]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/mmap.c
Merge drm/drm-fixes into drm-misc-fixes
[thirdparty/kernel/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlb.h>
52 #include <asm/mmu_context.h>
53
54 #include "internal.h"
55
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags) (0)
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
70
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73
74 static void unmap_region(struct mm_struct *mm,
75 struct vm_area_struct *vma, struct vm_area_struct *prev,
76 unsigned long start, unsigned long end);
77
78 /* description of effects of mapping type and prot in current implementation.
79 * this is due to the limited x86 page protection hardware. The expected
80 * behavior is in parens:
81 *
82 * map_type prot
83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
85 * w: (no) no w: (no) no w: (yes) yes w: (no) no
86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 *
88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
89 * w: (no) no w: (no) no w: (copy) copy w: (no) no
90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 *
92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93 * MAP_PRIVATE:
94 * r: (no) no
95 * w: (no) no
96 * x: (yes) yes
97 */
98 pgprot_t protection_map[16] __ro_after_init = {
99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101 };
102
103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
105 {
106 return prot;
107 }
108 #endif
109
110 pgprot_t vm_get_page_prot(unsigned long vm_flags)
111 {
112 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
113 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
114 pgprot_val(arch_vm_get_page_prot(vm_flags)));
115
116 return arch_filter_pgprot(ret);
117 }
118 EXPORT_SYMBOL(vm_get_page_prot);
119
120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
121 {
122 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
123 }
124
125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
126 void vma_set_page_prot(struct vm_area_struct *vma)
127 {
128 unsigned long vm_flags = vma->vm_flags;
129 pgprot_t vm_page_prot;
130
131 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
132 if (vma_wants_writenotify(vma, vm_page_prot)) {
133 vm_flags &= ~VM_SHARED;
134 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
135 }
136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
137 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
138 }
139
140 /*
141 * Requires inode->i_mapping->i_mmap_rwsem
142 */
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 struct file *file, struct address_space *mapping)
145 {
146 if (vma->vm_flags & VM_DENYWRITE)
147 atomic_inc(&file_inode(file)->i_writecount);
148 if (vma->vm_flags & VM_SHARED)
149 mapping_unmap_writable(mapping);
150
151 flush_dcache_mmap_lock(mapping);
152 vma_interval_tree_remove(vma, &mapping->i_mmap);
153 flush_dcache_mmap_unlock(mapping);
154 }
155
156 /*
157 * Unlink a file-based vm structure from its interval tree, to hide
158 * vma from rmap and vmtruncate before freeing its page tables.
159 */
160 void unlink_file_vma(struct vm_area_struct *vma)
161 {
162 struct file *file = vma->vm_file;
163
164 if (file) {
165 struct address_space *mapping = file->f_mapping;
166 i_mmap_lock_write(mapping);
167 __remove_shared_vm_struct(vma, file, mapping);
168 i_mmap_unlock_write(mapping);
169 }
170 }
171
172 /*
173 * Close a vm structure and free it, returning the next.
174 */
175 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
176 {
177 struct vm_area_struct *next = vma->vm_next;
178
179 might_sleep();
180 if (vma->vm_ops && vma->vm_ops->close)
181 vma->vm_ops->close(vma);
182 if (vma->vm_file)
183 fput(vma->vm_file);
184 mpol_put(vma_policy(vma));
185 vm_area_free(vma);
186 return next;
187 }
188
189 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
190 struct list_head *uf);
191 SYSCALL_DEFINE1(brk, unsigned long, brk)
192 {
193 unsigned long retval;
194 unsigned long newbrk, oldbrk, origbrk;
195 struct mm_struct *mm = current->mm;
196 struct vm_area_struct *next;
197 unsigned long min_brk;
198 bool populate;
199 bool downgraded = false;
200 LIST_HEAD(uf);
201
202 if (down_write_killable(&mm->mmap_sem))
203 return -EINTR;
204
205 origbrk = mm->brk;
206
207 #ifdef CONFIG_COMPAT_BRK
208 /*
209 * CONFIG_COMPAT_BRK can still be overridden by setting
210 * randomize_va_space to 2, which will still cause mm->start_brk
211 * to be arbitrarily shifted
212 */
213 if (current->brk_randomized)
214 min_brk = mm->start_brk;
215 else
216 min_brk = mm->end_data;
217 #else
218 min_brk = mm->start_brk;
219 #endif
220 if (brk < min_brk)
221 goto out;
222
223 /*
224 * Check against rlimit here. If this check is done later after the test
225 * of oldbrk with newbrk then it can escape the test and let the data
226 * segment grow beyond its set limit the in case where the limit is
227 * not page aligned -Ram Gupta
228 */
229 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
230 mm->end_data, mm->start_data))
231 goto out;
232
233 newbrk = PAGE_ALIGN(brk);
234 oldbrk = PAGE_ALIGN(mm->brk);
235 if (oldbrk == newbrk) {
236 mm->brk = brk;
237 goto success;
238 }
239
240 /*
241 * Always allow shrinking brk.
242 * __do_munmap() may downgrade mmap_sem to read.
243 */
244 if (brk <= mm->brk) {
245 int ret;
246
247 /*
248 * mm->brk must to be protected by write mmap_sem so update it
249 * before downgrading mmap_sem. When __do_munmap() fails,
250 * mm->brk will be restored from origbrk.
251 */
252 mm->brk = brk;
253 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
254 if (ret < 0) {
255 mm->brk = origbrk;
256 goto out;
257 } else if (ret == 1) {
258 downgraded = true;
259 }
260 goto success;
261 }
262
263 /* Check against existing mmap mappings. */
264 next = find_vma(mm, oldbrk);
265 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
266 goto out;
267
268 /* Ok, looks good - let it rip. */
269 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
270 goto out;
271 mm->brk = brk;
272
273 success:
274 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
275 if (downgraded)
276 up_read(&mm->mmap_sem);
277 else
278 up_write(&mm->mmap_sem);
279 userfaultfd_unmap_complete(mm, &uf);
280 if (populate)
281 mm_populate(oldbrk, newbrk - oldbrk);
282 return brk;
283
284 out:
285 retval = origbrk;
286 up_write(&mm->mmap_sem);
287 return retval;
288 }
289
290 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
291 {
292 unsigned long max, prev_end, subtree_gap;
293
294 /*
295 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
296 * allow two stack_guard_gaps between them here, and when choosing
297 * an unmapped area; whereas when expanding we only require one.
298 * That's a little inconsistent, but keeps the code here simpler.
299 */
300 max = vm_start_gap(vma);
301 if (vma->vm_prev) {
302 prev_end = vm_end_gap(vma->vm_prev);
303 if (max > prev_end)
304 max -= prev_end;
305 else
306 max = 0;
307 }
308 if (vma->vm_rb.rb_left) {
309 subtree_gap = rb_entry(vma->vm_rb.rb_left,
310 struct vm_area_struct, vm_rb)->rb_subtree_gap;
311 if (subtree_gap > max)
312 max = subtree_gap;
313 }
314 if (vma->vm_rb.rb_right) {
315 subtree_gap = rb_entry(vma->vm_rb.rb_right,
316 struct vm_area_struct, vm_rb)->rb_subtree_gap;
317 if (subtree_gap > max)
318 max = subtree_gap;
319 }
320 return max;
321 }
322
323 #ifdef CONFIG_DEBUG_VM_RB
324 static int browse_rb(struct mm_struct *mm)
325 {
326 struct rb_root *root = &mm->mm_rb;
327 int i = 0, j, bug = 0;
328 struct rb_node *nd, *pn = NULL;
329 unsigned long prev = 0, pend = 0;
330
331 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
332 struct vm_area_struct *vma;
333 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
334 if (vma->vm_start < prev) {
335 pr_emerg("vm_start %lx < prev %lx\n",
336 vma->vm_start, prev);
337 bug = 1;
338 }
339 if (vma->vm_start < pend) {
340 pr_emerg("vm_start %lx < pend %lx\n",
341 vma->vm_start, pend);
342 bug = 1;
343 }
344 if (vma->vm_start > vma->vm_end) {
345 pr_emerg("vm_start %lx > vm_end %lx\n",
346 vma->vm_start, vma->vm_end);
347 bug = 1;
348 }
349 spin_lock(&mm->page_table_lock);
350 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
351 pr_emerg("free gap %lx, correct %lx\n",
352 vma->rb_subtree_gap,
353 vma_compute_subtree_gap(vma));
354 bug = 1;
355 }
356 spin_unlock(&mm->page_table_lock);
357 i++;
358 pn = nd;
359 prev = vma->vm_start;
360 pend = vma->vm_end;
361 }
362 j = 0;
363 for (nd = pn; nd; nd = rb_prev(nd))
364 j++;
365 if (i != j) {
366 pr_emerg("backwards %d, forwards %d\n", j, i);
367 bug = 1;
368 }
369 return bug ? -1 : i;
370 }
371
372 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
373 {
374 struct rb_node *nd;
375
376 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
377 struct vm_area_struct *vma;
378 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
379 VM_BUG_ON_VMA(vma != ignore &&
380 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
381 vma);
382 }
383 }
384
385 static void validate_mm(struct mm_struct *mm)
386 {
387 int bug = 0;
388 int i = 0;
389 unsigned long highest_address = 0;
390 struct vm_area_struct *vma = mm->mmap;
391
392 while (vma) {
393 struct anon_vma *anon_vma = vma->anon_vma;
394 struct anon_vma_chain *avc;
395
396 if (anon_vma) {
397 anon_vma_lock_read(anon_vma);
398 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
399 anon_vma_interval_tree_verify(avc);
400 anon_vma_unlock_read(anon_vma);
401 }
402
403 highest_address = vm_end_gap(vma);
404 vma = vma->vm_next;
405 i++;
406 }
407 if (i != mm->map_count) {
408 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
409 bug = 1;
410 }
411 if (highest_address != mm->highest_vm_end) {
412 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
413 mm->highest_vm_end, highest_address);
414 bug = 1;
415 }
416 i = browse_rb(mm);
417 if (i != mm->map_count) {
418 if (i != -1)
419 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
420 bug = 1;
421 }
422 VM_BUG_ON_MM(bug, mm);
423 }
424 #else
425 #define validate_mm_rb(root, ignore) do { } while (0)
426 #define validate_mm(mm) do { } while (0)
427 #endif
428
429 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
430 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
431
432 /*
433 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
434 * vma->vm_prev->vm_end values changed, without modifying the vma's position
435 * in the rbtree.
436 */
437 static void vma_gap_update(struct vm_area_struct *vma)
438 {
439 /*
440 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
441 * function that does exactly what we want.
442 */
443 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
444 }
445
446 static inline void vma_rb_insert(struct vm_area_struct *vma,
447 struct rb_root *root)
448 {
449 /* All rb_subtree_gap values must be consistent prior to insertion */
450 validate_mm_rb(root, NULL);
451
452 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
453 }
454
455 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
456 {
457 /*
458 * Note rb_erase_augmented is a fairly large inline function,
459 * so make sure we instantiate it only once with our desired
460 * augmented rbtree callbacks.
461 */
462 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464
465 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
466 struct rb_root *root,
467 struct vm_area_struct *ignore)
468 {
469 /*
470 * All rb_subtree_gap values must be consistent prior to erase,
471 * with the possible exception of the "next" vma being erased if
472 * next->vm_start was reduced.
473 */
474 validate_mm_rb(root, ignore);
475
476 __vma_rb_erase(vma, root);
477 }
478
479 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
480 struct rb_root *root)
481 {
482 /*
483 * All rb_subtree_gap values must be consistent prior to erase,
484 * with the possible exception of the vma being erased.
485 */
486 validate_mm_rb(root, vma);
487
488 __vma_rb_erase(vma, root);
489 }
490
491 /*
492 * vma has some anon_vma assigned, and is already inserted on that
493 * anon_vma's interval trees.
494 *
495 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
496 * vma must be removed from the anon_vma's interval trees using
497 * anon_vma_interval_tree_pre_update_vma().
498 *
499 * After the update, the vma will be reinserted using
500 * anon_vma_interval_tree_post_update_vma().
501 *
502 * The entire update must be protected by exclusive mmap_sem and by
503 * the root anon_vma's mutex.
504 */
505 static inline void
506 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
507 {
508 struct anon_vma_chain *avc;
509
510 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
511 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
512 }
513
514 static inline void
515 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
516 {
517 struct anon_vma_chain *avc;
518
519 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
520 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
521 }
522
523 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
524 unsigned long end, struct vm_area_struct **pprev,
525 struct rb_node ***rb_link, struct rb_node **rb_parent)
526 {
527 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
528
529 __rb_link = &mm->mm_rb.rb_node;
530 rb_prev = __rb_parent = NULL;
531
532 while (*__rb_link) {
533 struct vm_area_struct *vma_tmp;
534
535 __rb_parent = *__rb_link;
536 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
537
538 if (vma_tmp->vm_end > addr) {
539 /* Fail if an existing vma overlaps the area */
540 if (vma_tmp->vm_start < end)
541 return -ENOMEM;
542 __rb_link = &__rb_parent->rb_left;
543 } else {
544 rb_prev = __rb_parent;
545 __rb_link = &__rb_parent->rb_right;
546 }
547 }
548
549 *pprev = NULL;
550 if (rb_prev)
551 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
552 *rb_link = __rb_link;
553 *rb_parent = __rb_parent;
554 return 0;
555 }
556
557 static unsigned long count_vma_pages_range(struct mm_struct *mm,
558 unsigned long addr, unsigned long end)
559 {
560 unsigned long nr_pages = 0;
561 struct vm_area_struct *vma;
562
563 /* Find first overlaping mapping */
564 vma = find_vma_intersection(mm, addr, end);
565 if (!vma)
566 return 0;
567
568 nr_pages = (min(end, vma->vm_end) -
569 max(addr, vma->vm_start)) >> PAGE_SHIFT;
570
571 /* Iterate over the rest of the overlaps */
572 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
573 unsigned long overlap_len;
574
575 if (vma->vm_start > end)
576 break;
577
578 overlap_len = min(end, vma->vm_end) - vma->vm_start;
579 nr_pages += overlap_len >> PAGE_SHIFT;
580 }
581
582 return nr_pages;
583 }
584
585 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
586 struct rb_node **rb_link, struct rb_node *rb_parent)
587 {
588 /* Update tracking information for the gap following the new vma. */
589 if (vma->vm_next)
590 vma_gap_update(vma->vm_next);
591 else
592 mm->highest_vm_end = vm_end_gap(vma);
593
594 /*
595 * vma->vm_prev wasn't known when we followed the rbtree to find the
596 * correct insertion point for that vma. As a result, we could not
597 * update the vma vm_rb parents rb_subtree_gap values on the way down.
598 * So, we first insert the vma with a zero rb_subtree_gap value
599 * (to be consistent with what we did on the way down), and then
600 * immediately update the gap to the correct value. Finally we
601 * rebalance the rbtree after all augmented values have been set.
602 */
603 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
604 vma->rb_subtree_gap = 0;
605 vma_gap_update(vma);
606 vma_rb_insert(vma, &mm->mm_rb);
607 }
608
609 static void __vma_link_file(struct vm_area_struct *vma)
610 {
611 struct file *file;
612
613 file = vma->vm_file;
614 if (file) {
615 struct address_space *mapping = file->f_mapping;
616
617 if (vma->vm_flags & VM_DENYWRITE)
618 atomic_dec(&file_inode(file)->i_writecount);
619 if (vma->vm_flags & VM_SHARED)
620 atomic_inc(&mapping->i_mmap_writable);
621
622 flush_dcache_mmap_lock(mapping);
623 vma_interval_tree_insert(vma, &mapping->i_mmap);
624 flush_dcache_mmap_unlock(mapping);
625 }
626 }
627
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 struct vm_area_struct *prev, struct rb_node **rb_link,
631 struct rb_node *rb_parent)
632 {
633 __vma_link_list(mm, vma, prev, rb_parent);
634 __vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
640 {
641 struct address_space *mapping = NULL;
642
643 if (vma->vm_file) {
644 mapping = vma->vm_file->f_mapping;
645 i_mmap_lock_write(mapping);
646 }
647
648 __vma_link(mm, vma, prev, rb_link, rb_parent);
649 __vma_link_file(vma);
650
651 if (mapping)
652 i_mmap_unlock_write(mapping);
653
654 mm->map_count++;
655 validate_mm(mm);
656 }
657
658 /*
659 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
660 * mm's list and rbtree. It has already been inserted into the interval tree.
661 */
662 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
663 {
664 struct vm_area_struct *prev;
665 struct rb_node **rb_link, *rb_parent;
666
667 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
668 &prev, &rb_link, &rb_parent))
669 BUG();
670 __vma_link(mm, vma, prev, rb_link, rb_parent);
671 mm->map_count++;
672 }
673
674 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
675 struct vm_area_struct *vma,
676 struct vm_area_struct *prev,
677 bool has_prev,
678 struct vm_area_struct *ignore)
679 {
680 struct vm_area_struct *next;
681
682 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
683 next = vma->vm_next;
684 if (has_prev)
685 prev->vm_next = next;
686 else {
687 prev = vma->vm_prev;
688 if (prev)
689 prev->vm_next = next;
690 else
691 mm->mmap = next;
692 }
693 if (next)
694 next->vm_prev = prev;
695
696 /* Kill the cache */
697 vmacache_invalidate(mm);
698 }
699
700 static inline void __vma_unlink_prev(struct mm_struct *mm,
701 struct vm_area_struct *vma,
702 struct vm_area_struct *prev)
703 {
704 __vma_unlink_common(mm, vma, prev, true, vma);
705 }
706
707 /*
708 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
709 * is already present in an i_mmap tree without adjusting the tree.
710 * The following helper function should be used when such adjustments
711 * are necessary. The "insert" vma (if any) is to be inserted
712 * before we drop the necessary locks.
713 */
714 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
715 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
716 struct vm_area_struct *expand)
717 {
718 struct mm_struct *mm = vma->vm_mm;
719 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
720 struct address_space *mapping = NULL;
721 struct rb_root_cached *root = NULL;
722 struct anon_vma *anon_vma = NULL;
723 struct file *file = vma->vm_file;
724 bool start_changed = false, end_changed = false;
725 long adjust_next = 0;
726 int remove_next = 0;
727
728 if (next && !insert) {
729 struct vm_area_struct *exporter = NULL, *importer = NULL;
730
731 if (end >= next->vm_end) {
732 /*
733 * vma expands, overlapping all the next, and
734 * perhaps the one after too (mprotect case 6).
735 * The only other cases that gets here are
736 * case 1, case 7 and case 8.
737 */
738 if (next == expand) {
739 /*
740 * The only case where we don't expand "vma"
741 * and we expand "next" instead is case 8.
742 */
743 VM_WARN_ON(end != next->vm_end);
744 /*
745 * remove_next == 3 means we're
746 * removing "vma" and that to do so we
747 * swapped "vma" and "next".
748 */
749 remove_next = 3;
750 VM_WARN_ON(file != next->vm_file);
751 swap(vma, next);
752 } else {
753 VM_WARN_ON(expand != vma);
754 /*
755 * case 1, 6, 7, remove_next == 2 is case 6,
756 * remove_next == 1 is case 1 or 7.
757 */
758 remove_next = 1 + (end > next->vm_end);
759 VM_WARN_ON(remove_next == 2 &&
760 end != next->vm_next->vm_end);
761 VM_WARN_ON(remove_next == 1 &&
762 end != next->vm_end);
763 /* trim end to next, for case 6 first pass */
764 end = next->vm_end;
765 }
766
767 exporter = next;
768 importer = vma;
769
770 /*
771 * If next doesn't have anon_vma, import from vma after
772 * next, if the vma overlaps with it.
773 */
774 if (remove_next == 2 && !next->anon_vma)
775 exporter = next->vm_next;
776
777 } else if (end > next->vm_start) {
778 /*
779 * vma expands, overlapping part of the next:
780 * mprotect case 5 shifting the boundary up.
781 */
782 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
783 exporter = next;
784 importer = vma;
785 VM_WARN_ON(expand != importer);
786 } else if (end < vma->vm_end) {
787 /*
788 * vma shrinks, and !insert tells it's not
789 * split_vma inserting another: so it must be
790 * mprotect case 4 shifting the boundary down.
791 */
792 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
793 exporter = vma;
794 importer = next;
795 VM_WARN_ON(expand != importer);
796 }
797
798 /*
799 * Easily overlooked: when mprotect shifts the boundary,
800 * make sure the expanding vma has anon_vma set if the
801 * shrinking vma had, to cover any anon pages imported.
802 */
803 if (exporter && exporter->anon_vma && !importer->anon_vma) {
804 int error;
805
806 importer->anon_vma = exporter->anon_vma;
807 error = anon_vma_clone(importer, exporter);
808 if (error)
809 return error;
810 }
811 }
812 again:
813 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
814
815 if (file) {
816 mapping = file->f_mapping;
817 root = &mapping->i_mmap;
818 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
819
820 if (adjust_next)
821 uprobe_munmap(next, next->vm_start, next->vm_end);
822
823 i_mmap_lock_write(mapping);
824 if (insert) {
825 /*
826 * Put into interval tree now, so instantiated pages
827 * are visible to arm/parisc __flush_dcache_page
828 * throughout; but we cannot insert into address
829 * space until vma start or end is updated.
830 */
831 __vma_link_file(insert);
832 }
833 }
834
835 anon_vma = vma->anon_vma;
836 if (!anon_vma && adjust_next)
837 anon_vma = next->anon_vma;
838 if (anon_vma) {
839 VM_WARN_ON(adjust_next && next->anon_vma &&
840 anon_vma != next->anon_vma);
841 anon_vma_lock_write(anon_vma);
842 anon_vma_interval_tree_pre_update_vma(vma);
843 if (adjust_next)
844 anon_vma_interval_tree_pre_update_vma(next);
845 }
846
847 if (root) {
848 flush_dcache_mmap_lock(mapping);
849 vma_interval_tree_remove(vma, root);
850 if (adjust_next)
851 vma_interval_tree_remove(next, root);
852 }
853
854 if (start != vma->vm_start) {
855 vma->vm_start = start;
856 start_changed = true;
857 }
858 if (end != vma->vm_end) {
859 vma->vm_end = end;
860 end_changed = true;
861 }
862 vma->vm_pgoff = pgoff;
863 if (adjust_next) {
864 next->vm_start += adjust_next << PAGE_SHIFT;
865 next->vm_pgoff += adjust_next;
866 }
867
868 if (root) {
869 if (adjust_next)
870 vma_interval_tree_insert(next, root);
871 vma_interval_tree_insert(vma, root);
872 flush_dcache_mmap_unlock(mapping);
873 }
874
875 if (remove_next) {
876 /*
877 * vma_merge has merged next into vma, and needs
878 * us to remove next before dropping the locks.
879 */
880 if (remove_next != 3)
881 __vma_unlink_prev(mm, next, vma);
882 else
883 /*
884 * vma is not before next if they've been
885 * swapped.
886 *
887 * pre-swap() next->vm_start was reduced so
888 * tell validate_mm_rb to ignore pre-swap()
889 * "next" (which is stored in post-swap()
890 * "vma").
891 */
892 __vma_unlink_common(mm, next, NULL, false, vma);
893 if (file)
894 __remove_shared_vm_struct(next, file, mapping);
895 } else if (insert) {
896 /*
897 * split_vma has split insert from vma, and needs
898 * us to insert it before dropping the locks
899 * (it may either follow vma or precede it).
900 */
901 __insert_vm_struct(mm, insert);
902 } else {
903 if (start_changed)
904 vma_gap_update(vma);
905 if (end_changed) {
906 if (!next)
907 mm->highest_vm_end = vm_end_gap(vma);
908 else if (!adjust_next)
909 vma_gap_update(next);
910 }
911 }
912
913 if (anon_vma) {
914 anon_vma_interval_tree_post_update_vma(vma);
915 if (adjust_next)
916 anon_vma_interval_tree_post_update_vma(next);
917 anon_vma_unlock_write(anon_vma);
918 }
919 if (mapping)
920 i_mmap_unlock_write(mapping);
921
922 if (root) {
923 uprobe_mmap(vma);
924
925 if (adjust_next)
926 uprobe_mmap(next);
927 }
928
929 if (remove_next) {
930 if (file) {
931 uprobe_munmap(next, next->vm_start, next->vm_end);
932 fput(file);
933 }
934 if (next->anon_vma)
935 anon_vma_merge(vma, next);
936 mm->map_count--;
937 mpol_put(vma_policy(next));
938 vm_area_free(next);
939 /*
940 * In mprotect's case 6 (see comments on vma_merge),
941 * we must remove another next too. It would clutter
942 * up the code too much to do both in one go.
943 */
944 if (remove_next != 3) {
945 /*
946 * If "next" was removed and vma->vm_end was
947 * expanded (up) over it, in turn
948 * "next->vm_prev->vm_end" changed and the
949 * "vma->vm_next" gap must be updated.
950 */
951 next = vma->vm_next;
952 } else {
953 /*
954 * For the scope of the comment "next" and
955 * "vma" considered pre-swap(): if "vma" was
956 * removed, next->vm_start was expanded (down)
957 * over it and the "next" gap must be updated.
958 * Because of the swap() the post-swap() "vma"
959 * actually points to pre-swap() "next"
960 * (post-swap() "next" as opposed is now a
961 * dangling pointer).
962 */
963 next = vma;
964 }
965 if (remove_next == 2) {
966 remove_next = 1;
967 end = next->vm_end;
968 goto again;
969 }
970 else if (next)
971 vma_gap_update(next);
972 else {
973 /*
974 * If remove_next == 2 we obviously can't
975 * reach this path.
976 *
977 * If remove_next == 3 we can't reach this
978 * path because pre-swap() next is always not
979 * NULL. pre-swap() "next" is not being
980 * removed and its next->vm_end is not altered
981 * (and furthermore "end" already matches
982 * next->vm_end in remove_next == 3).
983 *
984 * We reach this only in the remove_next == 1
985 * case if the "next" vma that was removed was
986 * the highest vma of the mm. However in such
987 * case next->vm_end == "end" and the extended
988 * "vma" has vma->vm_end == next->vm_end so
989 * mm->highest_vm_end doesn't need any update
990 * in remove_next == 1 case.
991 */
992 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
993 }
994 }
995 if (insert && file)
996 uprobe_mmap(insert);
997
998 validate_mm(mm);
999
1000 return 0;
1001 }
1002
1003 /*
1004 * If the vma has a ->close operation then the driver probably needs to release
1005 * per-vma resources, so we don't attempt to merge those.
1006 */
1007 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1008 struct file *file, unsigned long vm_flags,
1009 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1010 {
1011 /*
1012 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1013 * match the flags but dirty bit -- the caller should mark
1014 * merged VMA as dirty. If dirty bit won't be excluded from
1015 * comparison, we increase pressure on the memory system forcing
1016 * the kernel to generate new VMAs when old one could be
1017 * extended instead.
1018 */
1019 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1020 return 0;
1021 if (vma->vm_file != file)
1022 return 0;
1023 if (vma->vm_ops && vma->vm_ops->close)
1024 return 0;
1025 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1026 return 0;
1027 return 1;
1028 }
1029
1030 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1031 struct anon_vma *anon_vma2,
1032 struct vm_area_struct *vma)
1033 {
1034 /*
1035 * The list_is_singular() test is to avoid merging VMA cloned from
1036 * parents. This can improve scalability caused by anon_vma lock.
1037 */
1038 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1039 list_is_singular(&vma->anon_vma_chain)))
1040 return 1;
1041 return anon_vma1 == anon_vma2;
1042 }
1043
1044 /*
1045 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1046 * in front of (at a lower virtual address and file offset than) the vma.
1047 *
1048 * We cannot merge two vmas if they have differently assigned (non-NULL)
1049 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1050 *
1051 * We don't check here for the merged mmap wrapping around the end of pagecache
1052 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1053 * wrap, nor mmaps which cover the final page at index -1UL.
1054 */
1055 static int
1056 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1057 struct anon_vma *anon_vma, struct file *file,
1058 pgoff_t vm_pgoff,
1059 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1060 {
1061 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1062 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1063 if (vma->vm_pgoff == vm_pgoff)
1064 return 1;
1065 }
1066 return 0;
1067 }
1068
1069 /*
1070 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1071 * beyond (at a higher virtual address and file offset than) the vma.
1072 *
1073 * We cannot merge two vmas if they have differently assigned (non-NULL)
1074 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1075 */
1076 static int
1077 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1078 struct anon_vma *anon_vma, struct file *file,
1079 pgoff_t vm_pgoff,
1080 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1081 {
1082 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1083 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1084 pgoff_t vm_pglen;
1085 vm_pglen = vma_pages(vma);
1086 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1087 return 1;
1088 }
1089 return 0;
1090 }
1091
1092 /*
1093 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1094 * whether that can be merged with its predecessor or its successor.
1095 * Or both (it neatly fills a hole).
1096 *
1097 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1098 * certain not to be mapped by the time vma_merge is called; but when
1099 * called for mprotect, it is certain to be already mapped (either at
1100 * an offset within prev, or at the start of next), and the flags of
1101 * this area are about to be changed to vm_flags - and the no-change
1102 * case has already been eliminated.
1103 *
1104 * The following mprotect cases have to be considered, where AAAA is
1105 * the area passed down from mprotect_fixup, never extending beyond one
1106 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1107 *
1108 * AAAA AAAA AAAA AAAA
1109 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1110 * cannot merge might become might become might become
1111 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1112 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1113 * mremap move: PPPPXXXXXXXX 8
1114 * AAAA
1115 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1116 * might become case 1 below case 2 below case 3 below
1117 *
1118 * It is important for case 8 that the vma NNNN overlapping the
1119 * region AAAA is never going to extended over XXXX. Instead XXXX must
1120 * be extended in region AAAA and NNNN must be removed. This way in
1121 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1122 * rmap_locks, the properties of the merged vma will be already
1123 * correct for the whole merged range. Some of those properties like
1124 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1125 * be correct for the whole merged range immediately after the
1126 * rmap_locks are released. Otherwise if XXXX would be removed and
1127 * NNNN would be extended over the XXXX range, remove_migration_ptes
1128 * or other rmap walkers (if working on addresses beyond the "end"
1129 * parameter) may establish ptes with the wrong permissions of NNNN
1130 * instead of the right permissions of XXXX.
1131 */
1132 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1133 struct vm_area_struct *prev, unsigned long addr,
1134 unsigned long end, unsigned long vm_flags,
1135 struct anon_vma *anon_vma, struct file *file,
1136 pgoff_t pgoff, struct mempolicy *policy,
1137 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1138 {
1139 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1140 struct vm_area_struct *area, *next;
1141 int err;
1142
1143 /*
1144 * We later require that vma->vm_flags == vm_flags,
1145 * so this tests vma->vm_flags & VM_SPECIAL, too.
1146 */
1147 if (vm_flags & VM_SPECIAL)
1148 return NULL;
1149
1150 if (prev)
1151 next = prev->vm_next;
1152 else
1153 next = mm->mmap;
1154 area = next;
1155 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1156 next = next->vm_next;
1157
1158 /* verify some invariant that must be enforced by the caller */
1159 VM_WARN_ON(prev && addr <= prev->vm_start);
1160 VM_WARN_ON(area && end > area->vm_end);
1161 VM_WARN_ON(addr >= end);
1162
1163 /*
1164 * Can it merge with the predecessor?
1165 */
1166 if (prev && prev->vm_end == addr &&
1167 mpol_equal(vma_policy(prev), policy) &&
1168 can_vma_merge_after(prev, vm_flags,
1169 anon_vma, file, pgoff,
1170 vm_userfaultfd_ctx)) {
1171 /*
1172 * OK, it can. Can we now merge in the successor as well?
1173 */
1174 if (next && end == next->vm_start &&
1175 mpol_equal(policy, vma_policy(next)) &&
1176 can_vma_merge_before(next, vm_flags,
1177 anon_vma, file,
1178 pgoff+pglen,
1179 vm_userfaultfd_ctx) &&
1180 is_mergeable_anon_vma(prev->anon_vma,
1181 next->anon_vma, NULL)) {
1182 /* cases 1, 6 */
1183 err = __vma_adjust(prev, prev->vm_start,
1184 next->vm_end, prev->vm_pgoff, NULL,
1185 prev);
1186 } else /* cases 2, 5, 7 */
1187 err = __vma_adjust(prev, prev->vm_start,
1188 end, prev->vm_pgoff, NULL, prev);
1189 if (err)
1190 return NULL;
1191 khugepaged_enter_vma_merge(prev, vm_flags);
1192 return prev;
1193 }
1194
1195 /*
1196 * Can this new request be merged in front of next?
1197 */
1198 if (next && end == next->vm_start &&
1199 mpol_equal(policy, vma_policy(next)) &&
1200 can_vma_merge_before(next, vm_flags,
1201 anon_vma, file, pgoff+pglen,
1202 vm_userfaultfd_ctx)) {
1203 if (prev && addr < prev->vm_end) /* case 4 */
1204 err = __vma_adjust(prev, prev->vm_start,
1205 addr, prev->vm_pgoff, NULL, next);
1206 else { /* cases 3, 8 */
1207 err = __vma_adjust(area, addr, next->vm_end,
1208 next->vm_pgoff - pglen, NULL, next);
1209 /*
1210 * In case 3 area is already equal to next and
1211 * this is a noop, but in case 8 "area" has
1212 * been removed and next was expanded over it.
1213 */
1214 area = next;
1215 }
1216 if (err)
1217 return NULL;
1218 khugepaged_enter_vma_merge(area, vm_flags);
1219 return area;
1220 }
1221
1222 return NULL;
1223 }
1224
1225 /*
1226 * Rough compatbility check to quickly see if it's even worth looking
1227 * at sharing an anon_vma.
1228 *
1229 * They need to have the same vm_file, and the flags can only differ
1230 * in things that mprotect may change.
1231 *
1232 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1233 * we can merge the two vma's. For example, we refuse to merge a vma if
1234 * there is a vm_ops->close() function, because that indicates that the
1235 * driver is doing some kind of reference counting. But that doesn't
1236 * really matter for the anon_vma sharing case.
1237 */
1238 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1239 {
1240 return a->vm_end == b->vm_start &&
1241 mpol_equal(vma_policy(a), vma_policy(b)) &&
1242 a->vm_file == b->vm_file &&
1243 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1244 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1245 }
1246
1247 /*
1248 * Do some basic sanity checking to see if we can re-use the anon_vma
1249 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1250 * the same as 'old', the other will be the new one that is trying
1251 * to share the anon_vma.
1252 *
1253 * NOTE! This runs with mm_sem held for reading, so it is possible that
1254 * the anon_vma of 'old' is concurrently in the process of being set up
1255 * by another page fault trying to merge _that_. But that's ok: if it
1256 * is being set up, that automatically means that it will be a singleton
1257 * acceptable for merging, so we can do all of this optimistically. But
1258 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1259 *
1260 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1261 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1262 * is to return an anon_vma that is "complex" due to having gone through
1263 * a fork).
1264 *
1265 * We also make sure that the two vma's are compatible (adjacent,
1266 * and with the same memory policies). That's all stable, even with just
1267 * a read lock on the mm_sem.
1268 */
1269 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1270 {
1271 if (anon_vma_compatible(a, b)) {
1272 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1273
1274 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1275 return anon_vma;
1276 }
1277 return NULL;
1278 }
1279
1280 /*
1281 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1282 * neighbouring vmas for a suitable anon_vma, before it goes off
1283 * to allocate a new anon_vma. It checks because a repetitive
1284 * sequence of mprotects and faults may otherwise lead to distinct
1285 * anon_vmas being allocated, preventing vma merge in subsequent
1286 * mprotect.
1287 */
1288 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1289 {
1290 struct anon_vma *anon_vma;
1291 struct vm_area_struct *near;
1292
1293 near = vma->vm_next;
1294 if (!near)
1295 goto try_prev;
1296
1297 anon_vma = reusable_anon_vma(near, vma, near);
1298 if (anon_vma)
1299 return anon_vma;
1300 try_prev:
1301 near = vma->vm_prev;
1302 if (!near)
1303 goto none;
1304
1305 anon_vma = reusable_anon_vma(near, near, vma);
1306 if (anon_vma)
1307 return anon_vma;
1308 none:
1309 /*
1310 * There's no absolute need to look only at touching neighbours:
1311 * we could search further afield for "compatible" anon_vmas.
1312 * But it would probably just be a waste of time searching,
1313 * or lead to too many vmas hanging off the same anon_vma.
1314 * We're trying to allow mprotect remerging later on,
1315 * not trying to minimize memory used for anon_vmas.
1316 */
1317 return NULL;
1318 }
1319
1320 /*
1321 * If a hint addr is less than mmap_min_addr change hint to be as
1322 * low as possible but still greater than mmap_min_addr
1323 */
1324 static inline unsigned long round_hint_to_min(unsigned long hint)
1325 {
1326 hint &= PAGE_MASK;
1327 if (((void *)hint != NULL) &&
1328 (hint < mmap_min_addr))
1329 return PAGE_ALIGN(mmap_min_addr);
1330 return hint;
1331 }
1332
1333 static inline int mlock_future_check(struct mm_struct *mm,
1334 unsigned long flags,
1335 unsigned long len)
1336 {
1337 unsigned long locked, lock_limit;
1338
1339 /* mlock MCL_FUTURE? */
1340 if (flags & VM_LOCKED) {
1341 locked = len >> PAGE_SHIFT;
1342 locked += mm->locked_vm;
1343 lock_limit = rlimit(RLIMIT_MEMLOCK);
1344 lock_limit >>= PAGE_SHIFT;
1345 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1346 return -EAGAIN;
1347 }
1348 return 0;
1349 }
1350
1351 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1352 {
1353 if (S_ISREG(inode->i_mode))
1354 return MAX_LFS_FILESIZE;
1355
1356 if (S_ISBLK(inode->i_mode))
1357 return MAX_LFS_FILESIZE;
1358
1359 /* Special "we do even unsigned file positions" case */
1360 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1361 return 0;
1362
1363 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1364 return ULONG_MAX;
1365 }
1366
1367 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1368 unsigned long pgoff, unsigned long len)
1369 {
1370 u64 maxsize = file_mmap_size_max(file, inode);
1371
1372 if (maxsize && len > maxsize)
1373 return false;
1374 maxsize -= len;
1375 if (pgoff > maxsize >> PAGE_SHIFT)
1376 return false;
1377 return true;
1378 }
1379
1380 /*
1381 * The caller must hold down_write(&current->mm->mmap_sem).
1382 */
1383 unsigned long do_mmap(struct file *file, unsigned long addr,
1384 unsigned long len, unsigned long prot,
1385 unsigned long flags, vm_flags_t vm_flags,
1386 unsigned long pgoff, unsigned long *populate,
1387 struct list_head *uf)
1388 {
1389 struct mm_struct *mm = current->mm;
1390 int pkey = 0;
1391
1392 *populate = 0;
1393
1394 if (!len)
1395 return -EINVAL;
1396
1397 /*
1398 * Does the application expect PROT_READ to imply PROT_EXEC?
1399 *
1400 * (the exception is when the underlying filesystem is noexec
1401 * mounted, in which case we dont add PROT_EXEC.)
1402 */
1403 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1404 if (!(file && path_noexec(&file->f_path)))
1405 prot |= PROT_EXEC;
1406
1407 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1408 if (flags & MAP_FIXED_NOREPLACE)
1409 flags |= MAP_FIXED;
1410
1411 if (!(flags & MAP_FIXED))
1412 addr = round_hint_to_min(addr);
1413
1414 /* Careful about overflows.. */
1415 len = PAGE_ALIGN(len);
1416 if (!len)
1417 return -ENOMEM;
1418
1419 /* offset overflow? */
1420 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1421 return -EOVERFLOW;
1422
1423 /* Too many mappings? */
1424 if (mm->map_count > sysctl_max_map_count)
1425 return -ENOMEM;
1426
1427 /* Obtain the address to map to. we verify (or select) it and ensure
1428 * that it represents a valid section of the address space.
1429 */
1430 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1431 if (offset_in_page(addr))
1432 return addr;
1433
1434 if (flags & MAP_FIXED_NOREPLACE) {
1435 struct vm_area_struct *vma = find_vma(mm, addr);
1436
1437 if (vma && vma->vm_start < addr + len)
1438 return -EEXIST;
1439 }
1440
1441 if (prot == PROT_EXEC) {
1442 pkey = execute_only_pkey(mm);
1443 if (pkey < 0)
1444 pkey = 0;
1445 }
1446
1447 /* Do simple checking here so the lower-level routines won't have
1448 * to. we assume access permissions have been handled by the open
1449 * of the memory object, so we don't do any here.
1450 */
1451 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1452 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1453
1454 if (flags & MAP_LOCKED)
1455 if (!can_do_mlock())
1456 return -EPERM;
1457
1458 if (mlock_future_check(mm, vm_flags, len))
1459 return -EAGAIN;
1460
1461 if (file) {
1462 struct inode *inode = file_inode(file);
1463 unsigned long flags_mask;
1464
1465 if (!file_mmap_ok(file, inode, pgoff, len))
1466 return -EOVERFLOW;
1467
1468 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1469
1470 switch (flags & MAP_TYPE) {
1471 case MAP_SHARED:
1472 /*
1473 * Force use of MAP_SHARED_VALIDATE with non-legacy
1474 * flags. E.g. MAP_SYNC is dangerous to use with
1475 * MAP_SHARED as you don't know which consistency model
1476 * you will get. We silently ignore unsupported flags
1477 * with MAP_SHARED to preserve backward compatibility.
1478 */
1479 flags &= LEGACY_MAP_MASK;
1480 /* fall through */
1481 case MAP_SHARED_VALIDATE:
1482 if (flags & ~flags_mask)
1483 return -EOPNOTSUPP;
1484 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1485 return -EACCES;
1486
1487 /*
1488 * Make sure we don't allow writing to an append-only
1489 * file..
1490 */
1491 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1492 return -EACCES;
1493
1494 /*
1495 * Make sure there are no mandatory locks on the file.
1496 */
1497 if (locks_verify_locked(file))
1498 return -EAGAIN;
1499
1500 vm_flags |= VM_SHARED | VM_MAYSHARE;
1501 if (!(file->f_mode & FMODE_WRITE))
1502 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1503
1504 /* fall through */
1505 case MAP_PRIVATE:
1506 if (!(file->f_mode & FMODE_READ))
1507 return -EACCES;
1508 if (path_noexec(&file->f_path)) {
1509 if (vm_flags & VM_EXEC)
1510 return -EPERM;
1511 vm_flags &= ~VM_MAYEXEC;
1512 }
1513
1514 if (!file->f_op->mmap)
1515 return -ENODEV;
1516 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1517 return -EINVAL;
1518 break;
1519
1520 default:
1521 return -EINVAL;
1522 }
1523 } else {
1524 switch (flags & MAP_TYPE) {
1525 case MAP_SHARED:
1526 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1527 return -EINVAL;
1528 /*
1529 * Ignore pgoff.
1530 */
1531 pgoff = 0;
1532 vm_flags |= VM_SHARED | VM_MAYSHARE;
1533 break;
1534 case MAP_PRIVATE:
1535 /*
1536 * Set pgoff according to addr for anon_vma.
1537 */
1538 pgoff = addr >> PAGE_SHIFT;
1539 break;
1540 default:
1541 return -EINVAL;
1542 }
1543 }
1544
1545 /*
1546 * Set 'VM_NORESERVE' if we should not account for the
1547 * memory use of this mapping.
1548 */
1549 if (flags & MAP_NORESERVE) {
1550 /* We honor MAP_NORESERVE if allowed to overcommit */
1551 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1552 vm_flags |= VM_NORESERVE;
1553
1554 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1555 if (file && is_file_hugepages(file))
1556 vm_flags |= VM_NORESERVE;
1557 }
1558
1559 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1560 if (!IS_ERR_VALUE(addr) &&
1561 ((vm_flags & VM_LOCKED) ||
1562 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1563 *populate = len;
1564 return addr;
1565 }
1566
1567 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1568 unsigned long prot, unsigned long flags,
1569 unsigned long fd, unsigned long pgoff)
1570 {
1571 struct file *file = NULL;
1572 unsigned long retval;
1573
1574 if (!(flags & MAP_ANONYMOUS)) {
1575 audit_mmap_fd(fd, flags);
1576 file = fget(fd);
1577 if (!file)
1578 return -EBADF;
1579 if (is_file_hugepages(file))
1580 len = ALIGN(len, huge_page_size(hstate_file(file)));
1581 retval = -EINVAL;
1582 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1583 goto out_fput;
1584 } else if (flags & MAP_HUGETLB) {
1585 struct user_struct *user = NULL;
1586 struct hstate *hs;
1587
1588 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1589 if (!hs)
1590 return -EINVAL;
1591
1592 len = ALIGN(len, huge_page_size(hs));
1593 /*
1594 * VM_NORESERVE is used because the reservations will be
1595 * taken when vm_ops->mmap() is called
1596 * A dummy user value is used because we are not locking
1597 * memory so no accounting is necessary
1598 */
1599 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1600 VM_NORESERVE,
1601 &user, HUGETLB_ANONHUGE_INODE,
1602 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1603 if (IS_ERR(file))
1604 return PTR_ERR(file);
1605 }
1606
1607 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1608
1609 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1610 out_fput:
1611 if (file)
1612 fput(file);
1613 return retval;
1614 }
1615
1616 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1617 unsigned long, prot, unsigned long, flags,
1618 unsigned long, fd, unsigned long, pgoff)
1619 {
1620 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1621 }
1622
1623 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1624 struct mmap_arg_struct {
1625 unsigned long addr;
1626 unsigned long len;
1627 unsigned long prot;
1628 unsigned long flags;
1629 unsigned long fd;
1630 unsigned long offset;
1631 };
1632
1633 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1634 {
1635 struct mmap_arg_struct a;
1636
1637 if (copy_from_user(&a, arg, sizeof(a)))
1638 return -EFAULT;
1639 if (offset_in_page(a.offset))
1640 return -EINVAL;
1641
1642 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1643 a.offset >> PAGE_SHIFT);
1644 }
1645 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1646
1647 /*
1648 * Some shared mappings will want the pages marked read-only
1649 * to track write events. If so, we'll downgrade vm_page_prot
1650 * to the private version (using protection_map[] without the
1651 * VM_SHARED bit).
1652 */
1653 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1654 {
1655 vm_flags_t vm_flags = vma->vm_flags;
1656 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1657
1658 /* If it was private or non-writable, the write bit is already clear */
1659 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1660 return 0;
1661
1662 /* The backer wishes to know when pages are first written to? */
1663 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1664 return 1;
1665
1666 /* The open routine did something to the protections that pgprot_modify
1667 * won't preserve? */
1668 if (pgprot_val(vm_page_prot) !=
1669 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1670 return 0;
1671
1672 /* Do we need to track softdirty? */
1673 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1674 return 1;
1675
1676 /* Specialty mapping? */
1677 if (vm_flags & VM_PFNMAP)
1678 return 0;
1679
1680 /* Can the mapping track the dirty pages? */
1681 return vma->vm_file && vma->vm_file->f_mapping &&
1682 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1683 }
1684
1685 /*
1686 * We account for memory if it's a private writeable mapping,
1687 * not hugepages and VM_NORESERVE wasn't set.
1688 */
1689 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1690 {
1691 /*
1692 * hugetlb has its own accounting separate from the core VM
1693 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1694 */
1695 if (file && is_file_hugepages(file))
1696 return 0;
1697
1698 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1699 }
1700
1701 unsigned long mmap_region(struct file *file, unsigned long addr,
1702 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1703 struct list_head *uf)
1704 {
1705 struct mm_struct *mm = current->mm;
1706 struct vm_area_struct *vma, *prev;
1707 int error;
1708 struct rb_node **rb_link, *rb_parent;
1709 unsigned long charged = 0;
1710
1711 /* Check against address space limit. */
1712 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1713 unsigned long nr_pages;
1714
1715 /*
1716 * MAP_FIXED may remove pages of mappings that intersects with
1717 * requested mapping. Account for the pages it would unmap.
1718 */
1719 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1720
1721 if (!may_expand_vm(mm, vm_flags,
1722 (len >> PAGE_SHIFT) - nr_pages))
1723 return -ENOMEM;
1724 }
1725
1726 /* Clear old maps */
1727 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1728 &rb_parent)) {
1729 if (do_munmap(mm, addr, len, uf))
1730 return -ENOMEM;
1731 }
1732
1733 /*
1734 * Private writable mapping: check memory availability
1735 */
1736 if (accountable_mapping(file, vm_flags)) {
1737 charged = len >> PAGE_SHIFT;
1738 if (security_vm_enough_memory_mm(mm, charged))
1739 return -ENOMEM;
1740 vm_flags |= VM_ACCOUNT;
1741 }
1742
1743 /*
1744 * Can we just expand an old mapping?
1745 */
1746 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1747 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1748 if (vma)
1749 goto out;
1750
1751 /*
1752 * Determine the object being mapped and call the appropriate
1753 * specific mapper. the address has already been validated, but
1754 * not unmapped, but the maps are removed from the list.
1755 */
1756 vma = vm_area_alloc(mm);
1757 if (!vma) {
1758 error = -ENOMEM;
1759 goto unacct_error;
1760 }
1761
1762 vma->vm_start = addr;
1763 vma->vm_end = addr + len;
1764 vma->vm_flags = vm_flags;
1765 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1766 vma->vm_pgoff = pgoff;
1767
1768 if (file) {
1769 if (vm_flags & VM_DENYWRITE) {
1770 error = deny_write_access(file);
1771 if (error)
1772 goto free_vma;
1773 }
1774 if (vm_flags & VM_SHARED) {
1775 error = mapping_map_writable(file->f_mapping);
1776 if (error)
1777 goto allow_write_and_free_vma;
1778 }
1779
1780 /* ->mmap() can change vma->vm_file, but must guarantee that
1781 * vma_link() below can deny write-access if VM_DENYWRITE is set
1782 * and map writably if VM_SHARED is set. This usually means the
1783 * new file must not have been exposed to user-space, yet.
1784 */
1785 vma->vm_file = get_file(file);
1786 error = call_mmap(file, vma);
1787 if (error)
1788 goto unmap_and_free_vma;
1789
1790 /* Can addr have changed??
1791 *
1792 * Answer: Yes, several device drivers can do it in their
1793 * f_op->mmap method. -DaveM
1794 * Bug: If addr is changed, prev, rb_link, rb_parent should
1795 * be updated for vma_link()
1796 */
1797 WARN_ON_ONCE(addr != vma->vm_start);
1798
1799 addr = vma->vm_start;
1800 vm_flags = vma->vm_flags;
1801 } else if (vm_flags & VM_SHARED) {
1802 error = shmem_zero_setup(vma);
1803 if (error)
1804 goto free_vma;
1805 } else {
1806 vma_set_anonymous(vma);
1807 }
1808
1809 vma_link(mm, vma, prev, rb_link, rb_parent);
1810 /* Once vma denies write, undo our temporary denial count */
1811 if (file) {
1812 if (vm_flags & VM_SHARED)
1813 mapping_unmap_writable(file->f_mapping);
1814 if (vm_flags & VM_DENYWRITE)
1815 allow_write_access(file);
1816 }
1817 file = vma->vm_file;
1818 out:
1819 perf_event_mmap(vma);
1820
1821 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1822 if (vm_flags & VM_LOCKED) {
1823 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1824 is_vm_hugetlb_page(vma) ||
1825 vma == get_gate_vma(current->mm))
1826 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1827 else
1828 mm->locked_vm += (len >> PAGE_SHIFT);
1829 }
1830
1831 if (file)
1832 uprobe_mmap(vma);
1833
1834 /*
1835 * New (or expanded) vma always get soft dirty status.
1836 * Otherwise user-space soft-dirty page tracker won't
1837 * be able to distinguish situation when vma area unmapped,
1838 * then new mapped in-place (which must be aimed as
1839 * a completely new data area).
1840 */
1841 vma->vm_flags |= VM_SOFTDIRTY;
1842
1843 vma_set_page_prot(vma);
1844
1845 return addr;
1846
1847 unmap_and_free_vma:
1848 vma->vm_file = NULL;
1849 fput(file);
1850
1851 /* Undo any partial mapping done by a device driver. */
1852 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1853 charged = 0;
1854 if (vm_flags & VM_SHARED)
1855 mapping_unmap_writable(file->f_mapping);
1856 allow_write_and_free_vma:
1857 if (vm_flags & VM_DENYWRITE)
1858 allow_write_access(file);
1859 free_vma:
1860 vm_area_free(vma);
1861 unacct_error:
1862 if (charged)
1863 vm_unacct_memory(charged);
1864 return error;
1865 }
1866
1867 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1868 {
1869 /*
1870 * We implement the search by looking for an rbtree node that
1871 * immediately follows a suitable gap. That is,
1872 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1873 * - gap_end = vma->vm_start >= info->low_limit + length;
1874 * - gap_end - gap_start >= length
1875 */
1876
1877 struct mm_struct *mm = current->mm;
1878 struct vm_area_struct *vma;
1879 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1880
1881 /* Adjust search length to account for worst case alignment overhead */
1882 length = info->length + info->align_mask;
1883 if (length < info->length)
1884 return -ENOMEM;
1885
1886 /* Adjust search limits by the desired length */
1887 if (info->high_limit < length)
1888 return -ENOMEM;
1889 high_limit = info->high_limit - length;
1890
1891 if (info->low_limit > high_limit)
1892 return -ENOMEM;
1893 low_limit = info->low_limit + length;
1894
1895 /* Check if rbtree root looks promising */
1896 if (RB_EMPTY_ROOT(&mm->mm_rb))
1897 goto check_highest;
1898 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1899 if (vma->rb_subtree_gap < length)
1900 goto check_highest;
1901
1902 while (true) {
1903 /* Visit left subtree if it looks promising */
1904 gap_end = vm_start_gap(vma);
1905 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1906 struct vm_area_struct *left =
1907 rb_entry(vma->vm_rb.rb_left,
1908 struct vm_area_struct, vm_rb);
1909 if (left->rb_subtree_gap >= length) {
1910 vma = left;
1911 continue;
1912 }
1913 }
1914
1915 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1916 check_current:
1917 /* Check if current node has a suitable gap */
1918 if (gap_start > high_limit)
1919 return -ENOMEM;
1920 if (gap_end >= low_limit &&
1921 gap_end > gap_start && gap_end - gap_start >= length)
1922 goto found;
1923
1924 /* Visit right subtree if it looks promising */
1925 if (vma->vm_rb.rb_right) {
1926 struct vm_area_struct *right =
1927 rb_entry(vma->vm_rb.rb_right,
1928 struct vm_area_struct, vm_rb);
1929 if (right->rb_subtree_gap >= length) {
1930 vma = right;
1931 continue;
1932 }
1933 }
1934
1935 /* Go back up the rbtree to find next candidate node */
1936 while (true) {
1937 struct rb_node *prev = &vma->vm_rb;
1938 if (!rb_parent(prev))
1939 goto check_highest;
1940 vma = rb_entry(rb_parent(prev),
1941 struct vm_area_struct, vm_rb);
1942 if (prev == vma->vm_rb.rb_left) {
1943 gap_start = vm_end_gap(vma->vm_prev);
1944 gap_end = vm_start_gap(vma);
1945 goto check_current;
1946 }
1947 }
1948 }
1949
1950 check_highest:
1951 /* Check highest gap, which does not precede any rbtree node */
1952 gap_start = mm->highest_vm_end;
1953 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1954 if (gap_start > high_limit)
1955 return -ENOMEM;
1956
1957 found:
1958 /* We found a suitable gap. Clip it with the original low_limit. */
1959 if (gap_start < info->low_limit)
1960 gap_start = info->low_limit;
1961
1962 /* Adjust gap address to the desired alignment */
1963 gap_start += (info->align_offset - gap_start) & info->align_mask;
1964
1965 VM_BUG_ON(gap_start + info->length > info->high_limit);
1966 VM_BUG_ON(gap_start + info->length > gap_end);
1967 return gap_start;
1968 }
1969
1970 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1971 {
1972 struct mm_struct *mm = current->mm;
1973 struct vm_area_struct *vma;
1974 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1975
1976 /* Adjust search length to account for worst case alignment overhead */
1977 length = info->length + info->align_mask;
1978 if (length < info->length)
1979 return -ENOMEM;
1980
1981 /*
1982 * Adjust search limits by the desired length.
1983 * See implementation comment at top of unmapped_area().
1984 */
1985 gap_end = info->high_limit;
1986 if (gap_end < length)
1987 return -ENOMEM;
1988 high_limit = gap_end - length;
1989
1990 if (info->low_limit > high_limit)
1991 return -ENOMEM;
1992 low_limit = info->low_limit + length;
1993
1994 /* Check highest gap, which does not precede any rbtree node */
1995 gap_start = mm->highest_vm_end;
1996 if (gap_start <= high_limit)
1997 goto found_highest;
1998
1999 /* Check if rbtree root looks promising */
2000 if (RB_EMPTY_ROOT(&mm->mm_rb))
2001 return -ENOMEM;
2002 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2003 if (vma->rb_subtree_gap < length)
2004 return -ENOMEM;
2005
2006 while (true) {
2007 /* Visit right subtree if it looks promising */
2008 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2009 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2010 struct vm_area_struct *right =
2011 rb_entry(vma->vm_rb.rb_right,
2012 struct vm_area_struct, vm_rb);
2013 if (right->rb_subtree_gap >= length) {
2014 vma = right;
2015 continue;
2016 }
2017 }
2018
2019 check_current:
2020 /* Check if current node has a suitable gap */
2021 gap_end = vm_start_gap(vma);
2022 if (gap_end < low_limit)
2023 return -ENOMEM;
2024 if (gap_start <= high_limit &&
2025 gap_end > gap_start && gap_end - gap_start >= length)
2026 goto found;
2027
2028 /* Visit left subtree if it looks promising */
2029 if (vma->vm_rb.rb_left) {
2030 struct vm_area_struct *left =
2031 rb_entry(vma->vm_rb.rb_left,
2032 struct vm_area_struct, vm_rb);
2033 if (left->rb_subtree_gap >= length) {
2034 vma = left;
2035 continue;
2036 }
2037 }
2038
2039 /* Go back up the rbtree to find next candidate node */
2040 while (true) {
2041 struct rb_node *prev = &vma->vm_rb;
2042 if (!rb_parent(prev))
2043 return -ENOMEM;
2044 vma = rb_entry(rb_parent(prev),
2045 struct vm_area_struct, vm_rb);
2046 if (prev == vma->vm_rb.rb_right) {
2047 gap_start = vma->vm_prev ?
2048 vm_end_gap(vma->vm_prev) : 0;
2049 goto check_current;
2050 }
2051 }
2052 }
2053
2054 found:
2055 /* We found a suitable gap. Clip it with the original high_limit. */
2056 if (gap_end > info->high_limit)
2057 gap_end = info->high_limit;
2058
2059 found_highest:
2060 /* Compute highest gap address at the desired alignment */
2061 gap_end -= info->length;
2062 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2063
2064 VM_BUG_ON(gap_end < info->low_limit);
2065 VM_BUG_ON(gap_end < gap_start);
2066 return gap_end;
2067 }
2068
2069
2070 #ifndef arch_get_mmap_end
2071 #define arch_get_mmap_end(addr) (TASK_SIZE)
2072 #endif
2073
2074 #ifndef arch_get_mmap_base
2075 #define arch_get_mmap_base(addr, base) (base)
2076 #endif
2077
2078 /* Get an address range which is currently unmapped.
2079 * For shmat() with addr=0.
2080 *
2081 * Ugly calling convention alert:
2082 * Return value with the low bits set means error value,
2083 * ie
2084 * if (ret & ~PAGE_MASK)
2085 * error = ret;
2086 *
2087 * This function "knows" that -ENOMEM has the bits set.
2088 */
2089 #ifndef HAVE_ARCH_UNMAPPED_AREA
2090 unsigned long
2091 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2092 unsigned long len, unsigned long pgoff, unsigned long flags)
2093 {
2094 struct mm_struct *mm = current->mm;
2095 struct vm_area_struct *vma, *prev;
2096 struct vm_unmapped_area_info info;
2097 const unsigned long mmap_end = arch_get_mmap_end(addr);
2098
2099 if (len > mmap_end - mmap_min_addr)
2100 return -ENOMEM;
2101
2102 if (flags & MAP_FIXED)
2103 return addr;
2104
2105 if (addr) {
2106 addr = PAGE_ALIGN(addr);
2107 vma = find_vma_prev(mm, addr, &prev);
2108 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2109 (!vma || addr + len <= vm_start_gap(vma)) &&
2110 (!prev || addr >= vm_end_gap(prev)))
2111 return addr;
2112 }
2113
2114 info.flags = 0;
2115 info.length = len;
2116 info.low_limit = mm->mmap_base;
2117 info.high_limit = mmap_end;
2118 info.align_mask = 0;
2119 return vm_unmapped_area(&info);
2120 }
2121 #endif
2122
2123 /*
2124 * This mmap-allocator allocates new areas top-down from below the
2125 * stack's low limit (the base):
2126 */
2127 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2128 unsigned long
2129 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2130 unsigned long len, unsigned long pgoff,
2131 unsigned long flags)
2132 {
2133 struct vm_area_struct *vma, *prev;
2134 struct mm_struct *mm = current->mm;
2135 struct vm_unmapped_area_info info;
2136 const unsigned long mmap_end = arch_get_mmap_end(addr);
2137
2138 /* requested length too big for entire address space */
2139 if (len > mmap_end - mmap_min_addr)
2140 return -ENOMEM;
2141
2142 if (flags & MAP_FIXED)
2143 return addr;
2144
2145 /* requesting a specific address */
2146 if (addr) {
2147 addr = PAGE_ALIGN(addr);
2148 vma = find_vma_prev(mm, addr, &prev);
2149 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2150 (!vma || addr + len <= vm_start_gap(vma)) &&
2151 (!prev || addr >= vm_end_gap(prev)))
2152 return addr;
2153 }
2154
2155 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2156 info.length = len;
2157 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2158 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2159 info.align_mask = 0;
2160 addr = vm_unmapped_area(&info);
2161
2162 /*
2163 * A failed mmap() very likely causes application failure,
2164 * so fall back to the bottom-up function here. This scenario
2165 * can happen with large stack limits and large mmap()
2166 * allocations.
2167 */
2168 if (offset_in_page(addr)) {
2169 VM_BUG_ON(addr != -ENOMEM);
2170 info.flags = 0;
2171 info.low_limit = TASK_UNMAPPED_BASE;
2172 info.high_limit = mmap_end;
2173 addr = vm_unmapped_area(&info);
2174 }
2175
2176 return addr;
2177 }
2178 #endif
2179
2180 unsigned long
2181 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2182 unsigned long pgoff, unsigned long flags)
2183 {
2184 unsigned long (*get_area)(struct file *, unsigned long,
2185 unsigned long, unsigned long, unsigned long);
2186
2187 unsigned long error = arch_mmap_check(addr, len, flags);
2188 if (error)
2189 return error;
2190
2191 /* Careful about overflows.. */
2192 if (len > TASK_SIZE)
2193 return -ENOMEM;
2194
2195 get_area = current->mm->get_unmapped_area;
2196 if (file) {
2197 if (file->f_op->get_unmapped_area)
2198 get_area = file->f_op->get_unmapped_area;
2199 } else if (flags & MAP_SHARED) {
2200 /*
2201 * mmap_region() will call shmem_zero_setup() to create a file,
2202 * so use shmem's get_unmapped_area in case it can be huge.
2203 * do_mmap_pgoff() will clear pgoff, so match alignment.
2204 */
2205 pgoff = 0;
2206 get_area = shmem_get_unmapped_area;
2207 }
2208
2209 addr = get_area(file, addr, len, pgoff, flags);
2210 if (IS_ERR_VALUE(addr))
2211 return addr;
2212
2213 if (addr > TASK_SIZE - len)
2214 return -ENOMEM;
2215 if (offset_in_page(addr))
2216 return -EINVAL;
2217
2218 error = security_mmap_addr(addr);
2219 return error ? error : addr;
2220 }
2221
2222 EXPORT_SYMBOL(get_unmapped_area);
2223
2224 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2225 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2226 {
2227 struct rb_node *rb_node;
2228 struct vm_area_struct *vma;
2229
2230 /* Check the cache first. */
2231 vma = vmacache_find(mm, addr);
2232 if (likely(vma))
2233 return vma;
2234
2235 rb_node = mm->mm_rb.rb_node;
2236
2237 while (rb_node) {
2238 struct vm_area_struct *tmp;
2239
2240 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2241
2242 if (tmp->vm_end > addr) {
2243 vma = tmp;
2244 if (tmp->vm_start <= addr)
2245 break;
2246 rb_node = rb_node->rb_left;
2247 } else
2248 rb_node = rb_node->rb_right;
2249 }
2250
2251 if (vma)
2252 vmacache_update(addr, vma);
2253 return vma;
2254 }
2255
2256 EXPORT_SYMBOL(find_vma);
2257
2258 /*
2259 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2260 */
2261 struct vm_area_struct *
2262 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2263 struct vm_area_struct **pprev)
2264 {
2265 struct vm_area_struct *vma;
2266
2267 vma = find_vma(mm, addr);
2268 if (vma) {
2269 *pprev = vma->vm_prev;
2270 } else {
2271 struct rb_node *rb_node = mm->mm_rb.rb_node;
2272 *pprev = NULL;
2273 while (rb_node) {
2274 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2275 rb_node = rb_node->rb_right;
2276 }
2277 }
2278 return vma;
2279 }
2280
2281 /*
2282 * Verify that the stack growth is acceptable and
2283 * update accounting. This is shared with both the
2284 * grow-up and grow-down cases.
2285 */
2286 static int acct_stack_growth(struct vm_area_struct *vma,
2287 unsigned long size, unsigned long grow)
2288 {
2289 struct mm_struct *mm = vma->vm_mm;
2290 unsigned long new_start;
2291
2292 /* address space limit tests */
2293 if (!may_expand_vm(mm, vma->vm_flags, grow))
2294 return -ENOMEM;
2295
2296 /* Stack limit test */
2297 if (size > rlimit(RLIMIT_STACK))
2298 return -ENOMEM;
2299
2300 /* mlock limit tests */
2301 if (vma->vm_flags & VM_LOCKED) {
2302 unsigned long locked;
2303 unsigned long limit;
2304 locked = mm->locked_vm + grow;
2305 limit = rlimit(RLIMIT_MEMLOCK);
2306 limit >>= PAGE_SHIFT;
2307 if (locked > limit && !capable(CAP_IPC_LOCK))
2308 return -ENOMEM;
2309 }
2310
2311 /* Check to ensure the stack will not grow into a hugetlb-only region */
2312 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2313 vma->vm_end - size;
2314 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2315 return -EFAULT;
2316
2317 /*
2318 * Overcommit.. This must be the final test, as it will
2319 * update security statistics.
2320 */
2321 if (security_vm_enough_memory_mm(mm, grow))
2322 return -ENOMEM;
2323
2324 return 0;
2325 }
2326
2327 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2328 /*
2329 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2330 * vma is the last one with address > vma->vm_end. Have to extend vma.
2331 */
2332 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2333 {
2334 struct mm_struct *mm = vma->vm_mm;
2335 struct vm_area_struct *next;
2336 unsigned long gap_addr;
2337 int error = 0;
2338
2339 if (!(vma->vm_flags & VM_GROWSUP))
2340 return -EFAULT;
2341
2342 /* Guard against exceeding limits of the address space. */
2343 address &= PAGE_MASK;
2344 if (address >= (TASK_SIZE & PAGE_MASK))
2345 return -ENOMEM;
2346 address += PAGE_SIZE;
2347
2348 /* Enforce stack_guard_gap */
2349 gap_addr = address + stack_guard_gap;
2350
2351 /* Guard against overflow */
2352 if (gap_addr < address || gap_addr > TASK_SIZE)
2353 gap_addr = TASK_SIZE;
2354
2355 next = vma->vm_next;
2356 if (next && next->vm_start < gap_addr &&
2357 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2358 if (!(next->vm_flags & VM_GROWSUP))
2359 return -ENOMEM;
2360 /* Check that both stack segments have the same anon_vma? */
2361 }
2362
2363 /* We must make sure the anon_vma is allocated. */
2364 if (unlikely(anon_vma_prepare(vma)))
2365 return -ENOMEM;
2366
2367 /*
2368 * vma->vm_start/vm_end cannot change under us because the caller
2369 * is required to hold the mmap_sem in read mode. We need the
2370 * anon_vma lock to serialize against concurrent expand_stacks.
2371 */
2372 anon_vma_lock_write(vma->anon_vma);
2373
2374 /* Somebody else might have raced and expanded it already */
2375 if (address > vma->vm_end) {
2376 unsigned long size, grow;
2377
2378 size = address - vma->vm_start;
2379 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2380
2381 error = -ENOMEM;
2382 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2383 error = acct_stack_growth(vma, size, grow);
2384 if (!error) {
2385 /*
2386 * vma_gap_update() doesn't support concurrent
2387 * updates, but we only hold a shared mmap_sem
2388 * lock here, so we need to protect against
2389 * concurrent vma expansions.
2390 * anon_vma_lock_write() doesn't help here, as
2391 * we don't guarantee that all growable vmas
2392 * in a mm share the same root anon vma.
2393 * So, we reuse mm->page_table_lock to guard
2394 * against concurrent vma expansions.
2395 */
2396 spin_lock(&mm->page_table_lock);
2397 if (vma->vm_flags & VM_LOCKED)
2398 mm->locked_vm += grow;
2399 vm_stat_account(mm, vma->vm_flags, grow);
2400 anon_vma_interval_tree_pre_update_vma(vma);
2401 vma->vm_end = address;
2402 anon_vma_interval_tree_post_update_vma(vma);
2403 if (vma->vm_next)
2404 vma_gap_update(vma->vm_next);
2405 else
2406 mm->highest_vm_end = vm_end_gap(vma);
2407 spin_unlock(&mm->page_table_lock);
2408
2409 perf_event_mmap(vma);
2410 }
2411 }
2412 }
2413 anon_vma_unlock_write(vma->anon_vma);
2414 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2415 validate_mm(mm);
2416 return error;
2417 }
2418 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2419
2420 /*
2421 * vma is the first one with address < vma->vm_start. Have to extend vma.
2422 */
2423 int expand_downwards(struct vm_area_struct *vma,
2424 unsigned long address)
2425 {
2426 struct mm_struct *mm = vma->vm_mm;
2427 struct vm_area_struct *prev;
2428 int error = 0;
2429
2430 address &= PAGE_MASK;
2431 if (address < mmap_min_addr)
2432 return -EPERM;
2433
2434 /* Enforce stack_guard_gap */
2435 prev = vma->vm_prev;
2436 /* Check that both stack segments have the same anon_vma? */
2437 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2438 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2439 if (address - prev->vm_end < stack_guard_gap)
2440 return -ENOMEM;
2441 }
2442
2443 /* We must make sure the anon_vma is allocated. */
2444 if (unlikely(anon_vma_prepare(vma)))
2445 return -ENOMEM;
2446
2447 /*
2448 * vma->vm_start/vm_end cannot change under us because the caller
2449 * is required to hold the mmap_sem in read mode. We need the
2450 * anon_vma lock to serialize against concurrent expand_stacks.
2451 */
2452 anon_vma_lock_write(vma->anon_vma);
2453
2454 /* Somebody else might have raced and expanded it already */
2455 if (address < vma->vm_start) {
2456 unsigned long size, grow;
2457
2458 size = vma->vm_end - address;
2459 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2460
2461 error = -ENOMEM;
2462 if (grow <= vma->vm_pgoff) {
2463 error = acct_stack_growth(vma, size, grow);
2464 if (!error) {
2465 /*
2466 * vma_gap_update() doesn't support concurrent
2467 * updates, but we only hold a shared mmap_sem
2468 * lock here, so we need to protect against
2469 * concurrent vma expansions.
2470 * anon_vma_lock_write() doesn't help here, as
2471 * we don't guarantee that all growable vmas
2472 * in a mm share the same root anon vma.
2473 * So, we reuse mm->page_table_lock to guard
2474 * against concurrent vma expansions.
2475 */
2476 spin_lock(&mm->page_table_lock);
2477 if (vma->vm_flags & VM_LOCKED)
2478 mm->locked_vm += grow;
2479 vm_stat_account(mm, vma->vm_flags, grow);
2480 anon_vma_interval_tree_pre_update_vma(vma);
2481 vma->vm_start = address;
2482 vma->vm_pgoff -= grow;
2483 anon_vma_interval_tree_post_update_vma(vma);
2484 vma_gap_update(vma);
2485 spin_unlock(&mm->page_table_lock);
2486
2487 perf_event_mmap(vma);
2488 }
2489 }
2490 }
2491 anon_vma_unlock_write(vma->anon_vma);
2492 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2493 validate_mm(mm);
2494 return error;
2495 }
2496
2497 /* enforced gap between the expanding stack and other mappings. */
2498 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2499
2500 static int __init cmdline_parse_stack_guard_gap(char *p)
2501 {
2502 unsigned long val;
2503 char *endptr;
2504
2505 val = simple_strtoul(p, &endptr, 10);
2506 if (!*endptr)
2507 stack_guard_gap = val << PAGE_SHIFT;
2508
2509 return 0;
2510 }
2511 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2512
2513 #ifdef CONFIG_STACK_GROWSUP
2514 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2515 {
2516 return expand_upwards(vma, address);
2517 }
2518
2519 struct vm_area_struct *
2520 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2521 {
2522 struct vm_area_struct *vma, *prev;
2523
2524 addr &= PAGE_MASK;
2525 vma = find_vma_prev(mm, addr, &prev);
2526 if (vma && (vma->vm_start <= addr))
2527 return vma;
2528 if (!prev || expand_stack(prev, addr))
2529 return NULL;
2530 if (prev->vm_flags & VM_LOCKED)
2531 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2532 return prev;
2533 }
2534 #else
2535 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2536 {
2537 return expand_downwards(vma, address);
2538 }
2539
2540 struct vm_area_struct *
2541 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2542 {
2543 struct vm_area_struct *vma;
2544 unsigned long start;
2545
2546 addr &= PAGE_MASK;
2547 vma = find_vma(mm, addr);
2548 if (!vma)
2549 return NULL;
2550 if (vma->vm_start <= addr)
2551 return vma;
2552 if (!(vma->vm_flags & VM_GROWSDOWN))
2553 return NULL;
2554 start = vma->vm_start;
2555 if (expand_stack(vma, addr))
2556 return NULL;
2557 if (vma->vm_flags & VM_LOCKED)
2558 populate_vma_page_range(vma, addr, start, NULL);
2559 return vma;
2560 }
2561 #endif
2562
2563 EXPORT_SYMBOL_GPL(find_extend_vma);
2564
2565 /*
2566 * Ok - we have the memory areas we should free on the vma list,
2567 * so release them, and do the vma updates.
2568 *
2569 * Called with the mm semaphore held.
2570 */
2571 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2572 {
2573 unsigned long nr_accounted = 0;
2574
2575 /* Update high watermark before we lower total_vm */
2576 update_hiwater_vm(mm);
2577 do {
2578 long nrpages = vma_pages(vma);
2579
2580 if (vma->vm_flags & VM_ACCOUNT)
2581 nr_accounted += nrpages;
2582 vm_stat_account(mm, vma->vm_flags, -nrpages);
2583 vma = remove_vma(vma);
2584 } while (vma);
2585 vm_unacct_memory(nr_accounted);
2586 validate_mm(mm);
2587 }
2588
2589 /*
2590 * Get rid of page table information in the indicated region.
2591 *
2592 * Called with the mm semaphore held.
2593 */
2594 static void unmap_region(struct mm_struct *mm,
2595 struct vm_area_struct *vma, struct vm_area_struct *prev,
2596 unsigned long start, unsigned long end)
2597 {
2598 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2599 struct mmu_gather tlb;
2600
2601 lru_add_drain();
2602 tlb_gather_mmu(&tlb, mm, start, end);
2603 update_hiwater_rss(mm);
2604 unmap_vmas(&tlb, vma, start, end);
2605 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2606 next ? next->vm_start : USER_PGTABLES_CEILING);
2607 tlb_finish_mmu(&tlb, start, end);
2608 }
2609
2610 /*
2611 * Create a list of vma's touched by the unmap, removing them from the mm's
2612 * vma list as we go..
2613 */
2614 static void
2615 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2616 struct vm_area_struct *prev, unsigned long end)
2617 {
2618 struct vm_area_struct **insertion_point;
2619 struct vm_area_struct *tail_vma = NULL;
2620
2621 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2622 vma->vm_prev = NULL;
2623 do {
2624 vma_rb_erase(vma, &mm->mm_rb);
2625 mm->map_count--;
2626 tail_vma = vma;
2627 vma = vma->vm_next;
2628 } while (vma && vma->vm_start < end);
2629 *insertion_point = vma;
2630 if (vma) {
2631 vma->vm_prev = prev;
2632 vma_gap_update(vma);
2633 } else
2634 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2635 tail_vma->vm_next = NULL;
2636
2637 /* Kill the cache */
2638 vmacache_invalidate(mm);
2639 }
2640
2641 /*
2642 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2643 * has already been checked or doesn't make sense to fail.
2644 */
2645 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2646 unsigned long addr, int new_below)
2647 {
2648 struct vm_area_struct *new;
2649 int err;
2650
2651 if (vma->vm_ops && vma->vm_ops->split) {
2652 err = vma->vm_ops->split(vma, addr);
2653 if (err)
2654 return err;
2655 }
2656
2657 new = vm_area_dup(vma);
2658 if (!new)
2659 return -ENOMEM;
2660
2661 if (new_below)
2662 new->vm_end = addr;
2663 else {
2664 new->vm_start = addr;
2665 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2666 }
2667
2668 err = vma_dup_policy(vma, new);
2669 if (err)
2670 goto out_free_vma;
2671
2672 err = anon_vma_clone(new, vma);
2673 if (err)
2674 goto out_free_mpol;
2675
2676 if (new->vm_file)
2677 get_file(new->vm_file);
2678
2679 if (new->vm_ops && new->vm_ops->open)
2680 new->vm_ops->open(new);
2681
2682 if (new_below)
2683 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2684 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2685 else
2686 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2687
2688 /* Success. */
2689 if (!err)
2690 return 0;
2691
2692 /* Clean everything up if vma_adjust failed. */
2693 if (new->vm_ops && new->vm_ops->close)
2694 new->vm_ops->close(new);
2695 if (new->vm_file)
2696 fput(new->vm_file);
2697 unlink_anon_vmas(new);
2698 out_free_mpol:
2699 mpol_put(vma_policy(new));
2700 out_free_vma:
2701 vm_area_free(new);
2702 return err;
2703 }
2704
2705 /*
2706 * Split a vma into two pieces at address 'addr', a new vma is allocated
2707 * either for the first part or the tail.
2708 */
2709 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2710 unsigned long addr, int new_below)
2711 {
2712 if (mm->map_count >= sysctl_max_map_count)
2713 return -ENOMEM;
2714
2715 return __split_vma(mm, vma, addr, new_below);
2716 }
2717
2718 /* Munmap is split into 2 main parts -- this part which finds
2719 * what needs doing, and the areas themselves, which do the
2720 * work. This now handles partial unmappings.
2721 * Jeremy Fitzhardinge <jeremy@goop.org>
2722 */
2723 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2724 struct list_head *uf, bool downgrade)
2725 {
2726 unsigned long end;
2727 struct vm_area_struct *vma, *prev, *last;
2728
2729 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2730 return -EINVAL;
2731
2732 len = PAGE_ALIGN(len);
2733 if (len == 0)
2734 return -EINVAL;
2735
2736 /* Find the first overlapping VMA */
2737 vma = find_vma(mm, start);
2738 if (!vma)
2739 return 0;
2740 prev = vma->vm_prev;
2741 /* we have start < vma->vm_end */
2742
2743 /* if it doesn't overlap, we have nothing.. */
2744 end = start + len;
2745 if (vma->vm_start >= end)
2746 return 0;
2747
2748 /*
2749 * If we need to split any vma, do it now to save pain later.
2750 *
2751 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2752 * unmapped vm_area_struct will remain in use: so lower split_vma
2753 * places tmp vma above, and higher split_vma places tmp vma below.
2754 */
2755 if (start > vma->vm_start) {
2756 int error;
2757
2758 /*
2759 * Make sure that map_count on return from munmap() will
2760 * not exceed its limit; but let map_count go just above
2761 * its limit temporarily, to help free resources as expected.
2762 */
2763 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2764 return -ENOMEM;
2765
2766 error = __split_vma(mm, vma, start, 0);
2767 if (error)
2768 return error;
2769 prev = vma;
2770 }
2771
2772 /* Does it split the last one? */
2773 last = find_vma(mm, end);
2774 if (last && end > last->vm_start) {
2775 int error = __split_vma(mm, last, end, 1);
2776 if (error)
2777 return error;
2778 }
2779 vma = prev ? prev->vm_next : mm->mmap;
2780
2781 if (unlikely(uf)) {
2782 /*
2783 * If userfaultfd_unmap_prep returns an error the vmas
2784 * will remain splitted, but userland will get a
2785 * highly unexpected error anyway. This is no
2786 * different than the case where the first of the two
2787 * __split_vma fails, but we don't undo the first
2788 * split, despite we could. This is unlikely enough
2789 * failure that it's not worth optimizing it for.
2790 */
2791 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2792 if (error)
2793 return error;
2794 }
2795
2796 /*
2797 * unlock any mlock()ed ranges before detaching vmas
2798 */
2799 if (mm->locked_vm) {
2800 struct vm_area_struct *tmp = vma;
2801 while (tmp && tmp->vm_start < end) {
2802 if (tmp->vm_flags & VM_LOCKED) {
2803 mm->locked_vm -= vma_pages(tmp);
2804 munlock_vma_pages_all(tmp);
2805 }
2806
2807 tmp = tmp->vm_next;
2808 }
2809 }
2810
2811 /* Detach vmas from rbtree */
2812 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2813
2814 /*
2815 * mpx unmap needs to be called with mmap_sem held for write.
2816 * It is safe to call it before unmap_region().
2817 */
2818 arch_unmap(mm, vma, start, end);
2819
2820 if (downgrade)
2821 downgrade_write(&mm->mmap_sem);
2822
2823 unmap_region(mm, vma, prev, start, end);
2824
2825 /* Fix up all other VM information */
2826 remove_vma_list(mm, vma);
2827
2828 return downgrade ? 1 : 0;
2829 }
2830
2831 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2832 struct list_head *uf)
2833 {
2834 return __do_munmap(mm, start, len, uf, false);
2835 }
2836
2837 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2838 {
2839 int ret;
2840 struct mm_struct *mm = current->mm;
2841 LIST_HEAD(uf);
2842
2843 if (down_write_killable(&mm->mmap_sem))
2844 return -EINTR;
2845
2846 ret = __do_munmap(mm, start, len, &uf, downgrade);
2847 /*
2848 * Returning 1 indicates mmap_sem is downgraded.
2849 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2850 * it to 0 before return.
2851 */
2852 if (ret == 1) {
2853 up_read(&mm->mmap_sem);
2854 ret = 0;
2855 } else
2856 up_write(&mm->mmap_sem);
2857
2858 userfaultfd_unmap_complete(mm, &uf);
2859 return ret;
2860 }
2861
2862 int vm_munmap(unsigned long start, size_t len)
2863 {
2864 return __vm_munmap(start, len, false);
2865 }
2866 EXPORT_SYMBOL(vm_munmap);
2867
2868 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2869 {
2870 profile_munmap(addr);
2871 return __vm_munmap(addr, len, true);
2872 }
2873
2874
2875 /*
2876 * Emulation of deprecated remap_file_pages() syscall.
2877 */
2878 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2879 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2880 {
2881
2882 struct mm_struct *mm = current->mm;
2883 struct vm_area_struct *vma;
2884 unsigned long populate = 0;
2885 unsigned long ret = -EINVAL;
2886 struct file *file;
2887
2888 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2889 current->comm, current->pid);
2890
2891 if (prot)
2892 return ret;
2893 start = start & PAGE_MASK;
2894 size = size & PAGE_MASK;
2895
2896 if (start + size <= start)
2897 return ret;
2898
2899 /* Does pgoff wrap? */
2900 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2901 return ret;
2902
2903 if (down_write_killable(&mm->mmap_sem))
2904 return -EINTR;
2905
2906 vma = find_vma(mm, start);
2907
2908 if (!vma || !(vma->vm_flags & VM_SHARED))
2909 goto out;
2910
2911 if (start < vma->vm_start)
2912 goto out;
2913
2914 if (start + size > vma->vm_end) {
2915 struct vm_area_struct *next;
2916
2917 for (next = vma->vm_next; next; next = next->vm_next) {
2918 /* hole between vmas ? */
2919 if (next->vm_start != next->vm_prev->vm_end)
2920 goto out;
2921
2922 if (next->vm_file != vma->vm_file)
2923 goto out;
2924
2925 if (next->vm_flags != vma->vm_flags)
2926 goto out;
2927
2928 if (start + size <= next->vm_end)
2929 break;
2930 }
2931
2932 if (!next)
2933 goto out;
2934 }
2935
2936 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2937 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2938 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2939
2940 flags &= MAP_NONBLOCK;
2941 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2942 if (vma->vm_flags & VM_LOCKED) {
2943 struct vm_area_struct *tmp;
2944 flags |= MAP_LOCKED;
2945
2946 /* drop PG_Mlocked flag for over-mapped range */
2947 for (tmp = vma; tmp->vm_start >= start + size;
2948 tmp = tmp->vm_next) {
2949 /*
2950 * Split pmd and munlock page on the border
2951 * of the range.
2952 */
2953 vma_adjust_trans_huge(tmp, start, start + size, 0);
2954
2955 munlock_vma_pages_range(tmp,
2956 max(tmp->vm_start, start),
2957 min(tmp->vm_end, start + size));
2958 }
2959 }
2960
2961 file = get_file(vma->vm_file);
2962 ret = do_mmap_pgoff(vma->vm_file, start, size,
2963 prot, flags, pgoff, &populate, NULL);
2964 fput(file);
2965 out:
2966 up_write(&mm->mmap_sem);
2967 if (populate)
2968 mm_populate(ret, populate);
2969 if (!IS_ERR_VALUE(ret))
2970 ret = 0;
2971 return ret;
2972 }
2973
2974 /*
2975 * this is really a simplified "do_mmap". it only handles
2976 * anonymous maps. eventually we may be able to do some
2977 * brk-specific accounting here.
2978 */
2979 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2980 {
2981 struct mm_struct *mm = current->mm;
2982 struct vm_area_struct *vma, *prev;
2983 struct rb_node **rb_link, *rb_parent;
2984 pgoff_t pgoff = addr >> PAGE_SHIFT;
2985 int error;
2986
2987 /* Until we need other flags, refuse anything except VM_EXEC. */
2988 if ((flags & (~VM_EXEC)) != 0)
2989 return -EINVAL;
2990 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2991
2992 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2993 if (offset_in_page(error))
2994 return error;
2995
2996 error = mlock_future_check(mm, mm->def_flags, len);
2997 if (error)
2998 return error;
2999
3000 /*
3001 * Clear old maps. this also does some error checking for us
3002 */
3003 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3004 &rb_parent)) {
3005 if (do_munmap(mm, addr, len, uf))
3006 return -ENOMEM;
3007 }
3008
3009 /* Check against address space limits *after* clearing old maps... */
3010 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3011 return -ENOMEM;
3012
3013 if (mm->map_count > sysctl_max_map_count)
3014 return -ENOMEM;
3015
3016 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3017 return -ENOMEM;
3018
3019 /* Can we just expand an old private anonymous mapping? */
3020 vma = vma_merge(mm, prev, addr, addr + len, flags,
3021 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3022 if (vma)
3023 goto out;
3024
3025 /*
3026 * create a vma struct for an anonymous mapping
3027 */
3028 vma = vm_area_alloc(mm);
3029 if (!vma) {
3030 vm_unacct_memory(len >> PAGE_SHIFT);
3031 return -ENOMEM;
3032 }
3033
3034 vma_set_anonymous(vma);
3035 vma->vm_start = addr;
3036 vma->vm_end = addr + len;
3037 vma->vm_pgoff = pgoff;
3038 vma->vm_flags = flags;
3039 vma->vm_page_prot = vm_get_page_prot(flags);
3040 vma_link(mm, vma, prev, rb_link, rb_parent);
3041 out:
3042 perf_event_mmap(vma);
3043 mm->total_vm += len >> PAGE_SHIFT;
3044 mm->data_vm += len >> PAGE_SHIFT;
3045 if (flags & VM_LOCKED)
3046 mm->locked_vm += (len >> PAGE_SHIFT);
3047 vma->vm_flags |= VM_SOFTDIRTY;
3048 return 0;
3049 }
3050
3051 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3052 {
3053 struct mm_struct *mm = current->mm;
3054 unsigned long len;
3055 int ret;
3056 bool populate;
3057 LIST_HEAD(uf);
3058
3059 len = PAGE_ALIGN(request);
3060 if (len < request)
3061 return -ENOMEM;
3062 if (!len)
3063 return 0;
3064
3065 if (down_write_killable(&mm->mmap_sem))
3066 return -EINTR;
3067
3068 ret = do_brk_flags(addr, len, flags, &uf);
3069 populate = ((mm->def_flags & VM_LOCKED) != 0);
3070 up_write(&mm->mmap_sem);
3071 userfaultfd_unmap_complete(mm, &uf);
3072 if (populate && !ret)
3073 mm_populate(addr, len);
3074 return ret;
3075 }
3076 EXPORT_SYMBOL(vm_brk_flags);
3077
3078 int vm_brk(unsigned long addr, unsigned long len)
3079 {
3080 return vm_brk_flags(addr, len, 0);
3081 }
3082 EXPORT_SYMBOL(vm_brk);
3083
3084 /* Release all mmaps. */
3085 void exit_mmap(struct mm_struct *mm)
3086 {
3087 struct mmu_gather tlb;
3088 struct vm_area_struct *vma;
3089 unsigned long nr_accounted = 0;
3090
3091 /* mm's last user has gone, and its about to be pulled down */
3092 mmu_notifier_release(mm);
3093
3094 if (unlikely(mm_is_oom_victim(mm))) {
3095 /*
3096 * Manually reap the mm to free as much memory as possible.
3097 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3098 * this mm from further consideration. Taking mm->mmap_sem for
3099 * write after setting MMF_OOM_SKIP will guarantee that the oom
3100 * reaper will not run on this mm again after mmap_sem is
3101 * dropped.
3102 *
3103 * Nothing can be holding mm->mmap_sem here and the above call
3104 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3105 * __oom_reap_task_mm() will not block.
3106 *
3107 * This needs to be done before calling munlock_vma_pages_all(),
3108 * which clears VM_LOCKED, otherwise the oom reaper cannot
3109 * reliably test it.
3110 */
3111 (void)__oom_reap_task_mm(mm);
3112
3113 set_bit(MMF_OOM_SKIP, &mm->flags);
3114 down_write(&mm->mmap_sem);
3115 up_write(&mm->mmap_sem);
3116 }
3117
3118 if (mm->locked_vm) {
3119 vma = mm->mmap;
3120 while (vma) {
3121 if (vma->vm_flags & VM_LOCKED)
3122 munlock_vma_pages_all(vma);
3123 vma = vma->vm_next;
3124 }
3125 }
3126
3127 arch_exit_mmap(mm);
3128
3129 vma = mm->mmap;
3130 if (!vma) /* Can happen if dup_mmap() received an OOM */
3131 return;
3132
3133 lru_add_drain();
3134 flush_cache_mm(mm);
3135 tlb_gather_mmu(&tlb, mm, 0, -1);
3136 /* update_hiwater_rss(mm) here? but nobody should be looking */
3137 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3138 unmap_vmas(&tlb, vma, 0, -1);
3139 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3140 tlb_finish_mmu(&tlb, 0, -1);
3141
3142 /*
3143 * Walk the list again, actually closing and freeing it,
3144 * with preemption enabled, without holding any MM locks.
3145 */
3146 while (vma) {
3147 if (vma->vm_flags & VM_ACCOUNT)
3148 nr_accounted += vma_pages(vma);
3149 vma = remove_vma(vma);
3150 }
3151 vm_unacct_memory(nr_accounted);
3152 }
3153
3154 /* Insert vm structure into process list sorted by address
3155 * and into the inode's i_mmap tree. If vm_file is non-NULL
3156 * then i_mmap_rwsem is taken here.
3157 */
3158 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3159 {
3160 struct vm_area_struct *prev;
3161 struct rb_node **rb_link, *rb_parent;
3162
3163 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3164 &prev, &rb_link, &rb_parent))
3165 return -ENOMEM;
3166 if ((vma->vm_flags & VM_ACCOUNT) &&
3167 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3168 return -ENOMEM;
3169
3170 /*
3171 * The vm_pgoff of a purely anonymous vma should be irrelevant
3172 * until its first write fault, when page's anon_vma and index
3173 * are set. But now set the vm_pgoff it will almost certainly
3174 * end up with (unless mremap moves it elsewhere before that
3175 * first wfault), so /proc/pid/maps tells a consistent story.
3176 *
3177 * By setting it to reflect the virtual start address of the
3178 * vma, merges and splits can happen in a seamless way, just
3179 * using the existing file pgoff checks and manipulations.
3180 * Similarly in do_mmap_pgoff and in do_brk.
3181 */
3182 if (vma_is_anonymous(vma)) {
3183 BUG_ON(vma->anon_vma);
3184 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3185 }
3186
3187 vma_link(mm, vma, prev, rb_link, rb_parent);
3188 return 0;
3189 }
3190
3191 /*
3192 * Copy the vma structure to a new location in the same mm,
3193 * prior to moving page table entries, to effect an mremap move.
3194 */
3195 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3196 unsigned long addr, unsigned long len, pgoff_t pgoff,
3197 bool *need_rmap_locks)
3198 {
3199 struct vm_area_struct *vma = *vmap;
3200 unsigned long vma_start = vma->vm_start;
3201 struct mm_struct *mm = vma->vm_mm;
3202 struct vm_area_struct *new_vma, *prev;
3203 struct rb_node **rb_link, *rb_parent;
3204 bool faulted_in_anon_vma = true;
3205
3206 /*
3207 * If anonymous vma has not yet been faulted, update new pgoff
3208 * to match new location, to increase its chance of merging.
3209 */
3210 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3211 pgoff = addr >> PAGE_SHIFT;
3212 faulted_in_anon_vma = false;
3213 }
3214
3215 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3216 return NULL; /* should never get here */
3217 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3218 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3219 vma->vm_userfaultfd_ctx);
3220 if (new_vma) {
3221 /*
3222 * Source vma may have been merged into new_vma
3223 */
3224 if (unlikely(vma_start >= new_vma->vm_start &&
3225 vma_start < new_vma->vm_end)) {
3226 /*
3227 * The only way we can get a vma_merge with
3228 * self during an mremap is if the vma hasn't
3229 * been faulted in yet and we were allowed to
3230 * reset the dst vma->vm_pgoff to the
3231 * destination address of the mremap to allow
3232 * the merge to happen. mremap must change the
3233 * vm_pgoff linearity between src and dst vmas
3234 * (in turn preventing a vma_merge) to be
3235 * safe. It is only safe to keep the vm_pgoff
3236 * linear if there are no pages mapped yet.
3237 */
3238 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3239 *vmap = vma = new_vma;
3240 }
3241 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3242 } else {
3243 new_vma = vm_area_dup(vma);
3244 if (!new_vma)
3245 goto out;
3246 new_vma->vm_start = addr;
3247 new_vma->vm_end = addr + len;
3248 new_vma->vm_pgoff = pgoff;
3249 if (vma_dup_policy(vma, new_vma))
3250 goto out_free_vma;
3251 if (anon_vma_clone(new_vma, vma))
3252 goto out_free_mempol;
3253 if (new_vma->vm_file)
3254 get_file(new_vma->vm_file);
3255 if (new_vma->vm_ops && new_vma->vm_ops->open)
3256 new_vma->vm_ops->open(new_vma);
3257 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3258 *need_rmap_locks = false;
3259 }
3260 return new_vma;
3261
3262 out_free_mempol:
3263 mpol_put(vma_policy(new_vma));
3264 out_free_vma:
3265 vm_area_free(new_vma);
3266 out:
3267 return NULL;
3268 }
3269
3270 /*
3271 * Return true if the calling process may expand its vm space by the passed
3272 * number of pages
3273 */
3274 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3275 {
3276 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3277 return false;
3278
3279 if (is_data_mapping(flags) &&
3280 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3281 /* Workaround for Valgrind */
3282 if (rlimit(RLIMIT_DATA) == 0 &&
3283 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3284 return true;
3285
3286 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3287 current->comm, current->pid,
3288 (mm->data_vm + npages) << PAGE_SHIFT,
3289 rlimit(RLIMIT_DATA),
3290 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3291
3292 if (!ignore_rlimit_data)
3293 return false;
3294 }
3295
3296 return true;
3297 }
3298
3299 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3300 {
3301 mm->total_vm += npages;
3302
3303 if (is_exec_mapping(flags))
3304 mm->exec_vm += npages;
3305 else if (is_stack_mapping(flags))
3306 mm->stack_vm += npages;
3307 else if (is_data_mapping(flags))
3308 mm->data_vm += npages;
3309 }
3310
3311 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3312
3313 /*
3314 * Having a close hook prevents vma merging regardless of flags.
3315 */
3316 static void special_mapping_close(struct vm_area_struct *vma)
3317 {
3318 }
3319
3320 static const char *special_mapping_name(struct vm_area_struct *vma)
3321 {
3322 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3323 }
3324
3325 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3326 {
3327 struct vm_special_mapping *sm = new_vma->vm_private_data;
3328
3329 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3330 return -EFAULT;
3331
3332 if (sm->mremap)
3333 return sm->mremap(sm, new_vma);
3334
3335 return 0;
3336 }
3337
3338 static const struct vm_operations_struct special_mapping_vmops = {
3339 .close = special_mapping_close,
3340 .fault = special_mapping_fault,
3341 .mremap = special_mapping_mremap,
3342 .name = special_mapping_name,
3343 };
3344
3345 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3346 .close = special_mapping_close,
3347 .fault = special_mapping_fault,
3348 };
3349
3350 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3351 {
3352 struct vm_area_struct *vma = vmf->vma;
3353 pgoff_t pgoff;
3354 struct page **pages;
3355
3356 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3357 pages = vma->vm_private_data;
3358 } else {
3359 struct vm_special_mapping *sm = vma->vm_private_data;
3360
3361 if (sm->fault)
3362 return sm->fault(sm, vmf->vma, vmf);
3363
3364 pages = sm->pages;
3365 }
3366
3367 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3368 pgoff--;
3369
3370 if (*pages) {
3371 struct page *page = *pages;
3372 get_page(page);
3373 vmf->page = page;
3374 return 0;
3375 }
3376
3377 return VM_FAULT_SIGBUS;
3378 }
3379
3380 static struct vm_area_struct *__install_special_mapping(
3381 struct mm_struct *mm,
3382 unsigned long addr, unsigned long len,
3383 unsigned long vm_flags, void *priv,
3384 const struct vm_operations_struct *ops)
3385 {
3386 int ret;
3387 struct vm_area_struct *vma;
3388
3389 vma = vm_area_alloc(mm);
3390 if (unlikely(vma == NULL))
3391 return ERR_PTR(-ENOMEM);
3392
3393 vma->vm_start = addr;
3394 vma->vm_end = addr + len;
3395
3396 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3397 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3398
3399 vma->vm_ops = ops;
3400 vma->vm_private_data = priv;
3401
3402 ret = insert_vm_struct(mm, vma);
3403 if (ret)
3404 goto out;
3405
3406 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3407
3408 perf_event_mmap(vma);
3409
3410 return vma;
3411
3412 out:
3413 vm_area_free(vma);
3414 return ERR_PTR(ret);
3415 }
3416
3417 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3418 const struct vm_special_mapping *sm)
3419 {
3420 return vma->vm_private_data == sm &&
3421 (vma->vm_ops == &special_mapping_vmops ||
3422 vma->vm_ops == &legacy_special_mapping_vmops);
3423 }
3424
3425 /*
3426 * Called with mm->mmap_sem held for writing.
3427 * Insert a new vma covering the given region, with the given flags.
3428 * Its pages are supplied by the given array of struct page *.
3429 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3430 * The region past the last page supplied will always produce SIGBUS.
3431 * The array pointer and the pages it points to are assumed to stay alive
3432 * for as long as this mapping might exist.
3433 */
3434 struct vm_area_struct *_install_special_mapping(
3435 struct mm_struct *mm,
3436 unsigned long addr, unsigned long len,
3437 unsigned long vm_flags, const struct vm_special_mapping *spec)
3438 {
3439 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3440 &special_mapping_vmops);
3441 }
3442
3443 int install_special_mapping(struct mm_struct *mm,
3444 unsigned long addr, unsigned long len,
3445 unsigned long vm_flags, struct page **pages)
3446 {
3447 struct vm_area_struct *vma = __install_special_mapping(
3448 mm, addr, len, vm_flags, (void *)pages,
3449 &legacy_special_mapping_vmops);
3450
3451 return PTR_ERR_OR_ZERO(vma);
3452 }
3453
3454 static DEFINE_MUTEX(mm_all_locks_mutex);
3455
3456 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3457 {
3458 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3459 /*
3460 * The LSB of head.next can't change from under us
3461 * because we hold the mm_all_locks_mutex.
3462 */
3463 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3464 /*
3465 * We can safely modify head.next after taking the
3466 * anon_vma->root->rwsem. If some other vma in this mm shares
3467 * the same anon_vma we won't take it again.
3468 *
3469 * No need of atomic instructions here, head.next
3470 * can't change from under us thanks to the
3471 * anon_vma->root->rwsem.
3472 */
3473 if (__test_and_set_bit(0, (unsigned long *)
3474 &anon_vma->root->rb_root.rb_root.rb_node))
3475 BUG();
3476 }
3477 }
3478
3479 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3480 {
3481 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3482 /*
3483 * AS_MM_ALL_LOCKS can't change from under us because
3484 * we hold the mm_all_locks_mutex.
3485 *
3486 * Operations on ->flags have to be atomic because
3487 * even if AS_MM_ALL_LOCKS is stable thanks to the
3488 * mm_all_locks_mutex, there may be other cpus
3489 * changing other bitflags in parallel to us.
3490 */
3491 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3492 BUG();
3493 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3494 }
3495 }
3496
3497 /*
3498 * This operation locks against the VM for all pte/vma/mm related
3499 * operations that could ever happen on a certain mm. This includes
3500 * vmtruncate, try_to_unmap, and all page faults.
3501 *
3502 * The caller must take the mmap_sem in write mode before calling
3503 * mm_take_all_locks(). The caller isn't allowed to release the
3504 * mmap_sem until mm_drop_all_locks() returns.
3505 *
3506 * mmap_sem in write mode is required in order to block all operations
3507 * that could modify pagetables and free pages without need of
3508 * altering the vma layout. It's also needed in write mode to avoid new
3509 * anon_vmas to be associated with existing vmas.
3510 *
3511 * A single task can't take more than one mm_take_all_locks() in a row
3512 * or it would deadlock.
3513 *
3514 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3515 * mapping->flags avoid to take the same lock twice, if more than one
3516 * vma in this mm is backed by the same anon_vma or address_space.
3517 *
3518 * We take locks in following order, accordingly to comment at beginning
3519 * of mm/rmap.c:
3520 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3521 * hugetlb mapping);
3522 * - all i_mmap_rwsem locks;
3523 * - all anon_vma->rwseml
3524 *
3525 * We can take all locks within these types randomly because the VM code
3526 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3527 * mm_all_locks_mutex.
3528 *
3529 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3530 * that may have to take thousand of locks.
3531 *
3532 * mm_take_all_locks() can fail if it's interrupted by signals.
3533 */
3534 int mm_take_all_locks(struct mm_struct *mm)
3535 {
3536 struct vm_area_struct *vma;
3537 struct anon_vma_chain *avc;
3538
3539 BUG_ON(down_read_trylock(&mm->mmap_sem));
3540
3541 mutex_lock(&mm_all_locks_mutex);
3542
3543 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3544 if (signal_pending(current))
3545 goto out_unlock;
3546 if (vma->vm_file && vma->vm_file->f_mapping &&
3547 is_vm_hugetlb_page(vma))
3548 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3549 }
3550
3551 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3552 if (signal_pending(current))
3553 goto out_unlock;
3554 if (vma->vm_file && vma->vm_file->f_mapping &&
3555 !is_vm_hugetlb_page(vma))
3556 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3557 }
3558
3559 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3560 if (signal_pending(current))
3561 goto out_unlock;
3562 if (vma->anon_vma)
3563 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3564 vm_lock_anon_vma(mm, avc->anon_vma);
3565 }
3566
3567 return 0;
3568
3569 out_unlock:
3570 mm_drop_all_locks(mm);
3571 return -EINTR;
3572 }
3573
3574 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3575 {
3576 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3577 /*
3578 * The LSB of head.next can't change to 0 from under
3579 * us because we hold the mm_all_locks_mutex.
3580 *
3581 * We must however clear the bitflag before unlocking
3582 * the vma so the users using the anon_vma->rb_root will
3583 * never see our bitflag.
3584 *
3585 * No need of atomic instructions here, head.next
3586 * can't change from under us until we release the
3587 * anon_vma->root->rwsem.
3588 */
3589 if (!__test_and_clear_bit(0, (unsigned long *)
3590 &anon_vma->root->rb_root.rb_root.rb_node))
3591 BUG();
3592 anon_vma_unlock_write(anon_vma);
3593 }
3594 }
3595
3596 static void vm_unlock_mapping(struct address_space *mapping)
3597 {
3598 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3599 /*
3600 * AS_MM_ALL_LOCKS can't change to 0 from under us
3601 * because we hold the mm_all_locks_mutex.
3602 */
3603 i_mmap_unlock_write(mapping);
3604 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3605 &mapping->flags))
3606 BUG();
3607 }
3608 }
3609
3610 /*
3611 * The mmap_sem cannot be released by the caller until
3612 * mm_drop_all_locks() returns.
3613 */
3614 void mm_drop_all_locks(struct mm_struct *mm)
3615 {
3616 struct vm_area_struct *vma;
3617 struct anon_vma_chain *avc;
3618
3619 BUG_ON(down_read_trylock(&mm->mmap_sem));
3620 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3621
3622 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3623 if (vma->anon_vma)
3624 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3625 vm_unlock_anon_vma(avc->anon_vma);
3626 if (vma->vm_file && vma->vm_file->f_mapping)
3627 vm_unlock_mapping(vma->vm_file->f_mapping);
3628 }
3629
3630 mutex_unlock(&mm_all_locks_mutex);
3631 }
3632
3633 /*
3634 * initialise the percpu counter for VM
3635 */
3636 void __init mmap_init(void)
3637 {
3638 int ret;
3639
3640 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3641 VM_BUG_ON(ret);
3642 }
3643
3644 /*
3645 * Initialise sysctl_user_reserve_kbytes.
3646 *
3647 * This is intended to prevent a user from starting a single memory hogging
3648 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3649 * mode.
3650 *
3651 * The default value is min(3% of free memory, 128MB)
3652 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3653 */
3654 static int init_user_reserve(void)
3655 {
3656 unsigned long free_kbytes;
3657
3658 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3659
3660 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3661 return 0;
3662 }
3663 subsys_initcall(init_user_reserve);
3664
3665 /*
3666 * Initialise sysctl_admin_reserve_kbytes.
3667 *
3668 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3669 * to log in and kill a memory hogging process.
3670 *
3671 * Systems with more than 256MB will reserve 8MB, enough to recover
3672 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3673 * only reserve 3% of free pages by default.
3674 */
3675 static int init_admin_reserve(void)
3676 {
3677 unsigned long free_kbytes;
3678
3679 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3680
3681 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3682 return 0;
3683 }
3684 subsys_initcall(init_admin_reserve);
3685
3686 /*
3687 * Reinititalise user and admin reserves if memory is added or removed.
3688 *
3689 * The default user reserve max is 128MB, and the default max for the
3690 * admin reserve is 8MB. These are usually, but not always, enough to
3691 * enable recovery from a memory hogging process using login/sshd, a shell,
3692 * and tools like top. It may make sense to increase or even disable the
3693 * reserve depending on the existence of swap or variations in the recovery
3694 * tools. So, the admin may have changed them.
3695 *
3696 * If memory is added and the reserves have been eliminated or increased above
3697 * the default max, then we'll trust the admin.
3698 *
3699 * If memory is removed and there isn't enough free memory, then we
3700 * need to reset the reserves.
3701 *
3702 * Otherwise keep the reserve set by the admin.
3703 */
3704 static int reserve_mem_notifier(struct notifier_block *nb,
3705 unsigned long action, void *data)
3706 {
3707 unsigned long tmp, free_kbytes;
3708
3709 switch (action) {
3710 case MEM_ONLINE:
3711 /* Default max is 128MB. Leave alone if modified by operator. */
3712 tmp = sysctl_user_reserve_kbytes;
3713 if (0 < tmp && tmp < (1UL << 17))
3714 init_user_reserve();
3715
3716 /* Default max is 8MB. Leave alone if modified by operator. */
3717 tmp = sysctl_admin_reserve_kbytes;
3718 if (0 < tmp && tmp < (1UL << 13))
3719 init_admin_reserve();
3720
3721 break;
3722 case MEM_OFFLINE:
3723 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3724
3725 if (sysctl_user_reserve_kbytes > free_kbytes) {
3726 init_user_reserve();
3727 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3728 sysctl_user_reserve_kbytes);
3729 }
3730
3731 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3732 init_admin_reserve();
3733 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3734 sysctl_admin_reserve_kbytes);
3735 }
3736 break;
3737 default:
3738 break;
3739 }
3740 return NOTIFY_OK;
3741 }
3742
3743 static struct notifier_block reserve_mem_nb = {
3744 .notifier_call = reserve_mem_notifier,
3745 };
3746
3747 static int __meminit init_reserve_notifier(void)
3748 {
3749 if (register_hotmemory_notifier(&reserve_mem_nb))
3750 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3751
3752 return 0;
3753 }
3754 subsys_initcall(init_reserve_notifier);