]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/mmu_gather.c
overlayfs.rst: use consistent feature names
[thirdparty/kernel/linux.git] / mm / mmu_gather.c
1 #include <linux/gfp.h>
2 #include <linux/highmem.h>
3 #include <linux/kernel.h>
4 #include <linux/mmdebug.h>
5 #include <linux/mm_types.h>
6 #include <linux/mm_inline.h>
7 #include <linux/pagemap.h>
8 #include <linux/rcupdate.h>
9 #include <linux/smp.h>
10 #include <linux/swap.h>
11 #include <linux/rmap.h>
12
13 #include <asm/pgalloc.h>
14 #include <asm/tlb.h>
15
16 #ifndef CONFIG_MMU_GATHER_NO_GATHER
17
18 static bool tlb_next_batch(struct mmu_gather *tlb)
19 {
20 struct mmu_gather_batch *batch;
21
22 /* Limit batching if we have delayed rmaps pending */
23 if (tlb->delayed_rmap && tlb->active != &tlb->local)
24 return false;
25
26 batch = tlb->active;
27 if (batch->next) {
28 tlb->active = batch->next;
29 return true;
30 }
31
32 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
33 return false;
34
35 batch = (void *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
36 if (!batch)
37 return false;
38
39 tlb->batch_count++;
40 batch->next = NULL;
41 batch->nr = 0;
42 batch->max = MAX_GATHER_BATCH;
43
44 tlb->active->next = batch;
45 tlb->active = batch;
46
47 return true;
48 }
49
50 #ifdef CONFIG_SMP
51 static void tlb_flush_rmap_batch(struct mmu_gather_batch *batch, struct vm_area_struct *vma)
52 {
53 for (int i = 0; i < batch->nr; i++) {
54 struct encoded_page *enc = batch->encoded_pages[i];
55
56 if (encoded_page_flags(enc)) {
57 struct page *page = encoded_page_ptr(enc);
58 page_remove_rmap(page, vma, false);
59 }
60 }
61 }
62
63 /**
64 * tlb_flush_rmaps - do pending rmap removals after we have flushed the TLB
65 * @tlb: the current mmu_gather
66 * @vma: The memory area from which the pages are being removed.
67 *
68 * Note that because of how tlb_next_batch() above works, we will
69 * never start multiple new batches with pending delayed rmaps, so
70 * we only need to walk through the current active batch and the
71 * original local one.
72 */
73 void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma)
74 {
75 if (!tlb->delayed_rmap)
76 return;
77
78 tlb_flush_rmap_batch(&tlb->local, vma);
79 if (tlb->active != &tlb->local)
80 tlb_flush_rmap_batch(tlb->active, vma);
81 tlb->delayed_rmap = 0;
82 }
83 #endif
84
85 static void tlb_batch_pages_flush(struct mmu_gather *tlb)
86 {
87 struct mmu_gather_batch *batch;
88
89 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
90 struct encoded_page **pages = batch->encoded_pages;
91
92 do {
93 /*
94 * limit free batch count when PAGE_SIZE > 4K
95 */
96 unsigned int nr = min(512U, batch->nr);
97
98 free_pages_and_swap_cache(pages, nr);
99 pages += nr;
100 batch->nr -= nr;
101
102 cond_resched();
103 } while (batch->nr);
104 }
105 tlb->active = &tlb->local;
106 }
107
108 static void tlb_batch_list_free(struct mmu_gather *tlb)
109 {
110 struct mmu_gather_batch *batch, *next;
111
112 for (batch = tlb->local.next; batch; batch = next) {
113 next = batch->next;
114 free_pages((unsigned long)batch, 0);
115 }
116 tlb->local.next = NULL;
117 }
118
119 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct encoded_page *page, int page_size)
120 {
121 struct mmu_gather_batch *batch;
122
123 VM_BUG_ON(!tlb->end);
124
125 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
126 VM_WARN_ON(tlb->page_size != page_size);
127 #endif
128
129 batch = tlb->active;
130 /*
131 * Add the page and check if we are full. If so
132 * force a flush.
133 */
134 batch->encoded_pages[batch->nr++] = page;
135 if (batch->nr == batch->max) {
136 if (!tlb_next_batch(tlb))
137 return true;
138 batch = tlb->active;
139 }
140 VM_BUG_ON_PAGE(batch->nr > batch->max, encoded_page_ptr(page));
141
142 return false;
143 }
144
145 #endif /* MMU_GATHER_NO_GATHER */
146
147 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
148
149 static void __tlb_remove_table_free(struct mmu_table_batch *batch)
150 {
151 int i;
152
153 for (i = 0; i < batch->nr; i++)
154 __tlb_remove_table(batch->tables[i]);
155
156 free_page((unsigned long)batch);
157 }
158
159 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
160
161 /*
162 * Semi RCU freeing of the page directories.
163 *
164 * This is needed by some architectures to implement software pagetable walkers.
165 *
166 * gup_fast() and other software pagetable walkers do a lockless page-table
167 * walk and therefore needs some synchronization with the freeing of the page
168 * directories. The chosen means to accomplish that is by disabling IRQs over
169 * the walk.
170 *
171 * Architectures that use IPIs to flush TLBs will then automagically DTRT,
172 * since we unlink the page, flush TLBs, free the page. Since the disabling of
173 * IRQs delays the completion of the TLB flush we can never observe an already
174 * freed page.
175 *
176 * Architectures that do not have this (PPC) need to delay the freeing by some
177 * other means, this is that means.
178 *
179 * What we do is batch the freed directory pages (tables) and RCU free them.
180 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
181 * holds off grace periods.
182 *
183 * However, in order to batch these pages we need to allocate storage, this
184 * allocation is deep inside the MM code and can thus easily fail on memory
185 * pressure. To guarantee progress we fall back to single table freeing, see
186 * the implementation of tlb_remove_table_one().
187 *
188 */
189
190 static void tlb_remove_table_smp_sync(void *arg)
191 {
192 /* Simply deliver the interrupt */
193 }
194
195 void tlb_remove_table_sync_one(void)
196 {
197 /*
198 * This isn't an RCU grace period and hence the page-tables cannot be
199 * assumed to be actually RCU-freed.
200 *
201 * It is however sufficient for software page-table walkers that rely on
202 * IRQ disabling.
203 */
204 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
205 }
206
207 static void tlb_remove_table_rcu(struct rcu_head *head)
208 {
209 __tlb_remove_table_free(container_of(head, struct mmu_table_batch, rcu));
210 }
211
212 static void tlb_remove_table_free(struct mmu_table_batch *batch)
213 {
214 call_rcu(&batch->rcu, tlb_remove_table_rcu);
215 }
216
217 #else /* !CONFIG_MMU_GATHER_RCU_TABLE_FREE */
218
219 static void tlb_remove_table_free(struct mmu_table_batch *batch)
220 {
221 __tlb_remove_table_free(batch);
222 }
223
224 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
225
226 /*
227 * If we want tlb_remove_table() to imply TLB invalidates.
228 */
229 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
230 {
231 if (tlb_needs_table_invalidate()) {
232 /*
233 * Invalidate page-table caches used by hardware walkers. Then
234 * we still need to RCU-sched wait while freeing the pages
235 * because software walkers can still be in-flight.
236 */
237 tlb_flush_mmu_tlbonly(tlb);
238 }
239 }
240
241 static void tlb_remove_table_one(void *table)
242 {
243 tlb_remove_table_sync_one();
244 __tlb_remove_table(table);
245 }
246
247 static void tlb_table_flush(struct mmu_gather *tlb)
248 {
249 struct mmu_table_batch **batch = &tlb->batch;
250
251 if (*batch) {
252 tlb_table_invalidate(tlb);
253 tlb_remove_table_free(*batch);
254 *batch = NULL;
255 }
256 }
257
258 void tlb_remove_table(struct mmu_gather *tlb, void *table)
259 {
260 struct mmu_table_batch **batch = &tlb->batch;
261
262 if (*batch == NULL) {
263 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
264 if (*batch == NULL) {
265 tlb_table_invalidate(tlb);
266 tlb_remove_table_one(table);
267 return;
268 }
269 (*batch)->nr = 0;
270 }
271
272 (*batch)->tables[(*batch)->nr++] = table;
273 if ((*batch)->nr == MAX_TABLE_BATCH)
274 tlb_table_flush(tlb);
275 }
276
277 static inline void tlb_table_init(struct mmu_gather *tlb)
278 {
279 tlb->batch = NULL;
280 }
281
282 #else /* !CONFIG_MMU_GATHER_TABLE_FREE */
283
284 static inline void tlb_table_flush(struct mmu_gather *tlb) { }
285 static inline void tlb_table_init(struct mmu_gather *tlb) { }
286
287 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */
288
289 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
290 {
291 tlb_table_flush(tlb);
292 #ifndef CONFIG_MMU_GATHER_NO_GATHER
293 tlb_batch_pages_flush(tlb);
294 #endif
295 }
296
297 void tlb_flush_mmu(struct mmu_gather *tlb)
298 {
299 tlb_flush_mmu_tlbonly(tlb);
300 tlb_flush_mmu_free(tlb);
301 }
302
303 static void __tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
304 bool fullmm)
305 {
306 tlb->mm = mm;
307 tlb->fullmm = fullmm;
308
309 #ifndef CONFIG_MMU_GATHER_NO_GATHER
310 tlb->need_flush_all = 0;
311 tlb->local.next = NULL;
312 tlb->local.nr = 0;
313 tlb->local.max = ARRAY_SIZE(tlb->__pages);
314 tlb->active = &tlb->local;
315 tlb->batch_count = 0;
316 #endif
317 tlb->delayed_rmap = 0;
318
319 tlb_table_init(tlb);
320 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
321 tlb->page_size = 0;
322 #endif
323
324 __tlb_reset_range(tlb);
325 inc_tlb_flush_pending(tlb->mm);
326 }
327
328 /**
329 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
330 * @tlb: the mmu_gather structure to initialize
331 * @mm: the mm_struct of the target address space
332 *
333 * Called to initialize an (on-stack) mmu_gather structure for page-table
334 * tear-down from @mm.
335 */
336 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm)
337 {
338 __tlb_gather_mmu(tlb, mm, false);
339 }
340
341 /**
342 * tlb_gather_mmu_fullmm - initialize an mmu_gather structure for page-table tear-down
343 * @tlb: the mmu_gather structure to initialize
344 * @mm: the mm_struct of the target address space
345 *
346 * In this case, @mm is without users and we're going to destroy the
347 * full address space (exit/execve).
348 *
349 * Called to initialize an (on-stack) mmu_gather structure for page-table
350 * tear-down from @mm.
351 */
352 void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm)
353 {
354 __tlb_gather_mmu(tlb, mm, true);
355 }
356
357 /**
358 * tlb_finish_mmu - finish an mmu_gather structure
359 * @tlb: the mmu_gather structure to finish
360 *
361 * Called at the end of the shootdown operation to free up any resources that
362 * were required.
363 */
364 void tlb_finish_mmu(struct mmu_gather *tlb)
365 {
366 /*
367 * If there are parallel threads are doing PTE changes on same range
368 * under non-exclusive lock (e.g., mmap_lock read-side) but defer TLB
369 * flush by batching, one thread may end up seeing inconsistent PTEs
370 * and result in having stale TLB entries. So flush TLB forcefully
371 * if we detect parallel PTE batching threads.
372 *
373 * However, some syscalls, e.g. munmap(), may free page tables, this
374 * needs force flush everything in the given range. Otherwise this
375 * may result in having stale TLB entries for some architectures,
376 * e.g. aarch64, that could specify flush what level TLB.
377 */
378 if (mm_tlb_flush_nested(tlb->mm)) {
379 /*
380 * The aarch64 yields better performance with fullmm by
381 * avoiding multiple CPUs spamming TLBI messages at the
382 * same time.
383 *
384 * On x86 non-fullmm doesn't yield significant difference
385 * against fullmm.
386 */
387 tlb->fullmm = 1;
388 __tlb_reset_range(tlb);
389 tlb->freed_tables = 1;
390 }
391
392 tlb_flush_mmu(tlb);
393
394 #ifndef CONFIG_MMU_GATHER_NO_GATHER
395 tlb_batch_list_free(tlb);
396 #endif
397 dec_tlb_flush_pending(tlb->mm);
398 }