]> git.ipfire.org Git - people/ms/linux.git/blob - mm/nommu.c
Merge tag 'arm-multiplatform-5.19-2' of git://git.kernel.org/pub/scm/linux/kernel...
[people/ms/linux.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67 * Return the total memory allocated for this pointer, not
68 * just what the caller asked for.
69 *
70 * Doesn't have to be accurate, i.e. may have races.
71 */
72 unsigned int kobjsize(const void *objp)
73 {
74 struct page *page;
75
76 /*
77 * If the object we have should not have ksize performed on it,
78 * return size of 0
79 */
80 if (!objp || !virt_addr_valid(objp))
81 return 0;
82
83 page = virt_to_head_page(objp);
84
85 /*
86 * If the allocator sets PageSlab, we know the pointer came from
87 * kmalloc().
88 */
89 if (PageSlab(page))
90 return ksize(objp);
91
92 /*
93 * If it's not a compound page, see if we have a matching VMA
94 * region. This test is intentionally done in reverse order,
95 * so if there's no VMA, we still fall through and hand back
96 * PAGE_SIZE for 0-order pages.
97 */
98 if (!PageCompound(page)) {
99 struct vm_area_struct *vma;
100
101 vma = find_vma(current->mm, (unsigned long)objp);
102 if (vma)
103 return vma->vm_end - vma->vm_start;
104 }
105
106 /*
107 * The ksize() function is only guaranteed to work for pointers
108 * returned by kmalloc(). So handle arbitrary pointers here.
109 */
110 return page_size(page);
111 }
112
113 /**
114 * follow_pfn - look up PFN at a user virtual address
115 * @vma: memory mapping
116 * @address: user virtual address
117 * @pfn: location to store found PFN
118 *
119 * Only IO mappings and raw PFN mappings are allowed.
120 *
121 * Returns zero and the pfn at @pfn on success, -ve otherwise.
122 */
123 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124 unsigned long *pfn)
125 {
126 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127 return -EINVAL;
128
129 *pfn = address >> PAGE_SHIFT;
130 return 0;
131 }
132 EXPORT_SYMBOL(follow_pfn);
133
134 LIST_HEAD(vmap_area_list);
135
136 void vfree(const void *addr)
137 {
138 kfree(addr);
139 }
140 EXPORT_SYMBOL(vfree);
141
142 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
143 {
144 /*
145 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
146 * returns only a logical address.
147 */
148 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
149 }
150 EXPORT_SYMBOL(__vmalloc);
151
152 void *__vmalloc_node_range(unsigned long size, unsigned long align,
153 unsigned long start, unsigned long end, gfp_t gfp_mask,
154 pgprot_t prot, unsigned long vm_flags, int node,
155 const void *caller)
156 {
157 return __vmalloc(size, gfp_mask);
158 }
159
160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
161 int node, const void *caller)
162 {
163 return __vmalloc(size, gfp_mask);
164 }
165
166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
167 {
168 void *ret;
169
170 ret = __vmalloc(size, flags);
171 if (ret) {
172 struct vm_area_struct *vma;
173
174 mmap_write_lock(current->mm);
175 vma = find_vma(current->mm, (unsigned long)ret);
176 if (vma)
177 vma->vm_flags |= VM_USERMAP;
178 mmap_write_unlock(current->mm);
179 }
180
181 return ret;
182 }
183
184 void *vmalloc_user(unsigned long size)
185 {
186 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
187 }
188 EXPORT_SYMBOL(vmalloc_user);
189
190 struct page *vmalloc_to_page(const void *addr)
191 {
192 return virt_to_page(addr);
193 }
194 EXPORT_SYMBOL(vmalloc_to_page);
195
196 unsigned long vmalloc_to_pfn(const void *addr)
197 {
198 return page_to_pfn(virt_to_page(addr));
199 }
200 EXPORT_SYMBOL(vmalloc_to_pfn);
201
202 long vread(char *buf, char *addr, unsigned long count)
203 {
204 /* Don't allow overflow */
205 if ((unsigned long) buf + count < count)
206 count = -(unsigned long) buf;
207
208 memcpy(buf, addr, count);
209 return count;
210 }
211
212 /*
213 * vmalloc - allocate virtually contiguous memory
214 *
215 * @size: allocation size
216 *
217 * Allocate enough pages to cover @size from the page level
218 * allocator and map them into contiguous kernel virtual space.
219 *
220 * For tight control over page level allocator and protection flags
221 * use __vmalloc() instead.
222 */
223 void *vmalloc(unsigned long size)
224 {
225 return __vmalloc(size, GFP_KERNEL);
226 }
227 EXPORT_SYMBOL(vmalloc);
228
229 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
230
231 /*
232 * vzalloc - allocate virtually contiguous memory with zero fill
233 *
234 * @size: allocation size
235 *
236 * Allocate enough pages to cover @size from the page level
237 * allocator and map them into contiguous kernel virtual space.
238 * The memory allocated is set to zero.
239 *
240 * For tight control over page level allocator and protection flags
241 * use __vmalloc() instead.
242 */
243 void *vzalloc(unsigned long size)
244 {
245 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
246 }
247 EXPORT_SYMBOL(vzalloc);
248
249 /**
250 * vmalloc_node - allocate memory on a specific node
251 * @size: allocation size
252 * @node: numa node
253 *
254 * Allocate enough pages to cover @size from the page level
255 * allocator and map them into contiguous kernel virtual space.
256 *
257 * For tight control over page level allocator and protection flags
258 * use __vmalloc() instead.
259 */
260 void *vmalloc_node(unsigned long size, int node)
261 {
262 return vmalloc(size);
263 }
264 EXPORT_SYMBOL(vmalloc_node);
265
266 /**
267 * vzalloc_node - allocate memory on a specific node with zero fill
268 * @size: allocation size
269 * @node: numa node
270 *
271 * Allocate enough pages to cover @size from the page level
272 * allocator and map them into contiguous kernel virtual space.
273 * The memory allocated is set to zero.
274 *
275 * For tight control over page level allocator and protection flags
276 * use __vmalloc() instead.
277 */
278 void *vzalloc_node(unsigned long size, int node)
279 {
280 return vzalloc(size);
281 }
282 EXPORT_SYMBOL(vzalloc_node);
283
284 /**
285 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
286 * @size: allocation size
287 *
288 * Allocate enough 32bit PA addressable pages to cover @size from the
289 * page level allocator and map them into contiguous kernel virtual space.
290 */
291 void *vmalloc_32(unsigned long size)
292 {
293 return __vmalloc(size, GFP_KERNEL);
294 }
295 EXPORT_SYMBOL(vmalloc_32);
296
297 /**
298 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
299 * @size: allocation size
300 *
301 * The resulting memory area is 32bit addressable and zeroed so it can be
302 * mapped to userspace without leaking data.
303 *
304 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
305 * remap_vmalloc_range() are permissible.
306 */
307 void *vmalloc_32_user(unsigned long size)
308 {
309 /*
310 * We'll have to sort out the ZONE_DMA bits for 64-bit,
311 * but for now this can simply use vmalloc_user() directly.
312 */
313 return vmalloc_user(size);
314 }
315 EXPORT_SYMBOL(vmalloc_32_user);
316
317 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
318 {
319 BUG();
320 return NULL;
321 }
322 EXPORT_SYMBOL(vmap);
323
324 void vunmap(const void *addr)
325 {
326 BUG();
327 }
328 EXPORT_SYMBOL(vunmap);
329
330 void *vm_map_ram(struct page **pages, unsigned int count, int node)
331 {
332 BUG();
333 return NULL;
334 }
335 EXPORT_SYMBOL(vm_map_ram);
336
337 void vm_unmap_ram(const void *mem, unsigned int count)
338 {
339 BUG();
340 }
341 EXPORT_SYMBOL(vm_unmap_ram);
342
343 void vm_unmap_aliases(void)
344 {
345 }
346 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
347
348 void free_vm_area(struct vm_struct *area)
349 {
350 BUG();
351 }
352 EXPORT_SYMBOL_GPL(free_vm_area);
353
354 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
355 struct page *page)
356 {
357 return -EINVAL;
358 }
359 EXPORT_SYMBOL(vm_insert_page);
360
361 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
362 unsigned long num)
363 {
364 return -EINVAL;
365 }
366 EXPORT_SYMBOL(vm_map_pages);
367
368 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
369 unsigned long num)
370 {
371 return -EINVAL;
372 }
373 EXPORT_SYMBOL(vm_map_pages_zero);
374
375 /*
376 * sys_brk() for the most part doesn't need the global kernel
377 * lock, except when an application is doing something nasty
378 * like trying to un-brk an area that has already been mapped
379 * to a regular file. in this case, the unmapping will need
380 * to invoke file system routines that need the global lock.
381 */
382 SYSCALL_DEFINE1(brk, unsigned long, brk)
383 {
384 struct mm_struct *mm = current->mm;
385
386 if (brk < mm->start_brk || brk > mm->context.end_brk)
387 return mm->brk;
388
389 if (mm->brk == brk)
390 return mm->brk;
391
392 /*
393 * Always allow shrinking brk
394 */
395 if (brk <= mm->brk) {
396 mm->brk = brk;
397 return brk;
398 }
399
400 /*
401 * Ok, looks good - let it rip.
402 */
403 flush_icache_user_range(mm->brk, brk);
404 return mm->brk = brk;
405 }
406
407 /*
408 * initialise the percpu counter for VM and region record slabs
409 */
410 void __init mmap_init(void)
411 {
412 int ret;
413
414 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
415 VM_BUG_ON(ret);
416 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
417 }
418
419 /*
420 * validate the region tree
421 * - the caller must hold the region lock
422 */
423 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
424 static noinline void validate_nommu_regions(void)
425 {
426 struct vm_region *region, *last;
427 struct rb_node *p, *lastp;
428
429 lastp = rb_first(&nommu_region_tree);
430 if (!lastp)
431 return;
432
433 last = rb_entry(lastp, struct vm_region, vm_rb);
434 BUG_ON(last->vm_end <= last->vm_start);
435 BUG_ON(last->vm_top < last->vm_end);
436
437 while ((p = rb_next(lastp))) {
438 region = rb_entry(p, struct vm_region, vm_rb);
439 last = rb_entry(lastp, struct vm_region, vm_rb);
440
441 BUG_ON(region->vm_end <= region->vm_start);
442 BUG_ON(region->vm_top < region->vm_end);
443 BUG_ON(region->vm_start < last->vm_top);
444
445 lastp = p;
446 }
447 }
448 #else
449 static void validate_nommu_regions(void)
450 {
451 }
452 #endif
453
454 /*
455 * add a region into the global tree
456 */
457 static void add_nommu_region(struct vm_region *region)
458 {
459 struct vm_region *pregion;
460 struct rb_node **p, *parent;
461
462 validate_nommu_regions();
463
464 parent = NULL;
465 p = &nommu_region_tree.rb_node;
466 while (*p) {
467 parent = *p;
468 pregion = rb_entry(parent, struct vm_region, vm_rb);
469 if (region->vm_start < pregion->vm_start)
470 p = &(*p)->rb_left;
471 else if (region->vm_start > pregion->vm_start)
472 p = &(*p)->rb_right;
473 else if (pregion == region)
474 return;
475 else
476 BUG();
477 }
478
479 rb_link_node(&region->vm_rb, parent, p);
480 rb_insert_color(&region->vm_rb, &nommu_region_tree);
481
482 validate_nommu_regions();
483 }
484
485 /*
486 * delete a region from the global tree
487 */
488 static void delete_nommu_region(struct vm_region *region)
489 {
490 BUG_ON(!nommu_region_tree.rb_node);
491
492 validate_nommu_regions();
493 rb_erase(&region->vm_rb, &nommu_region_tree);
494 validate_nommu_regions();
495 }
496
497 /*
498 * free a contiguous series of pages
499 */
500 static void free_page_series(unsigned long from, unsigned long to)
501 {
502 for (; from < to; from += PAGE_SIZE) {
503 struct page *page = virt_to_page(from);
504
505 atomic_long_dec(&mmap_pages_allocated);
506 put_page(page);
507 }
508 }
509
510 /*
511 * release a reference to a region
512 * - the caller must hold the region semaphore for writing, which this releases
513 * - the region may not have been added to the tree yet, in which case vm_top
514 * will equal vm_start
515 */
516 static void __put_nommu_region(struct vm_region *region)
517 __releases(nommu_region_sem)
518 {
519 BUG_ON(!nommu_region_tree.rb_node);
520
521 if (--region->vm_usage == 0) {
522 if (region->vm_top > region->vm_start)
523 delete_nommu_region(region);
524 up_write(&nommu_region_sem);
525
526 if (region->vm_file)
527 fput(region->vm_file);
528
529 /* IO memory and memory shared directly out of the pagecache
530 * from ramfs/tmpfs mustn't be released here */
531 if (region->vm_flags & VM_MAPPED_COPY)
532 free_page_series(region->vm_start, region->vm_top);
533 kmem_cache_free(vm_region_jar, region);
534 } else {
535 up_write(&nommu_region_sem);
536 }
537 }
538
539 /*
540 * release a reference to a region
541 */
542 static void put_nommu_region(struct vm_region *region)
543 {
544 down_write(&nommu_region_sem);
545 __put_nommu_region(region);
546 }
547
548 /*
549 * add a VMA into a process's mm_struct in the appropriate place in the list
550 * and tree and add to the address space's page tree also if not an anonymous
551 * page
552 * - should be called with mm->mmap_lock held writelocked
553 */
554 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
555 {
556 struct vm_area_struct *pvma, *prev;
557 struct address_space *mapping;
558 struct rb_node **p, *parent, *rb_prev;
559
560 BUG_ON(!vma->vm_region);
561
562 mm->map_count++;
563 vma->vm_mm = mm;
564
565 /* add the VMA to the mapping */
566 if (vma->vm_file) {
567 mapping = vma->vm_file->f_mapping;
568
569 i_mmap_lock_write(mapping);
570 flush_dcache_mmap_lock(mapping);
571 vma_interval_tree_insert(vma, &mapping->i_mmap);
572 flush_dcache_mmap_unlock(mapping);
573 i_mmap_unlock_write(mapping);
574 }
575
576 /* add the VMA to the tree */
577 parent = rb_prev = NULL;
578 p = &mm->mm_rb.rb_node;
579 while (*p) {
580 parent = *p;
581 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
582
583 /* sort by: start addr, end addr, VMA struct addr in that order
584 * (the latter is necessary as we may get identical VMAs) */
585 if (vma->vm_start < pvma->vm_start)
586 p = &(*p)->rb_left;
587 else if (vma->vm_start > pvma->vm_start) {
588 rb_prev = parent;
589 p = &(*p)->rb_right;
590 } else if (vma->vm_end < pvma->vm_end)
591 p = &(*p)->rb_left;
592 else if (vma->vm_end > pvma->vm_end) {
593 rb_prev = parent;
594 p = &(*p)->rb_right;
595 } else if (vma < pvma)
596 p = &(*p)->rb_left;
597 else if (vma > pvma) {
598 rb_prev = parent;
599 p = &(*p)->rb_right;
600 } else
601 BUG();
602 }
603
604 rb_link_node(&vma->vm_rb, parent, p);
605 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
606
607 /* add VMA to the VMA list also */
608 prev = NULL;
609 if (rb_prev)
610 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
611
612 __vma_link_list(mm, vma, prev);
613 }
614
615 /*
616 * delete a VMA from its owning mm_struct and address space
617 */
618 static void delete_vma_from_mm(struct vm_area_struct *vma)
619 {
620 int i;
621 struct address_space *mapping;
622 struct mm_struct *mm = vma->vm_mm;
623 struct task_struct *curr = current;
624
625 mm->map_count--;
626 for (i = 0; i < VMACACHE_SIZE; i++) {
627 /* if the vma is cached, invalidate the entire cache */
628 if (curr->vmacache.vmas[i] == vma) {
629 vmacache_invalidate(mm);
630 break;
631 }
632 }
633
634 /* remove the VMA from the mapping */
635 if (vma->vm_file) {
636 mapping = vma->vm_file->f_mapping;
637
638 i_mmap_lock_write(mapping);
639 flush_dcache_mmap_lock(mapping);
640 vma_interval_tree_remove(vma, &mapping->i_mmap);
641 flush_dcache_mmap_unlock(mapping);
642 i_mmap_unlock_write(mapping);
643 }
644
645 /* remove from the MM's tree and list */
646 rb_erase(&vma->vm_rb, &mm->mm_rb);
647
648 __vma_unlink_list(mm, vma);
649 }
650
651 /*
652 * destroy a VMA record
653 */
654 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
655 {
656 if (vma->vm_ops && vma->vm_ops->close)
657 vma->vm_ops->close(vma);
658 if (vma->vm_file)
659 fput(vma->vm_file);
660 put_nommu_region(vma->vm_region);
661 vm_area_free(vma);
662 }
663
664 /*
665 * look up the first VMA in which addr resides, NULL if none
666 * - should be called with mm->mmap_lock at least held readlocked
667 */
668 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
669 {
670 struct vm_area_struct *vma;
671
672 /* check the cache first */
673 vma = vmacache_find(mm, addr);
674 if (likely(vma))
675 return vma;
676
677 /* trawl the list (there may be multiple mappings in which addr
678 * resides) */
679 for (vma = mm->mmap; vma; vma = vma->vm_next) {
680 if (vma->vm_start > addr)
681 return NULL;
682 if (vma->vm_end > addr) {
683 vmacache_update(addr, vma);
684 return vma;
685 }
686 }
687
688 return NULL;
689 }
690 EXPORT_SYMBOL(find_vma);
691
692 /*
693 * find a VMA
694 * - we don't extend stack VMAs under NOMMU conditions
695 */
696 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
697 {
698 return find_vma(mm, addr);
699 }
700
701 /*
702 * expand a stack to a given address
703 * - not supported under NOMMU conditions
704 */
705 int expand_stack(struct vm_area_struct *vma, unsigned long address)
706 {
707 return -ENOMEM;
708 }
709
710 /*
711 * look up the first VMA exactly that exactly matches addr
712 * - should be called with mm->mmap_lock at least held readlocked
713 */
714 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
715 unsigned long addr,
716 unsigned long len)
717 {
718 struct vm_area_struct *vma;
719 unsigned long end = addr + len;
720
721 /* check the cache first */
722 vma = vmacache_find_exact(mm, addr, end);
723 if (vma)
724 return vma;
725
726 /* trawl the list (there may be multiple mappings in which addr
727 * resides) */
728 for (vma = mm->mmap; vma; vma = vma->vm_next) {
729 if (vma->vm_start < addr)
730 continue;
731 if (vma->vm_start > addr)
732 return NULL;
733 if (vma->vm_end == end) {
734 vmacache_update(addr, vma);
735 return vma;
736 }
737 }
738
739 return NULL;
740 }
741
742 /*
743 * determine whether a mapping should be permitted and, if so, what sort of
744 * mapping we're capable of supporting
745 */
746 static int validate_mmap_request(struct file *file,
747 unsigned long addr,
748 unsigned long len,
749 unsigned long prot,
750 unsigned long flags,
751 unsigned long pgoff,
752 unsigned long *_capabilities)
753 {
754 unsigned long capabilities, rlen;
755 int ret;
756
757 /* do the simple checks first */
758 if (flags & MAP_FIXED)
759 return -EINVAL;
760
761 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
762 (flags & MAP_TYPE) != MAP_SHARED)
763 return -EINVAL;
764
765 if (!len)
766 return -EINVAL;
767
768 /* Careful about overflows.. */
769 rlen = PAGE_ALIGN(len);
770 if (!rlen || rlen > TASK_SIZE)
771 return -ENOMEM;
772
773 /* offset overflow? */
774 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
775 return -EOVERFLOW;
776
777 if (file) {
778 /* files must support mmap */
779 if (!file->f_op->mmap)
780 return -ENODEV;
781
782 /* work out if what we've got could possibly be shared
783 * - we support chardevs that provide their own "memory"
784 * - we support files/blockdevs that are memory backed
785 */
786 if (file->f_op->mmap_capabilities) {
787 capabilities = file->f_op->mmap_capabilities(file);
788 } else {
789 /* no explicit capabilities set, so assume some
790 * defaults */
791 switch (file_inode(file)->i_mode & S_IFMT) {
792 case S_IFREG:
793 case S_IFBLK:
794 capabilities = NOMMU_MAP_COPY;
795 break;
796
797 case S_IFCHR:
798 capabilities =
799 NOMMU_MAP_DIRECT |
800 NOMMU_MAP_READ |
801 NOMMU_MAP_WRITE;
802 break;
803
804 default:
805 return -EINVAL;
806 }
807 }
808
809 /* eliminate any capabilities that we can't support on this
810 * device */
811 if (!file->f_op->get_unmapped_area)
812 capabilities &= ~NOMMU_MAP_DIRECT;
813 if (!(file->f_mode & FMODE_CAN_READ))
814 capabilities &= ~NOMMU_MAP_COPY;
815
816 /* The file shall have been opened with read permission. */
817 if (!(file->f_mode & FMODE_READ))
818 return -EACCES;
819
820 if (flags & MAP_SHARED) {
821 /* do checks for writing, appending and locking */
822 if ((prot & PROT_WRITE) &&
823 !(file->f_mode & FMODE_WRITE))
824 return -EACCES;
825
826 if (IS_APPEND(file_inode(file)) &&
827 (file->f_mode & FMODE_WRITE))
828 return -EACCES;
829
830 if (!(capabilities & NOMMU_MAP_DIRECT))
831 return -ENODEV;
832
833 /* we mustn't privatise shared mappings */
834 capabilities &= ~NOMMU_MAP_COPY;
835 } else {
836 /* we're going to read the file into private memory we
837 * allocate */
838 if (!(capabilities & NOMMU_MAP_COPY))
839 return -ENODEV;
840
841 /* we don't permit a private writable mapping to be
842 * shared with the backing device */
843 if (prot & PROT_WRITE)
844 capabilities &= ~NOMMU_MAP_DIRECT;
845 }
846
847 if (capabilities & NOMMU_MAP_DIRECT) {
848 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
849 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
850 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
851 ) {
852 capabilities &= ~NOMMU_MAP_DIRECT;
853 if (flags & MAP_SHARED) {
854 pr_warn("MAP_SHARED not completely supported on !MMU\n");
855 return -EINVAL;
856 }
857 }
858 }
859
860 /* handle executable mappings and implied executable
861 * mappings */
862 if (path_noexec(&file->f_path)) {
863 if (prot & PROT_EXEC)
864 return -EPERM;
865 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
866 /* handle implication of PROT_EXEC by PROT_READ */
867 if (current->personality & READ_IMPLIES_EXEC) {
868 if (capabilities & NOMMU_MAP_EXEC)
869 prot |= PROT_EXEC;
870 }
871 } else if ((prot & PROT_READ) &&
872 (prot & PROT_EXEC) &&
873 !(capabilities & NOMMU_MAP_EXEC)
874 ) {
875 /* backing file is not executable, try to copy */
876 capabilities &= ~NOMMU_MAP_DIRECT;
877 }
878 } else {
879 /* anonymous mappings are always memory backed and can be
880 * privately mapped
881 */
882 capabilities = NOMMU_MAP_COPY;
883
884 /* handle PROT_EXEC implication by PROT_READ */
885 if ((prot & PROT_READ) &&
886 (current->personality & READ_IMPLIES_EXEC))
887 prot |= PROT_EXEC;
888 }
889
890 /* allow the security API to have its say */
891 ret = security_mmap_addr(addr);
892 if (ret < 0)
893 return ret;
894
895 /* looks okay */
896 *_capabilities = capabilities;
897 return 0;
898 }
899
900 /*
901 * we've determined that we can make the mapping, now translate what we
902 * now know into VMA flags
903 */
904 static unsigned long determine_vm_flags(struct file *file,
905 unsigned long prot,
906 unsigned long flags,
907 unsigned long capabilities)
908 {
909 unsigned long vm_flags;
910
911 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
912 /* vm_flags |= mm->def_flags; */
913
914 if (!(capabilities & NOMMU_MAP_DIRECT)) {
915 /* attempt to share read-only copies of mapped file chunks */
916 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
917 if (file && !(prot & PROT_WRITE))
918 vm_flags |= VM_MAYSHARE;
919 } else {
920 /* overlay a shareable mapping on the backing device or inode
921 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
922 * romfs/cramfs */
923 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
924 if (flags & MAP_SHARED)
925 vm_flags |= VM_SHARED;
926 }
927
928 /* refuse to let anyone share private mappings with this process if
929 * it's being traced - otherwise breakpoints set in it may interfere
930 * with another untraced process
931 */
932 if ((flags & MAP_PRIVATE) && current->ptrace)
933 vm_flags &= ~VM_MAYSHARE;
934
935 return vm_flags;
936 }
937
938 /*
939 * set up a shared mapping on a file (the driver or filesystem provides and
940 * pins the storage)
941 */
942 static int do_mmap_shared_file(struct vm_area_struct *vma)
943 {
944 int ret;
945
946 ret = call_mmap(vma->vm_file, vma);
947 if (ret == 0) {
948 vma->vm_region->vm_top = vma->vm_region->vm_end;
949 return 0;
950 }
951 if (ret != -ENOSYS)
952 return ret;
953
954 /* getting -ENOSYS indicates that direct mmap isn't possible (as
955 * opposed to tried but failed) so we can only give a suitable error as
956 * it's not possible to make a private copy if MAP_SHARED was given */
957 return -ENODEV;
958 }
959
960 /*
961 * set up a private mapping or an anonymous shared mapping
962 */
963 static int do_mmap_private(struct vm_area_struct *vma,
964 struct vm_region *region,
965 unsigned long len,
966 unsigned long capabilities)
967 {
968 unsigned long total, point;
969 void *base;
970 int ret, order;
971
972 /* invoke the file's mapping function so that it can keep track of
973 * shared mappings on devices or memory
974 * - VM_MAYSHARE will be set if it may attempt to share
975 */
976 if (capabilities & NOMMU_MAP_DIRECT) {
977 ret = call_mmap(vma->vm_file, vma);
978 if (ret == 0) {
979 /* shouldn't return success if we're not sharing */
980 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
981 vma->vm_region->vm_top = vma->vm_region->vm_end;
982 return 0;
983 }
984 if (ret != -ENOSYS)
985 return ret;
986
987 /* getting an ENOSYS error indicates that direct mmap isn't
988 * possible (as opposed to tried but failed) so we'll try to
989 * make a private copy of the data and map that instead */
990 }
991
992
993 /* allocate some memory to hold the mapping
994 * - note that this may not return a page-aligned address if the object
995 * we're allocating is smaller than a page
996 */
997 order = get_order(len);
998 total = 1 << order;
999 point = len >> PAGE_SHIFT;
1000
1001 /* we don't want to allocate a power-of-2 sized page set */
1002 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1003 total = point;
1004
1005 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1006 if (!base)
1007 goto enomem;
1008
1009 atomic_long_add(total, &mmap_pages_allocated);
1010
1011 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1012 region->vm_start = (unsigned long) base;
1013 region->vm_end = region->vm_start + len;
1014 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1015
1016 vma->vm_start = region->vm_start;
1017 vma->vm_end = region->vm_start + len;
1018
1019 if (vma->vm_file) {
1020 /* read the contents of a file into the copy */
1021 loff_t fpos;
1022
1023 fpos = vma->vm_pgoff;
1024 fpos <<= PAGE_SHIFT;
1025
1026 ret = kernel_read(vma->vm_file, base, len, &fpos);
1027 if (ret < 0)
1028 goto error_free;
1029
1030 /* clear the last little bit */
1031 if (ret < len)
1032 memset(base + ret, 0, len - ret);
1033
1034 } else {
1035 vma_set_anonymous(vma);
1036 }
1037
1038 return 0;
1039
1040 error_free:
1041 free_page_series(region->vm_start, region->vm_top);
1042 region->vm_start = vma->vm_start = 0;
1043 region->vm_end = vma->vm_end = 0;
1044 region->vm_top = 0;
1045 return ret;
1046
1047 enomem:
1048 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1049 len, current->pid, current->comm);
1050 show_free_areas(0, NULL);
1051 return -ENOMEM;
1052 }
1053
1054 /*
1055 * handle mapping creation for uClinux
1056 */
1057 unsigned long do_mmap(struct file *file,
1058 unsigned long addr,
1059 unsigned long len,
1060 unsigned long prot,
1061 unsigned long flags,
1062 unsigned long pgoff,
1063 unsigned long *populate,
1064 struct list_head *uf)
1065 {
1066 struct vm_area_struct *vma;
1067 struct vm_region *region;
1068 struct rb_node *rb;
1069 vm_flags_t vm_flags;
1070 unsigned long capabilities, result;
1071 int ret;
1072
1073 *populate = 0;
1074
1075 /* decide whether we should attempt the mapping, and if so what sort of
1076 * mapping */
1077 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1078 &capabilities);
1079 if (ret < 0)
1080 return ret;
1081
1082 /* we ignore the address hint */
1083 addr = 0;
1084 len = PAGE_ALIGN(len);
1085
1086 /* we've determined that we can make the mapping, now translate what we
1087 * now know into VMA flags */
1088 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1089
1090 /* we're going to need to record the mapping */
1091 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1092 if (!region)
1093 goto error_getting_region;
1094
1095 vma = vm_area_alloc(current->mm);
1096 if (!vma)
1097 goto error_getting_vma;
1098
1099 region->vm_usage = 1;
1100 region->vm_flags = vm_flags;
1101 region->vm_pgoff = pgoff;
1102
1103 vma->vm_flags = vm_flags;
1104 vma->vm_pgoff = pgoff;
1105
1106 if (file) {
1107 region->vm_file = get_file(file);
1108 vma->vm_file = get_file(file);
1109 }
1110
1111 down_write(&nommu_region_sem);
1112
1113 /* if we want to share, we need to check for regions created by other
1114 * mmap() calls that overlap with our proposed mapping
1115 * - we can only share with a superset match on most regular files
1116 * - shared mappings on character devices and memory backed files are
1117 * permitted to overlap inexactly as far as we are concerned for in
1118 * these cases, sharing is handled in the driver or filesystem rather
1119 * than here
1120 */
1121 if (vm_flags & VM_MAYSHARE) {
1122 struct vm_region *pregion;
1123 unsigned long pglen, rpglen, pgend, rpgend, start;
1124
1125 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1126 pgend = pgoff + pglen;
1127
1128 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1129 pregion = rb_entry(rb, struct vm_region, vm_rb);
1130
1131 if (!(pregion->vm_flags & VM_MAYSHARE))
1132 continue;
1133
1134 /* search for overlapping mappings on the same file */
1135 if (file_inode(pregion->vm_file) !=
1136 file_inode(file))
1137 continue;
1138
1139 if (pregion->vm_pgoff >= pgend)
1140 continue;
1141
1142 rpglen = pregion->vm_end - pregion->vm_start;
1143 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1144 rpgend = pregion->vm_pgoff + rpglen;
1145 if (pgoff >= rpgend)
1146 continue;
1147
1148 /* handle inexactly overlapping matches between
1149 * mappings */
1150 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1151 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1152 /* new mapping is not a subset of the region */
1153 if (!(capabilities & NOMMU_MAP_DIRECT))
1154 goto sharing_violation;
1155 continue;
1156 }
1157
1158 /* we've found a region we can share */
1159 pregion->vm_usage++;
1160 vma->vm_region = pregion;
1161 start = pregion->vm_start;
1162 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1163 vma->vm_start = start;
1164 vma->vm_end = start + len;
1165
1166 if (pregion->vm_flags & VM_MAPPED_COPY)
1167 vma->vm_flags |= VM_MAPPED_COPY;
1168 else {
1169 ret = do_mmap_shared_file(vma);
1170 if (ret < 0) {
1171 vma->vm_region = NULL;
1172 vma->vm_start = 0;
1173 vma->vm_end = 0;
1174 pregion->vm_usage--;
1175 pregion = NULL;
1176 goto error_just_free;
1177 }
1178 }
1179 fput(region->vm_file);
1180 kmem_cache_free(vm_region_jar, region);
1181 region = pregion;
1182 result = start;
1183 goto share;
1184 }
1185
1186 /* obtain the address at which to make a shared mapping
1187 * - this is the hook for quasi-memory character devices to
1188 * tell us the location of a shared mapping
1189 */
1190 if (capabilities & NOMMU_MAP_DIRECT) {
1191 addr = file->f_op->get_unmapped_area(file, addr, len,
1192 pgoff, flags);
1193 if (IS_ERR_VALUE(addr)) {
1194 ret = addr;
1195 if (ret != -ENOSYS)
1196 goto error_just_free;
1197
1198 /* the driver refused to tell us where to site
1199 * the mapping so we'll have to attempt to copy
1200 * it */
1201 ret = -ENODEV;
1202 if (!(capabilities & NOMMU_MAP_COPY))
1203 goto error_just_free;
1204
1205 capabilities &= ~NOMMU_MAP_DIRECT;
1206 } else {
1207 vma->vm_start = region->vm_start = addr;
1208 vma->vm_end = region->vm_end = addr + len;
1209 }
1210 }
1211 }
1212
1213 vma->vm_region = region;
1214
1215 /* set up the mapping
1216 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1217 */
1218 if (file && vma->vm_flags & VM_SHARED)
1219 ret = do_mmap_shared_file(vma);
1220 else
1221 ret = do_mmap_private(vma, region, len, capabilities);
1222 if (ret < 0)
1223 goto error_just_free;
1224 add_nommu_region(region);
1225
1226 /* clear anonymous mappings that don't ask for uninitialized data */
1227 if (!vma->vm_file &&
1228 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1229 !(flags & MAP_UNINITIALIZED)))
1230 memset((void *)region->vm_start, 0,
1231 region->vm_end - region->vm_start);
1232
1233 /* okay... we have a mapping; now we have to register it */
1234 result = vma->vm_start;
1235
1236 current->mm->total_vm += len >> PAGE_SHIFT;
1237
1238 share:
1239 add_vma_to_mm(current->mm, vma);
1240
1241 /* we flush the region from the icache only when the first executable
1242 * mapping of it is made */
1243 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1244 flush_icache_user_range(region->vm_start, region->vm_end);
1245 region->vm_icache_flushed = true;
1246 }
1247
1248 up_write(&nommu_region_sem);
1249
1250 return result;
1251
1252 error_just_free:
1253 up_write(&nommu_region_sem);
1254 error:
1255 if (region->vm_file)
1256 fput(region->vm_file);
1257 kmem_cache_free(vm_region_jar, region);
1258 if (vma->vm_file)
1259 fput(vma->vm_file);
1260 vm_area_free(vma);
1261 return ret;
1262
1263 sharing_violation:
1264 up_write(&nommu_region_sem);
1265 pr_warn("Attempt to share mismatched mappings\n");
1266 ret = -EINVAL;
1267 goto error;
1268
1269 error_getting_vma:
1270 kmem_cache_free(vm_region_jar, region);
1271 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1272 len, current->pid);
1273 show_free_areas(0, NULL);
1274 return -ENOMEM;
1275
1276 error_getting_region:
1277 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1278 len, current->pid);
1279 show_free_areas(0, NULL);
1280 return -ENOMEM;
1281 }
1282
1283 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1284 unsigned long prot, unsigned long flags,
1285 unsigned long fd, unsigned long pgoff)
1286 {
1287 struct file *file = NULL;
1288 unsigned long retval = -EBADF;
1289
1290 audit_mmap_fd(fd, flags);
1291 if (!(flags & MAP_ANONYMOUS)) {
1292 file = fget(fd);
1293 if (!file)
1294 goto out;
1295 }
1296
1297 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1298
1299 if (file)
1300 fput(file);
1301 out:
1302 return retval;
1303 }
1304
1305 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1306 unsigned long, prot, unsigned long, flags,
1307 unsigned long, fd, unsigned long, pgoff)
1308 {
1309 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1310 }
1311
1312 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1313 struct mmap_arg_struct {
1314 unsigned long addr;
1315 unsigned long len;
1316 unsigned long prot;
1317 unsigned long flags;
1318 unsigned long fd;
1319 unsigned long offset;
1320 };
1321
1322 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1323 {
1324 struct mmap_arg_struct a;
1325
1326 if (copy_from_user(&a, arg, sizeof(a)))
1327 return -EFAULT;
1328 if (offset_in_page(a.offset))
1329 return -EINVAL;
1330
1331 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1332 a.offset >> PAGE_SHIFT);
1333 }
1334 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1335
1336 /*
1337 * split a vma into two pieces at address 'addr', a new vma is allocated either
1338 * for the first part or the tail.
1339 */
1340 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1341 unsigned long addr, int new_below)
1342 {
1343 struct vm_area_struct *new;
1344 struct vm_region *region;
1345 unsigned long npages;
1346
1347 /* we're only permitted to split anonymous regions (these should have
1348 * only a single usage on the region) */
1349 if (vma->vm_file)
1350 return -ENOMEM;
1351
1352 if (mm->map_count >= sysctl_max_map_count)
1353 return -ENOMEM;
1354
1355 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1356 if (!region)
1357 return -ENOMEM;
1358
1359 new = vm_area_dup(vma);
1360 if (!new) {
1361 kmem_cache_free(vm_region_jar, region);
1362 return -ENOMEM;
1363 }
1364
1365 /* most fields are the same, copy all, and then fixup */
1366 *region = *vma->vm_region;
1367 new->vm_region = region;
1368
1369 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1370
1371 if (new_below) {
1372 region->vm_top = region->vm_end = new->vm_end = addr;
1373 } else {
1374 region->vm_start = new->vm_start = addr;
1375 region->vm_pgoff = new->vm_pgoff += npages;
1376 }
1377
1378 if (new->vm_ops && new->vm_ops->open)
1379 new->vm_ops->open(new);
1380
1381 delete_vma_from_mm(vma);
1382 down_write(&nommu_region_sem);
1383 delete_nommu_region(vma->vm_region);
1384 if (new_below) {
1385 vma->vm_region->vm_start = vma->vm_start = addr;
1386 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1387 } else {
1388 vma->vm_region->vm_end = vma->vm_end = addr;
1389 vma->vm_region->vm_top = addr;
1390 }
1391 add_nommu_region(vma->vm_region);
1392 add_nommu_region(new->vm_region);
1393 up_write(&nommu_region_sem);
1394 add_vma_to_mm(mm, vma);
1395 add_vma_to_mm(mm, new);
1396 return 0;
1397 }
1398
1399 /*
1400 * shrink a VMA by removing the specified chunk from either the beginning or
1401 * the end
1402 */
1403 static int shrink_vma(struct mm_struct *mm,
1404 struct vm_area_struct *vma,
1405 unsigned long from, unsigned long to)
1406 {
1407 struct vm_region *region;
1408
1409 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1410 * and list */
1411 delete_vma_from_mm(vma);
1412 if (from > vma->vm_start)
1413 vma->vm_end = from;
1414 else
1415 vma->vm_start = to;
1416 add_vma_to_mm(mm, vma);
1417
1418 /* cut the backing region down to size */
1419 region = vma->vm_region;
1420 BUG_ON(region->vm_usage != 1);
1421
1422 down_write(&nommu_region_sem);
1423 delete_nommu_region(region);
1424 if (from > region->vm_start) {
1425 to = region->vm_top;
1426 region->vm_top = region->vm_end = from;
1427 } else {
1428 region->vm_start = to;
1429 }
1430 add_nommu_region(region);
1431 up_write(&nommu_region_sem);
1432
1433 free_page_series(from, to);
1434 return 0;
1435 }
1436
1437 /*
1438 * release a mapping
1439 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1440 * VMA, though it need not cover the whole VMA
1441 */
1442 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1443 {
1444 struct vm_area_struct *vma;
1445 unsigned long end;
1446 int ret;
1447
1448 len = PAGE_ALIGN(len);
1449 if (len == 0)
1450 return -EINVAL;
1451
1452 end = start + len;
1453
1454 /* find the first potentially overlapping VMA */
1455 vma = find_vma(mm, start);
1456 if (!vma) {
1457 static int limit;
1458 if (limit < 5) {
1459 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1460 current->pid, current->comm,
1461 start, start + len - 1);
1462 limit++;
1463 }
1464 return -EINVAL;
1465 }
1466
1467 /* we're allowed to split an anonymous VMA but not a file-backed one */
1468 if (vma->vm_file) {
1469 do {
1470 if (start > vma->vm_start)
1471 return -EINVAL;
1472 if (end == vma->vm_end)
1473 goto erase_whole_vma;
1474 vma = vma->vm_next;
1475 } while (vma);
1476 return -EINVAL;
1477 } else {
1478 /* the chunk must be a subset of the VMA found */
1479 if (start == vma->vm_start && end == vma->vm_end)
1480 goto erase_whole_vma;
1481 if (start < vma->vm_start || end > vma->vm_end)
1482 return -EINVAL;
1483 if (offset_in_page(start))
1484 return -EINVAL;
1485 if (end != vma->vm_end && offset_in_page(end))
1486 return -EINVAL;
1487 if (start != vma->vm_start && end != vma->vm_end) {
1488 ret = split_vma(mm, vma, start, 1);
1489 if (ret < 0)
1490 return ret;
1491 }
1492 return shrink_vma(mm, vma, start, end);
1493 }
1494
1495 erase_whole_vma:
1496 delete_vma_from_mm(vma);
1497 delete_vma(mm, vma);
1498 return 0;
1499 }
1500
1501 int vm_munmap(unsigned long addr, size_t len)
1502 {
1503 struct mm_struct *mm = current->mm;
1504 int ret;
1505
1506 mmap_write_lock(mm);
1507 ret = do_munmap(mm, addr, len, NULL);
1508 mmap_write_unlock(mm);
1509 return ret;
1510 }
1511 EXPORT_SYMBOL(vm_munmap);
1512
1513 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1514 {
1515 return vm_munmap(addr, len);
1516 }
1517
1518 /*
1519 * release all the mappings made in a process's VM space
1520 */
1521 void exit_mmap(struct mm_struct *mm)
1522 {
1523 struct vm_area_struct *vma;
1524
1525 if (!mm)
1526 return;
1527
1528 mm->total_vm = 0;
1529
1530 while ((vma = mm->mmap)) {
1531 mm->mmap = vma->vm_next;
1532 delete_vma_from_mm(vma);
1533 delete_vma(mm, vma);
1534 cond_resched();
1535 }
1536 }
1537
1538 int vm_brk(unsigned long addr, unsigned long len)
1539 {
1540 return -ENOMEM;
1541 }
1542
1543 /*
1544 * expand (or shrink) an existing mapping, potentially moving it at the same
1545 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1546 *
1547 * under NOMMU conditions, we only permit changing a mapping's size, and only
1548 * as long as it stays within the region allocated by do_mmap_private() and the
1549 * block is not shareable
1550 *
1551 * MREMAP_FIXED is not supported under NOMMU conditions
1552 */
1553 static unsigned long do_mremap(unsigned long addr,
1554 unsigned long old_len, unsigned long new_len,
1555 unsigned long flags, unsigned long new_addr)
1556 {
1557 struct vm_area_struct *vma;
1558
1559 /* insanity checks first */
1560 old_len = PAGE_ALIGN(old_len);
1561 new_len = PAGE_ALIGN(new_len);
1562 if (old_len == 0 || new_len == 0)
1563 return (unsigned long) -EINVAL;
1564
1565 if (offset_in_page(addr))
1566 return -EINVAL;
1567
1568 if (flags & MREMAP_FIXED && new_addr != addr)
1569 return (unsigned long) -EINVAL;
1570
1571 vma = find_vma_exact(current->mm, addr, old_len);
1572 if (!vma)
1573 return (unsigned long) -EINVAL;
1574
1575 if (vma->vm_end != vma->vm_start + old_len)
1576 return (unsigned long) -EFAULT;
1577
1578 if (vma->vm_flags & VM_MAYSHARE)
1579 return (unsigned long) -EPERM;
1580
1581 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1582 return (unsigned long) -ENOMEM;
1583
1584 /* all checks complete - do it */
1585 vma->vm_end = vma->vm_start + new_len;
1586 return vma->vm_start;
1587 }
1588
1589 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1590 unsigned long, new_len, unsigned long, flags,
1591 unsigned long, new_addr)
1592 {
1593 unsigned long ret;
1594
1595 mmap_write_lock(current->mm);
1596 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1597 mmap_write_unlock(current->mm);
1598 return ret;
1599 }
1600
1601 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1602 unsigned int foll_flags)
1603 {
1604 return NULL;
1605 }
1606
1607 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1608 unsigned long pfn, unsigned long size, pgprot_t prot)
1609 {
1610 if (addr != (pfn << PAGE_SHIFT))
1611 return -EINVAL;
1612
1613 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1614 return 0;
1615 }
1616 EXPORT_SYMBOL(remap_pfn_range);
1617
1618 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1619 {
1620 unsigned long pfn = start >> PAGE_SHIFT;
1621 unsigned long vm_len = vma->vm_end - vma->vm_start;
1622
1623 pfn += vma->vm_pgoff;
1624 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1625 }
1626 EXPORT_SYMBOL(vm_iomap_memory);
1627
1628 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1629 unsigned long pgoff)
1630 {
1631 unsigned int size = vma->vm_end - vma->vm_start;
1632
1633 if (!(vma->vm_flags & VM_USERMAP))
1634 return -EINVAL;
1635
1636 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1637 vma->vm_end = vma->vm_start + size;
1638
1639 return 0;
1640 }
1641 EXPORT_SYMBOL(remap_vmalloc_range);
1642
1643 vm_fault_t filemap_fault(struct vm_fault *vmf)
1644 {
1645 BUG();
1646 return 0;
1647 }
1648 EXPORT_SYMBOL(filemap_fault);
1649
1650 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1651 pgoff_t start_pgoff, pgoff_t end_pgoff)
1652 {
1653 BUG();
1654 return 0;
1655 }
1656 EXPORT_SYMBOL(filemap_map_pages);
1657
1658 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1659 int len, unsigned int gup_flags)
1660 {
1661 struct vm_area_struct *vma;
1662 int write = gup_flags & FOLL_WRITE;
1663
1664 if (mmap_read_lock_killable(mm))
1665 return 0;
1666
1667 /* the access must start within one of the target process's mappings */
1668 vma = find_vma(mm, addr);
1669 if (vma) {
1670 /* don't overrun this mapping */
1671 if (addr + len >= vma->vm_end)
1672 len = vma->vm_end - addr;
1673
1674 /* only read or write mappings where it is permitted */
1675 if (write && vma->vm_flags & VM_MAYWRITE)
1676 copy_to_user_page(vma, NULL, addr,
1677 (void *) addr, buf, len);
1678 else if (!write && vma->vm_flags & VM_MAYREAD)
1679 copy_from_user_page(vma, NULL, addr,
1680 buf, (void *) addr, len);
1681 else
1682 len = 0;
1683 } else {
1684 len = 0;
1685 }
1686
1687 mmap_read_unlock(mm);
1688
1689 return len;
1690 }
1691
1692 /**
1693 * access_remote_vm - access another process' address space
1694 * @mm: the mm_struct of the target address space
1695 * @addr: start address to access
1696 * @buf: source or destination buffer
1697 * @len: number of bytes to transfer
1698 * @gup_flags: flags modifying lookup behaviour
1699 *
1700 * The caller must hold a reference on @mm.
1701 */
1702 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1703 void *buf, int len, unsigned int gup_flags)
1704 {
1705 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1706 }
1707
1708 /*
1709 * Access another process' address space.
1710 * - source/target buffer must be kernel space
1711 */
1712 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1713 unsigned int gup_flags)
1714 {
1715 struct mm_struct *mm;
1716
1717 if (addr + len < addr)
1718 return 0;
1719
1720 mm = get_task_mm(tsk);
1721 if (!mm)
1722 return 0;
1723
1724 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1725
1726 mmput(mm);
1727 return len;
1728 }
1729 EXPORT_SYMBOL_GPL(access_process_vm);
1730
1731 /**
1732 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1733 * @inode: The inode to check
1734 * @size: The current filesize of the inode
1735 * @newsize: The proposed filesize of the inode
1736 *
1737 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1738 * make sure that any outstanding VMAs aren't broken and then shrink the
1739 * vm_regions that extend beyond so that do_mmap() doesn't
1740 * automatically grant mappings that are too large.
1741 */
1742 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1743 size_t newsize)
1744 {
1745 struct vm_area_struct *vma;
1746 struct vm_region *region;
1747 pgoff_t low, high;
1748 size_t r_size, r_top;
1749
1750 low = newsize >> PAGE_SHIFT;
1751 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1752
1753 down_write(&nommu_region_sem);
1754 i_mmap_lock_read(inode->i_mapping);
1755
1756 /* search for VMAs that fall within the dead zone */
1757 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1758 /* found one - only interested if it's shared out of the page
1759 * cache */
1760 if (vma->vm_flags & VM_SHARED) {
1761 i_mmap_unlock_read(inode->i_mapping);
1762 up_write(&nommu_region_sem);
1763 return -ETXTBSY; /* not quite true, but near enough */
1764 }
1765 }
1766
1767 /* reduce any regions that overlap the dead zone - if in existence,
1768 * these will be pointed to by VMAs that don't overlap the dead zone
1769 *
1770 * we don't check for any regions that start beyond the EOF as there
1771 * shouldn't be any
1772 */
1773 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1774 if (!(vma->vm_flags & VM_SHARED))
1775 continue;
1776
1777 region = vma->vm_region;
1778 r_size = region->vm_top - region->vm_start;
1779 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1780
1781 if (r_top > newsize) {
1782 region->vm_top -= r_top - newsize;
1783 if (region->vm_end > region->vm_top)
1784 region->vm_end = region->vm_top;
1785 }
1786 }
1787
1788 i_mmap_unlock_read(inode->i_mapping);
1789 up_write(&nommu_region_sem);
1790 return 0;
1791 }
1792
1793 /*
1794 * Initialise sysctl_user_reserve_kbytes.
1795 *
1796 * This is intended to prevent a user from starting a single memory hogging
1797 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1798 * mode.
1799 *
1800 * The default value is min(3% of free memory, 128MB)
1801 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1802 */
1803 static int __meminit init_user_reserve(void)
1804 {
1805 unsigned long free_kbytes;
1806
1807 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1808
1809 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1810 return 0;
1811 }
1812 subsys_initcall(init_user_reserve);
1813
1814 /*
1815 * Initialise sysctl_admin_reserve_kbytes.
1816 *
1817 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1818 * to log in and kill a memory hogging process.
1819 *
1820 * Systems with more than 256MB will reserve 8MB, enough to recover
1821 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1822 * only reserve 3% of free pages by default.
1823 */
1824 static int __meminit init_admin_reserve(void)
1825 {
1826 unsigned long free_kbytes;
1827
1828 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1829
1830 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1831 return 0;
1832 }
1833 subsys_initcall(init_admin_reserve);