2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock
);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node
);
81 EXPORT_PER_CPU_SYMBOL(numa_node
);
84 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
93 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
95 int _node_numa_mem_
[MAX_NUMNODES
];
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex
);
100 DEFINE_PER_CPU(struct work_struct
, pcpu_drain
);
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy
;
104 EXPORT_SYMBOL(latent_entropy
);
108 * Array of node states.
110 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
111 [N_POSSIBLE
] = NODE_MASK_ALL
,
112 [N_ONLINE
] = { { [0] = 1UL } },
114 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
118 [N_MEMORY
] = { { [0] = 1UL } },
119 [N_CPU
] = { { [0] = 1UL } },
122 EXPORT_SYMBOL(node_states
);
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock
);
127 unsigned long totalram_pages __read_mostly
;
128 unsigned long totalreserve_pages __read_mostly
;
129 unsigned long totalcma_pages __read_mostly
;
131 int percpu_pagelist_fraction
;
132 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
142 static inline int get_pcppage_migratetype(struct page
*page
)
147 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
149 page
->index
= migratetype
;
152 #ifdef CONFIG_PM_SLEEP
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with system_transition_mutex held
158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160 * with that modification).
163 static gfp_t saved_gfp_mask
;
165 void pm_restore_gfp_mask(void)
167 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
168 if (saved_gfp_mask
) {
169 gfp_allowed_mask
= saved_gfp_mask
;
174 void pm_restrict_gfp_mask(void)
176 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
177 WARN_ON(saved_gfp_mask
);
178 saved_gfp_mask
= gfp_allowed_mask
;
179 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
182 bool pm_suspended_storage(void)
184 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
188 #endif /* CONFIG_PM_SLEEP */
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly
;
194 static void __free_pages_ok(struct page
*page
, unsigned int order
);
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
207 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
208 #ifdef CONFIG_ZONE_DMA
211 #ifdef CONFIG_ZONE_DMA32
215 #ifdef CONFIG_HIGHMEM
221 EXPORT_SYMBOL(totalram_pages
);
223 static char * const zone_names
[MAX_NR_ZONES
] = {
224 #ifdef CONFIG_ZONE_DMA
227 #ifdef CONFIG_ZONE_DMA32
231 #ifdef CONFIG_HIGHMEM
235 #ifdef CONFIG_ZONE_DEVICE
240 char * const migratetype_names
[MIGRATE_TYPES
] = {
248 #ifdef CONFIG_MEMORY_ISOLATION
253 compound_page_dtor
* const compound_page_dtors
[] = {
256 #ifdef CONFIG_HUGETLB_PAGE
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
264 int min_free_kbytes
= 1024;
265 int user_min_free_kbytes
= -1;
266 int watermark_scale_factor
= 10;
268 static unsigned long nr_kernel_pages __meminitdata
;
269 static unsigned long nr_all_pages __meminitdata
;
270 static unsigned long dma_reserve __meminitdata
;
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __meminitdata
;
274 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __meminitdata
;
275 static unsigned long required_kernelcore __initdata
;
276 static unsigned long required_kernelcore_percent __initdata
;
277 static unsigned long required_movablecore __initdata
;
278 static unsigned long required_movablecore_percent __initdata
;
279 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __meminitdata
;
280 static bool mirrored_kernelcore __meminitdata
;
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284 EXPORT_SYMBOL(movable_zone
);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
288 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
289 int nr_online_nodes __read_mostly
= 1;
290 EXPORT_SYMBOL(nr_node_ids
);
291 EXPORT_SYMBOL(nr_online_nodes
);
294 int page_group_by_mobility_disabled __read_mostly
;
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
298 * During boot we initialize deferred pages on-demand, as needed, but once
299 * page_alloc_init_late() has finished, the deferred pages are all initialized,
300 * and we can permanently disable that path.
302 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
305 * Calling kasan_free_pages() only after deferred memory initialization
306 * has completed. Poisoning pages during deferred memory init will greatly
307 * lengthen the process and cause problem in large memory systems as the
308 * deferred pages initialization is done with interrupt disabled.
310 * Assuming that there will be no reference to those newly initialized
311 * pages before they are ever allocated, this should have no effect on
312 * KASAN memory tracking as the poison will be properly inserted at page
313 * allocation time. The only corner case is when pages are allocated by
314 * on-demand allocation and then freed again before the deferred pages
315 * initialization is done, but this is not likely to happen.
317 static inline void kasan_free_nondeferred_pages(struct page
*page
, int order
)
319 if (!static_branch_unlikely(&deferred_pages
))
320 kasan_free_pages(page
, order
);
323 /* Returns true if the struct page for the pfn is uninitialised */
324 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
326 int nid
= early_pfn_to_nid(pfn
);
328 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
335 * Returns false when the remaining initialisation should be deferred until
336 * later in the boot cycle when it can be parallelised.
338 static inline bool update_defer_init(pg_data_t
*pgdat
,
339 unsigned long pfn
, unsigned long zone_end
,
340 unsigned long *nr_initialised
)
342 /* Always populate low zones for address-constrained allocations */
343 if (zone_end
< pgdat_end_pfn(pgdat
))
346 if ((*nr_initialised
> pgdat
->static_init_pgcnt
) &&
347 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
348 pgdat
->first_deferred_pfn
= pfn
;
355 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
357 static inline bool early_page_uninitialised(unsigned long pfn
)
362 static inline bool update_defer_init(pg_data_t
*pgdat
,
363 unsigned long pfn
, unsigned long zone_end
,
364 unsigned long *nr_initialised
)
370 /* Return a pointer to the bitmap storing bits affecting a block of pages */
371 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
374 #ifdef CONFIG_SPARSEMEM
375 return __pfn_to_section(pfn
)->pageblock_flags
;
377 return page_zone(page
)->pageblock_flags
;
378 #endif /* CONFIG_SPARSEMEM */
381 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
383 #ifdef CONFIG_SPARSEMEM
384 pfn
&= (PAGES_PER_SECTION
-1);
385 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
387 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
388 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
389 #endif /* CONFIG_SPARSEMEM */
393 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
394 * @page: The page within the block of interest
395 * @pfn: The target page frame number
396 * @end_bitidx: The last bit of interest to retrieve
397 * @mask: mask of bits that the caller is interested in
399 * Return: pageblock_bits flags
401 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
403 unsigned long end_bitidx
,
406 unsigned long *bitmap
;
407 unsigned long bitidx
, word_bitidx
;
410 bitmap
= get_pageblock_bitmap(page
, pfn
);
411 bitidx
= pfn_to_bitidx(page
, pfn
);
412 word_bitidx
= bitidx
/ BITS_PER_LONG
;
413 bitidx
&= (BITS_PER_LONG
-1);
415 word
= bitmap
[word_bitidx
];
416 bitidx
+= end_bitidx
;
417 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
420 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
421 unsigned long end_bitidx
,
424 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
427 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
429 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
433 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
434 * @page: The page within the block of interest
435 * @flags: The flags to set
436 * @pfn: The target page frame number
437 * @end_bitidx: The last bit of interest
438 * @mask: mask of bits that the caller is interested in
440 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
442 unsigned long end_bitidx
,
445 unsigned long *bitmap
;
446 unsigned long bitidx
, word_bitidx
;
447 unsigned long old_word
, word
;
449 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
451 bitmap
= get_pageblock_bitmap(page
, pfn
);
452 bitidx
= pfn_to_bitidx(page
, pfn
);
453 word_bitidx
= bitidx
/ BITS_PER_LONG
;
454 bitidx
&= (BITS_PER_LONG
-1);
456 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
458 bitidx
+= end_bitidx
;
459 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
460 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
462 word
= READ_ONCE(bitmap
[word_bitidx
]);
464 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
465 if (word
== old_word
)
471 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
473 if (unlikely(page_group_by_mobility_disabled
&&
474 migratetype
< MIGRATE_PCPTYPES
))
475 migratetype
= MIGRATE_UNMOVABLE
;
477 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
478 PB_migrate
, PB_migrate_end
);
481 #ifdef CONFIG_DEBUG_VM
482 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
486 unsigned long pfn
= page_to_pfn(page
);
487 unsigned long sp
, start_pfn
;
490 seq
= zone_span_seqbegin(zone
);
491 start_pfn
= zone
->zone_start_pfn
;
492 sp
= zone
->spanned_pages
;
493 if (!zone_spans_pfn(zone
, pfn
))
495 } while (zone_span_seqretry(zone
, seq
));
498 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
499 pfn
, zone_to_nid(zone
), zone
->name
,
500 start_pfn
, start_pfn
+ sp
);
505 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
507 if (!pfn_valid_within(page_to_pfn(page
)))
509 if (zone
!= page_zone(page
))
515 * Temporary debugging check for pages not lying within a given zone.
517 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
519 if (page_outside_zone_boundaries(zone
, page
))
521 if (!page_is_consistent(zone
, page
))
527 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
533 static void bad_page(struct page
*page
, const char *reason
,
534 unsigned long bad_flags
)
536 static unsigned long resume
;
537 static unsigned long nr_shown
;
538 static unsigned long nr_unshown
;
541 * Allow a burst of 60 reports, then keep quiet for that minute;
542 * or allow a steady drip of one report per second.
544 if (nr_shown
== 60) {
545 if (time_before(jiffies
, resume
)) {
551 "BUG: Bad page state: %lu messages suppressed\n",
558 resume
= jiffies
+ 60 * HZ
;
560 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
561 current
->comm
, page_to_pfn(page
));
562 __dump_page(page
, reason
);
563 bad_flags
&= page
->flags
;
565 pr_alert("bad because of flags: %#lx(%pGp)\n",
566 bad_flags
, &bad_flags
);
567 dump_page_owner(page
);
572 /* Leave bad fields for debug, except PageBuddy could make trouble */
573 page_mapcount_reset(page
); /* remove PageBuddy */
574 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
578 * Higher-order pages are called "compound pages". They are structured thusly:
580 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
582 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
583 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
585 * The first tail page's ->compound_dtor holds the offset in array of compound
586 * page destructors. See compound_page_dtors.
588 * The first tail page's ->compound_order holds the order of allocation.
589 * This usage means that zero-order pages may not be compound.
592 void free_compound_page(struct page
*page
)
594 __free_pages_ok(page
, compound_order(page
));
597 void prep_compound_page(struct page
*page
, unsigned int order
)
600 int nr_pages
= 1 << order
;
602 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
603 set_compound_order(page
, order
);
605 for (i
= 1; i
< nr_pages
; i
++) {
606 struct page
*p
= page
+ i
;
607 set_page_count(p
, 0);
608 p
->mapping
= TAIL_MAPPING
;
609 set_compound_head(p
, page
);
611 atomic_set(compound_mapcount_ptr(page
), -1);
614 #ifdef CONFIG_DEBUG_PAGEALLOC
615 unsigned int _debug_guardpage_minorder
;
616 bool _debug_pagealloc_enabled __read_mostly
617 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
618 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
619 bool _debug_guardpage_enabled __read_mostly
;
621 static int __init
early_debug_pagealloc(char *buf
)
625 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
627 early_param("debug_pagealloc", early_debug_pagealloc
);
629 static bool need_debug_guardpage(void)
631 /* If we don't use debug_pagealloc, we don't need guard page */
632 if (!debug_pagealloc_enabled())
635 if (!debug_guardpage_minorder())
641 static void init_debug_guardpage(void)
643 if (!debug_pagealloc_enabled())
646 if (!debug_guardpage_minorder())
649 _debug_guardpage_enabled
= true;
652 struct page_ext_operations debug_guardpage_ops
= {
653 .need
= need_debug_guardpage
,
654 .init
= init_debug_guardpage
,
657 static int __init
debug_guardpage_minorder_setup(char *buf
)
661 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
662 pr_err("Bad debug_guardpage_minorder value\n");
665 _debug_guardpage_minorder
= res
;
666 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
669 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
671 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
672 unsigned int order
, int migratetype
)
674 struct page_ext
*page_ext
;
676 if (!debug_guardpage_enabled())
679 if (order
>= debug_guardpage_minorder())
682 page_ext
= lookup_page_ext(page
);
683 if (unlikely(!page_ext
))
686 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
688 INIT_LIST_HEAD(&page
->lru
);
689 set_page_private(page
, order
);
690 /* Guard pages are not available for any usage */
691 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
696 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
697 unsigned int order
, int migratetype
)
699 struct page_ext
*page_ext
;
701 if (!debug_guardpage_enabled())
704 page_ext
= lookup_page_ext(page
);
705 if (unlikely(!page_ext
))
708 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
710 set_page_private(page
, 0);
711 if (!is_migrate_isolate(migratetype
))
712 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
715 struct page_ext_operations debug_guardpage_ops
;
716 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
717 unsigned int order
, int migratetype
) { return false; }
718 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
719 unsigned int order
, int migratetype
) {}
722 static inline void set_page_order(struct page
*page
, unsigned int order
)
724 set_page_private(page
, order
);
725 __SetPageBuddy(page
);
728 static inline void rmv_page_order(struct page
*page
)
730 __ClearPageBuddy(page
);
731 set_page_private(page
, 0);
735 * This function checks whether a page is free && is the buddy
736 * we can coalesce a page and its buddy if
737 * (a) the buddy is not in a hole (check before calling!) &&
738 * (b) the buddy is in the buddy system &&
739 * (c) a page and its buddy have the same order &&
740 * (d) a page and its buddy are in the same zone.
742 * For recording whether a page is in the buddy system, we set PageBuddy.
743 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
745 * For recording page's order, we use page_private(page).
747 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
750 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
751 if (page_zone_id(page
) != page_zone_id(buddy
))
754 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
759 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
761 * zone check is done late to avoid uselessly
762 * calculating zone/node ids for pages that could
765 if (page_zone_id(page
) != page_zone_id(buddy
))
768 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
776 * Freeing function for a buddy system allocator.
778 * The concept of a buddy system is to maintain direct-mapped table
779 * (containing bit values) for memory blocks of various "orders".
780 * The bottom level table contains the map for the smallest allocatable
781 * units of memory (here, pages), and each level above it describes
782 * pairs of units from the levels below, hence, "buddies".
783 * At a high level, all that happens here is marking the table entry
784 * at the bottom level available, and propagating the changes upward
785 * as necessary, plus some accounting needed to play nicely with other
786 * parts of the VM system.
787 * At each level, we keep a list of pages, which are heads of continuous
788 * free pages of length of (1 << order) and marked with PageBuddy.
789 * Page's order is recorded in page_private(page) field.
790 * So when we are allocating or freeing one, we can derive the state of the
791 * other. That is, if we allocate a small block, and both were
792 * free, the remainder of the region must be split into blocks.
793 * If a block is freed, and its buddy is also free, then this
794 * triggers coalescing into a block of larger size.
799 static inline void __free_one_page(struct page
*page
,
801 struct zone
*zone
, unsigned int order
,
804 unsigned long combined_pfn
;
805 unsigned long uninitialized_var(buddy_pfn
);
807 unsigned int max_order
;
809 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
811 VM_BUG_ON(!zone_is_initialized(zone
));
812 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
814 VM_BUG_ON(migratetype
== -1);
815 if (likely(!is_migrate_isolate(migratetype
)))
816 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
818 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
819 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
822 while (order
< max_order
- 1) {
823 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
824 buddy
= page
+ (buddy_pfn
- pfn
);
826 if (!pfn_valid_within(buddy_pfn
))
828 if (!page_is_buddy(page
, buddy
, order
))
831 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
832 * merge with it and move up one order.
834 if (page_is_guard(buddy
)) {
835 clear_page_guard(zone
, buddy
, order
, migratetype
);
837 list_del(&buddy
->lru
);
838 zone
->free_area
[order
].nr_free
--;
839 rmv_page_order(buddy
);
841 combined_pfn
= buddy_pfn
& pfn
;
842 page
= page
+ (combined_pfn
- pfn
);
846 if (max_order
< MAX_ORDER
) {
847 /* If we are here, it means order is >= pageblock_order.
848 * We want to prevent merge between freepages on isolate
849 * pageblock and normal pageblock. Without this, pageblock
850 * isolation could cause incorrect freepage or CMA accounting.
852 * We don't want to hit this code for the more frequent
855 if (unlikely(has_isolate_pageblock(zone
))) {
858 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
859 buddy
= page
+ (buddy_pfn
- pfn
);
860 buddy_mt
= get_pageblock_migratetype(buddy
);
862 if (migratetype
!= buddy_mt
863 && (is_migrate_isolate(migratetype
) ||
864 is_migrate_isolate(buddy_mt
)))
868 goto continue_merging
;
872 set_page_order(page
, order
);
875 * If this is not the largest possible page, check if the buddy
876 * of the next-highest order is free. If it is, it's possible
877 * that pages are being freed that will coalesce soon. In case,
878 * that is happening, add the free page to the tail of the list
879 * so it's less likely to be used soon and more likely to be merged
880 * as a higher order page
882 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
883 struct page
*higher_page
, *higher_buddy
;
884 combined_pfn
= buddy_pfn
& pfn
;
885 higher_page
= page
+ (combined_pfn
- pfn
);
886 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
887 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
888 if (pfn_valid_within(buddy_pfn
) &&
889 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
890 list_add_tail(&page
->lru
,
891 &zone
->free_area
[order
].free_list
[migratetype
]);
896 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
898 zone
->free_area
[order
].nr_free
++;
902 * A bad page could be due to a number of fields. Instead of multiple branches,
903 * try and check multiple fields with one check. The caller must do a detailed
904 * check if necessary.
906 static inline bool page_expected_state(struct page
*page
,
907 unsigned long check_flags
)
909 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
912 if (unlikely((unsigned long)page
->mapping
|
913 page_ref_count(page
) |
915 (unsigned long)page
->mem_cgroup
|
917 (page
->flags
& check_flags
)))
923 static void free_pages_check_bad(struct page
*page
)
925 const char *bad_reason
;
926 unsigned long bad_flags
;
931 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
932 bad_reason
= "nonzero mapcount";
933 if (unlikely(page
->mapping
!= NULL
))
934 bad_reason
= "non-NULL mapping";
935 if (unlikely(page_ref_count(page
) != 0))
936 bad_reason
= "nonzero _refcount";
937 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
938 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
942 if (unlikely(page
->mem_cgroup
))
943 bad_reason
= "page still charged to cgroup";
945 bad_page(page
, bad_reason
, bad_flags
);
948 static inline int free_pages_check(struct page
*page
)
950 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
953 /* Something has gone sideways, find it */
954 free_pages_check_bad(page
);
958 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
963 * We rely page->lru.next never has bit 0 set, unless the page
964 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
966 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
968 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
972 switch (page
- head_page
) {
974 /* the first tail page: ->mapping may be compound_mapcount() */
975 if (unlikely(compound_mapcount(page
))) {
976 bad_page(page
, "nonzero compound_mapcount", 0);
982 * the second tail page: ->mapping is
983 * deferred_list.next -- ignore value.
987 if (page
->mapping
!= TAIL_MAPPING
) {
988 bad_page(page
, "corrupted mapping in tail page", 0);
993 if (unlikely(!PageTail(page
))) {
994 bad_page(page
, "PageTail not set", 0);
997 if (unlikely(compound_head(page
) != head_page
)) {
998 bad_page(page
, "compound_head not consistent", 0);
1003 page
->mapping
= NULL
;
1004 clear_compound_head(page
);
1008 static __always_inline
bool free_pages_prepare(struct page
*page
,
1009 unsigned int order
, bool check_free
)
1013 VM_BUG_ON_PAGE(PageTail(page
), page
);
1015 trace_mm_page_free(page
, order
);
1018 * Check tail pages before head page information is cleared to
1019 * avoid checking PageCompound for order-0 pages.
1021 if (unlikely(order
)) {
1022 bool compound
= PageCompound(page
);
1025 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1028 ClearPageDoubleMap(page
);
1029 for (i
= 1; i
< (1 << order
); i
++) {
1031 bad
+= free_tail_pages_check(page
, page
+ i
);
1032 if (unlikely(free_pages_check(page
+ i
))) {
1036 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1039 if (PageMappingFlags(page
))
1040 page
->mapping
= NULL
;
1041 if (memcg_kmem_enabled() && PageKmemcg(page
))
1042 memcg_kmem_uncharge(page
, order
);
1044 bad
+= free_pages_check(page
);
1048 page_cpupid_reset_last(page
);
1049 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1050 reset_page_owner(page
, order
);
1052 if (!PageHighMem(page
)) {
1053 debug_check_no_locks_freed(page_address(page
),
1054 PAGE_SIZE
<< order
);
1055 debug_check_no_obj_freed(page_address(page
),
1056 PAGE_SIZE
<< order
);
1058 arch_free_page(page
, order
);
1059 kernel_poison_pages(page
, 1 << order
, 0);
1060 kernel_map_pages(page
, 1 << order
, 0);
1061 kasan_free_nondeferred_pages(page
, order
);
1066 #ifdef CONFIG_DEBUG_VM
1067 static inline bool free_pcp_prepare(struct page
*page
)
1069 return free_pages_prepare(page
, 0, true);
1072 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1077 static bool free_pcp_prepare(struct page
*page
)
1079 return free_pages_prepare(page
, 0, false);
1082 static bool bulkfree_pcp_prepare(struct page
*page
)
1084 return free_pages_check(page
);
1086 #endif /* CONFIG_DEBUG_VM */
1088 static inline void prefetch_buddy(struct page
*page
)
1090 unsigned long pfn
= page_to_pfn(page
);
1091 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1092 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1098 * Frees a number of pages from the PCP lists
1099 * Assumes all pages on list are in same zone, and of same order.
1100 * count is the number of pages to free.
1102 * If the zone was previously in an "all pages pinned" state then look to
1103 * see if this freeing clears that state.
1105 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1106 * pinned" detection logic.
1108 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1109 struct per_cpu_pages
*pcp
)
1111 int migratetype
= 0;
1113 int prefetch_nr
= 0;
1114 bool isolated_pageblocks
;
1115 struct page
*page
, *tmp
;
1119 struct list_head
*list
;
1122 * Remove pages from lists in a round-robin fashion. A
1123 * batch_free count is maintained that is incremented when an
1124 * empty list is encountered. This is so more pages are freed
1125 * off fuller lists instead of spinning excessively around empty
1130 if (++migratetype
== MIGRATE_PCPTYPES
)
1132 list
= &pcp
->lists
[migratetype
];
1133 } while (list_empty(list
));
1135 /* This is the only non-empty list. Free them all. */
1136 if (batch_free
== MIGRATE_PCPTYPES
)
1140 page
= list_last_entry(list
, struct page
, lru
);
1141 /* must delete to avoid corrupting pcp list */
1142 list_del(&page
->lru
);
1145 if (bulkfree_pcp_prepare(page
))
1148 list_add_tail(&page
->lru
, &head
);
1151 * We are going to put the page back to the global
1152 * pool, prefetch its buddy to speed up later access
1153 * under zone->lock. It is believed the overhead of
1154 * an additional test and calculating buddy_pfn here
1155 * can be offset by reduced memory latency later. To
1156 * avoid excessive prefetching due to large count, only
1157 * prefetch buddy for the first pcp->batch nr of pages.
1159 if (prefetch_nr
++ < pcp
->batch
)
1160 prefetch_buddy(page
);
1161 } while (--count
&& --batch_free
&& !list_empty(list
));
1164 spin_lock(&zone
->lock
);
1165 isolated_pageblocks
= has_isolate_pageblock(zone
);
1168 * Use safe version since after __free_one_page(),
1169 * page->lru.next will not point to original list.
1171 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1172 int mt
= get_pcppage_migratetype(page
);
1173 /* MIGRATE_ISOLATE page should not go to pcplists */
1174 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1175 /* Pageblock could have been isolated meanwhile */
1176 if (unlikely(isolated_pageblocks
))
1177 mt
= get_pageblock_migratetype(page
);
1179 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1180 trace_mm_page_pcpu_drain(page
, 0, mt
);
1182 spin_unlock(&zone
->lock
);
1185 static void free_one_page(struct zone
*zone
,
1186 struct page
*page
, unsigned long pfn
,
1190 spin_lock(&zone
->lock
);
1191 if (unlikely(has_isolate_pageblock(zone
) ||
1192 is_migrate_isolate(migratetype
))) {
1193 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1195 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1196 spin_unlock(&zone
->lock
);
1199 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1200 unsigned long zone
, int nid
)
1202 mm_zero_struct_page(page
);
1203 set_page_links(page
, zone
, nid
, pfn
);
1204 init_page_count(page
);
1205 page_mapcount_reset(page
);
1206 page_cpupid_reset_last(page
);
1208 INIT_LIST_HEAD(&page
->lru
);
1209 #ifdef WANT_PAGE_VIRTUAL
1210 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1211 if (!is_highmem_idx(zone
))
1212 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1216 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1217 static void __meminit
init_reserved_page(unsigned long pfn
)
1222 if (!early_page_uninitialised(pfn
))
1225 nid
= early_pfn_to_nid(pfn
);
1226 pgdat
= NODE_DATA(nid
);
1228 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1229 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1231 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1234 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1237 static inline void init_reserved_page(unsigned long pfn
)
1240 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1243 * Initialised pages do not have PageReserved set. This function is
1244 * called for each range allocated by the bootmem allocator and
1245 * marks the pages PageReserved. The remaining valid pages are later
1246 * sent to the buddy page allocator.
1248 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1250 unsigned long start_pfn
= PFN_DOWN(start
);
1251 unsigned long end_pfn
= PFN_UP(end
);
1253 for (; start_pfn
< end_pfn
; start_pfn
++) {
1254 if (pfn_valid(start_pfn
)) {
1255 struct page
*page
= pfn_to_page(start_pfn
);
1257 init_reserved_page(start_pfn
);
1259 /* Avoid false-positive PageTail() */
1260 INIT_LIST_HEAD(&page
->lru
);
1262 SetPageReserved(page
);
1267 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1269 unsigned long flags
;
1271 unsigned long pfn
= page_to_pfn(page
);
1273 if (!free_pages_prepare(page
, order
, true))
1276 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1277 local_irq_save(flags
);
1278 __count_vm_events(PGFREE
, 1 << order
);
1279 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1280 local_irq_restore(flags
);
1283 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1285 unsigned int nr_pages
= 1 << order
;
1286 struct page
*p
= page
;
1290 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1292 __ClearPageReserved(p
);
1293 set_page_count(p
, 0);
1295 __ClearPageReserved(p
);
1296 set_page_count(p
, 0);
1298 page_zone(page
)->managed_pages
+= nr_pages
;
1299 set_page_refcounted(page
);
1300 __free_pages(page
, order
);
1303 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1304 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1306 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1308 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1310 static DEFINE_SPINLOCK(early_pfn_lock
);
1313 spin_lock(&early_pfn_lock
);
1314 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1316 nid
= first_online_node
;
1317 spin_unlock(&early_pfn_lock
);
1323 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1324 static inline bool __meminit __maybe_unused
1325 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1326 struct mminit_pfnnid_cache
*state
)
1330 nid
= __early_pfn_to_nid(pfn
, state
);
1331 if (nid
>= 0 && nid
!= node
)
1336 /* Only safe to use early in boot when initialisation is single-threaded */
1337 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1339 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1344 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1348 static inline bool __meminit __maybe_unused
1349 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1350 struct mminit_pfnnid_cache
*state
)
1357 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1360 if (early_page_uninitialised(pfn
))
1362 return __free_pages_boot_core(page
, order
);
1366 * Check that the whole (or subset of) a pageblock given by the interval of
1367 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1368 * with the migration of free compaction scanner. The scanners then need to
1369 * use only pfn_valid_within() check for arches that allow holes within
1372 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1374 * It's possible on some configurations to have a setup like node0 node1 node0
1375 * i.e. it's possible that all pages within a zones range of pages do not
1376 * belong to a single zone. We assume that a border between node0 and node1
1377 * can occur within a single pageblock, but not a node0 node1 node0
1378 * interleaving within a single pageblock. It is therefore sufficient to check
1379 * the first and last page of a pageblock and avoid checking each individual
1380 * page in a pageblock.
1382 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1383 unsigned long end_pfn
, struct zone
*zone
)
1385 struct page
*start_page
;
1386 struct page
*end_page
;
1388 /* end_pfn is one past the range we are checking */
1391 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1394 start_page
= pfn_to_online_page(start_pfn
);
1398 if (page_zone(start_page
) != zone
)
1401 end_page
= pfn_to_page(end_pfn
);
1403 /* This gives a shorter code than deriving page_zone(end_page) */
1404 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1410 void set_zone_contiguous(struct zone
*zone
)
1412 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1413 unsigned long block_end_pfn
;
1415 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1416 for (; block_start_pfn
< zone_end_pfn(zone
);
1417 block_start_pfn
= block_end_pfn
,
1418 block_end_pfn
+= pageblock_nr_pages
) {
1420 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1422 if (!__pageblock_pfn_to_page(block_start_pfn
,
1423 block_end_pfn
, zone
))
1427 /* We confirm that there is no hole */
1428 zone
->contiguous
= true;
1431 void clear_zone_contiguous(struct zone
*zone
)
1433 zone
->contiguous
= false;
1436 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1437 static void __init
deferred_free_range(unsigned long pfn
,
1438 unsigned long nr_pages
)
1446 page
= pfn_to_page(pfn
);
1448 /* Free a large naturally-aligned chunk if possible */
1449 if (nr_pages
== pageblock_nr_pages
&&
1450 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1451 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1452 __free_pages_boot_core(page
, pageblock_order
);
1456 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1457 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1458 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1459 __free_pages_boot_core(page
, 0);
1463 /* Completion tracking for deferred_init_memmap() threads */
1464 static atomic_t pgdat_init_n_undone __initdata
;
1465 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1467 static inline void __init
pgdat_init_report_one_done(void)
1469 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1470 complete(&pgdat_init_all_done_comp
);
1474 * Returns true if page needs to be initialized or freed to buddy allocator.
1476 * First we check if pfn is valid on architectures where it is possible to have
1477 * holes within pageblock_nr_pages. On systems where it is not possible, this
1478 * function is optimized out.
1480 * Then, we check if a current large page is valid by only checking the validity
1483 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1484 * within a node: a pfn is between start and end of a node, but does not belong
1485 * to this memory node.
1487 static inline bool __init
1488 deferred_pfn_valid(int nid
, unsigned long pfn
,
1489 struct mminit_pfnnid_cache
*nid_init_state
)
1491 if (!pfn_valid_within(pfn
))
1493 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1495 if (!meminit_pfn_in_nid(pfn
, nid
, nid_init_state
))
1501 * Free pages to buddy allocator. Try to free aligned pages in
1502 * pageblock_nr_pages sizes.
1504 static void __init
deferred_free_pages(int nid
, int zid
, unsigned long pfn
,
1505 unsigned long end_pfn
)
1507 struct mminit_pfnnid_cache nid_init_state
= { };
1508 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1509 unsigned long nr_free
= 0;
1511 for (; pfn
< end_pfn
; pfn
++) {
1512 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1513 deferred_free_range(pfn
- nr_free
, nr_free
);
1515 } else if (!(pfn
& nr_pgmask
)) {
1516 deferred_free_range(pfn
- nr_free
, nr_free
);
1518 touch_nmi_watchdog();
1523 /* Free the last block of pages to allocator */
1524 deferred_free_range(pfn
- nr_free
, nr_free
);
1528 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1529 * by performing it only once every pageblock_nr_pages.
1530 * Return number of pages initialized.
1532 static unsigned long __init
deferred_init_pages(int nid
, int zid
,
1534 unsigned long end_pfn
)
1536 struct mminit_pfnnid_cache nid_init_state
= { };
1537 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1538 unsigned long nr_pages
= 0;
1539 struct page
*page
= NULL
;
1541 for (; pfn
< end_pfn
; pfn
++) {
1542 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1545 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1546 page
= pfn_to_page(pfn
);
1547 touch_nmi_watchdog();
1551 __init_single_page(page
, pfn
, zid
, nid
);
1557 /* Initialise remaining memory on a node */
1558 static int __init
deferred_init_memmap(void *data
)
1560 pg_data_t
*pgdat
= data
;
1561 int nid
= pgdat
->node_id
;
1562 unsigned long start
= jiffies
;
1563 unsigned long nr_pages
= 0;
1564 unsigned long spfn
, epfn
, first_init_pfn
, flags
;
1565 phys_addr_t spa
, epa
;
1568 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1571 /* Bind memory initialisation thread to a local node if possible */
1572 if (!cpumask_empty(cpumask
))
1573 set_cpus_allowed_ptr(current
, cpumask
);
1575 pgdat_resize_lock(pgdat
, &flags
);
1576 first_init_pfn
= pgdat
->first_deferred_pfn
;
1577 if (first_init_pfn
== ULONG_MAX
) {
1578 pgdat_resize_unlock(pgdat
, &flags
);
1579 pgdat_init_report_one_done();
1583 /* Sanity check boundaries */
1584 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1585 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1586 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1588 /* Only the highest zone is deferred so find it */
1589 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1590 zone
= pgdat
->node_zones
+ zid
;
1591 if (first_init_pfn
< zone_end_pfn(zone
))
1594 first_init_pfn
= max(zone
->zone_start_pfn
, first_init_pfn
);
1597 * Initialize and free pages. We do it in two loops: first we initialize
1598 * struct page, than free to buddy allocator, because while we are
1599 * freeing pages we can access pages that are ahead (computing buddy
1600 * page in __free_one_page()).
1602 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1603 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1604 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1605 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
, epfn
);
1607 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1608 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1609 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1610 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1612 pgdat_resize_unlock(pgdat
, &flags
);
1614 /* Sanity check that the next zone really is unpopulated */
1615 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1617 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1618 jiffies_to_msecs(jiffies
- start
));
1620 pgdat_init_report_one_done();
1625 * If this zone has deferred pages, try to grow it by initializing enough
1626 * deferred pages to satisfy the allocation specified by order, rounded up to
1627 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1628 * of SECTION_SIZE bytes by initializing struct pages in increments of
1629 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1631 * Return true when zone was grown, otherwise return false. We return true even
1632 * when we grow less than requested, to let the caller decide if there are
1633 * enough pages to satisfy the allocation.
1635 * Note: We use noinline because this function is needed only during boot, and
1636 * it is called from a __ref function _deferred_grow_zone. This way we are
1637 * making sure that it is not inlined into permanent text section.
1639 static noinline
bool __init
1640 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1642 int zid
= zone_idx(zone
);
1643 int nid
= zone_to_nid(zone
);
1644 pg_data_t
*pgdat
= NODE_DATA(nid
);
1645 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
1646 unsigned long nr_pages
= 0;
1647 unsigned long first_init_pfn
, spfn
, epfn
, t
, flags
;
1648 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
1649 phys_addr_t spa
, epa
;
1652 /* Only the last zone may have deferred pages */
1653 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
1656 pgdat_resize_lock(pgdat
, &flags
);
1659 * If deferred pages have been initialized while we were waiting for
1660 * the lock, return true, as the zone was grown. The caller will retry
1661 * this zone. We won't return to this function since the caller also
1662 * has this static branch.
1664 if (!static_branch_unlikely(&deferred_pages
)) {
1665 pgdat_resize_unlock(pgdat
, &flags
);
1670 * If someone grew this zone while we were waiting for spinlock, return
1671 * true, as there might be enough pages already.
1673 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
1674 pgdat_resize_unlock(pgdat
, &flags
);
1678 first_init_pfn
= max(zone
->zone_start_pfn
, first_deferred_pfn
);
1680 if (first_init_pfn
>= pgdat_end_pfn(pgdat
)) {
1681 pgdat_resize_unlock(pgdat
, &flags
);
1685 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1686 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1687 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1689 while (spfn
< epfn
&& nr_pages
< nr_pages_needed
) {
1690 t
= ALIGN(spfn
+ PAGES_PER_SECTION
, PAGES_PER_SECTION
);
1691 first_deferred_pfn
= min(t
, epfn
);
1692 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
,
1693 first_deferred_pfn
);
1694 spfn
= first_deferred_pfn
;
1697 if (nr_pages
>= nr_pages_needed
)
1701 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1702 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1703 epfn
= min_t(unsigned long, first_deferred_pfn
, PFN_DOWN(epa
));
1704 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1706 if (first_deferred_pfn
== epfn
)
1709 pgdat
->first_deferred_pfn
= first_deferred_pfn
;
1710 pgdat_resize_unlock(pgdat
, &flags
);
1712 return nr_pages
> 0;
1716 * deferred_grow_zone() is __init, but it is called from
1717 * get_page_from_freelist() during early boot until deferred_pages permanently
1718 * disables this call. This is why we have refdata wrapper to avoid warning,
1719 * and to ensure that the function body gets unloaded.
1722 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1724 return deferred_grow_zone(zone
, order
);
1727 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1729 void __init
page_alloc_init_late(void)
1733 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1736 /* There will be num_node_state(N_MEMORY) threads */
1737 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1738 for_each_node_state(nid
, N_MEMORY
) {
1739 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1742 /* Block until all are initialised */
1743 wait_for_completion(&pgdat_init_all_done_comp
);
1746 * We initialized the rest of the deferred pages. Permanently disable
1747 * on-demand struct page initialization.
1749 static_branch_disable(&deferred_pages
);
1751 /* Reinit limits that are based on free pages after the kernel is up */
1752 files_maxfiles_init();
1754 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1755 /* Discard memblock private memory */
1759 for_each_populated_zone(zone
)
1760 set_zone_contiguous(zone
);
1764 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1765 void __init
init_cma_reserved_pageblock(struct page
*page
)
1767 unsigned i
= pageblock_nr_pages
;
1768 struct page
*p
= page
;
1771 __ClearPageReserved(p
);
1772 set_page_count(p
, 0);
1775 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1777 if (pageblock_order
>= MAX_ORDER
) {
1778 i
= pageblock_nr_pages
;
1781 set_page_refcounted(p
);
1782 __free_pages(p
, MAX_ORDER
- 1);
1783 p
+= MAX_ORDER_NR_PAGES
;
1784 } while (i
-= MAX_ORDER_NR_PAGES
);
1786 set_page_refcounted(page
);
1787 __free_pages(page
, pageblock_order
);
1790 adjust_managed_page_count(page
, pageblock_nr_pages
);
1795 * The order of subdivision here is critical for the IO subsystem.
1796 * Please do not alter this order without good reasons and regression
1797 * testing. Specifically, as large blocks of memory are subdivided,
1798 * the order in which smaller blocks are delivered depends on the order
1799 * they're subdivided in this function. This is the primary factor
1800 * influencing the order in which pages are delivered to the IO
1801 * subsystem according to empirical testing, and this is also justified
1802 * by considering the behavior of a buddy system containing a single
1803 * large block of memory acted on by a series of small allocations.
1804 * This behavior is a critical factor in sglist merging's success.
1808 static inline void expand(struct zone
*zone
, struct page
*page
,
1809 int low
, int high
, struct free_area
*area
,
1812 unsigned long size
= 1 << high
;
1814 while (high
> low
) {
1818 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1821 * Mark as guard pages (or page), that will allow to
1822 * merge back to allocator when buddy will be freed.
1823 * Corresponding page table entries will not be touched,
1824 * pages will stay not present in virtual address space
1826 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1829 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1831 set_page_order(&page
[size
], high
);
1835 static void check_new_page_bad(struct page
*page
)
1837 const char *bad_reason
= NULL
;
1838 unsigned long bad_flags
= 0;
1840 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1841 bad_reason
= "nonzero mapcount";
1842 if (unlikely(page
->mapping
!= NULL
))
1843 bad_reason
= "non-NULL mapping";
1844 if (unlikely(page_ref_count(page
) != 0))
1845 bad_reason
= "nonzero _count";
1846 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1847 bad_reason
= "HWPoisoned (hardware-corrupted)";
1848 bad_flags
= __PG_HWPOISON
;
1849 /* Don't complain about hwpoisoned pages */
1850 page_mapcount_reset(page
); /* remove PageBuddy */
1853 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1854 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1855 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1858 if (unlikely(page
->mem_cgroup
))
1859 bad_reason
= "page still charged to cgroup";
1861 bad_page(page
, bad_reason
, bad_flags
);
1865 * This page is about to be returned from the page allocator
1867 static inline int check_new_page(struct page
*page
)
1869 if (likely(page_expected_state(page
,
1870 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1873 check_new_page_bad(page
);
1877 static inline bool free_pages_prezeroed(void)
1879 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1880 page_poisoning_enabled();
1883 #ifdef CONFIG_DEBUG_VM
1884 static bool check_pcp_refill(struct page
*page
)
1889 static bool check_new_pcp(struct page
*page
)
1891 return check_new_page(page
);
1894 static bool check_pcp_refill(struct page
*page
)
1896 return check_new_page(page
);
1898 static bool check_new_pcp(struct page
*page
)
1902 #endif /* CONFIG_DEBUG_VM */
1904 static bool check_new_pages(struct page
*page
, unsigned int order
)
1907 for (i
= 0; i
< (1 << order
); i
++) {
1908 struct page
*p
= page
+ i
;
1910 if (unlikely(check_new_page(p
)))
1917 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1920 set_page_private(page
, 0);
1921 set_page_refcounted(page
);
1923 arch_alloc_page(page
, order
);
1924 kernel_map_pages(page
, 1 << order
, 1);
1925 kasan_alloc_pages(page
, order
);
1926 kernel_poison_pages(page
, 1 << order
, 1);
1927 set_page_owner(page
, order
, gfp_flags
);
1930 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1931 unsigned int alloc_flags
)
1935 post_alloc_hook(page
, order
, gfp_flags
);
1937 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
1938 for (i
= 0; i
< (1 << order
); i
++)
1939 clear_highpage(page
+ i
);
1941 if (order
&& (gfp_flags
& __GFP_COMP
))
1942 prep_compound_page(page
, order
);
1945 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1946 * allocate the page. The expectation is that the caller is taking
1947 * steps that will free more memory. The caller should avoid the page
1948 * being used for !PFMEMALLOC purposes.
1950 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1951 set_page_pfmemalloc(page
);
1953 clear_page_pfmemalloc(page
);
1957 * Go through the free lists for the given migratetype and remove
1958 * the smallest available page from the freelists
1960 static __always_inline
1961 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1964 unsigned int current_order
;
1965 struct free_area
*area
;
1968 /* Find a page of the appropriate size in the preferred list */
1969 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1970 area
= &(zone
->free_area
[current_order
]);
1971 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1975 list_del(&page
->lru
);
1976 rmv_page_order(page
);
1978 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1979 set_pcppage_migratetype(page
, migratetype
);
1988 * This array describes the order lists are fallen back to when
1989 * the free lists for the desirable migrate type are depleted
1991 static int fallbacks
[MIGRATE_TYPES
][4] = {
1992 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1993 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1994 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1996 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1998 #ifdef CONFIG_MEMORY_ISOLATION
1999 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
2004 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2007 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
2010 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2011 unsigned int order
) { return NULL
; }
2015 * Move the free pages in a range to the free lists of the requested type.
2016 * Note that start_page and end_pages are not aligned on a pageblock
2017 * boundary. If alignment is required, use move_freepages_block()
2019 static int move_freepages(struct zone
*zone
,
2020 struct page
*start_page
, struct page
*end_page
,
2021 int migratetype
, int *num_movable
)
2025 int pages_moved
= 0;
2027 #ifndef CONFIG_HOLES_IN_ZONE
2029 * page_zone is not safe to call in this context when
2030 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2031 * anyway as we check zone boundaries in move_freepages_block().
2032 * Remove at a later date when no bug reports exist related to
2033 * grouping pages by mobility
2035 VM_BUG_ON(pfn_valid(page_to_pfn(start_page
)) &&
2036 pfn_valid(page_to_pfn(end_page
)) &&
2037 page_zone(start_page
) != page_zone(end_page
));
2043 for (page
= start_page
; page
<= end_page
;) {
2044 if (!pfn_valid_within(page_to_pfn(page
))) {
2049 /* Make sure we are not inadvertently changing nodes */
2050 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2052 if (!PageBuddy(page
)) {
2054 * We assume that pages that could be isolated for
2055 * migration are movable. But we don't actually try
2056 * isolating, as that would be expensive.
2059 (PageLRU(page
) || __PageMovable(page
)))
2066 order
= page_order(page
);
2067 list_move(&page
->lru
,
2068 &zone
->free_area
[order
].free_list
[migratetype
]);
2070 pages_moved
+= 1 << order
;
2076 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2077 int migratetype
, int *num_movable
)
2079 unsigned long start_pfn
, end_pfn
;
2080 struct page
*start_page
, *end_page
;
2082 start_pfn
= page_to_pfn(page
);
2083 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2084 start_page
= pfn_to_page(start_pfn
);
2085 end_page
= start_page
+ pageblock_nr_pages
- 1;
2086 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2088 /* Do not cross zone boundaries */
2089 if (!zone_spans_pfn(zone
, start_pfn
))
2091 if (!zone_spans_pfn(zone
, end_pfn
))
2094 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2098 static void change_pageblock_range(struct page
*pageblock_page
,
2099 int start_order
, int migratetype
)
2101 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2103 while (nr_pageblocks
--) {
2104 set_pageblock_migratetype(pageblock_page
, migratetype
);
2105 pageblock_page
+= pageblock_nr_pages
;
2110 * When we are falling back to another migratetype during allocation, try to
2111 * steal extra free pages from the same pageblocks to satisfy further
2112 * allocations, instead of polluting multiple pageblocks.
2114 * If we are stealing a relatively large buddy page, it is likely there will
2115 * be more free pages in the pageblock, so try to steal them all. For
2116 * reclaimable and unmovable allocations, we steal regardless of page size,
2117 * as fragmentation caused by those allocations polluting movable pageblocks
2118 * is worse than movable allocations stealing from unmovable and reclaimable
2121 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2124 * Leaving this order check is intended, although there is
2125 * relaxed order check in next check. The reason is that
2126 * we can actually steal whole pageblock if this condition met,
2127 * but, below check doesn't guarantee it and that is just heuristic
2128 * so could be changed anytime.
2130 if (order
>= pageblock_order
)
2133 if (order
>= pageblock_order
/ 2 ||
2134 start_mt
== MIGRATE_RECLAIMABLE
||
2135 start_mt
== MIGRATE_UNMOVABLE
||
2136 page_group_by_mobility_disabled
)
2143 * This function implements actual steal behaviour. If order is large enough,
2144 * we can steal whole pageblock. If not, we first move freepages in this
2145 * pageblock to our migratetype and determine how many already-allocated pages
2146 * are there in the pageblock with a compatible migratetype. If at least half
2147 * of pages are free or compatible, we can change migratetype of the pageblock
2148 * itself, so pages freed in the future will be put on the correct free list.
2150 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2151 int start_type
, bool whole_block
)
2153 unsigned int current_order
= page_order(page
);
2154 struct free_area
*area
;
2155 int free_pages
, movable_pages
, alike_pages
;
2158 old_block_type
= get_pageblock_migratetype(page
);
2161 * This can happen due to races and we want to prevent broken
2162 * highatomic accounting.
2164 if (is_migrate_highatomic(old_block_type
))
2167 /* Take ownership for orders >= pageblock_order */
2168 if (current_order
>= pageblock_order
) {
2169 change_pageblock_range(page
, current_order
, start_type
);
2173 /* We are not allowed to try stealing from the whole block */
2177 free_pages
= move_freepages_block(zone
, page
, start_type
,
2180 * Determine how many pages are compatible with our allocation.
2181 * For movable allocation, it's the number of movable pages which
2182 * we just obtained. For other types it's a bit more tricky.
2184 if (start_type
== MIGRATE_MOVABLE
) {
2185 alike_pages
= movable_pages
;
2188 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2189 * to MOVABLE pageblock, consider all non-movable pages as
2190 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2191 * vice versa, be conservative since we can't distinguish the
2192 * exact migratetype of non-movable pages.
2194 if (old_block_type
== MIGRATE_MOVABLE
)
2195 alike_pages
= pageblock_nr_pages
2196 - (free_pages
+ movable_pages
);
2201 /* moving whole block can fail due to zone boundary conditions */
2206 * If a sufficient number of pages in the block are either free or of
2207 * comparable migratability as our allocation, claim the whole block.
2209 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2210 page_group_by_mobility_disabled
)
2211 set_pageblock_migratetype(page
, start_type
);
2216 area
= &zone
->free_area
[current_order
];
2217 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2221 * Check whether there is a suitable fallback freepage with requested order.
2222 * If only_stealable is true, this function returns fallback_mt only if
2223 * we can steal other freepages all together. This would help to reduce
2224 * fragmentation due to mixed migratetype pages in one pageblock.
2226 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2227 int migratetype
, bool only_stealable
, bool *can_steal
)
2232 if (area
->nr_free
== 0)
2237 fallback_mt
= fallbacks
[migratetype
][i
];
2238 if (fallback_mt
== MIGRATE_TYPES
)
2241 if (list_empty(&area
->free_list
[fallback_mt
]))
2244 if (can_steal_fallback(order
, migratetype
))
2247 if (!only_stealable
)
2258 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2259 * there are no empty page blocks that contain a page with a suitable order
2261 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2262 unsigned int alloc_order
)
2265 unsigned long max_managed
, flags
;
2268 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2269 * Check is race-prone but harmless.
2271 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2272 if (zone
->nr_reserved_highatomic
>= max_managed
)
2275 spin_lock_irqsave(&zone
->lock
, flags
);
2277 /* Recheck the nr_reserved_highatomic limit under the lock */
2278 if (zone
->nr_reserved_highatomic
>= max_managed
)
2282 mt
= get_pageblock_migratetype(page
);
2283 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2284 && !is_migrate_cma(mt
)) {
2285 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2286 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2287 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2291 spin_unlock_irqrestore(&zone
->lock
, flags
);
2295 * Used when an allocation is about to fail under memory pressure. This
2296 * potentially hurts the reliability of high-order allocations when under
2297 * intense memory pressure but failed atomic allocations should be easier
2298 * to recover from than an OOM.
2300 * If @force is true, try to unreserve a pageblock even though highatomic
2301 * pageblock is exhausted.
2303 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2306 struct zonelist
*zonelist
= ac
->zonelist
;
2307 unsigned long flags
;
2314 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2317 * Preserve at least one pageblock unless memory pressure
2320 if (!force
&& zone
->nr_reserved_highatomic
<=
2324 spin_lock_irqsave(&zone
->lock
, flags
);
2325 for (order
= 0; order
< MAX_ORDER
; order
++) {
2326 struct free_area
*area
= &(zone
->free_area
[order
]);
2328 page
= list_first_entry_or_null(
2329 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2335 * In page freeing path, migratetype change is racy so
2336 * we can counter several free pages in a pageblock
2337 * in this loop althoug we changed the pageblock type
2338 * from highatomic to ac->migratetype. So we should
2339 * adjust the count once.
2341 if (is_migrate_highatomic_page(page
)) {
2343 * It should never happen but changes to
2344 * locking could inadvertently allow a per-cpu
2345 * drain to add pages to MIGRATE_HIGHATOMIC
2346 * while unreserving so be safe and watch for
2349 zone
->nr_reserved_highatomic
-= min(
2351 zone
->nr_reserved_highatomic
);
2355 * Convert to ac->migratetype and avoid the normal
2356 * pageblock stealing heuristics. Minimally, the caller
2357 * is doing the work and needs the pages. More
2358 * importantly, if the block was always converted to
2359 * MIGRATE_UNMOVABLE or another type then the number
2360 * of pageblocks that cannot be completely freed
2363 set_pageblock_migratetype(page
, ac
->migratetype
);
2364 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2367 spin_unlock_irqrestore(&zone
->lock
, flags
);
2371 spin_unlock_irqrestore(&zone
->lock
, flags
);
2378 * Try finding a free buddy page on the fallback list and put it on the free
2379 * list of requested migratetype, possibly along with other pages from the same
2380 * block, depending on fragmentation avoidance heuristics. Returns true if
2381 * fallback was found so that __rmqueue_smallest() can grab it.
2383 * The use of signed ints for order and current_order is a deliberate
2384 * deviation from the rest of this file, to make the for loop
2385 * condition simpler.
2387 static __always_inline
bool
2388 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
2390 struct free_area
*area
;
2397 * Find the largest available free page in the other list. This roughly
2398 * approximates finding the pageblock with the most free pages, which
2399 * would be too costly to do exactly.
2401 for (current_order
= MAX_ORDER
- 1; current_order
>= order
;
2403 area
= &(zone
->free_area
[current_order
]);
2404 fallback_mt
= find_suitable_fallback(area
, current_order
,
2405 start_migratetype
, false, &can_steal
);
2406 if (fallback_mt
== -1)
2410 * We cannot steal all free pages from the pageblock and the
2411 * requested migratetype is movable. In that case it's better to
2412 * steal and split the smallest available page instead of the
2413 * largest available page, because even if the next movable
2414 * allocation falls back into a different pageblock than this
2415 * one, it won't cause permanent fragmentation.
2417 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2418 && current_order
> order
)
2427 for (current_order
= order
; current_order
< MAX_ORDER
;
2429 area
= &(zone
->free_area
[current_order
]);
2430 fallback_mt
= find_suitable_fallback(area
, current_order
,
2431 start_migratetype
, false, &can_steal
);
2432 if (fallback_mt
!= -1)
2437 * This should not happen - we already found a suitable fallback
2438 * when looking for the largest page.
2440 VM_BUG_ON(current_order
== MAX_ORDER
);
2443 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2446 steal_suitable_fallback(zone
, page
, start_migratetype
, can_steal
);
2448 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2449 start_migratetype
, fallback_mt
);
2456 * Do the hard work of removing an element from the buddy allocator.
2457 * Call me with the zone->lock already held.
2459 static __always_inline
struct page
*
2460 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
)
2465 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2466 if (unlikely(!page
)) {
2467 if (migratetype
== MIGRATE_MOVABLE
)
2468 page
= __rmqueue_cma_fallback(zone
, order
);
2470 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
))
2474 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2479 * Obtain a specified number of elements from the buddy allocator, all under
2480 * a single hold of the lock, for efficiency. Add them to the supplied list.
2481 * Returns the number of new pages which were placed at *list.
2483 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2484 unsigned long count
, struct list_head
*list
,
2489 spin_lock(&zone
->lock
);
2490 for (i
= 0; i
< count
; ++i
) {
2491 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2492 if (unlikely(page
== NULL
))
2495 if (unlikely(check_pcp_refill(page
)))
2499 * Split buddy pages returned by expand() are received here in
2500 * physical page order. The page is added to the tail of
2501 * caller's list. From the callers perspective, the linked list
2502 * is ordered by page number under some conditions. This is
2503 * useful for IO devices that can forward direction from the
2504 * head, thus also in the physical page order. This is useful
2505 * for IO devices that can merge IO requests if the physical
2506 * pages are ordered properly.
2508 list_add_tail(&page
->lru
, list
);
2510 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2511 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2516 * i pages were removed from the buddy list even if some leak due
2517 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2518 * on i. Do not confuse with 'alloced' which is the number of
2519 * pages added to the pcp list.
2521 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2522 spin_unlock(&zone
->lock
);
2528 * Called from the vmstat counter updater to drain pagesets of this
2529 * currently executing processor on remote nodes after they have
2532 * Note that this function must be called with the thread pinned to
2533 * a single processor.
2535 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2537 unsigned long flags
;
2538 int to_drain
, batch
;
2540 local_irq_save(flags
);
2541 batch
= READ_ONCE(pcp
->batch
);
2542 to_drain
= min(pcp
->count
, batch
);
2544 free_pcppages_bulk(zone
, to_drain
, pcp
);
2545 local_irq_restore(flags
);
2550 * Drain pcplists of the indicated processor and zone.
2552 * The processor must either be the current processor and the
2553 * thread pinned to the current processor or a processor that
2556 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2558 unsigned long flags
;
2559 struct per_cpu_pageset
*pset
;
2560 struct per_cpu_pages
*pcp
;
2562 local_irq_save(flags
);
2563 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2567 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2568 local_irq_restore(flags
);
2572 * Drain pcplists of all zones on the indicated processor.
2574 * The processor must either be the current processor and the
2575 * thread pinned to the current processor or a processor that
2578 static void drain_pages(unsigned int cpu
)
2582 for_each_populated_zone(zone
) {
2583 drain_pages_zone(cpu
, zone
);
2588 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2590 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2591 * the single zone's pages.
2593 void drain_local_pages(struct zone
*zone
)
2595 int cpu
= smp_processor_id();
2598 drain_pages_zone(cpu
, zone
);
2603 static void drain_local_pages_wq(struct work_struct
*work
)
2606 * drain_all_pages doesn't use proper cpu hotplug protection so
2607 * we can race with cpu offline when the WQ can move this from
2608 * a cpu pinned worker to an unbound one. We can operate on a different
2609 * cpu which is allright but we also have to make sure to not move to
2613 drain_local_pages(NULL
);
2618 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2620 * When zone parameter is non-NULL, spill just the single zone's pages.
2622 * Note that this can be extremely slow as the draining happens in a workqueue.
2624 void drain_all_pages(struct zone
*zone
)
2629 * Allocate in the BSS so we wont require allocation in
2630 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2632 static cpumask_t cpus_with_pcps
;
2635 * Make sure nobody triggers this path before mm_percpu_wq is fully
2638 if (WARN_ON_ONCE(!mm_percpu_wq
))
2642 * Do not drain if one is already in progress unless it's specific to
2643 * a zone. Such callers are primarily CMA and memory hotplug and need
2644 * the drain to be complete when the call returns.
2646 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2649 mutex_lock(&pcpu_drain_mutex
);
2653 * We don't care about racing with CPU hotplug event
2654 * as offline notification will cause the notified
2655 * cpu to drain that CPU pcps and on_each_cpu_mask
2656 * disables preemption as part of its processing
2658 for_each_online_cpu(cpu
) {
2659 struct per_cpu_pageset
*pcp
;
2661 bool has_pcps
= false;
2664 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2668 for_each_populated_zone(z
) {
2669 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2670 if (pcp
->pcp
.count
) {
2678 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2680 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2683 for_each_cpu(cpu
, &cpus_with_pcps
) {
2684 struct work_struct
*work
= per_cpu_ptr(&pcpu_drain
, cpu
);
2685 INIT_WORK(work
, drain_local_pages_wq
);
2686 queue_work_on(cpu
, mm_percpu_wq
, work
);
2688 for_each_cpu(cpu
, &cpus_with_pcps
)
2689 flush_work(per_cpu_ptr(&pcpu_drain
, cpu
));
2691 mutex_unlock(&pcpu_drain_mutex
);
2694 #ifdef CONFIG_HIBERNATION
2697 * Touch the watchdog for every WD_PAGE_COUNT pages.
2699 #define WD_PAGE_COUNT (128*1024)
2701 void mark_free_pages(struct zone
*zone
)
2703 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2704 unsigned long flags
;
2705 unsigned int order
, t
;
2708 if (zone_is_empty(zone
))
2711 spin_lock_irqsave(&zone
->lock
, flags
);
2713 max_zone_pfn
= zone_end_pfn(zone
);
2714 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2715 if (pfn_valid(pfn
)) {
2716 page
= pfn_to_page(pfn
);
2718 if (!--page_count
) {
2719 touch_nmi_watchdog();
2720 page_count
= WD_PAGE_COUNT
;
2723 if (page_zone(page
) != zone
)
2726 if (!swsusp_page_is_forbidden(page
))
2727 swsusp_unset_page_free(page
);
2730 for_each_migratetype_order(order
, t
) {
2731 list_for_each_entry(page
,
2732 &zone
->free_area
[order
].free_list
[t
], lru
) {
2735 pfn
= page_to_pfn(page
);
2736 for (i
= 0; i
< (1UL << order
); i
++) {
2737 if (!--page_count
) {
2738 touch_nmi_watchdog();
2739 page_count
= WD_PAGE_COUNT
;
2741 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2745 spin_unlock_irqrestore(&zone
->lock
, flags
);
2747 #endif /* CONFIG_PM */
2749 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
2753 if (!free_pcp_prepare(page
))
2756 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2757 set_pcppage_migratetype(page
, migratetype
);
2761 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
2763 struct zone
*zone
= page_zone(page
);
2764 struct per_cpu_pages
*pcp
;
2767 migratetype
= get_pcppage_migratetype(page
);
2768 __count_vm_event(PGFREE
);
2771 * We only track unmovable, reclaimable and movable on pcp lists.
2772 * Free ISOLATE pages back to the allocator because they are being
2773 * offlined but treat HIGHATOMIC as movable pages so we can get those
2774 * areas back if necessary. Otherwise, we may have to free
2775 * excessively into the page allocator
2777 if (migratetype
>= MIGRATE_PCPTYPES
) {
2778 if (unlikely(is_migrate_isolate(migratetype
))) {
2779 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2782 migratetype
= MIGRATE_MOVABLE
;
2785 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2786 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2788 if (pcp
->count
>= pcp
->high
) {
2789 unsigned long batch
= READ_ONCE(pcp
->batch
);
2790 free_pcppages_bulk(zone
, batch
, pcp
);
2795 * Free a 0-order page
2797 void free_unref_page(struct page
*page
)
2799 unsigned long flags
;
2800 unsigned long pfn
= page_to_pfn(page
);
2802 if (!free_unref_page_prepare(page
, pfn
))
2805 local_irq_save(flags
);
2806 free_unref_page_commit(page
, pfn
);
2807 local_irq_restore(flags
);
2811 * Free a list of 0-order pages
2813 void free_unref_page_list(struct list_head
*list
)
2815 struct page
*page
, *next
;
2816 unsigned long flags
, pfn
;
2817 int batch_count
= 0;
2819 /* Prepare pages for freeing */
2820 list_for_each_entry_safe(page
, next
, list
, lru
) {
2821 pfn
= page_to_pfn(page
);
2822 if (!free_unref_page_prepare(page
, pfn
))
2823 list_del(&page
->lru
);
2824 set_page_private(page
, pfn
);
2827 local_irq_save(flags
);
2828 list_for_each_entry_safe(page
, next
, list
, lru
) {
2829 unsigned long pfn
= page_private(page
);
2831 set_page_private(page
, 0);
2832 trace_mm_page_free_batched(page
);
2833 free_unref_page_commit(page
, pfn
);
2836 * Guard against excessive IRQ disabled times when we get
2837 * a large list of pages to free.
2839 if (++batch_count
== SWAP_CLUSTER_MAX
) {
2840 local_irq_restore(flags
);
2842 local_irq_save(flags
);
2845 local_irq_restore(flags
);
2849 * split_page takes a non-compound higher-order page, and splits it into
2850 * n (1<<order) sub-pages: page[0..n]
2851 * Each sub-page must be freed individually.
2853 * Note: this is probably too low level an operation for use in drivers.
2854 * Please consult with lkml before using this in your driver.
2856 void split_page(struct page
*page
, unsigned int order
)
2860 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2861 VM_BUG_ON_PAGE(!page_count(page
), page
);
2863 for (i
= 1; i
< (1 << order
); i
++)
2864 set_page_refcounted(page
+ i
);
2865 split_page_owner(page
, order
);
2867 EXPORT_SYMBOL_GPL(split_page
);
2869 int __isolate_free_page(struct page
*page
, unsigned int order
)
2871 unsigned long watermark
;
2875 BUG_ON(!PageBuddy(page
));
2877 zone
= page_zone(page
);
2878 mt
= get_pageblock_migratetype(page
);
2880 if (!is_migrate_isolate(mt
)) {
2882 * Obey watermarks as if the page was being allocated. We can
2883 * emulate a high-order watermark check with a raised order-0
2884 * watermark, because we already know our high-order page
2887 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2888 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2891 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2894 /* Remove page from free list */
2895 list_del(&page
->lru
);
2896 zone
->free_area
[order
].nr_free
--;
2897 rmv_page_order(page
);
2900 * Set the pageblock if the isolated page is at least half of a
2903 if (order
>= pageblock_order
- 1) {
2904 struct page
*endpage
= page
+ (1 << order
) - 1;
2905 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2906 int mt
= get_pageblock_migratetype(page
);
2907 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2908 && !is_migrate_highatomic(mt
))
2909 set_pageblock_migratetype(page
,
2915 return 1UL << order
;
2919 * Update NUMA hit/miss statistics
2921 * Must be called with interrupts disabled.
2923 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2926 enum numa_stat_item local_stat
= NUMA_LOCAL
;
2928 /* skip numa counters update if numa stats is disabled */
2929 if (!static_branch_likely(&vm_numa_stat_key
))
2932 if (zone_to_nid(z
) != numa_node_id())
2933 local_stat
= NUMA_OTHER
;
2935 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
2936 __inc_numa_state(z
, NUMA_HIT
);
2938 __inc_numa_state(z
, NUMA_MISS
);
2939 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
2941 __inc_numa_state(z
, local_stat
);
2945 /* Remove page from the per-cpu list, caller must protect the list */
2946 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
2947 struct per_cpu_pages
*pcp
,
2948 struct list_head
*list
)
2953 if (list_empty(list
)) {
2954 pcp
->count
+= rmqueue_bulk(zone
, 0,
2957 if (unlikely(list_empty(list
)))
2961 page
= list_first_entry(list
, struct page
, lru
);
2962 list_del(&page
->lru
);
2964 } while (check_new_pcp(page
));
2969 /* Lock and remove page from the per-cpu list */
2970 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
2971 struct zone
*zone
, unsigned int order
,
2972 gfp_t gfp_flags
, int migratetype
)
2974 struct per_cpu_pages
*pcp
;
2975 struct list_head
*list
;
2977 unsigned long flags
;
2979 local_irq_save(flags
);
2980 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2981 list
= &pcp
->lists
[migratetype
];
2982 page
= __rmqueue_pcplist(zone
, migratetype
, pcp
, list
);
2984 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2985 zone_statistics(preferred_zone
, zone
);
2987 local_irq_restore(flags
);
2992 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2995 struct page
*rmqueue(struct zone
*preferred_zone
,
2996 struct zone
*zone
, unsigned int order
,
2997 gfp_t gfp_flags
, unsigned int alloc_flags
,
3000 unsigned long flags
;
3003 if (likely(order
== 0)) {
3004 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
3005 gfp_flags
, migratetype
);
3010 * We most definitely don't want callers attempting to
3011 * allocate greater than order-1 page units with __GFP_NOFAIL.
3013 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
3014 spin_lock_irqsave(&zone
->lock
, flags
);
3018 if (alloc_flags
& ALLOC_HARDER
) {
3019 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3021 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3024 page
= __rmqueue(zone
, order
, migratetype
);
3025 } while (page
&& check_new_pages(page
, order
));
3026 spin_unlock(&zone
->lock
);
3029 __mod_zone_freepage_state(zone
, -(1 << order
),
3030 get_pcppage_migratetype(page
));
3032 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3033 zone_statistics(preferred_zone
, zone
);
3034 local_irq_restore(flags
);
3037 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3041 local_irq_restore(flags
);
3045 #ifdef CONFIG_FAIL_PAGE_ALLOC
3048 struct fault_attr attr
;
3050 bool ignore_gfp_highmem
;
3051 bool ignore_gfp_reclaim
;
3053 } fail_page_alloc
= {
3054 .attr
= FAULT_ATTR_INITIALIZER
,
3055 .ignore_gfp_reclaim
= true,
3056 .ignore_gfp_highmem
= true,
3060 static int __init
setup_fail_page_alloc(char *str
)
3062 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3064 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3066 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3068 if (order
< fail_page_alloc
.min_order
)
3070 if (gfp_mask
& __GFP_NOFAIL
)
3072 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3074 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3075 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3078 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3081 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3083 static int __init
fail_page_alloc_debugfs(void)
3085 umode_t mode
= S_IFREG
| 0600;
3088 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3089 &fail_page_alloc
.attr
);
3091 return PTR_ERR(dir
);
3093 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3094 &fail_page_alloc
.ignore_gfp_reclaim
))
3096 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3097 &fail_page_alloc
.ignore_gfp_highmem
))
3099 if (!debugfs_create_u32("min-order", mode
, dir
,
3100 &fail_page_alloc
.min_order
))
3105 debugfs_remove_recursive(dir
);
3110 late_initcall(fail_page_alloc_debugfs
);
3112 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3114 #else /* CONFIG_FAIL_PAGE_ALLOC */
3116 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3121 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3124 * Return true if free base pages are above 'mark'. For high-order checks it
3125 * will return true of the order-0 watermark is reached and there is at least
3126 * one free page of a suitable size. Checking now avoids taking the zone lock
3127 * to check in the allocation paths if no pages are free.
3129 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3130 int classzone_idx
, unsigned int alloc_flags
,
3135 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3137 /* free_pages may go negative - that's OK */
3138 free_pages
-= (1 << order
) - 1;
3140 if (alloc_flags
& ALLOC_HIGH
)
3144 * If the caller does not have rights to ALLOC_HARDER then subtract
3145 * the high-atomic reserves. This will over-estimate the size of the
3146 * atomic reserve but it avoids a search.
3148 if (likely(!alloc_harder
)) {
3149 free_pages
-= z
->nr_reserved_highatomic
;
3152 * OOM victims can try even harder than normal ALLOC_HARDER
3153 * users on the grounds that it's definitely going to be in
3154 * the exit path shortly and free memory. Any allocation it
3155 * makes during the free path will be small and short-lived.
3157 if (alloc_flags
& ALLOC_OOM
)
3165 /* If allocation can't use CMA areas don't use free CMA pages */
3166 if (!(alloc_flags
& ALLOC_CMA
))
3167 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3171 * Check watermarks for an order-0 allocation request. If these
3172 * are not met, then a high-order request also cannot go ahead
3173 * even if a suitable page happened to be free.
3175 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
3178 /* If this is an order-0 request then the watermark is fine */
3182 /* For a high-order request, check at least one suitable page is free */
3183 for (o
= order
; o
< MAX_ORDER
; o
++) {
3184 struct free_area
*area
= &z
->free_area
[o
];
3190 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3191 if (!list_empty(&area
->free_list
[mt
]))
3196 if ((alloc_flags
& ALLOC_CMA
) &&
3197 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
3202 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
3208 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3209 int classzone_idx
, unsigned int alloc_flags
)
3211 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3212 zone_page_state(z
, NR_FREE_PAGES
));
3215 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3216 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3218 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3222 /* If allocation can't use CMA areas don't use free CMA pages */
3223 if (!(alloc_flags
& ALLOC_CMA
))
3224 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3228 * Fast check for order-0 only. If this fails then the reserves
3229 * need to be calculated. There is a corner case where the check
3230 * passes but only the high-order atomic reserve are free. If
3231 * the caller is !atomic then it'll uselessly search the free
3232 * list. That corner case is then slower but it is harmless.
3234 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3237 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3241 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3242 unsigned long mark
, int classzone_idx
)
3244 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3246 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3247 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3249 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3254 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3256 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3259 #else /* CONFIG_NUMA */
3260 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3264 #endif /* CONFIG_NUMA */
3267 * get_page_from_freelist goes through the zonelist trying to allocate
3270 static struct page
*
3271 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3272 const struct alloc_context
*ac
)
3274 struct zoneref
*z
= ac
->preferred_zoneref
;
3276 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3279 * Scan zonelist, looking for a zone with enough free.
3280 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3282 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3287 if (cpusets_enabled() &&
3288 (alloc_flags
& ALLOC_CPUSET
) &&
3289 !__cpuset_zone_allowed(zone
, gfp_mask
))
3292 * When allocating a page cache page for writing, we
3293 * want to get it from a node that is within its dirty
3294 * limit, such that no single node holds more than its
3295 * proportional share of globally allowed dirty pages.
3296 * The dirty limits take into account the node's
3297 * lowmem reserves and high watermark so that kswapd
3298 * should be able to balance it without having to
3299 * write pages from its LRU list.
3301 * XXX: For now, allow allocations to potentially
3302 * exceed the per-node dirty limit in the slowpath
3303 * (spread_dirty_pages unset) before going into reclaim,
3304 * which is important when on a NUMA setup the allowed
3305 * nodes are together not big enough to reach the
3306 * global limit. The proper fix for these situations
3307 * will require awareness of nodes in the
3308 * dirty-throttling and the flusher threads.
3310 if (ac
->spread_dirty_pages
) {
3311 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3314 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3315 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3320 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
3321 if (!zone_watermark_fast(zone
, order
, mark
,
3322 ac_classzone_idx(ac
), alloc_flags
)) {
3325 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3327 * Watermark failed for this zone, but see if we can
3328 * grow this zone if it contains deferred pages.
3330 if (static_branch_unlikely(&deferred_pages
)) {
3331 if (_deferred_grow_zone(zone
, order
))
3335 /* Checked here to keep the fast path fast */
3336 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3337 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3340 if (node_reclaim_mode
== 0 ||
3341 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3344 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3346 case NODE_RECLAIM_NOSCAN
:
3349 case NODE_RECLAIM_FULL
:
3350 /* scanned but unreclaimable */
3353 /* did we reclaim enough */
3354 if (zone_watermark_ok(zone
, order
, mark
,
3355 ac_classzone_idx(ac
), alloc_flags
))
3363 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3364 gfp_mask
, alloc_flags
, ac
->migratetype
);
3366 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3369 * If this is a high-order atomic allocation then check
3370 * if the pageblock should be reserved for the future
3372 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3373 reserve_highatomic_pageblock(page
, zone
, order
);
3377 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3378 /* Try again if zone has deferred pages */
3379 if (static_branch_unlikely(&deferred_pages
)) {
3380 if (_deferred_grow_zone(zone
, order
))
3391 * Large machines with many possible nodes should not always dump per-node
3392 * meminfo in irq context.
3394 static inline bool should_suppress_show_mem(void)
3399 ret
= in_interrupt();
3404 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3406 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3407 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3409 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs
))
3413 * This documents exceptions given to allocations in certain
3414 * contexts that are allowed to allocate outside current's set
3417 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3418 if (tsk_is_oom_victim(current
) ||
3419 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3420 filter
&= ~SHOW_MEM_FILTER_NODES
;
3421 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3422 filter
&= ~SHOW_MEM_FILTER_NODES
;
3424 show_mem(filter
, nodemask
);
3427 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3429 struct va_format vaf
;
3431 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3432 DEFAULT_RATELIMIT_BURST
);
3434 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3437 va_start(args
, fmt
);
3440 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3441 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3442 nodemask_pr_args(nodemask
));
3445 cpuset_print_current_mems_allowed();
3448 warn_alloc_show_mem(gfp_mask
, nodemask
);
3451 static inline struct page
*
3452 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3453 unsigned int alloc_flags
,
3454 const struct alloc_context
*ac
)
3458 page
= get_page_from_freelist(gfp_mask
, order
,
3459 alloc_flags
|ALLOC_CPUSET
, ac
);
3461 * fallback to ignore cpuset restriction if our nodes
3465 page
= get_page_from_freelist(gfp_mask
, order
,
3471 static inline struct page
*
3472 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3473 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3475 struct oom_control oc
= {
3476 .zonelist
= ac
->zonelist
,
3477 .nodemask
= ac
->nodemask
,
3479 .gfp_mask
= gfp_mask
,
3484 *did_some_progress
= 0;
3487 * Acquire the oom lock. If that fails, somebody else is
3488 * making progress for us.
3490 if (!mutex_trylock(&oom_lock
)) {
3491 *did_some_progress
= 1;
3492 schedule_timeout_uninterruptible(1);
3497 * Go through the zonelist yet one more time, keep very high watermark
3498 * here, this is only to catch a parallel oom killing, we must fail if
3499 * we're still under heavy pressure. But make sure that this reclaim
3500 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3501 * allocation which will never fail due to oom_lock already held.
3503 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3504 ~__GFP_DIRECT_RECLAIM
, order
,
3505 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3509 /* Coredumps can quickly deplete all memory reserves */
3510 if (current
->flags
& PF_DUMPCORE
)
3512 /* The OOM killer will not help higher order allocs */
3513 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3516 * We have already exhausted all our reclaim opportunities without any
3517 * success so it is time to admit defeat. We will skip the OOM killer
3518 * because it is very likely that the caller has a more reasonable
3519 * fallback than shooting a random task.
3521 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3523 /* The OOM killer does not needlessly kill tasks for lowmem */
3524 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3526 if (pm_suspended_storage())
3529 * XXX: GFP_NOFS allocations should rather fail than rely on
3530 * other request to make a forward progress.
3531 * We are in an unfortunate situation where out_of_memory cannot
3532 * do much for this context but let's try it to at least get
3533 * access to memory reserved if the current task is killed (see
3534 * out_of_memory). Once filesystems are ready to handle allocation
3535 * failures more gracefully we should just bail out here.
3538 /* The OOM killer may not free memory on a specific node */
3539 if (gfp_mask
& __GFP_THISNODE
)
3542 /* Exhausted what can be done so it's blame time */
3543 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3544 *did_some_progress
= 1;
3547 * Help non-failing allocations by giving them access to memory
3550 if (gfp_mask
& __GFP_NOFAIL
)
3551 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3552 ALLOC_NO_WATERMARKS
, ac
);
3555 mutex_unlock(&oom_lock
);
3560 * Maximum number of compaction retries wit a progress before OOM
3561 * killer is consider as the only way to move forward.
3563 #define MAX_COMPACT_RETRIES 16
3565 #ifdef CONFIG_COMPACTION
3566 /* Try memory compaction for high-order allocations before reclaim */
3567 static struct page
*
3568 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3569 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3570 enum compact_priority prio
, enum compact_result
*compact_result
)
3573 unsigned int noreclaim_flag
;
3578 noreclaim_flag
= memalloc_noreclaim_save();
3579 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3581 memalloc_noreclaim_restore(noreclaim_flag
);
3583 if (*compact_result
<= COMPACT_INACTIVE
)
3587 * At least in one zone compaction wasn't deferred or skipped, so let's
3588 * count a compaction stall
3590 count_vm_event(COMPACTSTALL
);
3592 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3595 struct zone
*zone
= page_zone(page
);
3597 zone
->compact_blockskip_flush
= false;
3598 compaction_defer_reset(zone
, order
, true);
3599 count_vm_event(COMPACTSUCCESS
);
3604 * It's bad if compaction run occurs and fails. The most likely reason
3605 * is that pages exist, but not enough to satisfy watermarks.
3607 count_vm_event(COMPACTFAIL
);
3615 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3616 enum compact_result compact_result
,
3617 enum compact_priority
*compact_priority
,
3618 int *compaction_retries
)
3620 int max_retries
= MAX_COMPACT_RETRIES
;
3623 int retries
= *compaction_retries
;
3624 enum compact_priority priority
= *compact_priority
;
3629 if (compaction_made_progress(compact_result
))
3630 (*compaction_retries
)++;
3633 * compaction considers all the zone as desperately out of memory
3634 * so it doesn't really make much sense to retry except when the
3635 * failure could be caused by insufficient priority
3637 if (compaction_failed(compact_result
))
3638 goto check_priority
;
3641 * make sure the compaction wasn't deferred or didn't bail out early
3642 * due to locks contention before we declare that we should give up.
3643 * But do not retry if the given zonelist is not suitable for
3646 if (compaction_withdrawn(compact_result
)) {
3647 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3652 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3653 * costly ones because they are de facto nofail and invoke OOM
3654 * killer to move on while costly can fail and users are ready
3655 * to cope with that. 1/4 retries is rather arbitrary but we
3656 * would need much more detailed feedback from compaction to
3657 * make a better decision.
3659 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3661 if (*compaction_retries
<= max_retries
) {
3667 * Make sure there are attempts at the highest priority if we exhausted
3668 * all retries or failed at the lower priorities.
3671 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3672 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3674 if (*compact_priority
> min_priority
) {
3675 (*compact_priority
)--;
3676 *compaction_retries
= 0;
3680 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3684 static inline struct page
*
3685 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3686 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3687 enum compact_priority prio
, enum compact_result
*compact_result
)
3689 *compact_result
= COMPACT_SKIPPED
;
3694 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3695 enum compact_result compact_result
,
3696 enum compact_priority
*compact_priority
,
3697 int *compaction_retries
)
3702 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3706 * There are setups with compaction disabled which would prefer to loop
3707 * inside the allocator rather than hit the oom killer prematurely.
3708 * Let's give them a good hope and keep retrying while the order-0
3709 * watermarks are OK.
3711 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3713 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3714 ac_classzone_idx(ac
), alloc_flags
))
3719 #endif /* CONFIG_COMPACTION */
3721 #ifdef CONFIG_LOCKDEP
3722 static struct lockdep_map __fs_reclaim_map
=
3723 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3725 static bool __need_fs_reclaim(gfp_t gfp_mask
)
3727 gfp_mask
= current_gfp_context(gfp_mask
);
3729 /* no reclaim without waiting on it */
3730 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3733 /* this guy won't enter reclaim */
3734 if (current
->flags
& PF_MEMALLOC
)
3737 /* We're only interested __GFP_FS allocations for now */
3738 if (!(gfp_mask
& __GFP_FS
))
3741 if (gfp_mask
& __GFP_NOLOCKDEP
)
3747 void __fs_reclaim_acquire(void)
3749 lock_map_acquire(&__fs_reclaim_map
);
3752 void __fs_reclaim_release(void)
3754 lock_map_release(&__fs_reclaim_map
);
3757 void fs_reclaim_acquire(gfp_t gfp_mask
)
3759 if (__need_fs_reclaim(gfp_mask
))
3760 __fs_reclaim_acquire();
3762 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3764 void fs_reclaim_release(gfp_t gfp_mask
)
3766 if (__need_fs_reclaim(gfp_mask
))
3767 __fs_reclaim_release();
3769 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3772 /* Perform direct synchronous page reclaim */
3774 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3775 const struct alloc_context
*ac
)
3777 struct reclaim_state reclaim_state
;
3779 unsigned int noreclaim_flag
;
3783 /* We now go into synchronous reclaim */
3784 cpuset_memory_pressure_bump();
3785 fs_reclaim_acquire(gfp_mask
);
3786 noreclaim_flag
= memalloc_noreclaim_save();
3787 reclaim_state
.reclaimed_slab
= 0;
3788 current
->reclaim_state
= &reclaim_state
;
3790 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3793 current
->reclaim_state
= NULL
;
3794 memalloc_noreclaim_restore(noreclaim_flag
);
3795 fs_reclaim_release(gfp_mask
);
3802 /* The really slow allocator path where we enter direct reclaim */
3803 static inline struct page
*
3804 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3805 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3806 unsigned long *did_some_progress
)
3808 struct page
*page
= NULL
;
3809 bool drained
= false;
3811 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3812 if (unlikely(!(*did_some_progress
)))
3816 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3819 * If an allocation failed after direct reclaim, it could be because
3820 * pages are pinned on the per-cpu lists or in high alloc reserves.
3821 * Shrink them them and try again
3823 if (!page
&& !drained
) {
3824 unreserve_highatomic_pageblock(ac
, false);
3825 drain_all_pages(NULL
);
3833 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
3834 const struct alloc_context
*ac
)
3838 pg_data_t
*last_pgdat
= NULL
;
3839 enum zone_type high_zoneidx
= ac
->high_zoneidx
;
3841 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, high_zoneidx
,
3843 if (last_pgdat
!= zone
->zone_pgdat
)
3844 wakeup_kswapd(zone
, gfp_mask
, order
, high_zoneidx
);
3845 last_pgdat
= zone
->zone_pgdat
;
3849 static inline unsigned int
3850 gfp_to_alloc_flags(gfp_t gfp_mask
)
3852 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3854 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3855 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3858 * The caller may dip into page reserves a bit more if the caller
3859 * cannot run direct reclaim, or if the caller has realtime scheduling
3860 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3861 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3863 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3865 if (gfp_mask
& __GFP_ATOMIC
) {
3867 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3868 * if it can't schedule.
3870 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3871 alloc_flags
|= ALLOC_HARDER
;
3873 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3874 * comment for __cpuset_node_allowed().
3876 alloc_flags
&= ~ALLOC_CPUSET
;
3877 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3878 alloc_flags
|= ALLOC_HARDER
;
3881 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3882 alloc_flags
|= ALLOC_CMA
;
3887 static bool oom_reserves_allowed(struct task_struct
*tsk
)
3889 if (!tsk_is_oom_victim(tsk
))
3893 * !MMU doesn't have oom reaper so give access to memory reserves
3894 * only to the thread with TIF_MEMDIE set
3896 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
3903 * Distinguish requests which really need access to full memory
3904 * reserves from oom victims which can live with a portion of it
3906 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
3908 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3910 if (gfp_mask
& __GFP_MEMALLOC
)
3911 return ALLOC_NO_WATERMARKS
;
3912 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3913 return ALLOC_NO_WATERMARKS
;
3914 if (!in_interrupt()) {
3915 if (current
->flags
& PF_MEMALLOC
)
3916 return ALLOC_NO_WATERMARKS
;
3917 else if (oom_reserves_allowed(current
))
3924 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3926 return !!__gfp_pfmemalloc_flags(gfp_mask
);
3930 * Checks whether it makes sense to retry the reclaim to make a forward progress
3931 * for the given allocation request.
3933 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3934 * without success, or when we couldn't even meet the watermark if we
3935 * reclaimed all remaining pages on the LRU lists.
3937 * Returns true if a retry is viable or false to enter the oom path.
3940 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3941 struct alloc_context
*ac
, int alloc_flags
,
3942 bool did_some_progress
, int *no_progress_loops
)
3948 * Costly allocations might have made a progress but this doesn't mean
3949 * their order will become available due to high fragmentation so
3950 * always increment the no progress counter for them
3952 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3953 *no_progress_loops
= 0;
3955 (*no_progress_loops
)++;
3958 * Make sure we converge to OOM if we cannot make any progress
3959 * several times in the row.
3961 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3962 /* Before OOM, exhaust highatomic_reserve */
3963 return unreserve_highatomic_pageblock(ac
, true);
3967 * Keep reclaiming pages while there is a chance this will lead
3968 * somewhere. If none of the target zones can satisfy our allocation
3969 * request even if all reclaimable pages are considered then we are
3970 * screwed and have to go OOM.
3972 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3974 unsigned long available
;
3975 unsigned long reclaimable
;
3976 unsigned long min_wmark
= min_wmark_pages(zone
);
3979 available
= reclaimable
= zone_reclaimable_pages(zone
);
3980 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3983 * Would the allocation succeed if we reclaimed all
3984 * reclaimable pages?
3986 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
3987 ac_classzone_idx(ac
), alloc_flags
, available
);
3988 trace_reclaim_retry_zone(z
, order
, reclaimable
,
3989 available
, min_wmark
, *no_progress_loops
, wmark
);
3992 * If we didn't make any progress and have a lot of
3993 * dirty + writeback pages then we should wait for
3994 * an IO to complete to slow down the reclaim and
3995 * prevent from pre mature OOM
3997 if (!did_some_progress
) {
3998 unsigned long write_pending
;
4000 write_pending
= zone_page_state_snapshot(zone
,
4001 NR_ZONE_WRITE_PENDING
);
4003 if (2 * write_pending
> reclaimable
) {
4004 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4010 * Memory allocation/reclaim might be called from a WQ
4011 * context and the current implementation of the WQ
4012 * concurrency control doesn't recognize that
4013 * a particular WQ is congested if the worker thread is
4014 * looping without ever sleeping. Therefore we have to
4015 * do a short sleep here rather than calling
4018 if (current
->flags
& PF_WQ_WORKER
)
4019 schedule_timeout_uninterruptible(1);
4031 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4034 * It's possible that cpuset's mems_allowed and the nodemask from
4035 * mempolicy don't intersect. This should be normally dealt with by
4036 * policy_nodemask(), but it's possible to race with cpuset update in
4037 * such a way the check therein was true, and then it became false
4038 * before we got our cpuset_mems_cookie here.
4039 * This assumes that for all allocations, ac->nodemask can come only
4040 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4041 * when it does not intersect with the cpuset restrictions) or the
4042 * caller can deal with a violated nodemask.
4044 if (cpusets_enabled() && ac
->nodemask
&&
4045 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4046 ac
->nodemask
= NULL
;
4051 * When updating a task's mems_allowed or mempolicy nodemask, it is
4052 * possible to race with parallel threads in such a way that our
4053 * allocation can fail while the mask is being updated. If we are about
4054 * to fail, check if the cpuset changed during allocation and if so,
4057 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4063 static inline struct page
*
4064 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4065 struct alloc_context
*ac
)
4067 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4068 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4069 struct page
*page
= NULL
;
4070 unsigned int alloc_flags
;
4071 unsigned long did_some_progress
;
4072 enum compact_priority compact_priority
;
4073 enum compact_result compact_result
;
4074 int compaction_retries
;
4075 int no_progress_loops
;
4076 unsigned int cpuset_mems_cookie
;
4080 * We also sanity check to catch abuse of atomic reserves being used by
4081 * callers that are not in atomic context.
4083 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4084 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4085 gfp_mask
&= ~__GFP_ATOMIC
;
4088 compaction_retries
= 0;
4089 no_progress_loops
= 0;
4090 compact_priority
= DEF_COMPACT_PRIORITY
;
4091 cpuset_mems_cookie
= read_mems_allowed_begin();
4094 * The fast path uses conservative alloc_flags to succeed only until
4095 * kswapd needs to be woken up, and to avoid the cost of setting up
4096 * alloc_flags precisely. So we do that now.
4098 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4101 * We need to recalculate the starting point for the zonelist iterator
4102 * because we might have used different nodemask in the fast path, or
4103 * there was a cpuset modification and we are retrying - otherwise we
4104 * could end up iterating over non-eligible zones endlessly.
4106 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4107 ac
->high_zoneidx
, ac
->nodemask
);
4108 if (!ac
->preferred_zoneref
->zone
)
4111 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4112 wake_all_kswapds(order
, gfp_mask
, ac
);
4115 * The adjusted alloc_flags might result in immediate success, so try
4118 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4123 * For costly allocations, try direct compaction first, as it's likely
4124 * that we have enough base pages and don't need to reclaim. For non-
4125 * movable high-order allocations, do that as well, as compaction will
4126 * try prevent permanent fragmentation by migrating from blocks of the
4128 * Don't try this for allocations that are allowed to ignore
4129 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4131 if (can_direct_reclaim
&&
4133 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4134 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4135 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4137 INIT_COMPACT_PRIORITY
,
4143 * Checks for costly allocations with __GFP_NORETRY, which
4144 * includes THP page fault allocations
4146 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4148 * If compaction is deferred for high-order allocations,
4149 * it is because sync compaction recently failed. If
4150 * this is the case and the caller requested a THP
4151 * allocation, we do not want to heavily disrupt the
4152 * system, so we fail the allocation instead of entering
4155 if (compact_result
== COMPACT_DEFERRED
)
4159 * Looks like reclaim/compaction is worth trying, but
4160 * sync compaction could be very expensive, so keep
4161 * using async compaction.
4163 compact_priority
= INIT_COMPACT_PRIORITY
;
4168 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4169 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4170 wake_all_kswapds(order
, gfp_mask
, ac
);
4172 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4174 alloc_flags
= reserve_flags
;
4177 * Reset the nodemask and zonelist iterators if memory policies can be
4178 * ignored. These allocations are high priority and system rather than
4181 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4182 ac
->nodemask
= NULL
;
4183 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4184 ac
->high_zoneidx
, ac
->nodemask
);
4187 /* Attempt with potentially adjusted zonelist and alloc_flags */
4188 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4192 /* Caller is not willing to reclaim, we can't balance anything */
4193 if (!can_direct_reclaim
)
4196 /* Avoid recursion of direct reclaim */
4197 if (current
->flags
& PF_MEMALLOC
)
4200 /* Try direct reclaim and then allocating */
4201 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4202 &did_some_progress
);
4206 /* Try direct compaction and then allocating */
4207 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4208 compact_priority
, &compact_result
);
4212 /* Do not loop if specifically requested */
4213 if (gfp_mask
& __GFP_NORETRY
)
4217 * Do not retry costly high order allocations unless they are
4218 * __GFP_RETRY_MAYFAIL
4220 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4223 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4224 did_some_progress
> 0, &no_progress_loops
))
4228 * It doesn't make any sense to retry for the compaction if the order-0
4229 * reclaim is not able to make any progress because the current
4230 * implementation of the compaction depends on the sufficient amount
4231 * of free memory (see __compaction_suitable)
4233 if (did_some_progress
> 0 &&
4234 should_compact_retry(ac
, order
, alloc_flags
,
4235 compact_result
, &compact_priority
,
4236 &compaction_retries
))
4240 /* Deal with possible cpuset update races before we start OOM killing */
4241 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4244 /* Reclaim has failed us, start killing things */
4245 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4249 /* Avoid allocations with no watermarks from looping endlessly */
4250 if (tsk_is_oom_victim(current
) &&
4251 (alloc_flags
== ALLOC_OOM
||
4252 (gfp_mask
& __GFP_NOMEMALLOC
)))
4255 /* Retry as long as the OOM killer is making progress */
4256 if (did_some_progress
) {
4257 no_progress_loops
= 0;
4262 /* Deal with possible cpuset update races before we fail */
4263 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4267 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4270 if (gfp_mask
& __GFP_NOFAIL
) {
4272 * All existing users of the __GFP_NOFAIL are blockable, so warn
4273 * of any new users that actually require GFP_NOWAIT
4275 if (WARN_ON_ONCE(!can_direct_reclaim
))
4279 * PF_MEMALLOC request from this context is rather bizarre
4280 * because we cannot reclaim anything and only can loop waiting
4281 * for somebody to do a work for us
4283 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4286 * non failing costly orders are a hard requirement which we
4287 * are not prepared for much so let's warn about these users
4288 * so that we can identify them and convert them to something
4291 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4294 * Help non-failing allocations by giving them access to memory
4295 * reserves but do not use ALLOC_NO_WATERMARKS because this
4296 * could deplete whole memory reserves which would just make
4297 * the situation worse
4299 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4307 warn_alloc(gfp_mask
, ac
->nodemask
,
4308 "page allocation failure: order:%u", order
);
4313 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4314 int preferred_nid
, nodemask_t
*nodemask
,
4315 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4316 unsigned int *alloc_flags
)
4318 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4319 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4320 ac
->nodemask
= nodemask
;
4321 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4323 if (cpusets_enabled()) {
4324 *alloc_mask
|= __GFP_HARDWALL
;
4326 ac
->nodemask
= &cpuset_current_mems_allowed
;
4328 *alloc_flags
|= ALLOC_CPUSET
;
4331 fs_reclaim_acquire(gfp_mask
);
4332 fs_reclaim_release(gfp_mask
);
4334 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4336 if (should_fail_alloc_page(gfp_mask
, order
))
4339 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4340 *alloc_flags
|= ALLOC_CMA
;
4345 /* Determine whether to spread dirty pages and what the first usable zone */
4346 static inline void finalise_ac(gfp_t gfp_mask
, struct alloc_context
*ac
)
4348 /* Dirty zone balancing only done in the fast path */
4349 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4352 * The preferred zone is used for statistics but crucially it is
4353 * also used as the starting point for the zonelist iterator. It
4354 * may get reset for allocations that ignore memory policies.
4356 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4357 ac
->high_zoneidx
, ac
->nodemask
);
4361 * This is the 'heart' of the zoned buddy allocator.
4364 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4365 nodemask_t
*nodemask
)
4368 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4369 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4370 struct alloc_context ac
= { };
4373 * There are several places where we assume that the order value is sane
4374 * so bail out early if the request is out of bound.
4376 if (unlikely(order
>= MAX_ORDER
)) {
4377 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4381 gfp_mask
&= gfp_allowed_mask
;
4382 alloc_mask
= gfp_mask
;
4383 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4386 finalise_ac(gfp_mask
, &ac
);
4388 /* First allocation attempt */
4389 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4394 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4395 * resp. GFP_NOIO which has to be inherited for all allocation requests
4396 * from a particular context which has been marked by
4397 * memalloc_no{fs,io}_{save,restore}.
4399 alloc_mask
= current_gfp_context(gfp_mask
);
4400 ac
.spread_dirty_pages
= false;
4403 * Restore the original nodemask if it was potentially replaced with
4404 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4406 if (unlikely(ac
.nodemask
!= nodemask
))
4407 ac
.nodemask
= nodemask
;
4409 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4412 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4413 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4414 __free_pages(page
, order
);
4418 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4422 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4425 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4426 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4427 * you need to access high mem.
4429 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4433 page
= alloc_pages(gfp_mask
& ~__GFP_HIGHMEM
, order
);
4436 return (unsigned long) page_address(page
);
4438 EXPORT_SYMBOL(__get_free_pages
);
4440 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4442 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4444 EXPORT_SYMBOL(get_zeroed_page
);
4446 void __free_pages(struct page
*page
, unsigned int order
)
4448 if (put_page_testzero(page
)) {
4450 free_unref_page(page
);
4452 __free_pages_ok(page
, order
);
4456 EXPORT_SYMBOL(__free_pages
);
4458 void free_pages(unsigned long addr
, unsigned int order
)
4461 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4462 __free_pages(virt_to_page((void *)addr
), order
);
4466 EXPORT_SYMBOL(free_pages
);
4470 * An arbitrary-length arbitrary-offset area of memory which resides
4471 * within a 0 or higher order page. Multiple fragments within that page
4472 * are individually refcounted, in the page's reference counter.
4474 * The page_frag functions below provide a simple allocation framework for
4475 * page fragments. This is used by the network stack and network device
4476 * drivers to provide a backing region of memory for use as either an
4477 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4479 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4482 struct page
*page
= NULL
;
4483 gfp_t gfp
= gfp_mask
;
4485 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4486 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4488 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4489 PAGE_FRAG_CACHE_MAX_ORDER
);
4490 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4492 if (unlikely(!page
))
4493 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4495 nc
->va
= page
? page_address(page
) : NULL
;
4500 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4502 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4504 if (page_ref_sub_and_test(page
, count
)) {
4505 unsigned int order
= compound_order(page
);
4508 free_unref_page(page
);
4510 __free_pages_ok(page
, order
);
4513 EXPORT_SYMBOL(__page_frag_cache_drain
);
4515 void *page_frag_alloc(struct page_frag_cache
*nc
,
4516 unsigned int fragsz
, gfp_t gfp_mask
)
4518 unsigned int size
= PAGE_SIZE
;
4522 if (unlikely(!nc
->va
)) {
4524 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4528 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4529 /* if size can vary use size else just use PAGE_SIZE */
4532 /* Even if we own the page, we do not use atomic_set().
4533 * This would break get_page_unless_zero() users.
4535 page_ref_add(page
, size
);
4537 /* reset page count bias and offset to start of new frag */
4538 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4539 nc
->pagecnt_bias
= size
+ 1;
4543 offset
= nc
->offset
- fragsz
;
4544 if (unlikely(offset
< 0)) {
4545 page
= virt_to_page(nc
->va
);
4547 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4550 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4551 /* if size can vary use size else just use PAGE_SIZE */
4554 /* OK, page count is 0, we can safely set it */
4555 set_page_count(page
, size
+ 1);
4557 /* reset page count bias and offset to start of new frag */
4558 nc
->pagecnt_bias
= size
+ 1;
4559 offset
= size
- fragsz
;
4563 nc
->offset
= offset
;
4565 return nc
->va
+ offset
;
4567 EXPORT_SYMBOL(page_frag_alloc
);
4570 * Frees a page fragment allocated out of either a compound or order 0 page.
4572 void page_frag_free(void *addr
)
4574 struct page
*page
= virt_to_head_page(addr
);
4576 if (unlikely(put_page_testzero(page
)))
4577 __free_pages_ok(page
, compound_order(page
));
4579 EXPORT_SYMBOL(page_frag_free
);
4581 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4585 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4586 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4588 split_page(virt_to_page((void *)addr
), order
);
4589 while (used
< alloc_end
) {
4594 return (void *)addr
;
4598 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4599 * @size: the number of bytes to allocate
4600 * @gfp_mask: GFP flags for the allocation
4602 * This function is similar to alloc_pages(), except that it allocates the
4603 * minimum number of pages to satisfy the request. alloc_pages() can only
4604 * allocate memory in power-of-two pages.
4606 * This function is also limited by MAX_ORDER.
4608 * Memory allocated by this function must be released by free_pages_exact().
4610 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4612 unsigned int order
= get_order(size
);
4615 addr
= __get_free_pages(gfp_mask
, order
);
4616 return make_alloc_exact(addr
, order
, size
);
4618 EXPORT_SYMBOL(alloc_pages_exact
);
4621 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4623 * @nid: the preferred node ID where memory should be allocated
4624 * @size: the number of bytes to allocate
4625 * @gfp_mask: GFP flags for the allocation
4627 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4630 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4632 unsigned int order
= get_order(size
);
4633 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4636 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4640 * free_pages_exact - release memory allocated via alloc_pages_exact()
4641 * @virt: the value returned by alloc_pages_exact.
4642 * @size: size of allocation, same value as passed to alloc_pages_exact().
4644 * Release the memory allocated by a previous call to alloc_pages_exact.
4646 void free_pages_exact(void *virt
, size_t size
)
4648 unsigned long addr
= (unsigned long)virt
;
4649 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4651 while (addr
< end
) {
4656 EXPORT_SYMBOL(free_pages_exact
);
4659 * nr_free_zone_pages - count number of pages beyond high watermark
4660 * @offset: The zone index of the highest zone
4662 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4663 * high watermark within all zones at or below a given zone index. For each
4664 * zone, the number of pages is calculated as:
4666 * nr_free_zone_pages = managed_pages - high_pages
4668 static unsigned long nr_free_zone_pages(int offset
)
4673 /* Just pick one node, since fallback list is circular */
4674 unsigned long sum
= 0;
4676 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4678 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4679 unsigned long size
= zone
->managed_pages
;
4680 unsigned long high
= high_wmark_pages(zone
);
4689 * nr_free_buffer_pages - count number of pages beyond high watermark
4691 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4692 * watermark within ZONE_DMA and ZONE_NORMAL.
4694 unsigned long nr_free_buffer_pages(void)
4696 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4698 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4701 * nr_free_pagecache_pages - count number of pages beyond high watermark
4703 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4704 * high watermark within all zones.
4706 unsigned long nr_free_pagecache_pages(void)
4708 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4711 static inline void show_node(struct zone
*zone
)
4713 if (IS_ENABLED(CONFIG_NUMA
))
4714 printk("Node %d ", zone_to_nid(zone
));
4717 long si_mem_available(void)
4720 unsigned long pagecache
;
4721 unsigned long wmark_low
= 0;
4722 unsigned long pages
[NR_LRU_LISTS
];
4726 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4727 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4730 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4733 * Estimate the amount of memory available for userspace allocations,
4734 * without causing swapping.
4736 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4739 * Not all the page cache can be freed, otherwise the system will
4740 * start swapping. Assume at least half of the page cache, or the
4741 * low watermark worth of cache, needs to stay.
4743 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4744 pagecache
-= min(pagecache
/ 2, wmark_low
);
4745 available
+= pagecache
;
4748 * Part of the reclaimable slab consists of items that are in use,
4749 * and cannot be freed. Cap this estimate at the low watermark.
4751 available
+= global_node_page_state(NR_SLAB_RECLAIMABLE
) -
4752 min(global_node_page_state(NR_SLAB_RECLAIMABLE
) / 2,
4756 * Part of the kernel memory, which can be released under memory
4759 available
+= global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES
) >>
4766 EXPORT_SYMBOL_GPL(si_mem_available
);
4768 void si_meminfo(struct sysinfo
*val
)
4770 val
->totalram
= totalram_pages
;
4771 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4772 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
4773 val
->bufferram
= nr_blockdev_pages();
4774 val
->totalhigh
= totalhigh_pages
;
4775 val
->freehigh
= nr_free_highpages();
4776 val
->mem_unit
= PAGE_SIZE
;
4779 EXPORT_SYMBOL(si_meminfo
);
4782 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4784 int zone_type
; /* needs to be signed */
4785 unsigned long managed_pages
= 0;
4786 unsigned long managed_highpages
= 0;
4787 unsigned long free_highpages
= 0;
4788 pg_data_t
*pgdat
= NODE_DATA(nid
);
4790 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4791 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4792 val
->totalram
= managed_pages
;
4793 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4794 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4795 #ifdef CONFIG_HIGHMEM
4796 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4797 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4799 if (is_highmem(zone
)) {
4800 managed_highpages
+= zone
->managed_pages
;
4801 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4804 val
->totalhigh
= managed_highpages
;
4805 val
->freehigh
= free_highpages
;
4807 val
->totalhigh
= managed_highpages
;
4808 val
->freehigh
= free_highpages
;
4810 val
->mem_unit
= PAGE_SIZE
;
4815 * Determine whether the node should be displayed or not, depending on whether
4816 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4818 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
4820 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4824 * no node mask - aka implicit memory numa policy. Do not bother with
4825 * the synchronization - read_mems_allowed_begin - because we do not
4826 * have to be precise here.
4829 nodemask
= &cpuset_current_mems_allowed
;
4831 return !node_isset(nid
, *nodemask
);
4834 #define K(x) ((x) << (PAGE_SHIFT-10))
4836 static void show_migration_types(unsigned char type
)
4838 static const char types
[MIGRATE_TYPES
] = {
4839 [MIGRATE_UNMOVABLE
] = 'U',
4840 [MIGRATE_MOVABLE
] = 'M',
4841 [MIGRATE_RECLAIMABLE
] = 'E',
4842 [MIGRATE_HIGHATOMIC
] = 'H',
4844 [MIGRATE_CMA
] = 'C',
4846 #ifdef CONFIG_MEMORY_ISOLATION
4847 [MIGRATE_ISOLATE
] = 'I',
4850 char tmp
[MIGRATE_TYPES
+ 1];
4854 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4855 if (type
& (1 << i
))
4860 printk(KERN_CONT
"(%s) ", tmp
);
4864 * Show free area list (used inside shift_scroll-lock stuff)
4865 * We also calculate the percentage fragmentation. We do this by counting the
4866 * memory on each free list with the exception of the first item on the list.
4869 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4872 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
4874 unsigned long free_pcp
= 0;
4879 for_each_populated_zone(zone
) {
4880 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4883 for_each_online_cpu(cpu
)
4884 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4887 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4888 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4889 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4890 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4891 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4892 " free:%lu free_pcp:%lu free_cma:%lu\n",
4893 global_node_page_state(NR_ACTIVE_ANON
),
4894 global_node_page_state(NR_INACTIVE_ANON
),
4895 global_node_page_state(NR_ISOLATED_ANON
),
4896 global_node_page_state(NR_ACTIVE_FILE
),
4897 global_node_page_state(NR_INACTIVE_FILE
),
4898 global_node_page_state(NR_ISOLATED_FILE
),
4899 global_node_page_state(NR_UNEVICTABLE
),
4900 global_node_page_state(NR_FILE_DIRTY
),
4901 global_node_page_state(NR_WRITEBACK
),
4902 global_node_page_state(NR_UNSTABLE_NFS
),
4903 global_node_page_state(NR_SLAB_RECLAIMABLE
),
4904 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
4905 global_node_page_state(NR_FILE_MAPPED
),
4906 global_node_page_state(NR_SHMEM
),
4907 global_zone_page_state(NR_PAGETABLE
),
4908 global_zone_page_state(NR_BOUNCE
),
4909 global_zone_page_state(NR_FREE_PAGES
),
4911 global_zone_page_state(NR_FREE_CMA_PAGES
));
4913 for_each_online_pgdat(pgdat
) {
4914 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
4918 " active_anon:%lukB"
4919 " inactive_anon:%lukB"
4920 " active_file:%lukB"
4921 " inactive_file:%lukB"
4922 " unevictable:%lukB"
4923 " isolated(anon):%lukB"
4924 " isolated(file):%lukB"
4929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4931 " shmem_pmdmapped: %lukB"
4934 " writeback_tmp:%lukB"
4936 " all_unreclaimable? %s"
4939 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4940 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4941 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4942 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4943 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4944 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4945 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4946 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4947 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4948 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4949 K(node_page_state(pgdat
, NR_SHMEM
)),
4950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4951 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4952 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4954 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4956 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4957 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4958 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4962 for_each_populated_zone(zone
) {
4965 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4969 for_each_online_cpu(cpu
)
4970 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4979 " active_anon:%lukB"
4980 " inactive_anon:%lukB"
4981 " active_file:%lukB"
4982 " inactive_file:%lukB"
4983 " unevictable:%lukB"
4984 " writepending:%lukB"
4988 " kernel_stack:%lukB"
4996 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4997 K(min_wmark_pages(zone
)),
4998 K(low_wmark_pages(zone
)),
4999 K(high_wmark_pages(zone
)),
5000 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
5001 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
5002 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
5003 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
5004 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
5005 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
5006 K(zone
->present_pages
),
5007 K(zone
->managed_pages
),
5008 K(zone_page_state(zone
, NR_MLOCK
)),
5009 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
5010 K(zone_page_state(zone
, NR_PAGETABLE
)),
5011 K(zone_page_state(zone
, NR_BOUNCE
)),
5013 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
5014 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
5015 printk("lowmem_reserve[]:");
5016 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
5017 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
5018 printk(KERN_CONT
"\n");
5021 for_each_populated_zone(zone
) {
5023 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5024 unsigned char types
[MAX_ORDER
];
5026 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5029 printk(KERN_CONT
"%s: ", zone
->name
);
5031 spin_lock_irqsave(&zone
->lock
, flags
);
5032 for (order
= 0; order
< MAX_ORDER
; order
++) {
5033 struct free_area
*area
= &zone
->free_area
[order
];
5036 nr
[order
] = area
->nr_free
;
5037 total
+= nr
[order
] << order
;
5040 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5041 if (!list_empty(&area
->free_list
[type
]))
5042 types
[order
] |= 1 << type
;
5045 spin_unlock_irqrestore(&zone
->lock
, flags
);
5046 for (order
= 0; order
< MAX_ORDER
; order
++) {
5047 printk(KERN_CONT
"%lu*%lukB ",
5048 nr
[order
], K(1UL) << order
);
5050 show_migration_types(types
[order
]);
5052 printk(KERN_CONT
"= %lukB\n", K(total
));
5055 hugetlb_show_meminfo();
5057 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5059 show_swap_cache_info();
5062 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5064 zoneref
->zone
= zone
;
5065 zoneref
->zone_idx
= zone_idx(zone
);
5069 * Builds allocation fallback zone lists.
5071 * Add all populated zones of a node to the zonelist.
5073 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5076 enum zone_type zone_type
= MAX_NR_ZONES
;
5081 zone
= pgdat
->node_zones
+ zone_type
;
5082 if (managed_zone(zone
)) {
5083 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5084 check_highest_zone(zone_type
);
5086 } while (zone_type
);
5093 static int __parse_numa_zonelist_order(char *s
)
5096 * We used to support different zonlists modes but they turned
5097 * out to be just not useful. Let's keep the warning in place
5098 * if somebody still use the cmd line parameter so that we do
5099 * not fail it silently
5101 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5102 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5108 static __init
int setup_numa_zonelist_order(char *s
)
5113 return __parse_numa_zonelist_order(s
);
5115 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
5117 char numa_zonelist_order
[] = "Node";
5120 * sysctl handler for numa_zonelist_order
5122 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5123 void __user
*buffer
, size_t *length
,
5130 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5131 str
= memdup_user_nul(buffer
, 16);
5133 return PTR_ERR(str
);
5135 ret
= __parse_numa_zonelist_order(str
);
5141 #define MAX_NODE_LOAD (nr_online_nodes)
5142 static int node_load
[MAX_NUMNODES
];
5145 * find_next_best_node - find the next node that should appear in a given node's fallback list
5146 * @node: node whose fallback list we're appending
5147 * @used_node_mask: nodemask_t of already used nodes
5149 * We use a number of factors to determine which is the next node that should
5150 * appear on a given node's fallback list. The node should not have appeared
5151 * already in @node's fallback list, and it should be the next closest node
5152 * according to the distance array (which contains arbitrary distance values
5153 * from each node to each node in the system), and should also prefer nodes
5154 * with no CPUs, since presumably they'll have very little allocation pressure
5155 * on them otherwise.
5156 * It returns -1 if no node is found.
5158 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5161 int min_val
= INT_MAX
;
5162 int best_node
= NUMA_NO_NODE
;
5163 const struct cpumask
*tmp
= cpumask_of_node(0);
5165 /* Use the local node if we haven't already */
5166 if (!node_isset(node
, *used_node_mask
)) {
5167 node_set(node
, *used_node_mask
);
5171 for_each_node_state(n
, N_MEMORY
) {
5173 /* Don't want a node to appear more than once */
5174 if (node_isset(n
, *used_node_mask
))
5177 /* Use the distance array to find the distance */
5178 val
= node_distance(node
, n
);
5180 /* Penalize nodes under us ("prefer the next node") */
5183 /* Give preference to headless and unused nodes */
5184 tmp
= cpumask_of_node(n
);
5185 if (!cpumask_empty(tmp
))
5186 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5188 /* Slight preference for less loaded node */
5189 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5190 val
+= node_load
[n
];
5192 if (val
< min_val
) {
5199 node_set(best_node
, *used_node_mask
);
5206 * Build zonelists ordered by node and zones within node.
5207 * This results in maximum locality--normal zone overflows into local
5208 * DMA zone, if any--but risks exhausting DMA zone.
5210 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5213 struct zoneref
*zonerefs
;
5216 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5218 for (i
= 0; i
< nr_nodes
; i
++) {
5221 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5223 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5224 zonerefs
+= nr_zones
;
5226 zonerefs
->zone
= NULL
;
5227 zonerefs
->zone_idx
= 0;
5231 * Build gfp_thisnode zonelists
5233 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5235 struct zoneref
*zonerefs
;
5238 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5239 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5240 zonerefs
+= nr_zones
;
5241 zonerefs
->zone
= NULL
;
5242 zonerefs
->zone_idx
= 0;
5246 * Build zonelists ordered by zone and nodes within zones.
5247 * This results in conserving DMA zone[s] until all Normal memory is
5248 * exhausted, but results in overflowing to remote node while memory
5249 * may still exist in local DMA zone.
5252 static void build_zonelists(pg_data_t
*pgdat
)
5254 static int node_order
[MAX_NUMNODES
];
5255 int node
, load
, nr_nodes
= 0;
5256 nodemask_t used_mask
;
5257 int local_node
, prev_node
;
5259 /* NUMA-aware ordering of nodes */
5260 local_node
= pgdat
->node_id
;
5261 load
= nr_online_nodes
;
5262 prev_node
= local_node
;
5263 nodes_clear(used_mask
);
5265 memset(node_order
, 0, sizeof(node_order
));
5266 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5268 * We don't want to pressure a particular node.
5269 * So adding penalty to the first node in same
5270 * distance group to make it round-robin.
5272 if (node_distance(local_node
, node
) !=
5273 node_distance(local_node
, prev_node
))
5274 node_load
[node
] = load
;
5276 node_order
[nr_nodes
++] = node
;
5281 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5282 build_thisnode_zonelists(pgdat
);
5285 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5287 * Return node id of node used for "local" allocations.
5288 * I.e., first node id of first zone in arg node's generic zonelist.
5289 * Used for initializing percpu 'numa_mem', which is used primarily
5290 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5292 int local_memory_node(int node
)
5296 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5297 gfp_zone(GFP_KERNEL
),
5299 return zone_to_nid(z
->zone
);
5303 static void setup_min_unmapped_ratio(void);
5304 static void setup_min_slab_ratio(void);
5305 #else /* CONFIG_NUMA */
5307 static void build_zonelists(pg_data_t
*pgdat
)
5309 int node
, local_node
;
5310 struct zoneref
*zonerefs
;
5313 local_node
= pgdat
->node_id
;
5315 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5316 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5317 zonerefs
+= nr_zones
;
5320 * Now we build the zonelist so that it contains the zones
5321 * of all the other nodes.
5322 * We don't want to pressure a particular node, so when
5323 * building the zones for node N, we make sure that the
5324 * zones coming right after the local ones are those from
5325 * node N+1 (modulo N)
5327 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5328 if (!node_online(node
))
5330 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5331 zonerefs
+= nr_zones
;
5333 for (node
= 0; node
< local_node
; node
++) {
5334 if (!node_online(node
))
5336 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5337 zonerefs
+= nr_zones
;
5340 zonerefs
->zone
= NULL
;
5341 zonerefs
->zone_idx
= 0;
5344 #endif /* CONFIG_NUMA */
5347 * Boot pageset table. One per cpu which is going to be used for all
5348 * zones and all nodes. The parameters will be set in such a way
5349 * that an item put on a list will immediately be handed over to
5350 * the buddy list. This is safe since pageset manipulation is done
5351 * with interrupts disabled.
5353 * The boot_pagesets must be kept even after bootup is complete for
5354 * unused processors and/or zones. They do play a role for bootstrapping
5355 * hotplugged processors.
5357 * zoneinfo_show() and maybe other functions do
5358 * not check if the processor is online before following the pageset pointer.
5359 * Other parts of the kernel may not check if the zone is available.
5361 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5362 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5363 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5365 static void __build_all_zonelists(void *data
)
5368 int __maybe_unused cpu
;
5369 pg_data_t
*self
= data
;
5370 static DEFINE_SPINLOCK(lock
);
5375 memset(node_load
, 0, sizeof(node_load
));
5379 * This node is hotadded and no memory is yet present. So just
5380 * building zonelists is fine - no need to touch other nodes.
5382 if (self
&& !node_online(self
->node_id
)) {
5383 build_zonelists(self
);
5385 for_each_online_node(nid
) {
5386 pg_data_t
*pgdat
= NODE_DATA(nid
);
5388 build_zonelists(pgdat
);
5391 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5393 * We now know the "local memory node" for each node--
5394 * i.e., the node of the first zone in the generic zonelist.
5395 * Set up numa_mem percpu variable for on-line cpus. During
5396 * boot, only the boot cpu should be on-line; we'll init the
5397 * secondary cpus' numa_mem as they come on-line. During
5398 * node/memory hotplug, we'll fixup all on-line cpus.
5400 for_each_online_cpu(cpu
)
5401 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5408 static noinline
void __init
5409 build_all_zonelists_init(void)
5413 __build_all_zonelists(NULL
);
5416 * Initialize the boot_pagesets that are going to be used
5417 * for bootstrapping processors. The real pagesets for
5418 * each zone will be allocated later when the per cpu
5419 * allocator is available.
5421 * boot_pagesets are used also for bootstrapping offline
5422 * cpus if the system is already booted because the pagesets
5423 * are needed to initialize allocators on a specific cpu too.
5424 * F.e. the percpu allocator needs the page allocator which
5425 * needs the percpu allocator in order to allocate its pagesets
5426 * (a chicken-egg dilemma).
5428 for_each_possible_cpu(cpu
)
5429 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5431 mminit_verify_zonelist();
5432 cpuset_init_current_mems_allowed();
5436 * unless system_state == SYSTEM_BOOTING.
5438 * __ref due to call of __init annotated helper build_all_zonelists_init
5439 * [protected by SYSTEM_BOOTING].
5441 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5443 if (system_state
== SYSTEM_BOOTING
) {
5444 build_all_zonelists_init();
5446 __build_all_zonelists(pgdat
);
5447 /* cpuset refresh routine should be here */
5449 vm_total_pages
= nr_free_pagecache_pages();
5451 * Disable grouping by mobility if the number of pages in the
5452 * system is too low to allow the mechanism to work. It would be
5453 * more accurate, but expensive to check per-zone. This check is
5454 * made on memory-hotadd so a system can start with mobility
5455 * disabled and enable it later
5457 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5458 page_group_by_mobility_disabled
= 1;
5460 page_group_by_mobility_disabled
= 0;
5462 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5464 page_group_by_mobility_disabled
? "off" : "on",
5467 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5472 * Initially all pages are reserved - free ones are freed
5473 * up by free_all_bootmem() once the early boot process is
5474 * done. Non-atomic initialization, single-pass.
5476 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5477 unsigned long start_pfn
, enum memmap_context context
,
5478 struct vmem_altmap
*altmap
)
5480 unsigned long end_pfn
= start_pfn
+ size
;
5481 pg_data_t
*pgdat
= NODE_DATA(nid
);
5483 unsigned long nr_initialised
= 0;
5485 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5486 struct memblock_region
*r
= NULL
, *tmp
;
5489 if (highest_memmap_pfn
< end_pfn
- 1)
5490 highest_memmap_pfn
= end_pfn
- 1;
5493 * Honor reservation requested by the driver for this ZONE_DEVICE
5496 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5497 start_pfn
+= altmap
->reserve
;
5499 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5501 * There can be holes in boot-time mem_map[]s handed to this
5502 * function. They do not exist on hotplugged memory.
5504 if (context
!= MEMMAP_EARLY
)
5507 if (!early_pfn_valid(pfn
))
5509 if (!early_pfn_in_nid(pfn
, nid
))
5511 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5514 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5516 * Check given memblock attribute by firmware which can affect
5517 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5518 * mirrored, it's an overlapped memmap init. skip it.
5520 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5521 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5522 for_each_memblock(memory
, tmp
)
5523 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5527 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5528 memblock_is_mirror(r
)) {
5529 /* already initialized as NORMAL */
5530 pfn
= memblock_region_memory_end_pfn(r
);
5537 page
= pfn_to_page(pfn
);
5538 __init_single_page(page
, pfn
, zone
, nid
);
5539 if (context
== MEMMAP_HOTPLUG
)
5540 SetPageReserved(page
);
5543 * Mark the block movable so that blocks are reserved for
5544 * movable at startup. This will force kernel allocations
5545 * to reserve their blocks rather than leaking throughout
5546 * the address space during boot when many long-lived
5547 * kernel allocations are made.
5549 * bitmap is created for zone's valid pfn range. but memmap
5550 * can be created for invalid pages (for alignment)
5551 * check here not to call set_pageblock_migratetype() against
5554 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5555 * because this is done early in sparse_add_one_section
5557 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5558 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5564 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5566 unsigned int order
, t
;
5567 for_each_migratetype_order(order
, t
) {
5568 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5569 zone
->free_area
[order
].nr_free
= 0;
5573 #ifndef __HAVE_ARCH_MEMMAP_INIT
5574 #define memmap_init(size, nid, zone, start_pfn) \
5575 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5578 static int zone_batchsize(struct zone
*zone
)
5584 * The per-cpu-pages pools are set to around 1000th of the
5587 batch
= zone
->managed_pages
/ 1024;
5588 /* But no more than a meg. */
5589 if (batch
* PAGE_SIZE
> 1024 * 1024)
5590 batch
= (1024 * 1024) / PAGE_SIZE
;
5591 batch
/= 4; /* We effectively *= 4 below */
5596 * Clamp the batch to a 2^n - 1 value. Having a power
5597 * of 2 value was found to be more likely to have
5598 * suboptimal cache aliasing properties in some cases.
5600 * For example if 2 tasks are alternately allocating
5601 * batches of pages, one task can end up with a lot
5602 * of pages of one half of the possible page colors
5603 * and the other with pages of the other colors.
5605 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5610 /* The deferral and batching of frees should be suppressed under NOMMU
5613 * The problem is that NOMMU needs to be able to allocate large chunks
5614 * of contiguous memory as there's no hardware page translation to
5615 * assemble apparent contiguous memory from discontiguous pages.
5617 * Queueing large contiguous runs of pages for batching, however,
5618 * causes the pages to actually be freed in smaller chunks. As there
5619 * can be a significant delay between the individual batches being
5620 * recycled, this leads to the once large chunks of space being
5621 * fragmented and becoming unavailable for high-order allocations.
5628 * pcp->high and pcp->batch values are related and dependent on one another:
5629 * ->batch must never be higher then ->high.
5630 * The following function updates them in a safe manner without read side
5633 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5634 * those fields changing asynchronously (acording the the above rule).
5636 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5637 * outside of boot time (or some other assurance that no concurrent updaters
5640 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5641 unsigned long batch
)
5643 /* start with a fail safe value for batch */
5647 /* Update high, then batch, in order */
5654 /* a companion to pageset_set_high() */
5655 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5657 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5660 static void pageset_init(struct per_cpu_pageset
*p
)
5662 struct per_cpu_pages
*pcp
;
5665 memset(p
, 0, sizeof(*p
));
5669 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5670 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5673 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5676 pageset_set_batch(p
, batch
);
5680 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5681 * to the value high for the pageset p.
5683 static void pageset_set_high(struct per_cpu_pageset
*p
,
5686 unsigned long batch
= max(1UL, high
/ 4);
5687 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5688 batch
= PAGE_SHIFT
* 8;
5690 pageset_update(&p
->pcp
, high
, batch
);
5693 static void pageset_set_high_and_batch(struct zone
*zone
,
5694 struct per_cpu_pageset
*pcp
)
5696 if (percpu_pagelist_fraction
)
5697 pageset_set_high(pcp
,
5698 (zone
->managed_pages
/
5699 percpu_pagelist_fraction
));
5701 pageset_set_batch(pcp
, zone_batchsize(zone
));
5704 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5706 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5709 pageset_set_high_and_batch(zone
, pcp
);
5712 void __meminit
setup_zone_pageset(struct zone
*zone
)
5715 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5716 for_each_possible_cpu(cpu
)
5717 zone_pageset_init(zone
, cpu
);
5721 * Allocate per cpu pagesets and initialize them.
5722 * Before this call only boot pagesets were available.
5724 void __init
setup_per_cpu_pageset(void)
5726 struct pglist_data
*pgdat
;
5729 for_each_populated_zone(zone
)
5730 setup_zone_pageset(zone
);
5732 for_each_online_pgdat(pgdat
)
5733 pgdat
->per_cpu_nodestats
=
5734 alloc_percpu(struct per_cpu_nodestat
);
5737 static __meminit
void zone_pcp_init(struct zone
*zone
)
5740 * per cpu subsystem is not up at this point. The following code
5741 * relies on the ability of the linker to provide the
5742 * offset of a (static) per cpu variable into the per cpu area.
5744 zone
->pageset
= &boot_pageset
;
5746 if (populated_zone(zone
))
5747 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5748 zone
->name
, zone
->present_pages
,
5749 zone_batchsize(zone
));
5752 void __meminit
init_currently_empty_zone(struct zone
*zone
,
5753 unsigned long zone_start_pfn
,
5756 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5757 int zone_idx
= zone_idx(zone
) + 1;
5759 if (zone_idx
> pgdat
->nr_zones
)
5760 pgdat
->nr_zones
= zone_idx
;
5762 zone
->zone_start_pfn
= zone_start_pfn
;
5764 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5765 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5767 (unsigned long)zone_idx(zone
),
5768 zone_start_pfn
, (zone_start_pfn
+ size
));
5770 zone_init_free_lists(zone
);
5771 zone
->initialized
= 1;
5774 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5775 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5778 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5780 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5781 struct mminit_pfnnid_cache
*state
)
5783 unsigned long start_pfn
, end_pfn
;
5786 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5787 return state
->last_nid
;
5789 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5791 state
->last_start
= start_pfn
;
5792 state
->last_end
= end_pfn
;
5793 state
->last_nid
= nid
;
5798 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5801 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5802 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5803 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5805 * If an architecture guarantees that all ranges registered contain no holes
5806 * and may be freed, this this function may be used instead of calling
5807 * memblock_free_early_nid() manually.
5809 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5811 unsigned long start_pfn
, end_pfn
;
5814 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5815 start_pfn
= min(start_pfn
, max_low_pfn
);
5816 end_pfn
= min(end_pfn
, max_low_pfn
);
5818 if (start_pfn
< end_pfn
)
5819 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5820 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5826 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5827 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5829 * If an architecture guarantees that all ranges registered contain no holes and may
5830 * be freed, this function may be used instead of calling memory_present() manually.
5832 void __init
sparse_memory_present_with_active_regions(int nid
)
5834 unsigned long start_pfn
, end_pfn
;
5837 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5838 memory_present(this_nid
, start_pfn
, end_pfn
);
5842 * get_pfn_range_for_nid - Return the start and end page frames for a node
5843 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5844 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5845 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5847 * It returns the start and end page frame of a node based on information
5848 * provided by memblock_set_node(). If called for a node
5849 * with no available memory, a warning is printed and the start and end
5852 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5853 unsigned long *start_pfn
, unsigned long *end_pfn
)
5855 unsigned long this_start_pfn
, this_end_pfn
;
5861 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5862 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5863 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5866 if (*start_pfn
== -1UL)
5871 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5872 * assumption is made that zones within a node are ordered in monotonic
5873 * increasing memory addresses so that the "highest" populated zone is used
5875 static void __init
find_usable_zone_for_movable(void)
5878 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5879 if (zone_index
== ZONE_MOVABLE
)
5882 if (arch_zone_highest_possible_pfn
[zone_index
] >
5883 arch_zone_lowest_possible_pfn
[zone_index
])
5887 VM_BUG_ON(zone_index
== -1);
5888 movable_zone
= zone_index
;
5892 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5893 * because it is sized independent of architecture. Unlike the other zones,
5894 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5895 * in each node depending on the size of each node and how evenly kernelcore
5896 * is distributed. This helper function adjusts the zone ranges
5897 * provided by the architecture for a given node by using the end of the
5898 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5899 * zones within a node are in order of monotonic increases memory addresses
5901 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5902 unsigned long zone_type
,
5903 unsigned long node_start_pfn
,
5904 unsigned long node_end_pfn
,
5905 unsigned long *zone_start_pfn
,
5906 unsigned long *zone_end_pfn
)
5908 /* Only adjust if ZONE_MOVABLE is on this node */
5909 if (zone_movable_pfn
[nid
]) {
5910 /* Size ZONE_MOVABLE */
5911 if (zone_type
== ZONE_MOVABLE
) {
5912 *zone_start_pfn
= zone_movable_pfn
[nid
];
5913 *zone_end_pfn
= min(node_end_pfn
,
5914 arch_zone_highest_possible_pfn
[movable_zone
]);
5916 /* Adjust for ZONE_MOVABLE starting within this range */
5917 } else if (!mirrored_kernelcore
&&
5918 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5919 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5920 *zone_end_pfn
= zone_movable_pfn
[nid
];
5922 /* Check if this whole range is within ZONE_MOVABLE */
5923 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5924 *zone_start_pfn
= *zone_end_pfn
;
5929 * Return the number of pages a zone spans in a node, including holes
5930 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5932 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5933 unsigned long zone_type
,
5934 unsigned long node_start_pfn
,
5935 unsigned long node_end_pfn
,
5936 unsigned long *zone_start_pfn
,
5937 unsigned long *zone_end_pfn
,
5938 unsigned long *ignored
)
5940 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5941 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5942 /* When hotadd a new node from cpu_up(), the node should be empty */
5943 if (!node_start_pfn
&& !node_end_pfn
)
5946 /* Get the start and end of the zone */
5947 *zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5948 *zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5949 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5950 node_start_pfn
, node_end_pfn
,
5951 zone_start_pfn
, zone_end_pfn
);
5953 /* Check that this node has pages within the zone's required range */
5954 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5957 /* Move the zone boundaries inside the node if necessary */
5958 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5959 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5961 /* Return the spanned pages */
5962 return *zone_end_pfn
- *zone_start_pfn
;
5966 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5967 * then all holes in the requested range will be accounted for.
5969 unsigned long __meminit
__absent_pages_in_range(int nid
,
5970 unsigned long range_start_pfn
,
5971 unsigned long range_end_pfn
)
5973 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5974 unsigned long start_pfn
, end_pfn
;
5977 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5978 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5979 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5980 nr_absent
-= end_pfn
- start_pfn
;
5986 * absent_pages_in_range - Return number of page frames in holes within a range
5987 * @start_pfn: The start PFN to start searching for holes
5988 * @end_pfn: The end PFN to stop searching for holes
5990 * It returns the number of pages frames in memory holes within a range.
5992 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5993 unsigned long end_pfn
)
5995 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5998 /* Return the number of page frames in holes in a zone on a node */
5999 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
6000 unsigned long zone_type
,
6001 unsigned long node_start_pfn
,
6002 unsigned long node_end_pfn
,
6003 unsigned long *ignored
)
6005 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6006 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6007 unsigned long zone_start_pfn
, zone_end_pfn
;
6008 unsigned long nr_absent
;
6010 /* When hotadd a new node from cpu_up(), the node should be empty */
6011 if (!node_start_pfn
&& !node_end_pfn
)
6014 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6015 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6017 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6018 node_start_pfn
, node_end_pfn
,
6019 &zone_start_pfn
, &zone_end_pfn
);
6020 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
6023 * ZONE_MOVABLE handling.
6024 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6027 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6028 unsigned long start_pfn
, end_pfn
;
6029 struct memblock_region
*r
;
6031 for_each_memblock(memory
, r
) {
6032 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6033 zone_start_pfn
, zone_end_pfn
);
6034 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6035 zone_start_pfn
, zone_end_pfn
);
6037 if (zone_type
== ZONE_MOVABLE
&&
6038 memblock_is_mirror(r
))
6039 nr_absent
+= end_pfn
- start_pfn
;
6041 if (zone_type
== ZONE_NORMAL
&&
6042 !memblock_is_mirror(r
))
6043 nr_absent
+= end_pfn
- start_pfn
;
6050 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6051 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
6052 unsigned long zone_type
,
6053 unsigned long node_start_pfn
,
6054 unsigned long node_end_pfn
,
6055 unsigned long *zone_start_pfn
,
6056 unsigned long *zone_end_pfn
,
6057 unsigned long *zones_size
)
6061 *zone_start_pfn
= node_start_pfn
;
6062 for (zone
= 0; zone
< zone_type
; zone
++)
6063 *zone_start_pfn
+= zones_size
[zone
];
6065 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
6067 return zones_size
[zone_type
];
6070 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
6071 unsigned long zone_type
,
6072 unsigned long node_start_pfn
,
6073 unsigned long node_end_pfn
,
6074 unsigned long *zholes_size
)
6079 return zholes_size
[zone_type
];
6082 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6084 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
6085 unsigned long node_start_pfn
,
6086 unsigned long node_end_pfn
,
6087 unsigned long *zones_size
,
6088 unsigned long *zholes_size
)
6090 unsigned long realtotalpages
= 0, totalpages
= 0;
6093 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6094 struct zone
*zone
= pgdat
->node_zones
+ i
;
6095 unsigned long zone_start_pfn
, zone_end_pfn
;
6096 unsigned long size
, real_size
;
6098 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6104 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
6105 node_start_pfn
, node_end_pfn
,
6108 zone
->zone_start_pfn
= zone_start_pfn
;
6110 zone
->zone_start_pfn
= 0;
6111 zone
->spanned_pages
= size
;
6112 zone
->present_pages
= real_size
;
6115 realtotalpages
+= real_size
;
6118 pgdat
->node_spanned_pages
= totalpages
;
6119 pgdat
->node_present_pages
= realtotalpages
;
6120 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6124 #ifndef CONFIG_SPARSEMEM
6126 * Calculate the size of the zone->blockflags rounded to an unsigned long
6127 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6128 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6129 * round what is now in bits to nearest long in bits, then return it in
6132 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6134 unsigned long usemapsize
;
6136 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6137 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6138 usemapsize
= usemapsize
>> pageblock_order
;
6139 usemapsize
*= NR_PAGEBLOCK_BITS
;
6140 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6142 return usemapsize
/ 8;
6145 static void __ref
setup_usemap(struct pglist_data
*pgdat
,
6147 unsigned long zone_start_pfn
,
6148 unsigned long zonesize
)
6150 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6151 zone
->pageblock_flags
= NULL
;
6153 zone
->pageblock_flags
=
6154 memblock_virt_alloc_node_nopanic(usemapsize
,
6158 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6159 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6160 #endif /* CONFIG_SPARSEMEM */
6162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6164 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6165 void __init
set_pageblock_order(void)
6169 /* Check that pageblock_nr_pages has not already been setup */
6170 if (pageblock_order
)
6173 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6174 order
= HUGETLB_PAGE_ORDER
;
6176 order
= MAX_ORDER
- 1;
6179 * Assume the largest contiguous order of interest is a huge page.
6180 * This value may be variable depending on boot parameters on IA64 and
6183 pageblock_order
= order
;
6185 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6188 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6189 * is unused as pageblock_order is set at compile-time. See
6190 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6193 void __init
set_pageblock_order(void)
6197 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6199 static unsigned long __init
calc_memmap_size(unsigned long spanned_pages
,
6200 unsigned long present_pages
)
6202 unsigned long pages
= spanned_pages
;
6205 * Provide a more accurate estimation if there are holes within
6206 * the zone and SPARSEMEM is in use. If there are holes within the
6207 * zone, each populated memory region may cost us one or two extra
6208 * memmap pages due to alignment because memmap pages for each
6209 * populated regions may not be naturally aligned on page boundary.
6210 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6212 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6213 IS_ENABLED(CONFIG_SPARSEMEM
))
6214 pages
= present_pages
;
6216 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6220 static void pgdat_init_split_queue(struct pglist_data
*pgdat
)
6222 spin_lock_init(&pgdat
->split_queue_lock
);
6223 INIT_LIST_HEAD(&pgdat
->split_queue
);
6224 pgdat
->split_queue_len
= 0;
6227 static void pgdat_init_split_queue(struct pglist_data
*pgdat
) {}
6230 #ifdef CONFIG_COMPACTION
6231 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
)
6233 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6236 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
) {}
6239 static void __meminit
pgdat_init_internals(struct pglist_data
*pgdat
)
6241 pgdat_resize_init(pgdat
);
6243 pgdat_init_split_queue(pgdat
);
6244 pgdat_init_kcompactd(pgdat
);
6246 init_waitqueue_head(&pgdat
->kswapd_wait
);
6247 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6249 pgdat_page_ext_init(pgdat
);
6250 spin_lock_init(&pgdat
->lru_lock
);
6251 lruvec_init(node_lruvec(pgdat
));
6254 static void __meminit
zone_init_internals(struct zone
*zone
, enum zone_type idx
, int nid
,
6255 unsigned long remaining_pages
)
6257 zone
->managed_pages
= remaining_pages
;
6258 zone_set_nid(zone
, nid
);
6259 zone
->name
= zone_names
[idx
];
6260 zone
->zone_pgdat
= NODE_DATA(nid
);
6261 spin_lock_init(&zone
->lock
);
6262 zone_seqlock_init(zone
);
6263 zone_pcp_init(zone
);
6267 * Set up the zone data structures
6268 * - init pgdat internals
6269 * - init all zones belonging to this node
6271 * NOTE: this function is only called during memory hotplug
6273 #ifdef CONFIG_MEMORY_HOTPLUG
6274 void __ref
free_area_init_core_hotplug(int nid
)
6277 pg_data_t
*pgdat
= NODE_DATA(nid
);
6279 pgdat_init_internals(pgdat
);
6280 for (z
= 0; z
< MAX_NR_ZONES
; z
++)
6281 zone_init_internals(&pgdat
->node_zones
[z
], z
, nid
, 0);
6286 * Set up the zone data structures:
6287 * - mark all pages reserved
6288 * - mark all memory queues empty
6289 * - clear the memory bitmaps
6291 * NOTE: pgdat should get zeroed by caller.
6292 * NOTE: this function is only called during early init.
6294 static void __init
free_area_init_core(struct pglist_data
*pgdat
)
6297 int nid
= pgdat
->node_id
;
6299 pgdat_init_internals(pgdat
);
6300 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6302 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6303 struct zone
*zone
= pgdat
->node_zones
+ j
;
6304 unsigned long size
, freesize
, memmap_pages
;
6305 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6307 size
= zone
->spanned_pages
;
6308 freesize
= zone
->present_pages
;
6311 * Adjust freesize so that it accounts for how much memory
6312 * is used by this zone for memmap. This affects the watermark
6313 * and per-cpu initialisations
6315 memmap_pages
= calc_memmap_size(size
, freesize
);
6316 if (!is_highmem_idx(j
)) {
6317 if (freesize
>= memmap_pages
) {
6318 freesize
-= memmap_pages
;
6321 " %s zone: %lu pages used for memmap\n",
6322 zone_names
[j
], memmap_pages
);
6324 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6325 zone_names
[j
], memmap_pages
, freesize
);
6328 /* Account for reserved pages */
6329 if (j
== 0 && freesize
> dma_reserve
) {
6330 freesize
-= dma_reserve
;
6331 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6332 zone_names
[0], dma_reserve
);
6335 if (!is_highmem_idx(j
))
6336 nr_kernel_pages
+= freesize
;
6337 /* Charge for highmem memmap if there are enough kernel pages */
6338 else if (nr_kernel_pages
> memmap_pages
* 2)
6339 nr_kernel_pages
-= memmap_pages
;
6340 nr_all_pages
+= freesize
;
6343 * Set an approximate value for lowmem here, it will be adjusted
6344 * when the bootmem allocator frees pages into the buddy system.
6345 * And all highmem pages will be managed by the buddy system.
6347 zone_init_internals(zone
, j
, nid
, freesize
);
6352 set_pageblock_order();
6353 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6354 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6355 memmap_init(size
, nid
, j
, zone_start_pfn
);
6359 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6360 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6362 unsigned long __maybe_unused start
= 0;
6363 unsigned long __maybe_unused offset
= 0;
6365 /* Skip empty nodes */
6366 if (!pgdat
->node_spanned_pages
)
6369 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6370 offset
= pgdat
->node_start_pfn
- start
;
6371 /* ia64 gets its own node_mem_map, before this, without bootmem */
6372 if (!pgdat
->node_mem_map
) {
6373 unsigned long size
, end
;
6377 * The zone's endpoints aren't required to be MAX_ORDER
6378 * aligned but the node_mem_map endpoints must be in order
6379 * for the buddy allocator to function correctly.
6381 end
= pgdat_end_pfn(pgdat
);
6382 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6383 size
= (end
- start
) * sizeof(struct page
);
6384 map
= memblock_virt_alloc_node_nopanic(size
, pgdat
->node_id
);
6385 pgdat
->node_mem_map
= map
+ offset
;
6387 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6388 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6389 (unsigned long)pgdat
->node_mem_map
);
6390 #ifndef CONFIG_NEED_MULTIPLE_NODES
6392 * With no DISCONTIG, the global mem_map is just set as node 0's
6394 if (pgdat
== NODE_DATA(0)) {
6395 mem_map
= NODE_DATA(0)->node_mem_map
;
6396 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6397 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6399 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6404 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6405 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6407 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6408 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
)
6411 * We start only with one section of pages, more pages are added as
6412 * needed until the rest of deferred pages are initialized.
6414 pgdat
->static_init_pgcnt
= min_t(unsigned long, PAGES_PER_SECTION
,
6415 pgdat
->node_spanned_pages
);
6416 pgdat
->first_deferred_pfn
= ULONG_MAX
;
6419 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
) {}
6422 void __init
free_area_init_node(int nid
, unsigned long *zones_size
,
6423 unsigned long node_start_pfn
,
6424 unsigned long *zholes_size
)
6426 pg_data_t
*pgdat
= NODE_DATA(nid
);
6427 unsigned long start_pfn
= 0;
6428 unsigned long end_pfn
= 0;
6430 /* pg_data_t should be reset to zero when it's allocated */
6431 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6433 pgdat
->node_id
= nid
;
6434 pgdat
->node_start_pfn
= node_start_pfn
;
6435 pgdat
->per_cpu_nodestats
= NULL
;
6436 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6437 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6438 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6439 (u64
)start_pfn
<< PAGE_SHIFT
,
6440 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6442 start_pfn
= node_start_pfn
;
6444 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6445 zones_size
, zholes_size
);
6447 alloc_node_mem_map(pgdat
);
6448 pgdat_set_deferred_range(pgdat
);
6450 free_area_init_core(pgdat
);
6453 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6455 * Only struct pages that are backed by physical memory are zeroed and
6456 * initialized by going through __init_single_page(). But, there are some
6457 * struct pages which are reserved in memblock allocator and their fields
6458 * may be accessed (for example page_to_pfn() on some configuration accesses
6459 * flags). We must explicitly zero those struct pages.
6461 void __init
zero_resv_unavail(void)
6463 phys_addr_t start
, end
;
6468 * Loop through ranges that are reserved, but do not have reported
6469 * physical memory backing.
6472 for_each_resv_unavail_range(i
, &start
, &end
) {
6473 for (pfn
= PFN_DOWN(start
); pfn
< PFN_UP(end
); pfn
++) {
6474 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
))) {
6475 pfn
= ALIGN_DOWN(pfn
, pageblock_nr_pages
)
6476 + pageblock_nr_pages
- 1;
6479 mm_zero_struct_page(pfn_to_page(pfn
));
6485 * Struct pages that do not have backing memory. This could be because
6486 * firmware is using some of this memory, or for some other reasons.
6487 * Once memblock is changed so such behaviour is not allowed: i.e.
6488 * list of "reserved" memory must be a subset of list of "memory", then
6489 * this code can be removed.
6492 pr_info("Reserved but unavailable: %lld pages", pgcnt
);
6494 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6496 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6498 #if MAX_NUMNODES > 1
6500 * Figure out the number of possible node ids.
6502 void __init
setup_nr_node_ids(void)
6504 unsigned int highest
;
6506 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6507 nr_node_ids
= highest
+ 1;
6512 * node_map_pfn_alignment - determine the maximum internode alignment
6514 * This function should be called after node map is populated and sorted.
6515 * It calculates the maximum power of two alignment which can distinguish
6518 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6519 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6520 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6521 * shifted, 1GiB is enough and this function will indicate so.
6523 * This is used to test whether pfn -> nid mapping of the chosen memory
6524 * model has fine enough granularity to avoid incorrect mapping for the
6525 * populated node map.
6527 * Returns the determined alignment in pfn's. 0 if there is no alignment
6528 * requirement (single node).
6530 unsigned long __init
node_map_pfn_alignment(void)
6532 unsigned long accl_mask
= 0, last_end
= 0;
6533 unsigned long start
, end
, mask
;
6537 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6538 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6545 * Start with a mask granular enough to pin-point to the
6546 * start pfn and tick off bits one-by-one until it becomes
6547 * too coarse to separate the current node from the last.
6549 mask
= ~((1 << __ffs(start
)) - 1);
6550 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6553 /* accumulate all internode masks */
6557 /* convert mask to number of pages */
6558 return ~accl_mask
+ 1;
6561 /* Find the lowest pfn for a node */
6562 static unsigned long __init
find_min_pfn_for_node(int nid
)
6564 unsigned long min_pfn
= ULONG_MAX
;
6565 unsigned long start_pfn
;
6568 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6569 min_pfn
= min(min_pfn
, start_pfn
);
6571 if (min_pfn
== ULONG_MAX
) {
6572 pr_warn("Could not find start_pfn for node %d\n", nid
);
6580 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6582 * It returns the minimum PFN based on information provided via
6583 * memblock_set_node().
6585 unsigned long __init
find_min_pfn_with_active_regions(void)
6587 return find_min_pfn_for_node(MAX_NUMNODES
);
6591 * early_calculate_totalpages()
6592 * Sum pages in active regions for movable zone.
6593 * Populate N_MEMORY for calculating usable_nodes.
6595 static unsigned long __init
early_calculate_totalpages(void)
6597 unsigned long totalpages
= 0;
6598 unsigned long start_pfn
, end_pfn
;
6601 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6602 unsigned long pages
= end_pfn
- start_pfn
;
6604 totalpages
+= pages
;
6606 node_set_state(nid
, N_MEMORY
);
6612 * Find the PFN the Movable zone begins in each node. Kernel memory
6613 * is spread evenly between nodes as long as the nodes have enough
6614 * memory. When they don't, some nodes will have more kernelcore than
6617 static void __init
find_zone_movable_pfns_for_nodes(void)
6620 unsigned long usable_startpfn
;
6621 unsigned long kernelcore_node
, kernelcore_remaining
;
6622 /* save the state before borrow the nodemask */
6623 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6624 unsigned long totalpages
= early_calculate_totalpages();
6625 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6626 struct memblock_region
*r
;
6628 /* Need to find movable_zone earlier when movable_node is specified. */
6629 find_usable_zone_for_movable();
6632 * If movable_node is specified, ignore kernelcore and movablecore
6635 if (movable_node_is_enabled()) {
6636 for_each_memblock(memory
, r
) {
6637 if (!memblock_is_hotpluggable(r
))
6642 usable_startpfn
= PFN_DOWN(r
->base
);
6643 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6644 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6652 * If kernelcore=mirror is specified, ignore movablecore option
6654 if (mirrored_kernelcore
) {
6655 bool mem_below_4gb_not_mirrored
= false;
6657 for_each_memblock(memory
, r
) {
6658 if (memblock_is_mirror(r
))
6663 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6665 if (usable_startpfn
< 0x100000) {
6666 mem_below_4gb_not_mirrored
= true;
6670 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6671 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6675 if (mem_below_4gb_not_mirrored
)
6676 pr_warn("This configuration results in unmirrored kernel memory.");
6682 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6683 * amount of necessary memory.
6685 if (required_kernelcore_percent
)
6686 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
6688 if (required_movablecore_percent
)
6689 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
6693 * If movablecore= was specified, calculate what size of
6694 * kernelcore that corresponds so that memory usable for
6695 * any allocation type is evenly spread. If both kernelcore
6696 * and movablecore are specified, then the value of kernelcore
6697 * will be used for required_kernelcore if it's greater than
6698 * what movablecore would have allowed.
6700 if (required_movablecore
) {
6701 unsigned long corepages
;
6704 * Round-up so that ZONE_MOVABLE is at least as large as what
6705 * was requested by the user
6707 required_movablecore
=
6708 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6709 required_movablecore
= min(totalpages
, required_movablecore
);
6710 corepages
= totalpages
- required_movablecore
;
6712 required_kernelcore
= max(required_kernelcore
, corepages
);
6716 * If kernelcore was not specified or kernelcore size is larger
6717 * than totalpages, there is no ZONE_MOVABLE.
6719 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6722 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6723 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6726 /* Spread kernelcore memory as evenly as possible throughout nodes */
6727 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6728 for_each_node_state(nid
, N_MEMORY
) {
6729 unsigned long start_pfn
, end_pfn
;
6732 * Recalculate kernelcore_node if the division per node
6733 * now exceeds what is necessary to satisfy the requested
6734 * amount of memory for the kernel
6736 if (required_kernelcore
< kernelcore_node
)
6737 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6740 * As the map is walked, we track how much memory is usable
6741 * by the kernel using kernelcore_remaining. When it is
6742 * 0, the rest of the node is usable by ZONE_MOVABLE
6744 kernelcore_remaining
= kernelcore_node
;
6746 /* Go through each range of PFNs within this node */
6747 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6748 unsigned long size_pages
;
6750 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6751 if (start_pfn
>= end_pfn
)
6754 /* Account for what is only usable for kernelcore */
6755 if (start_pfn
< usable_startpfn
) {
6756 unsigned long kernel_pages
;
6757 kernel_pages
= min(end_pfn
, usable_startpfn
)
6760 kernelcore_remaining
-= min(kernel_pages
,
6761 kernelcore_remaining
);
6762 required_kernelcore
-= min(kernel_pages
,
6763 required_kernelcore
);
6765 /* Continue if range is now fully accounted */
6766 if (end_pfn
<= usable_startpfn
) {
6769 * Push zone_movable_pfn to the end so
6770 * that if we have to rebalance
6771 * kernelcore across nodes, we will
6772 * not double account here
6774 zone_movable_pfn
[nid
] = end_pfn
;
6777 start_pfn
= usable_startpfn
;
6781 * The usable PFN range for ZONE_MOVABLE is from
6782 * start_pfn->end_pfn. Calculate size_pages as the
6783 * number of pages used as kernelcore
6785 size_pages
= end_pfn
- start_pfn
;
6786 if (size_pages
> kernelcore_remaining
)
6787 size_pages
= kernelcore_remaining
;
6788 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6791 * Some kernelcore has been met, update counts and
6792 * break if the kernelcore for this node has been
6795 required_kernelcore
-= min(required_kernelcore
,
6797 kernelcore_remaining
-= size_pages
;
6798 if (!kernelcore_remaining
)
6804 * If there is still required_kernelcore, we do another pass with one
6805 * less node in the count. This will push zone_movable_pfn[nid] further
6806 * along on the nodes that still have memory until kernelcore is
6810 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6814 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6815 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6816 zone_movable_pfn
[nid
] =
6817 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6820 /* restore the node_state */
6821 node_states
[N_MEMORY
] = saved_node_state
;
6824 /* Any regular or high memory on that node ? */
6825 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6827 enum zone_type zone_type
;
6829 if (N_MEMORY
== N_NORMAL_MEMORY
)
6832 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6833 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6834 if (populated_zone(zone
)) {
6835 node_set_state(nid
, N_HIGH_MEMORY
);
6836 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6837 zone_type
<= ZONE_NORMAL
)
6838 node_set_state(nid
, N_NORMAL_MEMORY
);
6845 * free_area_init_nodes - Initialise all pg_data_t and zone data
6846 * @max_zone_pfn: an array of max PFNs for each zone
6848 * This will call free_area_init_node() for each active node in the system.
6849 * Using the page ranges provided by memblock_set_node(), the size of each
6850 * zone in each node and their holes is calculated. If the maximum PFN
6851 * between two adjacent zones match, it is assumed that the zone is empty.
6852 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6853 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6854 * starts where the previous one ended. For example, ZONE_DMA32 starts
6855 * at arch_max_dma_pfn.
6857 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6859 unsigned long start_pfn
, end_pfn
;
6862 /* Record where the zone boundaries are */
6863 memset(arch_zone_lowest_possible_pfn
, 0,
6864 sizeof(arch_zone_lowest_possible_pfn
));
6865 memset(arch_zone_highest_possible_pfn
, 0,
6866 sizeof(arch_zone_highest_possible_pfn
));
6868 start_pfn
= find_min_pfn_with_active_regions();
6870 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6871 if (i
== ZONE_MOVABLE
)
6874 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6875 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6876 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6878 start_pfn
= end_pfn
;
6881 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6882 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6883 find_zone_movable_pfns_for_nodes();
6885 /* Print out the zone ranges */
6886 pr_info("Zone ranges:\n");
6887 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6888 if (i
== ZONE_MOVABLE
)
6890 pr_info(" %-8s ", zone_names
[i
]);
6891 if (arch_zone_lowest_possible_pfn
[i
] ==
6892 arch_zone_highest_possible_pfn
[i
])
6895 pr_cont("[mem %#018Lx-%#018Lx]\n",
6896 (u64
)arch_zone_lowest_possible_pfn
[i
]
6898 ((u64
)arch_zone_highest_possible_pfn
[i
]
6899 << PAGE_SHIFT
) - 1);
6902 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6903 pr_info("Movable zone start for each node\n");
6904 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6905 if (zone_movable_pfn
[i
])
6906 pr_info(" Node %d: %#018Lx\n", i
,
6907 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6910 /* Print out the early node map */
6911 pr_info("Early memory node ranges\n");
6912 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6913 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6914 (u64
)start_pfn
<< PAGE_SHIFT
,
6915 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6917 /* Initialise every node */
6918 mminit_verify_pageflags_layout();
6919 setup_nr_node_ids();
6920 zero_resv_unavail();
6921 for_each_online_node(nid
) {
6922 pg_data_t
*pgdat
= NODE_DATA(nid
);
6923 free_area_init_node(nid
, NULL
,
6924 find_min_pfn_for_node(nid
), NULL
);
6926 /* Any memory on that node */
6927 if (pgdat
->node_present_pages
)
6928 node_set_state(nid
, N_MEMORY
);
6929 check_for_memory(pgdat
, nid
);
6933 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
6934 unsigned long *percent
)
6936 unsigned long long coremem
;
6942 /* Value may be a percentage of total memory, otherwise bytes */
6943 coremem
= simple_strtoull(p
, &endptr
, 0);
6944 if (*endptr
== '%') {
6945 /* Paranoid check for percent values greater than 100 */
6946 WARN_ON(coremem
> 100);
6950 coremem
= memparse(p
, &p
);
6951 /* Paranoid check that UL is enough for the coremem value */
6952 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6954 *core
= coremem
>> PAGE_SHIFT
;
6961 * kernelcore=size sets the amount of memory for use for allocations that
6962 * cannot be reclaimed or migrated.
6964 static int __init
cmdline_parse_kernelcore(char *p
)
6966 /* parse kernelcore=mirror */
6967 if (parse_option_str(p
, "mirror")) {
6968 mirrored_kernelcore
= true;
6972 return cmdline_parse_core(p
, &required_kernelcore
,
6973 &required_kernelcore_percent
);
6977 * movablecore=size sets the amount of memory for use for allocations that
6978 * can be reclaimed or migrated.
6980 static int __init
cmdline_parse_movablecore(char *p
)
6982 return cmdline_parse_core(p
, &required_movablecore
,
6983 &required_movablecore_percent
);
6986 early_param("kernelcore", cmdline_parse_kernelcore
);
6987 early_param("movablecore", cmdline_parse_movablecore
);
6989 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6991 void adjust_managed_page_count(struct page
*page
, long count
)
6993 spin_lock(&managed_page_count_lock
);
6994 page_zone(page
)->managed_pages
+= count
;
6995 totalram_pages
+= count
;
6996 #ifdef CONFIG_HIGHMEM
6997 if (PageHighMem(page
))
6998 totalhigh_pages
+= count
;
7000 spin_unlock(&managed_page_count_lock
);
7002 EXPORT_SYMBOL(adjust_managed_page_count
);
7004 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
7007 unsigned long pages
= 0;
7009 start
= (void *)PAGE_ALIGN((unsigned long)start
);
7010 end
= (void *)((unsigned long)end
& PAGE_MASK
);
7011 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
7012 struct page
*page
= virt_to_page(pos
);
7013 void *direct_map_addr
;
7016 * 'direct_map_addr' might be different from 'pos'
7017 * because some architectures' virt_to_page()
7018 * work with aliases. Getting the direct map
7019 * address ensures that we get a _writeable_
7020 * alias for the memset().
7022 direct_map_addr
= page_address(page
);
7023 if ((unsigned int)poison
<= 0xFF)
7024 memset(direct_map_addr
, poison
, PAGE_SIZE
);
7026 free_reserved_page(page
);
7030 pr_info("Freeing %s memory: %ldK\n",
7031 s
, pages
<< (PAGE_SHIFT
- 10));
7035 EXPORT_SYMBOL(free_reserved_area
);
7037 #ifdef CONFIG_HIGHMEM
7038 void free_highmem_page(struct page
*page
)
7040 __free_reserved_page(page
);
7042 page_zone(page
)->managed_pages
++;
7048 void __init
mem_init_print_info(const char *str
)
7050 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
7051 unsigned long init_code_size
, init_data_size
;
7053 physpages
= get_num_physpages();
7054 codesize
= _etext
- _stext
;
7055 datasize
= _edata
- _sdata
;
7056 rosize
= __end_rodata
- __start_rodata
;
7057 bss_size
= __bss_stop
- __bss_start
;
7058 init_data_size
= __init_end
- __init_begin
;
7059 init_code_size
= _einittext
- _sinittext
;
7062 * Detect special cases and adjust section sizes accordingly:
7063 * 1) .init.* may be embedded into .data sections
7064 * 2) .init.text.* may be out of [__init_begin, __init_end],
7065 * please refer to arch/tile/kernel/vmlinux.lds.S.
7066 * 3) .rodata.* may be embedded into .text or .data sections.
7068 #define adj_init_size(start, end, size, pos, adj) \
7070 if (start <= pos && pos < end && size > adj) \
7074 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7075 _sinittext
, init_code_size
);
7076 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7077 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7078 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7079 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7081 #undef adj_init_size
7083 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7084 #ifdef CONFIG_HIGHMEM
7088 nr_free_pages() << (PAGE_SHIFT
- 10),
7089 physpages
<< (PAGE_SHIFT
- 10),
7090 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7091 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7092 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
7093 totalcma_pages
<< (PAGE_SHIFT
- 10),
7094 #ifdef CONFIG_HIGHMEM
7095 totalhigh_pages
<< (PAGE_SHIFT
- 10),
7097 str
? ", " : "", str
? str
: "");
7101 * set_dma_reserve - set the specified number of pages reserved in the first zone
7102 * @new_dma_reserve: The number of pages to mark reserved
7104 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7105 * In the DMA zone, a significant percentage may be consumed by kernel image
7106 * and other unfreeable allocations which can skew the watermarks badly. This
7107 * function may optionally be used to account for unfreeable pages in the
7108 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7109 * smaller per-cpu batchsize.
7111 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7113 dma_reserve
= new_dma_reserve
;
7116 void __init
free_area_init(unsigned long *zones_size
)
7118 zero_resv_unavail();
7119 free_area_init_node(0, zones_size
,
7120 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
7123 static int page_alloc_cpu_dead(unsigned int cpu
)
7126 lru_add_drain_cpu(cpu
);
7130 * Spill the event counters of the dead processor
7131 * into the current processors event counters.
7132 * This artificially elevates the count of the current
7135 vm_events_fold_cpu(cpu
);
7138 * Zero the differential counters of the dead processor
7139 * so that the vm statistics are consistent.
7141 * This is only okay since the processor is dead and cannot
7142 * race with what we are doing.
7144 cpu_vm_stats_fold(cpu
);
7148 void __init
page_alloc_init(void)
7152 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7153 "mm/page_alloc:dead", NULL
,
7154 page_alloc_cpu_dead
);
7159 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7160 * or min_free_kbytes changes.
7162 static void calculate_totalreserve_pages(void)
7164 struct pglist_data
*pgdat
;
7165 unsigned long reserve_pages
= 0;
7166 enum zone_type i
, j
;
7168 for_each_online_pgdat(pgdat
) {
7170 pgdat
->totalreserve_pages
= 0;
7172 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7173 struct zone
*zone
= pgdat
->node_zones
+ i
;
7176 /* Find valid and maximum lowmem_reserve in the zone */
7177 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7178 if (zone
->lowmem_reserve
[j
] > max
)
7179 max
= zone
->lowmem_reserve
[j
];
7182 /* we treat the high watermark as reserved pages. */
7183 max
+= high_wmark_pages(zone
);
7185 if (max
> zone
->managed_pages
)
7186 max
= zone
->managed_pages
;
7188 pgdat
->totalreserve_pages
+= max
;
7190 reserve_pages
+= max
;
7193 totalreserve_pages
= reserve_pages
;
7197 * setup_per_zone_lowmem_reserve - called whenever
7198 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7199 * has a correct pages reserved value, so an adequate number of
7200 * pages are left in the zone after a successful __alloc_pages().
7202 static void setup_per_zone_lowmem_reserve(void)
7204 struct pglist_data
*pgdat
;
7205 enum zone_type j
, idx
;
7207 for_each_online_pgdat(pgdat
) {
7208 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
7209 struct zone
*zone
= pgdat
->node_zones
+ j
;
7210 unsigned long managed_pages
= zone
->managed_pages
;
7212 zone
->lowmem_reserve
[j
] = 0;
7216 struct zone
*lower_zone
;
7219 lower_zone
= pgdat
->node_zones
+ idx
;
7221 if (sysctl_lowmem_reserve_ratio
[idx
] < 1) {
7222 sysctl_lowmem_reserve_ratio
[idx
] = 0;
7223 lower_zone
->lowmem_reserve
[j
] = 0;
7225 lower_zone
->lowmem_reserve
[j
] =
7226 managed_pages
/ sysctl_lowmem_reserve_ratio
[idx
];
7228 managed_pages
+= lower_zone
->managed_pages
;
7233 /* update totalreserve_pages */
7234 calculate_totalreserve_pages();
7237 static void __setup_per_zone_wmarks(void)
7239 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7240 unsigned long lowmem_pages
= 0;
7242 unsigned long flags
;
7244 /* Calculate total number of !ZONE_HIGHMEM pages */
7245 for_each_zone(zone
) {
7246 if (!is_highmem(zone
))
7247 lowmem_pages
+= zone
->managed_pages
;
7250 for_each_zone(zone
) {
7253 spin_lock_irqsave(&zone
->lock
, flags
);
7254 tmp
= (u64
)pages_min
* zone
->managed_pages
;
7255 do_div(tmp
, lowmem_pages
);
7256 if (is_highmem(zone
)) {
7258 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7259 * need highmem pages, so cap pages_min to a small
7262 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7263 * deltas control asynch page reclaim, and so should
7264 * not be capped for highmem.
7266 unsigned long min_pages
;
7268 min_pages
= zone
->managed_pages
/ 1024;
7269 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7270 zone
->watermark
[WMARK_MIN
] = min_pages
;
7273 * If it's a lowmem zone, reserve a number of pages
7274 * proportionate to the zone's size.
7276 zone
->watermark
[WMARK_MIN
] = tmp
;
7280 * Set the kswapd watermarks distance according to the
7281 * scale factor in proportion to available memory, but
7282 * ensure a minimum size on small systems.
7284 tmp
= max_t(u64
, tmp
>> 2,
7285 mult_frac(zone
->managed_pages
,
7286 watermark_scale_factor
, 10000));
7288 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7289 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7291 spin_unlock_irqrestore(&zone
->lock
, flags
);
7294 /* update totalreserve_pages */
7295 calculate_totalreserve_pages();
7299 * setup_per_zone_wmarks - called when min_free_kbytes changes
7300 * or when memory is hot-{added|removed}
7302 * Ensures that the watermark[min,low,high] values for each zone are set
7303 * correctly with respect to min_free_kbytes.
7305 void setup_per_zone_wmarks(void)
7307 static DEFINE_SPINLOCK(lock
);
7310 __setup_per_zone_wmarks();
7315 * Initialise min_free_kbytes.
7317 * For small machines we want it small (128k min). For large machines
7318 * we want it large (64MB max). But it is not linear, because network
7319 * bandwidth does not increase linearly with machine size. We use
7321 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7322 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7338 int __meminit
init_per_zone_wmark_min(void)
7340 unsigned long lowmem_kbytes
;
7341 int new_min_free_kbytes
;
7343 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7344 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7346 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7347 min_free_kbytes
= new_min_free_kbytes
;
7348 if (min_free_kbytes
< 128)
7349 min_free_kbytes
= 128;
7350 if (min_free_kbytes
> 65536)
7351 min_free_kbytes
= 65536;
7353 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7354 new_min_free_kbytes
, user_min_free_kbytes
);
7356 setup_per_zone_wmarks();
7357 refresh_zone_stat_thresholds();
7358 setup_per_zone_lowmem_reserve();
7361 setup_min_unmapped_ratio();
7362 setup_min_slab_ratio();
7367 core_initcall(init_per_zone_wmark_min
)
7370 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7371 * that we can call two helper functions whenever min_free_kbytes
7374 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7375 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7379 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7384 user_min_free_kbytes
= min_free_kbytes
;
7385 setup_per_zone_wmarks();
7390 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7391 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7395 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7400 setup_per_zone_wmarks();
7406 static void setup_min_unmapped_ratio(void)
7411 for_each_online_pgdat(pgdat
)
7412 pgdat
->min_unmapped_pages
= 0;
7415 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
7416 sysctl_min_unmapped_ratio
) / 100;
7420 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7421 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7425 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7429 setup_min_unmapped_ratio();
7434 static void setup_min_slab_ratio(void)
7439 for_each_online_pgdat(pgdat
)
7440 pgdat
->min_slab_pages
= 0;
7443 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
7444 sysctl_min_slab_ratio
) / 100;
7447 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7448 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7452 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7456 setup_min_slab_ratio();
7463 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7464 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7465 * whenever sysctl_lowmem_reserve_ratio changes.
7467 * The reserve ratio obviously has absolutely no relation with the
7468 * minimum watermarks. The lowmem reserve ratio can only make sense
7469 * if in function of the boot time zone sizes.
7471 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7472 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7474 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7475 setup_per_zone_lowmem_reserve();
7480 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7481 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7482 * pagelist can have before it gets flushed back to buddy allocator.
7484 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7485 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7488 int old_percpu_pagelist_fraction
;
7491 mutex_lock(&pcp_batch_high_lock
);
7492 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7494 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7495 if (!write
|| ret
< 0)
7498 /* Sanity checking to avoid pcp imbalance */
7499 if (percpu_pagelist_fraction
&&
7500 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7501 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7507 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7510 for_each_populated_zone(zone
) {
7513 for_each_possible_cpu(cpu
)
7514 pageset_set_high_and_batch(zone
,
7515 per_cpu_ptr(zone
->pageset
, cpu
));
7518 mutex_unlock(&pcp_batch_high_lock
);
7523 int hashdist
= HASHDIST_DEFAULT
;
7525 static int __init
set_hashdist(char *str
)
7529 hashdist
= simple_strtoul(str
, &str
, 0);
7532 __setup("hashdist=", set_hashdist
);
7535 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7537 * Returns the number of pages that arch has reserved but
7538 * is not known to alloc_large_system_hash().
7540 static unsigned long __init
arch_reserved_kernel_pages(void)
7547 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7548 * machines. As memory size is increased the scale is also increased but at
7549 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7550 * quadruples the scale is increased by one, which means the size of hash table
7551 * only doubles, instead of quadrupling as well.
7552 * Because 32-bit systems cannot have large physical memory, where this scaling
7553 * makes sense, it is disabled on such platforms.
7555 #if __BITS_PER_LONG > 32
7556 #define ADAPT_SCALE_BASE (64ul << 30)
7557 #define ADAPT_SCALE_SHIFT 2
7558 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7562 * allocate a large system hash table from bootmem
7563 * - it is assumed that the hash table must contain an exact power-of-2
7564 * quantity of entries
7565 * - limit is the number of hash buckets, not the total allocation size
7567 void *__init
alloc_large_system_hash(const char *tablename
,
7568 unsigned long bucketsize
,
7569 unsigned long numentries
,
7572 unsigned int *_hash_shift
,
7573 unsigned int *_hash_mask
,
7574 unsigned long low_limit
,
7575 unsigned long high_limit
)
7577 unsigned long long max
= high_limit
;
7578 unsigned long log2qty
, size
;
7582 /* allow the kernel cmdline to have a say */
7584 /* round applicable memory size up to nearest megabyte */
7585 numentries
= nr_kernel_pages
;
7586 numentries
-= arch_reserved_kernel_pages();
7588 /* It isn't necessary when PAGE_SIZE >= 1MB */
7589 if (PAGE_SHIFT
< 20)
7590 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7592 #if __BITS_PER_LONG > 32
7594 unsigned long adapt
;
7596 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
7597 adapt
<<= ADAPT_SCALE_SHIFT
)
7602 /* limit to 1 bucket per 2^scale bytes of low memory */
7603 if (scale
> PAGE_SHIFT
)
7604 numentries
>>= (scale
- PAGE_SHIFT
);
7606 numentries
<<= (PAGE_SHIFT
- scale
);
7608 /* Make sure we've got at least a 0-order allocation.. */
7609 if (unlikely(flags
& HASH_SMALL
)) {
7610 /* Makes no sense without HASH_EARLY */
7611 WARN_ON(!(flags
& HASH_EARLY
));
7612 if (!(numentries
>> *_hash_shift
)) {
7613 numentries
= 1UL << *_hash_shift
;
7614 BUG_ON(!numentries
);
7616 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7617 numentries
= PAGE_SIZE
/ bucketsize
;
7619 numentries
= roundup_pow_of_two(numentries
);
7621 /* limit allocation size to 1/16 total memory by default */
7623 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7624 do_div(max
, bucketsize
);
7626 max
= min(max
, 0x80000000ULL
);
7628 if (numentries
< low_limit
)
7629 numentries
= low_limit
;
7630 if (numentries
> max
)
7633 log2qty
= ilog2(numentries
);
7635 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
7637 size
= bucketsize
<< log2qty
;
7638 if (flags
& HASH_EARLY
) {
7639 if (flags
& HASH_ZERO
)
7640 table
= memblock_virt_alloc_nopanic(size
, 0);
7642 table
= memblock_virt_alloc_raw(size
, 0);
7643 } else if (hashdist
) {
7644 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
7647 * If bucketsize is not a power-of-two, we may free
7648 * some pages at the end of hash table which
7649 * alloc_pages_exact() automatically does
7651 if (get_order(size
) < MAX_ORDER
) {
7652 table
= alloc_pages_exact(size
, gfp_flags
);
7653 kmemleak_alloc(table
, size
, 1, gfp_flags
);
7656 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7659 panic("Failed to allocate %s hash table\n", tablename
);
7661 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7662 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7665 *_hash_shift
= log2qty
;
7667 *_hash_mask
= (1 << log2qty
) - 1;
7673 * This function checks whether pageblock includes unmovable pages or not.
7674 * If @count is not zero, it is okay to include less @count unmovable pages
7676 * PageLRU check without isolation or lru_lock could race so that
7677 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7678 * check without lock_page also may miss some movable non-lru pages at
7679 * race condition. So you can't expect this function should be exact.
7681 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7683 bool skip_hwpoisoned_pages
)
7685 unsigned long pfn
, iter
, found
;
7688 * TODO we could make this much more efficient by not checking every
7689 * page in the range if we know all of them are in MOVABLE_ZONE and
7690 * that the movable zone guarantees that pages are migratable but
7691 * the later is not the case right now unfortunatelly. E.g. movablecore
7692 * can still lead to having bootmem allocations in zone_movable.
7696 * CMA allocations (alloc_contig_range) really need to mark isolate
7697 * CMA pageblocks even when they are not movable in fact so consider
7698 * them movable here.
7700 if (is_migrate_cma(migratetype
) &&
7701 is_migrate_cma(get_pageblock_migratetype(page
)))
7704 pfn
= page_to_pfn(page
);
7705 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7706 unsigned long check
= pfn
+ iter
;
7708 if (!pfn_valid_within(check
))
7711 page
= pfn_to_page(check
);
7713 if (PageReserved(page
))
7717 * If the zone is movable and we have ruled out all reserved
7718 * pages then it should be reasonably safe to assume the rest
7721 if (zone_idx(zone
) == ZONE_MOVABLE
)
7725 * Hugepages are not in LRU lists, but they're movable.
7726 * We need not scan over tail pages bacause we don't
7727 * handle each tail page individually in migration.
7729 if (PageHuge(page
)) {
7730 struct page
*head
= compound_head(page
);
7731 unsigned int skip_pages
;
7733 if (!hugepage_migration_supported(page_hstate(head
)))
7736 skip_pages
= (1 << compound_order(head
)) - (page
- head
);
7737 iter
+= skip_pages
- 1;
7742 * We can't use page_count without pin a page
7743 * because another CPU can free compound page.
7744 * This check already skips compound tails of THP
7745 * because their page->_refcount is zero at all time.
7747 if (!page_ref_count(page
)) {
7748 if (PageBuddy(page
))
7749 iter
+= (1 << page_order(page
)) - 1;
7754 * The HWPoisoned page may be not in buddy system, and
7755 * page_count() is not 0.
7757 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7760 if (__PageMovable(page
))
7766 * If there are RECLAIMABLE pages, we need to check
7767 * it. But now, memory offline itself doesn't call
7768 * shrink_node_slabs() and it still to be fixed.
7771 * If the page is not RAM, page_count()should be 0.
7772 * we don't need more check. This is an _used_ not-movable page.
7774 * The problematic thing here is PG_reserved pages. PG_reserved
7775 * is set to both of a memory hole page and a _used_ kernel
7783 WARN_ON_ONCE(zone_idx(zone
) == ZONE_MOVABLE
);
7787 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7789 static unsigned long pfn_max_align_down(unsigned long pfn
)
7791 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7792 pageblock_nr_pages
) - 1);
7795 static unsigned long pfn_max_align_up(unsigned long pfn
)
7797 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7798 pageblock_nr_pages
));
7801 /* [start, end) must belong to a single zone. */
7802 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7803 unsigned long start
, unsigned long end
)
7805 /* This function is based on compact_zone() from compaction.c. */
7806 unsigned long nr_reclaimed
;
7807 unsigned long pfn
= start
;
7808 unsigned int tries
= 0;
7813 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7814 if (fatal_signal_pending(current
)) {
7819 if (list_empty(&cc
->migratepages
)) {
7820 cc
->nr_migratepages
= 0;
7821 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7827 } else if (++tries
== 5) {
7828 ret
= ret
< 0 ? ret
: -EBUSY
;
7832 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7834 cc
->nr_migratepages
-= nr_reclaimed
;
7836 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7837 NULL
, 0, cc
->mode
, MR_CONTIG_RANGE
);
7840 putback_movable_pages(&cc
->migratepages
);
7847 * alloc_contig_range() -- tries to allocate given range of pages
7848 * @start: start PFN to allocate
7849 * @end: one-past-the-last PFN to allocate
7850 * @migratetype: migratetype of the underlaying pageblocks (either
7851 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7852 * in range must have the same migratetype and it must
7853 * be either of the two.
7854 * @gfp_mask: GFP mask to use during compaction
7856 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7857 * aligned. The PFN range must belong to a single zone.
7859 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7860 * pageblocks in the range. Once isolated, the pageblocks should not
7861 * be modified by others.
7863 * Returns zero on success or negative error code. On success all
7864 * pages which PFN is in [start, end) are allocated for the caller and
7865 * need to be freed with free_contig_range().
7867 int alloc_contig_range(unsigned long start
, unsigned long end
,
7868 unsigned migratetype
, gfp_t gfp_mask
)
7870 unsigned long outer_start
, outer_end
;
7874 struct compact_control cc
= {
7875 .nr_migratepages
= 0,
7877 .zone
= page_zone(pfn_to_page(start
)),
7878 .mode
= MIGRATE_SYNC
,
7879 .ignore_skip_hint
= true,
7880 .no_set_skip_hint
= true,
7881 .gfp_mask
= current_gfp_context(gfp_mask
),
7883 INIT_LIST_HEAD(&cc
.migratepages
);
7886 * What we do here is we mark all pageblocks in range as
7887 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7888 * have different sizes, and due to the way page allocator
7889 * work, we align the range to biggest of the two pages so
7890 * that page allocator won't try to merge buddies from
7891 * different pageblocks and change MIGRATE_ISOLATE to some
7892 * other migration type.
7894 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7895 * migrate the pages from an unaligned range (ie. pages that
7896 * we are interested in). This will put all the pages in
7897 * range back to page allocator as MIGRATE_ISOLATE.
7899 * When this is done, we take the pages in range from page
7900 * allocator removing them from the buddy system. This way
7901 * page allocator will never consider using them.
7903 * This lets us mark the pageblocks back as
7904 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7905 * aligned range but not in the unaligned, original range are
7906 * put back to page allocator so that buddy can use them.
7909 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7910 pfn_max_align_up(end
), migratetype
,
7916 * In case of -EBUSY, we'd like to know which page causes problem.
7917 * So, just fall through. test_pages_isolated() has a tracepoint
7918 * which will report the busy page.
7920 * It is possible that busy pages could become available before
7921 * the call to test_pages_isolated, and the range will actually be
7922 * allocated. So, if we fall through be sure to clear ret so that
7923 * -EBUSY is not accidentally used or returned to caller.
7925 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7926 if (ret
&& ret
!= -EBUSY
)
7931 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7932 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7933 * more, all pages in [start, end) are free in page allocator.
7934 * What we are going to do is to allocate all pages from
7935 * [start, end) (that is remove them from page allocator).
7937 * The only problem is that pages at the beginning and at the
7938 * end of interesting range may be not aligned with pages that
7939 * page allocator holds, ie. they can be part of higher order
7940 * pages. Because of this, we reserve the bigger range and
7941 * once this is done free the pages we are not interested in.
7943 * We don't have to hold zone->lock here because the pages are
7944 * isolated thus they won't get removed from buddy.
7947 lru_add_drain_all();
7948 drain_all_pages(cc
.zone
);
7951 outer_start
= start
;
7952 while (!PageBuddy(pfn_to_page(outer_start
))) {
7953 if (++order
>= MAX_ORDER
) {
7954 outer_start
= start
;
7957 outer_start
&= ~0UL << order
;
7960 if (outer_start
!= start
) {
7961 order
= page_order(pfn_to_page(outer_start
));
7964 * outer_start page could be small order buddy page and
7965 * it doesn't include start page. Adjust outer_start
7966 * in this case to report failed page properly
7967 * on tracepoint in test_pages_isolated()
7969 if (outer_start
+ (1UL << order
) <= start
)
7970 outer_start
= start
;
7973 /* Make sure the range is really isolated. */
7974 if (test_pages_isolated(outer_start
, end
, false)) {
7975 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7976 __func__
, outer_start
, end
);
7981 /* Grab isolated pages from freelists. */
7982 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7988 /* Free head and tail (if any) */
7989 if (start
!= outer_start
)
7990 free_contig_range(outer_start
, start
- outer_start
);
7991 if (end
!= outer_end
)
7992 free_contig_range(end
, outer_end
- end
);
7995 undo_isolate_page_range(pfn_max_align_down(start
),
7996 pfn_max_align_up(end
), migratetype
);
8000 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
8002 unsigned int count
= 0;
8004 for (; nr_pages
--; pfn
++) {
8005 struct page
*page
= pfn_to_page(pfn
);
8007 count
+= page_count(page
) != 1;
8010 WARN(count
!= 0, "%d pages are still in use!\n", count
);
8014 #ifdef CONFIG_MEMORY_HOTPLUG
8016 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8017 * page high values need to be recalulated.
8019 void __meminit
zone_pcp_update(struct zone
*zone
)
8022 mutex_lock(&pcp_batch_high_lock
);
8023 for_each_possible_cpu(cpu
)
8024 pageset_set_high_and_batch(zone
,
8025 per_cpu_ptr(zone
->pageset
, cpu
));
8026 mutex_unlock(&pcp_batch_high_lock
);
8030 void zone_pcp_reset(struct zone
*zone
)
8032 unsigned long flags
;
8034 struct per_cpu_pageset
*pset
;
8036 /* avoid races with drain_pages() */
8037 local_irq_save(flags
);
8038 if (zone
->pageset
!= &boot_pageset
) {
8039 for_each_online_cpu(cpu
) {
8040 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
8041 drain_zonestat(zone
, pset
);
8043 free_percpu(zone
->pageset
);
8044 zone
->pageset
= &boot_pageset
;
8046 local_irq_restore(flags
);
8049 #ifdef CONFIG_MEMORY_HOTREMOVE
8051 * All pages in the range must be in a single zone and isolated
8052 * before calling this.
8055 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
8059 unsigned int order
, i
;
8061 unsigned long flags
;
8062 /* find the first valid pfn */
8063 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
8068 offline_mem_sections(pfn
, end_pfn
);
8069 zone
= page_zone(pfn_to_page(pfn
));
8070 spin_lock_irqsave(&zone
->lock
, flags
);
8072 while (pfn
< end_pfn
) {
8073 if (!pfn_valid(pfn
)) {
8077 page
= pfn_to_page(pfn
);
8079 * The HWPoisoned page may be not in buddy system, and
8080 * page_count() is not 0.
8082 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8084 SetPageReserved(page
);
8088 BUG_ON(page_count(page
));
8089 BUG_ON(!PageBuddy(page
));
8090 order
= page_order(page
);
8091 #ifdef CONFIG_DEBUG_VM
8092 pr_info("remove from free list %lx %d %lx\n",
8093 pfn
, 1 << order
, end_pfn
);
8095 list_del(&page
->lru
);
8096 rmv_page_order(page
);
8097 zone
->free_area
[order
].nr_free
--;
8098 for (i
= 0; i
< (1 << order
); i
++)
8099 SetPageReserved((page
+i
));
8100 pfn
+= (1 << order
);
8102 spin_unlock_irqrestore(&zone
->lock
, flags
);
8106 bool is_free_buddy_page(struct page
*page
)
8108 struct zone
*zone
= page_zone(page
);
8109 unsigned long pfn
= page_to_pfn(page
);
8110 unsigned long flags
;
8113 spin_lock_irqsave(&zone
->lock
, flags
);
8114 for (order
= 0; order
< MAX_ORDER
; order
++) {
8115 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8117 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
8120 spin_unlock_irqrestore(&zone
->lock
, flags
);
8122 return order
< MAX_ORDER
;
8125 #ifdef CONFIG_MEMORY_FAILURE
8127 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8128 * test is performed under the zone lock to prevent a race against page
8131 bool set_hwpoison_free_buddy_page(struct page
*page
)
8133 struct zone
*zone
= page_zone(page
);
8134 unsigned long pfn
= page_to_pfn(page
);
8135 unsigned long flags
;
8137 bool hwpoisoned
= false;
8139 spin_lock_irqsave(&zone
->lock
, flags
);
8140 for (order
= 0; order
< MAX_ORDER
; order
++) {
8141 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8143 if (PageBuddy(page_head
) && page_order(page_head
) >= order
) {
8144 if (!TestSetPageHWPoison(page
))
8149 spin_unlock_irqrestore(&zone
->lock
, flags
);