]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/mprotect.c
x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests
[thirdparty/kernel/stable.git] / mm / mprotect.c
1 /*
2 * mm/mprotect.c
3 *
4 * (C) Copyright 1994 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
9 */
10
11 #include <linux/mm.h>
12 #include <linux/hugetlb.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/fs.h>
16 #include <linux/highmem.h>
17 #include <linux/security.h>
18 #include <linux/mempolicy.h>
19 #include <linux/personality.h>
20 #include <linux/syscalls.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/mmu_notifier.h>
24 #include <linux/migrate.h>
25 #include <linux/perf_event.h>
26 #include <linux/ksm.h>
27 #include <asm/uaccess.h>
28 #include <asm/pgtable.h>
29 #include <asm/cacheflush.h>
30 #include <asm/tlbflush.h>
31
32 #ifndef pgprot_modify
33 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
34 {
35 return newprot;
36 }
37 #endif
38
39 /*
40 * For a prot_numa update we only hold mmap_sem for read so there is a
41 * potential race with faulting where a pmd was temporarily none. This
42 * function checks for a transhuge pmd under the appropriate lock. It
43 * returns a pte if it was successfully locked or NULL if it raced with
44 * a transhuge insertion.
45 */
46 static pte_t *lock_pte_protection(struct vm_area_struct *vma, pmd_t *pmd,
47 unsigned long addr, int prot_numa, spinlock_t **ptl)
48 {
49 pte_t *pte;
50 spinlock_t *pmdl;
51
52 /* !prot_numa is protected by mmap_sem held for write */
53 if (!prot_numa)
54 return pte_offset_map_lock(vma->vm_mm, pmd, addr, ptl);
55
56 pmdl = pmd_lock(vma->vm_mm, pmd);
57 if (unlikely(pmd_trans_huge(*pmd) || pmd_none(*pmd))) {
58 spin_unlock(pmdl);
59 return NULL;
60 }
61
62 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, ptl);
63 spin_unlock(pmdl);
64 return pte;
65 }
66
67 static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
68 unsigned long addr, unsigned long end, pgprot_t newprot,
69 int dirty_accountable, int prot_numa)
70 {
71 struct mm_struct *mm = vma->vm_mm;
72 pte_t *pte, oldpte;
73 spinlock_t *ptl;
74 unsigned long pages = 0;
75
76 pte = lock_pte_protection(vma, pmd, addr, prot_numa, &ptl);
77 if (!pte)
78 return 0;
79
80 arch_enter_lazy_mmu_mode();
81 do {
82 oldpte = *pte;
83 if (pte_present(oldpte)) {
84 pte_t ptent;
85 bool updated = false;
86
87 if (!prot_numa) {
88 ptent = ptep_modify_prot_start(mm, addr, pte);
89 if (pte_numa(ptent))
90 ptent = pte_mknonnuma(ptent);
91 ptent = pte_modify(ptent, newprot);
92 /*
93 * Avoid taking write faults for pages we
94 * know to be dirty.
95 */
96 if (dirty_accountable && pte_dirty(ptent))
97 ptent = pte_mkwrite(ptent);
98 ptep_modify_prot_commit(mm, addr, pte, ptent);
99 updated = true;
100 } else {
101 struct page *page;
102
103 page = vm_normal_page(vma, addr, oldpte);
104 if (page && !PageKsm(page)) {
105 if (!pte_numa(oldpte)) {
106 ptep_set_numa(mm, addr, pte);
107 updated = true;
108 }
109 }
110 }
111 if (updated)
112 pages++;
113 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
114 swp_entry_t entry = pte_to_swp_entry(oldpte);
115
116 if (is_write_migration_entry(entry)) {
117 pte_t newpte;
118 /*
119 * A protection check is difficult so
120 * just be safe and disable write
121 */
122 make_migration_entry_read(&entry);
123 newpte = swp_entry_to_pte(entry);
124 if (pte_swp_soft_dirty(oldpte))
125 newpte = pte_swp_mksoft_dirty(newpte);
126 set_pte_at(mm, addr, pte, newpte);
127
128 pages++;
129 }
130 }
131 } while (pte++, addr += PAGE_SIZE, addr != end);
132 arch_leave_lazy_mmu_mode();
133 pte_unmap_unlock(pte - 1, ptl);
134
135 return pages;
136 }
137
138 static inline unsigned long change_pmd_range(struct vm_area_struct *vma,
139 pud_t *pud, unsigned long addr, unsigned long end,
140 pgprot_t newprot, int dirty_accountable, int prot_numa)
141 {
142 pmd_t *pmd;
143 struct mm_struct *mm = vma->vm_mm;
144 unsigned long next;
145 unsigned long pages = 0;
146 unsigned long nr_huge_updates = 0;
147 unsigned long mni_start = 0;
148
149 pmd = pmd_offset(pud, addr);
150 do {
151 unsigned long this_pages;
152
153 next = pmd_addr_end(addr, end);
154 if (!pmd_trans_huge(*pmd) && pmd_none_or_clear_bad(pmd))
155 goto next;
156
157 /* invoke the mmu notifier if the pmd is populated */
158 if (!mni_start) {
159 mni_start = addr;
160 mmu_notifier_invalidate_range_start(mm, mni_start, end);
161 }
162
163 if (pmd_trans_huge(*pmd)) {
164 if (next - addr != HPAGE_PMD_SIZE)
165 split_huge_page_pmd(vma, addr, pmd);
166 else {
167 int nr_ptes = change_huge_pmd(vma, pmd, addr,
168 newprot, prot_numa);
169
170 if (nr_ptes) {
171 if (nr_ptes == HPAGE_PMD_NR) {
172 pages += HPAGE_PMD_NR;
173 nr_huge_updates++;
174 }
175
176 /* huge pmd was handled */
177 goto next;
178 }
179 }
180 /* fall through, the trans huge pmd just split */
181 }
182 this_pages = change_pte_range(vma, pmd, addr, next, newprot,
183 dirty_accountable, prot_numa);
184 pages += this_pages;
185 next:
186 cond_resched();
187 } while (pmd++, addr = next, addr != end);
188
189 if (mni_start)
190 mmu_notifier_invalidate_range_end(mm, mni_start, end);
191
192 if (nr_huge_updates)
193 count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
194 return pages;
195 }
196
197 static inline unsigned long change_pud_range(struct vm_area_struct *vma,
198 pgd_t *pgd, unsigned long addr, unsigned long end,
199 pgprot_t newprot, int dirty_accountable, int prot_numa)
200 {
201 pud_t *pud;
202 unsigned long next;
203 unsigned long pages = 0;
204
205 pud = pud_offset(pgd, addr);
206 do {
207 next = pud_addr_end(addr, end);
208 if (pud_none_or_clear_bad(pud))
209 continue;
210 pages += change_pmd_range(vma, pud, addr, next, newprot,
211 dirty_accountable, prot_numa);
212 } while (pud++, addr = next, addr != end);
213
214 return pages;
215 }
216
217 static unsigned long change_protection_range(struct vm_area_struct *vma,
218 unsigned long addr, unsigned long end, pgprot_t newprot,
219 int dirty_accountable, int prot_numa)
220 {
221 struct mm_struct *mm = vma->vm_mm;
222 pgd_t *pgd;
223 unsigned long next;
224 unsigned long start = addr;
225 unsigned long pages = 0;
226
227 BUG_ON(addr >= end);
228 pgd = pgd_offset(mm, addr);
229 flush_cache_range(vma, addr, end);
230 inc_tlb_flush_pending(mm);
231 do {
232 next = pgd_addr_end(addr, end);
233 if (pgd_none_or_clear_bad(pgd))
234 continue;
235 pages += change_pud_range(vma, pgd, addr, next, newprot,
236 dirty_accountable, prot_numa);
237 } while (pgd++, addr = next, addr != end);
238
239 /* Only flush the TLB if we actually modified any entries: */
240 if (pages)
241 flush_tlb_range(vma, start, end);
242 dec_tlb_flush_pending(mm);
243
244 return pages;
245 }
246
247 unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
248 unsigned long end, pgprot_t newprot,
249 int dirty_accountable, int prot_numa)
250 {
251 unsigned long pages;
252
253 if (is_vm_hugetlb_page(vma))
254 pages = hugetlb_change_protection(vma, start, end, newprot);
255 else
256 pages = change_protection_range(vma, start, end, newprot, dirty_accountable, prot_numa);
257
258 return pages;
259 }
260
261 static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
262 unsigned long next, struct mm_walk *walk)
263 {
264 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
265 0 : -EACCES;
266 }
267
268 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
269 unsigned long addr, unsigned long next,
270 struct mm_walk *walk)
271 {
272 return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
273 0 : -EACCES;
274 }
275
276 static int prot_none_test(unsigned long addr, unsigned long next,
277 struct mm_walk *walk)
278 {
279 return 0;
280 }
281
282 static int prot_none_walk(struct vm_area_struct *vma, unsigned long start,
283 unsigned long end, unsigned long newflags)
284 {
285 pgprot_t new_pgprot = vm_get_page_prot(newflags);
286 struct mm_walk prot_none_walk = {
287 .pte_entry = prot_none_pte_entry,
288 .hugetlb_entry = prot_none_hugetlb_entry,
289 .test_walk = prot_none_test,
290 .mm = current->mm,
291 .private = &new_pgprot,
292 };
293
294 return walk_page_range(start, end, &prot_none_walk);
295 }
296
297 int
298 mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev,
299 unsigned long start, unsigned long end, unsigned long newflags)
300 {
301 struct mm_struct *mm = vma->vm_mm;
302 unsigned long oldflags = vma->vm_flags;
303 long nrpages = (end - start) >> PAGE_SHIFT;
304 unsigned long charged = 0;
305 pgoff_t pgoff;
306 int error;
307 int dirty_accountable = 0;
308
309 if (newflags == oldflags) {
310 *pprev = vma;
311 return 0;
312 }
313
314 /*
315 * Do PROT_NONE PFN permission checks here when we can still
316 * bail out without undoing a lot of state. This is a rather
317 * uncommon case, so doesn't need to be very optimized.
318 */
319 if (arch_has_pfn_modify_check() &&
320 (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
321 (newflags & (VM_READ|VM_WRITE|VM_EXEC)) == 0) {
322 error = prot_none_walk(vma, start, end, newflags);
323 if (error)
324 return error;
325 }
326
327 /*
328 * If we make a private mapping writable we increase our commit;
329 * but (without finer accounting) cannot reduce our commit if we
330 * make it unwritable again. hugetlb mapping were accounted for
331 * even if read-only so there is no need to account for them here
332 */
333 if (newflags & VM_WRITE) {
334 if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
335 VM_SHARED|VM_NORESERVE))) {
336 charged = nrpages;
337 if (security_vm_enough_memory_mm(mm, charged))
338 return -ENOMEM;
339 newflags |= VM_ACCOUNT;
340 }
341 }
342
343 /*
344 * First try to merge with previous and/or next vma.
345 */
346 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
347 *pprev = vma_merge(mm, *pprev, start, end, newflags,
348 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
349 if (*pprev) {
350 vma = *pprev;
351 goto success;
352 }
353
354 *pprev = vma;
355
356 if (start != vma->vm_start) {
357 error = split_vma(mm, vma, start, 1);
358 if (error)
359 goto fail;
360 }
361
362 if (end != vma->vm_end) {
363 error = split_vma(mm, vma, end, 0);
364 if (error)
365 goto fail;
366 }
367
368 success:
369 /*
370 * vm_flags and vm_page_prot are protected by the mmap_sem
371 * held in write mode.
372 */
373 vma->vm_flags = newflags;
374 vma->vm_page_prot = pgprot_modify(vma->vm_page_prot,
375 vm_get_page_prot(newflags));
376
377 if (vma_wants_writenotify(vma)) {
378 vma->vm_page_prot = vm_get_page_prot(newflags & ~VM_SHARED);
379 dirty_accountable = 1;
380 }
381
382 change_protection(vma, start, end, vma->vm_page_prot,
383 dirty_accountable, 0);
384
385 vm_stat_account(mm, oldflags, vma->vm_file, -nrpages);
386 vm_stat_account(mm, newflags, vma->vm_file, nrpages);
387 perf_event_mmap(vma);
388 return 0;
389
390 fail:
391 vm_unacct_memory(charged);
392 return error;
393 }
394
395 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
396 unsigned long, prot)
397 {
398 unsigned long vm_flags, nstart, end, tmp, reqprot;
399 struct vm_area_struct *vma, *prev;
400 int error = -EINVAL;
401 const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
402 prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
403 if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
404 return -EINVAL;
405
406 if (start & ~PAGE_MASK)
407 return -EINVAL;
408 if (!len)
409 return 0;
410 len = PAGE_ALIGN(len);
411 end = start + len;
412 if (end <= start)
413 return -ENOMEM;
414 if (!arch_validate_prot(prot))
415 return -EINVAL;
416
417 reqprot = prot;
418 /*
419 * Does the application expect PROT_READ to imply PROT_EXEC:
420 */
421 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
422 prot |= PROT_EXEC;
423
424 vm_flags = calc_vm_prot_bits(prot);
425
426 down_write(&current->mm->mmap_sem);
427
428 vma = find_vma(current->mm, start);
429 error = -ENOMEM;
430 if (!vma)
431 goto out;
432 prev = vma->vm_prev;
433 if (unlikely(grows & PROT_GROWSDOWN)) {
434 if (vma->vm_start >= end)
435 goto out;
436 start = vma->vm_start;
437 error = -EINVAL;
438 if (!(vma->vm_flags & VM_GROWSDOWN))
439 goto out;
440 } else {
441 if (vma->vm_start > start)
442 goto out;
443 if (unlikely(grows & PROT_GROWSUP)) {
444 end = vma->vm_end;
445 error = -EINVAL;
446 if (!(vma->vm_flags & VM_GROWSUP))
447 goto out;
448 }
449 }
450 if (start > vma->vm_start)
451 prev = vma;
452
453 for (nstart = start ; ; ) {
454 unsigned long newflags;
455
456 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
457
458 newflags = vm_flags;
459 newflags |= (vma->vm_flags & ~(VM_READ | VM_WRITE | VM_EXEC));
460
461 /* newflags >> 4 shift VM_MAY% in place of VM_% */
462 if ((newflags & ~(newflags >> 4)) & (VM_READ | VM_WRITE | VM_EXEC)) {
463 error = -EACCES;
464 goto out;
465 }
466
467 error = security_file_mprotect(vma, reqprot, prot);
468 if (error)
469 goto out;
470
471 tmp = vma->vm_end;
472 if (tmp > end)
473 tmp = end;
474 error = mprotect_fixup(vma, &prev, nstart, tmp, newflags);
475 if (error)
476 goto out;
477 nstart = tmp;
478
479 if (nstart < prev->vm_end)
480 nstart = prev->vm_end;
481 if (nstart >= end)
482 goto out;
483
484 vma = prev->vm_next;
485 if (!vma || vma->vm_start != nstart) {
486 error = -ENOMEM;
487 goto out;
488 }
489 }
490 out:
491 up_write(&current->mm->mmap_sem);
492 return error;
493 }