]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/nommu.c
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[thirdparty/linux.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67 * Return the total memory allocated for this pointer, not
68 * just what the caller asked for.
69 *
70 * Doesn't have to be accurate, i.e. may have races.
71 */
72 unsigned int kobjsize(const void *objp)
73 {
74 struct page *page;
75
76 /*
77 * If the object we have should not have ksize performed on it,
78 * return size of 0
79 */
80 if (!objp || !virt_addr_valid(objp))
81 return 0;
82
83 page = virt_to_head_page(objp);
84
85 /*
86 * If the allocator sets PageSlab, we know the pointer came from
87 * kmalloc().
88 */
89 if (PageSlab(page))
90 return ksize(objp);
91
92 /*
93 * If it's not a compound page, see if we have a matching VMA
94 * region. This test is intentionally done in reverse order,
95 * so if there's no VMA, we still fall through and hand back
96 * PAGE_SIZE for 0-order pages.
97 */
98 if (!PageCompound(page)) {
99 struct vm_area_struct *vma;
100
101 vma = find_vma(current->mm, (unsigned long)objp);
102 if (vma)
103 return vma->vm_end - vma->vm_start;
104 }
105
106 /*
107 * The ksize() function is only guaranteed to work for pointers
108 * returned by kmalloc(). So handle arbitrary pointers here.
109 */
110 return page_size(page);
111 }
112
113 /**
114 * follow_pfn - look up PFN at a user virtual address
115 * @vma: memory mapping
116 * @address: user virtual address
117 * @pfn: location to store found PFN
118 *
119 * Only IO mappings and raw PFN mappings are allowed.
120 *
121 * Returns zero and the pfn at @pfn on success, -ve otherwise.
122 */
123 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124 unsigned long *pfn)
125 {
126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127 return -EINVAL;
128
129 *pfn = address >> PAGE_SHIFT;
130 return 0;
131 }
132 EXPORT_SYMBOL(follow_pfn);
133
134 LIST_HEAD(vmap_area_list);
135
136 void vfree(const void *addr)
137 {
138 kfree(addr);
139 }
140 EXPORT_SYMBOL(vfree);
141
142 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
143 {
144 /*
145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
146 * returns only a logical address.
147 */
148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
149 }
150 EXPORT_SYMBOL(__vmalloc);
151
152 void *__vmalloc_node_range(unsigned long size, unsigned long align,
153 unsigned long start, unsigned long end, gfp_t gfp_mask,
154 pgprot_t prot, unsigned long vm_flags, int node,
155 const void *caller)
156 {
157 return __vmalloc(size, gfp_mask);
158 }
159
160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
161 int node, const void *caller)
162 {
163 return __vmalloc(size, gfp_mask);
164 }
165
166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
167 {
168 void *ret;
169
170 ret = __vmalloc(size, flags);
171 if (ret) {
172 struct vm_area_struct *vma;
173
174 mmap_write_lock(current->mm);
175 vma = find_vma(current->mm, (unsigned long)ret);
176 if (vma)
177 vm_flags_set(vma, VM_USERMAP);
178 mmap_write_unlock(current->mm);
179 }
180
181 return ret;
182 }
183
184 void *vmalloc_user(unsigned long size)
185 {
186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
187 }
188 EXPORT_SYMBOL(vmalloc_user);
189
190 struct page *vmalloc_to_page(const void *addr)
191 {
192 return virt_to_page(addr);
193 }
194 EXPORT_SYMBOL(vmalloc_to_page);
195
196 unsigned long vmalloc_to_pfn(const void *addr)
197 {
198 return page_to_pfn(virt_to_page(addr));
199 }
200 EXPORT_SYMBOL(vmalloc_to_pfn);
201
202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
203 {
204 /* Don't allow overflow */
205 if ((unsigned long) addr + count < count)
206 count = -(unsigned long) addr;
207
208 return copy_to_iter(addr, count, iter);
209 }
210
211 /*
212 * vmalloc - allocate virtually contiguous memory
213 *
214 * @size: allocation size
215 *
216 * Allocate enough pages to cover @size from the page level
217 * allocator and map them into contiguous kernel virtual space.
218 *
219 * For tight control over page level allocator and protection flags
220 * use __vmalloc() instead.
221 */
222 void *vmalloc(unsigned long size)
223 {
224 return __vmalloc(size, GFP_KERNEL);
225 }
226 EXPORT_SYMBOL(vmalloc);
227
228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
229
230 /*
231 * vzalloc - allocate virtually contiguous memory with zero fill
232 *
233 * @size: allocation size
234 *
235 * Allocate enough pages to cover @size from the page level
236 * allocator and map them into contiguous kernel virtual space.
237 * The memory allocated is set to zero.
238 *
239 * For tight control over page level allocator and protection flags
240 * use __vmalloc() instead.
241 */
242 void *vzalloc(unsigned long size)
243 {
244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247
248 /**
249 * vmalloc_node - allocate memory on a specific node
250 * @size: allocation size
251 * @node: numa node
252 *
253 * Allocate enough pages to cover @size from the page level
254 * allocator and map them into contiguous kernel virtual space.
255 *
256 * For tight control over page level allocator and protection flags
257 * use __vmalloc() instead.
258 */
259 void *vmalloc_node(unsigned long size, int node)
260 {
261 return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264
265 /**
266 * vzalloc_node - allocate memory on a specific node with zero fill
267 * @size: allocation size
268 * @node: numa node
269 *
270 * Allocate enough pages to cover @size from the page level
271 * allocator and map them into contiguous kernel virtual space.
272 * The memory allocated is set to zero.
273 *
274 * For tight control over page level allocator and protection flags
275 * use __vmalloc() instead.
276 */
277 void *vzalloc_node(unsigned long size, int node)
278 {
279 return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282
283 /**
284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
285 * @size: allocation size
286 *
287 * Allocate enough 32bit PA addressable pages to cover @size from the
288 * page level allocator and map them into contiguous kernel virtual space.
289 */
290 void *vmalloc_32(unsigned long size)
291 {
292 return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295
296 /**
297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298 * @size: allocation size
299 *
300 * The resulting memory area is 32bit addressable and zeroed so it can be
301 * mapped to userspace without leaking data.
302 *
303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304 * remap_vmalloc_range() are permissible.
305 */
306 void *vmalloc_32_user(unsigned long size)
307 {
308 /*
309 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 * but for now this can simply use vmalloc_user() directly.
311 */
312 return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315
316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318 BUG();
319 return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322
323 void vunmap(const void *addr)
324 {
325 BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328
329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331 BUG();
332 return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335
336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338 BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341
342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346
347 void free_vm_area(struct vm_struct *area)
348 {
349 BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352
353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 struct page *page)
355 {
356 return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359
360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 unsigned long num)
362 {
363 return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366
367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 unsigned long num)
369 {
370 return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373
374 /*
375 * sys_brk() for the most part doesn't need the global kernel
376 * lock, except when an application is doing something nasty
377 * like trying to un-brk an area that has already been mapped
378 * to a regular file. in this case, the unmapping will need
379 * to invoke file system routines that need the global lock.
380 */
381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383 struct mm_struct *mm = current->mm;
384
385 if (brk < mm->start_brk || brk > mm->context.end_brk)
386 return mm->brk;
387
388 if (mm->brk == brk)
389 return mm->brk;
390
391 /*
392 * Always allow shrinking brk
393 */
394 if (brk <= mm->brk) {
395 mm->brk = brk;
396 return brk;
397 }
398
399 /*
400 * Ok, looks good - let it rip.
401 */
402 flush_icache_user_range(mm->brk, brk);
403 return mm->brk = brk;
404 }
405
406 /*
407 * initialise the percpu counter for VM and region record slabs
408 */
409 void __init mmap_init(void)
410 {
411 int ret;
412
413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 VM_BUG_ON(ret);
415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417
418 /*
419 * validate the region tree
420 * - the caller must hold the region lock
421 */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
423 static noinline void validate_nommu_regions(void)
424 {
425 struct vm_region *region, *last;
426 struct rb_node *p, *lastp;
427
428 lastp = rb_first(&nommu_region_tree);
429 if (!lastp)
430 return;
431
432 last = rb_entry(lastp, struct vm_region, vm_rb);
433 BUG_ON(last->vm_end <= last->vm_start);
434 BUG_ON(last->vm_top < last->vm_end);
435
436 while ((p = rb_next(lastp))) {
437 region = rb_entry(p, struct vm_region, vm_rb);
438 last = rb_entry(lastp, struct vm_region, vm_rb);
439
440 BUG_ON(region->vm_end <= region->vm_start);
441 BUG_ON(region->vm_top < region->vm_end);
442 BUG_ON(region->vm_start < last->vm_top);
443
444 lastp = p;
445 }
446 }
447 #else
448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452
453 /*
454 * add a region into the global tree
455 */
456 static void add_nommu_region(struct vm_region *region)
457 {
458 struct vm_region *pregion;
459 struct rb_node **p, *parent;
460
461 validate_nommu_regions();
462
463 parent = NULL;
464 p = &nommu_region_tree.rb_node;
465 while (*p) {
466 parent = *p;
467 pregion = rb_entry(parent, struct vm_region, vm_rb);
468 if (region->vm_start < pregion->vm_start)
469 p = &(*p)->rb_left;
470 else if (region->vm_start > pregion->vm_start)
471 p = &(*p)->rb_right;
472 else if (pregion == region)
473 return;
474 else
475 BUG();
476 }
477
478 rb_link_node(&region->vm_rb, parent, p);
479 rb_insert_color(&region->vm_rb, &nommu_region_tree);
480
481 validate_nommu_regions();
482 }
483
484 /*
485 * delete a region from the global tree
486 */
487 static void delete_nommu_region(struct vm_region *region)
488 {
489 BUG_ON(!nommu_region_tree.rb_node);
490
491 validate_nommu_regions();
492 rb_erase(&region->vm_rb, &nommu_region_tree);
493 validate_nommu_regions();
494 }
495
496 /*
497 * free a contiguous series of pages
498 */
499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501 for (; from < to; from += PAGE_SIZE) {
502 struct page *page = virt_to_page((void *)from);
503
504 atomic_long_dec(&mmap_pages_allocated);
505 put_page(page);
506 }
507 }
508
509 /*
510 * release a reference to a region
511 * - the caller must hold the region semaphore for writing, which this releases
512 * - the region may not have been added to the tree yet, in which case vm_top
513 * will equal vm_start
514 */
515 static void __put_nommu_region(struct vm_region *region)
516 __releases(nommu_region_sem)
517 {
518 BUG_ON(!nommu_region_tree.rb_node);
519
520 if (--region->vm_usage == 0) {
521 if (region->vm_top > region->vm_start)
522 delete_nommu_region(region);
523 up_write(&nommu_region_sem);
524
525 if (region->vm_file)
526 fput(region->vm_file);
527
528 /* IO memory and memory shared directly out of the pagecache
529 * from ramfs/tmpfs mustn't be released here */
530 if (region->vm_flags & VM_MAPPED_COPY)
531 free_page_series(region->vm_start, region->vm_top);
532 kmem_cache_free(vm_region_jar, region);
533 } else {
534 up_write(&nommu_region_sem);
535 }
536 }
537
538 /*
539 * release a reference to a region
540 */
541 static void put_nommu_region(struct vm_region *region)
542 {
543 down_write(&nommu_region_sem);
544 __put_nommu_region(region);
545 }
546
547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
548 {
549 vma->vm_mm = mm;
550
551 /* add the VMA to the mapping */
552 if (vma->vm_file) {
553 struct address_space *mapping = vma->vm_file->f_mapping;
554
555 i_mmap_lock_write(mapping);
556 flush_dcache_mmap_lock(mapping);
557 vma_interval_tree_insert(vma, &mapping->i_mmap);
558 flush_dcache_mmap_unlock(mapping);
559 i_mmap_unlock_write(mapping);
560 }
561 }
562
563 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
564 {
565 vma->vm_mm->map_count--;
566 /* remove the VMA from the mapping */
567 if (vma->vm_file) {
568 struct address_space *mapping;
569 mapping = vma->vm_file->f_mapping;
570
571 i_mmap_lock_write(mapping);
572 flush_dcache_mmap_lock(mapping);
573 vma_interval_tree_remove(vma, &mapping->i_mmap);
574 flush_dcache_mmap_unlock(mapping);
575 i_mmap_unlock_write(mapping);
576 }
577 }
578
579 /*
580 * delete a VMA from its owning mm_struct and address space
581 */
582 static int delete_vma_from_mm(struct vm_area_struct *vma)
583 {
584 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
585
586 if (vma_iter_prealloc(&vmi)) {
587 pr_warn("Allocation of vma tree for process %d failed\n",
588 current->pid);
589 return -ENOMEM;
590 }
591 cleanup_vma_from_mm(vma);
592
593 /* remove from the MM's tree and list */
594 vma_iter_clear(&vmi, vma->vm_start, vma->vm_end);
595 return 0;
596 }
597 /*
598 * destroy a VMA record
599 */
600 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
601 {
602 if (vma->vm_ops && vma->vm_ops->close)
603 vma->vm_ops->close(vma);
604 if (vma->vm_file)
605 fput(vma->vm_file);
606 put_nommu_region(vma->vm_region);
607 vm_area_free(vma);
608 }
609
610 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
611 unsigned long start_addr,
612 unsigned long end_addr)
613 {
614 unsigned long index = start_addr;
615
616 mmap_assert_locked(mm);
617 return mt_find(&mm->mm_mt, &index, end_addr - 1);
618 }
619 EXPORT_SYMBOL(find_vma_intersection);
620
621 /*
622 * look up the first VMA in which addr resides, NULL if none
623 * - should be called with mm->mmap_lock at least held readlocked
624 */
625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
626 {
627 VMA_ITERATOR(vmi, mm, addr);
628
629 return vma_iter_load(&vmi);
630 }
631 EXPORT_SYMBOL(find_vma);
632
633 /*
634 * find a VMA
635 * - we don't extend stack VMAs under NOMMU conditions
636 */
637 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
638 {
639 return find_vma(mm, addr);
640 }
641
642 /*
643 * expand a stack to a given address
644 * - not supported under NOMMU conditions
645 */
646 int expand_stack(struct vm_area_struct *vma, unsigned long address)
647 {
648 return -ENOMEM;
649 }
650
651 /*
652 * look up the first VMA exactly that exactly matches addr
653 * - should be called with mm->mmap_lock at least held readlocked
654 */
655 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
656 unsigned long addr,
657 unsigned long len)
658 {
659 struct vm_area_struct *vma;
660 unsigned long end = addr + len;
661 VMA_ITERATOR(vmi, mm, addr);
662
663 vma = vma_iter_load(&vmi);
664 if (!vma)
665 return NULL;
666 if (vma->vm_start != addr)
667 return NULL;
668 if (vma->vm_end != end)
669 return NULL;
670
671 return vma;
672 }
673
674 /*
675 * determine whether a mapping should be permitted and, if so, what sort of
676 * mapping we're capable of supporting
677 */
678 static int validate_mmap_request(struct file *file,
679 unsigned long addr,
680 unsigned long len,
681 unsigned long prot,
682 unsigned long flags,
683 unsigned long pgoff,
684 unsigned long *_capabilities)
685 {
686 unsigned long capabilities, rlen;
687 int ret;
688
689 /* do the simple checks first */
690 if (flags & MAP_FIXED)
691 return -EINVAL;
692
693 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
694 (flags & MAP_TYPE) != MAP_SHARED)
695 return -EINVAL;
696
697 if (!len)
698 return -EINVAL;
699
700 /* Careful about overflows.. */
701 rlen = PAGE_ALIGN(len);
702 if (!rlen || rlen > TASK_SIZE)
703 return -ENOMEM;
704
705 /* offset overflow? */
706 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
707 return -EOVERFLOW;
708
709 if (file) {
710 /* files must support mmap */
711 if (!file->f_op->mmap)
712 return -ENODEV;
713
714 /* work out if what we've got could possibly be shared
715 * - we support chardevs that provide their own "memory"
716 * - we support files/blockdevs that are memory backed
717 */
718 if (file->f_op->mmap_capabilities) {
719 capabilities = file->f_op->mmap_capabilities(file);
720 } else {
721 /* no explicit capabilities set, so assume some
722 * defaults */
723 switch (file_inode(file)->i_mode & S_IFMT) {
724 case S_IFREG:
725 case S_IFBLK:
726 capabilities = NOMMU_MAP_COPY;
727 break;
728
729 case S_IFCHR:
730 capabilities =
731 NOMMU_MAP_DIRECT |
732 NOMMU_MAP_READ |
733 NOMMU_MAP_WRITE;
734 break;
735
736 default:
737 return -EINVAL;
738 }
739 }
740
741 /* eliminate any capabilities that we can't support on this
742 * device */
743 if (!file->f_op->get_unmapped_area)
744 capabilities &= ~NOMMU_MAP_DIRECT;
745 if (!(file->f_mode & FMODE_CAN_READ))
746 capabilities &= ~NOMMU_MAP_COPY;
747
748 /* The file shall have been opened with read permission. */
749 if (!(file->f_mode & FMODE_READ))
750 return -EACCES;
751
752 if (flags & MAP_SHARED) {
753 /* do checks for writing, appending and locking */
754 if ((prot & PROT_WRITE) &&
755 !(file->f_mode & FMODE_WRITE))
756 return -EACCES;
757
758 if (IS_APPEND(file_inode(file)) &&
759 (file->f_mode & FMODE_WRITE))
760 return -EACCES;
761
762 if (!(capabilities & NOMMU_MAP_DIRECT))
763 return -ENODEV;
764
765 /* we mustn't privatise shared mappings */
766 capabilities &= ~NOMMU_MAP_COPY;
767 } else {
768 /* we're going to read the file into private memory we
769 * allocate */
770 if (!(capabilities & NOMMU_MAP_COPY))
771 return -ENODEV;
772
773 /* we don't permit a private writable mapping to be
774 * shared with the backing device */
775 if (prot & PROT_WRITE)
776 capabilities &= ~NOMMU_MAP_DIRECT;
777 }
778
779 if (capabilities & NOMMU_MAP_DIRECT) {
780 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
781 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
782 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
783 ) {
784 capabilities &= ~NOMMU_MAP_DIRECT;
785 if (flags & MAP_SHARED) {
786 pr_warn("MAP_SHARED not completely supported on !MMU\n");
787 return -EINVAL;
788 }
789 }
790 }
791
792 /* handle executable mappings and implied executable
793 * mappings */
794 if (path_noexec(&file->f_path)) {
795 if (prot & PROT_EXEC)
796 return -EPERM;
797 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
798 /* handle implication of PROT_EXEC by PROT_READ */
799 if (current->personality & READ_IMPLIES_EXEC) {
800 if (capabilities & NOMMU_MAP_EXEC)
801 prot |= PROT_EXEC;
802 }
803 } else if ((prot & PROT_READ) &&
804 (prot & PROT_EXEC) &&
805 !(capabilities & NOMMU_MAP_EXEC)
806 ) {
807 /* backing file is not executable, try to copy */
808 capabilities &= ~NOMMU_MAP_DIRECT;
809 }
810 } else {
811 /* anonymous mappings are always memory backed and can be
812 * privately mapped
813 */
814 capabilities = NOMMU_MAP_COPY;
815
816 /* handle PROT_EXEC implication by PROT_READ */
817 if ((prot & PROT_READ) &&
818 (current->personality & READ_IMPLIES_EXEC))
819 prot |= PROT_EXEC;
820 }
821
822 /* allow the security API to have its say */
823 ret = security_mmap_addr(addr);
824 if (ret < 0)
825 return ret;
826
827 /* looks okay */
828 *_capabilities = capabilities;
829 return 0;
830 }
831
832 /*
833 * we've determined that we can make the mapping, now translate what we
834 * now know into VMA flags
835 */
836 static unsigned long determine_vm_flags(struct file *file,
837 unsigned long prot,
838 unsigned long flags,
839 unsigned long capabilities)
840 {
841 unsigned long vm_flags;
842
843 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
844
845 if (!file) {
846 /*
847 * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
848 * there is no fork().
849 */
850 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
851 } else if (flags & MAP_PRIVATE) {
852 /* MAP_PRIVATE file mapping */
853 if (capabilities & NOMMU_MAP_DIRECT)
854 vm_flags |= (capabilities & NOMMU_VMFLAGS);
855 else
856 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
857
858 if (!(prot & PROT_WRITE) && !current->ptrace)
859 /*
860 * R/O private file mapping which cannot be used to
861 * modify memory, especially also not via active ptrace
862 * (e.g., set breakpoints) or later by upgrading
863 * permissions (no mprotect()). We can try overlaying
864 * the file mapping, which will work e.g., on chardevs,
865 * ramfs/tmpfs/shmfs and romfs/cramf.
866 */
867 vm_flags |= VM_MAYOVERLAY;
868 } else {
869 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
870 vm_flags |= VM_SHARED | VM_MAYSHARE |
871 (capabilities & NOMMU_VMFLAGS);
872 }
873
874 return vm_flags;
875 }
876
877 /*
878 * set up a shared mapping on a file (the driver or filesystem provides and
879 * pins the storage)
880 */
881 static int do_mmap_shared_file(struct vm_area_struct *vma)
882 {
883 int ret;
884
885 ret = call_mmap(vma->vm_file, vma);
886 if (ret == 0) {
887 vma->vm_region->vm_top = vma->vm_region->vm_end;
888 return 0;
889 }
890 if (ret != -ENOSYS)
891 return ret;
892
893 /* getting -ENOSYS indicates that direct mmap isn't possible (as
894 * opposed to tried but failed) so we can only give a suitable error as
895 * it's not possible to make a private copy if MAP_SHARED was given */
896 return -ENODEV;
897 }
898
899 /*
900 * set up a private mapping or an anonymous shared mapping
901 */
902 static int do_mmap_private(struct vm_area_struct *vma,
903 struct vm_region *region,
904 unsigned long len,
905 unsigned long capabilities)
906 {
907 unsigned long total, point;
908 void *base;
909 int ret, order;
910
911 /*
912 * Invoke the file's mapping function so that it can keep track of
913 * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
914 * it may attempt to share, which will make is_nommu_shared_mapping()
915 * happy.
916 */
917 if (capabilities & NOMMU_MAP_DIRECT) {
918 ret = call_mmap(vma->vm_file, vma);
919 /* shouldn't return success if we're not sharing */
920 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
921 ret = -ENOSYS;
922 if (ret == 0) {
923 vma->vm_region->vm_top = vma->vm_region->vm_end;
924 return 0;
925 }
926 if (ret != -ENOSYS)
927 return ret;
928
929 /* getting an ENOSYS error indicates that direct mmap isn't
930 * possible (as opposed to tried but failed) so we'll try to
931 * make a private copy of the data and map that instead */
932 }
933
934
935 /* allocate some memory to hold the mapping
936 * - note that this may not return a page-aligned address if the object
937 * we're allocating is smaller than a page
938 */
939 order = get_order(len);
940 total = 1 << order;
941 point = len >> PAGE_SHIFT;
942
943 /* we don't want to allocate a power-of-2 sized page set */
944 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
945 total = point;
946
947 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
948 if (!base)
949 goto enomem;
950
951 atomic_long_add(total, &mmap_pages_allocated);
952
953 vm_flags_set(vma, VM_MAPPED_COPY);
954 region->vm_flags = vma->vm_flags;
955 region->vm_start = (unsigned long) base;
956 region->vm_end = region->vm_start + len;
957 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
958
959 vma->vm_start = region->vm_start;
960 vma->vm_end = region->vm_start + len;
961
962 if (vma->vm_file) {
963 /* read the contents of a file into the copy */
964 loff_t fpos;
965
966 fpos = vma->vm_pgoff;
967 fpos <<= PAGE_SHIFT;
968
969 ret = kernel_read(vma->vm_file, base, len, &fpos);
970 if (ret < 0)
971 goto error_free;
972
973 /* clear the last little bit */
974 if (ret < len)
975 memset(base + ret, 0, len - ret);
976
977 } else {
978 vma_set_anonymous(vma);
979 }
980
981 return 0;
982
983 error_free:
984 free_page_series(region->vm_start, region->vm_top);
985 region->vm_start = vma->vm_start = 0;
986 region->vm_end = vma->vm_end = 0;
987 region->vm_top = 0;
988 return ret;
989
990 enomem:
991 pr_err("Allocation of length %lu from process %d (%s) failed\n",
992 len, current->pid, current->comm);
993 show_free_areas(0, NULL);
994 return -ENOMEM;
995 }
996
997 /*
998 * handle mapping creation for uClinux
999 */
1000 unsigned long do_mmap(struct file *file,
1001 unsigned long addr,
1002 unsigned long len,
1003 unsigned long prot,
1004 unsigned long flags,
1005 unsigned long pgoff,
1006 unsigned long *populate,
1007 struct list_head *uf)
1008 {
1009 struct vm_area_struct *vma;
1010 struct vm_region *region;
1011 struct rb_node *rb;
1012 vm_flags_t vm_flags;
1013 unsigned long capabilities, result;
1014 int ret;
1015 VMA_ITERATOR(vmi, current->mm, 0);
1016
1017 *populate = 0;
1018
1019 /* decide whether we should attempt the mapping, and if so what sort of
1020 * mapping */
1021 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1022 &capabilities);
1023 if (ret < 0)
1024 return ret;
1025
1026 /* we ignore the address hint */
1027 addr = 0;
1028 len = PAGE_ALIGN(len);
1029
1030 /* we've determined that we can make the mapping, now translate what we
1031 * now know into VMA flags */
1032 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1033
1034
1035 /* we're going to need to record the mapping */
1036 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1037 if (!region)
1038 goto error_getting_region;
1039
1040 vma = vm_area_alloc(current->mm);
1041 if (!vma)
1042 goto error_getting_vma;
1043
1044 if (vma_iter_prealloc(&vmi))
1045 goto error_vma_iter_prealloc;
1046
1047 region->vm_usage = 1;
1048 region->vm_flags = vm_flags;
1049 region->vm_pgoff = pgoff;
1050
1051 vm_flags_init(vma, vm_flags);
1052 vma->vm_pgoff = pgoff;
1053
1054 if (file) {
1055 region->vm_file = get_file(file);
1056 vma->vm_file = get_file(file);
1057 }
1058
1059 down_write(&nommu_region_sem);
1060
1061 /* if we want to share, we need to check for regions created by other
1062 * mmap() calls that overlap with our proposed mapping
1063 * - we can only share with a superset match on most regular files
1064 * - shared mappings on character devices and memory backed files are
1065 * permitted to overlap inexactly as far as we are concerned for in
1066 * these cases, sharing is handled in the driver or filesystem rather
1067 * than here
1068 */
1069 if (is_nommu_shared_mapping(vm_flags)) {
1070 struct vm_region *pregion;
1071 unsigned long pglen, rpglen, pgend, rpgend, start;
1072
1073 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1074 pgend = pgoff + pglen;
1075
1076 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1077 pregion = rb_entry(rb, struct vm_region, vm_rb);
1078
1079 if (!is_nommu_shared_mapping(pregion->vm_flags))
1080 continue;
1081
1082 /* search for overlapping mappings on the same file */
1083 if (file_inode(pregion->vm_file) !=
1084 file_inode(file))
1085 continue;
1086
1087 if (pregion->vm_pgoff >= pgend)
1088 continue;
1089
1090 rpglen = pregion->vm_end - pregion->vm_start;
1091 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1092 rpgend = pregion->vm_pgoff + rpglen;
1093 if (pgoff >= rpgend)
1094 continue;
1095
1096 /* handle inexactly overlapping matches between
1097 * mappings */
1098 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1099 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1100 /* new mapping is not a subset of the region */
1101 if (!(capabilities & NOMMU_MAP_DIRECT))
1102 goto sharing_violation;
1103 continue;
1104 }
1105
1106 /* we've found a region we can share */
1107 pregion->vm_usage++;
1108 vma->vm_region = pregion;
1109 start = pregion->vm_start;
1110 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1111 vma->vm_start = start;
1112 vma->vm_end = start + len;
1113
1114 if (pregion->vm_flags & VM_MAPPED_COPY)
1115 vm_flags_set(vma, VM_MAPPED_COPY);
1116 else {
1117 ret = do_mmap_shared_file(vma);
1118 if (ret < 0) {
1119 vma->vm_region = NULL;
1120 vma->vm_start = 0;
1121 vma->vm_end = 0;
1122 pregion->vm_usage--;
1123 pregion = NULL;
1124 goto error_just_free;
1125 }
1126 }
1127 fput(region->vm_file);
1128 kmem_cache_free(vm_region_jar, region);
1129 region = pregion;
1130 result = start;
1131 goto share;
1132 }
1133
1134 /* obtain the address at which to make a shared mapping
1135 * - this is the hook for quasi-memory character devices to
1136 * tell us the location of a shared mapping
1137 */
1138 if (capabilities & NOMMU_MAP_DIRECT) {
1139 addr = file->f_op->get_unmapped_area(file, addr, len,
1140 pgoff, flags);
1141 if (IS_ERR_VALUE(addr)) {
1142 ret = addr;
1143 if (ret != -ENOSYS)
1144 goto error_just_free;
1145
1146 /* the driver refused to tell us where to site
1147 * the mapping so we'll have to attempt to copy
1148 * it */
1149 ret = -ENODEV;
1150 if (!(capabilities & NOMMU_MAP_COPY))
1151 goto error_just_free;
1152
1153 capabilities &= ~NOMMU_MAP_DIRECT;
1154 } else {
1155 vma->vm_start = region->vm_start = addr;
1156 vma->vm_end = region->vm_end = addr + len;
1157 }
1158 }
1159 }
1160
1161 vma->vm_region = region;
1162
1163 /* set up the mapping
1164 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1165 */
1166 if (file && vma->vm_flags & VM_SHARED)
1167 ret = do_mmap_shared_file(vma);
1168 else
1169 ret = do_mmap_private(vma, region, len, capabilities);
1170 if (ret < 0)
1171 goto error_just_free;
1172 add_nommu_region(region);
1173
1174 /* clear anonymous mappings that don't ask for uninitialized data */
1175 if (!vma->vm_file &&
1176 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1177 !(flags & MAP_UNINITIALIZED)))
1178 memset((void *)region->vm_start, 0,
1179 region->vm_end - region->vm_start);
1180
1181 /* okay... we have a mapping; now we have to register it */
1182 result = vma->vm_start;
1183
1184 current->mm->total_vm += len >> PAGE_SHIFT;
1185
1186 share:
1187 BUG_ON(!vma->vm_region);
1188 setup_vma_to_mm(vma, current->mm);
1189 current->mm->map_count++;
1190 /* add the VMA to the tree */
1191 vma_iter_store(&vmi, vma);
1192
1193 /* we flush the region from the icache only when the first executable
1194 * mapping of it is made */
1195 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1196 flush_icache_user_range(region->vm_start, region->vm_end);
1197 region->vm_icache_flushed = true;
1198 }
1199
1200 up_write(&nommu_region_sem);
1201
1202 return result;
1203
1204 error_just_free:
1205 up_write(&nommu_region_sem);
1206 error:
1207 vma_iter_free(&vmi);
1208 if (region->vm_file)
1209 fput(region->vm_file);
1210 kmem_cache_free(vm_region_jar, region);
1211 if (vma->vm_file)
1212 fput(vma->vm_file);
1213 vm_area_free(vma);
1214 return ret;
1215
1216 sharing_violation:
1217 up_write(&nommu_region_sem);
1218 pr_warn("Attempt to share mismatched mappings\n");
1219 ret = -EINVAL;
1220 goto error;
1221
1222 error_getting_vma:
1223 kmem_cache_free(vm_region_jar, region);
1224 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1225 len, current->pid);
1226 show_free_areas(0, NULL);
1227 return -ENOMEM;
1228
1229 error_getting_region:
1230 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1231 len, current->pid);
1232 show_free_areas(0, NULL);
1233 return -ENOMEM;
1234
1235 error_vma_iter_prealloc:
1236 kmem_cache_free(vm_region_jar, region);
1237 vm_area_free(vma);
1238 pr_warn("Allocation of vma tree for process %d failed\n", current->pid);
1239 show_free_areas(0, NULL);
1240 return -ENOMEM;
1241
1242 }
1243
1244 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1245 unsigned long prot, unsigned long flags,
1246 unsigned long fd, unsigned long pgoff)
1247 {
1248 struct file *file = NULL;
1249 unsigned long retval = -EBADF;
1250
1251 audit_mmap_fd(fd, flags);
1252 if (!(flags & MAP_ANONYMOUS)) {
1253 file = fget(fd);
1254 if (!file)
1255 goto out;
1256 }
1257
1258 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1259
1260 if (file)
1261 fput(file);
1262 out:
1263 return retval;
1264 }
1265
1266 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1267 unsigned long, prot, unsigned long, flags,
1268 unsigned long, fd, unsigned long, pgoff)
1269 {
1270 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1271 }
1272
1273 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1274 struct mmap_arg_struct {
1275 unsigned long addr;
1276 unsigned long len;
1277 unsigned long prot;
1278 unsigned long flags;
1279 unsigned long fd;
1280 unsigned long offset;
1281 };
1282
1283 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1284 {
1285 struct mmap_arg_struct a;
1286
1287 if (copy_from_user(&a, arg, sizeof(a)))
1288 return -EFAULT;
1289 if (offset_in_page(a.offset))
1290 return -EINVAL;
1291
1292 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1293 a.offset >> PAGE_SHIFT);
1294 }
1295 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1296
1297 /*
1298 * split a vma into two pieces at address 'addr', a new vma is allocated either
1299 * for the first part or the tail.
1300 */
1301 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1302 unsigned long addr, int new_below)
1303 {
1304 struct vm_area_struct *new;
1305 struct vm_region *region;
1306 unsigned long npages;
1307 struct mm_struct *mm;
1308
1309 /* we're only permitted to split anonymous regions (these should have
1310 * only a single usage on the region) */
1311 if (vma->vm_file)
1312 return -ENOMEM;
1313
1314 mm = vma->vm_mm;
1315 if (mm->map_count >= sysctl_max_map_count)
1316 return -ENOMEM;
1317
1318 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1319 if (!region)
1320 return -ENOMEM;
1321
1322 new = vm_area_dup(vma);
1323 if (!new)
1324 goto err_vma_dup;
1325
1326 if (vma_iter_prealloc(vmi)) {
1327 pr_warn("Allocation of vma tree for process %d failed\n",
1328 current->pid);
1329 goto err_vmi_preallocate;
1330 }
1331
1332 /* most fields are the same, copy all, and then fixup */
1333 *region = *vma->vm_region;
1334 new->vm_region = region;
1335
1336 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1337
1338 if (new_below) {
1339 region->vm_top = region->vm_end = new->vm_end = addr;
1340 } else {
1341 region->vm_start = new->vm_start = addr;
1342 region->vm_pgoff = new->vm_pgoff += npages;
1343 }
1344
1345 if (new->vm_ops && new->vm_ops->open)
1346 new->vm_ops->open(new);
1347
1348 down_write(&nommu_region_sem);
1349 delete_nommu_region(vma->vm_region);
1350 if (new_below) {
1351 vma->vm_region->vm_start = vma->vm_start = addr;
1352 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1353 } else {
1354 vma->vm_region->vm_end = vma->vm_end = addr;
1355 vma->vm_region->vm_top = addr;
1356 }
1357 add_nommu_region(vma->vm_region);
1358 add_nommu_region(new->vm_region);
1359 up_write(&nommu_region_sem);
1360
1361 setup_vma_to_mm(vma, mm);
1362 setup_vma_to_mm(new, mm);
1363 vma_iter_store(vmi, new);
1364 mm->map_count++;
1365 return 0;
1366
1367 err_vmi_preallocate:
1368 vm_area_free(new);
1369 err_vma_dup:
1370 kmem_cache_free(vm_region_jar, region);
1371 return -ENOMEM;
1372 }
1373
1374 /*
1375 * shrink a VMA by removing the specified chunk from either the beginning or
1376 * the end
1377 */
1378 static int vmi_shrink_vma(struct vma_iterator *vmi,
1379 struct vm_area_struct *vma,
1380 unsigned long from, unsigned long to)
1381 {
1382 struct vm_region *region;
1383
1384 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1385 * and list */
1386 if (vma_iter_prealloc(vmi)) {
1387 pr_warn("Allocation of vma tree for process %d failed\n",
1388 current->pid);
1389 return -ENOMEM;
1390 }
1391
1392 if (from > vma->vm_start) {
1393 vma_iter_clear(vmi, from, vma->vm_end);
1394 vma->vm_end = from;
1395 } else {
1396 vma_iter_clear(vmi, vma->vm_start, to);
1397 vma->vm_start = to;
1398 }
1399
1400 /* cut the backing region down to size */
1401 region = vma->vm_region;
1402 BUG_ON(region->vm_usage != 1);
1403
1404 down_write(&nommu_region_sem);
1405 delete_nommu_region(region);
1406 if (from > region->vm_start) {
1407 to = region->vm_top;
1408 region->vm_top = region->vm_end = from;
1409 } else {
1410 region->vm_start = to;
1411 }
1412 add_nommu_region(region);
1413 up_write(&nommu_region_sem);
1414
1415 free_page_series(from, to);
1416 return 0;
1417 }
1418
1419 /*
1420 * release a mapping
1421 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1422 * VMA, though it need not cover the whole VMA
1423 */
1424 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1425 {
1426 VMA_ITERATOR(vmi, mm, start);
1427 struct vm_area_struct *vma;
1428 unsigned long end;
1429 int ret = 0;
1430
1431 len = PAGE_ALIGN(len);
1432 if (len == 0)
1433 return -EINVAL;
1434
1435 end = start + len;
1436
1437 /* find the first potentially overlapping VMA */
1438 vma = vma_find(&vmi, end);
1439 if (!vma) {
1440 static int limit;
1441 if (limit < 5) {
1442 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1443 current->pid, current->comm,
1444 start, start + len - 1);
1445 limit++;
1446 }
1447 return -EINVAL;
1448 }
1449
1450 /* we're allowed to split an anonymous VMA but not a file-backed one */
1451 if (vma->vm_file) {
1452 do {
1453 if (start > vma->vm_start)
1454 return -EINVAL;
1455 if (end == vma->vm_end)
1456 goto erase_whole_vma;
1457 vma = vma_find(&vmi, end);
1458 } while (vma);
1459 return -EINVAL;
1460 } else {
1461 /* the chunk must be a subset of the VMA found */
1462 if (start == vma->vm_start && end == vma->vm_end)
1463 goto erase_whole_vma;
1464 if (start < vma->vm_start || end > vma->vm_end)
1465 return -EINVAL;
1466 if (offset_in_page(start))
1467 return -EINVAL;
1468 if (end != vma->vm_end && offset_in_page(end))
1469 return -EINVAL;
1470 if (start != vma->vm_start && end != vma->vm_end) {
1471 ret = split_vma(&vmi, vma, start, 1);
1472 if (ret < 0)
1473 return ret;
1474 }
1475 return vmi_shrink_vma(&vmi, vma, start, end);
1476 }
1477
1478 erase_whole_vma:
1479 if (delete_vma_from_mm(vma))
1480 ret = -ENOMEM;
1481 else
1482 delete_vma(mm, vma);
1483 return ret;
1484 }
1485
1486 int vm_munmap(unsigned long addr, size_t len)
1487 {
1488 struct mm_struct *mm = current->mm;
1489 int ret;
1490
1491 mmap_write_lock(mm);
1492 ret = do_munmap(mm, addr, len, NULL);
1493 mmap_write_unlock(mm);
1494 return ret;
1495 }
1496 EXPORT_SYMBOL(vm_munmap);
1497
1498 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1499 {
1500 return vm_munmap(addr, len);
1501 }
1502
1503 /*
1504 * release all the mappings made in a process's VM space
1505 */
1506 void exit_mmap(struct mm_struct *mm)
1507 {
1508 VMA_ITERATOR(vmi, mm, 0);
1509 struct vm_area_struct *vma;
1510
1511 if (!mm)
1512 return;
1513
1514 mm->total_vm = 0;
1515
1516 /*
1517 * Lock the mm to avoid assert complaining even though this is the only
1518 * user of the mm
1519 */
1520 mmap_write_lock(mm);
1521 for_each_vma(vmi, vma) {
1522 cleanup_vma_from_mm(vma);
1523 delete_vma(mm, vma);
1524 cond_resched();
1525 }
1526 __mt_destroy(&mm->mm_mt);
1527 mmap_write_unlock(mm);
1528 }
1529
1530 int vm_brk(unsigned long addr, unsigned long len)
1531 {
1532 return -ENOMEM;
1533 }
1534
1535 /*
1536 * expand (or shrink) an existing mapping, potentially moving it at the same
1537 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1538 *
1539 * under NOMMU conditions, we only permit changing a mapping's size, and only
1540 * as long as it stays within the region allocated by do_mmap_private() and the
1541 * block is not shareable
1542 *
1543 * MREMAP_FIXED is not supported under NOMMU conditions
1544 */
1545 static unsigned long do_mremap(unsigned long addr,
1546 unsigned long old_len, unsigned long new_len,
1547 unsigned long flags, unsigned long new_addr)
1548 {
1549 struct vm_area_struct *vma;
1550
1551 /* insanity checks first */
1552 old_len = PAGE_ALIGN(old_len);
1553 new_len = PAGE_ALIGN(new_len);
1554 if (old_len == 0 || new_len == 0)
1555 return (unsigned long) -EINVAL;
1556
1557 if (offset_in_page(addr))
1558 return -EINVAL;
1559
1560 if (flags & MREMAP_FIXED && new_addr != addr)
1561 return (unsigned long) -EINVAL;
1562
1563 vma = find_vma_exact(current->mm, addr, old_len);
1564 if (!vma)
1565 return (unsigned long) -EINVAL;
1566
1567 if (vma->vm_end != vma->vm_start + old_len)
1568 return (unsigned long) -EFAULT;
1569
1570 if (is_nommu_shared_mapping(vma->vm_flags))
1571 return (unsigned long) -EPERM;
1572
1573 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1574 return (unsigned long) -ENOMEM;
1575
1576 /* all checks complete - do it */
1577 vma->vm_end = vma->vm_start + new_len;
1578 return vma->vm_start;
1579 }
1580
1581 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1582 unsigned long, new_len, unsigned long, flags,
1583 unsigned long, new_addr)
1584 {
1585 unsigned long ret;
1586
1587 mmap_write_lock(current->mm);
1588 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1589 mmap_write_unlock(current->mm);
1590 return ret;
1591 }
1592
1593 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1594 unsigned int foll_flags)
1595 {
1596 return NULL;
1597 }
1598
1599 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1600 unsigned long pfn, unsigned long size, pgprot_t prot)
1601 {
1602 if (addr != (pfn << PAGE_SHIFT))
1603 return -EINVAL;
1604
1605 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1606 return 0;
1607 }
1608 EXPORT_SYMBOL(remap_pfn_range);
1609
1610 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1611 {
1612 unsigned long pfn = start >> PAGE_SHIFT;
1613 unsigned long vm_len = vma->vm_end - vma->vm_start;
1614
1615 pfn += vma->vm_pgoff;
1616 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1617 }
1618 EXPORT_SYMBOL(vm_iomap_memory);
1619
1620 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1621 unsigned long pgoff)
1622 {
1623 unsigned int size = vma->vm_end - vma->vm_start;
1624
1625 if (!(vma->vm_flags & VM_USERMAP))
1626 return -EINVAL;
1627
1628 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1629 vma->vm_end = vma->vm_start + size;
1630
1631 return 0;
1632 }
1633 EXPORT_SYMBOL(remap_vmalloc_range);
1634
1635 vm_fault_t filemap_fault(struct vm_fault *vmf)
1636 {
1637 BUG();
1638 return 0;
1639 }
1640 EXPORT_SYMBOL(filemap_fault);
1641
1642 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1643 pgoff_t start_pgoff, pgoff_t end_pgoff)
1644 {
1645 BUG();
1646 return 0;
1647 }
1648 EXPORT_SYMBOL(filemap_map_pages);
1649
1650 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1651 int len, unsigned int gup_flags)
1652 {
1653 struct vm_area_struct *vma;
1654 int write = gup_flags & FOLL_WRITE;
1655
1656 if (mmap_read_lock_killable(mm))
1657 return 0;
1658
1659 /* the access must start within one of the target process's mappings */
1660 vma = find_vma(mm, addr);
1661 if (vma) {
1662 /* don't overrun this mapping */
1663 if (addr + len >= vma->vm_end)
1664 len = vma->vm_end - addr;
1665
1666 /* only read or write mappings where it is permitted */
1667 if (write && vma->vm_flags & VM_MAYWRITE)
1668 copy_to_user_page(vma, NULL, addr,
1669 (void *) addr, buf, len);
1670 else if (!write && vma->vm_flags & VM_MAYREAD)
1671 copy_from_user_page(vma, NULL, addr,
1672 buf, (void *) addr, len);
1673 else
1674 len = 0;
1675 } else {
1676 len = 0;
1677 }
1678
1679 mmap_read_unlock(mm);
1680
1681 return len;
1682 }
1683
1684 /**
1685 * access_remote_vm - access another process' address space
1686 * @mm: the mm_struct of the target address space
1687 * @addr: start address to access
1688 * @buf: source or destination buffer
1689 * @len: number of bytes to transfer
1690 * @gup_flags: flags modifying lookup behaviour
1691 *
1692 * The caller must hold a reference on @mm.
1693 */
1694 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1695 void *buf, int len, unsigned int gup_flags)
1696 {
1697 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1698 }
1699
1700 /*
1701 * Access another process' address space.
1702 * - source/target buffer must be kernel space
1703 */
1704 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1705 unsigned int gup_flags)
1706 {
1707 struct mm_struct *mm;
1708
1709 if (addr + len < addr)
1710 return 0;
1711
1712 mm = get_task_mm(tsk);
1713 if (!mm)
1714 return 0;
1715
1716 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1717
1718 mmput(mm);
1719 return len;
1720 }
1721 EXPORT_SYMBOL_GPL(access_process_vm);
1722
1723 /**
1724 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1725 * @inode: The inode to check
1726 * @size: The current filesize of the inode
1727 * @newsize: The proposed filesize of the inode
1728 *
1729 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1730 * make sure that any outstanding VMAs aren't broken and then shrink the
1731 * vm_regions that extend beyond so that do_mmap() doesn't
1732 * automatically grant mappings that are too large.
1733 */
1734 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1735 size_t newsize)
1736 {
1737 struct vm_area_struct *vma;
1738 struct vm_region *region;
1739 pgoff_t low, high;
1740 size_t r_size, r_top;
1741
1742 low = newsize >> PAGE_SHIFT;
1743 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1744
1745 down_write(&nommu_region_sem);
1746 i_mmap_lock_read(inode->i_mapping);
1747
1748 /* search for VMAs that fall within the dead zone */
1749 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1750 /* found one - only interested if it's shared out of the page
1751 * cache */
1752 if (vma->vm_flags & VM_SHARED) {
1753 i_mmap_unlock_read(inode->i_mapping);
1754 up_write(&nommu_region_sem);
1755 return -ETXTBSY; /* not quite true, but near enough */
1756 }
1757 }
1758
1759 /* reduce any regions that overlap the dead zone - if in existence,
1760 * these will be pointed to by VMAs that don't overlap the dead zone
1761 *
1762 * we don't check for any regions that start beyond the EOF as there
1763 * shouldn't be any
1764 */
1765 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1766 if (!(vma->vm_flags & VM_SHARED))
1767 continue;
1768
1769 region = vma->vm_region;
1770 r_size = region->vm_top - region->vm_start;
1771 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1772
1773 if (r_top > newsize) {
1774 region->vm_top -= r_top - newsize;
1775 if (region->vm_end > region->vm_top)
1776 region->vm_end = region->vm_top;
1777 }
1778 }
1779
1780 i_mmap_unlock_read(inode->i_mapping);
1781 up_write(&nommu_region_sem);
1782 return 0;
1783 }
1784
1785 /*
1786 * Initialise sysctl_user_reserve_kbytes.
1787 *
1788 * This is intended to prevent a user from starting a single memory hogging
1789 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1790 * mode.
1791 *
1792 * The default value is min(3% of free memory, 128MB)
1793 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1794 */
1795 static int __meminit init_user_reserve(void)
1796 {
1797 unsigned long free_kbytes;
1798
1799 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1800
1801 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1802 return 0;
1803 }
1804 subsys_initcall(init_user_reserve);
1805
1806 /*
1807 * Initialise sysctl_admin_reserve_kbytes.
1808 *
1809 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1810 * to log in and kill a memory hogging process.
1811 *
1812 * Systems with more than 256MB will reserve 8MB, enough to recover
1813 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1814 * only reserve 3% of free pages by default.
1815 */
1816 static int __meminit init_admin_reserve(void)
1817 {
1818 unsigned long free_kbytes;
1819
1820 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1821
1822 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1823 return 0;
1824 }
1825 subsys_initcall(init_admin_reserve);