node **rb_parent)
543 {
544 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
545
546 __rb_link = &mm->mm_rb.rb_node;
547 rb_prev = __rb_parent = NULL;
548
549 while (*__rb_link) {
550 struct vm_area_struct *vma_tmp;
551
552 __rb_parent = *__rb_link;
553 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
554
555 if (vma_tmp->vm_end > addr) {
556 /* Fail if an existing vma overlaps the area */
557 if (vma_tmp->vm_start < end)
558 return -ENOMEM;
559 __rb_link = &__rb_parent->rb_left;
560 } else {
561 rb_prev = __rb_parent;
562 __rb_link = &__rb_parent->rb_right;
563 }
564 }
565
566 *pprev = NULL;
567 if (rb_prev)
568 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
569 *rb_link = __rb_link;
570 *rb_parent = __rb_parent;
571 return 0;
572 }
573
574 static unsigned long count_vma_pages_range(struct mm_struct *mm,
575 unsigned long addr, unsigned long end)
576 {
577 unsigned long nr_pages = 0;
578 struct vm_area_struct *vma;
579
580 /* Find first overlaping mapping */
581 vma = find_vma_intersection(mm, addr, end);
582 if (!vma)
583 return 0;
584
585 nr_pages = (min(end, vma->vm_end) -
586 max(addr, vma->vm_start)) >> PAGE_SHIFT;
587
588 /* Iterate over the rest of the overlaps */
589 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
590 unsigned long overlap_len;
591
592 if (vma->vm_start > end)
593 break;
594
595 overlap_len = min(end, vma->vm_end) - vma->vm_start;
596 nr_pages += overlap_len >> PAGE_SHIFT;
597 }
598
599 return nr_pages;
600 }
601
602 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
603 struct rb_node **rb_link, struct rb_node *rb_parent)
604 {
605 /* Update tracking information for the gap following the new vma. */
606 if (vma->vm_next)
607 vma_gap_update(vma->vm_next);
608 else
609 mm->highest_vm_end = vm_end_gap(vma);
610
611 /*
612 * vma->vm_prev wasn't known when we followed the rbtree to find the
613 * correct insertion point for that vma. As a result, we could not
614 * update the vma vm_rb parents rb_subtree_gap values on the way down.
615 * So, we first insert the vma with a zero rb_subtree_gap value
616 * (to be consistent with what we did on the way down), and then
617 * immediately update the gap to the correct value. Finally we
618 * rebalance the rbtree after all augmented values have been set.
619 */
620 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
621 vma->rb_subtree_gap = 0;
622 vma_gap_update(vma);
623 vma_rb_insert(vma, &mm->mm_rb);
624 }
625
626 static void __vma_link_file(struct vm_area_struct *vma)
627 {
628 struct file *file;
629
630 file = vma->vm_file;
631 if (file) {
632 struct address_space *mapping = file->f_mapping;
633
634 if (vma->vm_flags & VM_DENYWRITE)
635 atomic_dec(&file_inode(file)->i_writecount);
636 if (vma->vm_flags & VM_SHARED)
637 mapping->i_mmap_writable++;
638
639 flush_dcache_mmap_lock(mapping);
640 vma_interval_tree_insert(vma, &mapping->i_mmap);
641 flush_dcache_mmap_unlock(mapping);
642 }
643 }
644
645 static void
646 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
647 struct vm_area_struct *prev, struct rb_node **rb_link,
648 struct rb_node *rb_parent)
649 {
650 __vma_link_list(mm, vma, prev, rb_parent);
651 __vma_link_rb(mm, vma, rb_link, rb_parent);
652 }
653
654 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
655 struct vm_area_struct *prev, struct rb_node **rb_link,
656 struct rb_node *rb_parent)
657 {
658 struct address_space *mapping = NULL;
659
660 if (vma->vm_file) {
661 mapping = vma->vm_file->f_mapping;
662 mutex_lock(&mapping->i_mmap_mutex);
663 }
664
665 __vma_link(mm, vma, prev, rb_link, rb_parent);
666 __vma_link_file(vma);
667
668 if (mapping)
669 mutex_unlock(&mapping->i_mmap_mutex);
670
671 mm->map_count++;
672 validate_mm(mm);
673 }
674
675 /*
676 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
677 * mm's list and rbtree. It has already been inserted into the interval tree.
678 */
679 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
680 {
681 struct vm_area_struct *prev;
682 struct rb_node **rb_link, *rb_parent;
683
684 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
685 &prev, &rb_link, &rb_parent))
686 BUG();
687 __vma_link(mm, vma, prev, rb_link, rb_parent);
688 mm->map_count++;
689 }
690
691 static inline void
692 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
693 struct vm_area_struct *prev)
694 {
695 struct vm_area_struct *next;
696
697 vma_rb_erase(vma, &mm->mm_rb);
698 prev->vm_next = next = vma->vm_next;
699 if (next)
700 next->vm_prev = prev;
701
702 /* Kill the cache */
703 vmacache_invalidate(mm);
704 }
705
706 /*
707 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
708 * is already present in an i_mmap tree without adjusting the tree.
709 * The following helper function should be used when such adjustments
710 * are necessary. The "insert" vma (if any) is to be inserted
711 * before we drop the necessary locks.
712 */
713 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
714 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
715 {
716 struct mm_struct *mm = vma->vm_mm;
717 struct vm_area_struct *next = vma->vm_next;
718 struct vm_area_struct *importer = NULL;
719 struct address_space *mapping = NULL;
720 struct rb_root *root = NULL;
721 struct anon_vma *anon_vma = NULL;
722 struct file *file = vma->vm_file;
723 bool start_changed = false, end_changed = false;
724 long adjust_next = 0;
725 int remove_next = 0;
726
727 if (next && !insert) {
728 struct vm_area_struct *exporter = NULL;
729
730 if (end >= next->vm_end) {
731 /*
732 * vma expands, overlapping all the next, and
733 * perhaps the one after too (mprotect case 6).
734 */
735 again: remove_next = 1 + (end > next->vm_end);
736 end = next->vm_end;
737 exporter = next;
738 importer = vma;
739 } else if (end > next->vm_start) {
740 /*
741 * vma expands, overlapping part of the next:
742 * mprotect case 5 shifting the boundary up.
743 */
744 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
745 exporter = next;
746 importer = vma;
747 } else if (end < vma->vm_end) {
748 /*
749 * vma shrinks, and !insert tells it's not
750 * split_vma inserting another: so it must be
751 * mprotect case 4 shifting the boundary down.
752 */
753 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
754 exporter = vma;
755 importer = next;
756 }
757
758 /*
759 * Easily overlooked: when mprotect shifts the boundary,
760 * make sure the expanding vma has anon_vma set if the
761 * shrinking vma had, to cover any anon pages imported.
762 */
763 if (exporter && exporter->anon_vma && !importer->anon_vma) {
764 int error;
765
766 importer->anon_vma = exporter->anon_vma;
767 error = anon_vma_clone(importer, exporter);
768 if (error)
769 return error;
770 }
771 }
772
773 if (file) {
774 mapping = file->f_mapping;
775 root = &mapping->i_mmap;
776 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
777
778 if (adjust_next)
779 uprobe_munmap(next, next->vm_start, next->vm_end);
780
781 mutex_lock(&mapping->i_mmap_mutex);
782 if (insert) {
783 /*
784 * Put into interval tree now, so instantiated pages
785 * are visible to arm/parisc __flush_dcache_page
786 * throughout; but we cannot insert into address
787 * space until vma start or end is updated.
788 */
789 __vma_link_file(insert);
790 }
791 }
792
793 vma_adjust_trans_huge(vma, start, end, adjust_next);
794
795 anon_vma = vma->anon_vma;
796 if (!anon_vma && adjust_next)
797 anon_vma = next->anon_vma;
798 if (anon_vma) {
799 VM_BUG_ON(adjust_next && next->anon_vma &&
800 anon_vma != next->anon_vma);
801 anon_vma_lock_write(anon_vma);
802 anon_vma_interval_tree_pre_update_vma(vma);
803 if (adjust_next)
804 anon_vma_interval_tree_pre_update_vma(next);
805 }
806
807 if (root) {
808 flush_dcache_mmap_lock(mapping);
809 vma_interval_tree_remove(vma, root);
810 if (adjust_next)
811 vma_interval_tree_remove(next, root);
812 }
813
814 if (start != vma->vm_start) {
815 vma->vm_start = start;
816 start_changed = true;
817 }
818 if (end != vma->vm_end) {
819 vma->vm_end = end;
820 end_changed = true;
821 }
822 vma->vm_pgoff = pgoff;
823 if (adjust_next) {
824 next->vm_start += adjust_next << PAGE_SHIFT;
825 next->vm_pgoff += adjust_next;
826 }
827
828 if (root) {
829 if (adjust_next)
830 vma_interval_tree_insert(next, root);
831 vma_interval_tree_insert(vma, root);
832 flush_dcache_mmap_unlock(mapping);
833 }
834
835 if (remove_next) {
836 /*
837 * vma_merge has merged next into vma, and needs
838 * us to remove next before dropping the locks.
839 */
840 __vma_unlink(mm, next, vma);
841 if (file)
842 __remove_shared_vm_struct(next, file, mapping);
843 } else if (insert) {
844 /*
845 * split_vma has split insert from vma, and needs
846 * us to insert it before dropping the locks
847 * (it may either follow vma or precede it).
848 */
849 __insert_vm_struct(mm, insert);
850 } else {
851 if (start_changed)
852 vma_gap_update(vma);
853 if (end_changed) {
854 if (!next)
855 mm->highest_vm_end = vm_end_gap(vma);
856 else if (!adjust_next)
857 vma_gap_update(next);
858 }
859 }
860
861 if (anon_vma) {
862 anon_vma_interval_tree_post_update_vma(vma);
863 if (adjust_next)
864 anon_vma_interval_tree_post_update_vma(next);
865 anon_vma_unlock_write(anon_vma);
866 }
867 if (mapping)
868 mutex_unlock(&mapping->i_mmap_mutex);
869
870 if (root) {
871 uprobe_mmap(vma);
872
873 if (adjust_next)
874 uprobe_mmap(next);
875 }
876
877 if (remove_next) {
878 if (file) {
879 uprobe_munmap(next, next->vm_start, next->vm_end);
880 fput(file);
881 }
882 if (next->anon_vma)
883 anon_vma_merge(vma, next);
884 mm->map_count--;
885 mpol_put(vma_policy(next));
886 kmem_cache_free(vm_area_cachep, next);
887 /*
888 * In mprotect's case 6 (see comments on vma_merge),
889 * we must remove another next too. It would clutter
890 * up the code too much to do both in one go.
891 */
892 next = vma->vm_next;
893 if (remove_next == 2)
894 goto again;
895 else if (next)
896 vma_gap_update(next);
897 else
898 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
899 }
900 if (insert && file)
901 uprobe_mmap(insert);
902
903 validate_mm(mm);
904
905 return 0;
906 }
907
908 /*
909 * If the vma has a ->close operation then the driver probably needs to release
910 * per-vma resources, so we don't attempt to merge those.
911 */
912 static inline int is_mergeable_vma(struct vm_area_struct *vma,
913 struct file *file, unsigned long vm_flags)
914 {
915 /*
916 * VM_SOFTDIRTY should not prevent from VMA merging, if we
917 * match the flags but dirty bit -- the caller should mark
918 * merged VMA as dirty. If dirty bit won't be excluded from
919 * comparison, we increase pressue on the memory system forcing
920 * the kernel to generate new VMAs when old one could be
921 * extended instead.
922 */
923 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
924 return 0;
925 if (vma->vm_file != file)
926 return 0;
927 if (vma->vm_ops && vma->vm_ops->close)
928 return 0;
929 return 1;
930 }
931
932 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
933 struct anon_vma *anon_vma2,
934 struct vm_area_struct *vma)
935 {
936 /*
937 * The list_is_singular() test is to avoid merging VMA cloned from
938 * parents. This can improve scalability caused by anon_vma lock.
939 */
940 if ((!anon_vma1 || !anon_vma2) && (!vma ||
941 list_is_singular(&vma->anon_vma_chain)))
942 return 1;
943 return anon_vma1 == anon_vma2;
944 }
945
946 /*
947 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
948 * in front of (at a lower virtual address and file offset than) the vma.
949 *
950 * We cannot merge two vmas if they have differently assigned (non-NULL)
951 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
952 *
953 * We don't check here for the merged mmap wrapping around the end of pagecache
954 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
955 * wrap, nor mmaps which cover the final page at index -1UL.
956 */
957 static int
958 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
959 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
960 {
961 if (is_mergeable_vma(vma, file, vm_flags) &&
962 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
963 if (vma->vm_pgoff == vm_pgoff)
964 return 1;
965 }
966 return 0;
967 }
968
969 /*
970 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
971 * beyond (at a higher virtual address and file offset than) the vma.
972 *
973 * We cannot merge two vmas if they have differently assigned (non-NULL)
974 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
975 */
976 static int
977 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
978 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
979 {
980 if (is_mergeable_vma(vma, file, vm_flags) &&
981 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
982 pgoff_t vm_pglen;
983 vm_pglen = vma_pages(vma);
984 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
985 return 1;
986 }
987 return 0;
988 }
989
990 /*
991 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
992 * whether that can be merged with its predecessor or its successor.
993 * Or both (it neatly fills a hole).
994 *
995 * In most cases - when called for mmap, brk or mremap - [addr,end) is
996 * certain not to be mapped by the time vma_merge is called; but when
997 * called for mprotect, it is certain to be already mapped (either at
998 * an offset within prev, or at the start of next), and the flags of
999 * this area are about to be changed to vm_flags - and the no-change
1000 * case has already been eliminated.
1001 *
1002 * The following mprotect cases have to be considered, where AAAA is
1003 * the area passed down from mprotect_fixup, never extending beyond one
1004 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1005 *
1006 * AAAA AAAA AAAA AAAA
1007 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1008 * cannot merge might become might become might become
1009 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1010 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1011 * mremap move: PPPPNNNNNNNN 8
1012 * AAAA
1013 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1014 * might become case 1 below case 2 below case 3 below
1015 *
1016 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1017 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1018 */
1019 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1020 struct vm_area_struct *prev, unsigned long addr,
1021 unsigned long end, unsigned long vm_flags,
1022 struct anon_vma *anon_vma, struct file *file,
1023 pgoff_t pgoff, struct mempolicy *policy)
1024 {
1025 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1026 struct vm_area_struct *area, *next;
1027 int err;
1028
1029 /*
1030 * We later require that vma->vm_flags == vm_flags,
1031 * so this tests vma->vm_flags & VM_SPECIAL, too.
1032 */
1033 if (vm_flags & VM_SPECIAL)
1034 return NULL;
1035
1036 if (prev)
1037 next = prev->vm_next;
1038 else
1039 next = mm->mmap;
1040 area = next;
1041 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1042 next = next->vm_next;
1043
1044 /*
1045 * Can it merge with the predecessor?
1046 */
1047 if (prev && prev->vm_end == addr &&
1048 mpol_equal(vma_policy(prev), policy) &&
1049 can_vma_merge_after(prev, vm_flags,
1050 anon_vma, file, pgoff)) {
1051 /*
1052 * OK, it can. Can we now merge in the successor as well?
1053 */
1054 if (next && end == next->vm_start &&
1055 mpol_equal(policy, vma_policy(next)) &&
1056 can_vma_merge_before(next, vm_flags,
1057 anon_vma, file, pgoff+pglen) &&
1058 is_mergeable_anon_vma(prev->anon_vma,
1059 next->anon_vma, NULL)) {
1060 /* cases 1, 6 */
1061 err = vma_adjust(prev, prev->vm_start,
1062 next->vm_end, prev->vm_pgoff, NULL);
1063 } else /* cases 2, 5, 7 */
1064 err = vma_adjust(prev, prev->vm_start,
1065 end, prev->vm_pgoff, NULL);
1066 if (err)
1067 return NULL;
1068 khugepaged_enter_vma_merge(prev, vm_flags);
1069 return prev;
1070 }
1071
1072 /*
1073 * Can this new request be merged in front of next?
1074 */
1075 if (next && end == next->vm_start &&
1076 mpol_equal(policy, vma_policy(next)) &&
1077 can_vma_merge_before(next, vm_flags,
1078 anon_vma, file, pgoff+pglen)) {
1079 if (prev && addr < prev->vm_end) /* case 4 */
1080 err = vma_adjust(prev, prev->vm_start,
1081 addr, prev->vm_pgoff, NULL);
1082 else /* cases 3, 8 */
1083 err = vma_adjust(area, addr, next->vm_end,
1084 next->vm_pgoff - pglen, NULL);
1085 if (err)
1086 return NULL;
1087 khugepaged_enter_vma_merge(area, vm_flags);
1088 return area;
1089 }
1090
1091 return NULL;
1092 }
1093
1094 /*
1095 * Rough compatbility check to quickly see if it's even worth looking
1096 * at sharing an anon_vma.
1097 *
1098 * They need to have the same vm_file, and the flags can only differ
1099 * in things that mprotect may change.
1100 *
1101 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1102 * we can merge the two vma's. For example, we refuse to merge a vma if
1103 * there is a vm_ops->close() function, because that indicates that the
1104 * driver is doing some kind of reference counting. But that doesn't
1105 * really matter for the anon_vma sharing case.
1106 */
1107 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1108 {
1109 return a->vm_end == b->vm_start &&
1110 mpol_equal(vma_policy(a), vma_policy(b)) &&
1111 a->vm_file == b->vm_file &&
1112 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1113 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1114 }
1115
1116 /*
1117 * Do some basic sanity checking to see if we can re-use the anon_vma
1118 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1119 * the same as 'old', the other will be the new one that is trying
1120 * to share the anon_vma.
1121 *
1122 * NOTE! This runs with mm_sem held for reading, so it is possible that
1123 * the anon_vma of 'old' is concurrently in the process of being set up
1124 * by another page fault trying to merge _that_. But that's ok: if it
1125 * is being set up, that automatically means that it will be a singleton
1126 * acceptable for merging, so we can do all of this optimistically. But
1127 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1128 *
1129 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1130 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1131 * is to return an anon_vma that is "complex" due to having gone through
1132 * a fork).
1133 *
1134 * We also make sure that the two vma's are compatible (adjacent,
1135 * and with the same memory policies). That's all stable, even with just
1136 * a read lock on the mm_sem.
1137 */
1138 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1139 {
1140 if (anon_vma_compatible(a, b)) {
1141 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1142
1143 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1144 return anon_vma;
1145 }
1146 return NULL;
1147 }
1148
1149 /*
1150 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1151 * neighbouring vmas for a suitable anon_vma, before it goes off
1152 * to allocate a new anon_vma. It checks because a repetitive
1153 * sequence of mprotects and faults may otherwise lead to distinct
1154 * anon_vmas being allocated, preventing vma merge in subsequent
1155 * mprotect.
1156 */
1157 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1158 {
1159 struct anon_vma *anon_vma;
1160 struct vm_area_struct *near;
1161
1162 near = vma->vm_next;
1163 if (!near)
1164 goto try_prev;
1165
1166 anon_vma = reusable_anon_vma(near, vma, near);
1167 if (anon_vma)
1168 return anon_vma;
1169 try_prev:
1170 near = vma->vm_prev;
1171 if (!near)
1172 goto none;
1173
1174 anon_vma = reusable_anon_vma(near, near, vma);
1175 if (anon_vma)
1176 return anon_vma;
1177 none:
1178 /*
1179 * There's no absolute need to look only at touching neighbours:
1180 * we could search further afield for "compatible" anon_vmas.
1181 * But it would probably just be a waste of time searching,
1182 * or lead to too many vmas hanging off the same anon_vma.
1183 * We're trying to allow mprotect remerging later on,
1184 * not trying to minimize memory used for anon_vmas.
1185 */
1186 return NULL;
1187 }
1188
1189 #ifdef CONFIG_PROC_FS
1190 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1191 struct file *file, long pages)
1192 {
1193 const unsigned long stack_flags
1194 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1195
1196 mm->total_vm += pages;
1197
1198 if (file) {
1199 mm->shared_vm += pages;
1200 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1201 mm->exec_vm += pages;
1202 } else if (flags & stack_flags)
1203 mm->stack_vm += pages;
1204 }
1205 #endif /* CONFIG_PROC_FS */
1206
1207 /*
1208 * If a hint addr is less than mmap_min_addr change hint to be as
1209 * low as possible but still greater than mmap_min_addr
1210 */
1211 static inline unsigned long round_hint_to_min(unsigned long hint)
1212 {
1213 hint &= PAGE_MASK;
1214 if (((void *)hint != NULL) &&
1215 (hint < mmap_min_addr))
1216 return PAGE_ALIGN(mmap_min_addr);
1217 return hint;
1218 }
1219
1220 static inline int mlock_future_check(struct mm_struct *mm,
1221 unsigned long flags,
1222 unsigned long len)
1223 {
1224 unsigned long locked, lock_limit;
1225
1226 /* mlock MCL_FUTURE? */
1227 if (flags & VM_LOCKED) {
1228 locked = len >> PAGE_SHIFT;
1229 locked += mm->locked_vm;
1230 lock_limit = rlimit(RLIMIT_MEMLOCK);
1231 lock_limit >>= PAGE_SHIFT;
1232 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1233 return -EAGAIN;
1234 }
1235 return 0;
1236 }
1237
1238 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1239 {
1240 if (S_ISREG(inode->i_mode))
1241 return MAX_LFS_FILESIZE;
1242
1243 if (S_ISBLK(inode->i_mode))
1244 return MAX_LFS_FILESIZE;
1245
1246 /* Special "we do even unsigned file positions" case */
1247 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1248 return 0;
1249
1250 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1251 return ULONG_MAX;
1252 }
1253
1254 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1255 unsigned long pgoff, unsigned long len)
1256 {
1257 u64 maxsize = file_mmap_size_max(file, inode);
1258
1259 if (maxsize && len > maxsize)
1260 return false;
1261 maxsize -= len;
1262 if (pgoff > maxsize >> PAGE_SHIFT)
1263 return false;
1264 return true;
1265 }
1266
1267 /*
1268 * The caller must hold down_write(&current->mm->mmap_sem).
1269 */
1270
1271 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1272 unsigned long len, unsigned long prot,
1273 unsigned long flags, unsigned long pgoff,
1274 unsigned long *populate)
1275 {
1276 struct mm_struct * mm = current->mm;
1277 vm_flags_t vm_flags;
1278
1279 *populate = 0;
1280
1281 /*
1282 * Does the application expect PROT_READ to imply PROT_EXEC?
1283 *
1284 * (the exception is when the underlying filesystem is noexec
1285 * mounted, in which case we dont add PROT_EXEC.)
1286 */
1287 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1288 if (!(file && path_noexec(&file->f_path)))
1289 prot |= PROT_EXEC;
1290
1291 if (!len)
1292 return -EINVAL;
1293
1294 if (!(flags & MAP_FIXED))
1295 addr = round_hint_to_min(addr);
1296
1297 /* Careful about overflows.. */
1298 len = PAGE_ALIGN(len);
1299 if (!len)
1300 return -ENOMEM;
1301
1302 /* offset overflow? */
1303 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1304 return -EOVERFLOW;
1305
1306 /* Too many mappings? */
1307 if (mm->map_count > sysctl_max_map_count)
1308 return -ENOMEM;
1309
1310 /* Obtain the address to map to. we verify (or select) it and ensure
1311 * that it represents a valid section of the address space.
1312 */
1313 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1314 if (addr & ~PAGE_MASK)
1315 return addr;
1316
1317 /* Do simple checking here so the lower-level routines won't have
1318 * to. we assume access permissions have been handled by the open
1319 * of the memory object, so we don't do any here.
1320 */
1321 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1322 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1323
1324 if (flags & MAP_LOCKED)
1325 if (!can_do_mlock())
1326 return -EPERM;
1327
1328 if (mlock_future_check(mm, vm_flags, len))
1329 return -EAGAIN;
1330
1331 if (file) {
1332 struct inode *inode = file_inode(file);
1333
1334 if (!file_mmap_ok(file, inode, pgoff, len))
1335 return -EOVERFLOW;
1336
1337 switch (flags & MAP_TYPE) {
1338 case MAP_SHARED:
1339 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1340 return -EACCES;
1341
1342 /*
1343 * Make sure we don't allow writing to an append-only
1344 * file..
1345 */
1346 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1347 return -EACCES;
1348
1349 /*
1350 * Make sure there are no mandatory locks on the file.
1351 */
1352 if (locks_verify_locked(file))
1353 return -EAGAIN;
1354
1355 vm_flags |= VM_SHARED | VM_MAYSHARE;
1356 if (!(file->f_mode & FMODE_WRITE))
1357 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1358
1359 /* fall through */
1360 case MAP_PRIVATE:
1361 if (!(file->f_mode & FMODE_READ))
1362 return -EACCES;
1363 if (path_noexec(&file->f_path)) {
1364 if (vm_flags & VM_EXEC)
1365 return -EPERM;
1366 vm_flags &= ~VM_MAYEXEC;
1367 }
1368
1369 if (!file->f_op->mmap)
1370 return -ENODEV;
1371 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1372 return -EINVAL;
1373 break;
1374
1375 default:
1376 return -EINVAL;
1377 }
1378 } else {
1379 switch (flags & MAP_TYPE) {
1380 case MAP_SHARED:
1381 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1382 return -EINVAL;
1383 /*
1384 * Ignore pgoff.
1385 */
1386 pgoff = 0;
1387 vm_flags |= VM_SHARED | VM_MAYSHARE;
1388 break;
1389 case MAP_PRIVATE:
1390 /*
1391 * Set pgoff according to addr for anon_vma.
1392 */
1393 pgoff = addr >> PAGE_SHIFT;
1394 break;
1395 default:
1396 return -EINVAL;
1397 }
1398 }
1399
1400 /*
1401 * Set 'VM_NORESERVE' if we should not account for the
1402 * memory use of this mapping.
1403 */
1404 if (flags & MAP_NORESERVE) {
1405 /* We honor MAP_NORESERVE if allowed to overcommit */
1406 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1407 vm_flags |= VM_NORESERVE;
1408
1409 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1410 if (file && is_file_hugepages(file))
1411 vm_flags |= VM_NORESERVE;
1412 }
1413
1414 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1415 if (!IS_ERR_VALUE(addr) &&
1416 ((vm_flags & VM_LOCKED) ||
1417 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1418 *populate = len;
1419 return addr;
1420 }
1421
1422 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1423 unsigned long, prot, unsigned long, flags,
1424 unsigned long, fd, unsigned long, pgoff)
1425 {
1426 struct file *file = NULL;
1427 unsigned long retval = -EBADF;
1428
1429 if (!(flags & MAP_ANONYMOUS)) {
1430 audit_mmap_fd(fd, flags);
1431 file = fget(fd);
1432 if (!file)
1433 goto out;
1434 if (is_file_hugepages(file))
1435 len = ALIGN(len, huge_page_size(hstate_file(file)));
1436 retval = -EINVAL;
1437 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1438 goto out_fput;
1439 } else if (flags & MAP_HUGETLB) {
1440 struct user_struct *user = NULL;
1441 struct hstate *hs;
1442
1443 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1444 if (!hs)
1445 return -EINVAL;
1446
1447 len = ALIGN(len, huge_page_size(hs));
1448 /*
1449 * VM_NORESERVE is used because the reservations will be
1450 * taken when vm_ops->mmap() is called
1451 * A dummy user value is used because we are not locking
1452 * memory so no accounting is necessary
1453 */
1454 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1455 VM_NORESERVE,
1456 &user, HUGETLB_ANONHUGE_INODE,
1457 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1458 if (IS_ERR(file))
1459 return PTR_ERR(file);
1460 }
1461
1462 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1463
1464 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1465 out_fput:
1466 if (file)
1467 fput(file);
1468 out:
1469 return retval;
1470 }
1471
1472 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1473 struct mmap_arg_struct {
1474 unsigned long addr;
1475 unsigned long len;
1476 unsigned long prot;
1477 unsigned long flags;
1478 unsigned long fd;
1479 unsigned long offset;
1480 };
1481
1482 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1483 {
1484 struct mmap_arg_struct a;
1485
1486 if (copy_from_user(&a, arg, sizeof(a)))
1487 return -EFAULT;
1488 if (a.offset & ~PAGE_MASK)
1489 return -EINVAL;
1490
1491 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1492 a.offset >> PAGE_SHIFT);
1493 }
1494 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1495
1496 /*
1497 * Some shared mappigns will want the pages marked read-only
1498 * to track write events. If so, we'll downgrade vm_page_prot
1499 * to the private version (using protection_map[] without the
1500 * VM_SHARED bit).
1501 */
1502 int vma_wants_writenotify(struct vm_area_struct *vma)
1503 {
1504 vm_flags_t vm_flags = vma->vm_flags;
1505
1506 /* If it was private or non-writable, the write bit is already clear */
1507 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1508 return 0;
1509
1510 /* The backer wishes to know when pages are first written to? */
1511 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1512 return 1;
1513
1514 /* The open routine did something to the protections already? */
1515 if (pgprot_val(vma->vm_page_prot) !=
1516 pgprot_val(vm_get_page_prot(vm_flags)))
1517 return 0;
1518
1519 /* Specialty mapping? */
1520 if (vm_flags & VM_PFNMAP)
1521 return 0;
1522
1523 /* Can the mapping track the dirty pages? */
1524 return vma->vm_file && vma->vm_file->f_mapping &&
1525 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1526 }
1527
1528 /*
1529 * We account for memory if it's a private writeable mapping,
1530 * not hugepages and VM_NORESERVE wasn't set.
1531 */
1532 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1533 {
1534 /*
1535 * hugetlb has its own accounting separate from the core VM
1536 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1537 */
1538 if (file && is_file_hugepages(file))
1539 return 0;
1540
1541 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1542 }
1543
1544 unsigned long mmap_region(struct file *file, unsigned long addr,
1545 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1546 {
1547 struct mm_struct *mm = current->mm;
1548 struct vm_area_struct *vma, *prev;
1549 int error;
1550 struct rb_node **rb_link, *rb_parent;
1551 unsigned long charged = 0;
1552
1553 /* Check against address space limit. */
1554 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1555 unsigned long nr_pages;
1556
1557 /*
1558 * MAP_FIXED may remove pages of mappings that intersects with
1559 * requested mapping. Account for the pages it would unmap.
1560 */
1561 if (!(vm_flags & MAP_FIXED))
1562 return -ENOMEM;
1563
1564 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1565
1566 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1567 return -ENOMEM;
1568 }
1569
1570 /* Clear old maps */
1571 error = -ENOMEM;
1572 munmap_back:
1573 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1574 if (do_munmap(mm, addr, len))
1575 return -ENOMEM;
1576 goto munmap_back;
1577 }
1578
1579 /*
1580 * Private writable mapping: check memory availability
1581 */
1582 if (accountable_mapping(file, vm_flags)) {
1583 charged = len >> PAGE_SHIFT;
1584 if (security_vm_enough_memory_mm(mm, charged))
1585 return -ENOMEM;
1586 vm_flags |= VM_ACCOUNT;
1587 }
1588
1589 /*
1590 * Can we just expand an old mapping?
1591 */
1592 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1593 if (vma)
1594 goto out;
1595
1596 /*
1597 * Determine the object being mapped and call the appropriate
1598 * specific mapper. the address has already been validated, but
1599 * not unmapped, but the maps are removed from the list.
1600 */
1601 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1602 if (!vma) {
1603 error = -ENOMEM;
1604 goto unacct_error;
1605 }
1606
1607 vma->vm_mm = mm;
1608 vma->vm_start = addr;
1609 vma->vm_end = addr + len;
1610 vma->vm_flags = vm_flags;
1611 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1612 vma->vm_pgoff = pgoff;
1613 INIT_LIST_HEAD(&vma->anon_vma_chain);
1614
1615 if (file) {
1616 if (vm_flags & VM_DENYWRITE) {
1617 error = deny_write_access(file);
1618 if (error)
1619 goto free_vma;
1620 }
1621 vma->vm_file = get_file(file);
1622 error = file->f_op->mmap(file, vma);
1623 if (error)
1624 goto unmap_and_free_vma;
1625
1626 /* Can addr have changed??
1627 *
1628 * Answer: Yes, several device drivers can do it in their
1629 * f_op->mmap method. -DaveM
1630 * Bug: If addr is changed, prev, rb_link, rb_parent should
1631 * be updated for vma_link()
1632 */
1633 WARN_ON_ONCE(addr != vma->vm_start);
1634
1635 addr = vma->vm_start;
1636 vm_flags = vma->vm_flags;
1637 } else if (vm_flags & VM_SHARED) {
1638 error = shmem_zero_setup(vma);
1639 if (error)
1640 goto free_vma;
1641 }
1642
1643 if (vma_wants_writenotify(vma)) {
1644 pgprot_t pprot = vma->vm_page_prot;
1645
1646 /* Can vma->vm_page_prot have changed??
1647 *
1648 * Answer: Yes, drivers may have changed it in their
1649 * f_op->mmap method.
1650 *
1651 * Ensures that vmas marked as uncached stay that way.
1652 */
1653 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1654 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1655 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1656 }
1657
1658 vma_link(mm, vma, prev, rb_link, rb_parent);
1659 /* Once vma denies write, undo our temporary denial count */
1660 if (vm_flags & VM_DENYWRITE)
1661 allow_write_access(file);
1662 file = vma->vm_file;
1663 out:
1664 perf_event_mmap(vma);
1665
1666 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1667 if (vm_flags & VM_LOCKED) {
1668 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1669 vma == get_gate_vma(current->mm)))
1670 mm->locked_vm += (len >> PAGE_SHIFT);
1671 else
1672 vma->vm_flags &= ~VM_LOCKED;
1673 }
1674
1675 if (file)
1676 uprobe_mmap(vma);
1677
1678 /*
1679 * New (or expanded) vma always get soft dirty status.
1680 * Otherwise user-space soft-dirty page tracker won't
1681 * be able to distinguish situation when vma area unmapped,
1682 * then new mapped in-place (which must be aimed as
1683 * a completely new data area).
1684 */
1685 vma->vm_flags |= VM_SOFTDIRTY;
1686
1687 return addr;
1688
1689 unmap_and_free_vma:
1690 if (vm_flags & VM_DENYWRITE)
1691 allow_write_access(file);
1692 vma->vm_file = NULL;
1693 fput(file);
1694
1695 /* Undo any partial mapping done by a device driver. */
1696 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1697 charged = 0;
1698 free_vma:
1699 kmem_cache_free(vm_area_cachep, vma);
1700 unacct_error:
1701 if (charged)
1702 vm_unacct_memory(charged);
1703 return error;
1704 }
1705
1706 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1707 {
1708 /*
1709 * We implement the search by looking for an rbtree node that
1710 * immediately follows a suitable gap. That is,
1711 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1712 * - gap_end = vma->vm_start >= info->low_limit + length;
1713 * - gap_end - gap_start >= length
1714 */
1715
1716 struct mm_struct *mm = current->mm;
1717 struct vm_area_struct *vma;
1718 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1719
1720 /* Adjust search length to account for worst case alignment overhead */
1721 length = info->length + info->align_mask;
1722 if (length < info->length)
1723 return -ENOMEM;
1724
1725 /* Adjust search limits by the desired length */
1726 if (info->high_limit < length)
1727 return -ENOMEM;
1728 high_limit = info->high_limit - length;
1729
1730 if (info->low_limit > high_limit)
1731 return -ENOMEM;
1732 low_limit = info->low_limit + length;
1733
1734 /* Check if rbtree root looks promising */
1735 if (RB_EMPTY_ROOT(&mm->mm_rb))
1736 goto check_highest;
1737 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1738 if (vma->rb_subtree_gap < length)
1739 goto check_highest;
1740
1741 while (true) {
1742 /* Visit left subtree if it looks promising */
1743 gap_end = vm_start_gap(vma);
1744 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1745 struct vm_area_struct *left =
1746 rb_entry(vma->vm_rb.rb_left,
1747 struct vm_area_struct, vm_rb);
1748 if (left->rb_subtree_gap >= length) {
1749 vma = left;
1750 continue;
1751 }
1752 }
1753
1754 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1755 check_current:
1756 /* Check if current node has a suitable gap */
1757 if (gap_start > high_limit)
1758 return -ENOMEM;
1759 if (gap_end >= low_limit &&
1760 gap_end > gap_start && gap_end - gap_start >= length)
1761 goto found;
1762
1763 /* Visit right subtree if it looks promising */
1764 if (vma->vm_rb.rb_right) {
1765 struct vm_area_struct *right =
1766 rb_entry(vma->vm_rb.rb_right,
1767 struct vm_area_struct, vm_rb);
1768 if (right->rb_subtree_gap >= length) {
1769 vma = right;
1770 continue;
1771 }
1772 }
1773
1774 /* Go back up the rbtree to find next candidate node */
1775 while (true) {
1776 struct rb_node *prev = &vma->vm_rb;
1777 if (!rb_parent(prev))
1778 goto check_highest;
1779 vma = rb_entry(rb_parent(prev),
1780 struct vm_area_struct, vm_rb);
1781 if (prev == vma->vm_rb.rb_left) {
1782 gap_start = vm_end_gap(vma->vm_prev);
1783 gap_end = vm_start_gap(vma);
1784 goto check_current;
1785 }
1786 }
1787 }
1788
1789 check_highest:
1790 /* Check highest gap, which does not precede any rbtree node */
1791 gap_start = mm->highest_vm_end;
1792 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1793 if (gap_start > high_limit)
1794 return -ENOMEM;
1795
1796 found:
1797 /* We found a suitable gap. Clip it with the original low_limit. */
1798 if (gap_start < info->low_limit)
1799 gap_start = info->low_limit;
1800
1801 /* Adjust gap address to the desired alignment */
1802 gap_start += (info->align_offset - gap_start) & info->align_mask;
1803
1804 VM_BUG_ON(gap_start + info->length > info->high_limit);
1805 VM_BUG_ON(gap_start + info->length > gap_end);
1806 return gap_start;
1807 }
1808
1809 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1810 {
1811 struct mm_struct *mm = current->mm;
1812 struct vm_area_struct *vma;
1813 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1814
1815 /* Adjust search length to account for worst case alignment overhead */
1816 length = info->length + info->align_mask;
1817 if (length < info->length)
1818 return -ENOMEM;
1819
1820 /*
1821 * Adjust search limits by the desired length.
1822 * See implementation comment at top of unmapped_area().
1823 */
1824 gap_end = info->high_limit;
1825 if (gap_end < length)
1826 return -ENOMEM;
1827 high_limit = gap_end - length;
1828
1829 if (info->low_limit > high_limit)
1830 return -ENOMEM;
1831 low_limit = info->low_limit + length;
1832
1833 /* Check highest gap, which does not precede any rbtree node */
1834 gap_start = mm->highest_vm_end;
1835 if (gap_start <= high_limit)
1836 goto found_highest;
1837
1838 /* Check if rbtree root looks promising */
1839 if (RB_EMPTY_ROOT(&mm->mm_rb))
1840 return -ENOMEM;
1841 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1842 if (vma->rb_subtree_gap < length)
1843 return -ENOMEM;
1844
1845 while (true) {
1846 /* Visit right subtree if it looks promising */
1847 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1848 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1849 struct vm_area_struct *right =
1850 rb_entry(vma->vm_rb.rb_right,
1851 struct vm_area_struct, vm_rb);
1852 if (right->rb_subtree_gap >= length) {
1853 vma = right;
1854 continue;
1855 }
1856 }
1857
1858 check_current:
1859 /* Check if current node has a suitable gap */
1860 gap_end = vm_start_gap(vma);
1861 if (gap_end < low_limit)
1862 return -ENOMEM;
1863 if (gap_start <= high_limit &&
1864 gap_end > gap_start && gap_end - gap_start >= length)
1865 goto found;
1866
1867 /* Visit left subtree if it looks promising */
1868 if (vma->vm_rb.rb_left) {
1869 struct vm_area_struct *left =
1870 rb_entry(vma->vm_rb.rb_left,
1871 struct vm_area_struct, vm_rb);
1872 if (left->rb_subtree_gap >= length) {
1873 vma = left;
1874 continue;
1875 }
1876 }
1877
1878 /* Go back up the rbtree to find next candidate node */
1879 while (true) {
1880 struct rb_node *prev = &vma->vm_rb;
1881 if (!rb_parent(prev))
1882 return -ENOMEM;
1883 vma = rb_entry(rb_parent(prev),
1884 struct vm_area_struct, vm_rb);
1885 if (prev == vma->vm_rb.rb_right) {
1886 gap_start = vma->vm_prev ?
1887 vm_end_gap(vma->vm_prev) : 0;
1888 goto check_current;
1889 }
1890 }
1891 }
1892
1893 found:
1894 /* We found a suitable gap. Clip it with the original high_limit. */
1895 if (gap_end > info->high_limit)
1896 gap_end = info->high_limit;
1897
1898 found_highest:
1899 /* Compute highest gap address at the desired alignment */
1900 gap_end -= info->length;
1901 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1902
1903 VM_BUG_ON(gap_end < info->low_limit);
1904 VM_BUG_ON(gap_end < gap_start);
1905 return gap_end;
1906 }
1907
1908 /* Get an address range which is currently unmapped.
1909 * For shmat() with addr=0.
1910 *
1911 * Ugly calling convention alert:
1912 * Return value with the low bits set means error value,
1913 * ie
1914 * if (ret & ~PAGE_MASK)
1915 * error = ret;
1916 *
1917 * This function "knows" that -ENOMEM has the bits set.
1918 */
1919 #ifndef HAVE_ARCH_UNMAPPED_AREA
1920 unsigned long
1921 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1922 unsigned long len, unsigned long pgoff, unsigned long flags)
1923 {
1924 struct mm_struct *mm = current->mm;
1925 struct vm_area_struct *vma, *prev;
1926 struct vm_unmapped_area_info info;
1927
1928 if (len > TASK_SIZE - mmap_min_addr)
1929 return -ENOMEM;
1930
1931 if (flags & MAP_FIXED)
1932 return addr;
1933
1934 if (addr) {
1935 addr = PAGE_ALIGN(addr);
1936 vma = find_vma_prev(mm, addr, &prev);
1937 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1938 (!vma || addr + len <= vm_start_gap(vma)) &&
1939 (!prev || addr >= vm_end_gap(prev)))
1940 return addr;
1941 }
1942
1943 info.flags = 0;
1944 info.length = len;
1945 info.low_limit = mm->mmap_base;
1946 info.high_limit = TASK_SIZE;
1947 info.align_mask = 0;
1948 return vm_unmapped_area(&info);
1949 }
1950 #endif
1951
1952 /*
1953 * This mmap-allocator allocates new areas top-down from below the
1954 * stack's low limit (the base):
1955 */
1956 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1957 unsigned long
1958 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1959 const unsigned long len, const unsigned long pgoff,
1960 const unsigned long flags)
1961 {
1962 struct vm_area_struct *vma, *prev;
1963 struct mm_struct *mm = current->mm;
1964 unsigned long addr = addr0;
1965 struct vm_unmapped_area_info info;
1966
1967 /* requested length too big for entire address space */
1968 if (len > TASK_SIZE - mmap_min_addr)
1969 return -ENOMEM;
1970
1971 if (flags & MAP_FIXED)
1972 return addr;
1973
1974 /* requesting a specific address */
1975 if (addr) {
1976 addr = PAGE_ALIGN(addr);
1977 vma = find_vma_prev(mm, addr, &prev);
1978 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1979 (!vma || addr + len <= vm_start_gap(vma)) &&
1980 (!prev || addr >= vm_end_gap(prev)))
1981 return addr;
1982 }
1983
1984 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1985 info.length = len;
1986 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1987 info.high_limit = mm->mmap_base;
1988 info.align_mask = 0;
1989 addr = vm_unmapped_area(&info);
1990
1991 /*
1992 * A failed mmap() very likely causes application failure,
1993 * so fall back to the bottom-up function here. This scenario
1994 * can happen with large stack limits and large mmap()
1995 * allocations.
1996 */
1997 if (addr & ~PAGE_MASK) {
1998 VM_BUG_ON(addr != -ENOMEM);
1999 info.flags = 0;
2000 info.low_limit = TASK_UNMAPPED_BASE;
2001 info.high_limit = TASK_SIZE;
2002 addr = vm_unmapped_area(&info);
2003 }
2004
2005 return addr;
2006 }
2007 #endif
2008
2009 unsigned long
2010 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2011 unsigned long pgoff, unsigned long flags)
2012 {
2013 unsigned long (*get_area)(struct file *, unsigned long,
2014 unsigned long, unsigned long, unsigned long);
2015
2016 unsigned long error = arch_mmap_check(addr, len, flags);
2017 if (error)
2018 return error;
2019
2020 /* Careful about overflows.. */
2021 if (len > TASK_SIZE)
2022 return -ENOMEM;
2023
2024 get_area = current->mm->get_unmapped_area;
2025 if (file && file->f_op->get_unmapped_area)
2026 get_area = file->f_op->get_unmapped_area;
2027 addr = get_area(file, addr, len, pgoff, flags);
2028 if (IS_ERR_VALUE(addr))
2029 return addr;
2030
2031 if (addr > TASK_SIZE - len)
2032 return -ENOMEM;
2033 if (addr & ~PAGE_MASK)
2034 return -EINVAL;
2035
2036 addr = arch_rebalance_pgtables(addr, len);
2037 error = security_mmap_addr(addr);
2038 return error ? error : addr;
2039 }
2040
2041 EXPORT_SYMBOL(get_unmapped_area);
2042
2043 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2044 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2045 {
2046 struct rb_node *rb_node;
2047 struct vm_area_struct *vma;
2048
2049 /* Check the cache first. */
2050 vma = vmacache_find(mm, addr);
2051 if (likely(vma))
2052 return vma;
2053
2054 rb_node = mm->mm_rb.rb_node;
2055 vma = NULL;
2056
2057 while (rb_node) {
2058 struct vm_area_struct *tmp;
2059
2060 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2061
2062 if (tmp->vm_end > addr) {
2063 vma = tmp;
2064 if (tmp->vm_start <= addr)
2065 break;
2066 rb_node = rb_node->rb_left;
2067 } else
2068 rb_node = rb_node->rb_right;
2069 }
2070
2071 if (vma)
2072 vmacache_update(addr, vma);
2073 return vma;
2074 }
2075
2076 EXPORT_SYMBOL(find_vma);
2077
2078 /*
2079 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2080 */
2081 struct vm_area_struct *
2082 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2083 struct vm_area_struct **pprev)
2084 {
2085 struct vm_area_struct *vma;
2086
2087 vma = find_vma(mm, addr);
2088 if (vma) {
2089 *pprev = vma->vm_prev;
2090 } else {
2091 struct rb_node *rb_node = mm->mm_rb.rb_node;
2092 *pprev = NULL;
2093 while (rb_node) {
2094 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2095 rb_node = rb_node->rb_right;
2096 }
2097 }
2098 return vma;
2099 }
2100
2101 /*
2102 * Verify that the stack growth is acceptable and
2103 * update accounting. This is shared with both the
2104 * grow-up and grow-down cases.
2105 */
2106 static int acct_stack_growth(struct vm_area_struct *vma,
2107 unsigned long size, unsigned long grow)
2108 {
2109 struct mm_struct *mm = vma->vm_mm;
2110 struct rlimit *rlim = current->signal->rlim;
2111 unsigned long new_start;
2112
2113 /* address space limit tests */
2114 if (!may_expand_vm(mm, grow))
2115 return -ENOMEM;
2116
2117 /* Stack limit test */
2118 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2119 return -ENOMEM;
2120
2121 /* mlock limit tests */
2122 if (vma->vm_flags & VM_LOCKED) {
2123 unsigned long locked;
2124 unsigned long limit;
2125 locked = mm->locked_vm + grow;
2126 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2127 limit >>= PAGE_SHIFT;
2128 if (locked > limit && !capable(CAP_IPC_LOCK))
2129 return -ENOMEM;
2130 }
2131
2132 /* Check to ensure the stack will not grow into a hugetlb-only region */
2133 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2134 vma->vm_end - size;
2135 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2136 return -EFAULT;
2137
2138 /*
2139 * Overcommit.. This must be the final test, as it will
2140 * update security statistics.
2141 */
2142 if (security_vm_enough_memory_mm(mm, grow))
2143 return -ENOMEM;
2144
2145 /* Ok, everything looks good - let it rip */
2146 if (vma->vm_flags & VM_LOCKED)
2147 mm->locked_vm += grow;
2148 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2149 return 0;
2150 }
2151
2152 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2153 /*
2154 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2155 * vma is the last one with address > vma->vm_end. Have to extend vma.
2156 */
2157 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2158 {
2159 struct vm_area_struct *next;
2160 unsigned long gap_addr;
2161 int error = 0;
2162
2163 if (!(vma->vm_flags & VM_GROWSUP))
2164 return -EFAULT;
2165
2166 /* Guard against exceeding limits of the address space. */
2167 address &= PAGE_MASK;
2168 if (address >= (TASK_SIZE & PAGE_MASK))
2169 return -ENOMEM;
2170 address += PAGE_SIZE;
2171
2172 /* Enforce stack_guard_gap */
2173 gap_addr = address + stack_guard_gap;
2174
2175 /* Guard against overflow */
2176 if (gap_addr < address || gap_addr > TASK_SIZE)
2177 gap_addr = TASK_SIZE;
2178
2179 next = vma->vm_next;
2180 if (next && next->vm_start < gap_addr &&
2181 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2182 if (!(next->vm_flags & VM_GROWSUP))
2183 return -ENOMEM;
2184 /* Check that both stack segments have the same anon_vma? */
2185 }
2186
2187 /* We must make sure the anon_vma is allocated. */
2188 if (unlikely(anon_vma_prepare(vma)))
2189 return -ENOMEM;
2190
2191 /*
2192 * vma->vm_start/vm_end cannot change under us because the caller
2193 * is required to hold the mmap_sem in read mode. We need the
2194 * anon_vma lock to serialize against concurrent expand_stacks.
2195 */
2196 anon_vma_lock_write(vma->anon_vma);
2197
2198 /* Somebody else might have raced and expanded it already */
2199 if (address > vma->vm_end) {
2200 unsigned long size, grow;
2201
2202 size = address - vma->vm_start;
2203 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2204
2205 error = -ENOMEM;
2206 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2207 error = acct_stack_growth(vma, size, grow);
2208 if (!error) {
2209 /*
2210 * vma_gap_update() doesn't support concurrent
2211 * updates, but we only hold a shared mmap_sem
2212 * lock here, so we need to protect against
2213 * concurrent vma expansions.
2214 * anon_vma_lock_write() doesn't help here, as
2215 * we don't guarantee that all growable vmas
2216 * in a mm share the same root anon vma.
2217 * So, we reuse mm->page_table_lock to guard
2218 * against concurrent vma expansions.
2219 */
2220 spin_lock(&vma->vm_mm->page_table_lock);
2221 anon_vma_interval_tree_pre_update_vma(vma);
2222 vma->vm_end = address;
2223 anon_vma_interval_tree_post_update_vma(vma);
2224 if (vma->vm_next)
2225 vma_gap_update(vma->vm_next);
2226 else
2227 vma->vm_mm->highest_vm_end = vm_end_gap(vma);
2228 spin_unlock(&vma->vm_mm->page_table_lock);
2229
2230 perf_event_mmap(vma);
2231 }
2232 }
2233 }
2234 anon_vma_unlock_write(vma->anon_vma);
2235 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2236 validate_mm(vma->vm_mm);
2237 return error;
2238 }
2239 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2240
2241 /*
2242 * vma is the first one with address < vma->vm_start. Have to extend vma.
2243 */
2244 int expand_downwards(struct vm_area_struct *vma,
2245 unsigned long address)
2246 {
2247 struct vm_area_struct *prev;
2248 int error = 0;
2249
2250 address &= PAGE_MASK;
2251 if (address < mmap_min_addr)
2252 return -EPERM;
2253
2254 /* Enforce stack_guard_gap */
2255 prev = vma->vm_prev;
2256 /* Check that both stack segments have the same anon_vma? */
2257 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2258 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2259 if (address - prev->vm_end < stack_guard_gap)
2260 return -ENOMEM;
2261 }
2262
2263 /* We must make sure the anon_vma is allocated. */
2264 if (unlikely(anon_vma_prepare(vma)))
2265 return -ENOMEM;
2266
2267 /*
2268 * vma->vm_start/vm_end cannot change under us because the caller
2269 * is required to hold the mmap_sem in read mode. We need the
2270 * anon_vma lock to serialize against concurrent expand_stacks.
2271 */
2272 anon_vma_lock_write(vma->anon_vma);
2273
2274 /* Somebody else might have raced and expanded it already */
2275 if (address < vma->vm_start) {
2276 unsigned long size, grow;
2277
2278 size = vma->vm_end - address;
2279 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2280
2281 error = -ENOMEM;
2282 if (grow <= vma->vm_pgoff) {
2283 error = acct_stack_growth(vma, size, grow);
2284 if (!error) {
2285 /*
2286 * vma_gap_update() doesn't support concurrent
2287 * updates, but we only hold a shared mmap_sem
2288 * lock here, so we need to protect against
2289 * concurrent vma expansions.
2290 * anon_vma_lock_write() doesn't help here, as
2291 * we don't guarantee that all growable vmas
2292 * in a mm share the same root anon vma.
2293 * So, we reuse mm->page_table_lock to guard
2294 * against concurrent vma expansions.
2295 */
2296 spin_lock(&vma->vm_mm->page_table_lock);
2297 anon_vma_interval_tree_pre_update_vma(vma);
2298 vma->vm_start = address;
2299 vma->vm_pgoff -= grow;
2300 anon_vma_interval_tree_post_update_vma(vma);
2301 vma_gap_update(vma);
2302 spin_unlock(&vma->vm_mm->page_table_lock);
2303
2304 perf_event_mmap(vma);
2305 }
2306 }
2307 }
2308 anon_vma_unlock_write(vma->anon_vma);
2309 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2310 validate_mm(vma->vm_mm);
2311 return error;
2312 }
2313
2314 /* enforced gap between the expanding stack and other mappings. */
2315 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2316
2317 static int __init cmdline_parse_stack_guard_gap(char *p)
2318 {
2319 unsigned long val;
2320 char *endptr;
2321
2322 val = simple_strtoul(p, &endptr, 10);
2323 if (!*endptr)
2324 stack_guard_gap = val << PAGE_SHIFT;
2325
2326 return 0;
2327 }
2328 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2329
2330 #ifdef CONFIG_STACK_GROWSUP
2331 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2332 {
2333 return expand_upwards(vma, address);
2334 }
2335
2336 struct vm_area_struct *
2337 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2338 {
2339 struct vm_area_struct *vma, *prev;
2340
2341 addr &= PAGE_MASK;
2342 vma = find_vma_prev(mm, addr, &prev);
2343 if (vma && (vma->vm_start <= addr))
2344 return vma;
2345 /* don't alter vm_end if the coredump is running */
2346 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2347 return NULL;
2348 if (prev->vm_flags & VM_LOCKED)
2349 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2350 return prev;
2351 }
2352 #else
2353 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2354 {
2355 return expand_downwards(vma, address);
2356 }
2357
2358 struct vm_area_struct *
2359 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2360 {
2361 struct vm_area_struct * vma;
2362 unsigned long start;
2363
2364 addr &= PAGE_MASK;
2365 vma = find_vma(mm,addr);
2366 if (!vma)
2367 return NULL;
2368 if (vma->vm_start <= addr)
2369 return vma;
2370 if (!(vma->vm_flags & VM_GROWSDOWN))
2371 return NULL;
2372 /* don't alter vm_start if the coredump is running */
2373 if (!mmget_still_valid(mm))
2374 return NULL;
2375 start = vma->vm_start;
2376 if (expand_stack(vma, addr))
2377 return NULL;
2378 if (vma->vm_flags & VM_LOCKED)
2379 __mlock_vma_pages_range(vma, addr, start, NULL);
2380 return vma;
2381 }
2382 #endif
2383
2384 /*
2385 * Ok - we have the memory areas we should free on the vma list,
2386 * so release them, and do the vma updates.
2387 *
2388 * Called with the mm semaphore held.
2389 */
2390 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2391 {
2392 unsigned long nr_accounted = 0;
2393
2394 /* Update high watermark before we lower total_vm */
2395 update_hiwater_vm(mm);
2396 do {
2397 long nrpages = vma_pages(vma);
2398
2399 if (vma->vm_flags & VM_ACCOUNT)
2400 nr_accounted += nrpages;
2401 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2402 vma = remove_vma(vma);
2403 } while (vma);
2404 vm_unacct_memory(nr_accounted);
2405 validate_mm(mm);
2406 }
2407
2408 /*
2409 * Get rid of page table information in the indicated region.
2410 *
2411 * Called with the mm semaphore held.
2412 */
2413 static void unmap_region(struct mm_struct *mm,
2414 struct vm_area_struct *vma, struct vm_area_struct *prev,
2415 unsigned long start, unsigned long end)
2416 {
2417 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2418 struct mmu_gather tlb;
2419
2420 lru_add_drain();
2421 tlb_gather_mmu(&tlb, mm, start, end);
2422 update_hiwater_rss(mm);
2423 unmap_vmas(&tlb, vma, start, end);
2424 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2425 next ? next->vm_start : USER_PGTABLES_CEILING);
2426 tlb_finish_mmu(&tlb, start, end);
2427 }
2428
2429 /*
2430 * Create a list of vma's touched by the unmap, removing them from the mm's
2431 * vma list as we go..
2432 */
2433 static void
2434 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2435 struct vm_area_struct *prev, unsigned long end)
2436 {
2437 struct vm_area_struct **insertion_point;
2438 struct vm_area_struct *tail_vma = NULL;
2439
2440 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2441 vma->vm_prev = NULL;
2442 do {
2443 vma_rb_erase(vma, &mm->mm_rb);
2444 mm->map_count--;
2445 tail_vma = vma;
2446 vma = vma->vm_next;
2447 } while (vma && vma->vm_start < end);
2448 *insertion_point = vma;
2449 if (vma) {
2450 vma->vm_prev = prev;
2451 vma_gap_update(vma);
2452 } else
2453 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2454 tail_vma->vm_next = NULL;
2455
2456 /* Kill the cache */
2457 vmacache_invalidate(mm);
2458 }
2459
2460 /*
2461 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2462 * munmap path where it doesn't make sense to fail.
2463 */
2464 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2465 unsigned long addr, int new_below)
2466 {
2467 struct vm_area_struct *new;
2468 int err = -ENOMEM;
2469
2470 if (is_vm_hugetlb_page(vma) && (addr &
2471 ~(huge_page_mask(hstate_vma(vma)))))
2472 return -EINVAL;
2473
2474 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2475 if (!new)
2476 goto out_err;
2477
2478 /* most fields are the same, copy all, and then fixup */
2479 *new = *vma;
2480
2481 INIT_LIST_HEAD(&new->anon_vma_chain);
2482
2483 if (new_below)
2484 new->vm_end = addr;
2485 else {
2486 new->vm_start = addr;
2487 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2488 }
2489
2490 err = vma_dup_policy(vma, new);
2491 if (err)
2492 goto out_free_vma;
2493
2494 err = anon_vma_clone(new, vma);
2495 if (err)
2496 goto out_free_mpol;
2497
2498 if (new->vm_file)
2499 get_file(new->vm_file);
2500
2501 if (new->vm_ops && new->vm_ops->open)
2502 new->vm_ops->open(new);
2503
2504 if (new_below)
2505 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2506 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2507 else
2508 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2509
2510 /* Success. */
2511 if (!err)
2512 return 0;
2513
2514 /* Clean everything up if vma_adjust failed. */
2515 if (new->vm_ops && new->vm_ops->close)
2516 new->vm_ops->close(new);
2517 if (new->vm_file)
2518 fput(new->vm_file);
2519 unlink_anon_vmas(new);
2520 out_free_mpol:
2521 mpol_put(vma_policy(new));
2522 out_free_vma:
2523 kmem_cache_free(vm_area_cachep, new);
2524 out_err:
2525 return err;
2526 }
2527
2528 /*
2529 * Split a vma into two pieces at address 'addr', a new vma is allocated
2530 * either for the first part or the tail.
2531 */
2532 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2533 unsigned long addr, int new_below)
2534 {
2535 if (mm->map_count >= sysctl_max_map_count)
2536 return -ENOMEM;
2537
2538 return __split_vma(mm, vma, addr, new_below);
2539 }
2540
2541 /* Munmap is split into 2 main parts -- this part which finds
2542 * what needs doing, and the areas themselves, which do the
2543 * work. This now handles partial unmappings.
2544 * Jeremy Fitzhardinge <jeremy@goop.org>
2545 */
2546 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2547 {
2548 unsigned long end;
2549 struct vm_area_struct *vma, *prev, *last;
2550
2551 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2552 return -EINVAL;
2553
2554 if ((len = PAGE_ALIGN(len)) == 0)
2555 return -EINVAL;
2556
2557 /* Find the first overlapping VMA */
2558 vma = find_vma(mm, start);
2559 if (!vma)
2560 return 0;
2561 prev = vma->vm_prev;
2562 /* we have start < vma->vm_end */
2563
2564 /* if it doesn't overlap, we have nothing.. */
2565 end = start + len;
2566 if (vma->vm_start >= end)
2567 return 0;
2568
2569 /*
2570 * If we need to split any vma, do it now to save pain later.
2571 *
2572 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2573 * unmapped vm_area_struct will remain in use: so lower split_vma
2574 * places tmp vma above, and higher split_vma places tmp vma below.
2575 */
2576 if (start > vma->vm_start) {
2577 int error;
2578
2579 /*
2580 * Make sure that map_count on return from munmap() will
2581 * not exceed its limit; but let map_count go just above
2582 * its limit temporarily, to help free resources as expected.
2583 */
2584 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2585 return -ENOMEM;
2586
2587 error = __split_vma(mm, vma, start, 0);
2588 if (error)
2589 return error;
2590 prev = vma;
2591 }
2592
2593 /* Does it split the last one? */
2594 last = find_vma(mm, end);
2595 if (last && end > last->vm_start) {
2596 int error = __split_vma(mm, last, end, 1);
2597 if (error)
2598 return error;
2599 }
2600 vma = prev? prev->vm_next: mm->mmap;
2601
2602 /*
2603 * unlock any mlock()ed ranges before detaching vmas
2604 */
2605 if (mm->locked_vm) {
2606 struct vm_area_struct *tmp = vma;
2607 while (tmp && tmp->vm_start < end) {
2608 if (tmp->vm_flags & VM_LOCKED) {
2609 mm->locked_vm -= vma_pages(tmp);
2610 munlock_vma_pages_all(tmp);
2611 }
2612 tmp = tmp->vm_next;
2613 }
2614 }
2615
2616 /*
2617 * Remove the vma's, and unmap the actual pages
2618 */
2619 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2620 unmap_region(mm, vma, prev, start, end);
2621
2622 /* Fix up all other VM information */
2623 remove_vma_list(mm, vma);
2624
2625 return 0;
2626 }
2627
2628 int vm_munmap(unsigned long start, size_t len)
2629 {
2630 int ret;
2631 struct mm_struct *mm = current->mm;
2632
2633 down_write(&mm->mmap_sem);
2634 ret = do_munmap(mm, start, len);
2635 up_write(&mm->mmap_sem);
2636 return ret;
2637 }
2638 EXPORT_SYMBOL(vm_munmap);
2639
2640 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2641 {
2642 profile_munmap(addr);
2643 return vm_munmap(addr, len);
2644 }
2645
2646
2647 /*
2648 * Emulation of deprecated remap_file_pages() syscall.
2649 */
2650 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2651 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2652 {
2653
2654 struct mm_struct *mm = current->mm;
2655 struct vm_area_struct *vma;
2656 unsigned long populate = 0;
2657 unsigned long ret = -EINVAL;
2658 struct file *file;
2659
2660 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2661 "See Documentation/vm/remap_file_pages.txt.\n",
2662 current->comm, current->pid);
2663
2664 if (prot)
2665 return ret;
2666 start = start & PAGE_MASK;
2667 size = size & PAGE_MASK;
2668
2669 if (start + size <= start)
2670 return ret;
2671
2672 /* Does pgoff wrap? */
2673 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2674 return ret;
2675
2676 down_write(&mm->mmap_sem);
2677 vma = find_vma(mm, start);
2678
2679 if (!vma || !(vma->vm_flags & VM_SHARED))
2680 goto out;
2681
2682 if (start < vma->vm_start)
2683 goto out;
2684
2685 if (start + size > vma->vm_end) {
2686 struct vm_area_struct *next;
2687
2688 for (next = vma->vm_next; next; next = next->vm_next) {
2689 /* hole between vmas ? */
2690 if (next->vm_start != next->vm_prev->vm_end)
2691 goto out;
2692
2693 if (next->vm_file != vma->vm_file)
2694 goto out;
2695
2696 if (next->vm_flags != vma->vm_flags)
2697 goto out;
2698
2699 if (start + size <= next->vm_end)
2700 break;
2701 }
2702
2703 if (!next)
2704 goto out;
2705 }
2706
2707 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2708 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2709 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2710
2711 flags &= MAP_NONBLOCK;
2712 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2713 if (vma->vm_flags & VM_LOCKED) {
2714 struct vm_area_struct *tmp;
2715 flags |= MAP_LOCKED;
2716
2717 /* drop PG_Mlocked flag for over-mapped range */
2718 for (tmp = vma; tmp->vm_start >= start + size;
2719 tmp = tmp->vm_next) {
2720 munlock_vma_pages_range(tmp,
2721 max(tmp->vm_start, start),
2722 min(tmp->vm_end, start + size));
2723 }
2724 }
2725
2726 file = get_file(vma->vm_file);
2727 ret = do_mmap_pgoff(vma->vm_file, start, size,
2728 prot, flags, pgoff, &populate);
2729 fput(file);
2730 out:
2731 up_write(&mm->mmap_sem);
2732 if (populate)
2733 mm_populate(ret, populate);
2734 if (!IS_ERR_VALUE(ret))
2735 ret = 0;
2736 return ret;
2737 }
2738
2739 static inline void verify_mm_writelocked(struct mm_struct *mm)
2740 {
2741 #ifdef CONFIG_DEBUG_VM
2742 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2743 WARN_ON(1);
2744 up_read(&mm->mmap_sem);
2745 }
2746 #endif
2747 }
2748
2749 /*
2750 * this is really a simplified "do_mmap". it only handles
2751 * anonymous maps. eventually we may be able to do some
2752 * brk-specific accounting here.
2753 */
2754 static unsigned long do_brk(unsigned long addr, unsigned long len)
2755 {
2756 struct mm_struct * mm = current->mm;
2757 struct vm_area_struct * vma, * prev;
2758 unsigned long flags;
2759 struct rb_node ** rb_link, * rb_parent;
2760 pgoff_t pgoff = addr >> PAGE_SHIFT;
2761 int error;
2762
2763 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2764
2765 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2766 if (error & ~PAGE_MASK)
2767 return error;
2768
2769 error = mlock_future_check(mm, mm->def_flags, len);
2770 if (error)
2771 return error;
2772
2773 /*
2774 * mm->mmap_sem is required to protect against another thread
2775 * changing the mappings in case we sleep.
2776 */
2777 verify_mm_writelocked(mm);
2778
2779 /*
2780 * Clear old maps. this also does some error checking for us
2781 */
2782 munmap_back:
2783 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2784 if (do_munmap(mm, addr, len))
2785 return -ENOMEM;
2786 goto munmap_back;
2787 }
2788
2789 /* Check against address space limits *after* clearing old maps... */
2790 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2791 return -ENOMEM;
2792
2793 if (mm->map_count > sysctl_max_map_count)
2794 return -ENOMEM;
2795
2796 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2797 return -ENOMEM;
2798
2799 /* Can we just expand an old private anonymous mapping? */
2800 vma = vma_merge(mm, prev, addr, addr + len, flags,
2801 NULL, NULL, pgoff, NULL);
2802 if (vma)
2803 goto out;
2804
2805 /*
2806 * create a vma struct for an anonymous mapping
2807 */
2808 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2809 if (!vma) {
2810 vm_unacct_memory(len >> PAGE_SHIFT);
2811 return -ENOMEM;
2812 }
2813
2814 INIT_LIST_HEAD(&vma->anon_vma_chain);
2815 vma->vm_mm = mm;
2816 vma->vm_start = addr;
2817 vma->vm_end = addr + len;
2818 vma->vm_pgoff = pgoff;
2819 vma->vm_flags = flags;
2820 vma->vm_page_prot = vm_get_page_prot(flags);
2821 vma_link(mm, vma, prev, rb_link, rb_parent);
2822 out:
2823 perf_event_mmap(vma);
2824 mm->total_vm += len >> PAGE_SHIFT;
2825 if (flags & VM_LOCKED)
2826 mm->locked_vm += (len >> PAGE_SHIFT);
2827 vma->vm_flags |= VM_SOFTDIRTY;
2828 return addr;
2829 }
2830
2831 unsigned long vm_brk(unsigned long addr, unsigned long request)
2832 {
2833 struct mm_struct *mm = current->mm;
2834 unsigned long len;
2835 unsigned long ret;
2836 bool populate;
2837
2838 len = PAGE_ALIGN(request);
2839 if (len < request)
2840 return -ENOMEM;
2841 if (!len)
2842 return addr;
2843
2844 down_write(&mm->mmap_sem);
2845 ret = do_brk(addr, len);
2846 populate = ((mm->def_flags & VM_LOCKED) != 0);
2847 up_write(&mm->mmap_sem);
2848 if (populate)
2849 mm_populate(addr, len);
2850 return ret;
2851 }
2852 EXPORT_SYMBOL(vm_brk);
2853
2854 /* Release all mmaps. */
2855 void exit_mmap(struct mm_struct *mm)
2856 {
2857 struct mmu_gather tlb;
2858 struct vm_area_struct *vma;
2859 unsigned long nr_accounted = 0;
2860
2861 /* mm's last user has gone, and its about to be pulled down */
2862 mmu_notifier_release(mm);
2863
2864 if (mm->locked_vm) {
2865 vma = mm->mmap;
2866 while (vma) {
2867 if (vma->vm_flags & VM_LOCKED)
2868 munlock_vma_pages_all(vma);
2869 vma = vma->vm_next;
2870 }
2871 }
2872
2873 arch_exit_mmap(mm);
2874
2875 vma = mm->mmap;
2876 if (!vma) /* Can happen if dup_mmap() received an OOM */
2877 return;
2878
2879 lru_add_drain();
2880 flush_cache_mm(mm);
2881 tlb_gather_mmu(&tlb, mm, 0, -1);
2882 /* update_hiwater_rss(mm) here? but nobody should be looking */
2883 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2884 unmap_vmas(&tlb, vma, 0, -1);
2885
2886 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2887 tlb_finish_mmu(&tlb, 0, -1);
2888
2889 /*
2890 * Walk the list again, actually closing and freeing it,
2891 * with preemption enabled, without holding any MM locks.
2892 */
2893 while (vma) {
2894 if (vma->vm_flags & VM_ACCOUNT)
2895 nr_accounted += vma_pages(vma);
2896 vma = remove_vma(vma);
2897 }
2898 vm_unacct_memory(nr_accounted);
2899
2900 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2901 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2902 }
2903
2904 /* Insert vm structure into process list sorted by address
2905 * and into the inode's i_mmap tree. If vm_file is non-NULL
2906 * then i_mmap_mutex is taken here.
2907 */
2908 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2909 {
2910 struct vm_area_struct *prev;
2911 struct rb_node **rb_link, *rb_parent;
2912
2913 /*
2914 * The vm_pgoff of a purely anonymous vma should be irrelevant
2915 * until its first write fault, when page's anon_vma and index
2916 * are set. But now set the vm_pgoff it will almost certainly
2917 * end up with (unless mremap moves it elsewhere before that
2918 * first wfault), so /proc/pid/maps tells a consistent story.
2919 *
2920 * By setting it to reflect the virtual start address of the
2921 * vma, merges and splits can happen in a seamless way, just
2922 * using the existing file pgoff checks and manipulations.
2923 * Similarly in do_mmap_pgoff and in do_brk.
2924 */
2925 if (!vma->vm_file) {
2926 BUG_ON(vma->anon_vma);
2927 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2928 }
2929 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2930 &prev, &rb_link, &rb_parent))
2931 return -ENOMEM;
2932 if ((vma->vm_flags & VM_ACCOUNT) &&
2933 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2934 return -ENOMEM;
2935
2936 vma_link(mm, vma, prev, rb_link, rb_parent);
2937 return 0;
2938 }
2939
2940 /*
2941 * Copy the vma structure to a new location in the same mm,
2942 * prior to moving page table entries, to effect an mremap move.
2943 */
2944 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2945 unsigned long addr, unsigned long len, pgoff_t pgoff,
2946 bool *need_rmap_locks)
2947 {
2948 struct vm_area_struct *vma = *vmap;
2949 unsigned long vma_start = vma->vm_start;
2950 struct mm_struct *mm = vma->vm_mm;
2951 struct vm_area_struct *new_vma, *prev;
2952 struct rb_node **rb_link, *rb_parent;
2953 bool faulted_in_anon_vma = true;
2954
2955 /*
2956 * If anonymous vma has not yet been faulted, update new pgoff
2957 * to match new location, to increase its chance of merging.
2958 */
2959 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2960 pgoff = addr >> PAGE_SHIFT;
2961 faulted_in_anon_vma = false;
2962 }
2963
2964 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2965 return NULL; /* should never get here */
2966 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2967 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2968 if (new_vma) {
2969 /*
2970 * Source vma may have been merged into new_vma
2971 */
2972 if (unlikely(vma_start >= new_vma->vm_start &&
2973 vma_start < new_vma->vm_end)) {
2974 /*
2975 * The only way we can get a vma_merge with
2976 * self during an mremap is if the vma hasn't
2977 * been faulted in yet and we were allowed to
2978 * reset the dst vma->vm_pgoff to the
2979 * destination address of the mremap to allow
2980 * the merge to happen. mremap must change the
2981 * vm_pgoff linearity between src and dst vmas
2982 * (in turn preventing a vma_merge) to be
2983 * safe. It is only safe to keep the vm_pgoff
2984 * linear if there are no pages mapped yet.
2985 */
2986 VM_BUG_ON(faulted_in_anon_vma);
2987 *vmap = vma = new_vma;
2988 }
2989 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2990 } else {
2991 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2992 if (new_vma) {
2993 *new_vma = *vma;
2994 new_vma->vm_start = addr;
2995 new_vma->vm_end = addr + len;
2996 new_vma->vm_pgoff = pgoff;
2997 if (vma_dup_policy(vma, new_vma))
2998 goto out_free_vma;
2999 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3000 if (anon_vma_clone(new_vma, vma))
3001 goto out_free_mempol;
3002 if (new_vma->vm_file)
3003 get_file(new_vma->vm_file);
3004 if (new_vma->vm_ops && new_vma->vm_ops->open)
3005 new_vma->vm_ops->open(new_vma);
3006 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3007 *need_rmap_locks = false;
3008 }
3009 }
3010 return new_vma;
3011
3012 out_free_mempol:
3013 mpol_put(vma_policy(new_vma));
3014 out_free_vma:
3015 kmem_cache_free(vm_area_cachep, new_vma);
3016 return NULL;
3017 }
3018
3019 /*
3020 * Return true if the calling process may expand its vm space by the passed
3021 * number of pages
3022 */
3023 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
3024 {
3025 unsigned long cur = mm->total_vm; /* pages */
3026 unsigned long lim;
3027
3028 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
3029
3030 if (cur + npages > lim)
3031 return 0;
3032 return 1;
3033 }
3034
3035 static int special_mapping_fault(struct vm_area_struct *vma,
3036 struct vm_fault *vmf);
3037
3038 /*
3039 * Having a close hook prevents vma merging regardless of flags.
3040 */
3041 static void special_mapping_close(struct vm_area_struct *vma)
3042 {
3043 }
3044
3045 static const char *special_mapping_name(struct vm_area_struct *vma)
3046 {
3047 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3048 }
3049
3050 static const struct vm_operations_struct special_mapping_vmops = {
3051 .close = special_mapping_close,
3052 .fault = special_mapping_fault,
3053 .name = special_mapping_name,
3054 };
3055
3056 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3057 .close = special_mapping_close,
3058 .fault = special_mapping_fault,
3059 };
3060
3061 static int special_mapping_fault(struct vm_area_struct *vma,
3062 struct vm_fault *vmf)
3063 {
3064 pgoff_t pgoff;
3065 struct page **pages;
3066
3067 /*
3068 * special mappings have no vm_file, and in that case, the mm
3069 * uses vm_pgoff internally. So we have to subtract it from here.
3070 * We are allowed to do this because we are the mm; do not copy
3071 * this code into drivers!
3072 */
3073 pgoff = vmf->pgoff - vma->vm_pgoff;
3074
3075 if (vma->vm_ops == &legacy_special_mapping_vmops)
3076 pages = vma->vm_private_data;
3077 else
3078 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3079 pages;
3080
3081 for (; pgoff && *pages; ++pages)
3082 pgoff--;
3083
3084 if (*pages) {
3085 struct page *page = *pages;
3086 get_page(page);
3087 vmf->page = page;
3088 return 0;
3089 }
3090
3091 return VM_FAULT_SIGBUS;
3092 }
3093
3094 static struct vm_area_struct *__install_special_mapping(
3095 struct mm_struct *mm,
3096 unsigned long addr, unsigned long len,
3097 unsigned long vm_flags, const struct vm_operations_struct *ops,
3098 void *priv)
3099 {
3100 int ret;
3101 struct vm_area_struct *vma;
3102
3103 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3104 if (unlikely(vma == NULL))
3105 return ERR_PTR(-ENOMEM);
3106
3107 INIT_LIST_HEAD(&vma->anon_vma_chain);
3108 vma->vm_mm = mm;
3109 vma->vm_start = addr;
3110 vma->vm_end = addr + len;
3111
3112 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3113 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3114
3115 vma->vm_ops = ops;
3116 vma->vm_private_data = priv;
3117
3118 ret = insert_vm_struct(mm, vma);
3119 if (ret)
3120 goto out;
3121
3122 mm->total_vm += len >> PAGE_SHIFT;
3123
3124 perf_event_mmap(vma);
3125
3126 return vma;
3127
3128 out:
3129 kmem_cache_free(vm_area_cachep, vma);
3130 return ERR_PTR(ret);
3131 }
3132
3133 /*
3134 * Called with mm->mmap_sem held for writing.
3135 * Insert a new vma covering the given region, with the given flags.
3136 * Its pages are supplied by the given array of struct page *.
3137 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3138 * The region past the last page supplied will always produce SIGBUS.
3139 * The array pointer and the pages it points to are assumed to stay alive
3140 * for as long as this mapping might exist.
3141 */
3142 struct vm_area_struct *_install_special_mapping(
3143 struct mm_struct *mm,
3144 unsigned long addr, unsigned long len,
3145 unsigned long vm_flags, const struct vm_special_mapping *spec)
3146 {
3147 return __install_special_mapping(mm, addr, len, vm_flags,
3148 &special_mapping_vmops, (void *)spec);
3149 }
3150
3151 int install_special_mapping(struct mm_struct *mm,
3152 unsigned long addr, unsigned long len,
3153 unsigned long vm_flags, struct page **pages)
3154 {
3155 struct vm_area_struct *vma = __install_special_mapping(
3156 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3157 (void *)pages);
3158
3159 return PTR_ERR_OR_ZERO(vma);
3160 }
3161
3162 static DEFINE_MUTEX(mm_all_locks_mutex);
3163
3164 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3165 {
3166 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3167 /*
3168 * The LSB of head.next can't change from under us
3169 * because we hold the mm_all_locks_mutex.
3170 */
3171 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3172 /*
3173 * We can safely modify head.next after taking the
3174 * anon_vma->root->rwsem. If some other vma in this mm shares
3175 * the same anon_vma we won't take it again.
3176 *
3177 * No need of atomic instructions here, head.next
3178 * can't change from under us thanks to the
3179 * anon_vma->root->rwsem.
3180 */
3181 if (__test_and_set_bit(0, (unsigned long *)
3182 &anon_vma->root->rb_root.rb_node))
3183 BUG();
3184 }
3185 }
3186
3187 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3188 {
3189 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3190 /*
3191 * AS_MM_ALL_LOCKS can't change from under us because
3192 * we hold the mm_all_locks_mutex.
3193 *
3194 * Operations on ->flags have to be atomic because
3195 * even if AS_MM_ALL_LOCKS is stable thanks to the
3196 * mm_all_locks_mutex, there may be other cpus
3197 * changing other bitflags in parallel to us.
3198 */
3199 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3200 BUG();
3201 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3202 }
3203 }
3204
3205 /*
3206 * This operation locks against the VM for all pte/vma/mm related
3207 * operations that could ever happen on a certain mm. This includes
3208 * vmtruncate, try_to_unmap, and all page faults.
3209 *
3210 * The caller must take the mmap_sem in write mode before calling
3211 * mm_take_all_locks(). The caller isn't allowed to release the
3212 * mmap_sem until mm_drop_all_locks() returns.
3213 *
3214 * mmap_sem in write mode is required in order to block all operations
3215 * that could modify pagetables and free pages without need of
3216 * altering the vma layout. It's also needed in write mode to avoid new
3217 * anon_vmas to be associated with existing vmas.
3218 *
3219 * A single task can't take more than one mm_take_all_locks() in a row
3220 * or it would deadlock.
3221 *
3222 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3223 * mapping->flags avoid to take the same lock twice, if more than one
3224 * vma in this mm is backed by the same anon_vma or address_space.
3225 *
3226 * We can take all the locks in random order because the VM code
3227 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3228 * takes more than one of them in a row. Secondly we're protected
3229 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3230 *
3231 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3232 * that may have to take thousand of locks.
3233 *
3234 * mm_take_all_locks() can fail if it's interrupted by signals.
3235 */
3236 int mm_take_all_locks(struct mm_struct *mm)
3237 {
3238 struct vm_area_struct *vma;
3239 struct anon_vma_chain *avc;
3240
3241 BUG_ON(down_read_trylock(&mm->mmap_sem));
3242
3243 mutex_lock(&mm_all_locks_mutex);
3244
3245 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3246 if (signal_pending(current))
3247 goto out_unlock;
3248 if (vma->vm_file && vma->vm_file->f_mapping)
3249 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3250 }
3251
3252 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3253 if (signal_pending(current))
3254 goto out_unlock;
3255 if (vma->anon_vma)
3256 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3257 vm_lock_anon_vma(mm, avc->anon_vma);
3258 }
3259
3260 return 0;
3261
3262 out_unlock:
3263 mm_drop_all_locks(mm);
3264 return -EINTR;
3265 }
3266
3267 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3268 {
3269 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3270 /*
3271 * The LSB of head.next can't change to 0 from under
3272 * us because we hold the mm_all_locks_mutex.
3273 *
3274 * We must however clear the bitflag before unlocking
3275 * the vma so the users using the anon_vma->rb_root will
3276 * never see our bitflag.
3277 *
3278 * No need of atomic instructions here, head.next
3279 * can't change from under us until we release the
3280 * anon_vma->root->rwsem.
3281 */
3282 if (!__test_and_clear_bit(0, (unsigned long *)
3283 &anon_vma->root->rb_root.rb_node))
3284 BUG();
3285 anon_vma_unlock_write(anon_vma);
3286 }
3287 }
3288
3289 static void vm_unlock_mapping(struct address_space *mapping)
3290 {
3291 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3292 /*
3293 * AS_MM_ALL_LOCKS can't change to 0 from under us
3294 * because we hold the mm_all_locks_mutex.
3295 */
3296 mutex_unlock(&mapping->i_mmap_mutex);
3297 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3298 &mapping->flags))
3299 BUG();
3300 }
3301 }
3302
3303 /*
3304 * The mmap_sem cannot be released by the caller until
3305 * mm_drop_all_locks() returns.
3306 */
3307 void mm_drop_all_locks(struct mm_struct *mm)
3308 {
3309 struct vm_area_struct *vma;
3310 struct anon_vma_chain *avc;
3311
3312 BUG_ON(down_read_trylock(&mm->mmap_sem));
3313 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3314
3315 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3316 if (vma->anon_vma)
3317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3318 vm_unlock_anon_vma(avc->anon_vma);
3319 if (vma->vm_file && vma->vm_file->f_mapping)
3320 vm_unlock_mapping(vma->vm_file->f_mapping);
3321 }
3322
3323 mutex_unlock(&mm_all_locks_mutex);
3324 }
3325
3326 /*
3327 * initialise the VMA slab
3328 */
3329 void __init mmap_init(void)
3330 {
3331 int ret;
3332
3333 ret = percpu_counter_init(&vm_committed_as, 0);
3334 VM_BUG_ON(ret);
3335 }
3336
3337 /*
3338 * Initialise sysctl_user_reserve_kbytes.
3339 *
3340 * This is intended to prevent a user from starting a single memory hogging
3341 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3342 * mode.
3343 *
3344 * The default value is min(3% of free memory, 128MB)
3345 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3346 */
3347 static int init_user_reserve(void)
3348 {
3349 unsigned long free_kbytes;
3350
3351 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3352
3353 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3354 return 0;
3355 }
3356 subsys_initcall(init_user_reserve);
3357
3358 /*
3359 * Initialise sysctl_admin_reserve_kbytes.
3360 *
3361 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3362 * to log in and kill a memory hogging process.
3363 *
3364 * Systems with more than 256MB will reserve 8MB, enough to recover
3365 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3366 * only reserve 3% of free pages by default.
3367 */
3368 static int init_admin_reserve(void)
3369 {
3370 unsigned long free_kbytes;
3371
3372 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3373
3374 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3375 return 0;
3376 }
3377 subsys_initcall(init_admin_reserve);
3378
3379 /*
3380 * Reinititalise user and admin reserves if memory is added or removed.
3381 *
3382 * The default user reserve max is 128MB, and the default max for the
3383 * admin reserve is 8MB. These are usually, but not always, enough to
3384 * enable recovery from a memory hogging process using login/sshd, a shell,
3385 * and tools like top. It may make sense to increase or even disable the
3386 * reserve depending on the existence of swap or variations in the recovery
3387 * tools. So, the admin may have changed them.
3388 *
3389 * If memory is added and the reserves have been eliminated or increased above
3390 * the default max, then we'll trust the admin.
3391 *
3392 * If memory is removed and there isn't enough free memory, then we
3393 * need to reset the reserves.
3394 *
3395 * Otherwise keep the reserve set by the admin.
3396 */
3397 static int reserve_mem_notifier(struct notifier_block *nb,
3398 unsigned long action, void *data)
3399 {
3400 unsigned long tmp, free_kbytes;
3401
3402 switch (action) {
3403 case MEM_ONLINE:
3404 /* Default max is 128MB. Leave alone if modified by operator. */
3405 tmp = sysctl_user_reserve_kbytes;
3406 if (0 < tmp && tmp < (1UL << 17))
3407 init_user_reserve();
3408
3409 /* Default max is 8MB. Leave alone if modified by operator. */
3410 tmp = sysctl_admin_reserve_kbytes;
3411 if (0 < tmp && tmp < (1UL << 13))
3412 init_admin_reserve();
3413
3414 break;
3415 case MEM_OFFLINE:
3416 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3417
3418 if (sysctl_user_reserve_kbytes > free_kbytes) {
3419 init_user_reserve();
3420 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3421 sysctl_user_reserve_kbytes);
3422 }
3423
3424 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3425 init_admin_reserve();
3426 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3427 sysctl_admin_reserve_kbytes);
3428 }
3429 break;
3430 default:
3431 break;
3432 }
3433 return NOTIFY_OK;
3434 }
3435
3436 static struct notifier_block reserve_mem_nb = {
3437 .notifier_call = reserve_mem_notifier,
3438 };
3439
3440 static int __meminit init_reserve_notifier(void)
3441 {
3442 if (register_hotmemory_notifier(&reserve_mem_nb))
3443 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3444
3445 return 0;
3446 }
3447 subsys_initcall(init_reserve_notifier);