]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/nommu.c
mmap locking API: convert mmap_sem comments
[thirdparty/linux.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/nommu-mmap.txt
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
73 unsigned int kobjsize(const void *objp)
74 {
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112 }
113
114 /**
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
119 *
120 * Only IO mappings and raw PFN mappings are allowed.
121 *
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
123 */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
126 {
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
129
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
137 void vfree(const void *addr)
138 {
139 kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145 /*
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
148 */
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 unsigned long start, unsigned long end, gfp_t gfp_mask,
155 pgprot_t prot, unsigned long vm_flags, int node,
156 const void *caller)
157 {
158 return __vmalloc(size, gfp_mask);
159 }
160
161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 int node, const void *caller)
163 {
164 return __vmalloc(size, gfp_mask);
165 }
166
167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169 void *ret;
170
171 ret = __vmalloc(size, flags);
172 if (ret) {
173 struct vm_area_struct *vma;
174
175 mmap_write_lock(current->mm);
176 vma = find_vma(current->mm, (unsigned long)ret);
177 if (vma)
178 vma->vm_flags |= VM_USERMAP;
179 mmap_write_unlock(current->mm);
180 }
181
182 return ret;
183 }
184
185 void *vmalloc_user(unsigned long size)
186 {
187 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190
191 struct page *vmalloc_to_page(const void *addr)
192 {
193 return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196
197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199 return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202
203 long vread(char *buf, char *addr, unsigned long count)
204 {
205 /* Don't allow overflow */
206 if ((unsigned long) buf + count < count)
207 count = -(unsigned long) buf;
208
209 memcpy(buf, addr, count);
210 return count;
211 }
212
213 long vwrite(char *buf, char *addr, unsigned long count)
214 {
215 /* Don't allow overflow */
216 if ((unsigned long) addr + count < count)
217 count = -(unsigned long) addr;
218
219 memcpy(addr, buf, count);
220 return count;
221 }
222
223 /*
224 * vmalloc - allocate virtually contiguous memory
225 *
226 * @size: allocation size
227 *
228 * Allocate enough pages to cover @size from the page level
229 * allocator and map them into contiguous kernel virtual space.
230 *
231 * For tight control over page level allocator and protection flags
232 * use __vmalloc() instead.
233 */
234 void *vmalloc(unsigned long size)
235 {
236 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(vmalloc);
239
240 /*
241 * vzalloc - allocate virtually contiguous memory with zero fill
242 *
243 * @size: allocation size
244 *
245 * Allocate enough pages to cover @size from the page level
246 * allocator and map them into contiguous kernel virtual space.
247 * The memory allocated is set to zero.
248 *
249 * For tight control over page level allocator and protection flags
250 * use __vmalloc() instead.
251 */
252 void *vzalloc(unsigned long size)
253 {
254 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
255 }
256 EXPORT_SYMBOL(vzalloc);
257
258 /**
259 * vmalloc_node - allocate memory on a specific node
260 * @size: allocation size
261 * @node: numa node
262 *
263 * Allocate enough pages to cover @size from the page level
264 * allocator and map them into contiguous kernel virtual space.
265 *
266 * For tight control over page level allocator and protection flags
267 * use __vmalloc() instead.
268 */
269 void *vmalloc_node(unsigned long size, int node)
270 {
271 return vmalloc(size);
272 }
273 EXPORT_SYMBOL(vmalloc_node);
274
275 /**
276 * vzalloc_node - allocate memory on a specific node with zero fill
277 * @size: allocation size
278 * @node: numa node
279 *
280 * Allocate enough pages to cover @size from the page level
281 * allocator and map them into contiguous kernel virtual space.
282 * The memory allocated is set to zero.
283 *
284 * For tight control over page level allocator and protection flags
285 * use __vmalloc() instead.
286 */
287 void *vzalloc_node(unsigned long size, int node)
288 {
289 return vzalloc(size);
290 }
291 EXPORT_SYMBOL(vzalloc_node);
292
293 /**
294 * vmalloc_exec - allocate virtually contiguous, executable memory
295 * @size: allocation size
296 *
297 * Kernel-internal function to allocate enough pages to cover @size
298 * the page level allocator and map them into contiguous and
299 * executable kernel virtual space.
300 *
301 * For tight control over page level allocator and protection flags
302 * use __vmalloc() instead.
303 */
304
305 void *vmalloc_exec(unsigned long size)
306 {
307 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
308 }
309
310 /**
311 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
312 * @size: allocation size
313 *
314 * Allocate enough 32bit PA addressable pages to cover @size from the
315 * page level allocator and map them into contiguous kernel virtual space.
316 */
317 void *vmalloc_32(unsigned long size)
318 {
319 return __vmalloc(size, GFP_KERNEL);
320 }
321 EXPORT_SYMBOL(vmalloc_32);
322
323 /**
324 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
325 * @size: allocation size
326 *
327 * The resulting memory area is 32bit addressable and zeroed so it can be
328 * mapped to userspace without leaking data.
329 *
330 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
331 * remap_vmalloc_range() are permissible.
332 */
333 void *vmalloc_32_user(unsigned long size)
334 {
335 /*
336 * We'll have to sort out the ZONE_DMA bits for 64-bit,
337 * but for now this can simply use vmalloc_user() directly.
338 */
339 return vmalloc_user(size);
340 }
341 EXPORT_SYMBOL(vmalloc_32_user);
342
343 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
344 {
345 BUG();
346 return NULL;
347 }
348 EXPORT_SYMBOL(vmap);
349
350 void vunmap(const void *addr)
351 {
352 BUG();
353 }
354 EXPORT_SYMBOL(vunmap);
355
356 void *vm_map_ram(struct page **pages, unsigned int count, int node)
357 {
358 BUG();
359 return NULL;
360 }
361 EXPORT_SYMBOL(vm_map_ram);
362
363 void vm_unmap_ram(const void *mem, unsigned int count)
364 {
365 BUG();
366 }
367 EXPORT_SYMBOL(vm_unmap_ram);
368
369 void vm_unmap_aliases(void)
370 {
371 }
372 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
373
374 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
375 {
376 BUG();
377 return NULL;
378 }
379 EXPORT_SYMBOL_GPL(alloc_vm_area);
380
381 void free_vm_area(struct vm_struct *area)
382 {
383 BUG();
384 }
385 EXPORT_SYMBOL_GPL(free_vm_area);
386
387 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
388 struct page *page)
389 {
390 return -EINVAL;
391 }
392 EXPORT_SYMBOL(vm_insert_page);
393
394 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
395 unsigned long num)
396 {
397 return -EINVAL;
398 }
399 EXPORT_SYMBOL(vm_map_pages);
400
401 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
402 unsigned long num)
403 {
404 return -EINVAL;
405 }
406 EXPORT_SYMBOL(vm_map_pages_zero);
407
408 /*
409 * sys_brk() for the most part doesn't need the global kernel
410 * lock, except when an application is doing something nasty
411 * like trying to un-brk an area that has already been mapped
412 * to a regular file. in this case, the unmapping will need
413 * to invoke file system routines that need the global lock.
414 */
415 SYSCALL_DEFINE1(brk, unsigned long, brk)
416 {
417 struct mm_struct *mm = current->mm;
418
419 if (brk < mm->start_brk || brk > mm->context.end_brk)
420 return mm->brk;
421
422 if (mm->brk == brk)
423 return mm->brk;
424
425 /*
426 * Always allow shrinking brk
427 */
428 if (brk <= mm->brk) {
429 mm->brk = brk;
430 return brk;
431 }
432
433 /*
434 * Ok, looks good - let it rip.
435 */
436 flush_icache_user_range(mm->brk, brk);
437 return mm->brk = brk;
438 }
439
440 /*
441 * initialise the percpu counter for VM and region record slabs
442 */
443 void __init mmap_init(void)
444 {
445 int ret;
446
447 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
448 VM_BUG_ON(ret);
449 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
450 }
451
452 /*
453 * validate the region tree
454 * - the caller must hold the region lock
455 */
456 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
457 static noinline void validate_nommu_regions(void)
458 {
459 struct vm_region *region, *last;
460 struct rb_node *p, *lastp;
461
462 lastp = rb_first(&nommu_region_tree);
463 if (!lastp)
464 return;
465
466 last = rb_entry(lastp, struct vm_region, vm_rb);
467 BUG_ON(last->vm_end <= last->vm_start);
468 BUG_ON(last->vm_top < last->vm_end);
469
470 while ((p = rb_next(lastp))) {
471 region = rb_entry(p, struct vm_region, vm_rb);
472 last = rb_entry(lastp, struct vm_region, vm_rb);
473
474 BUG_ON(region->vm_end <= region->vm_start);
475 BUG_ON(region->vm_top < region->vm_end);
476 BUG_ON(region->vm_start < last->vm_top);
477
478 lastp = p;
479 }
480 }
481 #else
482 static void validate_nommu_regions(void)
483 {
484 }
485 #endif
486
487 /*
488 * add a region into the global tree
489 */
490 static void add_nommu_region(struct vm_region *region)
491 {
492 struct vm_region *pregion;
493 struct rb_node **p, *parent;
494
495 validate_nommu_regions();
496
497 parent = NULL;
498 p = &nommu_region_tree.rb_node;
499 while (*p) {
500 parent = *p;
501 pregion = rb_entry(parent, struct vm_region, vm_rb);
502 if (region->vm_start < pregion->vm_start)
503 p = &(*p)->rb_left;
504 else if (region->vm_start > pregion->vm_start)
505 p = &(*p)->rb_right;
506 else if (pregion == region)
507 return;
508 else
509 BUG();
510 }
511
512 rb_link_node(&region->vm_rb, parent, p);
513 rb_insert_color(&region->vm_rb, &nommu_region_tree);
514
515 validate_nommu_regions();
516 }
517
518 /*
519 * delete a region from the global tree
520 */
521 static void delete_nommu_region(struct vm_region *region)
522 {
523 BUG_ON(!nommu_region_tree.rb_node);
524
525 validate_nommu_regions();
526 rb_erase(&region->vm_rb, &nommu_region_tree);
527 validate_nommu_regions();
528 }
529
530 /*
531 * free a contiguous series of pages
532 */
533 static void free_page_series(unsigned long from, unsigned long to)
534 {
535 for (; from < to; from += PAGE_SIZE) {
536 struct page *page = virt_to_page(from);
537
538 atomic_long_dec(&mmap_pages_allocated);
539 put_page(page);
540 }
541 }
542
543 /*
544 * release a reference to a region
545 * - the caller must hold the region semaphore for writing, which this releases
546 * - the region may not have been added to the tree yet, in which case vm_top
547 * will equal vm_start
548 */
549 static void __put_nommu_region(struct vm_region *region)
550 __releases(nommu_region_sem)
551 {
552 BUG_ON(!nommu_region_tree.rb_node);
553
554 if (--region->vm_usage == 0) {
555 if (region->vm_top > region->vm_start)
556 delete_nommu_region(region);
557 up_write(&nommu_region_sem);
558
559 if (region->vm_file)
560 fput(region->vm_file);
561
562 /* IO memory and memory shared directly out of the pagecache
563 * from ramfs/tmpfs mustn't be released here */
564 if (region->vm_flags & VM_MAPPED_COPY)
565 free_page_series(region->vm_start, region->vm_top);
566 kmem_cache_free(vm_region_jar, region);
567 } else {
568 up_write(&nommu_region_sem);
569 }
570 }
571
572 /*
573 * release a reference to a region
574 */
575 static void put_nommu_region(struct vm_region *region)
576 {
577 down_write(&nommu_region_sem);
578 __put_nommu_region(region);
579 }
580
581 /*
582 * add a VMA into a process's mm_struct in the appropriate place in the list
583 * and tree and add to the address space's page tree also if not an anonymous
584 * page
585 * - should be called with mm->mmap_lock held writelocked
586 */
587 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
588 {
589 struct vm_area_struct *pvma, *prev;
590 struct address_space *mapping;
591 struct rb_node **p, *parent, *rb_prev;
592
593 BUG_ON(!vma->vm_region);
594
595 mm->map_count++;
596 vma->vm_mm = mm;
597
598 /* add the VMA to the mapping */
599 if (vma->vm_file) {
600 mapping = vma->vm_file->f_mapping;
601
602 i_mmap_lock_write(mapping);
603 flush_dcache_mmap_lock(mapping);
604 vma_interval_tree_insert(vma, &mapping->i_mmap);
605 flush_dcache_mmap_unlock(mapping);
606 i_mmap_unlock_write(mapping);
607 }
608
609 /* add the VMA to the tree */
610 parent = rb_prev = NULL;
611 p = &mm->mm_rb.rb_node;
612 while (*p) {
613 parent = *p;
614 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
615
616 /* sort by: start addr, end addr, VMA struct addr in that order
617 * (the latter is necessary as we may get identical VMAs) */
618 if (vma->vm_start < pvma->vm_start)
619 p = &(*p)->rb_left;
620 else if (vma->vm_start > pvma->vm_start) {
621 rb_prev = parent;
622 p = &(*p)->rb_right;
623 } else if (vma->vm_end < pvma->vm_end)
624 p = &(*p)->rb_left;
625 else if (vma->vm_end > pvma->vm_end) {
626 rb_prev = parent;
627 p = &(*p)->rb_right;
628 } else if (vma < pvma)
629 p = &(*p)->rb_left;
630 else if (vma > pvma) {
631 rb_prev = parent;
632 p = &(*p)->rb_right;
633 } else
634 BUG();
635 }
636
637 rb_link_node(&vma->vm_rb, parent, p);
638 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
639
640 /* add VMA to the VMA list also */
641 prev = NULL;
642 if (rb_prev)
643 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
644
645 __vma_link_list(mm, vma, prev);
646 }
647
648 /*
649 * delete a VMA from its owning mm_struct and address space
650 */
651 static void delete_vma_from_mm(struct vm_area_struct *vma)
652 {
653 int i;
654 struct address_space *mapping;
655 struct mm_struct *mm = vma->vm_mm;
656 struct task_struct *curr = current;
657
658 mm->map_count--;
659 for (i = 0; i < VMACACHE_SIZE; i++) {
660 /* if the vma is cached, invalidate the entire cache */
661 if (curr->vmacache.vmas[i] == vma) {
662 vmacache_invalidate(mm);
663 break;
664 }
665 }
666
667 /* remove the VMA from the mapping */
668 if (vma->vm_file) {
669 mapping = vma->vm_file->f_mapping;
670
671 i_mmap_lock_write(mapping);
672 flush_dcache_mmap_lock(mapping);
673 vma_interval_tree_remove(vma, &mapping->i_mmap);
674 flush_dcache_mmap_unlock(mapping);
675 i_mmap_unlock_write(mapping);
676 }
677
678 /* remove from the MM's tree and list */
679 rb_erase(&vma->vm_rb, &mm->mm_rb);
680
681 __vma_unlink_list(mm, vma);
682 }
683
684 /*
685 * destroy a VMA record
686 */
687 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
688 {
689 if (vma->vm_ops && vma->vm_ops->close)
690 vma->vm_ops->close(vma);
691 if (vma->vm_file)
692 fput(vma->vm_file);
693 put_nommu_region(vma->vm_region);
694 vm_area_free(vma);
695 }
696
697 /*
698 * look up the first VMA in which addr resides, NULL if none
699 * - should be called with mm->mmap_lock at least held readlocked
700 */
701 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
702 {
703 struct vm_area_struct *vma;
704
705 /* check the cache first */
706 vma = vmacache_find(mm, addr);
707 if (likely(vma))
708 return vma;
709
710 /* trawl the list (there may be multiple mappings in which addr
711 * resides) */
712 for (vma = mm->mmap; vma; vma = vma->vm_next) {
713 if (vma->vm_start > addr)
714 return NULL;
715 if (vma->vm_end > addr) {
716 vmacache_update(addr, vma);
717 return vma;
718 }
719 }
720
721 return NULL;
722 }
723 EXPORT_SYMBOL(find_vma);
724
725 /*
726 * find a VMA
727 * - we don't extend stack VMAs under NOMMU conditions
728 */
729 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
730 {
731 return find_vma(mm, addr);
732 }
733
734 /*
735 * expand a stack to a given address
736 * - not supported under NOMMU conditions
737 */
738 int expand_stack(struct vm_area_struct *vma, unsigned long address)
739 {
740 return -ENOMEM;
741 }
742
743 /*
744 * look up the first VMA exactly that exactly matches addr
745 * - should be called with mm->mmap_lock at least held readlocked
746 */
747 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
748 unsigned long addr,
749 unsigned long len)
750 {
751 struct vm_area_struct *vma;
752 unsigned long end = addr + len;
753
754 /* check the cache first */
755 vma = vmacache_find_exact(mm, addr, end);
756 if (vma)
757 return vma;
758
759 /* trawl the list (there may be multiple mappings in which addr
760 * resides) */
761 for (vma = mm->mmap; vma; vma = vma->vm_next) {
762 if (vma->vm_start < addr)
763 continue;
764 if (vma->vm_start > addr)
765 return NULL;
766 if (vma->vm_end == end) {
767 vmacache_update(addr, vma);
768 return vma;
769 }
770 }
771
772 return NULL;
773 }
774
775 /*
776 * determine whether a mapping should be permitted and, if so, what sort of
777 * mapping we're capable of supporting
778 */
779 static int validate_mmap_request(struct file *file,
780 unsigned long addr,
781 unsigned long len,
782 unsigned long prot,
783 unsigned long flags,
784 unsigned long pgoff,
785 unsigned long *_capabilities)
786 {
787 unsigned long capabilities, rlen;
788 int ret;
789
790 /* do the simple checks first */
791 if (flags & MAP_FIXED)
792 return -EINVAL;
793
794 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
795 (flags & MAP_TYPE) != MAP_SHARED)
796 return -EINVAL;
797
798 if (!len)
799 return -EINVAL;
800
801 /* Careful about overflows.. */
802 rlen = PAGE_ALIGN(len);
803 if (!rlen || rlen > TASK_SIZE)
804 return -ENOMEM;
805
806 /* offset overflow? */
807 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
808 return -EOVERFLOW;
809
810 if (file) {
811 /* files must support mmap */
812 if (!file->f_op->mmap)
813 return -ENODEV;
814
815 /* work out if what we've got could possibly be shared
816 * - we support chardevs that provide their own "memory"
817 * - we support files/blockdevs that are memory backed
818 */
819 if (file->f_op->mmap_capabilities) {
820 capabilities = file->f_op->mmap_capabilities(file);
821 } else {
822 /* no explicit capabilities set, so assume some
823 * defaults */
824 switch (file_inode(file)->i_mode & S_IFMT) {
825 case S_IFREG:
826 case S_IFBLK:
827 capabilities = NOMMU_MAP_COPY;
828 break;
829
830 case S_IFCHR:
831 capabilities =
832 NOMMU_MAP_DIRECT |
833 NOMMU_MAP_READ |
834 NOMMU_MAP_WRITE;
835 break;
836
837 default:
838 return -EINVAL;
839 }
840 }
841
842 /* eliminate any capabilities that we can't support on this
843 * device */
844 if (!file->f_op->get_unmapped_area)
845 capabilities &= ~NOMMU_MAP_DIRECT;
846 if (!(file->f_mode & FMODE_CAN_READ))
847 capabilities &= ~NOMMU_MAP_COPY;
848
849 /* The file shall have been opened with read permission. */
850 if (!(file->f_mode & FMODE_READ))
851 return -EACCES;
852
853 if (flags & MAP_SHARED) {
854 /* do checks for writing, appending and locking */
855 if ((prot & PROT_WRITE) &&
856 !(file->f_mode & FMODE_WRITE))
857 return -EACCES;
858
859 if (IS_APPEND(file_inode(file)) &&
860 (file->f_mode & FMODE_WRITE))
861 return -EACCES;
862
863 if (locks_verify_locked(file))
864 return -EAGAIN;
865
866 if (!(capabilities & NOMMU_MAP_DIRECT))
867 return -ENODEV;
868
869 /* we mustn't privatise shared mappings */
870 capabilities &= ~NOMMU_MAP_COPY;
871 } else {
872 /* we're going to read the file into private memory we
873 * allocate */
874 if (!(capabilities & NOMMU_MAP_COPY))
875 return -ENODEV;
876
877 /* we don't permit a private writable mapping to be
878 * shared with the backing device */
879 if (prot & PROT_WRITE)
880 capabilities &= ~NOMMU_MAP_DIRECT;
881 }
882
883 if (capabilities & NOMMU_MAP_DIRECT) {
884 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
885 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
886 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
887 ) {
888 capabilities &= ~NOMMU_MAP_DIRECT;
889 if (flags & MAP_SHARED) {
890 pr_warn("MAP_SHARED not completely supported on !MMU\n");
891 return -EINVAL;
892 }
893 }
894 }
895
896 /* handle executable mappings and implied executable
897 * mappings */
898 if (path_noexec(&file->f_path)) {
899 if (prot & PROT_EXEC)
900 return -EPERM;
901 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
902 /* handle implication of PROT_EXEC by PROT_READ */
903 if (current->personality & READ_IMPLIES_EXEC) {
904 if (capabilities & NOMMU_MAP_EXEC)
905 prot |= PROT_EXEC;
906 }
907 } else if ((prot & PROT_READ) &&
908 (prot & PROT_EXEC) &&
909 !(capabilities & NOMMU_MAP_EXEC)
910 ) {
911 /* backing file is not executable, try to copy */
912 capabilities &= ~NOMMU_MAP_DIRECT;
913 }
914 } else {
915 /* anonymous mappings are always memory backed and can be
916 * privately mapped
917 */
918 capabilities = NOMMU_MAP_COPY;
919
920 /* handle PROT_EXEC implication by PROT_READ */
921 if ((prot & PROT_READ) &&
922 (current->personality & READ_IMPLIES_EXEC))
923 prot |= PROT_EXEC;
924 }
925
926 /* allow the security API to have its say */
927 ret = security_mmap_addr(addr);
928 if (ret < 0)
929 return ret;
930
931 /* looks okay */
932 *_capabilities = capabilities;
933 return 0;
934 }
935
936 /*
937 * we've determined that we can make the mapping, now translate what we
938 * now know into VMA flags
939 */
940 static unsigned long determine_vm_flags(struct file *file,
941 unsigned long prot,
942 unsigned long flags,
943 unsigned long capabilities)
944 {
945 unsigned long vm_flags;
946
947 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
948 /* vm_flags |= mm->def_flags; */
949
950 if (!(capabilities & NOMMU_MAP_DIRECT)) {
951 /* attempt to share read-only copies of mapped file chunks */
952 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
953 if (file && !(prot & PROT_WRITE))
954 vm_flags |= VM_MAYSHARE;
955 } else {
956 /* overlay a shareable mapping on the backing device or inode
957 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
958 * romfs/cramfs */
959 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
960 if (flags & MAP_SHARED)
961 vm_flags |= VM_SHARED;
962 }
963
964 /* refuse to let anyone share private mappings with this process if
965 * it's being traced - otherwise breakpoints set in it may interfere
966 * with another untraced process
967 */
968 if ((flags & MAP_PRIVATE) && current->ptrace)
969 vm_flags &= ~VM_MAYSHARE;
970
971 return vm_flags;
972 }
973
974 /*
975 * set up a shared mapping on a file (the driver or filesystem provides and
976 * pins the storage)
977 */
978 static int do_mmap_shared_file(struct vm_area_struct *vma)
979 {
980 int ret;
981
982 ret = call_mmap(vma->vm_file, vma);
983 if (ret == 0) {
984 vma->vm_region->vm_top = vma->vm_region->vm_end;
985 return 0;
986 }
987 if (ret != -ENOSYS)
988 return ret;
989
990 /* getting -ENOSYS indicates that direct mmap isn't possible (as
991 * opposed to tried but failed) so we can only give a suitable error as
992 * it's not possible to make a private copy if MAP_SHARED was given */
993 return -ENODEV;
994 }
995
996 /*
997 * set up a private mapping or an anonymous shared mapping
998 */
999 static int do_mmap_private(struct vm_area_struct *vma,
1000 struct vm_region *region,
1001 unsigned long len,
1002 unsigned long capabilities)
1003 {
1004 unsigned long total, point;
1005 void *base;
1006 int ret, order;
1007
1008 /* invoke the file's mapping function so that it can keep track of
1009 * shared mappings on devices or memory
1010 * - VM_MAYSHARE will be set if it may attempt to share
1011 */
1012 if (capabilities & NOMMU_MAP_DIRECT) {
1013 ret = call_mmap(vma->vm_file, vma);
1014 if (ret == 0) {
1015 /* shouldn't return success if we're not sharing */
1016 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1017 vma->vm_region->vm_top = vma->vm_region->vm_end;
1018 return 0;
1019 }
1020 if (ret != -ENOSYS)
1021 return ret;
1022
1023 /* getting an ENOSYS error indicates that direct mmap isn't
1024 * possible (as opposed to tried but failed) so we'll try to
1025 * make a private copy of the data and map that instead */
1026 }
1027
1028
1029 /* allocate some memory to hold the mapping
1030 * - note that this may not return a page-aligned address if the object
1031 * we're allocating is smaller than a page
1032 */
1033 order = get_order(len);
1034 total = 1 << order;
1035 point = len >> PAGE_SHIFT;
1036
1037 /* we don't want to allocate a power-of-2 sized page set */
1038 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1039 total = point;
1040
1041 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1042 if (!base)
1043 goto enomem;
1044
1045 atomic_long_add(total, &mmap_pages_allocated);
1046
1047 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1048 region->vm_start = (unsigned long) base;
1049 region->vm_end = region->vm_start + len;
1050 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1051
1052 vma->vm_start = region->vm_start;
1053 vma->vm_end = region->vm_start + len;
1054
1055 if (vma->vm_file) {
1056 /* read the contents of a file into the copy */
1057 loff_t fpos;
1058
1059 fpos = vma->vm_pgoff;
1060 fpos <<= PAGE_SHIFT;
1061
1062 ret = kernel_read(vma->vm_file, base, len, &fpos);
1063 if (ret < 0)
1064 goto error_free;
1065
1066 /* clear the last little bit */
1067 if (ret < len)
1068 memset(base + ret, 0, len - ret);
1069
1070 } else {
1071 vma_set_anonymous(vma);
1072 }
1073
1074 return 0;
1075
1076 error_free:
1077 free_page_series(region->vm_start, region->vm_top);
1078 region->vm_start = vma->vm_start = 0;
1079 region->vm_end = vma->vm_end = 0;
1080 region->vm_top = 0;
1081 return ret;
1082
1083 enomem:
1084 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1085 len, current->pid, current->comm);
1086 show_free_areas(0, NULL);
1087 return -ENOMEM;
1088 }
1089
1090 /*
1091 * handle mapping creation for uClinux
1092 */
1093 unsigned long do_mmap(struct file *file,
1094 unsigned long addr,
1095 unsigned long len,
1096 unsigned long prot,
1097 unsigned long flags,
1098 vm_flags_t vm_flags,
1099 unsigned long pgoff,
1100 unsigned long *populate,
1101 struct list_head *uf)
1102 {
1103 struct vm_area_struct *vma;
1104 struct vm_region *region;
1105 struct rb_node *rb;
1106 unsigned long capabilities, result;
1107 int ret;
1108
1109 *populate = 0;
1110
1111 /* decide whether we should attempt the mapping, and if so what sort of
1112 * mapping */
1113 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1114 &capabilities);
1115 if (ret < 0)
1116 return ret;
1117
1118 /* we ignore the address hint */
1119 addr = 0;
1120 len = PAGE_ALIGN(len);
1121
1122 /* we've determined that we can make the mapping, now translate what we
1123 * now know into VMA flags */
1124 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1125
1126 /* we're going to need to record the mapping */
1127 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1128 if (!region)
1129 goto error_getting_region;
1130
1131 vma = vm_area_alloc(current->mm);
1132 if (!vma)
1133 goto error_getting_vma;
1134
1135 region->vm_usage = 1;
1136 region->vm_flags = vm_flags;
1137 region->vm_pgoff = pgoff;
1138
1139 vma->vm_flags = vm_flags;
1140 vma->vm_pgoff = pgoff;
1141
1142 if (file) {
1143 region->vm_file = get_file(file);
1144 vma->vm_file = get_file(file);
1145 }
1146
1147 down_write(&nommu_region_sem);
1148
1149 /* if we want to share, we need to check for regions created by other
1150 * mmap() calls that overlap with our proposed mapping
1151 * - we can only share with a superset match on most regular files
1152 * - shared mappings on character devices and memory backed files are
1153 * permitted to overlap inexactly as far as we are concerned for in
1154 * these cases, sharing is handled in the driver or filesystem rather
1155 * than here
1156 */
1157 if (vm_flags & VM_MAYSHARE) {
1158 struct vm_region *pregion;
1159 unsigned long pglen, rpglen, pgend, rpgend, start;
1160
1161 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1162 pgend = pgoff + pglen;
1163
1164 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1165 pregion = rb_entry(rb, struct vm_region, vm_rb);
1166
1167 if (!(pregion->vm_flags & VM_MAYSHARE))
1168 continue;
1169
1170 /* search for overlapping mappings on the same file */
1171 if (file_inode(pregion->vm_file) !=
1172 file_inode(file))
1173 continue;
1174
1175 if (pregion->vm_pgoff >= pgend)
1176 continue;
1177
1178 rpglen = pregion->vm_end - pregion->vm_start;
1179 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1180 rpgend = pregion->vm_pgoff + rpglen;
1181 if (pgoff >= rpgend)
1182 continue;
1183
1184 /* handle inexactly overlapping matches between
1185 * mappings */
1186 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1187 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1188 /* new mapping is not a subset of the region */
1189 if (!(capabilities & NOMMU_MAP_DIRECT))
1190 goto sharing_violation;
1191 continue;
1192 }
1193
1194 /* we've found a region we can share */
1195 pregion->vm_usage++;
1196 vma->vm_region = pregion;
1197 start = pregion->vm_start;
1198 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1199 vma->vm_start = start;
1200 vma->vm_end = start + len;
1201
1202 if (pregion->vm_flags & VM_MAPPED_COPY)
1203 vma->vm_flags |= VM_MAPPED_COPY;
1204 else {
1205 ret = do_mmap_shared_file(vma);
1206 if (ret < 0) {
1207 vma->vm_region = NULL;
1208 vma->vm_start = 0;
1209 vma->vm_end = 0;
1210 pregion->vm_usage--;
1211 pregion = NULL;
1212 goto error_just_free;
1213 }
1214 }
1215 fput(region->vm_file);
1216 kmem_cache_free(vm_region_jar, region);
1217 region = pregion;
1218 result = start;
1219 goto share;
1220 }
1221
1222 /* obtain the address at which to make a shared mapping
1223 * - this is the hook for quasi-memory character devices to
1224 * tell us the location of a shared mapping
1225 */
1226 if (capabilities & NOMMU_MAP_DIRECT) {
1227 addr = file->f_op->get_unmapped_area(file, addr, len,
1228 pgoff, flags);
1229 if (IS_ERR_VALUE(addr)) {
1230 ret = addr;
1231 if (ret != -ENOSYS)
1232 goto error_just_free;
1233
1234 /* the driver refused to tell us where to site
1235 * the mapping so we'll have to attempt to copy
1236 * it */
1237 ret = -ENODEV;
1238 if (!(capabilities & NOMMU_MAP_COPY))
1239 goto error_just_free;
1240
1241 capabilities &= ~NOMMU_MAP_DIRECT;
1242 } else {
1243 vma->vm_start = region->vm_start = addr;
1244 vma->vm_end = region->vm_end = addr + len;
1245 }
1246 }
1247 }
1248
1249 vma->vm_region = region;
1250
1251 /* set up the mapping
1252 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1253 */
1254 if (file && vma->vm_flags & VM_SHARED)
1255 ret = do_mmap_shared_file(vma);
1256 else
1257 ret = do_mmap_private(vma, region, len, capabilities);
1258 if (ret < 0)
1259 goto error_just_free;
1260 add_nommu_region(region);
1261
1262 /* clear anonymous mappings that don't ask for uninitialized data */
1263 if (!vma->vm_file &&
1264 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1265 !(flags & MAP_UNINITIALIZED)))
1266 memset((void *)region->vm_start, 0,
1267 region->vm_end - region->vm_start);
1268
1269 /* okay... we have a mapping; now we have to register it */
1270 result = vma->vm_start;
1271
1272 current->mm->total_vm += len >> PAGE_SHIFT;
1273
1274 share:
1275 add_vma_to_mm(current->mm, vma);
1276
1277 /* we flush the region from the icache only when the first executable
1278 * mapping of it is made */
1279 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1280 flush_icache_user_range(region->vm_start, region->vm_end);
1281 region->vm_icache_flushed = true;
1282 }
1283
1284 up_write(&nommu_region_sem);
1285
1286 return result;
1287
1288 error_just_free:
1289 up_write(&nommu_region_sem);
1290 error:
1291 if (region->vm_file)
1292 fput(region->vm_file);
1293 kmem_cache_free(vm_region_jar, region);
1294 if (vma->vm_file)
1295 fput(vma->vm_file);
1296 vm_area_free(vma);
1297 return ret;
1298
1299 sharing_violation:
1300 up_write(&nommu_region_sem);
1301 pr_warn("Attempt to share mismatched mappings\n");
1302 ret = -EINVAL;
1303 goto error;
1304
1305 error_getting_vma:
1306 kmem_cache_free(vm_region_jar, region);
1307 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1308 len, current->pid);
1309 show_free_areas(0, NULL);
1310 return -ENOMEM;
1311
1312 error_getting_region:
1313 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1314 len, current->pid);
1315 show_free_areas(0, NULL);
1316 return -ENOMEM;
1317 }
1318
1319 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1320 unsigned long prot, unsigned long flags,
1321 unsigned long fd, unsigned long pgoff)
1322 {
1323 struct file *file = NULL;
1324 unsigned long retval = -EBADF;
1325
1326 audit_mmap_fd(fd, flags);
1327 if (!(flags & MAP_ANONYMOUS)) {
1328 file = fget(fd);
1329 if (!file)
1330 goto out;
1331 }
1332
1333 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1334
1335 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1336
1337 if (file)
1338 fput(file);
1339 out:
1340 return retval;
1341 }
1342
1343 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1344 unsigned long, prot, unsigned long, flags,
1345 unsigned long, fd, unsigned long, pgoff)
1346 {
1347 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1348 }
1349
1350 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1351 struct mmap_arg_struct {
1352 unsigned long addr;
1353 unsigned long len;
1354 unsigned long prot;
1355 unsigned long flags;
1356 unsigned long fd;
1357 unsigned long offset;
1358 };
1359
1360 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1361 {
1362 struct mmap_arg_struct a;
1363
1364 if (copy_from_user(&a, arg, sizeof(a)))
1365 return -EFAULT;
1366 if (offset_in_page(a.offset))
1367 return -EINVAL;
1368
1369 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1370 a.offset >> PAGE_SHIFT);
1371 }
1372 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1373
1374 /*
1375 * split a vma into two pieces at address 'addr', a new vma is allocated either
1376 * for the first part or the tail.
1377 */
1378 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1379 unsigned long addr, int new_below)
1380 {
1381 struct vm_area_struct *new;
1382 struct vm_region *region;
1383 unsigned long npages;
1384
1385 /* we're only permitted to split anonymous regions (these should have
1386 * only a single usage on the region) */
1387 if (vma->vm_file)
1388 return -ENOMEM;
1389
1390 if (mm->map_count >= sysctl_max_map_count)
1391 return -ENOMEM;
1392
1393 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1394 if (!region)
1395 return -ENOMEM;
1396
1397 new = vm_area_dup(vma);
1398 if (!new) {
1399 kmem_cache_free(vm_region_jar, region);
1400 return -ENOMEM;
1401 }
1402
1403 /* most fields are the same, copy all, and then fixup */
1404 *region = *vma->vm_region;
1405 new->vm_region = region;
1406
1407 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1408
1409 if (new_below) {
1410 region->vm_top = region->vm_end = new->vm_end = addr;
1411 } else {
1412 region->vm_start = new->vm_start = addr;
1413 region->vm_pgoff = new->vm_pgoff += npages;
1414 }
1415
1416 if (new->vm_ops && new->vm_ops->open)
1417 new->vm_ops->open(new);
1418
1419 delete_vma_from_mm(vma);
1420 down_write(&nommu_region_sem);
1421 delete_nommu_region(vma->vm_region);
1422 if (new_below) {
1423 vma->vm_region->vm_start = vma->vm_start = addr;
1424 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1425 } else {
1426 vma->vm_region->vm_end = vma->vm_end = addr;
1427 vma->vm_region->vm_top = addr;
1428 }
1429 add_nommu_region(vma->vm_region);
1430 add_nommu_region(new->vm_region);
1431 up_write(&nommu_region_sem);
1432 add_vma_to_mm(mm, vma);
1433 add_vma_to_mm(mm, new);
1434 return 0;
1435 }
1436
1437 /*
1438 * shrink a VMA by removing the specified chunk from either the beginning or
1439 * the end
1440 */
1441 static int shrink_vma(struct mm_struct *mm,
1442 struct vm_area_struct *vma,
1443 unsigned long from, unsigned long to)
1444 {
1445 struct vm_region *region;
1446
1447 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1448 * and list */
1449 delete_vma_from_mm(vma);
1450 if (from > vma->vm_start)
1451 vma->vm_end = from;
1452 else
1453 vma->vm_start = to;
1454 add_vma_to_mm(mm, vma);
1455
1456 /* cut the backing region down to size */
1457 region = vma->vm_region;
1458 BUG_ON(region->vm_usage != 1);
1459
1460 down_write(&nommu_region_sem);
1461 delete_nommu_region(region);
1462 if (from > region->vm_start) {
1463 to = region->vm_top;
1464 region->vm_top = region->vm_end = from;
1465 } else {
1466 region->vm_start = to;
1467 }
1468 add_nommu_region(region);
1469 up_write(&nommu_region_sem);
1470
1471 free_page_series(from, to);
1472 return 0;
1473 }
1474
1475 /*
1476 * release a mapping
1477 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1478 * VMA, though it need not cover the whole VMA
1479 */
1480 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1481 {
1482 struct vm_area_struct *vma;
1483 unsigned long end;
1484 int ret;
1485
1486 len = PAGE_ALIGN(len);
1487 if (len == 0)
1488 return -EINVAL;
1489
1490 end = start + len;
1491
1492 /* find the first potentially overlapping VMA */
1493 vma = find_vma(mm, start);
1494 if (!vma) {
1495 static int limit;
1496 if (limit < 5) {
1497 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1498 current->pid, current->comm,
1499 start, start + len - 1);
1500 limit++;
1501 }
1502 return -EINVAL;
1503 }
1504
1505 /* we're allowed to split an anonymous VMA but not a file-backed one */
1506 if (vma->vm_file) {
1507 do {
1508 if (start > vma->vm_start)
1509 return -EINVAL;
1510 if (end == vma->vm_end)
1511 goto erase_whole_vma;
1512 vma = vma->vm_next;
1513 } while (vma);
1514 return -EINVAL;
1515 } else {
1516 /* the chunk must be a subset of the VMA found */
1517 if (start == vma->vm_start && end == vma->vm_end)
1518 goto erase_whole_vma;
1519 if (start < vma->vm_start || end > vma->vm_end)
1520 return -EINVAL;
1521 if (offset_in_page(start))
1522 return -EINVAL;
1523 if (end != vma->vm_end && offset_in_page(end))
1524 return -EINVAL;
1525 if (start != vma->vm_start && end != vma->vm_end) {
1526 ret = split_vma(mm, vma, start, 1);
1527 if (ret < 0)
1528 return ret;
1529 }
1530 return shrink_vma(mm, vma, start, end);
1531 }
1532
1533 erase_whole_vma:
1534 delete_vma_from_mm(vma);
1535 delete_vma(mm, vma);
1536 return 0;
1537 }
1538 EXPORT_SYMBOL(do_munmap);
1539
1540 int vm_munmap(unsigned long addr, size_t len)
1541 {
1542 struct mm_struct *mm = current->mm;
1543 int ret;
1544
1545 mmap_write_lock(mm);
1546 ret = do_munmap(mm, addr, len, NULL);
1547 mmap_write_unlock(mm);
1548 return ret;
1549 }
1550 EXPORT_SYMBOL(vm_munmap);
1551
1552 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1553 {
1554 return vm_munmap(addr, len);
1555 }
1556
1557 /*
1558 * release all the mappings made in a process's VM space
1559 */
1560 void exit_mmap(struct mm_struct *mm)
1561 {
1562 struct vm_area_struct *vma;
1563
1564 if (!mm)
1565 return;
1566
1567 mm->total_vm = 0;
1568
1569 while ((vma = mm->mmap)) {
1570 mm->mmap = vma->vm_next;
1571 delete_vma_from_mm(vma);
1572 delete_vma(mm, vma);
1573 cond_resched();
1574 }
1575 }
1576
1577 int vm_brk(unsigned long addr, unsigned long len)
1578 {
1579 return -ENOMEM;
1580 }
1581
1582 /*
1583 * expand (or shrink) an existing mapping, potentially moving it at the same
1584 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1585 *
1586 * under NOMMU conditions, we only permit changing a mapping's size, and only
1587 * as long as it stays within the region allocated by do_mmap_private() and the
1588 * block is not shareable
1589 *
1590 * MREMAP_FIXED is not supported under NOMMU conditions
1591 */
1592 static unsigned long do_mremap(unsigned long addr,
1593 unsigned long old_len, unsigned long new_len,
1594 unsigned long flags, unsigned long new_addr)
1595 {
1596 struct vm_area_struct *vma;
1597
1598 /* insanity checks first */
1599 old_len = PAGE_ALIGN(old_len);
1600 new_len = PAGE_ALIGN(new_len);
1601 if (old_len == 0 || new_len == 0)
1602 return (unsigned long) -EINVAL;
1603
1604 if (offset_in_page(addr))
1605 return -EINVAL;
1606
1607 if (flags & MREMAP_FIXED && new_addr != addr)
1608 return (unsigned long) -EINVAL;
1609
1610 vma = find_vma_exact(current->mm, addr, old_len);
1611 if (!vma)
1612 return (unsigned long) -EINVAL;
1613
1614 if (vma->vm_end != vma->vm_start + old_len)
1615 return (unsigned long) -EFAULT;
1616
1617 if (vma->vm_flags & VM_MAYSHARE)
1618 return (unsigned long) -EPERM;
1619
1620 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1621 return (unsigned long) -ENOMEM;
1622
1623 /* all checks complete - do it */
1624 vma->vm_end = vma->vm_start + new_len;
1625 return vma->vm_start;
1626 }
1627
1628 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1629 unsigned long, new_len, unsigned long, flags,
1630 unsigned long, new_addr)
1631 {
1632 unsigned long ret;
1633
1634 mmap_write_lock(current->mm);
1635 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1636 mmap_write_unlock(current->mm);
1637 return ret;
1638 }
1639
1640 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1641 unsigned int foll_flags)
1642 {
1643 return NULL;
1644 }
1645
1646 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1647 unsigned long pfn, unsigned long size, pgprot_t prot)
1648 {
1649 if (addr != (pfn << PAGE_SHIFT))
1650 return -EINVAL;
1651
1652 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1653 return 0;
1654 }
1655 EXPORT_SYMBOL(remap_pfn_range);
1656
1657 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1658 {
1659 unsigned long pfn = start >> PAGE_SHIFT;
1660 unsigned long vm_len = vma->vm_end - vma->vm_start;
1661
1662 pfn += vma->vm_pgoff;
1663 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1664 }
1665 EXPORT_SYMBOL(vm_iomap_memory);
1666
1667 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1668 unsigned long pgoff)
1669 {
1670 unsigned int size = vma->vm_end - vma->vm_start;
1671
1672 if (!(vma->vm_flags & VM_USERMAP))
1673 return -EINVAL;
1674
1675 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1676 vma->vm_end = vma->vm_start + size;
1677
1678 return 0;
1679 }
1680 EXPORT_SYMBOL(remap_vmalloc_range);
1681
1682 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1683 unsigned long len, unsigned long pgoff, unsigned long flags)
1684 {
1685 return -ENOMEM;
1686 }
1687
1688 vm_fault_t filemap_fault(struct vm_fault *vmf)
1689 {
1690 BUG();
1691 return 0;
1692 }
1693 EXPORT_SYMBOL(filemap_fault);
1694
1695 void filemap_map_pages(struct vm_fault *vmf,
1696 pgoff_t start_pgoff, pgoff_t end_pgoff)
1697 {
1698 BUG();
1699 }
1700 EXPORT_SYMBOL(filemap_map_pages);
1701
1702 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1703 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1704 {
1705 struct vm_area_struct *vma;
1706 int write = gup_flags & FOLL_WRITE;
1707
1708 if (mmap_read_lock_killable(mm))
1709 return 0;
1710
1711 /* the access must start within one of the target process's mappings */
1712 vma = find_vma(mm, addr);
1713 if (vma) {
1714 /* don't overrun this mapping */
1715 if (addr + len >= vma->vm_end)
1716 len = vma->vm_end - addr;
1717
1718 /* only read or write mappings where it is permitted */
1719 if (write && vma->vm_flags & VM_MAYWRITE)
1720 copy_to_user_page(vma, NULL, addr,
1721 (void *) addr, buf, len);
1722 else if (!write && vma->vm_flags & VM_MAYREAD)
1723 copy_from_user_page(vma, NULL, addr,
1724 buf, (void *) addr, len);
1725 else
1726 len = 0;
1727 } else {
1728 len = 0;
1729 }
1730
1731 mmap_read_unlock(mm);
1732
1733 return len;
1734 }
1735
1736 /**
1737 * access_remote_vm - access another process' address space
1738 * @mm: the mm_struct of the target address space
1739 * @addr: start address to access
1740 * @buf: source or destination buffer
1741 * @len: number of bytes to transfer
1742 * @gup_flags: flags modifying lookup behaviour
1743 *
1744 * The caller must hold a reference on @mm.
1745 */
1746 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1747 void *buf, int len, unsigned int gup_flags)
1748 {
1749 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1750 }
1751
1752 /*
1753 * Access another process' address space.
1754 * - source/target buffer must be kernel space
1755 */
1756 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1757 unsigned int gup_flags)
1758 {
1759 struct mm_struct *mm;
1760
1761 if (addr + len < addr)
1762 return 0;
1763
1764 mm = get_task_mm(tsk);
1765 if (!mm)
1766 return 0;
1767
1768 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1769
1770 mmput(mm);
1771 return len;
1772 }
1773 EXPORT_SYMBOL_GPL(access_process_vm);
1774
1775 /**
1776 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1777 * @inode: The inode to check
1778 * @size: The current filesize of the inode
1779 * @newsize: The proposed filesize of the inode
1780 *
1781 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1782 * make sure that that any outstanding VMAs aren't broken and then shrink the
1783 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1784 * automatically grant mappings that are too large.
1785 */
1786 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1787 size_t newsize)
1788 {
1789 struct vm_area_struct *vma;
1790 struct vm_region *region;
1791 pgoff_t low, high;
1792 size_t r_size, r_top;
1793
1794 low = newsize >> PAGE_SHIFT;
1795 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1796
1797 down_write(&nommu_region_sem);
1798 i_mmap_lock_read(inode->i_mapping);
1799
1800 /* search for VMAs that fall within the dead zone */
1801 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1802 /* found one - only interested if it's shared out of the page
1803 * cache */
1804 if (vma->vm_flags & VM_SHARED) {
1805 i_mmap_unlock_read(inode->i_mapping);
1806 up_write(&nommu_region_sem);
1807 return -ETXTBSY; /* not quite true, but near enough */
1808 }
1809 }
1810
1811 /* reduce any regions that overlap the dead zone - if in existence,
1812 * these will be pointed to by VMAs that don't overlap the dead zone
1813 *
1814 * we don't check for any regions that start beyond the EOF as there
1815 * shouldn't be any
1816 */
1817 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1818 if (!(vma->vm_flags & VM_SHARED))
1819 continue;
1820
1821 region = vma->vm_region;
1822 r_size = region->vm_top - region->vm_start;
1823 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1824
1825 if (r_top > newsize) {
1826 region->vm_top -= r_top - newsize;
1827 if (region->vm_end > region->vm_top)
1828 region->vm_end = region->vm_top;
1829 }
1830 }
1831
1832 i_mmap_unlock_read(inode->i_mapping);
1833 up_write(&nommu_region_sem);
1834 return 0;
1835 }
1836
1837 /*
1838 * Initialise sysctl_user_reserve_kbytes.
1839 *
1840 * This is intended to prevent a user from starting a single memory hogging
1841 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1842 * mode.
1843 *
1844 * The default value is min(3% of free memory, 128MB)
1845 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1846 */
1847 static int __meminit init_user_reserve(void)
1848 {
1849 unsigned long free_kbytes;
1850
1851 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1852
1853 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1854 return 0;
1855 }
1856 subsys_initcall(init_user_reserve);
1857
1858 /*
1859 * Initialise sysctl_admin_reserve_kbytes.
1860 *
1861 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1862 * to log in and kill a memory hogging process.
1863 *
1864 * Systems with more than 256MB will reserve 8MB, enough to recover
1865 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1866 * only reserve 3% of free pages by default.
1867 */
1868 static int __meminit init_admin_reserve(void)
1869 {
1870 unsigned long free_kbytes;
1871
1872 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1873
1874 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1875 return 0;
1876 }
1877 subsys_initcall(init_admin_reserve);