]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/page_alloc.c
mm/page_alloc.c: calculate zone_start_pfn at zone_spanned_pages_in_node()
[thirdparty/kernel/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 compound_page_dtor * const compound_page_dtors[] = {
227 NULL,
228 free_compound_page,
229 #ifdef CONFIG_HUGETLB_PAGE
230 free_huge_page,
231 #endif
232 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
233 free_transhuge_page,
234 #endif
235 };
236
237 int min_free_kbytes = 1024;
238 int user_min_free_kbytes = -1;
239
240 static unsigned long __meminitdata nr_kernel_pages;
241 static unsigned long __meminitdata nr_all_pages;
242 static unsigned long __meminitdata dma_reserve;
243
244 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
245 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
246 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
247 static unsigned long __initdata required_kernelcore;
248 static unsigned long __initdata required_movablecore;
249 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
250
251 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
252 int movable_zone;
253 EXPORT_SYMBOL(movable_zone);
254 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
255
256 #if MAX_NUMNODES > 1
257 int nr_node_ids __read_mostly = MAX_NUMNODES;
258 int nr_online_nodes __read_mostly = 1;
259 EXPORT_SYMBOL(nr_node_ids);
260 EXPORT_SYMBOL(nr_online_nodes);
261 #endif
262
263 int page_group_by_mobility_disabled __read_mostly;
264
265 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
266 static inline void reset_deferred_meminit(pg_data_t *pgdat)
267 {
268 pgdat->first_deferred_pfn = ULONG_MAX;
269 }
270
271 /* Returns true if the struct page for the pfn is uninitialised */
272 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
273 {
274 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
275 return true;
276
277 return false;
278 }
279
280 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
281 {
282 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
283 return true;
284
285 return false;
286 }
287
288 /*
289 * Returns false when the remaining initialisation should be deferred until
290 * later in the boot cycle when it can be parallelised.
291 */
292 static inline bool update_defer_init(pg_data_t *pgdat,
293 unsigned long pfn, unsigned long zone_end,
294 unsigned long *nr_initialised)
295 {
296 /* Always populate low zones for address-contrained allocations */
297 if (zone_end < pgdat_end_pfn(pgdat))
298 return true;
299
300 /* Initialise at least 2G of the highest zone */
301 (*nr_initialised)++;
302 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
303 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
304 pgdat->first_deferred_pfn = pfn;
305 return false;
306 }
307
308 return true;
309 }
310 #else
311 static inline void reset_deferred_meminit(pg_data_t *pgdat)
312 {
313 }
314
315 static inline bool early_page_uninitialised(unsigned long pfn)
316 {
317 return false;
318 }
319
320 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
321 {
322 return false;
323 }
324
325 static inline bool update_defer_init(pg_data_t *pgdat,
326 unsigned long pfn, unsigned long zone_end,
327 unsigned long *nr_initialised)
328 {
329 return true;
330 }
331 #endif
332
333
334 void set_pageblock_migratetype(struct page *page, int migratetype)
335 {
336 if (unlikely(page_group_by_mobility_disabled &&
337 migratetype < MIGRATE_PCPTYPES))
338 migratetype = MIGRATE_UNMOVABLE;
339
340 set_pageblock_flags_group(page, (unsigned long)migratetype,
341 PB_migrate, PB_migrate_end);
342 }
343
344 #ifdef CONFIG_DEBUG_VM
345 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
346 {
347 int ret = 0;
348 unsigned seq;
349 unsigned long pfn = page_to_pfn(page);
350 unsigned long sp, start_pfn;
351
352 do {
353 seq = zone_span_seqbegin(zone);
354 start_pfn = zone->zone_start_pfn;
355 sp = zone->spanned_pages;
356 if (!zone_spans_pfn(zone, pfn))
357 ret = 1;
358 } while (zone_span_seqretry(zone, seq));
359
360 if (ret)
361 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
362 pfn, zone_to_nid(zone), zone->name,
363 start_pfn, start_pfn + sp);
364
365 return ret;
366 }
367
368 static int page_is_consistent(struct zone *zone, struct page *page)
369 {
370 if (!pfn_valid_within(page_to_pfn(page)))
371 return 0;
372 if (zone != page_zone(page))
373 return 0;
374
375 return 1;
376 }
377 /*
378 * Temporary debugging check for pages not lying within a given zone.
379 */
380 static int bad_range(struct zone *zone, struct page *page)
381 {
382 if (page_outside_zone_boundaries(zone, page))
383 return 1;
384 if (!page_is_consistent(zone, page))
385 return 1;
386
387 return 0;
388 }
389 #else
390 static inline int bad_range(struct zone *zone, struct page *page)
391 {
392 return 0;
393 }
394 #endif
395
396 static void bad_page(struct page *page, const char *reason,
397 unsigned long bad_flags)
398 {
399 static unsigned long resume;
400 static unsigned long nr_shown;
401 static unsigned long nr_unshown;
402
403 /* Don't complain about poisoned pages */
404 if (PageHWPoison(page)) {
405 page_mapcount_reset(page); /* remove PageBuddy */
406 return;
407 }
408
409 /*
410 * Allow a burst of 60 reports, then keep quiet for that minute;
411 * or allow a steady drip of one report per second.
412 */
413 if (nr_shown == 60) {
414 if (time_before(jiffies, resume)) {
415 nr_unshown++;
416 goto out;
417 }
418 if (nr_unshown) {
419 printk(KERN_ALERT
420 "BUG: Bad page state: %lu messages suppressed\n",
421 nr_unshown);
422 nr_unshown = 0;
423 }
424 nr_shown = 0;
425 }
426 if (nr_shown++ == 0)
427 resume = jiffies + 60 * HZ;
428
429 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
430 current->comm, page_to_pfn(page));
431 dump_page_badflags(page, reason, bad_flags);
432
433 print_modules();
434 dump_stack();
435 out:
436 /* Leave bad fields for debug, except PageBuddy could make trouble */
437 page_mapcount_reset(page); /* remove PageBuddy */
438 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
439 }
440
441 /*
442 * Higher-order pages are called "compound pages". They are structured thusly:
443 *
444 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
445 *
446 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
447 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
448 *
449 * The first tail page's ->compound_dtor holds the offset in array of compound
450 * page destructors. See compound_page_dtors.
451 *
452 * The first tail page's ->compound_order holds the order of allocation.
453 * This usage means that zero-order pages may not be compound.
454 */
455
456 void free_compound_page(struct page *page)
457 {
458 __free_pages_ok(page, compound_order(page));
459 }
460
461 void prep_compound_page(struct page *page, unsigned int order)
462 {
463 int i;
464 int nr_pages = 1 << order;
465
466 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
467 set_compound_order(page, order);
468 __SetPageHead(page);
469 for (i = 1; i < nr_pages; i++) {
470 struct page *p = page + i;
471 set_page_count(p, 0);
472 p->mapping = TAIL_MAPPING;
473 set_compound_head(p, page);
474 }
475 atomic_set(compound_mapcount_ptr(page), -1);
476 }
477
478 #ifdef CONFIG_DEBUG_PAGEALLOC
479 unsigned int _debug_guardpage_minorder;
480 bool _debug_pagealloc_enabled __read_mostly;
481 bool _debug_guardpage_enabled __read_mostly;
482
483 static int __init early_debug_pagealloc(char *buf)
484 {
485 if (!buf)
486 return -EINVAL;
487
488 if (strcmp(buf, "on") == 0)
489 _debug_pagealloc_enabled = true;
490
491 return 0;
492 }
493 early_param("debug_pagealloc", early_debug_pagealloc);
494
495 static bool need_debug_guardpage(void)
496 {
497 /* If we don't use debug_pagealloc, we don't need guard page */
498 if (!debug_pagealloc_enabled())
499 return false;
500
501 return true;
502 }
503
504 static void init_debug_guardpage(void)
505 {
506 if (!debug_pagealloc_enabled())
507 return;
508
509 _debug_guardpage_enabled = true;
510 }
511
512 struct page_ext_operations debug_guardpage_ops = {
513 .need = need_debug_guardpage,
514 .init = init_debug_guardpage,
515 };
516
517 static int __init debug_guardpage_minorder_setup(char *buf)
518 {
519 unsigned long res;
520
521 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
522 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
523 return 0;
524 }
525 _debug_guardpage_minorder = res;
526 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
527 return 0;
528 }
529 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
530
531 static inline void set_page_guard(struct zone *zone, struct page *page,
532 unsigned int order, int migratetype)
533 {
534 struct page_ext *page_ext;
535
536 if (!debug_guardpage_enabled())
537 return;
538
539 page_ext = lookup_page_ext(page);
540 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
541
542 INIT_LIST_HEAD(&page->lru);
543 set_page_private(page, order);
544 /* Guard pages are not available for any usage */
545 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
546 }
547
548 static inline void clear_page_guard(struct zone *zone, struct page *page,
549 unsigned int order, int migratetype)
550 {
551 struct page_ext *page_ext;
552
553 if (!debug_guardpage_enabled())
554 return;
555
556 page_ext = lookup_page_ext(page);
557 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
558
559 set_page_private(page, 0);
560 if (!is_migrate_isolate(migratetype))
561 __mod_zone_freepage_state(zone, (1 << order), migratetype);
562 }
563 #else
564 struct page_ext_operations debug_guardpage_ops = { NULL, };
565 static inline void set_page_guard(struct zone *zone, struct page *page,
566 unsigned int order, int migratetype) {}
567 static inline void clear_page_guard(struct zone *zone, struct page *page,
568 unsigned int order, int migratetype) {}
569 #endif
570
571 static inline void set_page_order(struct page *page, unsigned int order)
572 {
573 set_page_private(page, order);
574 __SetPageBuddy(page);
575 }
576
577 static inline void rmv_page_order(struct page *page)
578 {
579 __ClearPageBuddy(page);
580 set_page_private(page, 0);
581 }
582
583 /*
584 * This function checks whether a page is free && is the buddy
585 * we can do coalesce a page and its buddy if
586 * (a) the buddy is not in a hole &&
587 * (b) the buddy is in the buddy system &&
588 * (c) a page and its buddy have the same order &&
589 * (d) a page and its buddy are in the same zone.
590 *
591 * For recording whether a page is in the buddy system, we set ->_mapcount
592 * PAGE_BUDDY_MAPCOUNT_VALUE.
593 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
594 * serialized by zone->lock.
595 *
596 * For recording page's order, we use page_private(page).
597 */
598 static inline int page_is_buddy(struct page *page, struct page *buddy,
599 unsigned int order)
600 {
601 if (!pfn_valid_within(page_to_pfn(buddy)))
602 return 0;
603
604 if (page_is_guard(buddy) && page_order(buddy) == order) {
605 if (page_zone_id(page) != page_zone_id(buddy))
606 return 0;
607
608 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
609
610 return 1;
611 }
612
613 if (PageBuddy(buddy) && page_order(buddy) == order) {
614 /*
615 * zone check is done late to avoid uselessly
616 * calculating zone/node ids for pages that could
617 * never merge.
618 */
619 if (page_zone_id(page) != page_zone_id(buddy))
620 return 0;
621
622 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
623
624 return 1;
625 }
626 return 0;
627 }
628
629 /*
630 * Freeing function for a buddy system allocator.
631 *
632 * The concept of a buddy system is to maintain direct-mapped table
633 * (containing bit values) for memory blocks of various "orders".
634 * The bottom level table contains the map for the smallest allocatable
635 * units of memory (here, pages), and each level above it describes
636 * pairs of units from the levels below, hence, "buddies".
637 * At a high level, all that happens here is marking the table entry
638 * at the bottom level available, and propagating the changes upward
639 * as necessary, plus some accounting needed to play nicely with other
640 * parts of the VM system.
641 * At each level, we keep a list of pages, which are heads of continuous
642 * free pages of length of (1 << order) and marked with _mapcount
643 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
644 * field.
645 * So when we are allocating or freeing one, we can derive the state of the
646 * other. That is, if we allocate a small block, and both were
647 * free, the remainder of the region must be split into blocks.
648 * If a block is freed, and its buddy is also free, then this
649 * triggers coalescing into a block of larger size.
650 *
651 * -- nyc
652 */
653
654 static inline void __free_one_page(struct page *page,
655 unsigned long pfn,
656 struct zone *zone, unsigned int order,
657 int migratetype)
658 {
659 unsigned long page_idx;
660 unsigned long combined_idx;
661 unsigned long uninitialized_var(buddy_idx);
662 struct page *buddy;
663 unsigned int max_order = MAX_ORDER;
664
665 VM_BUG_ON(!zone_is_initialized(zone));
666 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
667
668 VM_BUG_ON(migratetype == -1);
669 if (is_migrate_isolate(migratetype)) {
670 /*
671 * We restrict max order of merging to prevent merge
672 * between freepages on isolate pageblock and normal
673 * pageblock. Without this, pageblock isolation
674 * could cause incorrect freepage accounting.
675 */
676 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
677 } else {
678 __mod_zone_freepage_state(zone, 1 << order, migratetype);
679 }
680
681 page_idx = pfn & ((1 << max_order) - 1);
682
683 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
684 VM_BUG_ON_PAGE(bad_range(zone, page), page);
685
686 while (order < max_order - 1) {
687 buddy_idx = __find_buddy_index(page_idx, order);
688 buddy = page + (buddy_idx - page_idx);
689 if (!page_is_buddy(page, buddy, order))
690 break;
691 /*
692 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
693 * merge with it and move up one order.
694 */
695 if (page_is_guard(buddy)) {
696 clear_page_guard(zone, buddy, order, migratetype);
697 } else {
698 list_del(&buddy->lru);
699 zone->free_area[order].nr_free--;
700 rmv_page_order(buddy);
701 }
702 combined_idx = buddy_idx & page_idx;
703 page = page + (combined_idx - page_idx);
704 page_idx = combined_idx;
705 order++;
706 }
707 set_page_order(page, order);
708
709 /*
710 * If this is not the largest possible page, check if the buddy
711 * of the next-highest order is free. If it is, it's possible
712 * that pages are being freed that will coalesce soon. In case,
713 * that is happening, add the free page to the tail of the list
714 * so it's less likely to be used soon and more likely to be merged
715 * as a higher order page
716 */
717 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
718 struct page *higher_page, *higher_buddy;
719 combined_idx = buddy_idx & page_idx;
720 higher_page = page + (combined_idx - page_idx);
721 buddy_idx = __find_buddy_index(combined_idx, order + 1);
722 higher_buddy = higher_page + (buddy_idx - combined_idx);
723 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
724 list_add_tail(&page->lru,
725 &zone->free_area[order].free_list[migratetype]);
726 goto out;
727 }
728 }
729
730 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
731 out:
732 zone->free_area[order].nr_free++;
733 }
734
735 static inline int free_pages_check(struct page *page)
736 {
737 const char *bad_reason = NULL;
738 unsigned long bad_flags = 0;
739
740 if (unlikely(atomic_read(&page->_mapcount) != -1))
741 bad_reason = "nonzero mapcount";
742 if (unlikely(page->mapping != NULL))
743 bad_reason = "non-NULL mapping";
744 if (unlikely(atomic_read(&page->_count) != 0))
745 bad_reason = "nonzero _count";
746 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
747 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
748 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
749 }
750 #ifdef CONFIG_MEMCG
751 if (unlikely(page->mem_cgroup))
752 bad_reason = "page still charged to cgroup";
753 #endif
754 if (unlikely(bad_reason)) {
755 bad_page(page, bad_reason, bad_flags);
756 return 1;
757 }
758 page_cpupid_reset_last(page);
759 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
760 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
761 return 0;
762 }
763
764 /*
765 * Frees a number of pages from the PCP lists
766 * Assumes all pages on list are in same zone, and of same order.
767 * count is the number of pages to free.
768 *
769 * If the zone was previously in an "all pages pinned" state then look to
770 * see if this freeing clears that state.
771 *
772 * And clear the zone's pages_scanned counter, to hold off the "all pages are
773 * pinned" detection logic.
774 */
775 static void free_pcppages_bulk(struct zone *zone, int count,
776 struct per_cpu_pages *pcp)
777 {
778 int migratetype = 0;
779 int batch_free = 0;
780 int to_free = count;
781 unsigned long nr_scanned;
782
783 spin_lock(&zone->lock);
784 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
785 if (nr_scanned)
786 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
787
788 while (to_free) {
789 struct page *page;
790 struct list_head *list;
791
792 /*
793 * Remove pages from lists in a round-robin fashion. A
794 * batch_free count is maintained that is incremented when an
795 * empty list is encountered. This is so more pages are freed
796 * off fuller lists instead of spinning excessively around empty
797 * lists
798 */
799 do {
800 batch_free++;
801 if (++migratetype == MIGRATE_PCPTYPES)
802 migratetype = 0;
803 list = &pcp->lists[migratetype];
804 } while (list_empty(list));
805
806 /* This is the only non-empty list. Free them all. */
807 if (batch_free == MIGRATE_PCPTYPES)
808 batch_free = to_free;
809
810 do {
811 int mt; /* migratetype of the to-be-freed page */
812
813 page = list_last_entry(list, struct page, lru);
814 /* must delete as __free_one_page list manipulates */
815 list_del(&page->lru);
816
817 mt = get_pcppage_migratetype(page);
818 /* MIGRATE_ISOLATE page should not go to pcplists */
819 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
820 /* Pageblock could have been isolated meanwhile */
821 if (unlikely(has_isolate_pageblock(zone)))
822 mt = get_pageblock_migratetype(page);
823
824 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
825 trace_mm_page_pcpu_drain(page, 0, mt);
826 } while (--to_free && --batch_free && !list_empty(list));
827 }
828 spin_unlock(&zone->lock);
829 }
830
831 static void free_one_page(struct zone *zone,
832 struct page *page, unsigned long pfn,
833 unsigned int order,
834 int migratetype)
835 {
836 unsigned long nr_scanned;
837 spin_lock(&zone->lock);
838 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
839 if (nr_scanned)
840 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
841
842 if (unlikely(has_isolate_pageblock(zone) ||
843 is_migrate_isolate(migratetype))) {
844 migratetype = get_pfnblock_migratetype(page, pfn);
845 }
846 __free_one_page(page, pfn, zone, order, migratetype);
847 spin_unlock(&zone->lock);
848 }
849
850 static int free_tail_pages_check(struct page *head_page, struct page *page)
851 {
852 int ret = 1;
853
854 /*
855 * We rely page->lru.next never has bit 0 set, unless the page
856 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
857 */
858 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
859
860 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
861 ret = 0;
862 goto out;
863 }
864 switch (page - head_page) {
865 case 1:
866 /* the first tail page: ->mapping is compound_mapcount() */
867 if (unlikely(compound_mapcount(page))) {
868 bad_page(page, "nonzero compound_mapcount", 0);
869 goto out;
870 }
871 break;
872 case 2:
873 /*
874 * the second tail page: ->mapping is
875 * page_deferred_list().next -- ignore value.
876 */
877 break;
878 default:
879 if (page->mapping != TAIL_MAPPING) {
880 bad_page(page, "corrupted mapping in tail page", 0);
881 goto out;
882 }
883 break;
884 }
885 if (unlikely(!PageTail(page))) {
886 bad_page(page, "PageTail not set", 0);
887 goto out;
888 }
889 if (unlikely(compound_head(page) != head_page)) {
890 bad_page(page, "compound_head not consistent", 0);
891 goto out;
892 }
893 ret = 0;
894 out:
895 page->mapping = NULL;
896 clear_compound_head(page);
897 return ret;
898 }
899
900 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
901 unsigned long zone, int nid)
902 {
903 set_page_links(page, zone, nid, pfn);
904 init_page_count(page);
905 page_mapcount_reset(page);
906 page_cpupid_reset_last(page);
907
908 INIT_LIST_HEAD(&page->lru);
909 #ifdef WANT_PAGE_VIRTUAL
910 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
911 if (!is_highmem_idx(zone))
912 set_page_address(page, __va(pfn << PAGE_SHIFT));
913 #endif
914 }
915
916 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
917 int nid)
918 {
919 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
920 }
921
922 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
923 static void init_reserved_page(unsigned long pfn)
924 {
925 pg_data_t *pgdat;
926 int nid, zid;
927
928 if (!early_page_uninitialised(pfn))
929 return;
930
931 nid = early_pfn_to_nid(pfn);
932 pgdat = NODE_DATA(nid);
933
934 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
935 struct zone *zone = &pgdat->node_zones[zid];
936
937 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
938 break;
939 }
940 __init_single_pfn(pfn, zid, nid);
941 }
942 #else
943 static inline void init_reserved_page(unsigned long pfn)
944 {
945 }
946 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
947
948 /*
949 * Initialised pages do not have PageReserved set. This function is
950 * called for each range allocated by the bootmem allocator and
951 * marks the pages PageReserved. The remaining valid pages are later
952 * sent to the buddy page allocator.
953 */
954 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
955 {
956 unsigned long start_pfn = PFN_DOWN(start);
957 unsigned long end_pfn = PFN_UP(end);
958
959 for (; start_pfn < end_pfn; start_pfn++) {
960 if (pfn_valid(start_pfn)) {
961 struct page *page = pfn_to_page(start_pfn);
962
963 init_reserved_page(start_pfn);
964
965 /* Avoid false-positive PageTail() */
966 INIT_LIST_HEAD(&page->lru);
967
968 SetPageReserved(page);
969 }
970 }
971 }
972
973 static bool free_pages_prepare(struct page *page, unsigned int order)
974 {
975 bool compound = PageCompound(page);
976 int i, bad = 0;
977
978 VM_BUG_ON_PAGE(PageTail(page), page);
979 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
980
981 trace_mm_page_free(page, order);
982 kmemcheck_free_shadow(page, order);
983 kasan_free_pages(page, order);
984
985 if (PageAnon(page))
986 page->mapping = NULL;
987 bad += free_pages_check(page);
988 for (i = 1; i < (1 << order); i++) {
989 if (compound)
990 bad += free_tail_pages_check(page, page + i);
991 bad += free_pages_check(page + i);
992 }
993 if (bad)
994 return false;
995
996 reset_page_owner(page, order);
997
998 if (!PageHighMem(page)) {
999 debug_check_no_locks_freed(page_address(page),
1000 PAGE_SIZE << order);
1001 debug_check_no_obj_freed(page_address(page),
1002 PAGE_SIZE << order);
1003 }
1004 arch_free_page(page, order);
1005 kernel_map_pages(page, 1 << order, 0);
1006
1007 return true;
1008 }
1009
1010 static void __free_pages_ok(struct page *page, unsigned int order)
1011 {
1012 unsigned long flags;
1013 int migratetype;
1014 unsigned long pfn = page_to_pfn(page);
1015
1016 if (!free_pages_prepare(page, order))
1017 return;
1018
1019 migratetype = get_pfnblock_migratetype(page, pfn);
1020 local_irq_save(flags);
1021 __count_vm_events(PGFREE, 1 << order);
1022 free_one_page(page_zone(page), page, pfn, order, migratetype);
1023 local_irq_restore(flags);
1024 }
1025
1026 static void __init __free_pages_boot_core(struct page *page,
1027 unsigned long pfn, unsigned int order)
1028 {
1029 unsigned int nr_pages = 1 << order;
1030 struct page *p = page;
1031 unsigned int loop;
1032
1033 prefetchw(p);
1034 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1035 prefetchw(p + 1);
1036 __ClearPageReserved(p);
1037 set_page_count(p, 0);
1038 }
1039 __ClearPageReserved(p);
1040 set_page_count(p, 0);
1041
1042 page_zone(page)->managed_pages += nr_pages;
1043 set_page_refcounted(page);
1044 __free_pages(page, order);
1045 }
1046
1047 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1048 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1049
1050 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1051
1052 int __meminit early_pfn_to_nid(unsigned long pfn)
1053 {
1054 static DEFINE_SPINLOCK(early_pfn_lock);
1055 int nid;
1056
1057 spin_lock(&early_pfn_lock);
1058 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1059 if (nid < 0)
1060 nid = 0;
1061 spin_unlock(&early_pfn_lock);
1062
1063 return nid;
1064 }
1065 #endif
1066
1067 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1068 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1069 struct mminit_pfnnid_cache *state)
1070 {
1071 int nid;
1072
1073 nid = __early_pfn_to_nid(pfn, state);
1074 if (nid >= 0 && nid != node)
1075 return false;
1076 return true;
1077 }
1078
1079 /* Only safe to use early in boot when initialisation is single-threaded */
1080 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1081 {
1082 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1083 }
1084
1085 #else
1086
1087 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1088 {
1089 return true;
1090 }
1091 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1092 struct mminit_pfnnid_cache *state)
1093 {
1094 return true;
1095 }
1096 #endif
1097
1098
1099 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1100 unsigned int order)
1101 {
1102 if (early_page_uninitialised(pfn))
1103 return;
1104 return __free_pages_boot_core(page, pfn, order);
1105 }
1106
1107 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1108 static void __init deferred_free_range(struct page *page,
1109 unsigned long pfn, int nr_pages)
1110 {
1111 int i;
1112
1113 if (!page)
1114 return;
1115
1116 /* Free a large naturally-aligned chunk if possible */
1117 if (nr_pages == MAX_ORDER_NR_PAGES &&
1118 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1119 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1120 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1121 return;
1122 }
1123
1124 for (i = 0; i < nr_pages; i++, page++, pfn++)
1125 __free_pages_boot_core(page, pfn, 0);
1126 }
1127
1128 /* Completion tracking for deferred_init_memmap() threads */
1129 static atomic_t pgdat_init_n_undone __initdata;
1130 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1131
1132 static inline void __init pgdat_init_report_one_done(void)
1133 {
1134 if (atomic_dec_and_test(&pgdat_init_n_undone))
1135 complete(&pgdat_init_all_done_comp);
1136 }
1137
1138 /* Initialise remaining memory on a node */
1139 static int __init deferred_init_memmap(void *data)
1140 {
1141 pg_data_t *pgdat = data;
1142 int nid = pgdat->node_id;
1143 struct mminit_pfnnid_cache nid_init_state = { };
1144 unsigned long start = jiffies;
1145 unsigned long nr_pages = 0;
1146 unsigned long walk_start, walk_end;
1147 int i, zid;
1148 struct zone *zone;
1149 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1150 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1151
1152 if (first_init_pfn == ULONG_MAX) {
1153 pgdat_init_report_one_done();
1154 return 0;
1155 }
1156
1157 /* Bind memory initialisation thread to a local node if possible */
1158 if (!cpumask_empty(cpumask))
1159 set_cpus_allowed_ptr(current, cpumask);
1160
1161 /* Sanity check boundaries */
1162 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1163 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1164 pgdat->first_deferred_pfn = ULONG_MAX;
1165
1166 /* Only the highest zone is deferred so find it */
1167 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1168 zone = pgdat->node_zones + zid;
1169 if (first_init_pfn < zone_end_pfn(zone))
1170 break;
1171 }
1172
1173 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1174 unsigned long pfn, end_pfn;
1175 struct page *page = NULL;
1176 struct page *free_base_page = NULL;
1177 unsigned long free_base_pfn = 0;
1178 int nr_to_free = 0;
1179
1180 end_pfn = min(walk_end, zone_end_pfn(zone));
1181 pfn = first_init_pfn;
1182 if (pfn < walk_start)
1183 pfn = walk_start;
1184 if (pfn < zone->zone_start_pfn)
1185 pfn = zone->zone_start_pfn;
1186
1187 for (; pfn < end_pfn; pfn++) {
1188 if (!pfn_valid_within(pfn))
1189 goto free_range;
1190
1191 /*
1192 * Ensure pfn_valid is checked every
1193 * MAX_ORDER_NR_PAGES for memory holes
1194 */
1195 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1196 if (!pfn_valid(pfn)) {
1197 page = NULL;
1198 goto free_range;
1199 }
1200 }
1201
1202 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1203 page = NULL;
1204 goto free_range;
1205 }
1206
1207 /* Minimise pfn page lookups and scheduler checks */
1208 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1209 page++;
1210 } else {
1211 nr_pages += nr_to_free;
1212 deferred_free_range(free_base_page,
1213 free_base_pfn, nr_to_free);
1214 free_base_page = NULL;
1215 free_base_pfn = nr_to_free = 0;
1216
1217 page = pfn_to_page(pfn);
1218 cond_resched();
1219 }
1220
1221 if (page->flags) {
1222 VM_BUG_ON(page_zone(page) != zone);
1223 goto free_range;
1224 }
1225
1226 __init_single_page(page, pfn, zid, nid);
1227 if (!free_base_page) {
1228 free_base_page = page;
1229 free_base_pfn = pfn;
1230 nr_to_free = 0;
1231 }
1232 nr_to_free++;
1233
1234 /* Where possible, batch up pages for a single free */
1235 continue;
1236 free_range:
1237 /* Free the current block of pages to allocator */
1238 nr_pages += nr_to_free;
1239 deferred_free_range(free_base_page, free_base_pfn,
1240 nr_to_free);
1241 free_base_page = NULL;
1242 free_base_pfn = nr_to_free = 0;
1243 }
1244
1245 first_init_pfn = max(end_pfn, first_init_pfn);
1246 }
1247
1248 /* Sanity check that the next zone really is unpopulated */
1249 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1250
1251 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1252 jiffies_to_msecs(jiffies - start));
1253
1254 pgdat_init_report_one_done();
1255 return 0;
1256 }
1257
1258 void __init page_alloc_init_late(void)
1259 {
1260 int nid;
1261
1262 /* There will be num_node_state(N_MEMORY) threads */
1263 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1264 for_each_node_state(nid, N_MEMORY) {
1265 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1266 }
1267
1268 /* Block until all are initialised */
1269 wait_for_completion(&pgdat_init_all_done_comp);
1270
1271 /* Reinit limits that are based on free pages after the kernel is up */
1272 files_maxfiles_init();
1273 }
1274 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1275
1276 #ifdef CONFIG_CMA
1277 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1278 void __init init_cma_reserved_pageblock(struct page *page)
1279 {
1280 unsigned i = pageblock_nr_pages;
1281 struct page *p = page;
1282
1283 do {
1284 __ClearPageReserved(p);
1285 set_page_count(p, 0);
1286 } while (++p, --i);
1287
1288 set_pageblock_migratetype(page, MIGRATE_CMA);
1289
1290 if (pageblock_order >= MAX_ORDER) {
1291 i = pageblock_nr_pages;
1292 p = page;
1293 do {
1294 set_page_refcounted(p);
1295 __free_pages(p, MAX_ORDER - 1);
1296 p += MAX_ORDER_NR_PAGES;
1297 } while (i -= MAX_ORDER_NR_PAGES);
1298 } else {
1299 set_page_refcounted(page);
1300 __free_pages(page, pageblock_order);
1301 }
1302
1303 adjust_managed_page_count(page, pageblock_nr_pages);
1304 }
1305 #endif
1306
1307 /*
1308 * The order of subdivision here is critical for the IO subsystem.
1309 * Please do not alter this order without good reasons and regression
1310 * testing. Specifically, as large blocks of memory are subdivided,
1311 * the order in which smaller blocks are delivered depends on the order
1312 * they're subdivided in this function. This is the primary factor
1313 * influencing the order in which pages are delivered to the IO
1314 * subsystem according to empirical testing, and this is also justified
1315 * by considering the behavior of a buddy system containing a single
1316 * large block of memory acted on by a series of small allocations.
1317 * This behavior is a critical factor in sglist merging's success.
1318 *
1319 * -- nyc
1320 */
1321 static inline void expand(struct zone *zone, struct page *page,
1322 int low, int high, struct free_area *area,
1323 int migratetype)
1324 {
1325 unsigned long size = 1 << high;
1326
1327 while (high > low) {
1328 area--;
1329 high--;
1330 size >>= 1;
1331 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1332
1333 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1334 debug_guardpage_enabled() &&
1335 high < debug_guardpage_minorder()) {
1336 /*
1337 * Mark as guard pages (or page), that will allow to
1338 * merge back to allocator when buddy will be freed.
1339 * Corresponding page table entries will not be touched,
1340 * pages will stay not present in virtual address space
1341 */
1342 set_page_guard(zone, &page[size], high, migratetype);
1343 continue;
1344 }
1345 list_add(&page[size].lru, &area->free_list[migratetype]);
1346 area->nr_free++;
1347 set_page_order(&page[size], high);
1348 }
1349 }
1350
1351 /*
1352 * This page is about to be returned from the page allocator
1353 */
1354 static inline int check_new_page(struct page *page)
1355 {
1356 const char *bad_reason = NULL;
1357 unsigned long bad_flags = 0;
1358
1359 if (unlikely(atomic_read(&page->_mapcount) != -1))
1360 bad_reason = "nonzero mapcount";
1361 if (unlikely(page->mapping != NULL))
1362 bad_reason = "non-NULL mapping";
1363 if (unlikely(atomic_read(&page->_count) != 0))
1364 bad_reason = "nonzero _count";
1365 if (unlikely(page->flags & __PG_HWPOISON)) {
1366 bad_reason = "HWPoisoned (hardware-corrupted)";
1367 bad_flags = __PG_HWPOISON;
1368 }
1369 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1370 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1371 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1372 }
1373 #ifdef CONFIG_MEMCG
1374 if (unlikely(page->mem_cgroup))
1375 bad_reason = "page still charged to cgroup";
1376 #endif
1377 if (unlikely(bad_reason)) {
1378 bad_page(page, bad_reason, bad_flags);
1379 return 1;
1380 }
1381 return 0;
1382 }
1383
1384 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1385 int alloc_flags)
1386 {
1387 int i;
1388
1389 for (i = 0; i < (1 << order); i++) {
1390 struct page *p = page + i;
1391 if (unlikely(check_new_page(p)))
1392 return 1;
1393 }
1394
1395 set_page_private(page, 0);
1396 set_page_refcounted(page);
1397
1398 arch_alloc_page(page, order);
1399 kernel_map_pages(page, 1 << order, 1);
1400 kasan_alloc_pages(page, order);
1401
1402 if (gfp_flags & __GFP_ZERO)
1403 for (i = 0; i < (1 << order); i++)
1404 clear_highpage(page + i);
1405
1406 if (order && (gfp_flags & __GFP_COMP))
1407 prep_compound_page(page, order);
1408
1409 set_page_owner(page, order, gfp_flags);
1410
1411 /*
1412 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1413 * allocate the page. The expectation is that the caller is taking
1414 * steps that will free more memory. The caller should avoid the page
1415 * being used for !PFMEMALLOC purposes.
1416 */
1417 if (alloc_flags & ALLOC_NO_WATERMARKS)
1418 set_page_pfmemalloc(page);
1419 else
1420 clear_page_pfmemalloc(page);
1421
1422 return 0;
1423 }
1424
1425 /*
1426 * Go through the free lists for the given migratetype and remove
1427 * the smallest available page from the freelists
1428 */
1429 static inline
1430 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1431 int migratetype)
1432 {
1433 unsigned int current_order;
1434 struct free_area *area;
1435 struct page *page;
1436
1437 /* Find a page of the appropriate size in the preferred list */
1438 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1439 area = &(zone->free_area[current_order]);
1440 page = list_first_entry_or_null(&area->free_list[migratetype],
1441 struct page, lru);
1442 if (!page)
1443 continue;
1444 list_del(&page->lru);
1445 rmv_page_order(page);
1446 area->nr_free--;
1447 expand(zone, page, order, current_order, area, migratetype);
1448 set_pcppage_migratetype(page, migratetype);
1449 return page;
1450 }
1451
1452 return NULL;
1453 }
1454
1455
1456 /*
1457 * This array describes the order lists are fallen back to when
1458 * the free lists for the desirable migrate type are depleted
1459 */
1460 static int fallbacks[MIGRATE_TYPES][4] = {
1461 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1462 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1463 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1464 #ifdef CONFIG_CMA
1465 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1466 #endif
1467 #ifdef CONFIG_MEMORY_ISOLATION
1468 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1469 #endif
1470 };
1471
1472 #ifdef CONFIG_CMA
1473 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1474 unsigned int order)
1475 {
1476 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1477 }
1478 #else
1479 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1480 unsigned int order) { return NULL; }
1481 #endif
1482
1483 /*
1484 * Move the free pages in a range to the free lists of the requested type.
1485 * Note that start_page and end_pages are not aligned on a pageblock
1486 * boundary. If alignment is required, use move_freepages_block()
1487 */
1488 int move_freepages(struct zone *zone,
1489 struct page *start_page, struct page *end_page,
1490 int migratetype)
1491 {
1492 struct page *page;
1493 unsigned int order;
1494 int pages_moved = 0;
1495
1496 #ifndef CONFIG_HOLES_IN_ZONE
1497 /*
1498 * page_zone is not safe to call in this context when
1499 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1500 * anyway as we check zone boundaries in move_freepages_block().
1501 * Remove at a later date when no bug reports exist related to
1502 * grouping pages by mobility
1503 */
1504 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1505 #endif
1506
1507 for (page = start_page; page <= end_page;) {
1508 /* Make sure we are not inadvertently changing nodes */
1509 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1510
1511 if (!pfn_valid_within(page_to_pfn(page))) {
1512 page++;
1513 continue;
1514 }
1515
1516 if (!PageBuddy(page)) {
1517 page++;
1518 continue;
1519 }
1520
1521 order = page_order(page);
1522 list_move(&page->lru,
1523 &zone->free_area[order].free_list[migratetype]);
1524 page += 1 << order;
1525 pages_moved += 1 << order;
1526 }
1527
1528 return pages_moved;
1529 }
1530
1531 int move_freepages_block(struct zone *zone, struct page *page,
1532 int migratetype)
1533 {
1534 unsigned long start_pfn, end_pfn;
1535 struct page *start_page, *end_page;
1536
1537 start_pfn = page_to_pfn(page);
1538 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1539 start_page = pfn_to_page(start_pfn);
1540 end_page = start_page + pageblock_nr_pages - 1;
1541 end_pfn = start_pfn + pageblock_nr_pages - 1;
1542
1543 /* Do not cross zone boundaries */
1544 if (!zone_spans_pfn(zone, start_pfn))
1545 start_page = page;
1546 if (!zone_spans_pfn(zone, end_pfn))
1547 return 0;
1548
1549 return move_freepages(zone, start_page, end_page, migratetype);
1550 }
1551
1552 static void change_pageblock_range(struct page *pageblock_page,
1553 int start_order, int migratetype)
1554 {
1555 int nr_pageblocks = 1 << (start_order - pageblock_order);
1556
1557 while (nr_pageblocks--) {
1558 set_pageblock_migratetype(pageblock_page, migratetype);
1559 pageblock_page += pageblock_nr_pages;
1560 }
1561 }
1562
1563 /*
1564 * When we are falling back to another migratetype during allocation, try to
1565 * steal extra free pages from the same pageblocks to satisfy further
1566 * allocations, instead of polluting multiple pageblocks.
1567 *
1568 * If we are stealing a relatively large buddy page, it is likely there will
1569 * be more free pages in the pageblock, so try to steal them all. For
1570 * reclaimable and unmovable allocations, we steal regardless of page size,
1571 * as fragmentation caused by those allocations polluting movable pageblocks
1572 * is worse than movable allocations stealing from unmovable and reclaimable
1573 * pageblocks.
1574 */
1575 static bool can_steal_fallback(unsigned int order, int start_mt)
1576 {
1577 /*
1578 * Leaving this order check is intended, although there is
1579 * relaxed order check in next check. The reason is that
1580 * we can actually steal whole pageblock if this condition met,
1581 * but, below check doesn't guarantee it and that is just heuristic
1582 * so could be changed anytime.
1583 */
1584 if (order >= pageblock_order)
1585 return true;
1586
1587 if (order >= pageblock_order / 2 ||
1588 start_mt == MIGRATE_RECLAIMABLE ||
1589 start_mt == MIGRATE_UNMOVABLE ||
1590 page_group_by_mobility_disabled)
1591 return true;
1592
1593 return false;
1594 }
1595
1596 /*
1597 * This function implements actual steal behaviour. If order is large enough,
1598 * we can steal whole pageblock. If not, we first move freepages in this
1599 * pageblock and check whether half of pages are moved or not. If half of
1600 * pages are moved, we can change migratetype of pageblock and permanently
1601 * use it's pages as requested migratetype in the future.
1602 */
1603 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1604 int start_type)
1605 {
1606 unsigned int current_order = page_order(page);
1607 int pages;
1608
1609 /* Take ownership for orders >= pageblock_order */
1610 if (current_order >= pageblock_order) {
1611 change_pageblock_range(page, current_order, start_type);
1612 return;
1613 }
1614
1615 pages = move_freepages_block(zone, page, start_type);
1616
1617 /* Claim the whole block if over half of it is free */
1618 if (pages >= (1 << (pageblock_order-1)) ||
1619 page_group_by_mobility_disabled)
1620 set_pageblock_migratetype(page, start_type);
1621 }
1622
1623 /*
1624 * Check whether there is a suitable fallback freepage with requested order.
1625 * If only_stealable is true, this function returns fallback_mt only if
1626 * we can steal other freepages all together. This would help to reduce
1627 * fragmentation due to mixed migratetype pages in one pageblock.
1628 */
1629 int find_suitable_fallback(struct free_area *area, unsigned int order,
1630 int migratetype, bool only_stealable, bool *can_steal)
1631 {
1632 int i;
1633 int fallback_mt;
1634
1635 if (area->nr_free == 0)
1636 return -1;
1637
1638 *can_steal = false;
1639 for (i = 0;; i++) {
1640 fallback_mt = fallbacks[migratetype][i];
1641 if (fallback_mt == MIGRATE_TYPES)
1642 break;
1643
1644 if (list_empty(&area->free_list[fallback_mt]))
1645 continue;
1646
1647 if (can_steal_fallback(order, migratetype))
1648 *can_steal = true;
1649
1650 if (!only_stealable)
1651 return fallback_mt;
1652
1653 if (*can_steal)
1654 return fallback_mt;
1655 }
1656
1657 return -1;
1658 }
1659
1660 /*
1661 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1662 * there are no empty page blocks that contain a page with a suitable order
1663 */
1664 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1665 unsigned int alloc_order)
1666 {
1667 int mt;
1668 unsigned long max_managed, flags;
1669
1670 /*
1671 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1672 * Check is race-prone but harmless.
1673 */
1674 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1675 if (zone->nr_reserved_highatomic >= max_managed)
1676 return;
1677
1678 spin_lock_irqsave(&zone->lock, flags);
1679
1680 /* Recheck the nr_reserved_highatomic limit under the lock */
1681 if (zone->nr_reserved_highatomic >= max_managed)
1682 goto out_unlock;
1683
1684 /* Yoink! */
1685 mt = get_pageblock_migratetype(page);
1686 if (mt != MIGRATE_HIGHATOMIC &&
1687 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1688 zone->nr_reserved_highatomic += pageblock_nr_pages;
1689 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1690 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1691 }
1692
1693 out_unlock:
1694 spin_unlock_irqrestore(&zone->lock, flags);
1695 }
1696
1697 /*
1698 * Used when an allocation is about to fail under memory pressure. This
1699 * potentially hurts the reliability of high-order allocations when under
1700 * intense memory pressure but failed atomic allocations should be easier
1701 * to recover from than an OOM.
1702 */
1703 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1704 {
1705 struct zonelist *zonelist = ac->zonelist;
1706 unsigned long flags;
1707 struct zoneref *z;
1708 struct zone *zone;
1709 struct page *page;
1710 int order;
1711
1712 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1713 ac->nodemask) {
1714 /* Preserve at least one pageblock */
1715 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1716 continue;
1717
1718 spin_lock_irqsave(&zone->lock, flags);
1719 for (order = 0; order < MAX_ORDER; order++) {
1720 struct free_area *area = &(zone->free_area[order]);
1721
1722 page = list_first_entry_or_null(
1723 &area->free_list[MIGRATE_HIGHATOMIC],
1724 struct page, lru);
1725 if (!page)
1726 continue;
1727
1728 /*
1729 * It should never happen but changes to locking could
1730 * inadvertently allow a per-cpu drain to add pages
1731 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1732 * and watch for underflows.
1733 */
1734 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1735 zone->nr_reserved_highatomic);
1736
1737 /*
1738 * Convert to ac->migratetype and avoid the normal
1739 * pageblock stealing heuristics. Minimally, the caller
1740 * is doing the work and needs the pages. More
1741 * importantly, if the block was always converted to
1742 * MIGRATE_UNMOVABLE or another type then the number
1743 * of pageblocks that cannot be completely freed
1744 * may increase.
1745 */
1746 set_pageblock_migratetype(page, ac->migratetype);
1747 move_freepages_block(zone, page, ac->migratetype);
1748 spin_unlock_irqrestore(&zone->lock, flags);
1749 return;
1750 }
1751 spin_unlock_irqrestore(&zone->lock, flags);
1752 }
1753 }
1754
1755 /* Remove an element from the buddy allocator from the fallback list */
1756 static inline struct page *
1757 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1758 {
1759 struct free_area *area;
1760 unsigned int current_order;
1761 struct page *page;
1762 int fallback_mt;
1763 bool can_steal;
1764
1765 /* Find the largest possible block of pages in the other list */
1766 for (current_order = MAX_ORDER-1;
1767 current_order >= order && current_order <= MAX_ORDER-1;
1768 --current_order) {
1769 area = &(zone->free_area[current_order]);
1770 fallback_mt = find_suitable_fallback(area, current_order,
1771 start_migratetype, false, &can_steal);
1772 if (fallback_mt == -1)
1773 continue;
1774
1775 page = list_first_entry(&area->free_list[fallback_mt],
1776 struct page, lru);
1777 if (can_steal)
1778 steal_suitable_fallback(zone, page, start_migratetype);
1779
1780 /* Remove the page from the freelists */
1781 area->nr_free--;
1782 list_del(&page->lru);
1783 rmv_page_order(page);
1784
1785 expand(zone, page, order, current_order, area,
1786 start_migratetype);
1787 /*
1788 * The pcppage_migratetype may differ from pageblock's
1789 * migratetype depending on the decisions in
1790 * find_suitable_fallback(). This is OK as long as it does not
1791 * differ for MIGRATE_CMA pageblocks. Those can be used as
1792 * fallback only via special __rmqueue_cma_fallback() function
1793 */
1794 set_pcppage_migratetype(page, start_migratetype);
1795
1796 trace_mm_page_alloc_extfrag(page, order, current_order,
1797 start_migratetype, fallback_mt);
1798
1799 return page;
1800 }
1801
1802 return NULL;
1803 }
1804
1805 /*
1806 * Do the hard work of removing an element from the buddy allocator.
1807 * Call me with the zone->lock already held.
1808 */
1809 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1810 int migratetype)
1811 {
1812 struct page *page;
1813
1814 page = __rmqueue_smallest(zone, order, migratetype);
1815 if (unlikely(!page)) {
1816 if (migratetype == MIGRATE_MOVABLE)
1817 page = __rmqueue_cma_fallback(zone, order);
1818
1819 if (!page)
1820 page = __rmqueue_fallback(zone, order, migratetype);
1821 }
1822
1823 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1824 return page;
1825 }
1826
1827 /*
1828 * Obtain a specified number of elements from the buddy allocator, all under
1829 * a single hold of the lock, for efficiency. Add them to the supplied list.
1830 * Returns the number of new pages which were placed at *list.
1831 */
1832 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1833 unsigned long count, struct list_head *list,
1834 int migratetype, bool cold)
1835 {
1836 int i;
1837
1838 spin_lock(&zone->lock);
1839 for (i = 0; i < count; ++i) {
1840 struct page *page = __rmqueue(zone, order, migratetype);
1841 if (unlikely(page == NULL))
1842 break;
1843
1844 /*
1845 * Split buddy pages returned by expand() are received here
1846 * in physical page order. The page is added to the callers and
1847 * list and the list head then moves forward. From the callers
1848 * perspective, the linked list is ordered by page number in
1849 * some conditions. This is useful for IO devices that can
1850 * merge IO requests if the physical pages are ordered
1851 * properly.
1852 */
1853 if (likely(!cold))
1854 list_add(&page->lru, list);
1855 else
1856 list_add_tail(&page->lru, list);
1857 list = &page->lru;
1858 if (is_migrate_cma(get_pcppage_migratetype(page)))
1859 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1860 -(1 << order));
1861 }
1862 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1863 spin_unlock(&zone->lock);
1864 return i;
1865 }
1866
1867 #ifdef CONFIG_NUMA
1868 /*
1869 * Called from the vmstat counter updater to drain pagesets of this
1870 * currently executing processor on remote nodes after they have
1871 * expired.
1872 *
1873 * Note that this function must be called with the thread pinned to
1874 * a single processor.
1875 */
1876 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1877 {
1878 unsigned long flags;
1879 int to_drain, batch;
1880
1881 local_irq_save(flags);
1882 batch = READ_ONCE(pcp->batch);
1883 to_drain = min(pcp->count, batch);
1884 if (to_drain > 0) {
1885 free_pcppages_bulk(zone, to_drain, pcp);
1886 pcp->count -= to_drain;
1887 }
1888 local_irq_restore(flags);
1889 }
1890 #endif
1891
1892 /*
1893 * Drain pcplists of the indicated processor and zone.
1894 *
1895 * The processor must either be the current processor and the
1896 * thread pinned to the current processor or a processor that
1897 * is not online.
1898 */
1899 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1900 {
1901 unsigned long flags;
1902 struct per_cpu_pageset *pset;
1903 struct per_cpu_pages *pcp;
1904
1905 local_irq_save(flags);
1906 pset = per_cpu_ptr(zone->pageset, cpu);
1907
1908 pcp = &pset->pcp;
1909 if (pcp->count) {
1910 free_pcppages_bulk(zone, pcp->count, pcp);
1911 pcp->count = 0;
1912 }
1913 local_irq_restore(flags);
1914 }
1915
1916 /*
1917 * Drain pcplists of all zones on the indicated processor.
1918 *
1919 * The processor must either be the current processor and the
1920 * thread pinned to the current processor or a processor that
1921 * is not online.
1922 */
1923 static void drain_pages(unsigned int cpu)
1924 {
1925 struct zone *zone;
1926
1927 for_each_populated_zone(zone) {
1928 drain_pages_zone(cpu, zone);
1929 }
1930 }
1931
1932 /*
1933 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1934 *
1935 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1936 * the single zone's pages.
1937 */
1938 void drain_local_pages(struct zone *zone)
1939 {
1940 int cpu = smp_processor_id();
1941
1942 if (zone)
1943 drain_pages_zone(cpu, zone);
1944 else
1945 drain_pages(cpu);
1946 }
1947
1948 /*
1949 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1950 *
1951 * When zone parameter is non-NULL, spill just the single zone's pages.
1952 *
1953 * Note that this code is protected against sending an IPI to an offline
1954 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1955 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1956 * nothing keeps CPUs from showing up after we populated the cpumask and
1957 * before the call to on_each_cpu_mask().
1958 */
1959 void drain_all_pages(struct zone *zone)
1960 {
1961 int cpu;
1962
1963 /*
1964 * Allocate in the BSS so we wont require allocation in
1965 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1966 */
1967 static cpumask_t cpus_with_pcps;
1968
1969 /*
1970 * We don't care about racing with CPU hotplug event
1971 * as offline notification will cause the notified
1972 * cpu to drain that CPU pcps and on_each_cpu_mask
1973 * disables preemption as part of its processing
1974 */
1975 for_each_online_cpu(cpu) {
1976 struct per_cpu_pageset *pcp;
1977 struct zone *z;
1978 bool has_pcps = false;
1979
1980 if (zone) {
1981 pcp = per_cpu_ptr(zone->pageset, cpu);
1982 if (pcp->pcp.count)
1983 has_pcps = true;
1984 } else {
1985 for_each_populated_zone(z) {
1986 pcp = per_cpu_ptr(z->pageset, cpu);
1987 if (pcp->pcp.count) {
1988 has_pcps = true;
1989 break;
1990 }
1991 }
1992 }
1993
1994 if (has_pcps)
1995 cpumask_set_cpu(cpu, &cpus_with_pcps);
1996 else
1997 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1998 }
1999 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2000 zone, 1);
2001 }
2002
2003 #ifdef CONFIG_HIBERNATION
2004
2005 void mark_free_pages(struct zone *zone)
2006 {
2007 unsigned long pfn, max_zone_pfn;
2008 unsigned long flags;
2009 unsigned int order, t;
2010 struct page *page;
2011
2012 if (zone_is_empty(zone))
2013 return;
2014
2015 spin_lock_irqsave(&zone->lock, flags);
2016
2017 max_zone_pfn = zone_end_pfn(zone);
2018 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2019 if (pfn_valid(pfn)) {
2020 page = pfn_to_page(pfn);
2021 if (!swsusp_page_is_forbidden(page))
2022 swsusp_unset_page_free(page);
2023 }
2024
2025 for_each_migratetype_order(order, t) {
2026 list_for_each_entry(page,
2027 &zone->free_area[order].free_list[t], lru) {
2028 unsigned long i;
2029
2030 pfn = page_to_pfn(page);
2031 for (i = 0; i < (1UL << order); i++)
2032 swsusp_set_page_free(pfn_to_page(pfn + i));
2033 }
2034 }
2035 spin_unlock_irqrestore(&zone->lock, flags);
2036 }
2037 #endif /* CONFIG_PM */
2038
2039 /*
2040 * Free a 0-order page
2041 * cold == true ? free a cold page : free a hot page
2042 */
2043 void free_hot_cold_page(struct page *page, bool cold)
2044 {
2045 struct zone *zone = page_zone(page);
2046 struct per_cpu_pages *pcp;
2047 unsigned long flags;
2048 unsigned long pfn = page_to_pfn(page);
2049 int migratetype;
2050
2051 if (!free_pages_prepare(page, 0))
2052 return;
2053
2054 migratetype = get_pfnblock_migratetype(page, pfn);
2055 set_pcppage_migratetype(page, migratetype);
2056 local_irq_save(flags);
2057 __count_vm_event(PGFREE);
2058
2059 /*
2060 * We only track unmovable, reclaimable and movable on pcp lists.
2061 * Free ISOLATE pages back to the allocator because they are being
2062 * offlined but treat RESERVE as movable pages so we can get those
2063 * areas back if necessary. Otherwise, we may have to free
2064 * excessively into the page allocator
2065 */
2066 if (migratetype >= MIGRATE_PCPTYPES) {
2067 if (unlikely(is_migrate_isolate(migratetype))) {
2068 free_one_page(zone, page, pfn, 0, migratetype);
2069 goto out;
2070 }
2071 migratetype = MIGRATE_MOVABLE;
2072 }
2073
2074 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2075 if (!cold)
2076 list_add(&page->lru, &pcp->lists[migratetype]);
2077 else
2078 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2079 pcp->count++;
2080 if (pcp->count >= pcp->high) {
2081 unsigned long batch = READ_ONCE(pcp->batch);
2082 free_pcppages_bulk(zone, batch, pcp);
2083 pcp->count -= batch;
2084 }
2085
2086 out:
2087 local_irq_restore(flags);
2088 }
2089
2090 /*
2091 * Free a list of 0-order pages
2092 */
2093 void free_hot_cold_page_list(struct list_head *list, bool cold)
2094 {
2095 struct page *page, *next;
2096
2097 list_for_each_entry_safe(page, next, list, lru) {
2098 trace_mm_page_free_batched(page, cold);
2099 free_hot_cold_page(page, cold);
2100 }
2101 }
2102
2103 /*
2104 * split_page takes a non-compound higher-order page, and splits it into
2105 * n (1<<order) sub-pages: page[0..n]
2106 * Each sub-page must be freed individually.
2107 *
2108 * Note: this is probably too low level an operation for use in drivers.
2109 * Please consult with lkml before using this in your driver.
2110 */
2111 void split_page(struct page *page, unsigned int order)
2112 {
2113 int i;
2114 gfp_t gfp_mask;
2115
2116 VM_BUG_ON_PAGE(PageCompound(page), page);
2117 VM_BUG_ON_PAGE(!page_count(page), page);
2118
2119 #ifdef CONFIG_KMEMCHECK
2120 /*
2121 * Split shadow pages too, because free(page[0]) would
2122 * otherwise free the whole shadow.
2123 */
2124 if (kmemcheck_page_is_tracked(page))
2125 split_page(virt_to_page(page[0].shadow), order);
2126 #endif
2127
2128 gfp_mask = get_page_owner_gfp(page);
2129 set_page_owner(page, 0, gfp_mask);
2130 for (i = 1; i < (1 << order); i++) {
2131 set_page_refcounted(page + i);
2132 set_page_owner(page + i, 0, gfp_mask);
2133 }
2134 }
2135 EXPORT_SYMBOL_GPL(split_page);
2136
2137 int __isolate_free_page(struct page *page, unsigned int order)
2138 {
2139 unsigned long watermark;
2140 struct zone *zone;
2141 int mt;
2142
2143 BUG_ON(!PageBuddy(page));
2144
2145 zone = page_zone(page);
2146 mt = get_pageblock_migratetype(page);
2147
2148 if (!is_migrate_isolate(mt)) {
2149 /* Obey watermarks as if the page was being allocated */
2150 watermark = low_wmark_pages(zone) + (1 << order);
2151 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2152 return 0;
2153
2154 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2155 }
2156
2157 /* Remove page from free list */
2158 list_del(&page->lru);
2159 zone->free_area[order].nr_free--;
2160 rmv_page_order(page);
2161
2162 set_page_owner(page, order, __GFP_MOVABLE);
2163
2164 /* Set the pageblock if the isolated page is at least a pageblock */
2165 if (order >= pageblock_order - 1) {
2166 struct page *endpage = page + (1 << order) - 1;
2167 for (; page < endpage; page += pageblock_nr_pages) {
2168 int mt = get_pageblock_migratetype(page);
2169 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2170 set_pageblock_migratetype(page,
2171 MIGRATE_MOVABLE);
2172 }
2173 }
2174
2175
2176 return 1UL << order;
2177 }
2178
2179 /*
2180 * Similar to split_page except the page is already free. As this is only
2181 * being used for migration, the migratetype of the block also changes.
2182 * As this is called with interrupts disabled, the caller is responsible
2183 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2184 * are enabled.
2185 *
2186 * Note: this is probably too low level an operation for use in drivers.
2187 * Please consult with lkml before using this in your driver.
2188 */
2189 int split_free_page(struct page *page)
2190 {
2191 unsigned int order;
2192 int nr_pages;
2193
2194 order = page_order(page);
2195
2196 nr_pages = __isolate_free_page(page, order);
2197 if (!nr_pages)
2198 return 0;
2199
2200 /* Split into individual pages */
2201 set_page_refcounted(page);
2202 split_page(page, order);
2203 return nr_pages;
2204 }
2205
2206 /*
2207 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2208 */
2209 static inline
2210 struct page *buffered_rmqueue(struct zone *preferred_zone,
2211 struct zone *zone, unsigned int order,
2212 gfp_t gfp_flags, int alloc_flags, int migratetype)
2213 {
2214 unsigned long flags;
2215 struct page *page;
2216 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2217
2218 if (likely(order == 0)) {
2219 struct per_cpu_pages *pcp;
2220 struct list_head *list;
2221
2222 local_irq_save(flags);
2223 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2224 list = &pcp->lists[migratetype];
2225 if (list_empty(list)) {
2226 pcp->count += rmqueue_bulk(zone, 0,
2227 pcp->batch, list,
2228 migratetype, cold);
2229 if (unlikely(list_empty(list)))
2230 goto failed;
2231 }
2232
2233 if (cold)
2234 page = list_last_entry(list, struct page, lru);
2235 else
2236 page = list_first_entry(list, struct page, lru);
2237
2238 list_del(&page->lru);
2239 pcp->count--;
2240 } else {
2241 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2242 /*
2243 * __GFP_NOFAIL is not to be used in new code.
2244 *
2245 * All __GFP_NOFAIL callers should be fixed so that they
2246 * properly detect and handle allocation failures.
2247 *
2248 * We most definitely don't want callers attempting to
2249 * allocate greater than order-1 page units with
2250 * __GFP_NOFAIL.
2251 */
2252 WARN_ON_ONCE(order > 1);
2253 }
2254 spin_lock_irqsave(&zone->lock, flags);
2255
2256 page = NULL;
2257 if (alloc_flags & ALLOC_HARDER) {
2258 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2259 if (page)
2260 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2261 }
2262 if (!page)
2263 page = __rmqueue(zone, order, migratetype);
2264 spin_unlock(&zone->lock);
2265 if (!page)
2266 goto failed;
2267 __mod_zone_freepage_state(zone, -(1 << order),
2268 get_pcppage_migratetype(page));
2269 }
2270
2271 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2272 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2273 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2274 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2275
2276 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2277 zone_statistics(preferred_zone, zone, gfp_flags);
2278 local_irq_restore(flags);
2279
2280 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2281 return page;
2282
2283 failed:
2284 local_irq_restore(flags);
2285 return NULL;
2286 }
2287
2288 #ifdef CONFIG_FAIL_PAGE_ALLOC
2289
2290 static struct {
2291 struct fault_attr attr;
2292
2293 bool ignore_gfp_highmem;
2294 bool ignore_gfp_reclaim;
2295 u32 min_order;
2296 } fail_page_alloc = {
2297 .attr = FAULT_ATTR_INITIALIZER,
2298 .ignore_gfp_reclaim = true,
2299 .ignore_gfp_highmem = true,
2300 .min_order = 1,
2301 };
2302
2303 static int __init setup_fail_page_alloc(char *str)
2304 {
2305 return setup_fault_attr(&fail_page_alloc.attr, str);
2306 }
2307 __setup("fail_page_alloc=", setup_fail_page_alloc);
2308
2309 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2310 {
2311 if (order < fail_page_alloc.min_order)
2312 return false;
2313 if (gfp_mask & __GFP_NOFAIL)
2314 return false;
2315 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2316 return false;
2317 if (fail_page_alloc.ignore_gfp_reclaim &&
2318 (gfp_mask & __GFP_DIRECT_RECLAIM))
2319 return false;
2320
2321 return should_fail(&fail_page_alloc.attr, 1 << order);
2322 }
2323
2324 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2325
2326 static int __init fail_page_alloc_debugfs(void)
2327 {
2328 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2329 struct dentry *dir;
2330
2331 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2332 &fail_page_alloc.attr);
2333 if (IS_ERR(dir))
2334 return PTR_ERR(dir);
2335
2336 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2337 &fail_page_alloc.ignore_gfp_reclaim))
2338 goto fail;
2339 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2340 &fail_page_alloc.ignore_gfp_highmem))
2341 goto fail;
2342 if (!debugfs_create_u32("min-order", mode, dir,
2343 &fail_page_alloc.min_order))
2344 goto fail;
2345
2346 return 0;
2347 fail:
2348 debugfs_remove_recursive(dir);
2349
2350 return -ENOMEM;
2351 }
2352
2353 late_initcall(fail_page_alloc_debugfs);
2354
2355 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2356
2357 #else /* CONFIG_FAIL_PAGE_ALLOC */
2358
2359 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2360 {
2361 return false;
2362 }
2363
2364 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2365
2366 /*
2367 * Return true if free base pages are above 'mark'. For high-order checks it
2368 * will return true of the order-0 watermark is reached and there is at least
2369 * one free page of a suitable size. Checking now avoids taking the zone lock
2370 * to check in the allocation paths if no pages are free.
2371 */
2372 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2373 unsigned long mark, int classzone_idx, int alloc_flags,
2374 long free_pages)
2375 {
2376 long min = mark;
2377 int o;
2378 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2379
2380 /* free_pages may go negative - that's OK */
2381 free_pages -= (1 << order) - 1;
2382
2383 if (alloc_flags & ALLOC_HIGH)
2384 min -= min / 2;
2385
2386 /*
2387 * If the caller does not have rights to ALLOC_HARDER then subtract
2388 * the high-atomic reserves. This will over-estimate the size of the
2389 * atomic reserve but it avoids a search.
2390 */
2391 if (likely(!alloc_harder))
2392 free_pages -= z->nr_reserved_highatomic;
2393 else
2394 min -= min / 4;
2395
2396 #ifdef CONFIG_CMA
2397 /* If allocation can't use CMA areas don't use free CMA pages */
2398 if (!(alloc_flags & ALLOC_CMA))
2399 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2400 #endif
2401
2402 /*
2403 * Check watermarks for an order-0 allocation request. If these
2404 * are not met, then a high-order request also cannot go ahead
2405 * even if a suitable page happened to be free.
2406 */
2407 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2408 return false;
2409
2410 /* If this is an order-0 request then the watermark is fine */
2411 if (!order)
2412 return true;
2413
2414 /* For a high-order request, check at least one suitable page is free */
2415 for (o = order; o < MAX_ORDER; o++) {
2416 struct free_area *area = &z->free_area[o];
2417 int mt;
2418
2419 if (!area->nr_free)
2420 continue;
2421
2422 if (alloc_harder)
2423 return true;
2424
2425 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2426 if (!list_empty(&area->free_list[mt]))
2427 return true;
2428 }
2429
2430 #ifdef CONFIG_CMA
2431 if ((alloc_flags & ALLOC_CMA) &&
2432 !list_empty(&area->free_list[MIGRATE_CMA])) {
2433 return true;
2434 }
2435 #endif
2436 }
2437 return false;
2438 }
2439
2440 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2441 int classzone_idx, int alloc_flags)
2442 {
2443 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2444 zone_page_state(z, NR_FREE_PAGES));
2445 }
2446
2447 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2448 unsigned long mark, int classzone_idx)
2449 {
2450 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2451
2452 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2453 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2454
2455 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2456 free_pages);
2457 }
2458
2459 #ifdef CONFIG_NUMA
2460 static bool zone_local(struct zone *local_zone, struct zone *zone)
2461 {
2462 return local_zone->node == zone->node;
2463 }
2464
2465 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2466 {
2467 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2468 RECLAIM_DISTANCE;
2469 }
2470 #else /* CONFIG_NUMA */
2471 static bool zone_local(struct zone *local_zone, struct zone *zone)
2472 {
2473 return true;
2474 }
2475
2476 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2477 {
2478 return true;
2479 }
2480 #endif /* CONFIG_NUMA */
2481
2482 static void reset_alloc_batches(struct zone *preferred_zone)
2483 {
2484 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2485
2486 do {
2487 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2488 high_wmark_pages(zone) - low_wmark_pages(zone) -
2489 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2490 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2491 } while (zone++ != preferred_zone);
2492 }
2493
2494 /*
2495 * get_page_from_freelist goes through the zonelist trying to allocate
2496 * a page.
2497 */
2498 static struct page *
2499 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2500 const struct alloc_context *ac)
2501 {
2502 struct zonelist *zonelist = ac->zonelist;
2503 struct zoneref *z;
2504 struct page *page = NULL;
2505 struct zone *zone;
2506 int nr_fair_skipped = 0;
2507 bool zonelist_rescan;
2508
2509 zonelist_scan:
2510 zonelist_rescan = false;
2511
2512 /*
2513 * Scan zonelist, looking for a zone with enough free.
2514 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2515 */
2516 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2517 ac->nodemask) {
2518 unsigned long mark;
2519
2520 if (cpusets_enabled() &&
2521 (alloc_flags & ALLOC_CPUSET) &&
2522 !cpuset_zone_allowed(zone, gfp_mask))
2523 continue;
2524 /*
2525 * Distribute pages in proportion to the individual
2526 * zone size to ensure fair page aging. The zone a
2527 * page was allocated in should have no effect on the
2528 * time the page has in memory before being reclaimed.
2529 */
2530 if (alloc_flags & ALLOC_FAIR) {
2531 if (!zone_local(ac->preferred_zone, zone))
2532 break;
2533 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2534 nr_fair_skipped++;
2535 continue;
2536 }
2537 }
2538 /*
2539 * When allocating a page cache page for writing, we
2540 * want to get it from a zone that is within its dirty
2541 * limit, such that no single zone holds more than its
2542 * proportional share of globally allowed dirty pages.
2543 * The dirty limits take into account the zone's
2544 * lowmem reserves and high watermark so that kswapd
2545 * should be able to balance it without having to
2546 * write pages from its LRU list.
2547 *
2548 * This may look like it could increase pressure on
2549 * lower zones by failing allocations in higher zones
2550 * before they are full. But the pages that do spill
2551 * over are limited as the lower zones are protected
2552 * by this very same mechanism. It should not become
2553 * a practical burden to them.
2554 *
2555 * XXX: For now, allow allocations to potentially
2556 * exceed the per-zone dirty limit in the slowpath
2557 * (spread_dirty_pages unset) before going into reclaim,
2558 * which is important when on a NUMA setup the allowed
2559 * zones are together not big enough to reach the
2560 * global limit. The proper fix for these situations
2561 * will require awareness of zones in the
2562 * dirty-throttling and the flusher threads.
2563 */
2564 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2565 continue;
2566
2567 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2568 if (!zone_watermark_ok(zone, order, mark,
2569 ac->classzone_idx, alloc_flags)) {
2570 int ret;
2571
2572 /* Checked here to keep the fast path fast */
2573 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2574 if (alloc_flags & ALLOC_NO_WATERMARKS)
2575 goto try_this_zone;
2576
2577 if (zone_reclaim_mode == 0 ||
2578 !zone_allows_reclaim(ac->preferred_zone, zone))
2579 continue;
2580
2581 ret = zone_reclaim(zone, gfp_mask, order);
2582 switch (ret) {
2583 case ZONE_RECLAIM_NOSCAN:
2584 /* did not scan */
2585 continue;
2586 case ZONE_RECLAIM_FULL:
2587 /* scanned but unreclaimable */
2588 continue;
2589 default:
2590 /* did we reclaim enough */
2591 if (zone_watermark_ok(zone, order, mark,
2592 ac->classzone_idx, alloc_flags))
2593 goto try_this_zone;
2594
2595 continue;
2596 }
2597 }
2598
2599 try_this_zone:
2600 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2601 gfp_mask, alloc_flags, ac->migratetype);
2602 if (page) {
2603 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2604 goto try_this_zone;
2605
2606 /*
2607 * If this is a high-order atomic allocation then check
2608 * if the pageblock should be reserved for the future
2609 */
2610 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2611 reserve_highatomic_pageblock(page, zone, order);
2612
2613 return page;
2614 }
2615 }
2616
2617 /*
2618 * The first pass makes sure allocations are spread fairly within the
2619 * local node. However, the local node might have free pages left
2620 * after the fairness batches are exhausted, and remote zones haven't
2621 * even been considered yet. Try once more without fairness, and
2622 * include remote zones now, before entering the slowpath and waking
2623 * kswapd: prefer spilling to a remote zone over swapping locally.
2624 */
2625 if (alloc_flags & ALLOC_FAIR) {
2626 alloc_flags &= ~ALLOC_FAIR;
2627 if (nr_fair_skipped) {
2628 zonelist_rescan = true;
2629 reset_alloc_batches(ac->preferred_zone);
2630 }
2631 if (nr_online_nodes > 1)
2632 zonelist_rescan = true;
2633 }
2634
2635 if (zonelist_rescan)
2636 goto zonelist_scan;
2637
2638 return NULL;
2639 }
2640
2641 /*
2642 * Large machines with many possible nodes should not always dump per-node
2643 * meminfo in irq context.
2644 */
2645 static inline bool should_suppress_show_mem(void)
2646 {
2647 bool ret = false;
2648
2649 #if NODES_SHIFT > 8
2650 ret = in_interrupt();
2651 #endif
2652 return ret;
2653 }
2654
2655 static DEFINE_RATELIMIT_STATE(nopage_rs,
2656 DEFAULT_RATELIMIT_INTERVAL,
2657 DEFAULT_RATELIMIT_BURST);
2658
2659 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2660 {
2661 unsigned int filter = SHOW_MEM_FILTER_NODES;
2662
2663 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2664 debug_guardpage_minorder() > 0)
2665 return;
2666
2667 /*
2668 * This documents exceptions given to allocations in certain
2669 * contexts that are allowed to allocate outside current's set
2670 * of allowed nodes.
2671 */
2672 if (!(gfp_mask & __GFP_NOMEMALLOC))
2673 if (test_thread_flag(TIF_MEMDIE) ||
2674 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2675 filter &= ~SHOW_MEM_FILTER_NODES;
2676 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2677 filter &= ~SHOW_MEM_FILTER_NODES;
2678
2679 if (fmt) {
2680 struct va_format vaf;
2681 va_list args;
2682
2683 va_start(args, fmt);
2684
2685 vaf.fmt = fmt;
2686 vaf.va = &args;
2687
2688 pr_warn("%pV", &vaf);
2689
2690 va_end(args);
2691 }
2692
2693 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2694 current->comm, order, gfp_mask);
2695
2696 dump_stack();
2697 if (!should_suppress_show_mem())
2698 show_mem(filter);
2699 }
2700
2701 static inline struct page *
2702 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2703 const struct alloc_context *ac, unsigned long *did_some_progress)
2704 {
2705 struct oom_control oc = {
2706 .zonelist = ac->zonelist,
2707 .nodemask = ac->nodemask,
2708 .gfp_mask = gfp_mask,
2709 .order = order,
2710 };
2711 struct page *page;
2712
2713 *did_some_progress = 0;
2714
2715 /*
2716 * Acquire the oom lock. If that fails, somebody else is
2717 * making progress for us.
2718 */
2719 if (!mutex_trylock(&oom_lock)) {
2720 *did_some_progress = 1;
2721 schedule_timeout_uninterruptible(1);
2722 return NULL;
2723 }
2724
2725 /*
2726 * Go through the zonelist yet one more time, keep very high watermark
2727 * here, this is only to catch a parallel oom killing, we must fail if
2728 * we're still under heavy pressure.
2729 */
2730 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2731 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2732 if (page)
2733 goto out;
2734
2735 if (!(gfp_mask & __GFP_NOFAIL)) {
2736 /* Coredumps can quickly deplete all memory reserves */
2737 if (current->flags & PF_DUMPCORE)
2738 goto out;
2739 /* The OOM killer will not help higher order allocs */
2740 if (order > PAGE_ALLOC_COSTLY_ORDER)
2741 goto out;
2742 /* The OOM killer does not needlessly kill tasks for lowmem */
2743 if (ac->high_zoneidx < ZONE_NORMAL)
2744 goto out;
2745 /* The OOM killer does not compensate for IO-less reclaim */
2746 if (!(gfp_mask & __GFP_FS)) {
2747 /*
2748 * XXX: Page reclaim didn't yield anything,
2749 * and the OOM killer can't be invoked, but
2750 * keep looping as per tradition.
2751 */
2752 *did_some_progress = 1;
2753 goto out;
2754 }
2755 if (pm_suspended_storage())
2756 goto out;
2757 /* The OOM killer may not free memory on a specific node */
2758 if (gfp_mask & __GFP_THISNODE)
2759 goto out;
2760 }
2761 /* Exhausted what can be done so it's blamo time */
2762 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2763 *did_some_progress = 1;
2764
2765 if (gfp_mask & __GFP_NOFAIL) {
2766 page = get_page_from_freelist(gfp_mask, order,
2767 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2768 /*
2769 * fallback to ignore cpuset restriction if our nodes
2770 * are depleted
2771 */
2772 if (!page)
2773 page = get_page_from_freelist(gfp_mask, order,
2774 ALLOC_NO_WATERMARKS, ac);
2775 }
2776 }
2777 out:
2778 mutex_unlock(&oom_lock);
2779 return page;
2780 }
2781
2782 #ifdef CONFIG_COMPACTION
2783 /* Try memory compaction for high-order allocations before reclaim */
2784 static struct page *
2785 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2786 int alloc_flags, const struct alloc_context *ac,
2787 enum migrate_mode mode, int *contended_compaction,
2788 bool *deferred_compaction)
2789 {
2790 unsigned long compact_result;
2791 struct page *page;
2792
2793 if (!order)
2794 return NULL;
2795
2796 current->flags |= PF_MEMALLOC;
2797 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2798 mode, contended_compaction);
2799 current->flags &= ~PF_MEMALLOC;
2800
2801 switch (compact_result) {
2802 case COMPACT_DEFERRED:
2803 *deferred_compaction = true;
2804 /* fall-through */
2805 case COMPACT_SKIPPED:
2806 return NULL;
2807 default:
2808 break;
2809 }
2810
2811 /*
2812 * At least in one zone compaction wasn't deferred or skipped, so let's
2813 * count a compaction stall
2814 */
2815 count_vm_event(COMPACTSTALL);
2816
2817 page = get_page_from_freelist(gfp_mask, order,
2818 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2819
2820 if (page) {
2821 struct zone *zone = page_zone(page);
2822
2823 zone->compact_blockskip_flush = false;
2824 compaction_defer_reset(zone, order, true);
2825 count_vm_event(COMPACTSUCCESS);
2826 return page;
2827 }
2828
2829 /*
2830 * It's bad if compaction run occurs and fails. The most likely reason
2831 * is that pages exist, but not enough to satisfy watermarks.
2832 */
2833 count_vm_event(COMPACTFAIL);
2834
2835 cond_resched();
2836
2837 return NULL;
2838 }
2839 #else
2840 static inline struct page *
2841 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2842 int alloc_flags, const struct alloc_context *ac,
2843 enum migrate_mode mode, int *contended_compaction,
2844 bool *deferred_compaction)
2845 {
2846 return NULL;
2847 }
2848 #endif /* CONFIG_COMPACTION */
2849
2850 /* Perform direct synchronous page reclaim */
2851 static int
2852 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2853 const struct alloc_context *ac)
2854 {
2855 struct reclaim_state reclaim_state;
2856 int progress;
2857
2858 cond_resched();
2859
2860 /* We now go into synchronous reclaim */
2861 cpuset_memory_pressure_bump();
2862 current->flags |= PF_MEMALLOC;
2863 lockdep_set_current_reclaim_state(gfp_mask);
2864 reclaim_state.reclaimed_slab = 0;
2865 current->reclaim_state = &reclaim_state;
2866
2867 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2868 ac->nodemask);
2869
2870 current->reclaim_state = NULL;
2871 lockdep_clear_current_reclaim_state();
2872 current->flags &= ~PF_MEMALLOC;
2873
2874 cond_resched();
2875
2876 return progress;
2877 }
2878
2879 /* The really slow allocator path where we enter direct reclaim */
2880 static inline struct page *
2881 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2882 int alloc_flags, const struct alloc_context *ac,
2883 unsigned long *did_some_progress)
2884 {
2885 struct page *page = NULL;
2886 bool drained = false;
2887
2888 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2889 if (unlikely(!(*did_some_progress)))
2890 return NULL;
2891
2892 retry:
2893 page = get_page_from_freelist(gfp_mask, order,
2894 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2895
2896 /*
2897 * If an allocation failed after direct reclaim, it could be because
2898 * pages are pinned on the per-cpu lists or in high alloc reserves.
2899 * Shrink them them and try again
2900 */
2901 if (!page && !drained) {
2902 unreserve_highatomic_pageblock(ac);
2903 drain_all_pages(NULL);
2904 drained = true;
2905 goto retry;
2906 }
2907
2908 return page;
2909 }
2910
2911 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2912 {
2913 struct zoneref *z;
2914 struct zone *zone;
2915
2916 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2917 ac->high_zoneidx, ac->nodemask)
2918 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2919 }
2920
2921 static inline int
2922 gfp_to_alloc_flags(gfp_t gfp_mask)
2923 {
2924 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2925
2926 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2927 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2928
2929 /*
2930 * The caller may dip into page reserves a bit more if the caller
2931 * cannot run direct reclaim, or if the caller has realtime scheduling
2932 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2933 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2934 */
2935 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2936
2937 if (gfp_mask & __GFP_ATOMIC) {
2938 /*
2939 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2940 * if it can't schedule.
2941 */
2942 if (!(gfp_mask & __GFP_NOMEMALLOC))
2943 alloc_flags |= ALLOC_HARDER;
2944 /*
2945 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2946 * comment for __cpuset_node_allowed().
2947 */
2948 alloc_flags &= ~ALLOC_CPUSET;
2949 } else if (unlikely(rt_task(current)) && !in_interrupt())
2950 alloc_flags |= ALLOC_HARDER;
2951
2952 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2953 if (gfp_mask & __GFP_MEMALLOC)
2954 alloc_flags |= ALLOC_NO_WATERMARKS;
2955 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2956 alloc_flags |= ALLOC_NO_WATERMARKS;
2957 else if (!in_interrupt() &&
2958 ((current->flags & PF_MEMALLOC) ||
2959 unlikely(test_thread_flag(TIF_MEMDIE))))
2960 alloc_flags |= ALLOC_NO_WATERMARKS;
2961 }
2962 #ifdef CONFIG_CMA
2963 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2964 alloc_flags |= ALLOC_CMA;
2965 #endif
2966 return alloc_flags;
2967 }
2968
2969 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2970 {
2971 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2972 }
2973
2974 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2975 {
2976 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2977 }
2978
2979 static inline struct page *
2980 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2981 struct alloc_context *ac)
2982 {
2983 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
2984 struct page *page = NULL;
2985 int alloc_flags;
2986 unsigned long pages_reclaimed = 0;
2987 unsigned long did_some_progress;
2988 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2989 bool deferred_compaction = false;
2990 int contended_compaction = COMPACT_CONTENDED_NONE;
2991
2992 /*
2993 * In the slowpath, we sanity check order to avoid ever trying to
2994 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2995 * be using allocators in order of preference for an area that is
2996 * too large.
2997 */
2998 if (order >= MAX_ORDER) {
2999 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3000 return NULL;
3001 }
3002
3003 /*
3004 * We also sanity check to catch abuse of atomic reserves being used by
3005 * callers that are not in atomic context.
3006 */
3007 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3008 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3009 gfp_mask &= ~__GFP_ATOMIC;
3010
3011 /*
3012 * If this allocation cannot block and it is for a specific node, then
3013 * fail early. There's no need to wakeup kswapd or retry for a
3014 * speculative node-specific allocation.
3015 */
3016 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3017 goto nopage;
3018
3019 retry:
3020 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3021 wake_all_kswapds(order, ac);
3022
3023 /*
3024 * OK, we're below the kswapd watermark and have kicked background
3025 * reclaim. Now things get more complex, so set up alloc_flags according
3026 * to how we want to proceed.
3027 */
3028 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3029
3030 /*
3031 * Find the true preferred zone if the allocation is unconstrained by
3032 * cpusets.
3033 */
3034 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3035 struct zoneref *preferred_zoneref;
3036 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3037 ac->high_zoneidx, NULL, &ac->preferred_zone);
3038 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3039 }
3040
3041 /* This is the last chance, in general, before the goto nopage. */
3042 page = get_page_from_freelist(gfp_mask, order,
3043 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3044 if (page)
3045 goto got_pg;
3046
3047 /* Allocate without watermarks if the context allows */
3048 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3049 /*
3050 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3051 * the allocation is high priority and these type of
3052 * allocations are system rather than user orientated
3053 */
3054 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3055 page = get_page_from_freelist(gfp_mask, order,
3056 ALLOC_NO_WATERMARKS, ac);
3057 if (page)
3058 goto got_pg;
3059 }
3060
3061 /* Caller is not willing to reclaim, we can't balance anything */
3062 if (!can_direct_reclaim) {
3063 /*
3064 * All existing users of the __GFP_NOFAIL are blockable, so warn
3065 * of any new users that actually allow this type of allocation
3066 * to fail.
3067 */
3068 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3069 goto nopage;
3070 }
3071
3072 /* Avoid recursion of direct reclaim */
3073 if (current->flags & PF_MEMALLOC) {
3074 /*
3075 * __GFP_NOFAIL request from this context is rather bizarre
3076 * because we cannot reclaim anything and only can loop waiting
3077 * for somebody to do a work for us.
3078 */
3079 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3080 cond_resched();
3081 goto retry;
3082 }
3083 goto nopage;
3084 }
3085
3086 /* Avoid allocations with no watermarks from looping endlessly */
3087 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3088 goto nopage;
3089
3090 /*
3091 * Try direct compaction. The first pass is asynchronous. Subsequent
3092 * attempts after direct reclaim are synchronous
3093 */
3094 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3095 migration_mode,
3096 &contended_compaction,
3097 &deferred_compaction);
3098 if (page)
3099 goto got_pg;
3100
3101 /* Checks for THP-specific high-order allocations */
3102 if (is_thp_gfp_mask(gfp_mask)) {
3103 /*
3104 * If compaction is deferred for high-order allocations, it is
3105 * because sync compaction recently failed. If this is the case
3106 * and the caller requested a THP allocation, we do not want
3107 * to heavily disrupt the system, so we fail the allocation
3108 * instead of entering direct reclaim.
3109 */
3110 if (deferred_compaction)
3111 goto nopage;
3112
3113 /*
3114 * In all zones where compaction was attempted (and not
3115 * deferred or skipped), lock contention has been detected.
3116 * For THP allocation we do not want to disrupt the others
3117 * so we fallback to base pages instead.
3118 */
3119 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3120 goto nopage;
3121
3122 /*
3123 * If compaction was aborted due to need_resched(), we do not
3124 * want to further increase allocation latency, unless it is
3125 * khugepaged trying to collapse.
3126 */
3127 if (contended_compaction == COMPACT_CONTENDED_SCHED
3128 && !(current->flags & PF_KTHREAD))
3129 goto nopage;
3130 }
3131
3132 /*
3133 * It can become very expensive to allocate transparent hugepages at
3134 * fault, so use asynchronous memory compaction for THP unless it is
3135 * khugepaged trying to collapse.
3136 */
3137 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3138 migration_mode = MIGRATE_SYNC_LIGHT;
3139
3140 /* Try direct reclaim and then allocating */
3141 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3142 &did_some_progress);
3143 if (page)
3144 goto got_pg;
3145
3146 /* Do not loop if specifically requested */
3147 if (gfp_mask & __GFP_NORETRY)
3148 goto noretry;
3149
3150 /* Keep reclaiming pages as long as there is reasonable progress */
3151 pages_reclaimed += did_some_progress;
3152 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3153 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3154 /* Wait for some write requests to complete then retry */
3155 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3156 goto retry;
3157 }
3158
3159 /* Reclaim has failed us, start killing things */
3160 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3161 if (page)
3162 goto got_pg;
3163
3164 /* Retry as long as the OOM killer is making progress */
3165 if (did_some_progress)
3166 goto retry;
3167
3168 noretry:
3169 /*
3170 * High-order allocations do not necessarily loop after
3171 * direct reclaim and reclaim/compaction depends on compaction
3172 * being called after reclaim so call directly if necessary
3173 */
3174 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3175 ac, migration_mode,
3176 &contended_compaction,
3177 &deferred_compaction);
3178 if (page)
3179 goto got_pg;
3180 nopage:
3181 warn_alloc_failed(gfp_mask, order, NULL);
3182 got_pg:
3183 return page;
3184 }
3185
3186 /*
3187 * This is the 'heart' of the zoned buddy allocator.
3188 */
3189 struct page *
3190 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3191 struct zonelist *zonelist, nodemask_t *nodemask)
3192 {
3193 struct zoneref *preferred_zoneref;
3194 struct page *page = NULL;
3195 unsigned int cpuset_mems_cookie;
3196 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3197 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3198 struct alloc_context ac = {
3199 .high_zoneidx = gfp_zone(gfp_mask),
3200 .nodemask = nodemask,
3201 .migratetype = gfpflags_to_migratetype(gfp_mask),
3202 };
3203
3204 gfp_mask &= gfp_allowed_mask;
3205
3206 lockdep_trace_alloc(gfp_mask);
3207
3208 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3209
3210 if (should_fail_alloc_page(gfp_mask, order))
3211 return NULL;
3212
3213 /*
3214 * Check the zones suitable for the gfp_mask contain at least one
3215 * valid zone. It's possible to have an empty zonelist as a result
3216 * of __GFP_THISNODE and a memoryless node
3217 */
3218 if (unlikely(!zonelist->_zonerefs->zone))
3219 return NULL;
3220
3221 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3222 alloc_flags |= ALLOC_CMA;
3223
3224 retry_cpuset:
3225 cpuset_mems_cookie = read_mems_allowed_begin();
3226
3227 /* We set it here, as __alloc_pages_slowpath might have changed it */
3228 ac.zonelist = zonelist;
3229
3230 /* Dirty zone balancing only done in the fast path */
3231 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3232
3233 /* The preferred zone is used for statistics later */
3234 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3235 ac.nodemask ? : &cpuset_current_mems_allowed,
3236 &ac.preferred_zone);
3237 if (!ac.preferred_zone)
3238 goto out;
3239 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3240
3241 /* First allocation attempt */
3242 alloc_mask = gfp_mask|__GFP_HARDWALL;
3243 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3244 if (unlikely(!page)) {
3245 /*
3246 * Runtime PM, block IO and its error handling path
3247 * can deadlock because I/O on the device might not
3248 * complete.
3249 */
3250 alloc_mask = memalloc_noio_flags(gfp_mask);
3251 ac.spread_dirty_pages = false;
3252
3253 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3254 }
3255
3256 if (kmemcheck_enabled && page)
3257 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3258
3259 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3260
3261 out:
3262 /*
3263 * When updating a task's mems_allowed, it is possible to race with
3264 * parallel threads in such a way that an allocation can fail while
3265 * the mask is being updated. If a page allocation is about to fail,
3266 * check if the cpuset changed during allocation and if so, retry.
3267 */
3268 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3269 goto retry_cpuset;
3270
3271 return page;
3272 }
3273 EXPORT_SYMBOL(__alloc_pages_nodemask);
3274
3275 /*
3276 * Common helper functions.
3277 */
3278 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3279 {
3280 struct page *page;
3281
3282 /*
3283 * __get_free_pages() returns a 32-bit address, which cannot represent
3284 * a highmem page
3285 */
3286 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3287
3288 page = alloc_pages(gfp_mask, order);
3289 if (!page)
3290 return 0;
3291 return (unsigned long) page_address(page);
3292 }
3293 EXPORT_SYMBOL(__get_free_pages);
3294
3295 unsigned long get_zeroed_page(gfp_t gfp_mask)
3296 {
3297 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3298 }
3299 EXPORT_SYMBOL(get_zeroed_page);
3300
3301 void __free_pages(struct page *page, unsigned int order)
3302 {
3303 if (put_page_testzero(page)) {
3304 if (order == 0)
3305 free_hot_cold_page(page, false);
3306 else
3307 __free_pages_ok(page, order);
3308 }
3309 }
3310
3311 EXPORT_SYMBOL(__free_pages);
3312
3313 void free_pages(unsigned long addr, unsigned int order)
3314 {
3315 if (addr != 0) {
3316 VM_BUG_ON(!virt_addr_valid((void *)addr));
3317 __free_pages(virt_to_page((void *)addr), order);
3318 }
3319 }
3320
3321 EXPORT_SYMBOL(free_pages);
3322
3323 /*
3324 * Page Fragment:
3325 * An arbitrary-length arbitrary-offset area of memory which resides
3326 * within a 0 or higher order page. Multiple fragments within that page
3327 * are individually refcounted, in the page's reference counter.
3328 *
3329 * The page_frag functions below provide a simple allocation framework for
3330 * page fragments. This is used by the network stack and network device
3331 * drivers to provide a backing region of memory for use as either an
3332 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3333 */
3334 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3335 gfp_t gfp_mask)
3336 {
3337 struct page *page = NULL;
3338 gfp_t gfp = gfp_mask;
3339
3340 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3341 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3342 __GFP_NOMEMALLOC;
3343 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3344 PAGE_FRAG_CACHE_MAX_ORDER);
3345 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3346 #endif
3347 if (unlikely(!page))
3348 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3349
3350 nc->va = page ? page_address(page) : NULL;
3351
3352 return page;
3353 }
3354
3355 void *__alloc_page_frag(struct page_frag_cache *nc,
3356 unsigned int fragsz, gfp_t gfp_mask)
3357 {
3358 unsigned int size = PAGE_SIZE;
3359 struct page *page;
3360 int offset;
3361
3362 if (unlikely(!nc->va)) {
3363 refill:
3364 page = __page_frag_refill(nc, gfp_mask);
3365 if (!page)
3366 return NULL;
3367
3368 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3369 /* if size can vary use size else just use PAGE_SIZE */
3370 size = nc->size;
3371 #endif
3372 /* Even if we own the page, we do not use atomic_set().
3373 * This would break get_page_unless_zero() users.
3374 */
3375 atomic_add(size - 1, &page->_count);
3376
3377 /* reset page count bias and offset to start of new frag */
3378 nc->pfmemalloc = page_is_pfmemalloc(page);
3379 nc->pagecnt_bias = size;
3380 nc->offset = size;
3381 }
3382
3383 offset = nc->offset - fragsz;
3384 if (unlikely(offset < 0)) {
3385 page = virt_to_page(nc->va);
3386
3387 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3388 goto refill;
3389
3390 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3391 /* if size can vary use size else just use PAGE_SIZE */
3392 size = nc->size;
3393 #endif
3394 /* OK, page count is 0, we can safely set it */
3395 atomic_set(&page->_count, size);
3396
3397 /* reset page count bias and offset to start of new frag */
3398 nc->pagecnt_bias = size;
3399 offset = size - fragsz;
3400 }
3401
3402 nc->pagecnt_bias--;
3403 nc->offset = offset;
3404
3405 return nc->va + offset;
3406 }
3407 EXPORT_SYMBOL(__alloc_page_frag);
3408
3409 /*
3410 * Frees a page fragment allocated out of either a compound or order 0 page.
3411 */
3412 void __free_page_frag(void *addr)
3413 {
3414 struct page *page = virt_to_head_page(addr);
3415
3416 if (unlikely(put_page_testzero(page)))
3417 __free_pages_ok(page, compound_order(page));
3418 }
3419 EXPORT_SYMBOL(__free_page_frag);
3420
3421 /*
3422 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3423 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3424 * equivalent to alloc_pages.
3425 *
3426 * It should be used when the caller would like to use kmalloc, but since the
3427 * allocation is large, it has to fall back to the page allocator.
3428 */
3429 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3430 {
3431 struct page *page;
3432
3433 page = alloc_pages(gfp_mask, order);
3434 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3435 __free_pages(page, order);
3436 page = NULL;
3437 }
3438 return page;
3439 }
3440
3441 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3442 {
3443 struct page *page;
3444
3445 page = alloc_pages_node(nid, gfp_mask, order);
3446 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3447 __free_pages(page, order);
3448 page = NULL;
3449 }
3450 return page;
3451 }
3452
3453 /*
3454 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3455 * alloc_kmem_pages.
3456 */
3457 void __free_kmem_pages(struct page *page, unsigned int order)
3458 {
3459 memcg_kmem_uncharge(page, order);
3460 __free_pages(page, order);
3461 }
3462
3463 void free_kmem_pages(unsigned long addr, unsigned int order)
3464 {
3465 if (addr != 0) {
3466 VM_BUG_ON(!virt_addr_valid((void *)addr));
3467 __free_kmem_pages(virt_to_page((void *)addr), order);
3468 }
3469 }
3470
3471 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3472 size_t size)
3473 {
3474 if (addr) {
3475 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3476 unsigned long used = addr + PAGE_ALIGN(size);
3477
3478 split_page(virt_to_page((void *)addr), order);
3479 while (used < alloc_end) {
3480 free_page(used);
3481 used += PAGE_SIZE;
3482 }
3483 }
3484 return (void *)addr;
3485 }
3486
3487 /**
3488 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3489 * @size: the number of bytes to allocate
3490 * @gfp_mask: GFP flags for the allocation
3491 *
3492 * This function is similar to alloc_pages(), except that it allocates the
3493 * minimum number of pages to satisfy the request. alloc_pages() can only
3494 * allocate memory in power-of-two pages.
3495 *
3496 * This function is also limited by MAX_ORDER.
3497 *
3498 * Memory allocated by this function must be released by free_pages_exact().
3499 */
3500 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3501 {
3502 unsigned int order = get_order(size);
3503 unsigned long addr;
3504
3505 addr = __get_free_pages(gfp_mask, order);
3506 return make_alloc_exact(addr, order, size);
3507 }
3508 EXPORT_SYMBOL(alloc_pages_exact);
3509
3510 /**
3511 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3512 * pages on a node.
3513 * @nid: the preferred node ID where memory should be allocated
3514 * @size: the number of bytes to allocate
3515 * @gfp_mask: GFP flags for the allocation
3516 *
3517 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3518 * back.
3519 */
3520 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3521 {
3522 unsigned int order = get_order(size);
3523 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3524 if (!p)
3525 return NULL;
3526 return make_alloc_exact((unsigned long)page_address(p), order, size);
3527 }
3528
3529 /**
3530 * free_pages_exact - release memory allocated via alloc_pages_exact()
3531 * @virt: the value returned by alloc_pages_exact.
3532 * @size: size of allocation, same value as passed to alloc_pages_exact().
3533 *
3534 * Release the memory allocated by a previous call to alloc_pages_exact.
3535 */
3536 void free_pages_exact(void *virt, size_t size)
3537 {
3538 unsigned long addr = (unsigned long)virt;
3539 unsigned long end = addr + PAGE_ALIGN(size);
3540
3541 while (addr < end) {
3542 free_page(addr);
3543 addr += PAGE_SIZE;
3544 }
3545 }
3546 EXPORT_SYMBOL(free_pages_exact);
3547
3548 /**
3549 * nr_free_zone_pages - count number of pages beyond high watermark
3550 * @offset: The zone index of the highest zone
3551 *
3552 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3553 * high watermark within all zones at or below a given zone index. For each
3554 * zone, the number of pages is calculated as:
3555 * managed_pages - high_pages
3556 */
3557 static unsigned long nr_free_zone_pages(int offset)
3558 {
3559 struct zoneref *z;
3560 struct zone *zone;
3561
3562 /* Just pick one node, since fallback list is circular */
3563 unsigned long sum = 0;
3564
3565 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3566
3567 for_each_zone_zonelist(zone, z, zonelist, offset) {
3568 unsigned long size = zone->managed_pages;
3569 unsigned long high = high_wmark_pages(zone);
3570 if (size > high)
3571 sum += size - high;
3572 }
3573
3574 return sum;
3575 }
3576
3577 /**
3578 * nr_free_buffer_pages - count number of pages beyond high watermark
3579 *
3580 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3581 * watermark within ZONE_DMA and ZONE_NORMAL.
3582 */
3583 unsigned long nr_free_buffer_pages(void)
3584 {
3585 return nr_free_zone_pages(gfp_zone(GFP_USER));
3586 }
3587 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3588
3589 /**
3590 * nr_free_pagecache_pages - count number of pages beyond high watermark
3591 *
3592 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3593 * high watermark within all zones.
3594 */
3595 unsigned long nr_free_pagecache_pages(void)
3596 {
3597 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3598 }
3599
3600 static inline void show_node(struct zone *zone)
3601 {
3602 if (IS_ENABLED(CONFIG_NUMA))
3603 printk("Node %d ", zone_to_nid(zone));
3604 }
3605
3606 void si_meminfo(struct sysinfo *val)
3607 {
3608 val->totalram = totalram_pages;
3609 val->sharedram = global_page_state(NR_SHMEM);
3610 val->freeram = global_page_state(NR_FREE_PAGES);
3611 val->bufferram = nr_blockdev_pages();
3612 val->totalhigh = totalhigh_pages;
3613 val->freehigh = nr_free_highpages();
3614 val->mem_unit = PAGE_SIZE;
3615 }
3616
3617 EXPORT_SYMBOL(si_meminfo);
3618
3619 #ifdef CONFIG_NUMA
3620 void si_meminfo_node(struct sysinfo *val, int nid)
3621 {
3622 int zone_type; /* needs to be signed */
3623 unsigned long managed_pages = 0;
3624 pg_data_t *pgdat = NODE_DATA(nid);
3625
3626 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3627 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3628 val->totalram = managed_pages;
3629 val->sharedram = node_page_state(nid, NR_SHMEM);
3630 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3631 #ifdef CONFIG_HIGHMEM
3632 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3633 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3634 NR_FREE_PAGES);
3635 #else
3636 val->totalhigh = 0;
3637 val->freehigh = 0;
3638 #endif
3639 val->mem_unit = PAGE_SIZE;
3640 }
3641 #endif
3642
3643 /*
3644 * Determine whether the node should be displayed or not, depending on whether
3645 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3646 */
3647 bool skip_free_areas_node(unsigned int flags, int nid)
3648 {
3649 bool ret = false;
3650 unsigned int cpuset_mems_cookie;
3651
3652 if (!(flags & SHOW_MEM_FILTER_NODES))
3653 goto out;
3654
3655 do {
3656 cpuset_mems_cookie = read_mems_allowed_begin();
3657 ret = !node_isset(nid, cpuset_current_mems_allowed);
3658 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3659 out:
3660 return ret;
3661 }
3662
3663 #define K(x) ((x) << (PAGE_SHIFT-10))
3664
3665 static void show_migration_types(unsigned char type)
3666 {
3667 static const char types[MIGRATE_TYPES] = {
3668 [MIGRATE_UNMOVABLE] = 'U',
3669 [MIGRATE_MOVABLE] = 'M',
3670 [MIGRATE_RECLAIMABLE] = 'E',
3671 [MIGRATE_HIGHATOMIC] = 'H',
3672 #ifdef CONFIG_CMA
3673 [MIGRATE_CMA] = 'C',
3674 #endif
3675 #ifdef CONFIG_MEMORY_ISOLATION
3676 [MIGRATE_ISOLATE] = 'I',
3677 #endif
3678 };
3679 char tmp[MIGRATE_TYPES + 1];
3680 char *p = tmp;
3681 int i;
3682
3683 for (i = 0; i < MIGRATE_TYPES; i++) {
3684 if (type & (1 << i))
3685 *p++ = types[i];
3686 }
3687
3688 *p = '\0';
3689 printk("(%s) ", tmp);
3690 }
3691
3692 /*
3693 * Show free area list (used inside shift_scroll-lock stuff)
3694 * We also calculate the percentage fragmentation. We do this by counting the
3695 * memory on each free list with the exception of the first item on the list.
3696 *
3697 * Bits in @filter:
3698 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3699 * cpuset.
3700 */
3701 void show_free_areas(unsigned int filter)
3702 {
3703 unsigned long free_pcp = 0;
3704 int cpu;
3705 struct zone *zone;
3706
3707 for_each_populated_zone(zone) {
3708 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3709 continue;
3710
3711 for_each_online_cpu(cpu)
3712 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3713 }
3714
3715 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3716 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3717 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3718 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3719 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3720 " free:%lu free_pcp:%lu free_cma:%lu\n",
3721 global_page_state(NR_ACTIVE_ANON),
3722 global_page_state(NR_INACTIVE_ANON),
3723 global_page_state(NR_ISOLATED_ANON),
3724 global_page_state(NR_ACTIVE_FILE),
3725 global_page_state(NR_INACTIVE_FILE),
3726 global_page_state(NR_ISOLATED_FILE),
3727 global_page_state(NR_UNEVICTABLE),
3728 global_page_state(NR_FILE_DIRTY),
3729 global_page_state(NR_WRITEBACK),
3730 global_page_state(NR_UNSTABLE_NFS),
3731 global_page_state(NR_SLAB_RECLAIMABLE),
3732 global_page_state(NR_SLAB_UNRECLAIMABLE),
3733 global_page_state(NR_FILE_MAPPED),
3734 global_page_state(NR_SHMEM),
3735 global_page_state(NR_PAGETABLE),
3736 global_page_state(NR_BOUNCE),
3737 global_page_state(NR_FREE_PAGES),
3738 free_pcp,
3739 global_page_state(NR_FREE_CMA_PAGES));
3740
3741 for_each_populated_zone(zone) {
3742 int i;
3743
3744 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3745 continue;
3746
3747 free_pcp = 0;
3748 for_each_online_cpu(cpu)
3749 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3750
3751 show_node(zone);
3752 printk("%s"
3753 " free:%lukB"
3754 " min:%lukB"
3755 " low:%lukB"
3756 " high:%lukB"
3757 " active_anon:%lukB"
3758 " inactive_anon:%lukB"
3759 " active_file:%lukB"
3760 " inactive_file:%lukB"
3761 " unevictable:%lukB"
3762 " isolated(anon):%lukB"
3763 " isolated(file):%lukB"
3764 " present:%lukB"
3765 " managed:%lukB"
3766 " mlocked:%lukB"
3767 " dirty:%lukB"
3768 " writeback:%lukB"
3769 " mapped:%lukB"
3770 " shmem:%lukB"
3771 " slab_reclaimable:%lukB"
3772 " slab_unreclaimable:%lukB"
3773 " kernel_stack:%lukB"
3774 " pagetables:%lukB"
3775 " unstable:%lukB"
3776 " bounce:%lukB"
3777 " free_pcp:%lukB"
3778 " local_pcp:%ukB"
3779 " free_cma:%lukB"
3780 " writeback_tmp:%lukB"
3781 " pages_scanned:%lu"
3782 " all_unreclaimable? %s"
3783 "\n",
3784 zone->name,
3785 K(zone_page_state(zone, NR_FREE_PAGES)),
3786 K(min_wmark_pages(zone)),
3787 K(low_wmark_pages(zone)),
3788 K(high_wmark_pages(zone)),
3789 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3790 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3791 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3792 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3793 K(zone_page_state(zone, NR_UNEVICTABLE)),
3794 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3795 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3796 K(zone->present_pages),
3797 K(zone->managed_pages),
3798 K(zone_page_state(zone, NR_MLOCK)),
3799 K(zone_page_state(zone, NR_FILE_DIRTY)),
3800 K(zone_page_state(zone, NR_WRITEBACK)),
3801 K(zone_page_state(zone, NR_FILE_MAPPED)),
3802 K(zone_page_state(zone, NR_SHMEM)),
3803 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3804 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3805 zone_page_state(zone, NR_KERNEL_STACK) *
3806 THREAD_SIZE / 1024,
3807 K(zone_page_state(zone, NR_PAGETABLE)),
3808 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3809 K(zone_page_state(zone, NR_BOUNCE)),
3810 K(free_pcp),
3811 K(this_cpu_read(zone->pageset->pcp.count)),
3812 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3813 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3814 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3815 (!zone_reclaimable(zone) ? "yes" : "no")
3816 );
3817 printk("lowmem_reserve[]:");
3818 for (i = 0; i < MAX_NR_ZONES; i++)
3819 printk(" %ld", zone->lowmem_reserve[i]);
3820 printk("\n");
3821 }
3822
3823 for_each_populated_zone(zone) {
3824 unsigned int order;
3825 unsigned long nr[MAX_ORDER], flags, total = 0;
3826 unsigned char types[MAX_ORDER];
3827
3828 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3829 continue;
3830 show_node(zone);
3831 printk("%s: ", zone->name);
3832
3833 spin_lock_irqsave(&zone->lock, flags);
3834 for (order = 0; order < MAX_ORDER; order++) {
3835 struct free_area *area = &zone->free_area[order];
3836 int type;
3837
3838 nr[order] = area->nr_free;
3839 total += nr[order] << order;
3840
3841 types[order] = 0;
3842 for (type = 0; type < MIGRATE_TYPES; type++) {
3843 if (!list_empty(&area->free_list[type]))
3844 types[order] |= 1 << type;
3845 }
3846 }
3847 spin_unlock_irqrestore(&zone->lock, flags);
3848 for (order = 0; order < MAX_ORDER; order++) {
3849 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3850 if (nr[order])
3851 show_migration_types(types[order]);
3852 }
3853 printk("= %lukB\n", K(total));
3854 }
3855
3856 hugetlb_show_meminfo();
3857
3858 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3859
3860 show_swap_cache_info();
3861 }
3862
3863 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3864 {
3865 zoneref->zone = zone;
3866 zoneref->zone_idx = zone_idx(zone);
3867 }
3868
3869 /*
3870 * Builds allocation fallback zone lists.
3871 *
3872 * Add all populated zones of a node to the zonelist.
3873 */
3874 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3875 int nr_zones)
3876 {
3877 struct zone *zone;
3878 enum zone_type zone_type = MAX_NR_ZONES;
3879
3880 do {
3881 zone_type--;
3882 zone = pgdat->node_zones + zone_type;
3883 if (populated_zone(zone)) {
3884 zoneref_set_zone(zone,
3885 &zonelist->_zonerefs[nr_zones++]);
3886 check_highest_zone(zone_type);
3887 }
3888 } while (zone_type);
3889
3890 return nr_zones;
3891 }
3892
3893
3894 /*
3895 * zonelist_order:
3896 * 0 = automatic detection of better ordering.
3897 * 1 = order by ([node] distance, -zonetype)
3898 * 2 = order by (-zonetype, [node] distance)
3899 *
3900 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3901 * the same zonelist. So only NUMA can configure this param.
3902 */
3903 #define ZONELIST_ORDER_DEFAULT 0
3904 #define ZONELIST_ORDER_NODE 1
3905 #define ZONELIST_ORDER_ZONE 2
3906
3907 /* zonelist order in the kernel.
3908 * set_zonelist_order() will set this to NODE or ZONE.
3909 */
3910 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3911 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3912
3913
3914 #ifdef CONFIG_NUMA
3915 /* The value user specified ....changed by config */
3916 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3917 /* string for sysctl */
3918 #define NUMA_ZONELIST_ORDER_LEN 16
3919 char numa_zonelist_order[16] = "default";
3920
3921 /*
3922 * interface for configure zonelist ordering.
3923 * command line option "numa_zonelist_order"
3924 * = "[dD]efault - default, automatic configuration.
3925 * = "[nN]ode - order by node locality, then by zone within node
3926 * = "[zZ]one - order by zone, then by locality within zone
3927 */
3928
3929 static int __parse_numa_zonelist_order(char *s)
3930 {
3931 if (*s == 'd' || *s == 'D') {
3932 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3933 } else if (*s == 'n' || *s == 'N') {
3934 user_zonelist_order = ZONELIST_ORDER_NODE;
3935 } else if (*s == 'z' || *s == 'Z') {
3936 user_zonelist_order = ZONELIST_ORDER_ZONE;
3937 } else {
3938 printk(KERN_WARNING
3939 "Ignoring invalid numa_zonelist_order value: "
3940 "%s\n", s);
3941 return -EINVAL;
3942 }
3943 return 0;
3944 }
3945
3946 static __init int setup_numa_zonelist_order(char *s)
3947 {
3948 int ret;
3949
3950 if (!s)
3951 return 0;
3952
3953 ret = __parse_numa_zonelist_order(s);
3954 if (ret == 0)
3955 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3956
3957 return ret;
3958 }
3959 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3960
3961 /*
3962 * sysctl handler for numa_zonelist_order
3963 */
3964 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3965 void __user *buffer, size_t *length,
3966 loff_t *ppos)
3967 {
3968 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3969 int ret;
3970 static DEFINE_MUTEX(zl_order_mutex);
3971
3972 mutex_lock(&zl_order_mutex);
3973 if (write) {
3974 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3975 ret = -EINVAL;
3976 goto out;
3977 }
3978 strcpy(saved_string, (char *)table->data);
3979 }
3980 ret = proc_dostring(table, write, buffer, length, ppos);
3981 if (ret)
3982 goto out;
3983 if (write) {
3984 int oldval = user_zonelist_order;
3985
3986 ret = __parse_numa_zonelist_order((char *)table->data);
3987 if (ret) {
3988 /*
3989 * bogus value. restore saved string
3990 */
3991 strncpy((char *)table->data, saved_string,
3992 NUMA_ZONELIST_ORDER_LEN);
3993 user_zonelist_order = oldval;
3994 } else if (oldval != user_zonelist_order) {
3995 mutex_lock(&zonelists_mutex);
3996 build_all_zonelists(NULL, NULL);
3997 mutex_unlock(&zonelists_mutex);
3998 }
3999 }
4000 out:
4001 mutex_unlock(&zl_order_mutex);
4002 return ret;
4003 }
4004
4005
4006 #define MAX_NODE_LOAD (nr_online_nodes)
4007 static int node_load[MAX_NUMNODES];
4008
4009 /**
4010 * find_next_best_node - find the next node that should appear in a given node's fallback list
4011 * @node: node whose fallback list we're appending
4012 * @used_node_mask: nodemask_t of already used nodes
4013 *
4014 * We use a number of factors to determine which is the next node that should
4015 * appear on a given node's fallback list. The node should not have appeared
4016 * already in @node's fallback list, and it should be the next closest node
4017 * according to the distance array (which contains arbitrary distance values
4018 * from each node to each node in the system), and should also prefer nodes
4019 * with no CPUs, since presumably they'll have very little allocation pressure
4020 * on them otherwise.
4021 * It returns -1 if no node is found.
4022 */
4023 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4024 {
4025 int n, val;
4026 int min_val = INT_MAX;
4027 int best_node = NUMA_NO_NODE;
4028 const struct cpumask *tmp = cpumask_of_node(0);
4029
4030 /* Use the local node if we haven't already */
4031 if (!node_isset(node, *used_node_mask)) {
4032 node_set(node, *used_node_mask);
4033 return node;
4034 }
4035
4036 for_each_node_state(n, N_MEMORY) {
4037
4038 /* Don't want a node to appear more than once */
4039 if (node_isset(n, *used_node_mask))
4040 continue;
4041
4042 /* Use the distance array to find the distance */
4043 val = node_distance(node, n);
4044
4045 /* Penalize nodes under us ("prefer the next node") */
4046 val += (n < node);
4047
4048 /* Give preference to headless and unused nodes */
4049 tmp = cpumask_of_node(n);
4050 if (!cpumask_empty(tmp))
4051 val += PENALTY_FOR_NODE_WITH_CPUS;
4052
4053 /* Slight preference for less loaded node */
4054 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4055 val += node_load[n];
4056
4057 if (val < min_val) {
4058 min_val = val;
4059 best_node = n;
4060 }
4061 }
4062
4063 if (best_node >= 0)
4064 node_set(best_node, *used_node_mask);
4065
4066 return best_node;
4067 }
4068
4069
4070 /*
4071 * Build zonelists ordered by node and zones within node.
4072 * This results in maximum locality--normal zone overflows into local
4073 * DMA zone, if any--but risks exhausting DMA zone.
4074 */
4075 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4076 {
4077 int j;
4078 struct zonelist *zonelist;
4079
4080 zonelist = &pgdat->node_zonelists[0];
4081 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4082 ;
4083 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4084 zonelist->_zonerefs[j].zone = NULL;
4085 zonelist->_zonerefs[j].zone_idx = 0;
4086 }
4087
4088 /*
4089 * Build gfp_thisnode zonelists
4090 */
4091 static void build_thisnode_zonelists(pg_data_t *pgdat)
4092 {
4093 int j;
4094 struct zonelist *zonelist;
4095
4096 zonelist = &pgdat->node_zonelists[1];
4097 j = build_zonelists_node(pgdat, zonelist, 0);
4098 zonelist->_zonerefs[j].zone = NULL;
4099 zonelist->_zonerefs[j].zone_idx = 0;
4100 }
4101
4102 /*
4103 * Build zonelists ordered by zone and nodes within zones.
4104 * This results in conserving DMA zone[s] until all Normal memory is
4105 * exhausted, but results in overflowing to remote node while memory
4106 * may still exist in local DMA zone.
4107 */
4108 static int node_order[MAX_NUMNODES];
4109
4110 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4111 {
4112 int pos, j, node;
4113 int zone_type; /* needs to be signed */
4114 struct zone *z;
4115 struct zonelist *zonelist;
4116
4117 zonelist = &pgdat->node_zonelists[0];
4118 pos = 0;
4119 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4120 for (j = 0; j < nr_nodes; j++) {
4121 node = node_order[j];
4122 z = &NODE_DATA(node)->node_zones[zone_type];
4123 if (populated_zone(z)) {
4124 zoneref_set_zone(z,
4125 &zonelist->_zonerefs[pos++]);
4126 check_highest_zone(zone_type);
4127 }
4128 }
4129 }
4130 zonelist->_zonerefs[pos].zone = NULL;
4131 zonelist->_zonerefs[pos].zone_idx = 0;
4132 }
4133
4134 #if defined(CONFIG_64BIT)
4135 /*
4136 * Devices that require DMA32/DMA are relatively rare and do not justify a
4137 * penalty to every machine in case the specialised case applies. Default
4138 * to Node-ordering on 64-bit NUMA machines
4139 */
4140 static int default_zonelist_order(void)
4141 {
4142 return ZONELIST_ORDER_NODE;
4143 }
4144 #else
4145 /*
4146 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4147 * by the kernel. If processes running on node 0 deplete the low memory zone
4148 * then reclaim will occur more frequency increasing stalls and potentially
4149 * be easier to OOM if a large percentage of the zone is under writeback or
4150 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4151 * Hence, default to zone ordering on 32-bit.
4152 */
4153 static int default_zonelist_order(void)
4154 {
4155 return ZONELIST_ORDER_ZONE;
4156 }
4157 #endif /* CONFIG_64BIT */
4158
4159 static void set_zonelist_order(void)
4160 {
4161 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4162 current_zonelist_order = default_zonelist_order();
4163 else
4164 current_zonelist_order = user_zonelist_order;
4165 }
4166
4167 static void build_zonelists(pg_data_t *pgdat)
4168 {
4169 int i, node, load;
4170 nodemask_t used_mask;
4171 int local_node, prev_node;
4172 struct zonelist *zonelist;
4173 unsigned int order = current_zonelist_order;
4174
4175 /* initialize zonelists */
4176 for (i = 0; i < MAX_ZONELISTS; i++) {
4177 zonelist = pgdat->node_zonelists + i;
4178 zonelist->_zonerefs[0].zone = NULL;
4179 zonelist->_zonerefs[0].zone_idx = 0;
4180 }
4181
4182 /* NUMA-aware ordering of nodes */
4183 local_node = pgdat->node_id;
4184 load = nr_online_nodes;
4185 prev_node = local_node;
4186 nodes_clear(used_mask);
4187
4188 memset(node_order, 0, sizeof(node_order));
4189 i = 0;
4190
4191 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4192 /*
4193 * We don't want to pressure a particular node.
4194 * So adding penalty to the first node in same
4195 * distance group to make it round-robin.
4196 */
4197 if (node_distance(local_node, node) !=
4198 node_distance(local_node, prev_node))
4199 node_load[node] = load;
4200
4201 prev_node = node;
4202 load--;
4203 if (order == ZONELIST_ORDER_NODE)
4204 build_zonelists_in_node_order(pgdat, node);
4205 else
4206 node_order[i++] = node; /* remember order */
4207 }
4208
4209 if (order == ZONELIST_ORDER_ZONE) {
4210 /* calculate node order -- i.e., DMA last! */
4211 build_zonelists_in_zone_order(pgdat, i);
4212 }
4213
4214 build_thisnode_zonelists(pgdat);
4215 }
4216
4217 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4218 /*
4219 * Return node id of node used for "local" allocations.
4220 * I.e., first node id of first zone in arg node's generic zonelist.
4221 * Used for initializing percpu 'numa_mem', which is used primarily
4222 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4223 */
4224 int local_memory_node(int node)
4225 {
4226 struct zone *zone;
4227
4228 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4229 gfp_zone(GFP_KERNEL),
4230 NULL,
4231 &zone);
4232 return zone->node;
4233 }
4234 #endif
4235
4236 #else /* CONFIG_NUMA */
4237
4238 static void set_zonelist_order(void)
4239 {
4240 current_zonelist_order = ZONELIST_ORDER_ZONE;
4241 }
4242
4243 static void build_zonelists(pg_data_t *pgdat)
4244 {
4245 int node, local_node;
4246 enum zone_type j;
4247 struct zonelist *zonelist;
4248
4249 local_node = pgdat->node_id;
4250
4251 zonelist = &pgdat->node_zonelists[0];
4252 j = build_zonelists_node(pgdat, zonelist, 0);
4253
4254 /*
4255 * Now we build the zonelist so that it contains the zones
4256 * of all the other nodes.
4257 * We don't want to pressure a particular node, so when
4258 * building the zones for node N, we make sure that the
4259 * zones coming right after the local ones are those from
4260 * node N+1 (modulo N)
4261 */
4262 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4263 if (!node_online(node))
4264 continue;
4265 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4266 }
4267 for (node = 0; node < local_node; node++) {
4268 if (!node_online(node))
4269 continue;
4270 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4271 }
4272
4273 zonelist->_zonerefs[j].zone = NULL;
4274 zonelist->_zonerefs[j].zone_idx = 0;
4275 }
4276
4277 #endif /* CONFIG_NUMA */
4278
4279 /*
4280 * Boot pageset table. One per cpu which is going to be used for all
4281 * zones and all nodes. The parameters will be set in such a way
4282 * that an item put on a list will immediately be handed over to
4283 * the buddy list. This is safe since pageset manipulation is done
4284 * with interrupts disabled.
4285 *
4286 * The boot_pagesets must be kept even after bootup is complete for
4287 * unused processors and/or zones. They do play a role for bootstrapping
4288 * hotplugged processors.
4289 *
4290 * zoneinfo_show() and maybe other functions do
4291 * not check if the processor is online before following the pageset pointer.
4292 * Other parts of the kernel may not check if the zone is available.
4293 */
4294 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4295 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4296 static void setup_zone_pageset(struct zone *zone);
4297
4298 /*
4299 * Global mutex to protect against size modification of zonelists
4300 * as well as to serialize pageset setup for the new populated zone.
4301 */
4302 DEFINE_MUTEX(zonelists_mutex);
4303
4304 /* return values int ....just for stop_machine() */
4305 static int __build_all_zonelists(void *data)
4306 {
4307 int nid;
4308 int cpu;
4309 pg_data_t *self = data;
4310
4311 #ifdef CONFIG_NUMA
4312 memset(node_load, 0, sizeof(node_load));
4313 #endif
4314
4315 if (self && !node_online(self->node_id)) {
4316 build_zonelists(self);
4317 }
4318
4319 for_each_online_node(nid) {
4320 pg_data_t *pgdat = NODE_DATA(nid);
4321
4322 build_zonelists(pgdat);
4323 }
4324
4325 /*
4326 * Initialize the boot_pagesets that are going to be used
4327 * for bootstrapping processors. The real pagesets for
4328 * each zone will be allocated later when the per cpu
4329 * allocator is available.
4330 *
4331 * boot_pagesets are used also for bootstrapping offline
4332 * cpus if the system is already booted because the pagesets
4333 * are needed to initialize allocators on a specific cpu too.
4334 * F.e. the percpu allocator needs the page allocator which
4335 * needs the percpu allocator in order to allocate its pagesets
4336 * (a chicken-egg dilemma).
4337 */
4338 for_each_possible_cpu(cpu) {
4339 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4340
4341 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4342 /*
4343 * We now know the "local memory node" for each node--
4344 * i.e., the node of the first zone in the generic zonelist.
4345 * Set up numa_mem percpu variable for on-line cpus. During
4346 * boot, only the boot cpu should be on-line; we'll init the
4347 * secondary cpus' numa_mem as they come on-line. During
4348 * node/memory hotplug, we'll fixup all on-line cpus.
4349 */
4350 if (cpu_online(cpu))
4351 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4352 #endif
4353 }
4354
4355 return 0;
4356 }
4357
4358 static noinline void __init
4359 build_all_zonelists_init(void)
4360 {
4361 __build_all_zonelists(NULL);
4362 mminit_verify_zonelist();
4363 cpuset_init_current_mems_allowed();
4364 }
4365
4366 /*
4367 * Called with zonelists_mutex held always
4368 * unless system_state == SYSTEM_BOOTING.
4369 *
4370 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4371 * [we're only called with non-NULL zone through __meminit paths] and
4372 * (2) call of __init annotated helper build_all_zonelists_init
4373 * [protected by SYSTEM_BOOTING].
4374 */
4375 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4376 {
4377 set_zonelist_order();
4378
4379 if (system_state == SYSTEM_BOOTING) {
4380 build_all_zonelists_init();
4381 } else {
4382 #ifdef CONFIG_MEMORY_HOTPLUG
4383 if (zone)
4384 setup_zone_pageset(zone);
4385 #endif
4386 /* we have to stop all cpus to guarantee there is no user
4387 of zonelist */
4388 stop_machine(__build_all_zonelists, pgdat, NULL);
4389 /* cpuset refresh routine should be here */
4390 }
4391 vm_total_pages = nr_free_pagecache_pages();
4392 /*
4393 * Disable grouping by mobility if the number of pages in the
4394 * system is too low to allow the mechanism to work. It would be
4395 * more accurate, but expensive to check per-zone. This check is
4396 * made on memory-hotadd so a system can start with mobility
4397 * disabled and enable it later
4398 */
4399 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4400 page_group_by_mobility_disabled = 1;
4401 else
4402 page_group_by_mobility_disabled = 0;
4403
4404 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4405 "Total pages: %ld\n",
4406 nr_online_nodes,
4407 zonelist_order_name[current_zonelist_order],
4408 page_group_by_mobility_disabled ? "off" : "on",
4409 vm_total_pages);
4410 #ifdef CONFIG_NUMA
4411 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4412 #endif
4413 }
4414
4415 /*
4416 * Helper functions to size the waitqueue hash table.
4417 * Essentially these want to choose hash table sizes sufficiently
4418 * large so that collisions trying to wait on pages are rare.
4419 * But in fact, the number of active page waitqueues on typical
4420 * systems is ridiculously low, less than 200. So this is even
4421 * conservative, even though it seems large.
4422 *
4423 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4424 * waitqueues, i.e. the size of the waitq table given the number of pages.
4425 */
4426 #define PAGES_PER_WAITQUEUE 256
4427
4428 #ifndef CONFIG_MEMORY_HOTPLUG
4429 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4430 {
4431 unsigned long size = 1;
4432
4433 pages /= PAGES_PER_WAITQUEUE;
4434
4435 while (size < pages)
4436 size <<= 1;
4437
4438 /*
4439 * Once we have dozens or even hundreds of threads sleeping
4440 * on IO we've got bigger problems than wait queue collision.
4441 * Limit the size of the wait table to a reasonable size.
4442 */
4443 size = min(size, 4096UL);
4444
4445 return max(size, 4UL);
4446 }
4447 #else
4448 /*
4449 * A zone's size might be changed by hot-add, so it is not possible to determine
4450 * a suitable size for its wait_table. So we use the maximum size now.
4451 *
4452 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4453 *
4454 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4455 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4456 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4457 *
4458 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4459 * or more by the traditional way. (See above). It equals:
4460 *
4461 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4462 * ia64(16K page size) : = ( 8G + 4M)byte.
4463 * powerpc (64K page size) : = (32G +16M)byte.
4464 */
4465 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4466 {
4467 return 4096UL;
4468 }
4469 #endif
4470
4471 /*
4472 * This is an integer logarithm so that shifts can be used later
4473 * to extract the more random high bits from the multiplicative
4474 * hash function before the remainder is taken.
4475 */
4476 static inline unsigned long wait_table_bits(unsigned long size)
4477 {
4478 return ffz(~size);
4479 }
4480
4481 /*
4482 * Initially all pages are reserved - free ones are freed
4483 * up by free_all_bootmem() once the early boot process is
4484 * done. Non-atomic initialization, single-pass.
4485 */
4486 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4487 unsigned long start_pfn, enum memmap_context context)
4488 {
4489 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4490 unsigned long end_pfn = start_pfn + size;
4491 pg_data_t *pgdat = NODE_DATA(nid);
4492 unsigned long pfn;
4493 unsigned long nr_initialised = 0;
4494
4495 if (highest_memmap_pfn < end_pfn - 1)
4496 highest_memmap_pfn = end_pfn - 1;
4497
4498 /*
4499 * Honor reservation requested by the driver for this ZONE_DEVICE
4500 * memory
4501 */
4502 if (altmap && start_pfn == altmap->base_pfn)
4503 start_pfn += altmap->reserve;
4504
4505 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4506 /*
4507 * There can be holes in boot-time mem_map[]s
4508 * handed to this function. They do not
4509 * exist on hotplugged memory.
4510 */
4511 if (context == MEMMAP_EARLY) {
4512 if (!early_pfn_valid(pfn))
4513 continue;
4514 if (!early_pfn_in_nid(pfn, nid))
4515 continue;
4516 if (!update_defer_init(pgdat, pfn, end_pfn,
4517 &nr_initialised))
4518 break;
4519 }
4520
4521 /*
4522 * Mark the block movable so that blocks are reserved for
4523 * movable at startup. This will force kernel allocations
4524 * to reserve their blocks rather than leaking throughout
4525 * the address space during boot when many long-lived
4526 * kernel allocations are made.
4527 *
4528 * bitmap is created for zone's valid pfn range. but memmap
4529 * can be created for invalid pages (for alignment)
4530 * check here not to call set_pageblock_migratetype() against
4531 * pfn out of zone.
4532 */
4533 if (!(pfn & (pageblock_nr_pages - 1))) {
4534 struct page *page = pfn_to_page(pfn);
4535
4536 __init_single_page(page, pfn, zone, nid);
4537 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4538 } else {
4539 __init_single_pfn(pfn, zone, nid);
4540 }
4541 }
4542 }
4543
4544 static void __meminit zone_init_free_lists(struct zone *zone)
4545 {
4546 unsigned int order, t;
4547 for_each_migratetype_order(order, t) {
4548 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4549 zone->free_area[order].nr_free = 0;
4550 }
4551 }
4552
4553 #ifndef __HAVE_ARCH_MEMMAP_INIT
4554 #define memmap_init(size, nid, zone, start_pfn) \
4555 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4556 #endif
4557
4558 static int zone_batchsize(struct zone *zone)
4559 {
4560 #ifdef CONFIG_MMU
4561 int batch;
4562
4563 /*
4564 * The per-cpu-pages pools are set to around 1000th of the
4565 * size of the zone. But no more than 1/2 of a meg.
4566 *
4567 * OK, so we don't know how big the cache is. So guess.
4568 */
4569 batch = zone->managed_pages / 1024;
4570 if (batch * PAGE_SIZE > 512 * 1024)
4571 batch = (512 * 1024) / PAGE_SIZE;
4572 batch /= 4; /* We effectively *= 4 below */
4573 if (batch < 1)
4574 batch = 1;
4575
4576 /*
4577 * Clamp the batch to a 2^n - 1 value. Having a power
4578 * of 2 value was found to be more likely to have
4579 * suboptimal cache aliasing properties in some cases.
4580 *
4581 * For example if 2 tasks are alternately allocating
4582 * batches of pages, one task can end up with a lot
4583 * of pages of one half of the possible page colors
4584 * and the other with pages of the other colors.
4585 */
4586 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4587
4588 return batch;
4589
4590 #else
4591 /* The deferral and batching of frees should be suppressed under NOMMU
4592 * conditions.
4593 *
4594 * The problem is that NOMMU needs to be able to allocate large chunks
4595 * of contiguous memory as there's no hardware page translation to
4596 * assemble apparent contiguous memory from discontiguous pages.
4597 *
4598 * Queueing large contiguous runs of pages for batching, however,
4599 * causes the pages to actually be freed in smaller chunks. As there
4600 * can be a significant delay between the individual batches being
4601 * recycled, this leads to the once large chunks of space being
4602 * fragmented and becoming unavailable for high-order allocations.
4603 */
4604 return 0;
4605 #endif
4606 }
4607
4608 /*
4609 * pcp->high and pcp->batch values are related and dependent on one another:
4610 * ->batch must never be higher then ->high.
4611 * The following function updates them in a safe manner without read side
4612 * locking.
4613 *
4614 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4615 * those fields changing asynchronously (acording the the above rule).
4616 *
4617 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4618 * outside of boot time (or some other assurance that no concurrent updaters
4619 * exist).
4620 */
4621 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4622 unsigned long batch)
4623 {
4624 /* start with a fail safe value for batch */
4625 pcp->batch = 1;
4626 smp_wmb();
4627
4628 /* Update high, then batch, in order */
4629 pcp->high = high;
4630 smp_wmb();
4631
4632 pcp->batch = batch;
4633 }
4634
4635 /* a companion to pageset_set_high() */
4636 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4637 {
4638 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4639 }
4640
4641 static void pageset_init(struct per_cpu_pageset *p)
4642 {
4643 struct per_cpu_pages *pcp;
4644 int migratetype;
4645
4646 memset(p, 0, sizeof(*p));
4647
4648 pcp = &p->pcp;
4649 pcp->count = 0;
4650 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4651 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4652 }
4653
4654 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4655 {
4656 pageset_init(p);
4657 pageset_set_batch(p, batch);
4658 }
4659
4660 /*
4661 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4662 * to the value high for the pageset p.
4663 */
4664 static void pageset_set_high(struct per_cpu_pageset *p,
4665 unsigned long high)
4666 {
4667 unsigned long batch = max(1UL, high / 4);
4668 if ((high / 4) > (PAGE_SHIFT * 8))
4669 batch = PAGE_SHIFT * 8;
4670
4671 pageset_update(&p->pcp, high, batch);
4672 }
4673
4674 static void pageset_set_high_and_batch(struct zone *zone,
4675 struct per_cpu_pageset *pcp)
4676 {
4677 if (percpu_pagelist_fraction)
4678 pageset_set_high(pcp,
4679 (zone->managed_pages /
4680 percpu_pagelist_fraction));
4681 else
4682 pageset_set_batch(pcp, zone_batchsize(zone));
4683 }
4684
4685 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4686 {
4687 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4688
4689 pageset_init(pcp);
4690 pageset_set_high_and_batch(zone, pcp);
4691 }
4692
4693 static void __meminit setup_zone_pageset(struct zone *zone)
4694 {
4695 int cpu;
4696 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4697 for_each_possible_cpu(cpu)
4698 zone_pageset_init(zone, cpu);
4699 }
4700
4701 /*
4702 * Allocate per cpu pagesets and initialize them.
4703 * Before this call only boot pagesets were available.
4704 */
4705 void __init setup_per_cpu_pageset(void)
4706 {
4707 struct zone *zone;
4708
4709 for_each_populated_zone(zone)
4710 setup_zone_pageset(zone);
4711 }
4712
4713 static noinline __init_refok
4714 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4715 {
4716 int i;
4717 size_t alloc_size;
4718
4719 /*
4720 * The per-page waitqueue mechanism uses hashed waitqueues
4721 * per zone.
4722 */
4723 zone->wait_table_hash_nr_entries =
4724 wait_table_hash_nr_entries(zone_size_pages);
4725 zone->wait_table_bits =
4726 wait_table_bits(zone->wait_table_hash_nr_entries);
4727 alloc_size = zone->wait_table_hash_nr_entries
4728 * sizeof(wait_queue_head_t);
4729
4730 if (!slab_is_available()) {
4731 zone->wait_table = (wait_queue_head_t *)
4732 memblock_virt_alloc_node_nopanic(
4733 alloc_size, zone->zone_pgdat->node_id);
4734 } else {
4735 /*
4736 * This case means that a zone whose size was 0 gets new memory
4737 * via memory hot-add.
4738 * But it may be the case that a new node was hot-added. In
4739 * this case vmalloc() will not be able to use this new node's
4740 * memory - this wait_table must be initialized to use this new
4741 * node itself as well.
4742 * To use this new node's memory, further consideration will be
4743 * necessary.
4744 */
4745 zone->wait_table = vmalloc(alloc_size);
4746 }
4747 if (!zone->wait_table)
4748 return -ENOMEM;
4749
4750 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4751 init_waitqueue_head(zone->wait_table + i);
4752
4753 return 0;
4754 }
4755
4756 static __meminit void zone_pcp_init(struct zone *zone)
4757 {
4758 /*
4759 * per cpu subsystem is not up at this point. The following code
4760 * relies on the ability of the linker to provide the
4761 * offset of a (static) per cpu variable into the per cpu area.
4762 */
4763 zone->pageset = &boot_pageset;
4764
4765 if (populated_zone(zone))
4766 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4767 zone->name, zone->present_pages,
4768 zone_batchsize(zone));
4769 }
4770
4771 int __meminit init_currently_empty_zone(struct zone *zone,
4772 unsigned long zone_start_pfn,
4773 unsigned long size)
4774 {
4775 struct pglist_data *pgdat = zone->zone_pgdat;
4776 int ret;
4777 ret = zone_wait_table_init(zone, size);
4778 if (ret)
4779 return ret;
4780 pgdat->nr_zones = zone_idx(zone) + 1;
4781
4782 zone->zone_start_pfn = zone_start_pfn;
4783
4784 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4785 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4786 pgdat->node_id,
4787 (unsigned long)zone_idx(zone),
4788 zone_start_pfn, (zone_start_pfn + size));
4789
4790 zone_init_free_lists(zone);
4791
4792 return 0;
4793 }
4794
4795 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4796 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4797
4798 /*
4799 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4800 */
4801 int __meminit __early_pfn_to_nid(unsigned long pfn,
4802 struct mminit_pfnnid_cache *state)
4803 {
4804 unsigned long start_pfn, end_pfn;
4805 int nid;
4806
4807 if (state->last_start <= pfn && pfn < state->last_end)
4808 return state->last_nid;
4809
4810 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4811 if (nid != -1) {
4812 state->last_start = start_pfn;
4813 state->last_end = end_pfn;
4814 state->last_nid = nid;
4815 }
4816
4817 return nid;
4818 }
4819 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4820
4821 /**
4822 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4823 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4824 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4825 *
4826 * If an architecture guarantees that all ranges registered contain no holes
4827 * and may be freed, this this function may be used instead of calling
4828 * memblock_free_early_nid() manually.
4829 */
4830 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4831 {
4832 unsigned long start_pfn, end_pfn;
4833 int i, this_nid;
4834
4835 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4836 start_pfn = min(start_pfn, max_low_pfn);
4837 end_pfn = min(end_pfn, max_low_pfn);
4838
4839 if (start_pfn < end_pfn)
4840 memblock_free_early_nid(PFN_PHYS(start_pfn),
4841 (end_pfn - start_pfn) << PAGE_SHIFT,
4842 this_nid);
4843 }
4844 }
4845
4846 /**
4847 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4848 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4849 *
4850 * If an architecture guarantees that all ranges registered contain no holes and may
4851 * be freed, this function may be used instead of calling memory_present() manually.
4852 */
4853 void __init sparse_memory_present_with_active_regions(int nid)
4854 {
4855 unsigned long start_pfn, end_pfn;
4856 int i, this_nid;
4857
4858 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4859 memory_present(this_nid, start_pfn, end_pfn);
4860 }
4861
4862 /**
4863 * get_pfn_range_for_nid - Return the start and end page frames for a node
4864 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4865 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4866 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4867 *
4868 * It returns the start and end page frame of a node based on information
4869 * provided by memblock_set_node(). If called for a node
4870 * with no available memory, a warning is printed and the start and end
4871 * PFNs will be 0.
4872 */
4873 void __meminit get_pfn_range_for_nid(unsigned int nid,
4874 unsigned long *start_pfn, unsigned long *end_pfn)
4875 {
4876 unsigned long this_start_pfn, this_end_pfn;
4877 int i;
4878
4879 *start_pfn = -1UL;
4880 *end_pfn = 0;
4881
4882 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4883 *start_pfn = min(*start_pfn, this_start_pfn);
4884 *end_pfn = max(*end_pfn, this_end_pfn);
4885 }
4886
4887 if (*start_pfn == -1UL)
4888 *start_pfn = 0;
4889 }
4890
4891 /*
4892 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4893 * assumption is made that zones within a node are ordered in monotonic
4894 * increasing memory addresses so that the "highest" populated zone is used
4895 */
4896 static void __init find_usable_zone_for_movable(void)
4897 {
4898 int zone_index;
4899 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4900 if (zone_index == ZONE_MOVABLE)
4901 continue;
4902
4903 if (arch_zone_highest_possible_pfn[zone_index] >
4904 arch_zone_lowest_possible_pfn[zone_index])
4905 break;
4906 }
4907
4908 VM_BUG_ON(zone_index == -1);
4909 movable_zone = zone_index;
4910 }
4911
4912 /*
4913 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4914 * because it is sized independent of architecture. Unlike the other zones,
4915 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4916 * in each node depending on the size of each node and how evenly kernelcore
4917 * is distributed. This helper function adjusts the zone ranges
4918 * provided by the architecture for a given node by using the end of the
4919 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4920 * zones within a node are in order of monotonic increases memory addresses
4921 */
4922 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4923 unsigned long zone_type,
4924 unsigned long node_start_pfn,
4925 unsigned long node_end_pfn,
4926 unsigned long *zone_start_pfn,
4927 unsigned long *zone_end_pfn)
4928 {
4929 /* Only adjust if ZONE_MOVABLE is on this node */
4930 if (zone_movable_pfn[nid]) {
4931 /* Size ZONE_MOVABLE */
4932 if (zone_type == ZONE_MOVABLE) {
4933 *zone_start_pfn = zone_movable_pfn[nid];
4934 *zone_end_pfn = min(node_end_pfn,
4935 arch_zone_highest_possible_pfn[movable_zone]);
4936
4937 /* Adjust for ZONE_MOVABLE starting within this range */
4938 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4939 *zone_end_pfn > zone_movable_pfn[nid]) {
4940 *zone_end_pfn = zone_movable_pfn[nid];
4941
4942 /* Check if this whole range is within ZONE_MOVABLE */
4943 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4944 *zone_start_pfn = *zone_end_pfn;
4945 }
4946 }
4947
4948 /*
4949 * Return the number of pages a zone spans in a node, including holes
4950 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4951 */
4952 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4953 unsigned long zone_type,
4954 unsigned long node_start_pfn,
4955 unsigned long node_end_pfn,
4956 unsigned long *zone_start_pfn,
4957 unsigned long *zone_end_pfn,
4958 unsigned long *ignored)
4959 {
4960 /* When hotadd a new node from cpu_up(), the node should be empty */
4961 if (!node_start_pfn && !node_end_pfn)
4962 return 0;
4963
4964 /* Get the start and end of the zone */
4965 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4966 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4967 adjust_zone_range_for_zone_movable(nid, zone_type,
4968 node_start_pfn, node_end_pfn,
4969 zone_start_pfn, zone_end_pfn);
4970
4971 /* Check that this node has pages within the zone's required range */
4972 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
4973 return 0;
4974
4975 /* Move the zone boundaries inside the node if necessary */
4976 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
4977 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
4978
4979 /* Return the spanned pages */
4980 return *zone_end_pfn - *zone_start_pfn;
4981 }
4982
4983 /*
4984 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4985 * then all holes in the requested range will be accounted for.
4986 */
4987 unsigned long __meminit __absent_pages_in_range(int nid,
4988 unsigned long range_start_pfn,
4989 unsigned long range_end_pfn)
4990 {
4991 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4992 unsigned long start_pfn, end_pfn;
4993 int i;
4994
4995 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4996 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4997 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4998 nr_absent -= end_pfn - start_pfn;
4999 }
5000 return nr_absent;
5001 }
5002
5003 /**
5004 * absent_pages_in_range - Return number of page frames in holes within a range
5005 * @start_pfn: The start PFN to start searching for holes
5006 * @end_pfn: The end PFN to stop searching for holes
5007 *
5008 * It returns the number of pages frames in memory holes within a range.
5009 */
5010 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5011 unsigned long end_pfn)
5012 {
5013 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5014 }
5015
5016 /* Return the number of page frames in holes in a zone on a node */
5017 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5018 unsigned long zone_type,
5019 unsigned long node_start_pfn,
5020 unsigned long node_end_pfn,
5021 unsigned long *ignored)
5022 {
5023 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5024 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5025 unsigned long zone_start_pfn, zone_end_pfn;
5026
5027 /* When hotadd a new node from cpu_up(), the node should be empty */
5028 if (!node_start_pfn && !node_end_pfn)
5029 return 0;
5030
5031 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5032 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5033
5034 adjust_zone_range_for_zone_movable(nid, zone_type,
5035 node_start_pfn, node_end_pfn,
5036 &zone_start_pfn, &zone_end_pfn);
5037 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5038 }
5039
5040 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5041 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5042 unsigned long zone_type,
5043 unsigned long node_start_pfn,
5044 unsigned long node_end_pfn,
5045 unsigned long *zone_start_pfn,
5046 unsigned long *zone_end_pfn,
5047 unsigned long *zones_size)
5048 {
5049 unsigned int zone;
5050
5051 *zone_start_pfn = node_start_pfn;
5052 for (zone = 0; zone < zone_type; zone++)
5053 *zone_start_pfn += zones_size[zone];
5054
5055 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5056
5057 return zones_size[zone_type];
5058 }
5059
5060 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5061 unsigned long zone_type,
5062 unsigned long node_start_pfn,
5063 unsigned long node_end_pfn,
5064 unsigned long *zholes_size)
5065 {
5066 if (!zholes_size)
5067 return 0;
5068
5069 return zholes_size[zone_type];
5070 }
5071
5072 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5073
5074 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5075 unsigned long node_start_pfn,
5076 unsigned long node_end_pfn,
5077 unsigned long *zones_size,
5078 unsigned long *zholes_size)
5079 {
5080 unsigned long realtotalpages = 0, totalpages = 0;
5081 enum zone_type i;
5082
5083 for (i = 0; i < MAX_NR_ZONES; i++) {
5084 struct zone *zone = pgdat->node_zones + i;
5085 unsigned long zone_start_pfn, zone_end_pfn;
5086 unsigned long size, real_size;
5087
5088 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5089 node_start_pfn,
5090 node_end_pfn,
5091 &zone_start_pfn,
5092 &zone_end_pfn,
5093 zones_size);
5094 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5095 node_start_pfn, node_end_pfn,
5096 zholes_size);
5097 if (size)
5098 zone->zone_start_pfn = zone_start_pfn;
5099 else
5100 zone->zone_start_pfn = 0;
5101 zone->spanned_pages = size;
5102 zone->present_pages = real_size;
5103
5104 totalpages += size;
5105 realtotalpages += real_size;
5106 }
5107
5108 pgdat->node_spanned_pages = totalpages;
5109 pgdat->node_present_pages = realtotalpages;
5110 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5111 realtotalpages);
5112 }
5113
5114 #ifndef CONFIG_SPARSEMEM
5115 /*
5116 * Calculate the size of the zone->blockflags rounded to an unsigned long
5117 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5118 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5119 * round what is now in bits to nearest long in bits, then return it in
5120 * bytes.
5121 */
5122 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5123 {
5124 unsigned long usemapsize;
5125
5126 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5127 usemapsize = roundup(zonesize, pageblock_nr_pages);
5128 usemapsize = usemapsize >> pageblock_order;
5129 usemapsize *= NR_PAGEBLOCK_BITS;
5130 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5131
5132 return usemapsize / 8;
5133 }
5134
5135 static void __init setup_usemap(struct pglist_data *pgdat,
5136 struct zone *zone,
5137 unsigned long zone_start_pfn,
5138 unsigned long zonesize)
5139 {
5140 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5141 zone->pageblock_flags = NULL;
5142 if (usemapsize)
5143 zone->pageblock_flags =
5144 memblock_virt_alloc_node_nopanic(usemapsize,
5145 pgdat->node_id);
5146 }
5147 #else
5148 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5149 unsigned long zone_start_pfn, unsigned long zonesize) {}
5150 #endif /* CONFIG_SPARSEMEM */
5151
5152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5153
5154 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5155 void __paginginit set_pageblock_order(void)
5156 {
5157 unsigned int order;
5158
5159 /* Check that pageblock_nr_pages has not already been setup */
5160 if (pageblock_order)
5161 return;
5162
5163 if (HPAGE_SHIFT > PAGE_SHIFT)
5164 order = HUGETLB_PAGE_ORDER;
5165 else
5166 order = MAX_ORDER - 1;
5167
5168 /*
5169 * Assume the largest contiguous order of interest is a huge page.
5170 * This value may be variable depending on boot parameters on IA64 and
5171 * powerpc.
5172 */
5173 pageblock_order = order;
5174 }
5175 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5176
5177 /*
5178 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5179 * is unused as pageblock_order is set at compile-time. See
5180 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5181 * the kernel config
5182 */
5183 void __paginginit set_pageblock_order(void)
5184 {
5185 }
5186
5187 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5188
5189 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5190 unsigned long present_pages)
5191 {
5192 unsigned long pages = spanned_pages;
5193
5194 /*
5195 * Provide a more accurate estimation if there are holes within
5196 * the zone and SPARSEMEM is in use. If there are holes within the
5197 * zone, each populated memory region may cost us one or two extra
5198 * memmap pages due to alignment because memmap pages for each
5199 * populated regions may not naturally algined on page boundary.
5200 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5201 */
5202 if (spanned_pages > present_pages + (present_pages >> 4) &&
5203 IS_ENABLED(CONFIG_SPARSEMEM))
5204 pages = present_pages;
5205
5206 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5207 }
5208
5209 /*
5210 * Set up the zone data structures:
5211 * - mark all pages reserved
5212 * - mark all memory queues empty
5213 * - clear the memory bitmaps
5214 *
5215 * NOTE: pgdat should get zeroed by caller.
5216 */
5217 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5218 {
5219 enum zone_type j;
5220 int nid = pgdat->node_id;
5221 int ret;
5222
5223 pgdat_resize_init(pgdat);
5224 #ifdef CONFIG_NUMA_BALANCING
5225 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5226 pgdat->numabalancing_migrate_nr_pages = 0;
5227 pgdat->numabalancing_migrate_next_window = jiffies;
5228 #endif
5229 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5230 spin_lock_init(&pgdat->split_queue_lock);
5231 INIT_LIST_HEAD(&pgdat->split_queue);
5232 pgdat->split_queue_len = 0;
5233 #endif
5234 init_waitqueue_head(&pgdat->kswapd_wait);
5235 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5236 pgdat_page_ext_init(pgdat);
5237
5238 for (j = 0; j < MAX_NR_ZONES; j++) {
5239 struct zone *zone = pgdat->node_zones + j;
5240 unsigned long size, realsize, freesize, memmap_pages;
5241 unsigned long zone_start_pfn = zone->zone_start_pfn;
5242
5243 size = zone->spanned_pages;
5244 realsize = freesize = zone->present_pages;
5245
5246 /*
5247 * Adjust freesize so that it accounts for how much memory
5248 * is used by this zone for memmap. This affects the watermark
5249 * and per-cpu initialisations
5250 */
5251 memmap_pages = calc_memmap_size(size, realsize);
5252 if (!is_highmem_idx(j)) {
5253 if (freesize >= memmap_pages) {
5254 freesize -= memmap_pages;
5255 if (memmap_pages)
5256 printk(KERN_DEBUG
5257 " %s zone: %lu pages used for memmap\n",
5258 zone_names[j], memmap_pages);
5259 } else
5260 printk(KERN_WARNING
5261 " %s zone: %lu pages exceeds freesize %lu\n",
5262 zone_names[j], memmap_pages, freesize);
5263 }
5264
5265 /* Account for reserved pages */
5266 if (j == 0 && freesize > dma_reserve) {
5267 freesize -= dma_reserve;
5268 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5269 zone_names[0], dma_reserve);
5270 }
5271
5272 if (!is_highmem_idx(j))
5273 nr_kernel_pages += freesize;
5274 /* Charge for highmem memmap if there are enough kernel pages */
5275 else if (nr_kernel_pages > memmap_pages * 2)
5276 nr_kernel_pages -= memmap_pages;
5277 nr_all_pages += freesize;
5278
5279 /*
5280 * Set an approximate value for lowmem here, it will be adjusted
5281 * when the bootmem allocator frees pages into the buddy system.
5282 * And all highmem pages will be managed by the buddy system.
5283 */
5284 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5285 #ifdef CONFIG_NUMA
5286 zone->node = nid;
5287 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5288 / 100;
5289 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5290 #endif
5291 zone->name = zone_names[j];
5292 spin_lock_init(&zone->lock);
5293 spin_lock_init(&zone->lru_lock);
5294 zone_seqlock_init(zone);
5295 zone->zone_pgdat = pgdat;
5296 zone_pcp_init(zone);
5297
5298 /* For bootup, initialized properly in watermark setup */
5299 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5300
5301 lruvec_init(&zone->lruvec);
5302 if (!size)
5303 continue;
5304
5305 set_pageblock_order();
5306 setup_usemap(pgdat, zone, zone_start_pfn, size);
5307 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5308 BUG_ON(ret);
5309 memmap_init(size, nid, j, zone_start_pfn);
5310 }
5311 }
5312
5313 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5314 {
5315 unsigned long __maybe_unused start = 0;
5316 unsigned long __maybe_unused offset = 0;
5317
5318 /* Skip empty nodes */
5319 if (!pgdat->node_spanned_pages)
5320 return;
5321
5322 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5323 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5324 offset = pgdat->node_start_pfn - start;
5325 /* ia64 gets its own node_mem_map, before this, without bootmem */
5326 if (!pgdat->node_mem_map) {
5327 unsigned long size, end;
5328 struct page *map;
5329
5330 /*
5331 * The zone's endpoints aren't required to be MAX_ORDER
5332 * aligned but the node_mem_map endpoints must be in order
5333 * for the buddy allocator to function correctly.
5334 */
5335 end = pgdat_end_pfn(pgdat);
5336 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5337 size = (end - start) * sizeof(struct page);
5338 map = alloc_remap(pgdat->node_id, size);
5339 if (!map)
5340 map = memblock_virt_alloc_node_nopanic(size,
5341 pgdat->node_id);
5342 pgdat->node_mem_map = map + offset;
5343 }
5344 #ifndef CONFIG_NEED_MULTIPLE_NODES
5345 /*
5346 * With no DISCONTIG, the global mem_map is just set as node 0's
5347 */
5348 if (pgdat == NODE_DATA(0)) {
5349 mem_map = NODE_DATA(0)->node_mem_map;
5350 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5351 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5352 mem_map -= offset;
5353 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5354 }
5355 #endif
5356 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5357 }
5358
5359 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5360 unsigned long node_start_pfn, unsigned long *zholes_size)
5361 {
5362 pg_data_t *pgdat = NODE_DATA(nid);
5363 unsigned long start_pfn = 0;
5364 unsigned long end_pfn = 0;
5365
5366 /* pg_data_t should be reset to zero when it's allocated */
5367 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5368
5369 reset_deferred_meminit(pgdat);
5370 pgdat->node_id = nid;
5371 pgdat->node_start_pfn = node_start_pfn;
5372 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5373 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5374 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5375 (u64)start_pfn << PAGE_SHIFT,
5376 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5377 #else
5378 start_pfn = node_start_pfn;
5379 #endif
5380 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5381 zones_size, zholes_size);
5382
5383 alloc_node_mem_map(pgdat);
5384 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5385 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5386 nid, (unsigned long)pgdat,
5387 (unsigned long)pgdat->node_mem_map);
5388 #endif
5389
5390 free_area_init_core(pgdat);
5391 }
5392
5393 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5394
5395 #if MAX_NUMNODES > 1
5396 /*
5397 * Figure out the number of possible node ids.
5398 */
5399 void __init setup_nr_node_ids(void)
5400 {
5401 unsigned int highest;
5402
5403 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5404 nr_node_ids = highest + 1;
5405 }
5406 #endif
5407
5408 /**
5409 * node_map_pfn_alignment - determine the maximum internode alignment
5410 *
5411 * This function should be called after node map is populated and sorted.
5412 * It calculates the maximum power of two alignment which can distinguish
5413 * all the nodes.
5414 *
5415 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5416 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5417 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5418 * shifted, 1GiB is enough and this function will indicate so.
5419 *
5420 * This is used to test whether pfn -> nid mapping of the chosen memory
5421 * model has fine enough granularity to avoid incorrect mapping for the
5422 * populated node map.
5423 *
5424 * Returns the determined alignment in pfn's. 0 if there is no alignment
5425 * requirement (single node).
5426 */
5427 unsigned long __init node_map_pfn_alignment(void)
5428 {
5429 unsigned long accl_mask = 0, last_end = 0;
5430 unsigned long start, end, mask;
5431 int last_nid = -1;
5432 int i, nid;
5433
5434 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5435 if (!start || last_nid < 0 || last_nid == nid) {
5436 last_nid = nid;
5437 last_end = end;
5438 continue;
5439 }
5440
5441 /*
5442 * Start with a mask granular enough to pin-point to the
5443 * start pfn and tick off bits one-by-one until it becomes
5444 * too coarse to separate the current node from the last.
5445 */
5446 mask = ~((1 << __ffs(start)) - 1);
5447 while (mask && last_end <= (start & (mask << 1)))
5448 mask <<= 1;
5449
5450 /* accumulate all internode masks */
5451 accl_mask |= mask;
5452 }
5453
5454 /* convert mask to number of pages */
5455 return ~accl_mask + 1;
5456 }
5457
5458 /* Find the lowest pfn for a node */
5459 static unsigned long __init find_min_pfn_for_node(int nid)
5460 {
5461 unsigned long min_pfn = ULONG_MAX;
5462 unsigned long start_pfn;
5463 int i;
5464
5465 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5466 min_pfn = min(min_pfn, start_pfn);
5467
5468 if (min_pfn == ULONG_MAX) {
5469 printk(KERN_WARNING
5470 "Could not find start_pfn for node %d\n", nid);
5471 return 0;
5472 }
5473
5474 return min_pfn;
5475 }
5476
5477 /**
5478 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5479 *
5480 * It returns the minimum PFN based on information provided via
5481 * memblock_set_node().
5482 */
5483 unsigned long __init find_min_pfn_with_active_regions(void)
5484 {
5485 return find_min_pfn_for_node(MAX_NUMNODES);
5486 }
5487
5488 /*
5489 * early_calculate_totalpages()
5490 * Sum pages in active regions for movable zone.
5491 * Populate N_MEMORY for calculating usable_nodes.
5492 */
5493 static unsigned long __init early_calculate_totalpages(void)
5494 {
5495 unsigned long totalpages = 0;
5496 unsigned long start_pfn, end_pfn;
5497 int i, nid;
5498
5499 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5500 unsigned long pages = end_pfn - start_pfn;
5501
5502 totalpages += pages;
5503 if (pages)
5504 node_set_state(nid, N_MEMORY);
5505 }
5506 return totalpages;
5507 }
5508
5509 /*
5510 * Find the PFN the Movable zone begins in each node. Kernel memory
5511 * is spread evenly between nodes as long as the nodes have enough
5512 * memory. When they don't, some nodes will have more kernelcore than
5513 * others
5514 */
5515 static void __init find_zone_movable_pfns_for_nodes(void)
5516 {
5517 int i, nid;
5518 unsigned long usable_startpfn;
5519 unsigned long kernelcore_node, kernelcore_remaining;
5520 /* save the state before borrow the nodemask */
5521 nodemask_t saved_node_state = node_states[N_MEMORY];
5522 unsigned long totalpages = early_calculate_totalpages();
5523 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5524 struct memblock_region *r;
5525
5526 /* Need to find movable_zone earlier when movable_node is specified. */
5527 find_usable_zone_for_movable();
5528
5529 /*
5530 * If movable_node is specified, ignore kernelcore and movablecore
5531 * options.
5532 */
5533 if (movable_node_is_enabled()) {
5534 for_each_memblock(memory, r) {
5535 if (!memblock_is_hotpluggable(r))
5536 continue;
5537
5538 nid = r->nid;
5539
5540 usable_startpfn = PFN_DOWN(r->base);
5541 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5542 min(usable_startpfn, zone_movable_pfn[nid]) :
5543 usable_startpfn;
5544 }
5545
5546 goto out2;
5547 }
5548
5549 /*
5550 * If movablecore=nn[KMG] was specified, calculate what size of
5551 * kernelcore that corresponds so that memory usable for
5552 * any allocation type is evenly spread. If both kernelcore
5553 * and movablecore are specified, then the value of kernelcore
5554 * will be used for required_kernelcore if it's greater than
5555 * what movablecore would have allowed.
5556 */
5557 if (required_movablecore) {
5558 unsigned long corepages;
5559
5560 /*
5561 * Round-up so that ZONE_MOVABLE is at least as large as what
5562 * was requested by the user
5563 */
5564 required_movablecore =
5565 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5566 required_movablecore = min(totalpages, required_movablecore);
5567 corepages = totalpages - required_movablecore;
5568
5569 required_kernelcore = max(required_kernelcore, corepages);
5570 }
5571
5572 /*
5573 * If kernelcore was not specified or kernelcore size is larger
5574 * than totalpages, there is no ZONE_MOVABLE.
5575 */
5576 if (!required_kernelcore || required_kernelcore >= totalpages)
5577 goto out;
5578
5579 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5580 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5581
5582 restart:
5583 /* Spread kernelcore memory as evenly as possible throughout nodes */
5584 kernelcore_node = required_kernelcore / usable_nodes;
5585 for_each_node_state(nid, N_MEMORY) {
5586 unsigned long start_pfn, end_pfn;
5587
5588 /*
5589 * Recalculate kernelcore_node if the division per node
5590 * now exceeds what is necessary to satisfy the requested
5591 * amount of memory for the kernel
5592 */
5593 if (required_kernelcore < kernelcore_node)
5594 kernelcore_node = required_kernelcore / usable_nodes;
5595
5596 /*
5597 * As the map is walked, we track how much memory is usable
5598 * by the kernel using kernelcore_remaining. When it is
5599 * 0, the rest of the node is usable by ZONE_MOVABLE
5600 */
5601 kernelcore_remaining = kernelcore_node;
5602
5603 /* Go through each range of PFNs within this node */
5604 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5605 unsigned long size_pages;
5606
5607 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5608 if (start_pfn >= end_pfn)
5609 continue;
5610
5611 /* Account for what is only usable for kernelcore */
5612 if (start_pfn < usable_startpfn) {
5613 unsigned long kernel_pages;
5614 kernel_pages = min(end_pfn, usable_startpfn)
5615 - start_pfn;
5616
5617 kernelcore_remaining -= min(kernel_pages,
5618 kernelcore_remaining);
5619 required_kernelcore -= min(kernel_pages,
5620 required_kernelcore);
5621
5622 /* Continue if range is now fully accounted */
5623 if (end_pfn <= usable_startpfn) {
5624
5625 /*
5626 * Push zone_movable_pfn to the end so
5627 * that if we have to rebalance
5628 * kernelcore across nodes, we will
5629 * not double account here
5630 */
5631 zone_movable_pfn[nid] = end_pfn;
5632 continue;
5633 }
5634 start_pfn = usable_startpfn;
5635 }
5636
5637 /*
5638 * The usable PFN range for ZONE_MOVABLE is from
5639 * start_pfn->end_pfn. Calculate size_pages as the
5640 * number of pages used as kernelcore
5641 */
5642 size_pages = end_pfn - start_pfn;
5643 if (size_pages > kernelcore_remaining)
5644 size_pages = kernelcore_remaining;
5645 zone_movable_pfn[nid] = start_pfn + size_pages;
5646
5647 /*
5648 * Some kernelcore has been met, update counts and
5649 * break if the kernelcore for this node has been
5650 * satisfied
5651 */
5652 required_kernelcore -= min(required_kernelcore,
5653 size_pages);
5654 kernelcore_remaining -= size_pages;
5655 if (!kernelcore_remaining)
5656 break;
5657 }
5658 }
5659
5660 /*
5661 * If there is still required_kernelcore, we do another pass with one
5662 * less node in the count. This will push zone_movable_pfn[nid] further
5663 * along on the nodes that still have memory until kernelcore is
5664 * satisfied
5665 */
5666 usable_nodes--;
5667 if (usable_nodes && required_kernelcore > usable_nodes)
5668 goto restart;
5669
5670 out2:
5671 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5672 for (nid = 0; nid < MAX_NUMNODES; nid++)
5673 zone_movable_pfn[nid] =
5674 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5675
5676 out:
5677 /* restore the node_state */
5678 node_states[N_MEMORY] = saved_node_state;
5679 }
5680
5681 /* Any regular or high memory on that node ? */
5682 static void check_for_memory(pg_data_t *pgdat, int nid)
5683 {
5684 enum zone_type zone_type;
5685
5686 if (N_MEMORY == N_NORMAL_MEMORY)
5687 return;
5688
5689 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5690 struct zone *zone = &pgdat->node_zones[zone_type];
5691 if (populated_zone(zone)) {
5692 node_set_state(nid, N_HIGH_MEMORY);
5693 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5694 zone_type <= ZONE_NORMAL)
5695 node_set_state(nid, N_NORMAL_MEMORY);
5696 break;
5697 }
5698 }
5699 }
5700
5701 /**
5702 * free_area_init_nodes - Initialise all pg_data_t and zone data
5703 * @max_zone_pfn: an array of max PFNs for each zone
5704 *
5705 * This will call free_area_init_node() for each active node in the system.
5706 * Using the page ranges provided by memblock_set_node(), the size of each
5707 * zone in each node and their holes is calculated. If the maximum PFN
5708 * between two adjacent zones match, it is assumed that the zone is empty.
5709 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5710 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5711 * starts where the previous one ended. For example, ZONE_DMA32 starts
5712 * at arch_max_dma_pfn.
5713 */
5714 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5715 {
5716 unsigned long start_pfn, end_pfn;
5717 int i, nid;
5718
5719 /* Record where the zone boundaries are */
5720 memset(arch_zone_lowest_possible_pfn, 0,
5721 sizeof(arch_zone_lowest_possible_pfn));
5722 memset(arch_zone_highest_possible_pfn, 0,
5723 sizeof(arch_zone_highest_possible_pfn));
5724 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5725 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5726 for (i = 1; i < MAX_NR_ZONES; i++) {
5727 if (i == ZONE_MOVABLE)
5728 continue;
5729 arch_zone_lowest_possible_pfn[i] =
5730 arch_zone_highest_possible_pfn[i-1];
5731 arch_zone_highest_possible_pfn[i] =
5732 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5733 }
5734 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5735 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5736
5737 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5738 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5739 find_zone_movable_pfns_for_nodes();
5740
5741 /* Print out the zone ranges */
5742 pr_info("Zone ranges:\n");
5743 for (i = 0; i < MAX_NR_ZONES; i++) {
5744 if (i == ZONE_MOVABLE)
5745 continue;
5746 pr_info(" %-8s ", zone_names[i]);
5747 if (arch_zone_lowest_possible_pfn[i] ==
5748 arch_zone_highest_possible_pfn[i])
5749 pr_cont("empty\n");
5750 else
5751 pr_cont("[mem %#018Lx-%#018Lx]\n",
5752 (u64)arch_zone_lowest_possible_pfn[i]
5753 << PAGE_SHIFT,
5754 ((u64)arch_zone_highest_possible_pfn[i]
5755 << PAGE_SHIFT) - 1);
5756 }
5757
5758 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5759 pr_info("Movable zone start for each node\n");
5760 for (i = 0; i < MAX_NUMNODES; i++) {
5761 if (zone_movable_pfn[i])
5762 pr_info(" Node %d: %#018Lx\n", i,
5763 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5764 }
5765
5766 /* Print out the early node map */
5767 pr_info("Early memory node ranges\n");
5768 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5769 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5770 (u64)start_pfn << PAGE_SHIFT,
5771 ((u64)end_pfn << PAGE_SHIFT) - 1);
5772
5773 /* Initialise every node */
5774 mminit_verify_pageflags_layout();
5775 setup_nr_node_ids();
5776 for_each_online_node(nid) {
5777 pg_data_t *pgdat = NODE_DATA(nid);
5778 free_area_init_node(nid, NULL,
5779 find_min_pfn_for_node(nid), NULL);
5780
5781 /* Any memory on that node */
5782 if (pgdat->node_present_pages)
5783 node_set_state(nid, N_MEMORY);
5784 check_for_memory(pgdat, nid);
5785 }
5786 }
5787
5788 static int __init cmdline_parse_core(char *p, unsigned long *core)
5789 {
5790 unsigned long long coremem;
5791 if (!p)
5792 return -EINVAL;
5793
5794 coremem = memparse(p, &p);
5795 *core = coremem >> PAGE_SHIFT;
5796
5797 /* Paranoid check that UL is enough for the coremem value */
5798 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5799
5800 return 0;
5801 }
5802
5803 /*
5804 * kernelcore=size sets the amount of memory for use for allocations that
5805 * cannot be reclaimed or migrated.
5806 */
5807 static int __init cmdline_parse_kernelcore(char *p)
5808 {
5809 return cmdline_parse_core(p, &required_kernelcore);
5810 }
5811
5812 /*
5813 * movablecore=size sets the amount of memory for use for allocations that
5814 * can be reclaimed or migrated.
5815 */
5816 static int __init cmdline_parse_movablecore(char *p)
5817 {
5818 return cmdline_parse_core(p, &required_movablecore);
5819 }
5820
5821 early_param("kernelcore", cmdline_parse_kernelcore);
5822 early_param("movablecore", cmdline_parse_movablecore);
5823
5824 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5825
5826 void adjust_managed_page_count(struct page *page, long count)
5827 {
5828 spin_lock(&managed_page_count_lock);
5829 page_zone(page)->managed_pages += count;
5830 totalram_pages += count;
5831 #ifdef CONFIG_HIGHMEM
5832 if (PageHighMem(page))
5833 totalhigh_pages += count;
5834 #endif
5835 spin_unlock(&managed_page_count_lock);
5836 }
5837 EXPORT_SYMBOL(adjust_managed_page_count);
5838
5839 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5840 {
5841 void *pos;
5842 unsigned long pages = 0;
5843
5844 start = (void *)PAGE_ALIGN((unsigned long)start);
5845 end = (void *)((unsigned long)end & PAGE_MASK);
5846 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5847 if ((unsigned int)poison <= 0xFF)
5848 memset(pos, poison, PAGE_SIZE);
5849 free_reserved_page(virt_to_page(pos));
5850 }
5851
5852 if (pages && s)
5853 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5854 s, pages << (PAGE_SHIFT - 10), start, end);
5855
5856 return pages;
5857 }
5858 EXPORT_SYMBOL(free_reserved_area);
5859
5860 #ifdef CONFIG_HIGHMEM
5861 void free_highmem_page(struct page *page)
5862 {
5863 __free_reserved_page(page);
5864 totalram_pages++;
5865 page_zone(page)->managed_pages++;
5866 totalhigh_pages++;
5867 }
5868 #endif
5869
5870
5871 void __init mem_init_print_info(const char *str)
5872 {
5873 unsigned long physpages, codesize, datasize, rosize, bss_size;
5874 unsigned long init_code_size, init_data_size;
5875
5876 physpages = get_num_physpages();
5877 codesize = _etext - _stext;
5878 datasize = _edata - _sdata;
5879 rosize = __end_rodata - __start_rodata;
5880 bss_size = __bss_stop - __bss_start;
5881 init_data_size = __init_end - __init_begin;
5882 init_code_size = _einittext - _sinittext;
5883
5884 /*
5885 * Detect special cases and adjust section sizes accordingly:
5886 * 1) .init.* may be embedded into .data sections
5887 * 2) .init.text.* may be out of [__init_begin, __init_end],
5888 * please refer to arch/tile/kernel/vmlinux.lds.S.
5889 * 3) .rodata.* may be embedded into .text or .data sections.
5890 */
5891 #define adj_init_size(start, end, size, pos, adj) \
5892 do { \
5893 if (start <= pos && pos < end && size > adj) \
5894 size -= adj; \
5895 } while (0)
5896
5897 adj_init_size(__init_begin, __init_end, init_data_size,
5898 _sinittext, init_code_size);
5899 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5900 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5901 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5902 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5903
5904 #undef adj_init_size
5905
5906 pr_info("Memory: %luK/%luK available "
5907 "(%luK kernel code, %luK rwdata, %luK rodata, "
5908 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5909 #ifdef CONFIG_HIGHMEM
5910 ", %luK highmem"
5911 #endif
5912 "%s%s)\n",
5913 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5914 codesize >> 10, datasize >> 10, rosize >> 10,
5915 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5916 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5917 totalcma_pages << (PAGE_SHIFT-10),
5918 #ifdef CONFIG_HIGHMEM
5919 totalhigh_pages << (PAGE_SHIFT-10),
5920 #endif
5921 str ? ", " : "", str ? str : "");
5922 }
5923
5924 /**
5925 * set_dma_reserve - set the specified number of pages reserved in the first zone
5926 * @new_dma_reserve: The number of pages to mark reserved
5927 *
5928 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5929 * In the DMA zone, a significant percentage may be consumed by kernel image
5930 * and other unfreeable allocations which can skew the watermarks badly. This
5931 * function may optionally be used to account for unfreeable pages in the
5932 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5933 * smaller per-cpu batchsize.
5934 */
5935 void __init set_dma_reserve(unsigned long new_dma_reserve)
5936 {
5937 dma_reserve = new_dma_reserve;
5938 }
5939
5940 void __init free_area_init(unsigned long *zones_size)
5941 {
5942 free_area_init_node(0, zones_size,
5943 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5944 }
5945
5946 static int page_alloc_cpu_notify(struct notifier_block *self,
5947 unsigned long action, void *hcpu)
5948 {
5949 int cpu = (unsigned long)hcpu;
5950
5951 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5952 lru_add_drain_cpu(cpu);
5953 drain_pages(cpu);
5954
5955 /*
5956 * Spill the event counters of the dead processor
5957 * into the current processors event counters.
5958 * This artificially elevates the count of the current
5959 * processor.
5960 */
5961 vm_events_fold_cpu(cpu);
5962
5963 /*
5964 * Zero the differential counters of the dead processor
5965 * so that the vm statistics are consistent.
5966 *
5967 * This is only okay since the processor is dead and cannot
5968 * race with what we are doing.
5969 */
5970 cpu_vm_stats_fold(cpu);
5971 }
5972 return NOTIFY_OK;
5973 }
5974
5975 void __init page_alloc_init(void)
5976 {
5977 hotcpu_notifier(page_alloc_cpu_notify, 0);
5978 }
5979
5980 /*
5981 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5982 * or min_free_kbytes changes.
5983 */
5984 static void calculate_totalreserve_pages(void)
5985 {
5986 struct pglist_data *pgdat;
5987 unsigned long reserve_pages = 0;
5988 enum zone_type i, j;
5989
5990 for_each_online_pgdat(pgdat) {
5991 for (i = 0; i < MAX_NR_ZONES; i++) {
5992 struct zone *zone = pgdat->node_zones + i;
5993 long max = 0;
5994
5995 /* Find valid and maximum lowmem_reserve in the zone */
5996 for (j = i; j < MAX_NR_ZONES; j++) {
5997 if (zone->lowmem_reserve[j] > max)
5998 max = zone->lowmem_reserve[j];
5999 }
6000
6001 /* we treat the high watermark as reserved pages. */
6002 max += high_wmark_pages(zone);
6003
6004 if (max > zone->managed_pages)
6005 max = zone->managed_pages;
6006
6007 zone->totalreserve_pages = max;
6008
6009 reserve_pages += max;
6010 }
6011 }
6012 totalreserve_pages = reserve_pages;
6013 }
6014
6015 /*
6016 * setup_per_zone_lowmem_reserve - called whenever
6017 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6018 * has a correct pages reserved value, so an adequate number of
6019 * pages are left in the zone after a successful __alloc_pages().
6020 */
6021 static void setup_per_zone_lowmem_reserve(void)
6022 {
6023 struct pglist_data *pgdat;
6024 enum zone_type j, idx;
6025
6026 for_each_online_pgdat(pgdat) {
6027 for (j = 0; j < MAX_NR_ZONES; j++) {
6028 struct zone *zone = pgdat->node_zones + j;
6029 unsigned long managed_pages = zone->managed_pages;
6030
6031 zone->lowmem_reserve[j] = 0;
6032
6033 idx = j;
6034 while (idx) {
6035 struct zone *lower_zone;
6036
6037 idx--;
6038
6039 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6040 sysctl_lowmem_reserve_ratio[idx] = 1;
6041
6042 lower_zone = pgdat->node_zones + idx;
6043 lower_zone->lowmem_reserve[j] = managed_pages /
6044 sysctl_lowmem_reserve_ratio[idx];
6045 managed_pages += lower_zone->managed_pages;
6046 }
6047 }
6048 }
6049
6050 /* update totalreserve_pages */
6051 calculate_totalreserve_pages();
6052 }
6053
6054 static void __setup_per_zone_wmarks(void)
6055 {
6056 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6057 unsigned long lowmem_pages = 0;
6058 struct zone *zone;
6059 unsigned long flags;
6060
6061 /* Calculate total number of !ZONE_HIGHMEM pages */
6062 for_each_zone(zone) {
6063 if (!is_highmem(zone))
6064 lowmem_pages += zone->managed_pages;
6065 }
6066
6067 for_each_zone(zone) {
6068 u64 tmp;
6069
6070 spin_lock_irqsave(&zone->lock, flags);
6071 tmp = (u64)pages_min * zone->managed_pages;
6072 do_div(tmp, lowmem_pages);
6073 if (is_highmem(zone)) {
6074 /*
6075 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6076 * need highmem pages, so cap pages_min to a small
6077 * value here.
6078 *
6079 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6080 * deltas control asynch page reclaim, and so should
6081 * not be capped for highmem.
6082 */
6083 unsigned long min_pages;
6084
6085 min_pages = zone->managed_pages / 1024;
6086 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6087 zone->watermark[WMARK_MIN] = min_pages;
6088 } else {
6089 /*
6090 * If it's a lowmem zone, reserve a number of pages
6091 * proportionate to the zone's size.
6092 */
6093 zone->watermark[WMARK_MIN] = tmp;
6094 }
6095
6096 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6097 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6098
6099 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6100 high_wmark_pages(zone) - low_wmark_pages(zone) -
6101 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6102
6103 spin_unlock_irqrestore(&zone->lock, flags);
6104 }
6105
6106 /* update totalreserve_pages */
6107 calculate_totalreserve_pages();
6108 }
6109
6110 /**
6111 * setup_per_zone_wmarks - called when min_free_kbytes changes
6112 * or when memory is hot-{added|removed}
6113 *
6114 * Ensures that the watermark[min,low,high] values for each zone are set
6115 * correctly with respect to min_free_kbytes.
6116 */
6117 void setup_per_zone_wmarks(void)
6118 {
6119 mutex_lock(&zonelists_mutex);
6120 __setup_per_zone_wmarks();
6121 mutex_unlock(&zonelists_mutex);
6122 }
6123
6124 /*
6125 * The inactive anon list should be small enough that the VM never has to
6126 * do too much work, but large enough that each inactive page has a chance
6127 * to be referenced again before it is swapped out.
6128 *
6129 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6130 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6131 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6132 * the anonymous pages are kept on the inactive list.
6133 *
6134 * total target max
6135 * memory ratio inactive anon
6136 * -------------------------------------
6137 * 10MB 1 5MB
6138 * 100MB 1 50MB
6139 * 1GB 3 250MB
6140 * 10GB 10 0.9GB
6141 * 100GB 31 3GB
6142 * 1TB 101 10GB
6143 * 10TB 320 32GB
6144 */
6145 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6146 {
6147 unsigned int gb, ratio;
6148
6149 /* Zone size in gigabytes */
6150 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6151 if (gb)
6152 ratio = int_sqrt(10 * gb);
6153 else
6154 ratio = 1;
6155
6156 zone->inactive_ratio = ratio;
6157 }
6158
6159 static void __meminit setup_per_zone_inactive_ratio(void)
6160 {
6161 struct zone *zone;
6162
6163 for_each_zone(zone)
6164 calculate_zone_inactive_ratio(zone);
6165 }
6166
6167 /*
6168 * Initialise min_free_kbytes.
6169 *
6170 * For small machines we want it small (128k min). For large machines
6171 * we want it large (64MB max). But it is not linear, because network
6172 * bandwidth does not increase linearly with machine size. We use
6173 *
6174 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6175 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6176 *
6177 * which yields
6178 *
6179 * 16MB: 512k
6180 * 32MB: 724k
6181 * 64MB: 1024k
6182 * 128MB: 1448k
6183 * 256MB: 2048k
6184 * 512MB: 2896k
6185 * 1024MB: 4096k
6186 * 2048MB: 5792k
6187 * 4096MB: 8192k
6188 * 8192MB: 11584k
6189 * 16384MB: 16384k
6190 */
6191 int __meminit init_per_zone_wmark_min(void)
6192 {
6193 unsigned long lowmem_kbytes;
6194 int new_min_free_kbytes;
6195
6196 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6197 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6198
6199 if (new_min_free_kbytes > user_min_free_kbytes) {
6200 min_free_kbytes = new_min_free_kbytes;
6201 if (min_free_kbytes < 128)
6202 min_free_kbytes = 128;
6203 if (min_free_kbytes > 65536)
6204 min_free_kbytes = 65536;
6205 } else {
6206 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6207 new_min_free_kbytes, user_min_free_kbytes);
6208 }
6209 setup_per_zone_wmarks();
6210 refresh_zone_stat_thresholds();
6211 setup_per_zone_lowmem_reserve();
6212 setup_per_zone_inactive_ratio();
6213 return 0;
6214 }
6215 module_init(init_per_zone_wmark_min)
6216
6217 /*
6218 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6219 * that we can call two helper functions whenever min_free_kbytes
6220 * changes.
6221 */
6222 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6223 void __user *buffer, size_t *length, loff_t *ppos)
6224 {
6225 int rc;
6226
6227 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6228 if (rc)
6229 return rc;
6230
6231 if (write) {
6232 user_min_free_kbytes = min_free_kbytes;
6233 setup_per_zone_wmarks();
6234 }
6235 return 0;
6236 }
6237
6238 #ifdef CONFIG_NUMA
6239 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6240 void __user *buffer, size_t *length, loff_t *ppos)
6241 {
6242 struct zone *zone;
6243 int rc;
6244
6245 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6246 if (rc)
6247 return rc;
6248
6249 for_each_zone(zone)
6250 zone->min_unmapped_pages = (zone->managed_pages *
6251 sysctl_min_unmapped_ratio) / 100;
6252 return 0;
6253 }
6254
6255 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6256 void __user *buffer, size_t *length, loff_t *ppos)
6257 {
6258 struct zone *zone;
6259 int rc;
6260
6261 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6262 if (rc)
6263 return rc;
6264
6265 for_each_zone(zone)
6266 zone->min_slab_pages = (zone->managed_pages *
6267 sysctl_min_slab_ratio) / 100;
6268 return 0;
6269 }
6270 #endif
6271
6272 /*
6273 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6274 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6275 * whenever sysctl_lowmem_reserve_ratio changes.
6276 *
6277 * The reserve ratio obviously has absolutely no relation with the
6278 * minimum watermarks. The lowmem reserve ratio can only make sense
6279 * if in function of the boot time zone sizes.
6280 */
6281 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6282 void __user *buffer, size_t *length, loff_t *ppos)
6283 {
6284 proc_dointvec_minmax(table, write, buffer, length, ppos);
6285 setup_per_zone_lowmem_reserve();
6286 return 0;
6287 }
6288
6289 /*
6290 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6291 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6292 * pagelist can have before it gets flushed back to buddy allocator.
6293 */
6294 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6295 void __user *buffer, size_t *length, loff_t *ppos)
6296 {
6297 struct zone *zone;
6298 int old_percpu_pagelist_fraction;
6299 int ret;
6300
6301 mutex_lock(&pcp_batch_high_lock);
6302 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6303
6304 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6305 if (!write || ret < 0)
6306 goto out;
6307
6308 /* Sanity checking to avoid pcp imbalance */
6309 if (percpu_pagelist_fraction &&
6310 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6311 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6312 ret = -EINVAL;
6313 goto out;
6314 }
6315
6316 /* No change? */
6317 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6318 goto out;
6319
6320 for_each_populated_zone(zone) {
6321 unsigned int cpu;
6322
6323 for_each_possible_cpu(cpu)
6324 pageset_set_high_and_batch(zone,
6325 per_cpu_ptr(zone->pageset, cpu));
6326 }
6327 out:
6328 mutex_unlock(&pcp_batch_high_lock);
6329 return ret;
6330 }
6331
6332 #ifdef CONFIG_NUMA
6333 int hashdist = HASHDIST_DEFAULT;
6334
6335 static int __init set_hashdist(char *str)
6336 {
6337 if (!str)
6338 return 0;
6339 hashdist = simple_strtoul(str, &str, 0);
6340 return 1;
6341 }
6342 __setup("hashdist=", set_hashdist);
6343 #endif
6344
6345 /*
6346 * allocate a large system hash table from bootmem
6347 * - it is assumed that the hash table must contain an exact power-of-2
6348 * quantity of entries
6349 * - limit is the number of hash buckets, not the total allocation size
6350 */
6351 void *__init alloc_large_system_hash(const char *tablename,
6352 unsigned long bucketsize,
6353 unsigned long numentries,
6354 int scale,
6355 int flags,
6356 unsigned int *_hash_shift,
6357 unsigned int *_hash_mask,
6358 unsigned long low_limit,
6359 unsigned long high_limit)
6360 {
6361 unsigned long long max = high_limit;
6362 unsigned long log2qty, size;
6363 void *table = NULL;
6364
6365 /* allow the kernel cmdline to have a say */
6366 if (!numentries) {
6367 /* round applicable memory size up to nearest megabyte */
6368 numentries = nr_kernel_pages;
6369
6370 /* It isn't necessary when PAGE_SIZE >= 1MB */
6371 if (PAGE_SHIFT < 20)
6372 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6373
6374 /* limit to 1 bucket per 2^scale bytes of low memory */
6375 if (scale > PAGE_SHIFT)
6376 numentries >>= (scale - PAGE_SHIFT);
6377 else
6378 numentries <<= (PAGE_SHIFT - scale);
6379
6380 /* Make sure we've got at least a 0-order allocation.. */
6381 if (unlikely(flags & HASH_SMALL)) {
6382 /* Makes no sense without HASH_EARLY */
6383 WARN_ON(!(flags & HASH_EARLY));
6384 if (!(numentries >> *_hash_shift)) {
6385 numentries = 1UL << *_hash_shift;
6386 BUG_ON(!numentries);
6387 }
6388 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6389 numentries = PAGE_SIZE / bucketsize;
6390 }
6391 numentries = roundup_pow_of_two(numentries);
6392
6393 /* limit allocation size to 1/16 total memory by default */
6394 if (max == 0) {
6395 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6396 do_div(max, bucketsize);
6397 }
6398 max = min(max, 0x80000000ULL);
6399
6400 if (numentries < low_limit)
6401 numentries = low_limit;
6402 if (numentries > max)
6403 numentries = max;
6404
6405 log2qty = ilog2(numentries);
6406
6407 do {
6408 size = bucketsize << log2qty;
6409 if (flags & HASH_EARLY)
6410 table = memblock_virt_alloc_nopanic(size, 0);
6411 else if (hashdist)
6412 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6413 else {
6414 /*
6415 * If bucketsize is not a power-of-two, we may free
6416 * some pages at the end of hash table which
6417 * alloc_pages_exact() automatically does
6418 */
6419 if (get_order(size) < MAX_ORDER) {
6420 table = alloc_pages_exact(size, GFP_ATOMIC);
6421 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6422 }
6423 }
6424 } while (!table && size > PAGE_SIZE && --log2qty);
6425
6426 if (!table)
6427 panic("Failed to allocate %s hash table\n", tablename);
6428
6429 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6430 tablename,
6431 (1UL << log2qty),
6432 ilog2(size) - PAGE_SHIFT,
6433 size);
6434
6435 if (_hash_shift)
6436 *_hash_shift = log2qty;
6437 if (_hash_mask)
6438 *_hash_mask = (1 << log2qty) - 1;
6439
6440 return table;
6441 }
6442
6443 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6444 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6445 unsigned long pfn)
6446 {
6447 #ifdef CONFIG_SPARSEMEM
6448 return __pfn_to_section(pfn)->pageblock_flags;
6449 #else
6450 return zone->pageblock_flags;
6451 #endif /* CONFIG_SPARSEMEM */
6452 }
6453
6454 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6455 {
6456 #ifdef CONFIG_SPARSEMEM
6457 pfn &= (PAGES_PER_SECTION-1);
6458 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6459 #else
6460 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6461 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6462 #endif /* CONFIG_SPARSEMEM */
6463 }
6464
6465 /**
6466 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6467 * @page: The page within the block of interest
6468 * @pfn: The target page frame number
6469 * @end_bitidx: The last bit of interest to retrieve
6470 * @mask: mask of bits that the caller is interested in
6471 *
6472 * Return: pageblock_bits flags
6473 */
6474 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6475 unsigned long end_bitidx,
6476 unsigned long mask)
6477 {
6478 struct zone *zone;
6479 unsigned long *bitmap;
6480 unsigned long bitidx, word_bitidx;
6481 unsigned long word;
6482
6483 zone = page_zone(page);
6484 bitmap = get_pageblock_bitmap(zone, pfn);
6485 bitidx = pfn_to_bitidx(zone, pfn);
6486 word_bitidx = bitidx / BITS_PER_LONG;
6487 bitidx &= (BITS_PER_LONG-1);
6488
6489 word = bitmap[word_bitidx];
6490 bitidx += end_bitidx;
6491 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6492 }
6493
6494 /**
6495 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6496 * @page: The page within the block of interest
6497 * @flags: The flags to set
6498 * @pfn: The target page frame number
6499 * @end_bitidx: The last bit of interest
6500 * @mask: mask of bits that the caller is interested in
6501 */
6502 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6503 unsigned long pfn,
6504 unsigned long end_bitidx,
6505 unsigned long mask)
6506 {
6507 struct zone *zone;
6508 unsigned long *bitmap;
6509 unsigned long bitidx, word_bitidx;
6510 unsigned long old_word, word;
6511
6512 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6513
6514 zone = page_zone(page);
6515 bitmap = get_pageblock_bitmap(zone, pfn);
6516 bitidx = pfn_to_bitidx(zone, pfn);
6517 word_bitidx = bitidx / BITS_PER_LONG;
6518 bitidx &= (BITS_PER_LONG-1);
6519
6520 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6521
6522 bitidx += end_bitidx;
6523 mask <<= (BITS_PER_LONG - bitidx - 1);
6524 flags <<= (BITS_PER_LONG - bitidx - 1);
6525
6526 word = READ_ONCE(bitmap[word_bitidx]);
6527 for (;;) {
6528 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6529 if (word == old_word)
6530 break;
6531 word = old_word;
6532 }
6533 }
6534
6535 /*
6536 * This function checks whether pageblock includes unmovable pages or not.
6537 * If @count is not zero, it is okay to include less @count unmovable pages
6538 *
6539 * PageLRU check without isolation or lru_lock could race so that
6540 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6541 * expect this function should be exact.
6542 */
6543 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6544 bool skip_hwpoisoned_pages)
6545 {
6546 unsigned long pfn, iter, found;
6547 int mt;
6548
6549 /*
6550 * For avoiding noise data, lru_add_drain_all() should be called
6551 * If ZONE_MOVABLE, the zone never contains unmovable pages
6552 */
6553 if (zone_idx(zone) == ZONE_MOVABLE)
6554 return false;
6555 mt = get_pageblock_migratetype(page);
6556 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6557 return false;
6558
6559 pfn = page_to_pfn(page);
6560 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6561 unsigned long check = pfn + iter;
6562
6563 if (!pfn_valid_within(check))
6564 continue;
6565
6566 page = pfn_to_page(check);
6567
6568 /*
6569 * Hugepages are not in LRU lists, but they're movable.
6570 * We need not scan over tail pages bacause we don't
6571 * handle each tail page individually in migration.
6572 */
6573 if (PageHuge(page)) {
6574 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6575 continue;
6576 }
6577
6578 /*
6579 * We can't use page_count without pin a page
6580 * because another CPU can free compound page.
6581 * This check already skips compound tails of THP
6582 * because their page->_count is zero at all time.
6583 */
6584 if (!atomic_read(&page->_count)) {
6585 if (PageBuddy(page))
6586 iter += (1 << page_order(page)) - 1;
6587 continue;
6588 }
6589
6590 /*
6591 * The HWPoisoned page may be not in buddy system, and
6592 * page_count() is not 0.
6593 */
6594 if (skip_hwpoisoned_pages && PageHWPoison(page))
6595 continue;
6596
6597 if (!PageLRU(page))
6598 found++;
6599 /*
6600 * If there are RECLAIMABLE pages, we need to check
6601 * it. But now, memory offline itself doesn't call
6602 * shrink_node_slabs() and it still to be fixed.
6603 */
6604 /*
6605 * If the page is not RAM, page_count()should be 0.
6606 * we don't need more check. This is an _used_ not-movable page.
6607 *
6608 * The problematic thing here is PG_reserved pages. PG_reserved
6609 * is set to both of a memory hole page and a _used_ kernel
6610 * page at boot.
6611 */
6612 if (found > count)
6613 return true;
6614 }
6615 return false;
6616 }
6617
6618 bool is_pageblock_removable_nolock(struct page *page)
6619 {
6620 struct zone *zone;
6621 unsigned long pfn;
6622
6623 /*
6624 * We have to be careful here because we are iterating over memory
6625 * sections which are not zone aware so we might end up outside of
6626 * the zone but still within the section.
6627 * We have to take care about the node as well. If the node is offline
6628 * its NODE_DATA will be NULL - see page_zone.
6629 */
6630 if (!node_online(page_to_nid(page)))
6631 return false;
6632
6633 zone = page_zone(page);
6634 pfn = page_to_pfn(page);
6635 if (!zone_spans_pfn(zone, pfn))
6636 return false;
6637
6638 return !has_unmovable_pages(zone, page, 0, true);
6639 }
6640
6641 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6642
6643 static unsigned long pfn_max_align_down(unsigned long pfn)
6644 {
6645 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6646 pageblock_nr_pages) - 1);
6647 }
6648
6649 static unsigned long pfn_max_align_up(unsigned long pfn)
6650 {
6651 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6652 pageblock_nr_pages));
6653 }
6654
6655 /* [start, end) must belong to a single zone. */
6656 static int __alloc_contig_migrate_range(struct compact_control *cc,
6657 unsigned long start, unsigned long end)
6658 {
6659 /* This function is based on compact_zone() from compaction.c. */
6660 unsigned long nr_reclaimed;
6661 unsigned long pfn = start;
6662 unsigned int tries = 0;
6663 int ret = 0;
6664
6665 migrate_prep();
6666
6667 while (pfn < end || !list_empty(&cc->migratepages)) {
6668 if (fatal_signal_pending(current)) {
6669 ret = -EINTR;
6670 break;
6671 }
6672
6673 if (list_empty(&cc->migratepages)) {
6674 cc->nr_migratepages = 0;
6675 pfn = isolate_migratepages_range(cc, pfn, end);
6676 if (!pfn) {
6677 ret = -EINTR;
6678 break;
6679 }
6680 tries = 0;
6681 } else if (++tries == 5) {
6682 ret = ret < 0 ? ret : -EBUSY;
6683 break;
6684 }
6685
6686 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6687 &cc->migratepages);
6688 cc->nr_migratepages -= nr_reclaimed;
6689
6690 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6691 NULL, 0, cc->mode, MR_CMA);
6692 }
6693 if (ret < 0) {
6694 putback_movable_pages(&cc->migratepages);
6695 return ret;
6696 }
6697 return 0;
6698 }
6699
6700 /**
6701 * alloc_contig_range() -- tries to allocate given range of pages
6702 * @start: start PFN to allocate
6703 * @end: one-past-the-last PFN to allocate
6704 * @migratetype: migratetype of the underlaying pageblocks (either
6705 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6706 * in range must have the same migratetype and it must
6707 * be either of the two.
6708 *
6709 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6710 * aligned, however it's the caller's responsibility to guarantee that
6711 * we are the only thread that changes migrate type of pageblocks the
6712 * pages fall in.
6713 *
6714 * The PFN range must belong to a single zone.
6715 *
6716 * Returns zero on success or negative error code. On success all
6717 * pages which PFN is in [start, end) are allocated for the caller and
6718 * need to be freed with free_contig_range().
6719 */
6720 int alloc_contig_range(unsigned long start, unsigned long end,
6721 unsigned migratetype)
6722 {
6723 unsigned long outer_start, outer_end;
6724 unsigned int order;
6725 int ret = 0;
6726
6727 struct compact_control cc = {
6728 .nr_migratepages = 0,
6729 .order = -1,
6730 .zone = page_zone(pfn_to_page(start)),
6731 .mode = MIGRATE_SYNC,
6732 .ignore_skip_hint = true,
6733 };
6734 INIT_LIST_HEAD(&cc.migratepages);
6735
6736 /*
6737 * What we do here is we mark all pageblocks in range as
6738 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6739 * have different sizes, and due to the way page allocator
6740 * work, we align the range to biggest of the two pages so
6741 * that page allocator won't try to merge buddies from
6742 * different pageblocks and change MIGRATE_ISOLATE to some
6743 * other migration type.
6744 *
6745 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6746 * migrate the pages from an unaligned range (ie. pages that
6747 * we are interested in). This will put all the pages in
6748 * range back to page allocator as MIGRATE_ISOLATE.
6749 *
6750 * When this is done, we take the pages in range from page
6751 * allocator removing them from the buddy system. This way
6752 * page allocator will never consider using them.
6753 *
6754 * This lets us mark the pageblocks back as
6755 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6756 * aligned range but not in the unaligned, original range are
6757 * put back to page allocator so that buddy can use them.
6758 */
6759
6760 ret = start_isolate_page_range(pfn_max_align_down(start),
6761 pfn_max_align_up(end), migratetype,
6762 false);
6763 if (ret)
6764 return ret;
6765
6766 /*
6767 * In case of -EBUSY, we'd like to know which page causes problem.
6768 * So, just fall through. We will check it in test_pages_isolated().
6769 */
6770 ret = __alloc_contig_migrate_range(&cc, start, end);
6771 if (ret && ret != -EBUSY)
6772 goto done;
6773
6774 /*
6775 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6776 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6777 * more, all pages in [start, end) are free in page allocator.
6778 * What we are going to do is to allocate all pages from
6779 * [start, end) (that is remove them from page allocator).
6780 *
6781 * The only problem is that pages at the beginning and at the
6782 * end of interesting range may be not aligned with pages that
6783 * page allocator holds, ie. they can be part of higher order
6784 * pages. Because of this, we reserve the bigger range and
6785 * once this is done free the pages we are not interested in.
6786 *
6787 * We don't have to hold zone->lock here because the pages are
6788 * isolated thus they won't get removed from buddy.
6789 */
6790
6791 lru_add_drain_all();
6792 drain_all_pages(cc.zone);
6793
6794 order = 0;
6795 outer_start = start;
6796 while (!PageBuddy(pfn_to_page(outer_start))) {
6797 if (++order >= MAX_ORDER) {
6798 outer_start = start;
6799 break;
6800 }
6801 outer_start &= ~0UL << order;
6802 }
6803
6804 if (outer_start != start) {
6805 order = page_order(pfn_to_page(outer_start));
6806
6807 /*
6808 * outer_start page could be small order buddy page and
6809 * it doesn't include start page. Adjust outer_start
6810 * in this case to report failed page properly
6811 * on tracepoint in test_pages_isolated()
6812 */
6813 if (outer_start + (1UL << order) <= start)
6814 outer_start = start;
6815 }
6816
6817 /* Make sure the range is really isolated. */
6818 if (test_pages_isolated(outer_start, end, false)) {
6819 pr_info("%s: [%lx, %lx) PFNs busy\n",
6820 __func__, outer_start, end);
6821 ret = -EBUSY;
6822 goto done;
6823 }
6824
6825 /* Grab isolated pages from freelists. */
6826 outer_end = isolate_freepages_range(&cc, outer_start, end);
6827 if (!outer_end) {
6828 ret = -EBUSY;
6829 goto done;
6830 }
6831
6832 /* Free head and tail (if any) */
6833 if (start != outer_start)
6834 free_contig_range(outer_start, start - outer_start);
6835 if (end != outer_end)
6836 free_contig_range(end, outer_end - end);
6837
6838 done:
6839 undo_isolate_page_range(pfn_max_align_down(start),
6840 pfn_max_align_up(end), migratetype);
6841 return ret;
6842 }
6843
6844 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6845 {
6846 unsigned int count = 0;
6847
6848 for (; nr_pages--; pfn++) {
6849 struct page *page = pfn_to_page(pfn);
6850
6851 count += page_count(page) != 1;
6852 __free_page(page);
6853 }
6854 WARN(count != 0, "%d pages are still in use!\n", count);
6855 }
6856 #endif
6857
6858 #ifdef CONFIG_MEMORY_HOTPLUG
6859 /*
6860 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6861 * page high values need to be recalulated.
6862 */
6863 void __meminit zone_pcp_update(struct zone *zone)
6864 {
6865 unsigned cpu;
6866 mutex_lock(&pcp_batch_high_lock);
6867 for_each_possible_cpu(cpu)
6868 pageset_set_high_and_batch(zone,
6869 per_cpu_ptr(zone->pageset, cpu));
6870 mutex_unlock(&pcp_batch_high_lock);
6871 }
6872 #endif
6873
6874 void zone_pcp_reset(struct zone *zone)
6875 {
6876 unsigned long flags;
6877 int cpu;
6878 struct per_cpu_pageset *pset;
6879
6880 /* avoid races with drain_pages() */
6881 local_irq_save(flags);
6882 if (zone->pageset != &boot_pageset) {
6883 for_each_online_cpu(cpu) {
6884 pset = per_cpu_ptr(zone->pageset, cpu);
6885 drain_zonestat(zone, pset);
6886 }
6887 free_percpu(zone->pageset);
6888 zone->pageset = &boot_pageset;
6889 }
6890 local_irq_restore(flags);
6891 }
6892
6893 #ifdef CONFIG_MEMORY_HOTREMOVE
6894 /*
6895 * All pages in the range must be isolated before calling this.
6896 */
6897 void
6898 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6899 {
6900 struct page *page;
6901 struct zone *zone;
6902 unsigned int order, i;
6903 unsigned long pfn;
6904 unsigned long flags;
6905 /* find the first valid pfn */
6906 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6907 if (pfn_valid(pfn))
6908 break;
6909 if (pfn == end_pfn)
6910 return;
6911 zone = page_zone(pfn_to_page(pfn));
6912 spin_lock_irqsave(&zone->lock, flags);
6913 pfn = start_pfn;
6914 while (pfn < end_pfn) {
6915 if (!pfn_valid(pfn)) {
6916 pfn++;
6917 continue;
6918 }
6919 page = pfn_to_page(pfn);
6920 /*
6921 * The HWPoisoned page may be not in buddy system, and
6922 * page_count() is not 0.
6923 */
6924 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6925 pfn++;
6926 SetPageReserved(page);
6927 continue;
6928 }
6929
6930 BUG_ON(page_count(page));
6931 BUG_ON(!PageBuddy(page));
6932 order = page_order(page);
6933 #ifdef CONFIG_DEBUG_VM
6934 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6935 pfn, 1 << order, end_pfn);
6936 #endif
6937 list_del(&page->lru);
6938 rmv_page_order(page);
6939 zone->free_area[order].nr_free--;
6940 for (i = 0; i < (1 << order); i++)
6941 SetPageReserved((page+i));
6942 pfn += (1 << order);
6943 }
6944 spin_unlock_irqrestore(&zone->lock, flags);
6945 }
6946 #endif
6947
6948 #ifdef CONFIG_MEMORY_FAILURE
6949 bool is_free_buddy_page(struct page *page)
6950 {
6951 struct zone *zone = page_zone(page);
6952 unsigned long pfn = page_to_pfn(page);
6953 unsigned long flags;
6954 unsigned int order;
6955
6956 spin_lock_irqsave(&zone->lock, flags);
6957 for (order = 0; order < MAX_ORDER; order++) {
6958 struct page *page_head = page - (pfn & ((1 << order) - 1));
6959
6960 if (PageBuddy(page_head) && page_order(page_head) >= order)
6961 break;
6962 }
6963 spin_unlock_irqrestore(&zone->lock, flags);
6964
6965 return order < MAX_ORDER;
6966 }
6967 #endif