]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/page_alloc.c
page allocator: smarter retry of costly-order allocations
[thirdparty/kernel/stable.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48
49 #include <asm/tlbflush.h>
50 #include <asm/div64.h>
51 #include "internal.h"
52
53 /*
54 * Array of node states.
55 */
56 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
57 [N_POSSIBLE] = NODE_MASK_ALL,
58 [N_ONLINE] = { { [0] = 1UL } },
59 #ifndef CONFIG_NUMA
60 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
61 #ifdef CONFIG_HIGHMEM
62 [N_HIGH_MEMORY] = { { [0] = 1UL } },
63 #endif
64 [N_CPU] = { { [0] = 1UL } },
65 #endif /* NUMA */
66 };
67 EXPORT_SYMBOL(node_states);
68
69 unsigned long totalram_pages __read_mostly;
70 unsigned long totalreserve_pages __read_mostly;
71 long nr_swap_pages;
72 int percpu_pagelist_fraction;
73
74 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
75 int pageblock_order __read_mostly;
76 #endif
77
78 static void __free_pages_ok(struct page *page, unsigned int order);
79
80 /*
81 * results with 256, 32 in the lowmem_reserve sysctl:
82 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
83 * 1G machine -> (16M dma, 784M normal, 224M high)
84 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
85 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
86 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
87 *
88 * TBD: should special case ZONE_DMA32 machines here - in those we normally
89 * don't need any ZONE_NORMAL reservation
90 */
91 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
92 #ifdef CONFIG_ZONE_DMA
93 256,
94 #endif
95 #ifdef CONFIG_ZONE_DMA32
96 256,
97 #endif
98 #ifdef CONFIG_HIGHMEM
99 32,
100 #endif
101 32,
102 };
103
104 EXPORT_SYMBOL(totalram_pages);
105
106 static char * const zone_names[MAX_NR_ZONES] = {
107 #ifdef CONFIG_ZONE_DMA
108 "DMA",
109 #endif
110 #ifdef CONFIG_ZONE_DMA32
111 "DMA32",
112 #endif
113 "Normal",
114 #ifdef CONFIG_HIGHMEM
115 "HighMem",
116 #endif
117 "Movable",
118 };
119
120 int min_free_kbytes = 1024;
121
122 unsigned long __meminitdata nr_kernel_pages;
123 unsigned long __meminitdata nr_all_pages;
124 static unsigned long __meminitdata dma_reserve;
125
126 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
127 /*
128 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
129 * ranges of memory (RAM) that may be registered with add_active_range().
130 * Ranges passed to add_active_range() will be merged if possible
131 * so the number of times add_active_range() can be called is
132 * related to the number of nodes and the number of holes
133 */
134 #ifdef CONFIG_MAX_ACTIVE_REGIONS
135 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
136 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
137 #else
138 #if MAX_NUMNODES >= 32
139 /* If there can be many nodes, allow up to 50 holes per node */
140 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
141 #else
142 /* By default, allow up to 256 distinct regions */
143 #define MAX_ACTIVE_REGIONS 256
144 #endif
145 #endif
146
147 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
148 static int __meminitdata nr_nodemap_entries;
149 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
150 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
151 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
152 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
153 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
154 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
155 unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 EXPORT_SYMBOL(nr_node_ids);
167 #endif
168
169 int page_group_by_mobility_disabled __read_mostly;
170
171 static void set_pageblock_migratetype(struct page *page, int migratetype)
172 {
173 set_pageblock_flags_group(page, (unsigned long)migratetype,
174 PB_migrate, PB_migrate_end);
175 }
176
177 #ifdef CONFIG_DEBUG_VM
178 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
179 {
180 int ret = 0;
181 unsigned seq;
182 unsigned long pfn = page_to_pfn(page);
183
184 do {
185 seq = zone_span_seqbegin(zone);
186 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
187 ret = 1;
188 else if (pfn < zone->zone_start_pfn)
189 ret = 1;
190 } while (zone_span_seqretry(zone, seq));
191
192 return ret;
193 }
194
195 static int page_is_consistent(struct zone *zone, struct page *page)
196 {
197 if (!pfn_valid_within(page_to_pfn(page)))
198 return 0;
199 if (zone != page_zone(page))
200 return 0;
201
202 return 1;
203 }
204 /*
205 * Temporary debugging check for pages not lying within a given zone.
206 */
207 static int bad_range(struct zone *zone, struct page *page)
208 {
209 if (page_outside_zone_boundaries(zone, page))
210 return 1;
211 if (!page_is_consistent(zone, page))
212 return 1;
213
214 return 0;
215 }
216 #else
217 static inline int bad_range(struct zone *zone, struct page *page)
218 {
219 return 0;
220 }
221 #endif
222
223 static void bad_page(struct page *page)
224 {
225 void *pc = page_get_page_cgroup(page);
226
227 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
228 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
229 current->comm, page, (int)(2*sizeof(unsigned long)),
230 (unsigned long)page->flags, page->mapping,
231 page_mapcount(page), page_count(page));
232 if (pc) {
233 printk(KERN_EMERG "cgroup:%p\n", pc);
234 page_reset_bad_cgroup(page);
235 }
236 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
237 KERN_EMERG "Backtrace:\n");
238 dump_stack();
239 page->flags &= ~(1 << PG_lru |
240 1 << PG_private |
241 1 << PG_locked |
242 1 << PG_active |
243 1 << PG_dirty |
244 1 << PG_reclaim |
245 1 << PG_slab |
246 1 << PG_swapcache |
247 1 << PG_writeback |
248 1 << PG_buddy );
249 set_page_count(page, 0);
250 reset_page_mapcount(page);
251 page->mapping = NULL;
252 add_taint(TAINT_BAD_PAGE);
253 }
254
255 /*
256 * Higher-order pages are called "compound pages". They are structured thusly:
257 *
258 * The first PAGE_SIZE page is called the "head page".
259 *
260 * The remaining PAGE_SIZE pages are called "tail pages".
261 *
262 * All pages have PG_compound set. All pages have their ->private pointing at
263 * the head page (even the head page has this).
264 *
265 * The first tail page's ->lru.next holds the address of the compound page's
266 * put_page() function. Its ->lru.prev holds the order of allocation.
267 * This usage means that zero-order pages may not be compound.
268 */
269
270 static void free_compound_page(struct page *page)
271 {
272 __free_pages_ok(page, compound_order(page));
273 }
274
275 static void prep_compound_page(struct page *page, unsigned long order)
276 {
277 int i;
278 int nr_pages = 1 << order;
279
280 set_compound_page_dtor(page, free_compound_page);
281 set_compound_order(page, order);
282 __SetPageHead(page);
283 for (i = 1; i < nr_pages; i++) {
284 struct page *p = page + i;
285
286 __SetPageTail(p);
287 p->first_page = page;
288 }
289 }
290
291 static void destroy_compound_page(struct page *page, unsigned long order)
292 {
293 int i;
294 int nr_pages = 1 << order;
295
296 if (unlikely(compound_order(page) != order))
297 bad_page(page);
298
299 if (unlikely(!PageHead(page)))
300 bad_page(page);
301 __ClearPageHead(page);
302 for (i = 1; i < nr_pages; i++) {
303 struct page *p = page + i;
304
305 if (unlikely(!PageTail(p) |
306 (p->first_page != page)))
307 bad_page(page);
308 __ClearPageTail(p);
309 }
310 }
311
312 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
313 {
314 int i;
315
316 /*
317 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
318 * and __GFP_HIGHMEM from hard or soft interrupt context.
319 */
320 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
321 for (i = 0; i < (1 << order); i++)
322 clear_highpage(page + i);
323 }
324
325 static inline void set_page_order(struct page *page, int order)
326 {
327 set_page_private(page, order);
328 __SetPageBuddy(page);
329 }
330
331 static inline void rmv_page_order(struct page *page)
332 {
333 __ClearPageBuddy(page);
334 set_page_private(page, 0);
335 }
336
337 /*
338 * Locate the struct page for both the matching buddy in our
339 * pair (buddy1) and the combined O(n+1) page they form (page).
340 *
341 * 1) Any buddy B1 will have an order O twin B2 which satisfies
342 * the following equation:
343 * B2 = B1 ^ (1 << O)
344 * For example, if the starting buddy (buddy2) is #8 its order
345 * 1 buddy is #10:
346 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
347 *
348 * 2) Any buddy B will have an order O+1 parent P which
349 * satisfies the following equation:
350 * P = B & ~(1 << O)
351 *
352 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
353 */
354 static inline struct page *
355 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
356 {
357 unsigned long buddy_idx = page_idx ^ (1 << order);
358
359 return page + (buddy_idx - page_idx);
360 }
361
362 static inline unsigned long
363 __find_combined_index(unsigned long page_idx, unsigned int order)
364 {
365 return (page_idx & ~(1 << order));
366 }
367
368 /*
369 * This function checks whether a page is free && is the buddy
370 * we can do coalesce a page and its buddy if
371 * (a) the buddy is not in a hole &&
372 * (b) the buddy is in the buddy system &&
373 * (c) a page and its buddy have the same order &&
374 * (d) a page and its buddy are in the same zone.
375 *
376 * For recording whether a page is in the buddy system, we use PG_buddy.
377 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
378 *
379 * For recording page's order, we use page_private(page).
380 */
381 static inline int page_is_buddy(struct page *page, struct page *buddy,
382 int order)
383 {
384 if (!pfn_valid_within(page_to_pfn(buddy)))
385 return 0;
386
387 if (page_zone_id(page) != page_zone_id(buddy))
388 return 0;
389
390 if (PageBuddy(buddy) && page_order(buddy) == order) {
391 BUG_ON(page_count(buddy) != 0);
392 return 1;
393 }
394 return 0;
395 }
396
397 /*
398 * Freeing function for a buddy system allocator.
399 *
400 * The concept of a buddy system is to maintain direct-mapped table
401 * (containing bit values) for memory blocks of various "orders".
402 * The bottom level table contains the map for the smallest allocatable
403 * units of memory (here, pages), and each level above it describes
404 * pairs of units from the levels below, hence, "buddies".
405 * At a high level, all that happens here is marking the table entry
406 * at the bottom level available, and propagating the changes upward
407 * as necessary, plus some accounting needed to play nicely with other
408 * parts of the VM system.
409 * At each level, we keep a list of pages, which are heads of continuous
410 * free pages of length of (1 << order) and marked with PG_buddy. Page's
411 * order is recorded in page_private(page) field.
412 * So when we are allocating or freeing one, we can derive the state of the
413 * other. That is, if we allocate a small block, and both were
414 * free, the remainder of the region must be split into blocks.
415 * If a block is freed, and its buddy is also free, then this
416 * triggers coalescing into a block of larger size.
417 *
418 * -- wli
419 */
420
421 static inline void __free_one_page(struct page *page,
422 struct zone *zone, unsigned int order)
423 {
424 unsigned long page_idx;
425 int order_size = 1 << order;
426 int migratetype = get_pageblock_migratetype(page);
427
428 if (unlikely(PageCompound(page)))
429 destroy_compound_page(page, order);
430
431 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
432
433 VM_BUG_ON(page_idx & (order_size - 1));
434 VM_BUG_ON(bad_range(zone, page));
435
436 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
437 while (order < MAX_ORDER-1) {
438 unsigned long combined_idx;
439 struct page *buddy;
440
441 buddy = __page_find_buddy(page, page_idx, order);
442 if (!page_is_buddy(page, buddy, order))
443 break; /* Move the buddy up one level. */
444
445 list_del(&buddy->lru);
446 zone->free_area[order].nr_free--;
447 rmv_page_order(buddy);
448 combined_idx = __find_combined_index(page_idx, order);
449 page = page + (combined_idx - page_idx);
450 page_idx = combined_idx;
451 order++;
452 }
453 set_page_order(page, order);
454 list_add(&page->lru,
455 &zone->free_area[order].free_list[migratetype]);
456 zone->free_area[order].nr_free++;
457 }
458
459 static inline int free_pages_check(struct page *page)
460 {
461 if (unlikely(page_mapcount(page) |
462 (page->mapping != NULL) |
463 (page_get_page_cgroup(page) != NULL) |
464 (page_count(page) != 0) |
465 (page->flags & (
466 1 << PG_lru |
467 1 << PG_private |
468 1 << PG_locked |
469 1 << PG_active |
470 1 << PG_slab |
471 1 << PG_swapcache |
472 1 << PG_writeback |
473 1 << PG_reserved |
474 1 << PG_buddy ))))
475 bad_page(page);
476 if (PageDirty(page))
477 __ClearPageDirty(page);
478 /*
479 * For now, we report if PG_reserved was found set, but do not
480 * clear it, and do not free the page. But we shall soon need
481 * to do more, for when the ZERO_PAGE count wraps negative.
482 */
483 return PageReserved(page);
484 }
485
486 /*
487 * Frees a list of pages.
488 * Assumes all pages on list are in same zone, and of same order.
489 * count is the number of pages to free.
490 *
491 * If the zone was previously in an "all pages pinned" state then look to
492 * see if this freeing clears that state.
493 *
494 * And clear the zone's pages_scanned counter, to hold off the "all pages are
495 * pinned" detection logic.
496 */
497 static void free_pages_bulk(struct zone *zone, int count,
498 struct list_head *list, int order)
499 {
500 spin_lock(&zone->lock);
501 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
502 zone->pages_scanned = 0;
503 while (count--) {
504 struct page *page;
505
506 VM_BUG_ON(list_empty(list));
507 page = list_entry(list->prev, struct page, lru);
508 /* have to delete it as __free_one_page list manipulates */
509 list_del(&page->lru);
510 __free_one_page(page, zone, order);
511 }
512 spin_unlock(&zone->lock);
513 }
514
515 static void free_one_page(struct zone *zone, struct page *page, int order)
516 {
517 spin_lock(&zone->lock);
518 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
519 zone->pages_scanned = 0;
520 __free_one_page(page, zone, order);
521 spin_unlock(&zone->lock);
522 }
523
524 static void __free_pages_ok(struct page *page, unsigned int order)
525 {
526 unsigned long flags;
527 int i;
528 int reserved = 0;
529
530 for (i = 0 ; i < (1 << order) ; ++i)
531 reserved += free_pages_check(page + i);
532 if (reserved)
533 return;
534
535 if (!PageHighMem(page))
536 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
537 arch_free_page(page, order);
538 kernel_map_pages(page, 1 << order, 0);
539
540 local_irq_save(flags);
541 __count_vm_events(PGFREE, 1 << order);
542 free_one_page(page_zone(page), page, order);
543 local_irq_restore(flags);
544 }
545
546 /*
547 * permit the bootmem allocator to evade page validation on high-order frees
548 */
549 void __free_pages_bootmem(struct page *page, unsigned int order)
550 {
551 if (order == 0) {
552 __ClearPageReserved(page);
553 set_page_count(page, 0);
554 set_page_refcounted(page);
555 __free_page(page);
556 } else {
557 int loop;
558
559 prefetchw(page);
560 for (loop = 0; loop < BITS_PER_LONG; loop++) {
561 struct page *p = &page[loop];
562
563 if (loop + 1 < BITS_PER_LONG)
564 prefetchw(p + 1);
565 __ClearPageReserved(p);
566 set_page_count(p, 0);
567 }
568
569 set_page_refcounted(page);
570 __free_pages(page, order);
571 }
572 }
573
574
575 /*
576 * The order of subdivision here is critical for the IO subsystem.
577 * Please do not alter this order without good reasons and regression
578 * testing. Specifically, as large blocks of memory are subdivided,
579 * the order in which smaller blocks are delivered depends on the order
580 * they're subdivided in this function. This is the primary factor
581 * influencing the order in which pages are delivered to the IO
582 * subsystem according to empirical testing, and this is also justified
583 * by considering the behavior of a buddy system containing a single
584 * large block of memory acted on by a series of small allocations.
585 * This behavior is a critical factor in sglist merging's success.
586 *
587 * -- wli
588 */
589 static inline void expand(struct zone *zone, struct page *page,
590 int low, int high, struct free_area *area,
591 int migratetype)
592 {
593 unsigned long size = 1 << high;
594
595 while (high > low) {
596 area--;
597 high--;
598 size >>= 1;
599 VM_BUG_ON(bad_range(zone, &page[size]));
600 list_add(&page[size].lru, &area->free_list[migratetype]);
601 area->nr_free++;
602 set_page_order(&page[size], high);
603 }
604 }
605
606 /*
607 * This page is about to be returned from the page allocator
608 */
609 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
610 {
611 if (unlikely(page_mapcount(page) |
612 (page->mapping != NULL) |
613 (page_get_page_cgroup(page) != NULL) |
614 (page_count(page) != 0) |
615 (page->flags & (
616 1 << PG_lru |
617 1 << PG_private |
618 1 << PG_locked |
619 1 << PG_active |
620 1 << PG_dirty |
621 1 << PG_slab |
622 1 << PG_swapcache |
623 1 << PG_writeback |
624 1 << PG_reserved |
625 1 << PG_buddy ))))
626 bad_page(page);
627
628 /*
629 * For now, we report if PG_reserved was found set, but do not
630 * clear it, and do not allocate the page: as a safety net.
631 */
632 if (PageReserved(page))
633 return 1;
634
635 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
636 1 << PG_referenced | 1 << PG_arch_1 |
637 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
638 set_page_private(page, 0);
639 set_page_refcounted(page);
640
641 arch_alloc_page(page, order);
642 kernel_map_pages(page, 1 << order, 1);
643
644 if (gfp_flags & __GFP_ZERO)
645 prep_zero_page(page, order, gfp_flags);
646
647 if (order && (gfp_flags & __GFP_COMP))
648 prep_compound_page(page, order);
649
650 return 0;
651 }
652
653 /*
654 * Go through the free lists for the given migratetype and remove
655 * the smallest available page from the freelists
656 */
657 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
658 int migratetype)
659 {
660 unsigned int current_order;
661 struct free_area * area;
662 struct page *page;
663
664 /* Find a page of the appropriate size in the preferred list */
665 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
666 area = &(zone->free_area[current_order]);
667 if (list_empty(&area->free_list[migratetype]))
668 continue;
669
670 page = list_entry(area->free_list[migratetype].next,
671 struct page, lru);
672 list_del(&page->lru);
673 rmv_page_order(page);
674 area->nr_free--;
675 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
676 expand(zone, page, order, current_order, area, migratetype);
677 return page;
678 }
679
680 return NULL;
681 }
682
683
684 /*
685 * This array describes the order lists are fallen back to when
686 * the free lists for the desirable migrate type are depleted
687 */
688 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
689 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
690 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
691 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
692 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
693 };
694
695 /*
696 * Move the free pages in a range to the free lists of the requested type.
697 * Note that start_page and end_pages are not aligned on a pageblock
698 * boundary. If alignment is required, use move_freepages_block()
699 */
700 int move_freepages(struct zone *zone,
701 struct page *start_page, struct page *end_page,
702 int migratetype)
703 {
704 struct page *page;
705 unsigned long order;
706 int pages_moved = 0;
707
708 #ifndef CONFIG_HOLES_IN_ZONE
709 /*
710 * page_zone is not safe to call in this context when
711 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
712 * anyway as we check zone boundaries in move_freepages_block().
713 * Remove at a later date when no bug reports exist related to
714 * grouping pages by mobility
715 */
716 BUG_ON(page_zone(start_page) != page_zone(end_page));
717 #endif
718
719 for (page = start_page; page <= end_page;) {
720 if (!pfn_valid_within(page_to_pfn(page))) {
721 page++;
722 continue;
723 }
724
725 if (!PageBuddy(page)) {
726 page++;
727 continue;
728 }
729
730 order = page_order(page);
731 list_del(&page->lru);
732 list_add(&page->lru,
733 &zone->free_area[order].free_list[migratetype]);
734 page += 1 << order;
735 pages_moved += 1 << order;
736 }
737
738 return pages_moved;
739 }
740
741 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
742 {
743 unsigned long start_pfn, end_pfn;
744 struct page *start_page, *end_page;
745
746 start_pfn = page_to_pfn(page);
747 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
748 start_page = pfn_to_page(start_pfn);
749 end_page = start_page + pageblock_nr_pages - 1;
750 end_pfn = start_pfn + pageblock_nr_pages - 1;
751
752 /* Do not cross zone boundaries */
753 if (start_pfn < zone->zone_start_pfn)
754 start_page = page;
755 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
756 return 0;
757
758 return move_freepages(zone, start_page, end_page, migratetype);
759 }
760
761 /* Remove an element from the buddy allocator from the fallback list */
762 static struct page *__rmqueue_fallback(struct zone *zone, int order,
763 int start_migratetype)
764 {
765 struct free_area * area;
766 int current_order;
767 struct page *page;
768 int migratetype, i;
769
770 /* Find the largest possible block of pages in the other list */
771 for (current_order = MAX_ORDER-1; current_order >= order;
772 --current_order) {
773 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
774 migratetype = fallbacks[start_migratetype][i];
775
776 /* MIGRATE_RESERVE handled later if necessary */
777 if (migratetype == MIGRATE_RESERVE)
778 continue;
779
780 area = &(zone->free_area[current_order]);
781 if (list_empty(&area->free_list[migratetype]))
782 continue;
783
784 page = list_entry(area->free_list[migratetype].next,
785 struct page, lru);
786 area->nr_free--;
787
788 /*
789 * If breaking a large block of pages, move all free
790 * pages to the preferred allocation list. If falling
791 * back for a reclaimable kernel allocation, be more
792 * agressive about taking ownership of free pages
793 */
794 if (unlikely(current_order >= (pageblock_order >> 1)) ||
795 start_migratetype == MIGRATE_RECLAIMABLE) {
796 unsigned long pages;
797 pages = move_freepages_block(zone, page,
798 start_migratetype);
799
800 /* Claim the whole block if over half of it is free */
801 if (pages >= (1 << (pageblock_order-1)))
802 set_pageblock_migratetype(page,
803 start_migratetype);
804
805 migratetype = start_migratetype;
806 }
807
808 /* Remove the page from the freelists */
809 list_del(&page->lru);
810 rmv_page_order(page);
811 __mod_zone_page_state(zone, NR_FREE_PAGES,
812 -(1UL << order));
813
814 if (current_order == pageblock_order)
815 set_pageblock_migratetype(page,
816 start_migratetype);
817
818 expand(zone, page, order, current_order, area, migratetype);
819 return page;
820 }
821 }
822
823 /* Use MIGRATE_RESERVE rather than fail an allocation */
824 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
825 }
826
827 /*
828 * Do the hard work of removing an element from the buddy allocator.
829 * Call me with the zone->lock already held.
830 */
831 static struct page *__rmqueue(struct zone *zone, unsigned int order,
832 int migratetype)
833 {
834 struct page *page;
835
836 page = __rmqueue_smallest(zone, order, migratetype);
837
838 if (unlikely(!page))
839 page = __rmqueue_fallback(zone, order, migratetype);
840
841 return page;
842 }
843
844 /*
845 * Obtain a specified number of elements from the buddy allocator, all under
846 * a single hold of the lock, for efficiency. Add them to the supplied list.
847 * Returns the number of new pages which were placed at *list.
848 */
849 static int rmqueue_bulk(struct zone *zone, unsigned int order,
850 unsigned long count, struct list_head *list,
851 int migratetype)
852 {
853 int i;
854
855 spin_lock(&zone->lock);
856 for (i = 0; i < count; ++i) {
857 struct page *page = __rmqueue(zone, order, migratetype);
858 if (unlikely(page == NULL))
859 break;
860
861 /*
862 * Split buddy pages returned by expand() are received here
863 * in physical page order. The page is added to the callers and
864 * list and the list head then moves forward. From the callers
865 * perspective, the linked list is ordered by page number in
866 * some conditions. This is useful for IO devices that can
867 * merge IO requests if the physical pages are ordered
868 * properly.
869 */
870 list_add(&page->lru, list);
871 set_page_private(page, migratetype);
872 list = &page->lru;
873 }
874 spin_unlock(&zone->lock);
875 return i;
876 }
877
878 #ifdef CONFIG_NUMA
879 /*
880 * Called from the vmstat counter updater to drain pagesets of this
881 * currently executing processor on remote nodes after they have
882 * expired.
883 *
884 * Note that this function must be called with the thread pinned to
885 * a single processor.
886 */
887 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
888 {
889 unsigned long flags;
890 int to_drain;
891
892 local_irq_save(flags);
893 if (pcp->count >= pcp->batch)
894 to_drain = pcp->batch;
895 else
896 to_drain = pcp->count;
897 free_pages_bulk(zone, to_drain, &pcp->list, 0);
898 pcp->count -= to_drain;
899 local_irq_restore(flags);
900 }
901 #endif
902
903 /*
904 * Drain pages of the indicated processor.
905 *
906 * The processor must either be the current processor and the
907 * thread pinned to the current processor or a processor that
908 * is not online.
909 */
910 static void drain_pages(unsigned int cpu)
911 {
912 unsigned long flags;
913 struct zone *zone;
914
915 for_each_zone(zone) {
916 struct per_cpu_pageset *pset;
917 struct per_cpu_pages *pcp;
918
919 if (!populated_zone(zone))
920 continue;
921
922 pset = zone_pcp(zone, cpu);
923
924 pcp = &pset->pcp;
925 local_irq_save(flags);
926 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
927 pcp->count = 0;
928 local_irq_restore(flags);
929 }
930 }
931
932 /*
933 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
934 */
935 void drain_local_pages(void *arg)
936 {
937 drain_pages(smp_processor_id());
938 }
939
940 /*
941 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
942 */
943 void drain_all_pages(void)
944 {
945 on_each_cpu(drain_local_pages, NULL, 0, 1);
946 }
947
948 #ifdef CONFIG_HIBERNATION
949
950 void mark_free_pages(struct zone *zone)
951 {
952 unsigned long pfn, max_zone_pfn;
953 unsigned long flags;
954 int order, t;
955 struct list_head *curr;
956
957 if (!zone->spanned_pages)
958 return;
959
960 spin_lock_irqsave(&zone->lock, flags);
961
962 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
963 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
964 if (pfn_valid(pfn)) {
965 struct page *page = pfn_to_page(pfn);
966
967 if (!swsusp_page_is_forbidden(page))
968 swsusp_unset_page_free(page);
969 }
970
971 for_each_migratetype_order(order, t) {
972 list_for_each(curr, &zone->free_area[order].free_list[t]) {
973 unsigned long i;
974
975 pfn = page_to_pfn(list_entry(curr, struct page, lru));
976 for (i = 0; i < (1UL << order); i++)
977 swsusp_set_page_free(pfn_to_page(pfn + i));
978 }
979 }
980 spin_unlock_irqrestore(&zone->lock, flags);
981 }
982 #endif /* CONFIG_PM */
983
984 /*
985 * Free a 0-order page
986 */
987 static void free_hot_cold_page(struct page *page, int cold)
988 {
989 struct zone *zone = page_zone(page);
990 struct per_cpu_pages *pcp;
991 unsigned long flags;
992
993 if (PageAnon(page))
994 page->mapping = NULL;
995 if (free_pages_check(page))
996 return;
997
998 if (!PageHighMem(page))
999 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1000 arch_free_page(page, 0);
1001 kernel_map_pages(page, 1, 0);
1002
1003 pcp = &zone_pcp(zone, get_cpu())->pcp;
1004 local_irq_save(flags);
1005 __count_vm_event(PGFREE);
1006 if (cold)
1007 list_add_tail(&page->lru, &pcp->list);
1008 else
1009 list_add(&page->lru, &pcp->list);
1010 set_page_private(page, get_pageblock_migratetype(page));
1011 pcp->count++;
1012 if (pcp->count >= pcp->high) {
1013 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1014 pcp->count -= pcp->batch;
1015 }
1016 local_irq_restore(flags);
1017 put_cpu();
1018 }
1019
1020 void free_hot_page(struct page *page)
1021 {
1022 free_hot_cold_page(page, 0);
1023 }
1024
1025 void free_cold_page(struct page *page)
1026 {
1027 free_hot_cold_page(page, 1);
1028 }
1029
1030 /*
1031 * split_page takes a non-compound higher-order page, and splits it into
1032 * n (1<<order) sub-pages: page[0..n]
1033 * Each sub-page must be freed individually.
1034 *
1035 * Note: this is probably too low level an operation for use in drivers.
1036 * Please consult with lkml before using this in your driver.
1037 */
1038 void split_page(struct page *page, unsigned int order)
1039 {
1040 int i;
1041
1042 VM_BUG_ON(PageCompound(page));
1043 VM_BUG_ON(!page_count(page));
1044 for (i = 1; i < (1 << order); i++)
1045 set_page_refcounted(page + i);
1046 }
1047
1048 /*
1049 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1050 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1051 * or two.
1052 */
1053 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1054 struct zone *zone, int order, gfp_t gfp_flags)
1055 {
1056 unsigned long flags;
1057 struct page *page;
1058 int cold = !!(gfp_flags & __GFP_COLD);
1059 int cpu;
1060 int migratetype = allocflags_to_migratetype(gfp_flags);
1061
1062 again:
1063 cpu = get_cpu();
1064 if (likely(order == 0)) {
1065 struct per_cpu_pages *pcp;
1066
1067 pcp = &zone_pcp(zone, cpu)->pcp;
1068 local_irq_save(flags);
1069 if (!pcp->count) {
1070 pcp->count = rmqueue_bulk(zone, 0,
1071 pcp->batch, &pcp->list, migratetype);
1072 if (unlikely(!pcp->count))
1073 goto failed;
1074 }
1075
1076 /* Find a page of the appropriate migrate type */
1077 if (cold) {
1078 list_for_each_entry_reverse(page, &pcp->list, lru)
1079 if (page_private(page) == migratetype)
1080 break;
1081 } else {
1082 list_for_each_entry(page, &pcp->list, lru)
1083 if (page_private(page) == migratetype)
1084 break;
1085 }
1086
1087 /* Allocate more to the pcp list if necessary */
1088 if (unlikely(&page->lru == &pcp->list)) {
1089 pcp->count += rmqueue_bulk(zone, 0,
1090 pcp->batch, &pcp->list, migratetype);
1091 page = list_entry(pcp->list.next, struct page, lru);
1092 }
1093
1094 list_del(&page->lru);
1095 pcp->count--;
1096 } else {
1097 spin_lock_irqsave(&zone->lock, flags);
1098 page = __rmqueue(zone, order, migratetype);
1099 spin_unlock(&zone->lock);
1100 if (!page)
1101 goto failed;
1102 }
1103
1104 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1105 zone_statistics(preferred_zone, zone);
1106 local_irq_restore(flags);
1107 put_cpu();
1108
1109 VM_BUG_ON(bad_range(zone, page));
1110 if (prep_new_page(page, order, gfp_flags))
1111 goto again;
1112 return page;
1113
1114 failed:
1115 local_irq_restore(flags);
1116 put_cpu();
1117 return NULL;
1118 }
1119
1120 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1121 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1122 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1123 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1124 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1125 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1126 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1127
1128 #ifdef CONFIG_FAIL_PAGE_ALLOC
1129
1130 static struct fail_page_alloc_attr {
1131 struct fault_attr attr;
1132
1133 u32 ignore_gfp_highmem;
1134 u32 ignore_gfp_wait;
1135 u32 min_order;
1136
1137 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1138
1139 struct dentry *ignore_gfp_highmem_file;
1140 struct dentry *ignore_gfp_wait_file;
1141 struct dentry *min_order_file;
1142
1143 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1144
1145 } fail_page_alloc = {
1146 .attr = FAULT_ATTR_INITIALIZER,
1147 .ignore_gfp_wait = 1,
1148 .ignore_gfp_highmem = 1,
1149 .min_order = 1,
1150 };
1151
1152 static int __init setup_fail_page_alloc(char *str)
1153 {
1154 return setup_fault_attr(&fail_page_alloc.attr, str);
1155 }
1156 __setup("fail_page_alloc=", setup_fail_page_alloc);
1157
1158 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1159 {
1160 if (order < fail_page_alloc.min_order)
1161 return 0;
1162 if (gfp_mask & __GFP_NOFAIL)
1163 return 0;
1164 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1165 return 0;
1166 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1167 return 0;
1168
1169 return should_fail(&fail_page_alloc.attr, 1 << order);
1170 }
1171
1172 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1173
1174 static int __init fail_page_alloc_debugfs(void)
1175 {
1176 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1177 struct dentry *dir;
1178 int err;
1179
1180 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1181 "fail_page_alloc");
1182 if (err)
1183 return err;
1184 dir = fail_page_alloc.attr.dentries.dir;
1185
1186 fail_page_alloc.ignore_gfp_wait_file =
1187 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1188 &fail_page_alloc.ignore_gfp_wait);
1189
1190 fail_page_alloc.ignore_gfp_highmem_file =
1191 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1192 &fail_page_alloc.ignore_gfp_highmem);
1193 fail_page_alloc.min_order_file =
1194 debugfs_create_u32("min-order", mode, dir,
1195 &fail_page_alloc.min_order);
1196
1197 if (!fail_page_alloc.ignore_gfp_wait_file ||
1198 !fail_page_alloc.ignore_gfp_highmem_file ||
1199 !fail_page_alloc.min_order_file) {
1200 err = -ENOMEM;
1201 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1202 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1203 debugfs_remove(fail_page_alloc.min_order_file);
1204 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1205 }
1206
1207 return err;
1208 }
1209
1210 late_initcall(fail_page_alloc_debugfs);
1211
1212 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1213
1214 #else /* CONFIG_FAIL_PAGE_ALLOC */
1215
1216 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1217 {
1218 return 0;
1219 }
1220
1221 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1222
1223 /*
1224 * Return 1 if free pages are above 'mark'. This takes into account the order
1225 * of the allocation.
1226 */
1227 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1228 int classzone_idx, int alloc_flags)
1229 {
1230 /* free_pages my go negative - that's OK */
1231 long min = mark;
1232 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1233 int o;
1234
1235 if (alloc_flags & ALLOC_HIGH)
1236 min -= min / 2;
1237 if (alloc_flags & ALLOC_HARDER)
1238 min -= min / 4;
1239
1240 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1241 return 0;
1242 for (o = 0; o < order; o++) {
1243 /* At the next order, this order's pages become unavailable */
1244 free_pages -= z->free_area[o].nr_free << o;
1245
1246 /* Require fewer higher order pages to be free */
1247 min >>= 1;
1248
1249 if (free_pages <= min)
1250 return 0;
1251 }
1252 return 1;
1253 }
1254
1255 #ifdef CONFIG_NUMA
1256 /*
1257 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1258 * skip over zones that are not allowed by the cpuset, or that have
1259 * been recently (in last second) found to be nearly full. See further
1260 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1261 * that have to skip over a lot of full or unallowed zones.
1262 *
1263 * If the zonelist cache is present in the passed in zonelist, then
1264 * returns a pointer to the allowed node mask (either the current
1265 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1266 *
1267 * If the zonelist cache is not available for this zonelist, does
1268 * nothing and returns NULL.
1269 *
1270 * If the fullzones BITMAP in the zonelist cache is stale (more than
1271 * a second since last zap'd) then we zap it out (clear its bits.)
1272 *
1273 * We hold off even calling zlc_setup, until after we've checked the
1274 * first zone in the zonelist, on the theory that most allocations will
1275 * be satisfied from that first zone, so best to examine that zone as
1276 * quickly as we can.
1277 */
1278 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1279 {
1280 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1281 nodemask_t *allowednodes; /* zonelist_cache approximation */
1282
1283 zlc = zonelist->zlcache_ptr;
1284 if (!zlc)
1285 return NULL;
1286
1287 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1288 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1289 zlc->last_full_zap = jiffies;
1290 }
1291
1292 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1293 &cpuset_current_mems_allowed :
1294 &node_states[N_HIGH_MEMORY];
1295 return allowednodes;
1296 }
1297
1298 /*
1299 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1300 * if it is worth looking at further for free memory:
1301 * 1) Check that the zone isn't thought to be full (doesn't have its
1302 * bit set in the zonelist_cache fullzones BITMAP).
1303 * 2) Check that the zones node (obtained from the zonelist_cache
1304 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1305 * Return true (non-zero) if zone is worth looking at further, or
1306 * else return false (zero) if it is not.
1307 *
1308 * This check -ignores- the distinction between various watermarks,
1309 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1310 * found to be full for any variation of these watermarks, it will
1311 * be considered full for up to one second by all requests, unless
1312 * we are so low on memory on all allowed nodes that we are forced
1313 * into the second scan of the zonelist.
1314 *
1315 * In the second scan we ignore this zonelist cache and exactly
1316 * apply the watermarks to all zones, even it is slower to do so.
1317 * We are low on memory in the second scan, and should leave no stone
1318 * unturned looking for a free page.
1319 */
1320 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1321 nodemask_t *allowednodes)
1322 {
1323 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1324 int i; /* index of *z in zonelist zones */
1325 int n; /* node that zone *z is on */
1326
1327 zlc = zonelist->zlcache_ptr;
1328 if (!zlc)
1329 return 1;
1330
1331 i = z - zonelist->_zonerefs;
1332 n = zlc->z_to_n[i];
1333
1334 /* This zone is worth trying if it is allowed but not full */
1335 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1336 }
1337
1338 /*
1339 * Given 'z' scanning a zonelist, set the corresponding bit in
1340 * zlc->fullzones, so that subsequent attempts to allocate a page
1341 * from that zone don't waste time re-examining it.
1342 */
1343 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1344 {
1345 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1346 int i; /* index of *z in zonelist zones */
1347
1348 zlc = zonelist->zlcache_ptr;
1349 if (!zlc)
1350 return;
1351
1352 i = z - zonelist->_zonerefs;
1353
1354 set_bit(i, zlc->fullzones);
1355 }
1356
1357 #else /* CONFIG_NUMA */
1358
1359 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1360 {
1361 return NULL;
1362 }
1363
1364 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1365 nodemask_t *allowednodes)
1366 {
1367 return 1;
1368 }
1369
1370 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1371 {
1372 }
1373 #endif /* CONFIG_NUMA */
1374
1375 /*
1376 * get_page_from_freelist goes through the zonelist trying to allocate
1377 * a page.
1378 */
1379 static struct page *
1380 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1381 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1382 {
1383 struct zoneref *z;
1384 struct page *page = NULL;
1385 int classzone_idx;
1386 struct zone *zone, *preferred_zone;
1387 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1388 int zlc_active = 0; /* set if using zonelist_cache */
1389 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1390
1391 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1392 &preferred_zone);
1393 classzone_idx = zone_idx(preferred_zone);
1394
1395 zonelist_scan:
1396 /*
1397 * Scan zonelist, looking for a zone with enough free.
1398 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1399 */
1400 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1401 high_zoneidx, nodemask) {
1402 if (NUMA_BUILD && zlc_active &&
1403 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1404 continue;
1405 if ((alloc_flags & ALLOC_CPUSET) &&
1406 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1407 goto try_next_zone;
1408
1409 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1410 unsigned long mark;
1411 if (alloc_flags & ALLOC_WMARK_MIN)
1412 mark = zone->pages_min;
1413 else if (alloc_flags & ALLOC_WMARK_LOW)
1414 mark = zone->pages_low;
1415 else
1416 mark = zone->pages_high;
1417 if (!zone_watermark_ok(zone, order, mark,
1418 classzone_idx, alloc_flags)) {
1419 if (!zone_reclaim_mode ||
1420 !zone_reclaim(zone, gfp_mask, order))
1421 goto this_zone_full;
1422 }
1423 }
1424
1425 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1426 if (page)
1427 break;
1428 this_zone_full:
1429 if (NUMA_BUILD)
1430 zlc_mark_zone_full(zonelist, z);
1431 try_next_zone:
1432 if (NUMA_BUILD && !did_zlc_setup) {
1433 /* we do zlc_setup after the first zone is tried */
1434 allowednodes = zlc_setup(zonelist, alloc_flags);
1435 zlc_active = 1;
1436 did_zlc_setup = 1;
1437 }
1438 }
1439
1440 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1441 /* Disable zlc cache for second zonelist scan */
1442 zlc_active = 0;
1443 goto zonelist_scan;
1444 }
1445 return page;
1446 }
1447
1448 /*
1449 * This is the 'heart' of the zoned buddy allocator.
1450 */
1451 static struct page *
1452 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1453 struct zonelist *zonelist, nodemask_t *nodemask)
1454 {
1455 const gfp_t wait = gfp_mask & __GFP_WAIT;
1456 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1457 struct zoneref *z;
1458 struct zone *zone;
1459 struct page *page;
1460 struct reclaim_state reclaim_state;
1461 struct task_struct *p = current;
1462 int do_retry;
1463 int alloc_flags;
1464 unsigned long did_some_progress;
1465 unsigned long pages_reclaimed = 0;
1466
1467 might_sleep_if(wait);
1468
1469 if (should_fail_alloc_page(gfp_mask, order))
1470 return NULL;
1471
1472 restart:
1473 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1474
1475 if (unlikely(!z->zone)) {
1476 /*
1477 * Happens if we have an empty zonelist as a result of
1478 * GFP_THISNODE being used on a memoryless node
1479 */
1480 return NULL;
1481 }
1482
1483 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1484 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1485 if (page)
1486 goto got_pg;
1487
1488 /*
1489 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1490 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1491 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1492 * using a larger set of nodes after it has established that the
1493 * allowed per node queues are empty and that nodes are
1494 * over allocated.
1495 */
1496 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1497 goto nopage;
1498
1499 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1500 wakeup_kswapd(zone, order);
1501
1502 /*
1503 * OK, we're below the kswapd watermark and have kicked background
1504 * reclaim. Now things get more complex, so set up alloc_flags according
1505 * to how we want to proceed.
1506 *
1507 * The caller may dip into page reserves a bit more if the caller
1508 * cannot run direct reclaim, or if the caller has realtime scheduling
1509 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1510 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1511 */
1512 alloc_flags = ALLOC_WMARK_MIN;
1513 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1514 alloc_flags |= ALLOC_HARDER;
1515 if (gfp_mask & __GFP_HIGH)
1516 alloc_flags |= ALLOC_HIGH;
1517 if (wait)
1518 alloc_flags |= ALLOC_CPUSET;
1519
1520 /*
1521 * Go through the zonelist again. Let __GFP_HIGH and allocations
1522 * coming from realtime tasks go deeper into reserves.
1523 *
1524 * This is the last chance, in general, before the goto nopage.
1525 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1526 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1527 */
1528 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1529 high_zoneidx, alloc_flags);
1530 if (page)
1531 goto got_pg;
1532
1533 /* This allocation should allow future memory freeing. */
1534
1535 rebalance:
1536 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1537 && !in_interrupt()) {
1538 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1539 nofail_alloc:
1540 /* go through the zonelist yet again, ignoring mins */
1541 page = get_page_from_freelist(gfp_mask, nodemask, order,
1542 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1543 if (page)
1544 goto got_pg;
1545 if (gfp_mask & __GFP_NOFAIL) {
1546 congestion_wait(WRITE, HZ/50);
1547 goto nofail_alloc;
1548 }
1549 }
1550 goto nopage;
1551 }
1552
1553 /* Atomic allocations - we can't balance anything */
1554 if (!wait)
1555 goto nopage;
1556
1557 cond_resched();
1558
1559 /* We now go into synchronous reclaim */
1560 cpuset_memory_pressure_bump();
1561 p->flags |= PF_MEMALLOC;
1562 reclaim_state.reclaimed_slab = 0;
1563 p->reclaim_state = &reclaim_state;
1564
1565 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1566
1567 p->reclaim_state = NULL;
1568 p->flags &= ~PF_MEMALLOC;
1569
1570 cond_resched();
1571
1572 if (order != 0)
1573 drain_all_pages();
1574
1575 if (likely(did_some_progress)) {
1576 page = get_page_from_freelist(gfp_mask, nodemask, order,
1577 zonelist, high_zoneidx, alloc_flags);
1578 if (page)
1579 goto got_pg;
1580 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1581 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1582 schedule_timeout_uninterruptible(1);
1583 goto restart;
1584 }
1585
1586 /*
1587 * Go through the zonelist yet one more time, keep
1588 * very high watermark here, this is only to catch
1589 * a parallel oom killing, we must fail if we're still
1590 * under heavy pressure.
1591 */
1592 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1593 order, zonelist, high_zoneidx,
1594 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1595 if (page) {
1596 clear_zonelist_oom(zonelist, gfp_mask);
1597 goto got_pg;
1598 }
1599
1600 /* The OOM killer will not help higher order allocs so fail */
1601 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1602 clear_zonelist_oom(zonelist, gfp_mask);
1603 goto nopage;
1604 }
1605
1606 out_of_memory(zonelist, gfp_mask, order);
1607 clear_zonelist_oom(zonelist, gfp_mask);
1608 goto restart;
1609 }
1610
1611 /*
1612 * Don't let big-order allocations loop unless the caller explicitly
1613 * requests that. Wait for some write requests to complete then retry.
1614 *
1615 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1616 * means __GFP_NOFAIL, but that may not be true in other
1617 * implementations.
1618 *
1619 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1620 * specified, then we retry until we no longer reclaim any pages
1621 * (above), or we've reclaimed an order of pages at least as
1622 * large as the allocation's order. In both cases, if the
1623 * allocation still fails, we stop retrying.
1624 */
1625 pages_reclaimed += did_some_progress;
1626 do_retry = 0;
1627 if (!(gfp_mask & __GFP_NORETRY)) {
1628 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1629 do_retry = 1;
1630 } else {
1631 if (gfp_mask & __GFP_REPEAT &&
1632 pages_reclaimed < (1 << order))
1633 do_retry = 1;
1634 }
1635 if (gfp_mask & __GFP_NOFAIL)
1636 do_retry = 1;
1637 }
1638 if (do_retry) {
1639 congestion_wait(WRITE, HZ/50);
1640 goto rebalance;
1641 }
1642
1643 nopage:
1644 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1645 printk(KERN_WARNING "%s: page allocation failure."
1646 " order:%d, mode:0x%x\n",
1647 p->comm, order, gfp_mask);
1648 dump_stack();
1649 show_mem();
1650 }
1651 got_pg:
1652 return page;
1653 }
1654
1655 struct page *
1656 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1657 struct zonelist *zonelist)
1658 {
1659 return __alloc_pages_internal(gfp_mask, order, zonelist, NULL);
1660 }
1661
1662 struct page *
1663 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1664 struct zonelist *zonelist, nodemask_t *nodemask)
1665 {
1666 return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask);
1667 }
1668
1669 EXPORT_SYMBOL(__alloc_pages);
1670
1671 /*
1672 * Common helper functions.
1673 */
1674 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1675 {
1676 struct page * page;
1677 page = alloc_pages(gfp_mask, order);
1678 if (!page)
1679 return 0;
1680 return (unsigned long) page_address(page);
1681 }
1682
1683 EXPORT_SYMBOL(__get_free_pages);
1684
1685 unsigned long get_zeroed_page(gfp_t gfp_mask)
1686 {
1687 struct page * page;
1688
1689 /*
1690 * get_zeroed_page() returns a 32-bit address, which cannot represent
1691 * a highmem page
1692 */
1693 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1694
1695 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1696 if (page)
1697 return (unsigned long) page_address(page);
1698 return 0;
1699 }
1700
1701 EXPORT_SYMBOL(get_zeroed_page);
1702
1703 void __pagevec_free(struct pagevec *pvec)
1704 {
1705 int i = pagevec_count(pvec);
1706
1707 while (--i >= 0)
1708 free_hot_cold_page(pvec->pages[i], pvec->cold);
1709 }
1710
1711 void __free_pages(struct page *page, unsigned int order)
1712 {
1713 if (put_page_testzero(page)) {
1714 if (order == 0)
1715 free_hot_page(page);
1716 else
1717 __free_pages_ok(page, order);
1718 }
1719 }
1720
1721 EXPORT_SYMBOL(__free_pages);
1722
1723 void free_pages(unsigned long addr, unsigned int order)
1724 {
1725 if (addr != 0) {
1726 VM_BUG_ON(!virt_addr_valid((void *)addr));
1727 __free_pages(virt_to_page((void *)addr), order);
1728 }
1729 }
1730
1731 EXPORT_SYMBOL(free_pages);
1732
1733 static unsigned int nr_free_zone_pages(int offset)
1734 {
1735 struct zoneref *z;
1736 struct zone *zone;
1737
1738 /* Just pick one node, since fallback list is circular */
1739 unsigned int sum = 0;
1740
1741 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1742
1743 for_each_zone_zonelist(zone, z, zonelist, offset) {
1744 unsigned long size = zone->present_pages;
1745 unsigned long high = zone->pages_high;
1746 if (size > high)
1747 sum += size - high;
1748 }
1749
1750 return sum;
1751 }
1752
1753 /*
1754 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1755 */
1756 unsigned int nr_free_buffer_pages(void)
1757 {
1758 return nr_free_zone_pages(gfp_zone(GFP_USER));
1759 }
1760 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1761
1762 /*
1763 * Amount of free RAM allocatable within all zones
1764 */
1765 unsigned int nr_free_pagecache_pages(void)
1766 {
1767 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1768 }
1769
1770 static inline void show_node(struct zone *zone)
1771 {
1772 if (NUMA_BUILD)
1773 printk("Node %d ", zone_to_nid(zone));
1774 }
1775
1776 void si_meminfo(struct sysinfo *val)
1777 {
1778 val->totalram = totalram_pages;
1779 val->sharedram = 0;
1780 val->freeram = global_page_state(NR_FREE_PAGES);
1781 val->bufferram = nr_blockdev_pages();
1782 val->totalhigh = totalhigh_pages;
1783 val->freehigh = nr_free_highpages();
1784 val->mem_unit = PAGE_SIZE;
1785 }
1786
1787 EXPORT_SYMBOL(si_meminfo);
1788
1789 #ifdef CONFIG_NUMA
1790 void si_meminfo_node(struct sysinfo *val, int nid)
1791 {
1792 pg_data_t *pgdat = NODE_DATA(nid);
1793
1794 val->totalram = pgdat->node_present_pages;
1795 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1796 #ifdef CONFIG_HIGHMEM
1797 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1798 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1799 NR_FREE_PAGES);
1800 #else
1801 val->totalhigh = 0;
1802 val->freehigh = 0;
1803 #endif
1804 val->mem_unit = PAGE_SIZE;
1805 }
1806 #endif
1807
1808 #define K(x) ((x) << (PAGE_SHIFT-10))
1809
1810 /*
1811 * Show free area list (used inside shift_scroll-lock stuff)
1812 * We also calculate the percentage fragmentation. We do this by counting the
1813 * memory on each free list with the exception of the first item on the list.
1814 */
1815 void show_free_areas(void)
1816 {
1817 int cpu;
1818 struct zone *zone;
1819
1820 for_each_zone(zone) {
1821 if (!populated_zone(zone))
1822 continue;
1823
1824 show_node(zone);
1825 printk("%s per-cpu:\n", zone->name);
1826
1827 for_each_online_cpu(cpu) {
1828 struct per_cpu_pageset *pageset;
1829
1830 pageset = zone_pcp(zone, cpu);
1831
1832 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1833 cpu, pageset->pcp.high,
1834 pageset->pcp.batch, pageset->pcp.count);
1835 }
1836 }
1837
1838 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1839 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1840 global_page_state(NR_ACTIVE),
1841 global_page_state(NR_INACTIVE),
1842 global_page_state(NR_FILE_DIRTY),
1843 global_page_state(NR_WRITEBACK),
1844 global_page_state(NR_UNSTABLE_NFS),
1845 global_page_state(NR_FREE_PAGES),
1846 global_page_state(NR_SLAB_RECLAIMABLE) +
1847 global_page_state(NR_SLAB_UNRECLAIMABLE),
1848 global_page_state(NR_FILE_MAPPED),
1849 global_page_state(NR_PAGETABLE),
1850 global_page_state(NR_BOUNCE));
1851
1852 for_each_zone(zone) {
1853 int i;
1854
1855 if (!populated_zone(zone))
1856 continue;
1857
1858 show_node(zone);
1859 printk("%s"
1860 " free:%lukB"
1861 " min:%lukB"
1862 " low:%lukB"
1863 " high:%lukB"
1864 " active:%lukB"
1865 " inactive:%lukB"
1866 " present:%lukB"
1867 " pages_scanned:%lu"
1868 " all_unreclaimable? %s"
1869 "\n",
1870 zone->name,
1871 K(zone_page_state(zone, NR_FREE_PAGES)),
1872 K(zone->pages_min),
1873 K(zone->pages_low),
1874 K(zone->pages_high),
1875 K(zone_page_state(zone, NR_ACTIVE)),
1876 K(zone_page_state(zone, NR_INACTIVE)),
1877 K(zone->present_pages),
1878 zone->pages_scanned,
1879 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1880 );
1881 printk("lowmem_reserve[]:");
1882 for (i = 0; i < MAX_NR_ZONES; i++)
1883 printk(" %lu", zone->lowmem_reserve[i]);
1884 printk("\n");
1885 }
1886
1887 for_each_zone(zone) {
1888 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1889
1890 if (!populated_zone(zone))
1891 continue;
1892
1893 show_node(zone);
1894 printk("%s: ", zone->name);
1895
1896 spin_lock_irqsave(&zone->lock, flags);
1897 for (order = 0; order < MAX_ORDER; order++) {
1898 nr[order] = zone->free_area[order].nr_free;
1899 total += nr[order] << order;
1900 }
1901 spin_unlock_irqrestore(&zone->lock, flags);
1902 for (order = 0; order < MAX_ORDER; order++)
1903 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1904 printk("= %lukB\n", K(total));
1905 }
1906
1907 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1908
1909 show_swap_cache_info();
1910 }
1911
1912 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1913 {
1914 zoneref->zone = zone;
1915 zoneref->zone_idx = zone_idx(zone);
1916 }
1917
1918 /*
1919 * Builds allocation fallback zone lists.
1920 *
1921 * Add all populated zones of a node to the zonelist.
1922 */
1923 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1924 int nr_zones, enum zone_type zone_type)
1925 {
1926 struct zone *zone;
1927
1928 BUG_ON(zone_type >= MAX_NR_ZONES);
1929 zone_type++;
1930
1931 do {
1932 zone_type--;
1933 zone = pgdat->node_zones + zone_type;
1934 if (populated_zone(zone)) {
1935 zoneref_set_zone(zone,
1936 &zonelist->_zonerefs[nr_zones++]);
1937 check_highest_zone(zone_type);
1938 }
1939
1940 } while (zone_type);
1941 return nr_zones;
1942 }
1943
1944
1945 /*
1946 * zonelist_order:
1947 * 0 = automatic detection of better ordering.
1948 * 1 = order by ([node] distance, -zonetype)
1949 * 2 = order by (-zonetype, [node] distance)
1950 *
1951 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1952 * the same zonelist. So only NUMA can configure this param.
1953 */
1954 #define ZONELIST_ORDER_DEFAULT 0
1955 #define ZONELIST_ORDER_NODE 1
1956 #define ZONELIST_ORDER_ZONE 2
1957
1958 /* zonelist order in the kernel.
1959 * set_zonelist_order() will set this to NODE or ZONE.
1960 */
1961 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1962 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1963
1964
1965 #ifdef CONFIG_NUMA
1966 /* The value user specified ....changed by config */
1967 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1968 /* string for sysctl */
1969 #define NUMA_ZONELIST_ORDER_LEN 16
1970 char numa_zonelist_order[16] = "default";
1971
1972 /*
1973 * interface for configure zonelist ordering.
1974 * command line option "numa_zonelist_order"
1975 * = "[dD]efault - default, automatic configuration.
1976 * = "[nN]ode - order by node locality, then by zone within node
1977 * = "[zZ]one - order by zone, then by locality within zone
1978 */
1979
1980 static int __parse_numa_zonelist_order(char *s)
1981 {
1982 if (*s == 'd' || *s == 'D') {
1983 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1984 } else if (*s == 'n' || *s == 'N') {
1985 user_zonelist_order = ZONELIST_ORDER_NODE;
1986 } else if (*s == 'z' || *s == 'Z') {
1987 user_zonelist_order = ZONELIST_ORDER_ZONE;
1988 } else {
1989 printk(KERN_WARNING
1990 "Ignoring invalid numa_zonelist_order value: "
1991 "%s\n", s);
1992 return -EINVAL;
1993 }
1994 return 0;
1995 }
1996
1997 static __init int setup_numa_zonelist_order(char *s)
1998 {
1999 if (s)
2000 return __parse_numa_zonelist_order(s);
2001 return 0;
2002 }
2003 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2004
2005 /*
2006 * sysctl handler for numa_zonelist_order
2007 */
2008 int numa_zonelist_order_handler(ctl_table *table, int write,
2009 struct file *file, void __user *buffer, size_t *length,
2010 loff_t *ppos)
2011 {
2012 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2013 int ret;
2014
2015 if (write)
2016 strncpy(saved_string, (char*)table->data,
2017 NUMA_ZONELIST_ORDER_LEN);
2018 ret = proc_dostring(table, write, file, buffer, length, ppos);
2019 if (ret)
2020 return ret;
2021 if (write) {
2022 int oldval = user_zonelist_order;
2023 if (__parse_numa_zonelist_order((char*)table->data)) {
2024 /*
2025 * bogus value. restore saved string
2026 */
2027 strncpy((char*)table->data, saved_string,
2028 NUMA_ZONELIST_ORDER_LEN);
2029 user_zonelist_order = oldval;
2030 } else if (oldval != user_zonelist_order)
2031 build_all_zonelists();
2032 }
2033 return 0;
2034 }
2035
2036
2037 #define MAX_NODE_LOAD (num_online_nodes())
2038 static int node_load[MAX_NUMNODES];
2039
2040 /**
2041 * find_next_best_node - find the next node that should appear in a given node's fallback list
2042 * @node: node whose fallback list we're appending
2043 * @used_node_mask: nodemask_t of already used nodes
2044 *
2045 * We use a number of factors to determine which is the next node that should
2046 * appear on a given node's fallback list. The node should not have appeared
2047 * already in @node's fallback list, and it should be the next closest node
2048 * according to the distance array (which contains arbitrary distance values
2049 * from each node to each node in the system), and should also prefer nodes
2050 * with no CPUs, since presumably they'll have very little allocation pressure
2051 * on them otherwise.
2052 * It returns -1 if no node is found.
2053 */
2054 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2055 {
2056 int n, val;
2057 int min_val = INT_MAX;
2058 int best_node = -1;
2059 node_to_cpumask_ptr(tmp, 0);
2060
2061 /* Use the local node if we haven't already */
2062 if (!node_isset(node, *used_node_mask)) {
2063 node_set(node, *used_node_mask);
2064 return node;
2065 }
2066
2067 for_each_node_state(n, N_HIGH_MEMORY) {
2068
2069 /* Don't want a node to appear more than once */
2070 if (node_isset(n, *used_node_mask))
2071 continue;
2072
2073 /* Use the distance array to find the distance */
2074 val = node_distance(node, n);
2075
2076 /* Penalize nodes under us ("prefer the next node") */
2077 val += (n < node);
2078
2079 /* Give preference to headless and unused nodes */
2080 node_to_cpumask_ptr_next(tmp, n);
2081 if (!cpus_empty(*tmp))
2082 val += PENALTY_FOR_NODE_WITH_CPUS;
2083
2084 /* Slight preference for less loaded node */
2085 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2086 val += node_load[n];
2087
2088 if (val < min_val) {
2089 min_val = val;
2090 best_node = n;
2091 }
2092 }
2093
2094 if (best_node >= 0)
2095 node_set(best_node, *used_node_mask);
2096
2097 return best_node;
2098 }
2099
2100
2101 /*
2102 * Build zonelists ordered by node and zones within node.
2103 * This results in maximum locality--normal zone overflows into local
2104 * DMA zone, if any--but risks exhausting DMA zone.
2105 */
2106 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2107 {
2108 int j;
2109 struct zonelist *zonelist;
2110
2111 zonelist = &pgdat->node_zonelists[0];
2112 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2113 ;
2114 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2115 MAX_NR_ZONES - 1);
2116 zonelist->_zonerefs[j].zone = NULL;
2117 zonelist->_zonerefs[j].zone_idx = 0;
2118 }
2119
2120 /*
2121 * Build gfp_thisnode zonelists
2122 */
2123 static void build_thisnode_zonelists(pg_data_t *pgdat)
2124 {
2125 int j;
2126 struct zonelist *zonelist;
2127
2128 zonelist = &pgdat->node_zonelists[1];
2129 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2130 zonelist->_zonerefs[j].zone = NULL;
2131 zonelist->_zonerefs[j].zone_idx = 0;
2132 }
2133
2134 /*
2135 * Build zonelists ordered by zone and nodes within zones.
2136 * This results in conserving DMA zone[s] until all Normal memory is
2137 * exhausted, but results in overflowing to remote node while memory
2138 * may still exist in local DMA zone.
2139 */
2140 static int node_order[MAX_NUMNODES];
2141
2142 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2143 {
2144 int pos, j, node;
2145 int zone_type; /* needs to be signed */
2146 struct zone *z;
2147 struct zonelist *zonelist;
2148
2149 zonelist = &pgdat->node_zonelists[0];
2150 pos = 0;
2151 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2152 for (j = 0; j < nr_nodes; j++) {
2153 node = node_order[j];
2154 z = &NODE_DATA(node)->node_zones[zone_type];
2155 if (populated_zone(z)) {
2156 zoneref_set_zone(z,
2157 &zonelist->_zonerefs[pos++]);
2158 check_highest_zone(zone_type);
2159 }
2160 }
2161 }
2162 zonelist->_zonerefs[pos].zone = NULL;
2163 zonelist->_zonerefs[pos].zone_idx = 0;
2164 }
2165
2166 static int default_zonelist_order(void)
2167 {
2168 int nid, zone_type;
2169 unsigned long low_kmem_size,total_size;
2170 struct zone *z;
2171 int average_size;
2172 /*
2173 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2174 * If they are really small and used heavily, the system can fall
2175 * into OOM very easily.
2176 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2177 */
2178 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2179 low_kmem_size = 0;
2180 total_size = 0;
2181 for_each_online_node(nid) {
2182 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2183 z = &NODE_DATA(nid)->node_zones[zone_type];
2184 if (populated_zone(z)) {
2185 if (zone_type < ZONE_NORMAL)
2186 low_kmem_size += z->present_pages;
2187 total_size += z->present_pages;
2188 }
2189 }
2190 }
2191 if (!low_kmem_size || /* there are no DMA area. */
2192 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2193 return ZONELIST_ORDER_NODE;
2194 /*
2195 * look into each node's config.
2196 * If there is a node whose DMA/DMA32 memory is very big area on
2197 * local memory, NODE_ORDER may be suitable.
2198 */
2199 average_size = total_size /
2200 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2201 for_each_online_node(nid) {
2202 low_kmem_size = 0;
2203 total_size = 0;
2204 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2205 z = &NODE_DATA(nid)->node_zones[zone_type];
2206 if (populated_zone(z)) {
2207 if (zone_type < ZONE_NORMAL)
2208 low_kmem_size += z->present_pages;
2209 total_size += z->present_pages;
2210 }
2211 }
2212 if (low_kmem_size &&
2213 total_size > average_size && /* ignore small node */
2214 low_kmem_size > total_size * 70/100)
2215 return ZONELIST_ORDER_NODE;
2216 }
2217 return ZONELIST_ORDER_ZONE;
2218 }
2219
2220 static void set_zonelist_order(void)
2221 {
2222 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2223 current_zonelist_order = default_zonelist_order();
2224 else
2225 current_zonelist_order = user_zonelist_order;
2226 }
2227
2228 static void build_zonelists(pg_data_t *pgdat)
2229 {
2230 int j, node, load;
2231 enum zone_type i;
2232 nodemask_t used_mask;
2233 int local_node, prev_node;
2234 struct zonelist *zonelist;
2235 int order = current_zonelist_order;
2236
2237 /* initialize zonelists */
2238 for (i = 0; i < MAX_ZONELISTS; i++) {
2239 zonelist = pgdat->node_zonelists + i;
2240 zonelist->_zonerefs[0].zone = NULL;
2241 zonelist->_zonerefs[0].zone_idx = 0;
2242 }
2243
2244 /* NUMA-aware ordering of nodes */
2245 local_node = pgdat->node_id;
2246 load = num_online_nodes();
2247 prev_node = local_node;
2248 nodes_clear(used_mask);
2249
2250 memset(node_load, 0, sizeof(node_load));
2251 memset(node_order, 0, sizeof(node_order));
2252 j = 0;
2253
2254 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2255 int distance = node_distance(local_node, node);
2256
2257 /*
2258 * If another node is sufficiently far away then it is better
2259 * to reclaim pages in a zone before going off node.
2260 */
2261 if (distance > RECLAIM_DISTANCE)
2262 zone_reclaim_mode = 1;
2263
2264 /*
2265 * We don't want to pressure a particular node.
2266 * So adding penalty to the first node in same
2267 * distance group to make it round-robin.
2268 */
2269 if (distance != node_distance(local_node, prev_node))
2270 node_load[node] = load;
2271
2272 prev_node = node;
2273 load--;
2274 if (order == ZONELIST_ORDER_NODE)
2275 build_zonelists_in_node_order(pgdat, node);
2276 else
2277 node_order[j++] = node; /* remember order */
2278 }
2279
2280 if (order == ZONELIST_ORDER_ZONE) {
2281 /* calculate node order -- i.e., DMA last! */
2282 build_zonelists_in_zone_order(pgdat, j);
2283 }
2284
2285 build_thisnode_zonelists(pgdat);
2286 }
2287
2288 /* Construct the zonelist performance cache - see further mmzone.h */
2289 static void build_zonelist_cache(pg_data_t *pgdat)
2290 {
2291 struct zonelist *zonelist;
2292 struct zonelist_cache *zlc;
2293 struct zoneref *z;
2294
2295 zonelist = &pgdat->node_zonelists[0];
2296 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2297 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2298 for (z = zonelist->_zonerefs; z->zone; z++)
2299 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2300 }
2301
2302
2303 #else /* CONFIG_NUMA */
2304
2305 static void set_zonelist_order(void)
2306 {
2307 current_zonelist_order = ZONELIST_ORDER_ZONE;
2308 }
2309
2310 static void build_zonelists(pg_data_t *pgdat)
2311 {
2312 int node, local_node;
2313 enum zone_type j;
2314 struct zonelist *zonelist;
2315
2316 local_node = pgdat->node_id;
2317
2318 zonelist = &pgdat->node_zonelists[0];
2319 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2320
2321 /*
2322 * Now we build the zonelist so that it contains the zones
2323 * of all the other nodes.
2324 * We don't want to pressure a particular node, so when
2325 * building the zones for node N, we make sure that the
2326 * zones coming right after the local ones are those from
2327 * node N+1 (modulo N)
2328 */
2329 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2330 if (!node_online(node))
2331 continue;
2332 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2333 MAX_NR_ZONES - 1);
2334 }
2335 for (node = 0; node < local_node; node++) {
2336 if (!node_online(node))
2337 continue;
2338 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2339 MAX_NR_ZONES - 1);
2340 }
2341
2342 zonelist->_zonerefs[j].zone = NULL;
2343 zonelist->_zonerefs[j].zone_idx = 0;
2344 }
2345
2346 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2347 static void build_zonelist_cache(pg_data_t *pgdat)
2348 {
2349 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2350 pgdat->node_zonelists[1].zlcache_ptr = NULL;
2351 }
2352
2353 #endif /* CONFIG_NUMA */
2354
2355 /* return values int ....just for stop_machine_run() */
2356 static int __build_all_zonelists(void *dummy)
2357 {
2358 int nid;
2359
2360 for_each_online_node(nid) {
2361 pg_data_t *pgdat = NODE_DATA(nid);
2362
2363 build_zonelists(pgdat);
2364 build_zonelist_cache(pgdat);
2365 }
2366 return 0;
2367 }
2368
2369 void build_all_zonelists(void)
2370 {
2371 set_zonelist_order();
2372
2373 if (system_state == SYSTEM_BOOTING) {
2374 __build_all_zonelists(NULL);
2375 cpuset_init_current_mems_allowed();
2376 } else {
2377 /* we have to stop all cpus to guarantee there is no user
2378 of zonelist */
2379 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2380 /* cpuset refresh routine should be here */
2381 }
2382 vm_total_pages = nr_free_pagecache_pages();
2383 /*
2384 * Disable grouping by mobility if the number of pages in the
2385 * system is too low to allow the mechanism to work. It would be
2386 * more accurate, but expensive to check per-zone. This check is
2387 * made on memory-hotadd so a system can start with mobility
2388 * disabled and enable it later
2389 */
2390 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2391 page_group_by_mobility_disabled = 1;
2392 else
2393 page_group_by_mobility_disabled = 0;
2394
2395 printk("Built %i zonelists in %s order, mobility grouping %s. "
2396 "Total pages: %ld\n",
2397 num_online_nodes(),
2398 zonelist_order_name[current_zonelist_order],
2399 page_group_by_mobility_disabled ? "off" : "on",
2400 vm_total_pages);
2401 #ifdef CONFIG_NUMA
2402 printk("Policy zone: %s\n", zone_names[policy_zone]);
2403 #endif
2404 }
2405
2406 /*
2407 * Helper functions to size the waitqueue hash table.
2408 * Essentially these want to choose hash table sizes sufficiently
2409 * large so that collisions trying to wait on pages are rare.
2410 * But in fact, the number of active page waitqueues on typical
2411 * systems is ridiculously low, less than 200. So this is even
2412 * conservative, even though it seems large.
2413 *
2414 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2415 * waitqueues, i.e. the size of the waitq table given the number of pages.
2416 */
2417 #define PAGES_PER_WAITQUEUE 256
2418
2419 #ifndef CONFIG_MEMORY_HOTPLUG
2420 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2421 {
2422 unsigned long size = 1;
2423
2424 pages /= PAGES_PER_WAITQUEUE;
2425
2426 while (size < pages)
2427 size <<= 1;
2428
2429 /*
2430 * Once we have dozens or even hundreds of threads sleeping
2431 * on IO we've got bigger problems than wait queue collision.
2432 * Limit the size of the wait table to a reasonable size.
2433 */
2434 size = min(size, 4096UL);
2435
2436 return max(size, 4UL);
2437 }
2438 #else
2439 /*
2440 * A zone's size might be changed by hot-add, so it is not possible to determine
2441 * a suitable size for its wait_table. So we use the maximum size now.
2442 *
2443 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2444 *
2445 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2446 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2447 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2448 *
2449 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2450 * or more by the traditional way. (See above). It equals:
2451 *
2452 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2453 * ia64(16K page size) : = ( 8G + 4M)byte.
2454 * powerpc (64K page size) : = (32G +16M)byte.
2455 */
2456 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2457 {
2458 return 4096UL;
2459 }
2460 #endif
2461
2462 /*
2463 * This is an integer logarithm so that shifts can be used later
2464 * to extract the more random high bits from the multiplicative
2465 * hash function before the remainder is taken.
2466 */
2467 static inline unsigned long wait_table_bits(unsigned long size)
2468 {
2469 return ffz(~size);
2470 }
2471
2472 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2473
2474 /*
2475 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2476 * of blocks reserved is based on zone->pages_min. The memory within the
2477 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2478 * higher will lead to a bigger reserve which will get freed as contiguous
2479 * blocks as reclaim kicks in
2480 */
2481 static void setup_zone_migrate_reserve(struct zone *zone)
2482 {
2483 unsigned long start_pfn, pfn, end_pfn;
2484 struct page *page;
2485 unsigned long reserve, block_migratetype;
2486
2487 /* Get the start pfn, end pfn and the number of blocks to reserve */
2488 start_pfn = zone->zone_start_pfn;
2489 end_pfn = start_pfn + zone->spanned_pages;
2490 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2491 pageblock_order;
2492
2493 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2494 if (!pfn_valid(pfn))
2495 continue;
2496 page = pfn_to_page(pfn);
2497
2498 /* Blocks with reserved pages will never free, skip them. */
2499 if (PageReserved(page))
2500 continue;
2501
2502 block_migratetype = get_pageblock_migratetype(page);
2503
2504 /* If this block is reserved, account for it */
2505 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2506 reserve--;
2507 continue;
2508 }
2509
2510 /* Suitable for reserving if this block is movable */
2511 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2512 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2513 move_freepages_block(zone, page, MIGRATE_RESERVE);
2514 reserve--;
2515 continue;
2516 }
2517
2518 /*
2519 * If the reserve is met and this is a previous reserved block,
2520 * take it back
2521 */
2522 if (block_migratetype == MIGRATE_RESERVE) {
2523 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2524 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2525 }
2526 }
2527 }
2528
2529 /*
2530 * Initially all pages are reserved - free ones are freed
2531 * up by free_all_bootmem() once the early boot process is
2532 * done. Non-atomic initialization, single-pass.
2533 */
2534 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2535 unsigned long start_pfn, enum memmap_context context)
2536 {
2537 struct page *page;
2538 unsigned long end_pfn = start_pfn + size;
2539 unsigned long pfn;
2540 struct zone *z;
2541
2542 z = &NODE_DATA(nid)->node_zones[zone];
2543 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2544 /*
2545 * There can be holes in boot-time mem_map[]s
2546 * handed to this function. They do not
2547 * exist on hotplugged memory.
2548 */
2549 if (context == MEMMAP_EARLY) {
2550 if (!early_pfn_valid(pfn))
2551 continue;
2552 if (!early_pfn_in_nid(pfn, nid))
2553 continue;
2554 }
2555 page = pfn_to_page(pfn);
2556 set_page_links(page, zone, nid, pfn);
2557 init_page_count(page);
2558 reset_page_mapcount(page);
2559 SetPageReserved(page);
2560 /*
2561 * Mark the block movable so that blocks are reserved for
2562 * movable at startup. This will force kernel allocations
2563 * to reserve their blocks rather than leaking throughout
2564 * the address space during boot when many long-lived
2565 * kernel allocations are made. Later some blocks near
2566 * the start are marked MIGRATE_RESERVE by
2567 * setup_zone_migrate_reserve()
2568 *
2569 * bitmap is created for zone's valid pfn range. but memmap
2570 * can be created for invalid pages (for alignment)
2571 * check here not to call set_pageblock_migratetype() against
2572 * pfn out of zone.
2573 */
2574 if ((z->zone_start_pfn <= pfn)
2575 && (pfn < z->zone_start_pfn + z->spanned_pages)
2576 && !(pfn & (pageblock_nr_pages - 1)))
2577 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2578
2579 INIT_LIST_HEAD(&page->lru);
2580 #ifdef WANT_PAGE_VIRTUAL
2581 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2582 if (!is_highmem_idx(zone))
2583 set_page_address(page, __va(pfn << PAGE_SHIFT));
2584 #endif
2585 }
2586 }
2587
2588 static void __meminit zone_init_free_lists(struct zone *zone)
2589 {
2590 int order, t;
2591 for_each_migratetype_order(order, t) {
2592 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2593 zone->free_area[order].nr_free = 0;
2594 }
2595 }
2596
2597 #ifndef __HAVE_ARCH_MEMMAP_INIT
2598 #define memmap_init(size, nid, zone, start_pfn) \
2599 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2600 #endif
2601
2602 static int zone_batchsize(struct zone *zone)
2603 {
2604 int batch;
2605
2606 /*
2607 * The per-cpu-pages pools are set to around 1000th of the
2608 * size of the zone. But no more than 1/2 of a meg.
2609 *
2610 * OK, so we don't know how big the cache is. So guess.
2611 */
2612 batch = zone->present_pages / 1024;
2613 if (batch * PAGE_SIZE > 512 * 1024)
2614 batch = (512 * 1024) / PAGE_SIZE;
2615 batch /= 4; /* We effectively *= 4 below */
2616 if (batch < 1)
2617 batch = 1;
2618
2619 /*
2620 * Clamp the batch to a 2^n - 1 value. Having a power
2621 * of 2 value was found to be more likely to have
2622 * suboptimal cache aliasing properties in some cases.
2623 *
2624 * For example if 2 tasks are alternately allocating
2625 * batches of pages, one task can end up with a lot
2626 * of pages of one half of the possible page colors
2627 * and the other with pages of the other colors.
2628 */
2629 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2630
2631 return batch;
2632 }
2633
2634 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2635 {
2636 struct per_cpu_pages *pcp;
2637
2638 memset(p, 0, sizeof(*p));
2639
2640 pcp = &p->pcp;
2641 pcp->count = 0;
2642 pcp->high = 6 * batch;
2643 pcp->batch = max(1UL, 1 * batch);
2644 INIT_LIST_HEAD(&pcp->list);
2645 }
2646
2647 /*
2648 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2649 * to the value high for the pageset p.
2650 */
2651
2652 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2653 unsigned long high)
2654 {
2655 struct per_cpu_pages *pcp;
2656
2657 pcp = &p->pcp;
2658 pcp->high = high;
2659 pcp->batch = max(1UL, high/4);
2660 if ((high/4) > (PAGE_SHIFT * 8))
2661 pcp->batch = PAGE_SHIFT * 8;
2662 }
2663
2664
2665 #ifdef CONFIG_NUMA
2666 /*
2667 * Boot pageset table. One per cpu which is going to be used for all
2668 * zones and all nodes. The parameters will be set in such a way
2669 * that an item put on a list will immediately be handed over to
2670 * the buddy list. This is safe since pageset manipulation is done
2671 * with interrupts disabled.
2672 *
2673 * Some NUMA counter updates may also be caught by the boot pagesets.
2674 *
2675 * The boot_pagesets must be kept even after bootup is complete for
2676 * unused processors and/or zones. They do play a role for bootstrapping
2677 * hotplugged processors.
2678 *
2679 * zoneinfo_show() and maybe other functions do
2680 * not check if the processor is online before following the pageset pointer.
2681 * Other parts of the kernel may not check if the zone is available.
2682 */
2683 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2684
2685 /*
2686 * Dynamically allocate memory for the
2687 * per cpu pageset array in struct zone.
2688 */
2689 static int __cpuinit process_zones(int cpu)
2690 {
2691 struct zone *zone, *dzone;
2692 int node = cpu_to_node(cpu);
2693
2694 node_set_state(node, N_CPU); /* this node has a cpu */
2695
2696 for_each_zone(zone) {
2697
2698 if (!populated_zone(zone))
2699 continue;
2700
2701 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2702 GFP_KERNEL, node);
2703 if (!zone_pcp(zone, cpu))
2704 goto bad;
2705
2706 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2707
2708 if (percpu_pagelist_fraction)
2709 setup_pagelist_highmark(zone_pcp(zone, cpu),
2710 (zone->present_pages / percpu_pagelist_fraction));
2711 }
2712
2713 return 0;
2714 bad:
2715 for_each_zone(dzone) {
2716 if (!populated_zone(dzone))
2717 continue;
2718 if (dzone == zone)
2719 break;
2720 kfree(zone_pcp(dzone, cpu));
2721 zone_pcp(dzone, cpu) = NULL;
2722 }
2723 return -ENOMEM;
2724 }
2725
2726 static inline void free_zone_pagesets(int cpu)
2727 {
2728 struct zone *zone;
2729
2730 for_each_zone(zone) {
2731 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2732
2733 /* Free per_cpu_pageset if it is slab allocated */
2734 if (pset != &boot_pageset[cpu])
2735 kfree(pset);
2736 zone_pcp(zone, cpu) = NULL;
2737 }
2738 }
2739
2740 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2741 unsigned long action,
2742 void *hcpu)
2743 {
2744 int cpu = (long)hcpu;
2745 int ret = NOTIFY_OK;
2746
2747 switch (action) {
2748 case CPU_UP_PREPARE:
2749 case CPU_UP_PREPARE_FROZEN:
2750 if (process_zones(cpu))
2751 ret = NOTIFY_BAD;
2752 break;
2753 case CPU_UP_CANCELED:
2754 case CPU_UP_CANCELED_FROZEN:
2755 case CPU_DEAD:
2756 case CPU_DEAD_FROZEN:
2757 free_zone_pagesets(cpu);
2758 break;
2759 default:
2760 break;
2761 }
2762 return ret;
2763 }
2764
2765 static struct notifier_block __cpuinitdata pageset_notifier =
2766 { &pageset_cpuup_callback, NULL, 0 };
2767
2768 void __init setup_per_cpu_pageset(void)
2769 {
2770 int err;
2771
2772 /* Initialize per_cpu_pageset for cpu 0.
2773 * A cpuup callback will do this for every cpu
2774 * as it comes online
2775 */
2776 err = process_zones(smp_processor_id());
2777 BUG_ON(err);
2778 register_cpu_notifier(&pageset_notifier);
2779 }
2780
2781 #endif
2782
2783 static noinline __init_refok
2784 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2785 {
2786 int i;
2787 struct pglist_data *pgdat = zone->zone_pgdat;
2788 size_t alloc_size;
2789
2790 /*
2791 * The per-page waitqueue mechanism uses hashed waitqueues
2792 * per zone.
2793 */
2794 zone->wait_table_hash_nr_entries =
2795 wait_table_hash_nr_entries(zone_size_pages);
2796 zone->wait_table_bits =
2797 wait_table_bits(zone->wait_table_hash_nr_entries);
2798 alloc_size = zone->wait_table_hash_nr_entries
2799 * sizeof(wait_queue_head_t);
2800
2801 if (system_state == SYSTEM_BOOTING) {
2802 zone->wait_table = (wait_queue_head_t *)
2803 alloc_bootmem_node(pgdat, alloc_size);
2804 } else {
2805 /*
2806 * This case means that a zone whose size was 0 gets new memory
2807 * via memory hot-add.
2808 * But it may be the case that a new node was hot-added. In
2809 * this case vmalloc() will not be able to use this new node's
2810 * memory - this wait_table must be initialized to use this new
2811 * node itself as well.
2812 * To use this new node's memory, further consideration will be
2813 * necessary.
2814 */
2815 zone->wait_table = vmalloc(alloc_size);
2816 }
2817 if (!zone->wait_table)
2818 return -ENOMEM;
2819
2820 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2821 init_waitqueue_head(zone->wait_table + i);
2822
2823 return 0;
2824 }
2825
2826 static __meminit void zone_pcp_init(struct zone *zone)
2827 {
2828 int cpu;
2829 unsigned long batch = zone_batchsize(zone);
2830
2831 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2832 #ifdef CONFIG_NUMA
2833 /* Early boot. Slab allocator not functional yet */
2834 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2835 setup_pageset(&boot_pageset[cpu],0);
2836 #else
2837 setup_pageset(zone_pcp(zone,cpu), batch);
2838 #endif
2839 }
2840 if (zone->present_pages)
2841 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2842 zone->name, zone->present_pages, batch);
2843 }
2844
2845 __meminit int init_currently_empty_zone(struct zone *zone,
2846 unsigned long zone_start_pfn,
2847 unsigned long size,
2848 enum memmap_context context)
2849 {
2850 struct pglist_data *pgdat = zone->zone_pgdat;
2851 int ret;
2852 ret = zone_wait_table_init(zone, size);
2853 if (ret)
2854 return ret;
2855 pgdat->nr_zones = zone_idx(zone) + 1;
2856
2857 zone->zone_start_pfn = zone_start_pfn;
2858
2859 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2860
2861 zone_init_free_lists(zone);
2862
2863 return 0;
2864 }
2865
2866 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2867 /*
2868 * Basic iterator support. Return the first range of PFNs for a node
2869 * Note: nid == MAX_NUMNODES returns first region regardless of node
2870 */
2871 static int __meminit first_active_region_index_in_nid(int nid)
2872 {
2873 int i;
2874
2875 for (i = 0; i < nr_nodemap_entries; i++)
2876 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2877 return i;
2878
2879 return -1;
2880 }
2881
2882 /*
2883 * Basic iterator support. Return the next active range of PFNs for a node
2884 * Note: nid == MAX_NUMNODES returns next region regardless of node
2885 */
2886 static int __meminit next_active_region_index_in_nid(int index, int nid)
2887 {
2888 for (index = index + 1; index < nr_nodemap_entries; index++)
2889 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2890 return index;
2891
2892 return -1;
2893 }
2894
2895 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2896 /*
2897 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2898 * Architectures may implement their own version but if add_active_range()
2899 * was used and there are no special requirements, this is a convenient
2900 * alternative
2901 */
2902 int __meminit early_pfn_to_nid(unsigned long pfn)
2903 {
2904 int i;
2905
2906 for (i = 0; i < nr_nodemap_entries; i++) {
2907 unsigned long start_pfn = early_node_map[i].start_pfn;
2908 unsigned long end_pfn = early_node_map[i].end_pfn;
2909
2910 if (start_pfn <= pfn && pfn < end_pfn)
2911 return early_node_map[i].nid;
2912 }
2913
2914 return 0;
2915 }
2916 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2917
2918 /* Basic iterator support to walk early_node_map[] */
2919 #define for_each_active_range_index_in_nid(i, nid) \
2920 for (i = first_active_region_index_in_nid(nid); i != -1; \
2921 i = next_active_region_index_in_nid(i, nid))
2922
2923 /**
2924 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2925 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2926 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2927 *
2928 * If an architecture guarantees that all ranges registered with
2929 * add_active_ranges() contain no holes and may be freed, this
2930 * this function may be used instead of calling free_bootmem() manually.
2931 */
2932 void __init free_bootmem_with_active_regions(int nid,
2933 unsigned long max_low_pfn)
2934 {
2935 int i;
2936
2937 for_each_active_range_index_in_nid(i, nid) {
2938 unsigned long size_pages = 0;
2939 unsigned long end_pfn = early_node_map[i].end_pfn;
2940
2941 if (early_node_map[i].start_pfn >= max_low_pfn)
2942 continue;
2943
2944 if (end_pfn > max_low_pfn)
2945 end_pfn = max_low_pfn;
2946
2947 size_pages = end_pfn - early_node_map[i].start_pfn;
2948 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2949 PFN_PHYS(early_node_map[i].start_pfn),
2950 size_pages << PAGE_SHIFT);
2951 }
2952 }
2953
2954 /**
2955 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2956 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2957 *
2958 * If an architecture guarantees that all ranges registered with
2959 * add_active_ranges() contain no holes and may be freed, this
2960 * function may be used instead of calling memory_present() manually.
2961 */
2962 void __init sparse_memory_present_with_active_regions(int nid)
2963 {
2964 int i;
2965
2966 for_each_active_range_index_in_nid(i, nid)
2967 memory_present(early_node_map[i].nid,
2968 early_node_map[i].start_pfn,
2969 early_node_map[i].end_pfn);
2970 }
2971
2972 /**
2973 * push_node_boundaries - Push node boundaries to at least the requested boundary
2974 * @nid: The nid of the node to push the boundary for
2975 * @start_pfn: The start pfn of the node
2976 * @end_pfn: The end pfn of the node
2977 *
2978 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2979 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2980 * be hotplugged even though no physical memory exists. This function allows
2981 * an arch to push out the node boundaries so mem_map is allocated that can
2982 * be used later.
2983 */
2984 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2985 void __init push_node_boundaries(unsigned int nid,
2986 unsigned long start_pfn, unsigned long end_pfn)
2987 {
2988 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2989 nid, start_pfn, end_pfn);
2990
2991 /* Initialise the boundary for this node if necessary */
2992 if (node_boundary_end_pfn[nid] == 0)
2993 node_boundary_start_pfn[nid] = -1UL;
2994
2995 /* Update the boundaries */
2996 if (node_boundary_start_pfn[nid] > start_pfn)
2997 node_boundary_start_pfn[nid] = start_pfn;
2998 if (node_boundary_end_pfn[nid] < end_pfn)
2999 node_boundary_end_pfn[nid] = end_pfn;
3000 }
3001
3002 /* If necessary, push the node boundary out for reserve hotadd */
3003 static void __meminit account_node_boundary(unsigned int nid,
3004 unsigned long *start_pfn, unsigned long *end_pfn)
3005 {
3006 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
3007 nid, *start_pfn, *end_pfn);
3008
3009 /* Return if boundary information has not been provided */
3010 if (node_boundary_end_pfn[nid] == 0)
3011 return;
3012
3013 /* Check the boundaries and update if necessary */
3014 if (node_boundary_start_pfn[nid] < *start_pfn)
3015 *start_pfn = node_boundary_start_pfn[nid];
3016 if (node_boundary_end_pfn[nid] > *end_pfn)
3017 *end_pfn = node_boundary_end_pfn[nid];
3018 }
3019 #else
3020 void __init push_node_boundaries(unsigned int nid,
3021 unsigned long start_pfn, unsigned long end_pfn) {}
3022
3023 static void __meminit account_node_boundary(unsigned int nid,
3024 unsigned long *start_pfn, unsigned long *end_pfn) {}
3025 #endif
3026
3027
3028 /**
3029 * get_pfn_range_for_nid - Return the start and end page frames for a node
3030 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3031 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3032 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3033 *
3034 * It returns the start and end page frame of a node based on information
3035 * provided by an arch calling add_active_range(). If called for a node
3036 * with no available memory, a warning is printed and the start and end
3037 * PFNs will be 0.
3038 */
3039 void __meminit get_pfn_range_for_nid(unsigned int nid,
3040 unsigned long *start_pfn, unsigned long *end_pfn)
3041 {
3042 int i;
3043 *start_pfn = -1UL;
3044 *end_pfn = 0;
3045
3046 for_each_active_range_index_in_nid(i, nid) {
3047 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3048 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3049 }
3050
3051 if (*start_pfn == -1UL)
3052 *start_pfn = 0;
3053
3054 /* Push the node boundaries out if requested */
3055 account_node_boundary(nid, start_pfn, end_pfn);
3056 }
3057
3058 /*
3059 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3060 * assumption is made that zones within a node are ordered in monotonic
3061 * increasing memory addresses so that the "highest" populated zone is used
3062 */
3063 void __init find_usable_zone_for_movable(void)
3064 {
3065 int zone_index;
3066 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3067 if (zone_index == ZONE_MOVABLE)
3068 continue;
3069
3070 if (arch_zone_highest_possible_pfn[zone_index] >
3071 arch_zone_lowest_possible_pfn[zone_index])
3072 break;
3073 }
3074
3075 VM_BUG_ON(zone_index == -1);
3076 movable_zone = zone_index;
3077 }
3078
3079 /*
3080 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3081 * because it is sized independant of architecture. Unlike the other zones,
3082 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3083 * in each node depending on the size of each node and how evenly kernelcore
3084 * is distributed. This helper function adjusts the zone ranges
3085 * provided by the architecture for a given node by using the end of the
3086 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3087 * zones within a node are in order of monotonic increases memory addresses
3088 */
3089 void __meminit adjust_zone_range_for_zone_movable(int nid,
3090 unsigned long zone_type,
3091 unsigned long node_start_pfn,
3092 unsigned long node_end_pfn,
3093 unsigned long *zone_start_pfn,
3094 unsigned long *zone_end_pfn)
3095 {
3096 /* Only adjust if ZONE_MOVABLE is on this node */
3097 if (zone_movable_pfn[nid]) {
3098 /* Size ZONE_MOVABLE */
3099 if (zone_type == ZONE_MOVABLE) {
3100 *zone_start_pfn = zone_movable_pfn[nid];
3101 *zone_end_pfn = min(node_end_pfn,
3102 arch_zone_highest_possible_pfn[movable_zone]);
3103
3104 /* Adjust for ZONE_MOVABLE starting within this range */
3105 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3106 *zone_end_pfn > zone_movable_pfn[nid]) {
3107 *zone_end_pfn = zone_movable_pfn[nid];
3108
3109 /* Check if this whole range is within ZONE_MOVABLE */
3110 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3111 *zone_start_pfn = *zone_end_pfn;
3112 }
3113 }
3114
3115 /*
3116 * Return the number of pages a zone spans in a node, including holes
3117 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3118 */
3119 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3120 unsigned long zone_type,
3121 unsigned long *ignored)
3122 {
3123 unsigned long node_start_pfn, node_end_pfn;
3124 unsigned long zone_start_pfn, zone_end_pfn;
3125
3126 /* Get the start and end of the node and zone */
3127 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3128 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3129 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3130 adjust_zone_range_for_zone_movable(nid, zone_type,
3131 node_start_pfn, node_end_pfn,
3132 &zone_start_pfn, &zone_end_pfn);
3133
3134 /* Check that this node has pages within the zone's required range */
3135 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3136 return 0;
3137
3138 /* Move the zone boundaries inside the node if necessary */
3139 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3140 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3141
3142 /* Return the spanned pages */
3143 return zone_end_pfn - zone_start_pfn;
3144 }
3145
3146 /*
3147 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3148 * then all holes in the requested range will be accounted for.
3149 */
3150 unsigned long __meminit __absent_pages_in_range(int nid,
3151 unsigned long range_start_pfn,
3152 unsigned long range_end_pfn)
3153 {
3154 int i = 0;
3155 unsigned long prev_end_pfn = 0, hole_pages = 0;
3156 unsigned long start_pfn;
3157
3158 /* Find the end_pfn of the first active range of pfns in the node */
3159 i = first_active_region_index_in_nid(nid);
3160 if (i == -1)
3161 return 0;
3162
3163 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3164
3165 /* Account for ranges before physical memory on this node */
3166 if (early_node_map[i].start_pfn > range_start_pfn)
3167 hole_pages = prev_end_pfn - range_start_pfn;
3168
3169 /* Find all holes for the zone within the node */
3170 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3171
3172 /* No need to continue if prev_end_pfn is outside the zone */
3173 if (prev_end_pfn >= range_end_pfn)
3174 break;
3175
3176 /* Make sure the end of the zone is not within the hole */
3177 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3178 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3179
3180 /* Update the hole size cound and move on */
3181 if (start_pfn > range_start_pfn) {
3182 BUG_ON(prev_end_pfn > start_pfn);
3183 hole_pages += start_pfn - prev_end_pfn;
3184 }
3185 prev_end_pfn = early_node_map[i].end_pfn;
3186 }
3187
3188 /* Account for ranges past physical memory on this node */
3189 if (range_end_pfn > prev_end_pfn)
3190 hole_pages += range_end_pfn -
3191 max(range_start_pfn, prev_end_pfn);
3192
3193 return hole_pages;
3194 }
3195
3196 /**
3197 * absent_pages_in_range - Return number of page frames in holes within a range
3198 * @start_pfn: The start PFN to start searching for holes
3199 * @end_pfn: The end PFN to stop searching for holes
3200 *
3201 * It returns the number of pages frames in memory holes within a range.
3202 */
3203 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3204 unsigned long end_pfn)
3205 {
3206 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3207 }
3208
3209 /* Return the number of page frames in holes in a zone on a node */
3210 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3211 unsigned long zone_type,
3212 unsigned long *ignored)
3213 {
3214 unsigned long node_start_pfn, node_end_pfn;
3215 unsigned long zone_start_pfn, zone_end_pfn;
3216
3217 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3218 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3219 node_start_pfn);
3220 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3221 node_end_pfn);
3222
3223 adjust_zone_range_for_zone_movable(nid, zone_type,
3224 node_start_pfn, node_end_pfn,
3225 &zone_start_pfn, &zone_end_pfn);
3226 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3227 }
3228
3229 #else
3230 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3231 unsigned long zone_type,
3232 unsigned long *zones_size)
3233 {
3234 return zones_size[zone_type];
3235 }
3236
3237 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3238 unsigned long zone_type,
3239 unsigned long *zholes_size)
3240 {
3241 if (!zholes_size)
3242 return 0;
3243
3244 return zholes_size[zone_type];
3245 }
3246
3247 #endif
3248
3249 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3250 unsigned long *zones_size, unsigned long *zholes_size)
3251 {
3252 unsigned long realtotalpages, totalpages = 0;
3253 enum zone_type i;
3254
3255 for (i = 0; i < MAX_NR_ZONES; i++)
3256 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3257 zones_size);
3258 pgdat->node_spanned_pages = totalpages;
3259
3260 realtotalpages = totalpages;
3261 for (i = 0; i < MAX_NR_ZONES; i++)
3262 realtotalpages -=
3263 zone_absent_pages_in_node(pgdat->node_id, i,
3264 zholes_size);
3265 pgdat->node_present_pages = realtotalpages;
3266 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3267 realtotalpages);
3268 }
3269
3270 #ifndef CONFIG_SPARSEMEM
3271 /*
3272 * Calculate the size of the zone->blockflags rounded to an unsigned long
3273 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3274 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3275 * round what is now in bits to nearest long in bits, then return it in
3276 * bytes.
3277 */
3278 static unsigned long __init usemap_size(unsigned long zonesize)
3279 {
3280 unsigned long usemapsize;
3281
3282 usemapsize = roundup(zonesize, pageblock_nr_pages);
3283 usemapsize = usemapsize >> pageblock_order;
3284 usemapsize *= NR_PAGEBLOCK_BITS;
3285 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3286
3287 return usemapsize / 8;
3288 }
3289
3290 static void __init setup_usemap(struct pglist_data *pgdat,
3291 struct zone *zone, unsigned long zonesize)
3292 {
3293 unsigned long usemapsize = usemap_size(zonesize);
3294 zone->pageblock_flags = NULL;
3295 if (usemapsize) {
3296 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3297 memset(zone->pageblock_flags, 0, usemapsize);
3298 }
3299 }
3300 #else
3301 static void inline setup_usemap(struct pglist_data *pgdat,
3302 struct zone *zone, unsigned long zonesize) {}
3303 #endif /* CONFIG_SPARSEMEM */
3304
3305 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3306
3307 /* Return a sensible default order for the pageblock size. */
3308 static inline int pageblock_default_order(void)
3309 {
3310 if (HPAGE_SHIFT > PAGE_SHIFT)
3311 return HUGETLB_PAGE_ORDER;
3312
3313 return MAX_ORDER-1;
3314 }
3315
3316 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3317 static inline void __init set_pageblock_order(unsigned int order)
3318 {
3319 /* Check that pageblock_nr_pages has not already been setup */
3320 if (pageblock_order)
3321 return;
3322
3323 /*
3324 * Assume the largest contiguous order of interest is a huge page.
3325 * This value may be variable depending on boot parameters on IA64
3326 */
3327 pageblock_order = order;
3328 }
3329 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3330
3331 /*
3332 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3333 * and pageblock_default_order() are unused as pageblock_order is set
3334 * at compile-time. See include/linux/pageblock-flags.h for the values of
3335 * pageblock_order based on the kernel config
3336 */
3337 static inline int pageblock_default_order(unsigned int order)
3338 {
3339 return MAX_ORDER-1;
3340 }
3341 #define set_pageblock_order(x) do {} while (0)
3342
3343 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3344
3345 /*
3346 * Set up the zone data structures:
3347 * - mark all pages reserved
3348 * - mark all memory queues empty
3349 * - clear the memory bitmaps
3350 */
3351 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3352 unsigned long *zones_size, unsigned long *zholes_size)
3353 {
3354 enum zone_type j;
3355 int nid = pgdat->node_id;
3356 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3357 int ret;
3358
3359 pgdat_resize_init(pgdat);
3360 pgdat->nr_zones = 0;
3361 init_waitqueue_head(&pgdat->kswapd_wait);
3362 pgdat->kswapd_max_order = 0;
3363
3364 for (j = 0; j < MAX_NR_ZONES; j++) {
3365 struct zone *zone = pgdat->node_zones + j;
3366 unsigned long size, realsize, memmap_pages;
3367
3368 size = zone_spanned_pages_in_node(nid, j, zones_size);
3369 realsize = size - zone_absent_pages_in_node(nid, j,
3370 zholes_size);
3371
3372 /*
3373 * Adjust realsize so that it accounts for how much memory
3374 * is used by this zone for memmap. This affects the watermark
3375 * and per-cpu initialisations
3376 */
3377 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3378 if (realsize >= memmap_pages) {
3379 realsize -= memmap_pages;
3380 printk(KERN_DEBUG
3381 " %s zone: %lu pages used for memmap\n",
3382 zone_names[j], memmap_pages);
3383 } else
3384 printk(KERN_WARNING
3385 " %s zone: %lu pages exceeds realsize %lu\n",
3386 zone_names[j], memmap_pages, realsize);
3387
3388 /* Account for reserved pages */
3389 if (j == 0 && realsize > dma_reserve) {
3390 realsize -= dma_reserve;
3391 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3392 zone_names[0], dma_reserve);
3393 }
3394
3395 if (!is_highmem_idx(j))
3396 nr_kernel_pages += realsize;
3397 nr_all_pages += realsize;
3398
3399 zone->spanned_pages = size;
3400 zone->present_pages = realsize;
3401 #ifdef CONFIG_NUMA
3402 zone->node = nid;
3403 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3404 / 100;
3405 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3406 #endif
3407 zone->name = zone_names[j];
3408 spin_lock_init(&zone->lock);
3409 spin_lock_init(&zone->lru_lock);
3410 zone_seqlock_init(zone);
3411 zone->zone_pgdat = pgdat;
3412
3413 zone->prev_priority = DEF_PRIORITY;
3414
3415 zone_pcp_init(zone);
3416 INIT_LIST_HEAD(&zone->active_list);
3417 INIT_LIST_HEAD(&zone->inactive_list);
3418 zone->nr_scan_active = 0;
3419 zone->nr_scan_inactive = 0;
3420 zap_zone_vm_stats(zone);
3421 zone->flags = 0;
3422 if (!size)
3423 continue;
3424
3425 set_pageblock_order(pageblock_default_order());
3426 setup_usemap(pgdat, zone, size);
3427 ret = init_currently_empty_zone(zone, zone_start_pfn,
3428 size, MEMMAP_EARLY);
3429 BUG_ON(ret);
3430 zone_start_pfn += size;
3431 }
3432 }
3433
3434 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3435 {
3436 /* Skip empty nodes */
3437 if (!pgdat->node_spanned_pages)
3438 return;
3439
3440 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3441 /* ia64 gets its own node_mem_map, before this, without bootmem */
3442 if (!pgdat->node_mem_map) {
3443 unsigned long size, start, end;
3444 struct page *map;
3445
3446 /*
3447 * The zone's endpoints aren't required to be MAX_ORDER
3448 * aligned but the node_mem_map endpoints must be in order
3449 * for the buddy allocator to function correctly.
3450 */
3451 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3452 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3453 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3454 size = (end - start) * sizeof(struct page);
3455 map = alloc_remap(pgdat->node_id, size);
3456 if (!map)
3457 map = alloc_bootmem_node(pgdat, size);
3458 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3459 }
3460 #ifndef CONFIG_NEED_MULTIPLE_NODES
3461 /*
3462 * With no DISCONTIG, the global mem_map is just set as node 0's
3463 */
3464 if (pgdat == NODE_DATA(0)) {
3465 mem_map = NODE_DATA(0)->node_mem_map;
3466 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3467 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3468 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3469 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3470 }
3471 #endif
3472 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3473 }
3474
3475 void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
3476 unsigned long *zones_size, unsigned long node_start_pfn,
3477 unsigned long *zholes_size)
3478 {
3479 pgdat->node_id = nid;
3480 pgdat->node_start_pfn = node_start_pfn;
3481 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3482
3483 alloc_node_mem_map(pgdat);
3484
3485 free_area_init_core(pgdat, zones_size, zholes_size);
3486 }
3487
3488 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3489
3490 #if MAX_NUMNODES > 1
3491 /*
3492 * Figure out the number of possible node ids.
3493 */
3494 static void __init setup_nr_node_ids(void)
3495 {
3496 unsigned int node;
3497 unsigned int highest = 0;
3498
3499 for_each_node_mask(node, node_possible_map)
3500 highest = node;
3501 nr_node_ids = highest + 1;
3502 }
3503 #else
3504 static inline void setup_nr_node_ids(void)
3505 {
3506 }
3507 #endif
3508
3509 /**
3510 * add_active_range - Register a range of PFNs backed by physical memory
3511 * @nid: The node ID the range resides on
3512 * @start_pfn: The start PFN of the available physical memory
3513 * @end_pfn: The end PFN of the available physical memory
3514 *
3515 * These ranges are stored in an early_node_map[] and later used by
3516 * free_area_init_nodes() to calculate zone sizes and holes. If the
3517 * range spans a memory hole, it is up to the architecture to ensure
3518 * the memory is not freed by the bootmem allocator. If possible
3519 * the range being registered will be merged with existing ranges.
3520 */
3521 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3522 unsigned long end_pfn)
3523 {
3524 int i;
3525
3526 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3527 "%d entries of %d used\n",
3528 nid, start_pfn, end_pfn,
3529 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3530
3531 /* Merge with existing active regions if possible */
3532 for (i = 0; i < nr_nodemap_entries; i++) {
3533 if (early_node_map[i].nid != nid)
3534 continue;
3535
3536 /* Skip if an existing region covers this new one */
3537 if (start_pfn >= early_node_map[i].start_pfn &&
3538 end_pfn <= early_node_map[i].end_pfn)
3539 return;
3540
3541 /* Merge forward if suitable */
3542 if (start_pfn <= early_node_map[i].end_pfn &&
3543 end_pfn > early_node_map[i].end_pfn) {
3544 early_node_map[i].end_pfn = end_pfn;
3545 return;
3546 }
3547
3548 /* Merge backward if suitable */
3549 if (start_pfn < early_node_map[i].end_pfn &&
3550 end_pfn >= early_node_map[i].start_pfn) {
3551 early_node_map[i].start_pfn = start_pfn;
3552 return;
3553 }
3554 }
3555
3556 /* Check that early_node_map is large enough */
3557 if (i >= MAX_ACTIVE_REGIONS) {
3558 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3559 MAX_ACTIVE_REGIONS);
3560 return;
3561 }
3562
3563 early_node_map[i].nid = nid;
3564 early_node_map[i].start_pfn = start_pfn;
3565 early_node_map[i].end_pfn = end_pfn;
3566 nr_nodemap_entries = i + 1;
3567 }
3568
3569 /**
3570 * shrink_active_range - Shrink an existing registered range of PFNs
3571 * @nid: The node id the range is on that should be shrunk
3572 * @old_end_pfn: The old end PFN of the range
3573 * @new_end_pfn: The new PFN of the range
3574 *
3575 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3576 * The map is kept at the end physical page range that has already been
3577 * registered with add_active_range(). This function allows an arch to shrink
3578 * an existing registered range.
3579 */
3580 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3581 unsigned long new_end_pfn)
3582 {
3583 int i;
3584
3585 /* Find the old active region end and shrink */
3586 for_each_active_range_index_in_nid(i, nid)
3587 if (early_node_map[i].end_pfn == old_end_pfn) {
3588 early_node_map[i].end_pfn = new_end_pfn;
3589 break;
3590 }
3591 }
3592
3593 /**
3594 * remove_all_active_ranges - Remove all currently registered regions
3595 *
3596 * During discovery, it may be found that a table like SRAT is invalid
3597 * and an alternative discovery method must be used. This function removes
3598 * all currently registered regions.
3599 */
3600 void __init remove_all_active_ranges(void)
3601 {
3602 memset(early_node_map, 0, sizeof(early_node_map));
3603 nr_nodemap_entries = 0;
3604 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3605 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3606 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3607 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3608 }
3609
3610 /* Compare two active node_active_regions */
3611 static int __init cmp_node_active_region(const void *a, const void *b)
3612 {
3613 struct node_active_region *arange = (struct node_active_region *)a;
3614 struct node_active_region *brange = (struct node_active_region *)b;
3615
3616 /* Done this way to avoid overflows */
3617 if (arange->start_pfn > brange->start_pfn)
3618 return 1;
3619 if (arange->start_pfn < brange->start_pfn)
3620 return -1;
3621
3622 return 0;
3623 }
3624
3625 /* sort the node_map by start_pfn */
3626 static void __init sort_node_map(void)
3627 {
3628 sort(early_node_map, (size_t)nr_nodemap_entries,
3629 sizeof(struct node_active_region),
3630 cmp_node_active_region, NULL);
3631 }
3632
3633 /* Find the lowest pfn for a node */
3634 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3635 {
3636 int i;
3637 unsigned long min_pfn = ULONG_MAX;
3638
3639 /* Assuming a sorted map, the first range found has the starting pfn */
3640 for_each_active_range_index_in_nid(i, nid)
3641 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3642
3643 if (min_pfn == ULONG_MAX) {
3644 printk(KERN_WARNING
3645 "Could not find start_pfn for node %lu\n", nid);
3646 return 0;
3647 }
3648
3649 return min_pfn;
3650 }
3651
3652 /**
3653 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3654 *
3655 * It returns the minimum PFN based on information provided via
3656 * add_active_range().
3657 */
3658 unsigned long __init find_min_pfn_with_active_regions(void)
3659 {
3660 return find_min_pfn_for_node(MAX_NUMNODES);
3661 }
3662
3663 /**
3664 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3665 *
3666 * It returns the maximum PFN based on information provided via
3667 * add_active_range().
3668 */
3669 unsigned long __init find_max_pfn_with_active_regions(void)
3670 {
3671 int i;
3672 unsigned long max_pfn = 0;
3673
3674 for (i = 0; i < nr_nodemap_entries; i++)
3675 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3676
3677 return max_pfn;
3678 }
3679
3680 /*
3681 * early_calculate_totalpages()
3682 * Sum pages in active regions for movable zone.
3683 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3684 */
3685 static unsigned long __init early_calculate_totalpages(void)
3686 {
3687 int i;
3688 unsigned long totalpages = 0;
3689
3690 for (i = 0; i < nr_nodemap_entries; i++) {
3691 unsigned long pages = early_node_map[i].end_pfn -
3692 early_node_map[i].start_pfn;
3693 totalpages += pages;
3694 if (pages)
3695 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3696 }
3697 return totalpages;
3698 }
3699
3700 /*
3701 * Find the PFN the Movable zone begins in each node. Kernel memory
3702 * is spread evenly between nodes as long as the nodes have enough
3703 * memory. When they don't, some nodes will have more kernelcore than
3704 * others
3705 */
3706 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3707 {
3708 int i, nid;
3709 unsigned long usable_startpfn;
3710 unsigned long kernelcore_node, kernelcore_remaining;
3711 unsigned long totalpages = early_calculate_totalpages();
3712 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3713
3714 /*
3715 * If movablecore was specified, calculate what size of
3716 * kernelcore that corresponds so that memory usable for
3717 * any allocation type is evenly spread. If both kernelcore
3718 * and movablecore are specified, then the value of kernelcore
3719 * will be used for required_kernelcore if it's greater than
3720 * what movablecore would have allowed.
3721 */
3722 if (required_movablecore) {
3723 unsigned long corepages;
3724
3725 /*
3726 * Round-up so that ZONE_MOVABLE is at least as large as what
3727 * was requested by the user
3728 */
3729 required_movablecore =
3730 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3731 corepages = totalpages - required_movablecore;
3732
3733 required_kernelcore = max(required_kernelcore, corepages);
3734 }
3735
3736 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3737 if (!required_kernelcore)
3738 return;
3739
3740 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3741 find_usable_zone_for_movable();
3742 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3743
3744 restart:
3745 /* Spread kernelcore memory as evenly as possible throughout nodes */
3746 kernelcore_node = required_kernelcore / usable_nodes;
3747 for_each_node_state(nid, N_HIGH_MEMORY) {
3748 /*
3749 * Recalculate kernelcore_node if the division per node
3750 * now exceeds what is necessary to satisfy the requested
3751 * amount of memory for the kernel
3752 */
3753 if (required_kernelcore < kernelcore_node)
3754 kernelcore_node = required_kernelcore / usable_nodes;
3755
3756 /*
3757 * As the map is walked, we track how much memory is usable
3758 * by the kernel using kernelcore_remaining. When it is
3759 * 0, the rest of the node is usable by ZONE_MOVABLE
3760 */
3761 kernelcore_remaining = kernelcore_node;
3762
3763 /* Go through each range of PFNs within this node */
3764 for_each_active_range_index_in_nid(i, nid) {
3765 unsigned long start_pfn, end_pfn;
3766 unsigned long size_pages;
3767
3768 start_pfn = max(early_node_map[i].start_pfn,
3769 zone_movable_pfn[nid]);
3770 end_pfn = early_node_map[i].end_pfn;
3771 if (start_pfn >= end_pfn)
3772 continue;
3773
3774 /* Account for what is only usable for kernelcore */
3775 if (start_pfn < usable_startpfn) {
3776 unsigned long kernel_pages;
3777 kernel_pages = min(end_pfn, usable_startpfn)
3778 - start_pfn;
3779
3780 kernelcore_remaining -= min(kernel_pages,
3781 kernelcore_remaining);
3782 required_kernelcore -= min(kernel_pages,
3783 required_kernelcore);
3784
3785 /* Continue if range is now fully accounted */
3786 if (end_pfn <= usable_startpfn) {
3787
3788 /*
3789 * Push zone_movable_pfn to the end so
3790 * that if we have to rebalance
3791 * kernelcore across nodes, we will
3792 * not double account here
3793 */
3794 zone_movable_pfn[nid] = end_pfn;
3795 continue;
3796 }
3797 start_pfn = usable_startpfn;
3798 }
3799
3800 /*
3801 * The usable PFN range for ZONE_MOVABLE is from
3802 * start_pfn->end_pfn. Calculate size_pages as the
3803 * number of pages used as kernelcore
3804 */
3805 size_pages = end_pfn - start_pfn;
3806 if (size_pages > kernelcore_remaining)
3807 size_pages = kernelcore_remaining;
3808 zone_movable_pfn[nid] = start_pfn + size_pages;
3809
3810 /*
3811 * Some kernelcore has been met, update counts and
3812 * break if the kernelcore for this node has been
3813 * satisified
3814 */
3815 required_kernelcore -= min(required_kernelcore,
3816 size_pages);
3817 kernelcore_remaining -= size_pages;
3818 if (!kernelcore_remaining)
3819 break;
3820 }
3821 }
3822
3823 /*
3824 * If there is still required_kernelcore, we do another pass with one
3825 * less node in the count. This will push zone_movable_pfn[nid] further
3826 * along on the nodes that still have memory until kernelcore is
3827 * satisified
3828 */
3829 usable_nodes--;
3830 if (usable_nodes && required_kernelcore > usable_nodes)
3831 goto restart;
3832
3833 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3834 for (nid = 0; nid < MAX_NUMNODES; nid++)
3835 zone_movable_pfn[nid] =
3836 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3837 }
3838
3839 /* Any regular memory on that node ? */
3840 static void check_for_regular_memory(pg_data_t *pgdat)
3841 {
3842 #ifdef CONFIG_HIGHMEM
3843 enum zone_type zone_type;
3844
3845 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3846 struct zone *zone = &pgdat->node_zones[zone_type];
3847 if (zone->present_pages)
3848 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3849 }
3850 #endif
3851 }
3852
3853 /**
3854 * free_area_init_nodes - Initialise all pg_data_t and zone data
3855 * @max_zone_pfn: an array of max PFNs for each zone
3856 *
3857 * This will call free_area_init_node() for each active node in the system.
3858 * Using the page ranges provided by add_active_range(), the size of each
3859 * zone in each node and their holes is calculated. If the maximum PFN
3860 * between two adjacent zones match, it is assumed that the zone is empty.
3861 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3862 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3863 * starts where the previous one ended. For example, ZONE_DMA32 starts
3864 * at arch_max_dma_pfn.
3865 */
3866 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3867 {
3868 unsigned long nid;
3869 enum zone_type i;
3870
3871 /* Sort early_node_map as initialisation assumes it is sorted */
3872 sort_node_map();
3873
3874 /* Record where the zone boundaries are */
3875 memset(arch_zone_lowest_possible_pfn, 0,
3876 sizeof(arch_zone_lowest_possible_pfn));
3877 memset(arch_zone_highest_possible_pfn, 0,
3878 sizeof(arch_zone_highest_possible_pfn));
3879 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3880 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3881 for (i = 1; i < MAX_NR_ZONES; i++) {
3882 if (i == ZONE_MOVABLE)
3883 continue;
3884 arch_zone_lowest_possible_pfn[i] =
3885 arch_zone_highest_possible_pfn[i-1];
3886 arch_zone_highest_possible_pfn[i] =
3887 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3888 }
3889 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3890 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3891
3892 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3893 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3894 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3895
3896 /* Print out the zone ranges */
3897 printk("Zone PFN ranges:\n");
3898 for (i = 0; i < MAX_NR_ZONES; i++) {
3899 if (i == ZONE_MOVABLE)
3900 continue;
3901 printk(" %-8s %8lu -> %8lu\n",
3902 zone_names[i],
3903 arch_zone_lowest_possible_pfn[i],
3904 arch_zone_highest_possible_pfn[i]);
3905 }
3906
3907 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3908 printk("Movable zone start PFN for each node\n");
3909 for (i = 0; i < MAX_NUMNODES; i++) {
3910 if (zone_movable_pfn[i])
3911 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3912 }
3913
3914 /* Print out the early_node_map[] */
3915 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3916 for (i = 0; i < nr_nodemap_entries; i++)
3917 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3918 early_node_map[i].start_pfn,
3919 early_node_map[i].end_pfn);
3920
3921 /* Initialise every node */
3922 setup_nr_node_ids();
3923 for_each_online_node(nid) {
3924 pg_data_t *pgdat = NODE_DATA(nid);
3925 free_area_init_node(nid, pgdat, NULL,
3926 find_min_pfn_for_node(nid), NULL);
3927
3928 /* Any memory on that node */
3929 if (pgdat->node_present_pages)
3930 node_set_state(nid, N_HIGH_MEMORY);
3931 check_for_regular_memory(pgdat);
3932 }
3933 }
3934
3935 static int __init cmdline_parse_core(char *p, unsigned long *core)
3936 {
3937 unsigned long long coremem;
3938 if (!p)
3939 return -EINVAL;
3940
3941 coremem = memparse(p, &p);
3942 *core = coremem >> PAGE_SHIFT;
3943
3944 /* Paranoid check that UL is enough for the coremem value */
3945 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3946
3947 return 0;
3948 }
3949
3950 /*
3951 * kernelcore=size sets the amount of memory for use for allocations that
3952 * cannot be reclaimed or migrated.
3953 */
3954 static int __init cmdline_parse_kernelcore(char *p)
3955 {
3956 return cmdline_parse_core(p, &required_kernelcore);
3957 }
3958
3959 /*
3960 * movablecore=size sets the amount of memory for use for allocations that
3961 * can be reclaimed or migrated.
3962 */
3963 static int __init cmdline_parse_movablecore(char *p)
3964 {
3965 return cmdline_parse_core(p, &required_movablecore);
3966 }
3967
3968 early_param("kernelcore", cmdline_parse_kernelcore);
3969 early_param("movablecore", cmdline_parse_movablecore);
3970
3971 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3972
3973 /**
3974 * set_dma_reserve - set the specified number of pages reserved in the first zone
3975 * @new_dma_reserve: The number of pages to mark reserved
3976 *
3977 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3978 * In the DMA zone, a significant percentage may be consumed by kernel image
3979 * and other unfreeable allocations which can skew the watermarks badly. This
3980 * function may optionally be used to account for unfreeable pages in the
3981 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3982 * smaller per-cpu batchsize.
3983 */
3984 void __init set_dma_reserve(unsigned long new_dma_reserve)
3985 {
3986 dma_reserve = new_dma_reserve;
3987 }
3988
3989 #ifndef CONFIG_NEED_MULTIPLE_NODES
3990 static bootmem_data_t contig_bootmem_data;
3991 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3992
3993 EXPORT_SYMBOL(contig_page_data);
3994 #endif
3995
3996 void __init free_area_init(unsigned long *zones_size)
3997 {
3998 free_area_init_node(0, NODE_DATA(0), zones_size,
3999 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4000 }
4001
4002 static int page_alloc_cpu_notify(struct notifier_block *self,
4003 unsigned long action, void *hcpu)
4004 {
4005 int cpu = (unsigned long)hcpu;
4006
4007 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4008 drain_pages(cpu);
4009
4010 /*
4011 * Spill the event counters of the dead processor
4012 * into the current processors event counters.
4013 * This artificially elevates the count of the current
4014 * processor.
4015 */
4016 vm_events_fold_cpu(cpu);
4017
4018 /*
4019 * Zero the differential counters of the dead processor
4020 * so that the vm statistics are consistent.
4021 *
4022 * This is only okay since the processor is dead and cannot
4023 * race with what we are doing.
4024 */
4025 refresh_cpu_vm_stats(cpu);
4026 }
4027 return NOTIFY_OK;
4028 }
4029
4030 void __init page_alloc_init(void)
4031 {
4032 hotcpu_notifier(page_alloc_cpu_notify, 0);
4033 }
4034
4035 /*
4036 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4037 * or min_free_kbytes changes.
4038 */
4039 static void calculate_totalreserve_pages(void)
4040 {
4041 struct pglist_data *pgdat;
4042 unsigned long reserve_pages = 0;
4043 enum zone_type i, j;
4044
4045 for_each_online_pgdat(pgdat) {
4046 for (i = 0; i < MAX_NR_ZONES; i++) {
4047 struct zone *zone = pgdat->node_zones + i;
4048 unsigned long max = 0;
4049
4050 /* Find valid and maximum lowmem_reserve in the zone */
4051 for (j = i; j < MAX_NR_ZONES; j++) {
4052 if (zone->lowmem_reserve[j] > max)
4053 max = zone->lowmem_reserve[j];
4054 }
4055
4056 /* we treat pages_high as reserved pages. */
4057 max += zone->pages_high;
4058
4059 if (max > zone->present_pages)
4060 max = zone->present_pages;
4061 reserve_pages += max;
4062 }
4063 }
4064 totalreserve_pages = reserve_pages;
4065 }
4066
4067 /*
4068 * setup_per_zone_lowmem_reserve - called whenever
4069 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4070 * has a correct pages reserved value, so an adequate number of
4071 * pages are left in the zone after a successful __alloc_pages().
4072 */
4073 static void setup_per_zone_lowmem_reserve(void)
4074 {
4075 struct pglist_data *pgdat;
4076 enum zone_type j, idx;
4077
4078 for_each_online_pgdat(pgdat) {
4079 for (j = 0; j < MAX_NR_ZONES; j++) {
4080 struct zone *zone = pgdat->node_zones + j;
4081 unsigned long present_pages = zone->present_pages;
4082
4083 zone->lowmem_reserve[j] = 0;
4084
4085 idx = j;
4086 while (idx) {
4087 struct zone *lower_zone;
4088
4089 idx--;
4090
4091 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4092 sysctl_lowmem_reserve_ratio[idx] = 1;
4093
4094 lower_zone = pgdat->node_zones + idx;
4095 lower_zone->lowmem_reserve[j] = present_pages /
4096 sysctl_lowmem_reserve_ratio[idx];
4097 present_pages += lower_zone->present_pages;
4098 }
4099 }
4100 }
4101
4102 /* update totalreserve_pages */
4103 calculate_totalreserve_pages();
4104 }
4105
4106 /**
4107 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4108 *
4109 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4110 * with respect to min_free_kbytes.
4111 */
4112 void setup_per_zone_pages_min(void)
4113 {
4114 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4115 unsigned long lowmem_pages = 0;
4116 struct zone *zone;
4117 unsigned long flags;
4118
4119 /* Calculate total number of !ZONE_HIGHMEM pages */
4120 for_each_zone(zone) {
4121 if (!is_highmem(zone))
4122 lowmem_pages += zone->present_pages;
4123 }
4124
4125 for_each_zone(zone) {
4126 u64 tmp;
4127
4128 spin_lock_irqsave(&zone->lru_lock, flags);
4129 tmp = (u64)pages_min * zone->present_pages;
4130 do_div(tmp, lowmem_pages);
4131 if (is_highmem(zone)) {
4132 /*
4133 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4134 * need highmem pages, so cap pages_min to a small
4135 * value here.
4136 *
4137 * The (pages_high-pages_low) and (pages_low-pages_min)
4138 * deltas controls asynch page reclaim, and so should
4139 * not be capped for highmem.
4140 */
4141 int min_pages;
4142
4143 min_pages = zone->present_pages / 1024;
4144 if (min_pages < SWAP_CLUSTER_MAX)
4145 min_pages = SWAP_CLUSTER_MAX;
4146 if (min_pages > 128)
4147 min_pages = 128;
4148 zone->pages_min = min_pages;
4149 } else {
4150 /*
4151 * If it's a lowmem zone, reserve a number of pages
4152 * proportionate to the zone's size.
4153 */
4154 zone->pages_min = tmp;
4155 }
4156
4157 zone->pages_low = zone->pages_min + (tmp >> 2);
4158 zone->pages_high = zone->pages_min + (tmp >> 1);
4159 setup_zone_migrate_reserve(zone);
4160 spin_unlock_irqrestore(&zone->lru_lock, flags);
4161 }
4162
4163 /* update totalreserve_pages */
4164 calculate_totalreserve_pages();
4165 }
4166
4167 /*
4168 * Initialise min_free_kbytes.
4169 *
4170 * For small machines we want it small (128k min). For large machines
4171 * we want it large (64MB max). But it is not linear, because network
4172 * bandwidth does not increase linearly with machine size. We use
4173 *
4174 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4175 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4176 *
4177 * which yields
4178 *
4179 * 16MB: 512k
4180 * 32MB: 724k
4181 * 64MB: 1024k
4182 * 128MB: 1448k
4183 * 256MB: 2048k
4184 * 512MB: 2896k
4185 * 1024MB: 4096k
4186 * 2048MB: 5792k
4187 * 4096MB: 8192k
4188 * 8192MB: 11584k
4189 * 16384MB: 16384k
4190 */
4191 static int __init init_per_zone_pages_min(void)
4192 {
4193 unsigned long lowmem_kbytes;
4194
4195 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4196
4197 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4198 if (min_free_kbytes < 128)
4199 min_free_kbytes = 128;
4200 if (min_free_kbytes > 65536)
4201 min_free_kbytes = 65536;
4202 setup_per_zone_pages_min();
4203 setup_per_zone_lowmem_reserve();
4204 return 0;
4205 }
4206 module_init(init_per_zone_pages_min)
4207
4208 /*
4209 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4210 * that we can call two helper functions whenever min_free_kbytes
4211 * changes.
4212 */
4213 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4214 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4215 {
4216 proc_dointvec(table, write, file, buffer, length, ppos);
4217 if (write)
4218 setup_per_zone_pages_min();
4219 return 0;
4220 }
4221
4222 #ifdef CONFIG_NUMA
4223 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4224 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4225 {
4226 struct zone *zone;
4227 int rc;
4228
4229 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4230 if (rc)
4231 return rc;
4232
4233 for_each_zone(zone)
4234 zone->min_unmapped_pages = (zone->present_pages *
4235 sysctl_min_unmapped_ratio) / 100;
4236 return 0;
4237 }
4238
4239 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4240 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4241 {
4242 struct zone *zone;
4243 int rc;
4244
4245 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4246 if (rc)
4247 return rc;
4248
4249 for_each_zone(zone)
4250 zone->min_slab_pages = (zone->present_pages *
4251 sysctl_min_slab_ratio) / 100;
4252 return 0;
4253 }
4254 #endif
4255
4256 /*
4257 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4258 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4259 * whenever sysctl_lowmem_reserve_ratio changes.
4260 *
4261 * The reserve ratio obviously has absolutely no relation with the
4262 * pages_min watermarks. The lowmem reserve ratio can only make sense
4263 * if in function of the boot time zone sizes.
4264 */
4265 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4266 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4267 {
4268 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4269 setup_per_zone_lowmem_reserve();
4270 return 0;
4271 }
4272
4273 /*
4274 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4275 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4276 * can have before it gets flushed back to buddy allocator.
4277 */
4278
4279 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4280 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4281 {
4282 struct zone *zone;
4283 unsigned int cpu;
4284 int ret;
4285
4286 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4287 if (!write || (ret == -EINVAL))
4288 return ret;
4289 for_each_zone(zone) {
4290 for_each_online_cpu(cpu) {
4291 unsigned long high;
4292 high = zone->present_pages / percpu_pagelist_fraction;
4293 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4294 }
4295 }
4296 return 0;
4297 }
4298
4299 int hashdist = HASHDIST_DEFAULT;
4300
4301 #ifdef CONFIG_NUMA
4302 static int __init set_hashdist(char *str)
4303 {
4304 if (!str)
4305 return 0;
4306 hashdist = simple_strtoul(str, &str, 0);
4307 return 1;
4308 }
4309 __setup("hashdist=", set_hashdist);
4310 #endif
4311
4312 /*
4313 * allocate a large system hash table from bootmem
4314 * - it is assumed that the hash table must contain an exact power-of-2
4315 * quantity of entries
4316 * - limit is the number of hash buckets, not the total allocation size
4317 */
4318 void *__init alloc_large_system_hash(const char *tablename,
4319 unsigned long bucketsize,
4320 unsigned long numentries,
4321 int scale,
4322 int flags,
4323 unsigned int *_hash_shift,
4324 unsigned int *_hash_mask,
4325 unsigned long limit)
4326 {
4327 unsigned long long max = limit;
4328 unsigned long log2qty, size;
4329 void *table = NULL;
4330
4331 /* allow the kernel cmdline to have a say */
4332 if (!numentries) {
4333 /* round applicable memory size up to nearest megabyte */
4334 numentries = nr_kernel_pages;
4335 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4336 numentries >>= 20 - PAGE_SHIFT;
4337 numentries <<= 20 - PAGE_SHIFT;
4338
4339 /* limit to 1 bucket per 2^scale bytes of low memory */
4340 if (scale > PAGE_SHIFT)
4341 numentries >>= (scale - PAGE_SHIFT);
4342 else
4343 numentries <<= (PAGE_SHIFT - scale);
4344
4345 /* Make sure we've got at least a 0-order allocation.. */
4346 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4347 numentries = PAGE_SIZE / bucketsize;
4348 }
4349 numentries = roundup_pow_of_two(numentries);
4350
4351 /* limit allocation size to 1/16 total memory by default */
4352 if (max == 0) {
4353 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4354 do_div(max, bucketsize);
4355 }
4356
4357 if (numentries > max)
4358 numentries = max;
4359
4360 log2qty = ilog2(numentries);
4361
4362 do {
4363 size = bucketsize << log2qty;
4364 if (flags & HASH_EARLY)
4365 table = alloc_bootmem(size);
4366 else if (hashdist)
4367 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4368 else {
4369 unsigned long order = get_order(size);
4370 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4371 /*
4372 * If bucketsize is not a power-of-two, we may free
4373 * some pages at the end of hash table.
4374 */
4375 if (table) {
4376 unsigned long alloc_end = (unsigned long)table +
4377 (PAGE_SIZE << order);
4378 unsigned long used = (unsigned long)table +
4379 PAGE_ALIGN(size);
4380 split_page(virt_to_page(table), order);
4381 while (used < alloc_end) {
4382 free_page(used);
4383 used += PAGE_SIZE;
4384 }
4385 }
4386 }
4387 } while (!table && size > PAGE_SIZE && --log2qty);
4388
4389 if (!table)
4390 panic("Failed to allocate %s hash table\n", tablename);
4391
4392 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4393 tablename,
4394 (1U << log2qty),
4395 ilog2(size) - PAGE_SHIFT,
4396 size);
4397
4398 if (_hash_shift)
4399 *_hash_shift = log2qty;
4400 if (_hash_mask)
4401 *_hash_mask = (1 << log2qty) - 1;
4402
4403 return table;
4404 }
4405
4406 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4407 struct page *pfn_to_page(unsigned long pfn)
4408 {
4409 return __pfn_to_page(pfn);
4410 }
4411 unsigned long page_to_pfn(struct page *page)
4412 {
4413 return __page_to_pfn(page);
4414 }
4415 EXPORT_SYMBOL(pfn_to_page);
4416 EXPORT_SYMBOL(page_to_pfn);
4417 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4418
4419 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4420 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4421 unsigned long pfn)
4422 {
4423 #ifdef CONFIG_SPARSEMEM
4424 return __pfn_to_section(pfn)->pageblock_flags;
4425 #else
4426 return zone->pageblock_flags;
4427 #endif /* CONFIG_SPARSEMEM */
4428 }
4429
4430 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4431 {
4432 #ifdef CONFIG_SPARSEMEM
4433 pfn &= (PAGES_PER_SECTION-1);
4434 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4435 #else
4436 pfn = pfn - zone->zone_start_pfn;
4437 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4438 #endif /* CONFIG_SPARSEMEM */
4439 }
4440
4441 /**
4442 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4443 * @page: The page within the block of interest
4444 * @start_bitidx: The first bit of interest to retrieve
4445 * @end_bitidx: The last bit of interest
4446 * returns pageblock_bits flags
4447 */
4448 unsigned long get_pageblock_flags_group(struct page *page,
4449 int start_bitidx, int end_bitidx)
4450 {
4451 struct zone *zone;
4452 unsigned long *bitmap;
4453 unsigned long pfn, bitidx;
4454 unsigned long flags = 0;
4455 unsigned long value = 1;
4456
4457 zone = page_zone(page);
4458 pfn = page_to_pfn(page);
4459 bitmap = get_pageblock_bitmap(zone, pfn);
4460 bitidx = pfn_to_bitidx(zone, pfn);
4461
4462 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4463 if (test_bit(bitidx + start_bitidx, bitmap))
4464 flags |= value;
4465
4466 return flags;
4467 }
4468
4469 /**
4470 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4471 * @page: The page within the block of interest
4472 * @start_bitidx: The first bit of interest
4473 * @end_bitidx: The last bit of interest
4474 * @flags: The flags to set
4475 */
4476 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4477 int start_bitidx, int end_bitidx)
4478 {
4479 struct zone *zone;
4480 unsigned long *bitmap;
4481 unsigned long pfn, bitidx;
4482 unsigned long value = 1;
4483
4484 zone = page_zone(page);
4485 pfn = page_to_pfn(page);
4486 bitmap = get_pageblock_bitmap(zone, pfn);
4487 bitidx = pfn_to_bitidx(zone, pfn);
4488 VM_BUG_ON(pfn < zone->zone_start_pfn);
4489 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4490
4491 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4492 if (flags & value)
4493 __set_bit(bitidx + start_bitidx, bitmap);
4494 else
4495 __clear_bit(bitidx + start_bitidx, bitmap);
4496 }
4497
4498 /*
4499 * This is designed as sub function...plz see page_isolation.c also.
4500 * set/clear page block's type to be ISOLATE.
4501 * page allocater never alloc memory from ISOLATE block.
4502 */
4503
4504 int set_migratetype_isolate(struct page *page)
4505 {
4506 struct zone *zone;
4507 unsigned long flags;
4508 int ret = -EBUSY;
4509
4510 zone = page_zone(page);
4511 spin_lock_irqsave(&zone->lock, flags);
4512 /*
4513 * In future, more migrate types will be able to be isolation target.
4514 */
4515 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4516 goto out;
4517 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4518 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4519 ret = 0;
4520 out:
4521 spin_unlock_irqrestore(&zone->lock, flags);
4522 if (!ret)
4523 drain_all_pages();
4524 return ret;
4525 }
4526
4527 void unset_migratetype_isolate(struct page *page)
4528 {
4529 struct zone *zone;
4530 unsigned long flags;
4531 zone = page_zone(page);
4532 spin_lock_irqsave(&zone->lock, flags);
4533 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4534 goto out;
4535 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4536 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4537 out:
4538 spin_unlock_irqrestore(&zone->lock, flags);
4539 }
4540
4541 #ifdef CONFIG_MEMORY_HOTREMOVE
4542 /*
4543 * All pages in the range must be isolated before calling this.
4544 */
4545 void
4546 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4547 {
4548 struct page *page;
4549 struct zone *zone;
4550 int order, i;
4551 unsigned long pfn;
4552 unsigned long flags;
4553 /* find the first valid pfn */
4554 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4555 if (pfn_valid(pfn))
4556 break;
4557 if (pfn == end_pfn)
4558 return;
4559 zone = page_zone(pfn_to_page(pfn));
4560 spin_lock_irqsave(&zone->lock, flags);
4561 pfn = start_pfn;
4562 while (pfn < end_pfn) {
4563 if (!pfn_valid(pfn)) {
4564 pfn++;
4565 continue;
4566 }
4567 page = pfn_to_page(pfn);
4568 BUG_ON(page_count(page));
4569 BUG_ON(!PageBuddy(page));
4570 order = page_order(page);
4571 #ifdef CONFIG_DEBUG_VM
4572 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4573 pfn, 1 << order, end_pfn);
4574 #endif
4575 list_del(&page->lru);
4576 rmv_page_order(page);
4577 zone->free_area[order].nr_free--;
4578 __mod_zone_page_state(zone, NR_FREE_PAGES,
4579 - (1UL << order));
4580 for (i = 0; i < (1 << order); i++)
4581 SetPageReserved((page+i));
4582 pfn += (1 << order);
4583 }
4584 spin_unlock_irqrestore(&zone->lock, flags);
4585 }
4586 #endif