]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/mremap.c
arm64: tegra: Remove duplicate nodes on Jetson Orin NX
[thirdparty/linux.git] / mm / mremap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * mm/mremap.c
4 *
5 * (C) Copyright 1996 Linus Torvalds
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
9 */
10
11 #include <linux/mm.h>
12 #include <linux/mm_inline.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/ksm.h>
16 #include <linux/mman.h>
17 #include <linux/swap.h>
18 #include <linux/capability.h>
19 #include <linux/fs.h>
20 #include <linux/swapops.h>
21 #include <linux/highmem.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/uaccess.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28
29 #include <asm/cacheflush.h>
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
32
33 #include "internal.h"
34
35 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
36 {
37 pgd_t *pgd;
38 p4d_t *p4d;
39 pud_t *pud;
40
41 pgd = pgd_offset(mm, addr);
42 if (pgd_none_or_clear_bad(pgd))
43 return NULL;
44
45 p4d = p4d_offset(pgd, addr);
46 if (p4d_none_or_clear_bad(p4d))
47 return NULL;
48
49 pud = pud_offset(p4d, addr);
50 if (pud_none_or_clear_bad(pud))
51 return NULL;
52
53 return pud;
54 }
55
56 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
57 {
58 pud_t *pud;
59 pmd_t *pmd;
60
61 pud = get_old_pud(mm, addr);
62 if (!pud)
63 return NULL;
64
65 pmd = pmd_offset(pud, addr);
66 if (pmd_none(*pmd))
67 return NULL;
68
69 return pmd;
70 }
71
72 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
73 unsigned long addr)
74 {
75 pgd_t *pgd;
76 p4d_t *p4d;
77
78 pgd = pgd_offset(mm, addr);
79 p4d = p4d_alloc(mm, pgd, addr);
80 if (!p4d)
81 return NULL;
82
83 return pud_alloc(mm, p4d, addr);
84 }
85
86 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
87 unsigned long addr)
88 {
89 pud_t *pud;
90 pmd_t *pmd;
91
92 pud = alloc_new_pud(mm, vma, addr);
93 if (!pud)
94 return NULL;
95
96 pmd = pmd_alloc(mm, pud, addr);
97 if (!pmd)
98 return NULL;
99
100 VM_BUG_ON(pmd_trans_huge(*pmd));
101
102 return pmd;
103 }
104
105 static void take_rmap_locks(struct vm_area_struct *vma)
106 {
107 if (vma->vm_file)
108 i_mmap_lock_write(vma->vm_file->f_mapping);
109 if (vma->anon_vma)
110 anon_vma_lock_write(vma->anon_vma);
111 }
112
113 static void drop_rmap_locks(struct vm_area_struct *vma)
114 {
115 if (vma->anon_vma)
116 anon_vma_unlock_write(vma->anon_vma);
117 if (vma->vm_file)
118 i_mmap_unlock_write(vma->vm_file->f_mapping);
119 }
120
121 static pte_t move_soft_dirty_pte(pte_t pte)
122 {
123 /*
124 * Set soft dirty bit so we can notice
125 * in userspace the ptes were moved.
126 */
127 #ifdef CONFIG_MEM_SOFT_DIRTY
128 if (pte_present(pte))
129 pte = pte_mksoft_dirty(pte);
130 else if (is_swap_pte(pte))
131 pte = pte_swp_mksoft_dirty(pte);
132 #endif
133 return pte;
134 }
135
136 static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
137 unsigned long old_addr, unsigned long old_end,
138 struct vm_area_struct *new_vma, pmd_t *new_pmd,
139 unsigned long new_addr, bool need_rmap_locks)
140 {
141 struct mm_struct *mm = vma->vm_mm;
142 pte_t *old_pte, *new_pte, pte;
143 spinlock_t *old_ptl, *new_ptl;
144 bool force_flush = false;
145 unsigned long len = old_end - old_addr;
146 int err = 0;
147
148 /*
149 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
150 * locks to ensure that rmap will always observe either the old or the
151 * new ptes. This is the easiest way to avoid races with
152 * truncate_pagecache(), page migration, etc...
153 *
154 * When need_rmap_locks is false, we use other ways to avoid
155 * such races:
156 *
157 * - During exec() shift_arg_pages(), we use a specially tagged vma
158 * which rmap call sites look for using vma_is_temporary_stack().
159 *
160 * - During mremap(), new_vma is often known to be placed after vma
161 * in rmap traversal order. This ensures rmap will always observe
162 * either the old pte, or the new pte, or both (the page table locks
163 * serialize access to individual ptes, but only rmap traversal
164 * order guarantees that we won't miss both the old and new ptes).
165 */
166 if (need_rmap_locks)
167 take_rmap_locks(vma);
168
169 /*
170 * We don't have to worry about the ordering of src and dst
171 * pte locks because exclusive mmap_lock prevents deadlock.
172 */
173 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
174 if (!old_pte) {
175 err = -EAGAIN;
176 goto out;
177 }
178 new_pte = pte_offset_map_nolock(mm, new_pmd, new_addr, &new_ptl);
179 if (!new_pte) {
180 pte_unmap_unlock(old_pte, old_ptl);
181 err = -EAGAIN;
182 goto out;
183 }
184 if (new_ptl != old_ptl)
185 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
186 flush_tlb_batched_pending(vma->vm_mm);
187 arch_enter_lazy_mmu_mode();
188
189 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
190 new_pte++, new_addr += PAGE_SIZE) {
191 if (pte_none(ptep_get(old_pte)))
192 continue;
193
194 pte = ptep_get_and_clear(mm, old_addr, old_pte);
195 /*
196 * If we are remapping a valid PTE, make sure
197 * to flush TLB before we drop the PTL for the
198 * PTE.
199 *
200 * NOTE! Both old and new PTL matter: the old one
201 * for racing with page_mkclean(), the new one to
202 * make sure the physical page stays valid until
203 * the TLB entry for the old mapping has been
204 * flushed.
205 */
206 if (pte_present(pte))
207 force_flush = true;
208 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
209 pte = move_soft_dirty_pte(pte);
210 set_pte_at(mm, new_addr, new_pte, pte);
211 }
212
213 arch_leave_lazy_mmu_mode();
214 if (force_flush)
215 flush_tlb_range(vma, old_end - len, old_end);
216 if (new_ptl != old_ptl)
217 spin_unlock(new_ptl);
218 pte_unmap(new_pte - 1);
219 pte_unmap_unlock(old_pte - 1, old_ptl);
220 out:
221 if (need_rmap_locks)
222 drop_rmap_locks(vma);
223 return err;
224 }
225
226 #ifndef arch_supports_page_table_move
227 #define arch_supports_page_table_move arch_supports_page_table_move
228 static inline bool arch_supports_page_table_move(void)
229 {
230 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
231 IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
232 }
233 #endif
234
235 #ifdef CONFIG_HAVE_MOVE_PMD
236 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
237 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
238 {
239 spinlock_t *old_ptl, *new_ptl;
240 struct mm_struct *mm = vma->vm_mm;
241 pmd_t pmd;
242
243 if (!arch_supports_page_table_move())
244 return false;
245 /*
246 * The destination pmd shouldn't be established, free_pgtables()
247 * should have released it.
248 *
249 * However, there's a case during execve() where we use mremap
250 * to move the initial stack, and in that case the target area
251 * may overlap the source area (always moving down).
252 *
253 * If everything is PMD-aligned, that works fine, as moving
254 * each pmd down will clear the source pmd. But if we first
255 * have a few 4kB-only pages that get moved down, and then
256 * hit the "now the rest is PMD-aligned, let's do everything
257 * one pmd at a time", we will still have the old (now empty
258 * of any 4kB pages, but still there) PMD in the page table
259 * tree.
260 *
261 * Warn on it once - because we really should try to figure
262 * out how to do this better - but then say "I won't move
263 * this pmd".
264 *
265 * One alternative might be to just unmap the target pmd at
266 * this point, and verify that it really is empty. We'll see.
267 */
268 if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
269 return false;
270
271 /*
272 * We don't have to worry about the ordering of src and dst
273 * ptlocks because exclusive mmap_lock prevents deadlock.
274 */
275 old_ptl = pmd_lock(vma->vm_mm, old_pmd);
276 new_ptl = pmd_lockptr(mm, new_pmd);
277 if (new_ptl != old_ptl)
278 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
279
280 /* Clear the pmd */
281 pmd = *old_pmd;
282 pmd_clear(old_pmd);
283
284 VM_BUG_ON(!pmd_none(*new_pmd));
285
286 pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
287 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
288 if (new_ptl != old_ptl)
289 spin_unlock(new_ptl);
290 spin_unlock(old_ptl);
291
292 return true;
293 }
294 #else
295 static inline bool move_normal_pmd(struct vm_area_struct *vma,
296 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
297 pmd_t *new_pmd)
298 {
299 return false;
300 }
301 #endif
302
303 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
304 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
305 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
306 {
307 spinlock_t *old_ptl, *new_ptl;
308 struct mm_struct *mm = vma->vm_mm;
309 pud_t pud;
310
311 if (!arch_supports_page_table_move())
312 return false;
313 /*
314 * The destination pud shouldn't be established, free_pgtables()
315 * should have released it.
316 */
317 if (WARN_ON_ONCE(!pud_none(*new_pud)))
318 return false;
319
320 /*
321 * We don't have to worry about the ordering of src and dst
322 * ptlocks because exclusive mmap_lock prevents deadlock.
323 */
324 old_ptl = pud_lock(vma->vm_mm, old_pud);
325 new_ptl = pud_lockptr(mm, new_pud);
326 if (new_ptl != old_ptl)
327 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
328
329 /* Clear the pud */
330 pud = *old_pud;
331 pud_clear(old_pud);
332
333 VM_BUG_ON(!pud_none(*new_pud));
334
335 pud_populate(mm, new_pud, pud_pgtable(pud));
336 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
337 if (new_ptl != old_ptl)
338 spin_unlock(new_ptl);
339 spin_unlock(old_ptl);
340
341 return true;
342 }
343 #else
344 static inline bool move_normal_pud(struct vm_area_struct *vma,
345 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
346 pud_t *new_pud)
347 {
348 return false;
349 }
350 #endif
351
352 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
353 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
354 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
355 {
356 spinlock_t *old_ptl, *new_ptl;
357 struct mm_struct *mm = vma->vm_mm;
358 pud_t pud;
359
360 /*
361 * The destination pud shouldn't be established, free_pgtables()
362 * should have released it.
363 */
364 if (WARN_ON_ONCE(!pud_none(*new_pud)))
365 return false;
366
367 /*
368 * We don't have to worry about the ordering of src and dst
369 * ptlocks because exclusive mmap_lock prevents deadlock.
370 */
371 old_ptl = pud_lock(vma->vm_mm, old_pud);
372 new_ptl = pud_lockptr(mm, new_pud);
373 if (new_ptl != old_ptl)
374 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
375
376 /* Clear the pud */
377 pud = *old_pud;
378 pud_clear(old_pud);
379
380 VM_BUG_ON(!pud_none(*new_pud));
381
382 /* Set the new pud */
383 /* mark soft_ditry when we add pud level soft dirty support */
384 set_pud_at(mm, new_addr, new_pud, pud);
385 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
386 if (new_ptl != old_ptl)
387 spin_unlock(new_ptl);
388 spin_unlock(old_ptl);
389
390 return true;
391 }
392 #else
393 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
394 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
395 {
396 WARN_ON_ONCE(1);
397 return false;
398
399 }
400 #endif
401
402 enum pgt_entry {
403 NORMAL_PMD,
404 HPAGE_PMD,
405 NORMAL_PUD,
406 HPAGE_PUD,
407 };
408
409 /*
410 * Returns an extent of the corresponding size for the pgt_entry specified if
411 * valid. Else returns a smaller extent bounded by the end of the source and
412 * destination pgt_entry.
413 */
414 static __always_inline unsigned long get_extent(enum pgt_entry entry,
415 unsigned long old_addr, unsigned long old_end,
416 unsigned long new_addr)
417 {
418 unsigned long next, extent, mask, size;
419
420 switch (entry) {
421 case HPAGE_PMD:
422 case NORMAL_PMD:
423 mask = PMD_MASK;
424 size = PMD_SIZE;
425 break;
426 case HPAGE_PUD:
427 case NORMAL_PUD:
428 mask = PUD_MASK;
429 size = PUD_SIZE;
430 break;
431 default:
432 BUILD_BUG();
433 break;
434 }
435
436 next = (old_addr + size) & mask;
437 /* even if next overflowed, extent below will be ok */
438 extent = next - old_addr;
439 if (extent > old_end - old_addr)
440 extent = old_end - old_addr;
441 next = (new_addr + size) & mask;
442 if (extent > next - new_addr)
443 extent = next - new_addr;
444 return extent;
445 }
446
447 /*
448 * Attempts to speedup the move by moving entry at the level corresponding to
449 * pgt_entry. Returns true if the move was successful, else false.
450 */
451 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
452 unsigned long old_addr, unsigned long new_addr,
453 void *old_entry, void *new_entry, bool need_rmap_locks)
454 {
455 bool moved = false;
456
457 /* See comment in move_ptes() */
458 if (need_rmap_locks)
459 take_rmap_locks(vma);
460
461 switch (entry) {
462 case NORMAL_PMD:
463 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
464 new_entry);
465 break;
466 case NORMAL_PUD:
467 moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
468 new_entry);
469 break;
470 case HPAGE_PMD:
471 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
472 move_huge_pmd(vma, old_addr, new_addr, old_entry,
473 new_entry);
474 break;
475 case HPAGE_PUD:
476 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
477 move_huge_pud(vma, old_addr, new_addr, old_entry,
478 new_entry);
479 break;
480
481 default:
482 WARN_ON_ONCE(1);
483 break;
484 }
485
486 if (need_rmap_locks)
487 drop_rmap_locks(vma);
488
489 return moved;
490 }
491
492 unsigned long move_page_tables(struct vm_area_struct *vma,
493 unsigned long old_addr, struct vm_area_struct *new_vma,
494 unsigned long new_addr, unsigned long len,
495 bool need_rmap_locks)
496 {
497 unsigned long extent, old_end;
498 struct mmu_notifier_range range;
499 pmd_t *old_pmd, *new_pmd;
500 pud_t *old_pud, *new_pud;
501
502 if (!len)
503 return 0;
504
505 old_end = old_addr + len;
506
507 if (is_vm_hugetlb_page(vma))
508 return move_hugetlb_page_tables(vma, new_vma, old_addr,
509 new_addr, len);
510
511 flush_cache_range(vma, old_addr, old_end);
512 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
513 old_addr, old_end);
514 mmu_notifier_invalidate_range_start(&range);
515
516 for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
517 cond_resched();
518 /*
519 * If extent is PUD-sized try to speed up the move by moving at the
520 * PUD level if possible.
521 */
522 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
523
524 old_pud = get_old_pud(vma->vm_mm, old_addr);
525 if (!old_pud)
526 continue;
527 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
528 if (!new_pud)
529 break;
530 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
531 if (extent == HPAGE_PUD_SIZE) {
532 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
533 old_pud, new_pud, need_rmap_locks);
534 /* We ignore and continue on error? */
535 continue;
536 }
537 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
538
539 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
540 old_pud, new_pud, true))
541 continue;
542 }
543
544 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
545 old_pmd = get_old_pmd(vma->vm_mm, old_addr);
546 if (!old_pmd)
547 continue;
548 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
549 if (!new_pmd)
550 break;
551 again:
552 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
553 pmd_devmap(*old_pmd)) {
554 if (extent == HPAGE_PMD_SIZE &&
555 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
556 old_pmd, new_pmd, need_rmap_locks))
557 continue;
558 split_huge_pmd(vma, old_pmd, old_addr);
559 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
560 extent == PMD_SIZE) {
561 /*
562 * If the extent is PMD-sized, try to speed the move by
563 * moving at the PMD level if possible.
564 */
565 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
566 old_pmd, new_pmd, true))
567 continue;
568 }
569 if (pmd_none(*old_pmd))
570 continue;
571 if (pte_alloc(new_vma->vm_mm, new_pmd))
572 break;
573 if (move_ptes(vma, old_pmd, old_addr, old_addr + extent,
574 new_vma, new_pmd, new_addr, need_rmap_locks) < 0)
575 goto again;
576 }
577
578 mmu_notifier_invalidate_range_end(&range);
579
580 return len + old_addr - old_end; /* how much done */
581 }
582
583 static unsigned long move_vma(struct vm_area_struct *vma,
584 unsigned long old_addr, unsigned long old_len,
585 unsigned long new_len, unsigned long new_addr,
586 bool *locked, unsigned long flags,
587 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
588 {
589 long to_account = new_len - old_len;
590 struct mm_struct *mm = vma->vm_mm;
591 struct vm_area_struct *new_vma;
592 unsigned long vm_flags = vma->vm_flags;
593 unsigned long new_pgoff;
594 unsigned long moved_len;
595 unsigned long account_start = 0;
596 unsigned long account_end = 0;
597 unsigned long hiwater_vm;
598 int err = 0;
599 bool need_rmap_locks;
600 struct vma_iterator vmi;
601
602 /*
603 * We'd prefer to avoid failure later on in do_munmap:
604 * which may split one vma into three before unmapping.
605 */
606 if (mm->map_count >= sysctl_max_map_count - 3)
607 return -ENOMEM;
608
609 if (unlikely(flags & MREMAP_DONTUNMAP))
610 to_account = new_len;
611
612 if (vma->vm_ops && vma->vm_ops->may_split) {
613 if (vma->vm_start != old_addr)
614 err = vma->vm_ops->may_split(vma, old_addr);
615 if (!err && vma->vm_end != old_addr + old_len)
616 err = vma->vm_ops->may_split(vma, old_addr + old_len);
617 if (err)
618 return err;
619 }
620
621 /*
622 * Advise KSM to break any KSM pages in the area to be moved:
623 * it would be confusing if they were to turn up at the new
624 * location, where they happen to coincide with different KSM
625 * pages recently unmapped. But leave vma->vm_flags as it was,
626 * so KSM can come around to merge on vma and new_vma afterwards.
627 */
628 err = ksm_madvise(vma, old_addr, old_addr + old_len,
629 MADV_UNMERGEABLE, &vm_flags);
630 if (err)
631 return err;
632
633 if (vm_flags & VM_ACCOUNT) {
634 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
635 return -ENOMEM;
636 }
637
638 vma_start_write(vma);
639 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
640 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
641 &need_rmap_locks);
642 if (!new_vma) {
643 if (vm_flags & VM_ACCOUNT)
644 vm_unacct_memory(to_account >> PAGE_SHIFT);
645 return -ENOMEM;
646 }
647
648 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
649 need_rmap_locks);
650 if (moved_len < old_len) {
651 err = -ENOMEM;
652 } else if (vma->vm_ops && vma->vm_ops->mremap) {
653 err = vma->vm_ops->mremap(new_vma);
654 }
655
656 if (unlikely(err)) {
657 /*
658 * On error, move entries back from new area to old,
659 * which will succeed since page tables still there,
660 * and then proceed to unmap new area instead of old.
661 */
662 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
663 true);
664 vma = new_vma;
665 old_len = new_len;
666 old_addr = new_addr;
667 new_addr = err;
668 } else {
669 mremap_userfaultfd_prep(new_vma, uf);
670 }
671
672 if (is_vm_hugetlb_page(vma)) {
673 clear_vma_resv_huge_pages(vma);
674 }
675
676 /* Conceal VM_ACCOUNT so old reservation is not undone */
677 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
678 vm_flags_clear(vma, VM_ACCOUNT);
679 if (vma->vm_start < old_addr)
680 account_start = vma->vm_start;
681 if (vma->vm_end > old_addr + old_len)
682 account_end = vma->vm_end;
683 }
684
685 /*
686 * If we failed to move page tables we still do total_vm increment
687 * since do_munmap() will decrement it by old_len == new_len.
688 *
689 * Since total_vm is about to be raised artificially high for a
690 * moment, we need to restore high watermark afterwards: if stats
691 * are taken meanwhile, total_vm and hiwater_vm appear too high.
692 * If this were a serious issue, we'd add a flag to do_munmap().
693 */
694 hiwater_vm = mm->hiwater_vm;
695 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
696
697 /* Tell pfnmap has moved from this vma */
698 if (unlikely(vma->vm_flags & VM_PFNMAP))
699 untrack_pfn_clear(vma);
700
701 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
702 /* We always clear VM_LOCKED[ONFAULT] on the old vma */
703 vm_flags_clear(vma, VM_LOCKED_MASK);
704
705 /*
706 * anon_vma links of the old vma is no longer needed after its page
707 * table has been moved.
708 */
709 if (new_vma != vma && vma->vm_start == old_addr &&
710 vma->vm_end == (old_addr + old_len))
711 unlink_anon_vmas(vma);
712
713 /* Because we won't unmap we don't need to touch locked_vm */
714 return new_addr;
715 }
716
717 vma_iter_init(&vmi, mm, old_addr);
718 if (!do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false)) {
719 /* OOM: unable to split vma, just get accounts right */
720 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
721 vm_acct_memory(old_len >> PAGE_SHIFT);
722 account_start = account_end = 0;
723 }
724
725 if (vm_flags & VM_LOCKED) {
726 mm->locked_vm += new_len >> PAGE_SHIFT;
727 *locked = true;
728 }
729
730 mm->hiwater_vm = hiwater_vm;
731
732 /* Restore VM_ACCOUNT if one or two pieces of vma left */
733 if (account_start) {
734 vma = vma_prev(&vmi);
735 vm_flags_set(vma, VM_ACCOUNT);
736 }
737
738 if (account_end) {
739 vma = vma_next(&vmi);
740 vm_flags_set(vma, VM_ACCOUNT);
741 }
742
743 return new_addr;
744 }
745
746 static struct vm_area_struct *vma_to_resize(unsigned long addr,
747 unsigned long old_len, unsigned long new_len, unsigned long flags)
748 {
749 struct mm_struct *mm = current->mm;
750 struct vm_area_struct *vma;
751 unsigned long pgoff;
752
753 vma = vma_lookup(mm, addr);
754 if (!vma)
755 return ERR_PTR(-EFAULT);
756
757 /*
758 * !old_len is a special case where an attempt is made to 'duplicate'
759 * a mapping. This makes no sense for private mappings as it will
760 * instead create a fresh/new mapping unrelated to the original. This
761 * is contrary to the basic idea of mremap which creates new mappings
762 * based on the original. There are no known use cases for this
763 * behavior. As a result, fail such attempts.
764 */
765 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
766 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid);
767 return ERR_PTR(-EINVAL);
768 }
769
770 if ((flags & MREMAP_DONTUNMAP) &&
771 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
772 return ERR_PTR(-EINVAL);
773
774 /* We can't remap across vm area boundaries */
775 if (old_len > vma->vm_end - addr)
776 return ERR_PTR(-EFAULT);
777
778 if (new_len == old_len)
779 return vma;
780
781 /* Need to be careful about a growing mapping */
782 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
783 pgoff += vma->vm_pgoff;
784 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
785 return ERR_PTR(-EINVAL);
786
787 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
788 return ERR_PTR(-EFAULT);
789
790 if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len))
791 return ERR_PTR(-EAGAIN);
792
793 if (!may_expand_vm(mm, vma->vm_flags,
794 (new_len - old_len) >> PAGE_SHIFT))
795 return ERR_PTR(-ENOMEM);
796
797 return vma;
798 }
799
800 static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
801 unsigned long new_addr, unsigned long new_len, bool *locked,
802 unsigned long flags, struct vm_userfaultfd_ctx *uf,
803 struct list_head *uf_unmap_early,
804 struct list_head *uf_unmap)
805 {
806 struct mm_struct *mm = current->mm;
807 struct vm_area_struct *vma;
808 unsigned long ret = -EINVAL;
809 unsigned long map_flags = 0;
810
811 if (offset_in_page(new_addr))
812 goto out;
813
814 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
815 goto out;
816
817 /* Ensure the old/new locations do not overlap */
818 if (addr + old_len > new_addr && new_addr + new_len > addr)
819 goto out;
820
821 /*
822 * move_vma() need us to stay 4 maps below the threshold, otherwise
823 * it will bail out at the very beginning.
824 * That is a problem if we have already unmaped the regions here
825 * (new_addr, and old_addr), because userspace will not know the
826 * state of the vma's after it gets -ENOMEM.
827 * So, to avoid such scenario we can pre-compute if the whole
828 * operation has high chances to success map-wise.
829 * Worst-scenario case is when both vma's (new_addr and old_addr) get
830 * split in 3 before unmapping it.
831 * That means 2 more maps (1 for each) to the ones we already hold.
832 * Check whether current map count plus 2 still leads us to 4 maps below
833 * the threshold, otherwise return -ENOMEM here to be more safe.
834 */
835 if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
836 return -ENOMEM;
837
838 if (flags & MREMAP_FIXED) {
839 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
840 if (ret)
841 goto out;
842 }
843
844 if (old_len > new_len) {
845 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
846 if (ret)
847 goto out;
848 old_len = new_len;
849 }
850
851 vma = vma_to_resize(addr, old_len, new_len, flags);
852 if (IS_ERR(vma)) {
853 ret = PTR_ERR(vma);
854 goto out;
855 }
856
857 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
858 if (flags & MREMAP_DONTUNMAP &&
859 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
860 ret = -ENOMEM;
861 goto out;
862 }
863
864 if (flags & MREMAP_FIXED)
865 map_flags |= MAP_FIXED;
866
867 if (vma->vm_flags & VM_MAYSHARE)
868 map_flags |= MAP_SHARED;
869
870 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
871 ((addr - vma->vm_start) >> PAGE_SHIFT),
872 map_flags);
873 if (IS_ERR_VALUE(ret))
874 goto out;
875
876 /* We got a new mapping */
877 if (!(flags & MREMAP_FIXED))
878 new_addr = ret;
879
880 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
881 uf_unmap);
882
883 out:
884 return ret;
885 }
886
887 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
888 {
889 unsigned long end = vma->vm_end + delta;
890
891 if (end < vma->vm_end) /* overflow */
892 return 0;
893 if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
894 return 0;
895 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
896 0, MAP_FIXED) & ~PAGE_MASK)
897 return 0;
898 return 1;
899 }
900
901 /*
902 * Expand (or shrink) an existing mapping, potentially moving it at the
903 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
904 *
905 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
906 * This option implies MREMAP_MAYMOVE.
907 */
908 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
909 unsigned long, new_len, unsigned long, flags,
910 unsigned long, new_addr)
911 {
912 struct mm_struct *mm = current->mm;
913 struct vm_area_struct *vma;
914 unsigned long ret = -EINVAL;
915 bool locked = false;
916 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
917 LIST_HEAD(uf_unmap_early);
918 LIST_HEAD(uf_unmap);
919
920 /*
921 * There is a deliberate asymmetry here: we strip the pointer tag
922 * from the old address but leave the new address alone. This is
923 * for consistency with mmap(), where we prevent the creation of
924 * aliasing mappings in userspace by leaving the tag bits of the
925 * mapping address intact. A non-zero tag will cause the subsequent
926 * range checks to reject the address as invalid.
927 *
928 * See Documentation/arch/arm64/tagged-address-abi.rst for more
929 * information.
930 */
931 addr = untagged_addr(addr);
932
933 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
934 return ret;
935
936 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
937 return ret;
938
939 /*
940 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
941 * in the process.
942 */
943 if (flags & MREMAP_DONTUNMAP &&
944 (!(flags & MREMAP_MAYMOVE) || old_len != new_len))
945 return ret;
946
947
948 if (offset_in_page(addr))
949 return ret;
950
951 old_len = PAGE_ALIGN(old_len);
952 new_len = PAGE_ALIGN(new_len);
953
954 /*
955 * We allow a zero old-len as a special case
956 * for DOS-emu "duplicate shm area" thing. But
957 * a zero new-len is nonsensical.
958 */
959 if (!new_len)
960 return ret;
961
962 if (mmap_write_lock_killable(current->mm))
963 return -EINTR;
964 vma = vma_lookup(mm, addr);
965 if (!vma) {
966 ret = -EFAULT;
967 goto out;
968 }
969
970 if (is_vm_hugetlb_page(vma)) {
971 struct hstate *h __maybe_unused = hstate_vma(vma);
972
973 old_len = ALIGN(old_len, huge_page_size(h));
974 new_len = ALIGN(new_len, huge_page_size(h));
975
976 /* addrs must be huge page aligned */
977 if (addr & ~huge_page_mask(h))
978 goto out;
979 if (new_addr & ~huge_page_mask(h))
980 goto out;
981
982 /*
983 * Don't allow remap expansion, because the underlying hugetlb
984 * reservation is not yet capable to handle split reservation.
985 */
986 if (new_len > old_len)
987 goto out;
988 }
989
990 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
991 ret = mremap_to(addr, old_len, new_addr, new_len,
992 &locked, flags, &uf, &uf_unmap_early,
993 &uf_unmap);
994 goto out;
995 }
996
997 /*
998 * Always allow a shrinking remap: that just unmaps
999 * the unnecessary pages..
1000 * do_vmi_munmap does all the needed commit accounting, and
1001 * unlocks the mmap_lock if so directed.
1002 */
1003 if (old_len >= new_len) {
1004 VMA_ITERATOR(vmi, mm, addr + new_len);
1005
1006 if (old_len == new_len) {
1007 ret = addr;
1008 goto out;
1009 }
1010
1011 ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len,
1012 &uf_unmap, true);
1013 if (ret)
1014 goto out;
1015
1016 ret = addr;
1017 goto out_unlocked;
1018 }
1019
1020 /*
1021 * Ok, we need to grow..
1022 */
1023 vma = vma_to_resize(addr, old_len, new_len, flags);
1024 if (IS_ERR(vma)) {
1025 ret = PTR_ERR(vma);
1026 goto out;
1027 }
1028
1029 /* old_len exactly to the end of the area..
1030 */
1031 if (old_len == vma->vm_end - addr) {
1032 /* can we just expand the current mapping? */
1033 if (vma_expandable(vma, new_len - old_len)) {
1034 long pages = (new_len - old_len) >> PAGE_SHIFT;
1035 unsigned long extension_start = addr + old_len;
1036 unsigned long extension_end = addr + new_len;
1037 pgoff_t extension_pgoff = vma->vm_pgoff +
1038 ((extension_start - vma->vm_start) >> PAGE_SHIFT);
1039 VMA_ITERATOR(vmi, mm, extension_start);
1040
1041 if (vma->vm_flags & VM_ACCOUNT) {
1042 if (security_vm_enough_memory_mm(mm, pages)) {
1043 ret = -ENOMEM;
1044 goto out;
1045 }
1046 }
1047
1048 /*
1049 * Function vma_merge() is called on the extension we
1050 * are adding to the already existing vma, vma_merge()
1051 * will merge this extension with the already existing
1052 * vma (expand operation itself) and possibly also with
1053 * the next vma if it becomes adjacent to the expanded
1054 * vma and otherwise compatible.
1055 */
1056 vma = vma_merge(&vmi, mm, vma, extension_start,
1057 extension_end, vma->vm_flags, vma->anon_vma,
1058 vma->vm_file, extension_pgoff, vma_policy(vma),
1059 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
1060 if (!vma) {
1061 vm_unacct_memory(pages);
1062 ret = -ENOMEM;
1063 goto out;
1064 }
1065
1066 vm_stat_account(mm, vma->vm_flags, pages);
1067 if (vma->vm_flags & VM_LOCKED) {
1068 mm->locked_vm += pages;
1069 locked = true;
1070 new_addr = addr;
1071 }
1072 ret = addr;
1073 goto out;
1074 }
1075 }
1076
1077 /*
1078 * We weren't able to just expand or shrink the area,
1079 * we need to create a new one and move it..
1080 */
1081 ret = -ENOMEM;
1082 if (flags & MREMAP_MAYMOVE) {
1083 unsigned long map_flags = 0;
1084 if (vma->vm_flags & VM_MAYSHARE)
1085 map_flags |= MAP_SHARED;
1086
1087 new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1088 vma->vm_pgoff +
1089 ((addr - vma->vm_start) >> PAGE_SHIFT),
1090 map_flags);
1091 if (IS_ERR_VALUE(new_addr)) {
1092 ret = new_addr;
1093 goto out;
1094 }
1095
1096 ret = move_vma(vma, addr, old_len, new_len, new_addr,
1097 &locked, flags, &uf, &uf_unmap);
1098 }
1099 out:
1100 if (offset_in_page(ret))
1101 locked = false;
1102 mmap_write_unlock(current->mm);
1103 if (locked && new_len > old_len)
1104 mm_populate(new_addr + old_len, new_len - old_len);
1105 out_unlocked:
1106 userfaultfd_unmap_complete(mm, &uf_unmap_early);
1107 mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1108 userfaultfd_unmap_complete(mm, &uf_unmap);
1109 return ret;
1110 }