]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/page_alloc.c
arm64: Silence gcc warnings about arch ABI drift
[thirdparty/kernel/stable.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83
84 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
85
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
87 /*
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
92 */
93 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95 int _node_numa_mem_[MAX_NUMNODES];
96 #endif
97
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex);
100 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy;
104 EXPORT_SYMBOL(latent_entropy);
105 #endif
106
107 /*
108 * Array of node states.
109 */
110 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113 #ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
117 #endif
118 [N_MEMORY] = { { [0] = 1UL } },
119 [N_CPU] = { { [0] = 1UL } },
120 #endif /* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133
134 /*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 return page->index;
145 }
146
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 page->index = migratetype;
150 }
151
152 #ifdef CONFIG_PM_SLEEP
153 /*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with system_transition_mutex held
158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160 * with that modification).
161 */
162
163 static gfp_t saved_gfp_mask;
164
165 void pm_restore_gfp_mask(void)
166 {
167 WARN_ON(!mutex_is_locked(&system_transition_mutex));
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
172 }
173
174 void pm_restrict_gfp_mask(void)
175 {
176 WARN_ON(!mutex_is_locked(&system_transition_mutex));
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 }
181
182 bool pm_suspended_storage(void)
183 {
184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 return false;
186 return true;
187 }
188 #endif /* CONFIG_PM_SLEEP */
189
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
193
194 static void __free_pages_ok(struct page *page, unsigned int order);
195
196 /*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
206 */
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208 #ifdef CONFIG_ZONE_DMA
209 [ZONE_DMA] = 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 [ZONE_DMA32] = 256,
213 #endif
214 [ZONE_NORMAL] = 32,
215 #ifdef CONFIG_HIGHMEM
216 [ZONE_HIGHMEM] = 0,
217 #endif
218 [ZONE_MOVABLE] = 0,
219 };
220
221 EXPORT_SYMBOL(totalram_pages);
222
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 "DMA32",
229 #endif
230 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 "HighMem",
233 #endif
234 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 "Device",
237 #endif
238 };
239
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245 #ifdef CONFIG_CMA
246 "CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250 #endif
251 };
252
253 compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261 #endif
262 };
263
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
267
268 static unsigned long nr_kernel_pages __meminitdata;
269 static unsigned long nr_all_pages __meminitdata;
270 static unsigned long dma_reserve __meminitdata;
271
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long required_kernelcore __initdata;
276 static unsigned long required_kernelcore_percent __initdata;
277 static unsigned long required_movablecore __initdata;
278 static unsigned long required_movablecore_percent __initdata;
279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280 static bool mirrored_kernelcore __meminitdata;
281
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283 int movable_zone;
284 EXPORT_SYMBOL(movable_zone);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286
287 #if MAX_NUMNODES > 1
288 int nr_node_ids __read_mostly = MAX_NUMNODES;
289 int nr_online_nodes __read_mostly = 1;
290 EXPORT_SYMBOL(nr_node_ids);
291 EXPORT_SYMBOL(nr_online_nodes);
292 #endif
293
294 int page_group_by_mobility_disabled __read_mostly;
295
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /*
298 * During boot we initialize deferred pages on-demand, as needed, but once
299 * page_alloc_init_late() has finished, the deferred pages are all initialized,
300 * and we can permanently disable that path.
301 */
302 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
303
304 /*
305 * Calling kasan_free_pages() only after deferred memory initialization
306 * has completed. Poisoning pages during deferred memory init will greatly
307 * lengthen the process and cause problem in large memory systems as the
308 * deferred pages initialization is done with interrupt disabled.
309 *
310 * Assuming that there will be no reference to those newly initialized
311 * pages before they are ever allocated, this should have no effect on
312 * KASAN memory tracking as the poison will be properly inserted at page
313 * allocation time. The only corner case is when pages are allocated by
314 * on-demand allocation and then freed again before the deferred pages
315 * initialization is done, but this is not likely to happen.
316 */
317 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
318 {
319 if (!static_branch_unlikely(&deferred_pages))
320 kasan_free_pages(page, order);
321 }
322
323 /* Returns true if the struct page for the pfn is uninitialised */
324 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
325 {
326 int nid = early_pfn_to_nid(pfn);
327
328 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
329 return true;
330
331 return false;
332 }
333
334 /*
335 * Returns false when the remaining initialisation should be deferred until
336 * later in the boot cycle when it can be parallelised.
337 */
338 static inline bool update_defer_init(pg_data_t *pgdat,
339 unsigned long pfn, unsigned long zone_end,
340 unsigned long *nr_initialised)
341 {
342 /* Always populate low zones for address-constrained allocations */
343 if (zone_end < pgdat_end_pfn(pgdat))
344 return true;
345 (*nr_initialised)++;
346 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
347 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
348 pgdat->first_deferred_pfn = pfn;
349 return false;
350 }
351
352 return true;
353 }
354 #else
355 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
356
357 static inline bool early_page_uninitialised(unsigned long pfn)
358 {
359 return false;
360 }
361
362 static inline bool update_defer_init(pg_data_t *pgdat,
363 unsigned long pfn, unsigned long zone_end,
364 unsigned long *nr_initialised)
365 {
366 return true;
367 }
368 #endif
369
370 /* Return a pointer to the bitmap storing bits affecting a block of pages */
371 static inline unsigned long *get_pageblock_bitmap(struct page *page,
372 unsigned long pfn)
373 {
374 #ifdef CONFIG_SPARSEMEM
375 return __pfn_to_section(pfn)->pageblock_flags;
376 #else
377 return page_zone(page)->pageblock_flags;
378 #endif /* CONFIG_SPARSEMEM */
379 }
380
381 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
382 {
383 #ifdef CONFIG_SPARSEMEM
384 pfn &= (PAGES_PER_SECTION-1);
385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
386 #else
387 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
388 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
389 #endif /* CONFIG_SPARSEMEM */
390 }
391
392 /**
393 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
394 * @page: The page within the block of interest
395 * @pfn: The target page frame number
396 * @end_bitidx: The last bit of interest to retrieve
397 * @mask: mask of bits that the caller is interested in
398 *
399 * Return: pageblock_bits flags
400 */
401 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
402 unsigned long pfn,
403 unsigned long end_bitidx,
404 unsigned long mask)
405 {
406 unsigned long *bitmap;
407 unsigned long bitidx, word_bitidx;
408 unsigned long word;
409
410 bitmap = get_pageblock_bitmap(page, pfn);
411 bitidx = pfn_to_bitidx(page, pfn);
412 word_bitidx = bitidx / BITS_PER_LONG;
413 bitidx &= (BITS_PER_LONG-1);
414
415 word = bitmap[word_bitidx];
416 bitidx += end_bitidx;
417 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
418 }
419
420 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
421 unsigned long end_bitidx,
422 unsigned long mask)
423 {
424 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
425 }
426
427 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
428 {
429 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
430 }
431
432 /**
433 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
434 * @page: The page within the block of interest
435 * @flags: The flags to set
436 * @pfn: The target page frame number
437 * @end_bitidx: The last bit of interest
438 * @mask: mask of bits that the caller is interested in
439 */
440 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
441 unsigned long pfn,
442 unsigned long end_bitidx,
443 unsigned long mask)
444 {
445 unsigned long *bitmap;
446 unsigned long bitidx, word_bitidx;
447 unsigned long old_word, word;
448
449 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
450
451 bitmap = get_pageblock_bitmap(page, pfn);
452 bitidx = pfn_to_bitidx(page, pfn);
453 word_bitidx = bitidx / BITS_PER_LONG;
454 bitidx &= (BITS_PER_LONG-1);
455
456 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
457
458 bitidx += end_bitidx;
459 mask <<= (BITS_PER_LONG - bitidx - 1);
460 flags <<= (BITS_PER_LONG - bitidx - 1);
461
462 word = READ_ONCE(bitmap[word_bitidx]);
463 for (;;) {
464 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
465 if (word == old_word)
466 break;
467 word = old_word;
468 }
469 }
470
471 void set_pageblock_migratetype(struct page *page, int migratetype)
472 {
473 if (unlikely(page_group_by_mobility_disabled &&
474 migratetype < MIGRATE_PCPTYPES))
475 migratetype = MIGRATE_UNMOVABLE;
476
477 set_pageblock_flags_group(page, (unsigned long)migratetype,
478 PB_migrate, PB_migrate_end);
479 }
480
481 #ifdef CONFIG_DEBUG_VM
482 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
483 {
484 int ret = 0;
485 unsigned seq;
486 unsigned long pfn = page_to_pfn(page);
487 unsigned long sp, start_pfn;
488
489 do {
490 seq = zone_span_seqbegin(zone);
491 start_pfn = zone->zone_start_pfn;
492 sp = zone->spanned_pages;
493 if (!zone_spans_pfn(zone, pfn))
494 ret = 1;
495 } while (zone_span_seqretry(zone, seq));
496
497 if (ret)
498 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
499 pfn, zone_to_nid(zone), zone->name,
500 start_pfn, start_pfn + sp);
501
502 return ret;
503 }
504
505 static int page_is_consistent(struct zone *zone, struct page *page)
506 {
507 if (!pfn_valid_within(page_to_pfn(page)))
508 return 0;
509 if (zone != page_zone(page))
510 return 0;
511
512 return 1;
513 }
514 /*
515 * Temporary debugging check for pages not lying within a given zone.
516 */
517 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
518 {
519 if (page_outside_zone_boundaries(zone, page))
520 return 1;
521 if (!page_is_consistent(zone, page))
522 return 1;
523
524 return 0;
525 }
526 #else
527 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
528 {
529 return 0;
530 }
531 #endif
532
533 static void bad_page(struct page *page, const char *reason,
534 unsigned long bad_flags)
535 {
536 static unsigned long resume;
537 static unsigned long nr_shown;
538 static unsigned long nr_unshown;
539
540 /*
541 * Allow a burst of 60 reports, then keep quiet for that minute;
542 * or allow a steady drip of one report per second.
543 */
544 if (nr_shown == 60) {
545 if (time_before(jiffies, resume)) {
546 nr_unshown++;
547 goto out;
548 }
549 if (nr_unshown) {
550 pr_alert(
551 "BUG: Bad page state: %lu messages suppressed\n",
552 nr_unshown);
553 nr_unshown = 0;
554 }
555 nr_shown = 0;
556 }
557 if (nr_shown++ == 0)
558 resume = jiffies + 60 * HZ;
559
560 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
561 current->comm, page_to_pfn(page));
562 __dump_page(page, reason);
563 bad_flags &= page->flags;
564 if (bad_flags)
565 pr_alert("bad because of flags: %#lx(%pGp)\n",
566 bad_flags, &bad_flags);
567 dump_page_owner(page);
568
569 print_modules();
570 dump_stack();
571 out:
572 /* Leave bad fields for debug, except PageBuddy could make trouble */
573 page_mapcount_reset(page); /* remove PageBuddy */
574 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
575 }
576
577 /*
578 * Higher-order pages are called "compound pages". They are structured thusly:
579 *
580 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
581 *
582 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
583 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
584 *
585 * The first tail page's ->compound_dtor holds the offset in array of compound
586 * page destructors. See compound_page_dtors.
587 *
588 * The first tail page's ->compound_order holds the order of allocation.
589 * This usage means that zero-order pages may not be compound.
590 */
591
592 void free_compound_page(struct page *page)
593 {
594 __free_pages_ok(page, compound_order(page));
595 }
596
597 void prep_compound_page(struct page *page, unsigned int order)
598 {
599 int i;
600 int nr_pages = 1 << order;
601
602 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
603 set_compound_order(page, order);
604 __SetPageHead(page);
605 for (i = 1; i < nr_pages; i++) {
606 struct page *p = page + i;
607 set_page_count(p, 0);
608 p->mapping = TAIL_MAPPING;
609 set_compound_head(p, page);
610 }
611 atomic_set(compound_mapcount_ptr(page), -1);
612 }
613
614 #ifdef CONFIG_DEBUG_PAGEALLOC
615 unsigned int _debug_guardpage_minorder;
616 bool _debug_pagealloc_enabled __read_mostly
617 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
618 EXPORT_SYMBOL(_debug_pagealloc_enabled);
619 bool _debug_guardpage_enabled __read_mostly;
620
621 static int __init early_debug_pagealloc(char *buf)
622 {
623 if (!buf)
624 return -EINVAL;
625 return kstrtobool(buf, &_debug_pagealloc_enabled);
626 }
627 early_param("debug_pagealloc", early_debug_pagealloc);
628
629 static bool need_debug_guardpage(void)
630 {
631 /* If we don't use debug_pagealloc, we don't need guard page */
632 if (!debug_pagealloc_enabled())
633 return false;
634
635 if (!debug_guardpage_minorder())
636 return false;
637
638 return true;
639 }
640
641 static void init_debug_guardpage(void)
642 {
643 if (!debug_pagealloc_enabled())
644 return;
645
646 if (!debug_guardpage_minorder())
647 return;
648
649 _debug_guardpage_enabled = true;
650 }
651
652 struct page_ext_operations debug_guardpage_ops = {
653 .need = need_debug_guardpage,
654 .init = init_debug_guardpage,
655 };
656
657 static int __init debug_guardpage_minorder_setup(char *buf)
658 {
659 unsigned long res;
660
661 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
662 pr_err("Bad debug_guardpage_minorder value\n");
663 return 0;
664 }
665 _debug_guardpage_minorder = res;
666 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
667 return 0;
668 }
669 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
670
671 static inline bool set_page_guard(struct zone *zone, struct page *page,
672 unsigned int order, int migratetype)
673 {
674 struct page_ext *page_ext;
675
676 if (!debug_guardpage_enabled())
677 return false;
678
679 if (order >= debug_guardpage_minorder())
680 return false;
681
682 page_ext = lookup_page_ext(page);
683 if (unlikely(!page_ext))
684 return false;
685
686 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
687
688 INIT_LIST_HEAD(&page->lru);
689 set_page_private(page, order);
690 /* Guard pages are not available for any usage */
691 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
692
693 return true;
694 }
695
696 static inline void clear_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype)
698 {
699 struct page_ext *page_ext;
700
701 if (!debug_guardpage_enabled())
702 return;
703
704 page_ext = lookup_page_ext(page);
705 if (unlikely(!page_ext))
706 return;
707
708 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
709
710 set_page_private(page, 0);
711 if (!is_migrate_isolate(migratetype))
712 __mod_zone_freepage_state(zone, (1 << order), migratetype);
713 }
714 #else
715 struct page_ext_operations debug_guardpage_ops;
716 static inline bool set_page_guard(struct zone *zone, struct page *page,
717 unsigned int order, int migratetype) { return false; }
718 static inline void clear_page_guard(struct zone *zone, struct page *page,
719 unsigned int order, int migratetype) {}
720 #endif
721
722 static inline void set_page_order(struct page *page, unsigned int order)
723 {
724 set_page_private(page, order);
725 __SetPageBuddy(page);
726 }
727
728 static inline void rmv_page_order(struct page *page)
729 {
730 __ClearPageBuddy(page);
731 set_page_private(page, 0);
732 }
733
734 /*
735 * This function checks whether a page is free && is the buddy
736 * we can coalesce a page and its buddy if
737 * (a) the buddy is not in a hole (check before calling!) &&
738 * (b) the buddy is in the buddy system &&
739 * (c) a page and its buddy have the same order &&
740 * (d) a page and its buddy are in the same zone.
741 *
742 * For recording whether a page is in the buddy system, we set PageBuddy.
743 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
744 *
745 * For recording page's order, we use page_private(page).
746 */
747 static inline int page_is_buddy(struct page *page, struct page *buddy,
748 unsigned int order)
749 {
750 if (page_is_guard(buddy) && page_order(buddy) == order) {
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
756 return 1;
757 }
758
759 if (PageBuddy(buddy) && page_order(buddy) == order) {
760 /*
761 * zone check is done late to avoid uselessly
762 * calculating zone/node ids for pages that could
763 * never merge.
764 */
765 if (page_zone_id(page) != page_zone_id(buddy))
766 return 0;
767
768 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
769
770 return 1;
771 }
772 return 0;
773 }
774
775 /*
776 * Freeing function for a buddy system allocator.
777 *
778 * The concept of a buddy system is to maintain direct-mapped table
779 * (containing bit values) for memory blocks of various "orders".
780 * The bottom level table contains the map for the smallest allocatable
781 * units of memory (here, pages), and each level above it describes
782 * pairs of units from the levels below, hence, "buddies".
783 * At a high level, all that happens here is marking the table entry
784 * at the bottom level available, and propagating the changes upward
785 * as necessary, plus some accounting needed to play nicely with other
786 * parts of the VM system.
787 * At each level, we keep a list of pages, which are heads of continuous
788 * free pages of length of (1 << order) and marked with PageBuddy.
789 * Page's order is recorded in page_private(page) field.
790 * So when we are allocating or freeing one, we can derive the state of the
791 * other. That is, if we allocate a small block, and both were
792 * free, the remainder of the region must be split into blocks.
793 * If a block is freed, and its buddy is also free, then this
794 * triggers coalescing into a block of larger size.
795 *
796 * -- nyc
797 */
798
799 static inline void __free_one_page(struct page *page,
800 unsigned long pfn,
801 struct zone *zone, unsigned int order,
802 int migratetype)
803 {
804 unsigned long combined_pfn;
805 unsigned long uninitialized_var(buddy_pfn);
806 struct page *buddy;
807 unsigned int max_order;
808
809 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
810
811 VM_BUG_ON(!zone_is_initialized(zone));
812 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
813
814 VM_BUG_ON(migratetype == -1);
815 if (likely(!is_migrate_isolate(migratetype)))
816 __mod_zone_freepage_state(zone, 1 << order, migratetype);
817
818 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
819 VM_BUG_ON_PAGE(bad_range(zone, page), page);
820
821 continue_merging:
822 while (order < max_order - 1) {
823 buddy_pfn = __find_buddy_pfn(pfn, order);
824 buddy = page + (buddy_pfn - pfn);
825
826 if (!pfn_valid_within(buddy_pfn))
827 goto done_merging;
828 if (!page_is_buddy(page, buddy, order))
829 goto done_merging;
830 /*
831 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
832 * merge with it and move up one order.
833 */
834 if (page_is_guard(buddy)) {
835 clear_page_guard(zone, buddy, order, migratetype);
836 } else {
837 list_del(&buddy->lru);
838 zone->free_area[order].nr_free--;
839 rmv_page_order(buddy);
840 }
841 combined_pfn = buddy_pfn & pfn;
842 page = page + (combined_pfn - pfn);
843 pfn = combined_pfn;
844 order++;
845 }
846 if (max_order < MAX_ORDER) {
847 /* If we are here, it means order is >= pageblock_order.
848 * We want to prevent merge between freepages on isolate
849 * pageblock and normal pageblock. Without this, pageblock
850 * isolation could cause incorrect freepage or CMA accounting.
851 *
852 * We don't want to hit this code for the more frequent
853 * low-order merging.
854 */
855 if (unlikely(has_isolate_pageblock(zone))) {
856 int buddy_mt;
857
858 buddy_pfn = __find_buddy_pfn(pfn, order);
859 buddy = page + (buddy_pfn - pfn);
860 buddy_mt = get_pageblock_migratetype(buddy);
861
862 if (migratetype != buddy_mt
863 && (is_migrate_isolate(migratetype) ||
864 is_migrate_isolate(buddy_mt)))
865 goto done_merging;
866 }
867 max_order++;
868 goto continue_merging;
869 }
870
871 done_merging:
872 set_page_order(page, order);
873
874 /*
875 * If this is not the largest possible page, check if the buddy
876 * of the next-highest order is free. If it is, it's possible
877 * that pages are being freed that will coalesce soon. In case,
878 * that is happening, add the free page to the tail of the list
879 * so it's less likely to be used soon and more likely to be merged
880 * as a higher order page
881 */
882 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
883 struct page *higher_page, *higher_buddy;
884 combined_pfn = buddy_pfn & pfn;
885 higher_page = page + (combined_pfn - pfn);
886 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
887 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
888 if (pfn_valid_within(buddy_pfn) &&
889 page_is_buddy(higher_page, higher_buddy, order + 1)) {
890 list_add_tail(&page->lru,
891 &zone->free_area[order].free_list[migratetype]);
892 goto out;
893 }
894 }
895
896 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
897 out:
898 zone->free_area[order].nr_free++;
899 }
900
901 /*
902 * A bad page could be due to a number of fields. Instead of multiple branches,
903 * try and check multiple fields with one check. The caller must do a detailed
904 * check if necessary.
905 */
906 static inline bool page_expected_state(struct page *page,
907 unsigned long check_flags)
908 {
909 if (unlikely(atomic_read(&page->_mapcount) != -1))
910 return false;
911
912 if (unlikely((unsigned long)page->mapping |
913 page_ref_count(page) |
914 #ifdef CONFIG_MEMCG
915 (unsigned long)page->mem_cgroup |
916 #endif
917 (page->flags & check_flags)))
918 return false;
919
920 return true;
921 }
922
923 static void free_pages_check_bad(struct page *page)
924 {
925 const char *bad_reason;
926 unsigned long bad_flags;
927
928 bad_reason = NULL;
929 bad_flags = 0;
930
931 if (unlikely(atomic_read(&page->_mapcount) != -1))
932 bad_reason = "nonzero mapcount";
933 if (unlikely(page->mapping != NULL))
934 bad_reason = "non-NULL mapping";
935 if (unlikely(page_ref_count(page) != 0))
936 bad_reason = "nonzero _refcount";
937 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
938 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
940 }
941 #ifdef CONFIG_MEMCG
942 if (unlikely(page->mem_cgroup))
943 bad_reason = "page still charged to cgroup";
944 #endif
945 bad_page(page, bad_reason, bad_flags);
946 }
947
948 static inline int free_pages_check(struct page *page)
949 {
950 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
951 return 0;
952
953 /* Something has gone sideways, find it */
954 free_pages_check_bad(page);
955 return 1;
956 }
957
958 static int free_tail_pages_check(struct page *head_page, struct page *page)
959 {
960 int ret = 1;
961
962 /*
963 * We rely page->lru.next never has bit 0 set, unless the page
964 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
965 */
966 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
967
968 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
969 ret = 0;
970 goto out;
971 }
972 switch (page - head_page) {
973 case 1:
974 /* the first tail page: ->mapping may be compound_mapcount() */
975 if (unlikely(compound_mapcount(page))) {
976 bad_page(page, "nonzero compound_mapcount", 0);
977 goto out;
978 }
979 break;
980 case 2:
981 /*
982 * the second tail page: ->mapping is
983 * deferred_list.next -- ignore value.
984 */
985 break;
986 default:
987 if (page->mapping != TAIL_MAPPING) {
988 bad_page(page, "corrupted mapping in tail page", 0);
989 goto out;
990 }
991 break;
992 }
993 if (unlikely(!PageTail(page))) {
994 bad_page(page, "PageTail not set", 0);
995 goto out;
996 }
997 if (unlikely(compound_head(page) != head_page)) {
998 bad_page(page, "compound_head not consistent", 0);
999 goto out;
1000 }
1001 ret = 0;
1002 out:
1003 page->mapping = NULL;
1004 clear_compound_head(page);
1005 return ret;
1006 }
1007
1008 static __always_inline bool free_pages_prepare(struct page *page,
1009 unsigned int order, bool check_free)
1010 {
1011 int bad = 0;
1012
1013 VM_BUG_ON_PAGE(PageTail(page), page);
1014
1015 trace_mm_page_free(page, order);
1016
1017 /*
1018 * Check tail pages before head page information is cleared to
1019 * avoid checking PageCompound for order-0 pages.
1020 */
1021 if (unlikely(order)) {
1022 bool compound = PageCompound(page);
1023 int i;
1024
1025 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1026
1027 if (compound)
1028 ClearPageDoubleMap(page);
1029 for (i = 1; i < (1 << order); i++) {
1030 if (compound)
1031 bad += free_tail_pages_check(page, page + i);
1032 if (unlikely(free_pages_check(page + i))) {
1033 bad++;
1034 continue;
1035 }
1036 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1037 }
1038 }
1039 if (PageMappingFlags(page))
1040 page->mapping = NULL;
1041 if (memcg_kmem_enabled() && PageKmemcg(page))
1042 memcg_kmem_uncharge(page, order);
1043 if (check_free)
1044 bad += free_pages_check(page);
1045 if (bad)
1046 return false;
1047
1048 page_cpupid_reset_last(page);
1049 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1050 reset_page_owner(page, order);
1051
1052 if (!PageHighMem(page)) {
1053 debug_check_no_locks_freed(page_address(page),
1054 PAGE_SIZE << order);
1055 debug_check_no_obj_freed(page_address(page),
1056 PAGE_SIZE << order);
1057 }
1058 arch_free_page(page, order);
1059 kernel_poison_pages(page, 1 << order, 0);
1060 kernel_map_pages(page, 1 << order, 0);
1061 kasan_free_nondeferred_pages(page, order);
1062
1063 return true;
1064 }
1065
1066 #ifdef CONFIG_DEBUG_VM
1067 static inline bool free_pcp_prepare(struct page *page)
1068 {
1069 return free_pages_prepare(page, 0, true);
1070 }
1071
1072 static inline bool bulkfree_pcp_prepare(struct page *page)
1073 {
1074 return false;
1075 }
1076 #else
1077 static bool free_pcp_prepare(struct page *page)
1078 {
1079 return free_pages_prepare(page, 0, false);
1080 }
1081
1082 static bool bulkfree_pcp_prepare(struct page *page)
1083 {
1084 return free_pages_check(page);
1085 }
1086 #endif /* CONFIG_DEBUG_VM */
1087
1088 static inline void prefetch_buddy(struct page *page)
1089 {
1090 unsigned long pfn = page_to_pfn(page);
1091 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1092 struct page *buddy = page + (buddy_pfn - pfn);
1093
1094 prefetch(buddy);
1095 }
1096
1097 /*
1098 * Frees a number of pages from the PCP lists
1099 * Assumes all pages on list are in same zone, and of same order.
1100 * count is the number of pages to free.
1101 *
1102 * If the zone was previously in an "all pages pinned" state then look to
1103 * see if this freeing clears that state.
1104 *
1105 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1106 * pinned" detection logic.
1107 */
1108 static void free_pcppages_bulk(struct zone *zone, int count,
1109 struct per_cpu_pages *pcp)
1110 {
1111 int migratetype = 0;
1112 int batch_free = 0;
1113 int prefetch_nr = 0;
1114 bool isolated_pageblocks;
1115 struct page *page, *tmp;
1116 LIST_HEAD(head);
1117
1118 while (count) {
1119 struct list_head *list;
1120
1121 /*
1122 * Remove pages from lists in a round-robin fashion. A
1123 * batch_free count is maintained that is incremented when an
1124 * empty list is encountered. This is so more pages are freed
1125 * off fuller lists instead of spinning excessively around empty
1126 * lists
1127 */
1128 do {
1129 batch_free++;
1130 if (++migratetype == MIGRATE_PCPTYPES)
1131 migratetype = 0;
1132 list = &pcp->lists[migratetype];
1133 } while (list_empty(list));
1134
1135 /* This is the only non-empty list. Free them all. */
1136 if (batch_free == MIGRATE_PCPTYPES)
1137 batch_free = count;
1138
1139 do {
1140 page = list_last_entry(list, struct page, lru);
1141 /* must delete to avoid corrupting pcp list */
1142 list_del(&page->lru);
1143 pcp->count--;
1144
1145 if (bulkfree_pcp_prepare(page))
1146 continue;
1147
1148 list_add_tail(&page->lru, &head);
1149
1150 /*
1151 * We are going to put the page back to the global
1152 * pool, prefetch its buddy to speed up later access
1153 * under zone->lock. It is believed the overhead of
1154 * an additional test and calculating buddy_pfn here
1155 * can be offset by reduced memory latency later. To
1156 * avoid excessive prefetching due to large count, only
1157 * prefetch buddy for the first pcp->batch nr of pages.
1158 */
1159 if (prefetch_nr++ < pcp->batch)
1160 prefetch_buddy(page);
1161 } while (--count && --batch_free && !list_empty(list));
1162 }
1163
1164 spin_lock(&zone->lock);
1165 isolated_pageblocks = has_isolate_pageblock(zone);
1166
1167 /*
1168 * Use safe version since after __free_one_page(),
1169 * page->lru.next will not point to original list.
1170 */
1171 list_for_each_entry_safe(page, tmp, &head, lru) {
1172 int mt = get_pcppage_migratetype(page);
1173 /* MIGRATE_ISOLATE page should not go to pcplists */
1174 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1175 /* Pageblock could have been isolated meanwhile */
1176 if (unlikely(isolated_pageblocks))
1177 mt = get_pageblock_migratetype(page);
1178
1179 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1180 trace_mm_page_pcpu_drain(page, 0, mt);
1181 }
1182 spin_unlock(&zone->lock);
1183 }
1184
1185 static void free_one_page(struct zone *zone,
1186 struct page *page, unsigned long pfn,
1187 unsigned int order,
1188 int migratetype)
1189 {
1190 spin_lock(&zone->lock);
1191 if (unlikely(has_isolate_pageblock(zone) ||
1192 is_migrate_isolate(migratetype))) {
1193 migratetype = get_pfnblock_migratetype(page, pfn);
1194 }
1195 __free_one_page(page, pfn, zone, order, migratetype);
1196 spin_unlock(&zone->lock);
1197 }
1198
1199 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1200 unsigned long zone, int nid)
1201 {
1202 mm_zero_struct_page(page);
1203 set_page_links(page, zone, nid, pfn);
1204 init_page_count(page);
1205 page_mapcount_reset(page);
1206 page_cpupid_reset_last(page);
1207
1208 INIT_LIST_HEAD(&page->lru);
1209 #ifdef WANT_PAGE_VIRTUAL
1210 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1211 if (!is_highmem_idx(zone))
1212 set_page_address(page, __va(pfn << PAGE_SHIFT));
1213 #endif
1214 }
1215
1216 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1217 static void __meminit init_reserved_page(unsigned long pfn)
1218 {
1219 pg_data_t *pgdat;
1220 int nid, zid;
1221
1222 if (!early_page_uninitialised(pfn))
1223 return;
1224
1225 nid = early_pfn_to_nid(pfn);
1226 pgdat = NODE_DATA(nid);
1227
1228 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1229 struct zone *zone = &pgdat->node_zones[zid];
1230
1231 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1232 break;
1233 }
1234 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1235 }
1236 #else
1237 static inline void init_reserved_page(unsigned long pfn)
1238 {
1239 }
1240 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1241
1242 /*
1243 * Initialised pages do not have PageReserved set. This function is
1244 * called for each range allocated by the bootmem allocator and
1245 * marks the pages PageReserved. The remaining valid pages are later
1246 * sent to the buddy page allocator.
1247 */
1248 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1249 {
1250 unsigned long start_pfn = PFN_DOWN(start);
1251 unsigned long end_pfn = PFN_UP(end);
1252
1253 for (; start_pfn < end_pfn; start_pfn++) {
1254 if (pfn_valid(start_pfn)) {
1255 struct page *page = pfn_to_page(start_pfn);
1256
1257 init_reserved_page(start_pfn);
1258
1259 /* Avoid false-positive PageTail() */
1260 INIT_LIST_HEAD(&page->lru);
1261
1262 SetPageReserved(page);
1263 }
1264 }
1265 }
1266
1267 static void __free_pages_ok(struct page *page, unsigned int order)
1268 {
1269 unsigned long flags;
1270 int migratetype;
1271 unsigned long pfn = page_to_pfn(page);
1272
1273 if (!free_pages_prepare(page, order, true))
1274 return;
1275
1276 migratetype = get_pfnblock_migratetype(page, pfn);
1277 local_irq_save(flags);
1278 __count_vm_events(PGFREE, 1 << order);
1279 free_one_page(page_zone(page), page, pfn, order, migratetype);
1280 local_irq_restore(flags);
1281 }
1282
1283 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1284 {
1285 unsigned int nr_pages = 1 << order;
1286 struct page *p = page;
1287 unsigned int loop;
1288
1289 prefetchw(p);
1290 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1291 prefetchw(p + 1);
1292 __ClearPageReserved(p);
1293 set_page_count(p, 0);
1294 }
1295 __ClearPageReserved(p);
1296 set_page_count(p, 0);
1297
1298 page_zone(page)->managed_pages += nr_pages;
1299 set_page_refcounted(page);
1300 __free_pages(page, order);
1301 }
1302
1303 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1304 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1305
1306 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1307
1308 int __meminit early_pfn_to_nid(unsigned long pfn)
1309 {
1310 static DEFINE_SPINLOCK(early_pfn_lock);
1311 int nid;
1312
1313 spin_lock(&early_pfn_lock);
1314 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1315 if (nid < 0)
1316 nid = first_online_node;
1317 spin_unlock(&early_pfn_lock);
1318
1319 return nid;
1320 }
1321 #endif
1322
1323 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1324 static inline bool __meminit __maybe_unused
1325 meminit_pfn_in_nid(unsigned long pfn, int node,
1326 struct mminit_pfnnid_cache *state)
1327 {
1328 int nid;
1329
1330 nid = __early_pfn_to_nid(pfn, state);
1331 if (nid >= 0 && nid != node)
1332 return false;
1333 return true;
1334 }
1335
1336 /* Only safe to use early in boot when initialisation is single-threaded */
1337 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1338 {
1339 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1340 }
1341
1342 #else
1343
1344 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1345 {
1346 return true;
1347 }
1348 static inline bool __meminit __maybe_unused
1349 meminit_pfn_in_nid(unsigned long pfn, int node,
1350 struct mminit_pfnnid_cache *state)
1351 {
1352 return true;
1353 }
1354 #endif
1355
1356
1357 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1358 unsigned int order)
1359 {
1360 if (early_page_uninitialised(pfn))
1361 return;
1362 return __free_pages_boot_core(page, order);
1363 }
1364
1365 /*
1366 * Check that the whole (or subset of) a pageblock given by the interval of
1367 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1368 * with the migration of free compaction scanner. The scanners then need to
1369 * use only pfn_valid_within() check for arches that allow holes within
1370 * pageblocks.
1371 *
1372 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1373 *
1374 * It's possible on some configurations to have a setup like node0 node1 node0
1375 * i.e. it's possible that all pages within a zones range of pages do not
1376 * belong to a single zone. We assume that a border between node0 and node1
1377 * can occur within a single pageblock, but not a node0 node1 node0
1378 * interleaving within a single pageblock. It is therefore sufficient to check
1379 * the first and last page of a pageblock and avoid checking each individual
1380 * page in a pageblock.
1381 */
1382 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1383 unsigned long end_pfn, struct zone *zone)
1384 {
1385 struct page *start_page;
1386 struct page *end_page;
1387
1388 /* end_pfn is one past the range we are checking */
1389 end_pfn--;
1390
1391 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1392 return NULL;
1393
1394 start_page = pfn_to_online_page(start_pfn);
1395 if (!start_page)
1396 return NULL;
1397
1398 if (page_zone(start_page) != zone)
1399 return NULL;
1400
1401 end_page = pfn_to_page(end_pfn);
1402
1403 /* This gives a shorter code than deriving page_zone(end_page) */
1404 if (page_zone_id(start_page) != page_zone_id(end_page))
1405 return NULL;
1406
1407 return start_page;
1408 }
1409
1410 void set_zone_contiguous(struct zone *zone)
1411 {
1412 unsigned long block_start_pfn = zone->zone_start_pfn;
1413 unsigned long block_end_pfn;
1414
1415 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1416 for (; block_start_pfn < zone_end_pfn(zone);
1417 block_start_pfn = block_end_pfn,
1418 block_end_pfn += pageblock_nr_pages) {
1419
1420 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1421
1422 if (!__pageblock_pfn_to_page(block_start_pfn,
1423 block_end_pfn, zone))
1424 return;
1425 }
1426
1427 /* We confirm that there is no hole */
1428 zone->contiguous = true;
1429 }
1430
1431 void clear_zone_contiguous(struct zone *zone)
1432 {
1433 zone->contiguous = false;
1434 }
1435
1436 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1437 static void __init deferred_free_range(unsigned long pfn,
1438 unsigned long nr_pages)
1439 {
1440 struct page *page;
1441 unsigned long i;
1442
1443 if (!nr_pages)
1444 return;
1445
1446 page = pfn_to_page(pfn);
1447
1448 /* Free a large naturally-aligned chunk if possible */
1449 if (nr_pages == pageblock_nr_pages &&
1450 (pfn & (pageblock_nr_pages - 1)) == 0) {
1451 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1452 __free_pages_boot_core(page, pageblock_order);
1453 return;
1454 }
1455
1456 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1457 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1458 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1459 __free_pages_boot_core(page, 0);
1460 }
1461 }
1462
1463 /* Completion tracking for deferred_init_memmap() threads */
1464 static atomic_t pgdat_init_n_undone __initdata;
1465 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1466
1467 static inline void __init pgdat_init_report_one_done(void)
1468 {
1469 if (atomic_dec_and_test(&pgdat_init_n_undone))
1470 complete(&pgdat_init_all_done_comp);
1471 }
1472
1473 /*
1474 * Returns true if page needs to be initialized or freed to buddy allocator.
1475 *
1476 * First we check if pfn is valid on architectures where it is possible to have
1477 * holes within pageblock_nr_pages. On systems where it is not possible, this
1478 * function is optimized out.
1479 *
1480 * Then, we check if a current large page is valid by only checking the validity
1481 * of the head pfn.
1482 *
1483 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1484 * within a node: a pfn is between start and end of a node, but does not belong
1485 * to this memory node.
1486 */
1487 static inline bool __init
1488 deferred_pfn_valid(int nid, unsigned long pfn,
1489 struct mminit_pfnnid_cache *nid_init_state)
1490 {
1491 if (!pfn_valid_within(pfn))
1492 return false;
1493 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1494 return false;
1495 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1496 return false;
1497 return true;
1498 }
1499
1500 /*
1501 * Free pages to buddy allocator. Try to free aligned pages in
1502 * pageblock_nr_pages sizes.
1503 */
1504 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1505 unsigned long end_pfn)
1506 {
1507 struct mminit_pfnnid_cache nid_init_state = { };
1508 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1509 unsigned long nr_free = 0;
1510
1511 for (; pfn < end_pfn; pfn++) {
1512 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1513 deferred_free_range(pfn - nr_free, nr_free);
1514 nr_free = 0;
1515 } else if (!(pfn & nr_pgmask)) {
1516 deferred_free_range(pfn - nr_free, nr_free);
1517 nr_free = 1;
1518 touch_nmi_watchdog();
1519 } else {
1520 nr_free++;
1521 }
1522 }
1523 /* Free the last block of pages to allocator */
1524 deferred_free_range(pfn - nr_free, nr_free);
1525 }
1526
1527 /*
1528 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1529 * by performing it only once every pageblock_nr_pages.
1530 * Return number of pages initialized.
1531 */
1532 static unsigned long __init deferred_init_pages(int nid, int zid,
1533 unsigned long pfn,
1534 unsigned long end_pfn)
1535 {
1536 struct mminit_pfnnid_cache nid_init_state = { };
1537 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1538 unsigned long nr_pages = 0;
1539 struct page *page = NULL;
1540
1541 for (; pfn < end_pfn; pfn++) {
1542 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1543 page = NULL;
1544 continue;
1545 } else if (!page || !(pfn & nr_pgmask)) {
1546 page = pfn_to_page(pfn);
1547 touch_nmi_watchdog();
1548 } else {
1549 page++;
1550 }
1551 __init_single_page(page, pfn, zid, nid);
1552 nr_pages++;
1553 }
1554 return (nr_pages);
1555 }
1556
1557 /* Initialise remaining memory on a node */
1558 static int __init deferred_init_memmap(void *data)
1559 {
1560 pg_data_t *pgdat = data;
1561 int nid = pgdat->node_id;
1562 unsigned long start = jiffies;
1563 unsigned long nr_pages = 0;
1564 unsigned long spfn, epfn, first_init_pfn, flags;
1565 phys_addr_t spa, epa;
1566 int zid;
1567 struct zone *zone;
1568 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1569 u64 i;
1570
1571 /* Bind memory initialisation thread to a local node if possible */
1572 if (!cpumask_empty(cpumask))
1573 set_cpus_allowed_ptr(current, cpumask);
1574
1575 pgdat_resize_lock(pgdat, &flags);
1576 first_init_pfn = pgdat->first_deferred_pfn;
1577 if (first_init_pfn == ULONG_MAX) {
1578 pgdat_resize_unlock(pgdat, &flags);
1579 pgdat_init_report_one_done();
1580 return 0;
1581 }
1582
1583 /* Sanity check boundaries */
1584 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1585 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1586 pgdat->first_deferred_pfn = ULONG_MAX;
1587
1588 /* Only the highest zone is deferred so find it */
1589 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1590 zone = pgdat->node_zones + zid;
1591 if (first_init_pfn < zone_end_pfn(zone))
1592 break;
1593 }
1594 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1595
1596 /*
1597 * Initialize and free pages. We do it in two loops: first we initialize
1598 * struct page, than free to buddy allocator, because while we are
1599 * freeing pages we can access pages that are ahead (computing buddy
1600 * page in __free_one_page()).
1601 */
1602 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1603 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1604 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1605 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1606 }
1607 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1608 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1609 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1610 deferred_free_pages(nid, zid, spfn, epfn);
1611 }
1612 pgdat_resize_unlock(pgdat, &flags);
1613
1614 /* Sanity check that the next zone really is unpopulated */
1615 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1616
1617 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1618 jiffies_to_msecs(jiffies - start));
1619
1620 pgdat_init_report_one_done();
1621 return 0;
1622 }
1623
1624 /*
1625 * If this zone has deferred pages, try to grow it by initializing enough
1626 * deferred pages to satisfy the allocation specified by order, rounded up to
1627 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1628 * of SECTION_SIZE bytes by initializing struct pages in increments of
1629 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1630 *
1631 * Return true when zone was grown, otherwise return false. We return true even
1632 * when we grow less than requested, to let the caller decide if there are
1633 * enough pages to satisfy the allocation.
1634 *
1635 * Note: We use noinline because this function is needed only during boot, and
1636 * it is called from a __ref function _deferred_grow_zone. This way we are
1637 * making sure that it is not inlined into permanent text section.
1638 */
1639 static noinline bool __init
1640 deferred_grow_zone(struct zone *zone, unsigned int order)
1641 {
1642 int zid = zone_idx(zone);
1643 int nid = zone_to_nid(zone);
1644 pg_data_t *pgdat = NODE_DATA(nid);
1645 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1646 unsigned long nr_pages = 0;
1647 unsigned long first_init_pfn, spfn, epfn, t, flags;
1648 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1649 phys_addr_t spa, epa;
1650 u64 i;
1651
1652 /* Only the last zone may have deferred pages */
1653 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1654 return false;
1655
1656 pgdat_resize_lock(pgdat, &flags);
1657
1658 /*
1659 * If deferred pages have been initialized while we were waiting for
1660 * the lock, return true, as the zone was grown. The caller will retry
1661 * this zone. We won't return to this function since the caller also
1662 * has this static branch.
1663 */
1664 if (!static_branch_unlikely(&deferred_pages)) {
1665 pgdat_resize_unlock(pgdat, &flags);
1666 return true;
1667 }
1668
1669 /*
1670 * If someone grew this zone while we were waiting for spinlock, return
1671 * true, as there might be enough pages already.
1672 */
1673 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1674 pgdat_resize_unlock(pgdat, &flags);
1675 return true;
1676 }
1677
1678 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1679
1680 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1681 pgdat_resize_unlock(pgdat, &flags);
1682 return false;
1683 }
1684
1685 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1686 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1687 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1688
1689 while (spfn < epfn && nr_pages < nr_pages_needed) {
1690 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1691 first_deferred_pfn = min(t, epfn);
1692 nr_pages += deferred_init_pages(nid, zid, spfn,
1693 first_deferred_pfn);
1694 spfn = first_deferred_pfn;
1695 }
1696
1697 if (nr_pages >= nr_pages_needed)
1698 break;
1699 }
1700
1701 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1702 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1703 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1704 deferred_free_pages(nid, zid, spfn, epfn);
1705
1706 if (first_deferred_pfn == epfn)
1707 break;
1708 }
1709 pgdat->first_deferred_pfn = first_deferred_pfn;
1710 pgdat_resize_unlock(pgdat, &flags);
1711
1712 return nr_pages > 0;
1713 }
1714
1715 /*
1716 * deferred_grow_zone() is __init, but it is called from
1717 * get_page_from_freelist() during early boot until deferred_pages permanently
1718 * disables this call. This is why we have refdata wrapper to avoid warning,
1719 * and to ensure that the function body gets unloaded.
1720 */
1721 static bool __ref
1722 _deferred_grow_zone(struct zone *zone, unsigned int order)
1723 {
1724 return deferred_grow_zone(zone, order);
1725 }
1726
1727 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1728
1729 void __init page_alloc_init_late(void)
1730 {
1731 struct zone *zone;
1732
1733 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1734 int nid;
1735
1736 /* There will be num_node_state(N_MEMORY) threads */
1737 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1738 for_each_node_state(nid, N_MEMORY) {
1739 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1740 }
1741
1742 /* Block until all are initialised */
1743 wait_for_completion(&pgdat_init_all_done_comp);
1744
1745 /*
1746 * We initialized the rest of the deferred pages. Permanently disable
1747 * on-demand struct page initialization.
1748 */
1749 static_branch_disable(&deferred_pages);
1750
1751 /* Reinit limits that are based on free pages after the kernel is up */
1752 files_maxfiles_init();
1753 #endif
1754 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1755 /* Discard memblock private memory */
1756 memblock_discard();
1757 #endif
1758
1759 for_each_populated_zone(zone)
1760 set_zone_contiguous(zone);
1761 }
1762
1763 #ifdef CONFIG_CMA
1764 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1765 void __init init_cma_reserved_pageblock(struct page *page)
1766 {
1767 unsigned i = pageblock_nr_pages;
1768 struct page *p = page;
1769
1770 do {
1771 __ClearPageReserved(p);
1772 set_page_count(p, 0);
1773 } while (++p, --i);
1774
1775 set_pageblock_migratetype(page, MIGRATE_CMA);
1776
1777 if (pageblock_order >= MAX_ORDER) {
1778 i = pageblock_nr_pages;
1779 p = page;
1780 do {
1781 set_page_refcounted(p);
1782 __free_pages(p, MAX_ORDER - 1);
1783 p += MAX_ORDER_NR_PAGES;
1784 } while (i -= MAX_ORDER_NR_PAGES);
1785 } else {
1786 set_page_refcounted(page);
1787 __free_pages(page, pageblock_order);
1788 }
1789
1790 adjust_managed_page_count(page, pageblock_nr_pages);
1791 }
1792 #endif
1793
1794 /*
1795 * The order of subdivision here is critical for the IO subsystem.
1796 * Please do not alter this order without good reasons and regression
1797 * testing. Specifically, as large blocks of memory are subdivided,
1798 * the order in which smaller blocks are delivered depends on the order
1799 * they're subdivided in this function. This is the primary factor
1800 * influencing the order in which pages are delivered to the IO
1801 * subsystem according to empirical testing, and this is also justified
1802 * by considering the behavior of a buddy system containing a single
1803 * large block of memory acted on by a series of small allocations.
1804 * This behavior is a critical factor in sglist merging's success.
1805 *
1806 * -- nyc
1807 */
1808 static inline void expand(struct zone *zone, struct page *page,
1809 int low, int high, struct free_area *area,
1810 int migratetype)
1811 {
1812 unsigned long size = 1 << high;
1813
1814 while (high > low) {
1815 area--;
1816 high--;
1817 size >>= 1;
1818 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1819
1820 /*
1821 * Mark as guard pages (or page), that will allow to
1822 * merge back to allocator when buddy will be freed.
1823 * Corresponding page table entries will not be touched,
1824 * pages will stay not present in virtual address space
1825 */
1826 if (set_page_guard(zone, &page[size], high, migratetype))
1827 continue;
1828
1829 list_add(&page[size].lru, &area->free_list[migratetype]);
1830 area->nr_free++;
1831 set_page_order(&page[size], high);
1832 }
1833 }
1834
1835 static void check_new_page_bad(struct page *page)
1836 {
1837 const char *bad_reason = NULL;
1838 unsigned long bad_flags = 0;
1839
1840 if (unlikely(atomic_read(&page->_mapcount) != -1))
1841 bad_reason = "nonzero mapcount";
1842 if (unlikely(page->mapping != NULL))
1843 bad_reason = "non-NULL mapping";
1844 if (unlikely(page_ref_count(page) != 0))
1845 bad_reason = "nonzero _count";
1846 if (unlikely(page->flags & __PG_HWPOISON)) {
1847 bad_reason = "HWPoisoned (hardware-corrupted)";
1848 bad_flags = __PG_HWPOISON;
1849 /* Don't complain about hwpoisoned pages */
1850 page_mapcount_reset(page); /* remove PageBuddy */
1851 return;
1852 }
1853 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1854 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1855 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1856 }
1857 #ifdef CONFIG_MEMCG
1858 if (unlikely(page->mem_cgroup))
1859 bad_reason = "page still charged to cgroup";
1860 #endif
1861 bad_page(page, bad_reason, bad_flags);
1862 }
1863
1864 /*
1865 * This page is about to be returned from the page allocator
1866 */
1867 static inline int check_new_page(struct page *page)
1868 {
1869 if (likely(page_expected_state(page,
1870 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1871 return 0;
1872
1873 check_new_page_bad(page);
1874 return 1;
1875 }
1876
1877 static inline bool free_pages_prezeroed(void)
1878 {
1879 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1880 page_poisoning_enabled();
1881 }
1882
1883 #ifdef CONFIG_DEBUG_VM
1884 static bool check_pcp_refill(struct page *page)
1885 {
1886 return false;
1887 }
1888
1889 static bool check_new_pcp(struct page *page)
1890 {
1891 return check_new_page(page);
1892 }
1893 #else
1894 static bool check_pcp_refill(struct page *page)
1895 {
1896 return check_new_page(page);
1897 }
1898 static bool check_new_pcp(struct page *page)
1899 {
1900 return false;
1901 }
1902 #endif /* CONFIG_DEBUG_VM */
1903
1904 static bool check_new_pages(struct page *page, unsigned int order)
1905 {
1906 int i;
1907 for (i = 0; i < (1 << order); i++) {
1908 struct page *p = page + i;
1909
1910 if (unlikely(check_new_page(p)))
1911 return true;
1912 }
1913
1914 return false;
1915 }
1916
1917 inline void post_alloc_hook(struct page *page, unsigned int order,
1918 gfp_t gfp_flags)
1919 {
1920 set_page_private(page, 0);
1921 set_page_refcounted(page);
1922
1923 arch_alloc_page(page, order);
1924 kernel_map_pages(page, 1 << order, 1);
1925 kasan_alloc_pages(page, order);
1926 kernel_poison_pages(page, 1 << order, 1);
1927 set_page_owner(page, order, gfp_flags);
1928 }
1929
1930 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1931 unsigned int alloc_flags)
1932 {
1933 int i;
1934
1935 post_alloc_hook(page, order, gfp_flags);
1936
1937 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1938 for (i = 0; i < (1 << order); i++)
1939 clear_highpage(page + i);
1940
1941 if (order && (gfp_flags & __GFP_COMP))
1942 prep_compound_page(page, order);
1943
1944 /*
1945 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1946 * allocate the page. The expectation is that the caller is taking
1947 * steps that will free more memory. The caller should avoid the page
1948 * being used for !PFMEMALLOC purposes.
1949 */
1950 if (alloc_flags & ALLOC_NO_WATERMARKS)
1951 set_page_pfmemalloc(page);
1952 else
1953 clear_page_pfmemalloc(page);
1954 }
1955
1956 /*
1957 * Go through the free lists for the given migratetype and remove
1958 * the smallest available page from the freelists
1959 */
1960 static __always_inline
1961 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1962 int migratetype)
1963 {
1964 unsigned int current_order;
1965 struct free_area *area;
1966 struct page *page;
1967
1968 /* Find a page of the appropriate size in the preferred list */
1969 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1970 area = &(zone->free_area[current_order]);
1971 page = list_first_entry_or_null(&area->free_list[migratetype],
1972 struct page, lru);
1973 if (!page)
1974 continue;
1975 list_del(&page->lru);
1976 rmv_page_order(page);
1977 area->nr_free--;
1978 expand(zone, page, order, current_order, area, migratetype);
1979 set_pcppage_migratetype(page, migratetype);
1980 return page;
1981 }
1982
1983 return NULL;
1984 }
1985
1986
1987 /*
1988 * This array describes the order lists are fallen back to when
1989 * the free lists for the desirable migrate type are depleted
1990 */
1991 static int fallbacks[MIGRATE_TYPES][4] = {
1992 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1993 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1994 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1995 #ifdef CONFIG_CMA
1996 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1997 #endif
1998 #ifdef CONFIG_MEMORY_ISOLATION
1999 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2000 #endif
2001 };
2002
2003 #ifdef CONFIG_CMA
2004 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2005 unsigned int order)
2006 {
2007 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2008 }
2009 #else
2010 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2011 unsigned int order) { return NULL; }
2012 #endif
2013
2014 /*
2015 * Move the free pages in a range to the free lists of the requested type.
2016 * Note that start_page and end_pages are not aligned on a pageblock
2017 * boundary. If alignment is required, use move_freepages_block()
2018 */
2019 static int move_freepages(struct zone *zone,
2020 struct page *start_page, struct page *end_page,
2021 int migratetype, int *num_movable)
2022 {
2023 struct page *page;
2024 unsigned int order;
2025 int pages_moved = 0;
2026
2027 #ifndef CONFIG_HOLES_IN_ZONE
2028 /*
2029 * page_zone is not safe to call in this context when
2030 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2031 * anyway as we check zone boundaries in move_freepages_block().
2032 * Remove at a later date when no bug reports exist related to
2033 * grouping pages by mobility
2034 */
2035 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2036 pfn_valid(page_to_pfn(end_page)) &&
2037 page_zone(start_page) != page_zone(end_page));
2038 #endif
2039
2040 if (num_movable)
2041 *num_movable = 0;
2042
2043 for (page = start_page; page <= end_page;) {
2044 if (!pfn_valid_within(page_to_pfn(page))) {
2045 page++;
2046 continue;
2047 }
2048
2049 /* Make sure we are not inadvertently changing nodes */
2050 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2051
2052 if (!PageBuddy(page)) {
2053 /*
2054 * We assume that pages that could be isolated for
2055 * migration are movable. But we don't actually try
2056 * isolating, as that would be expensive.
2057 */
2058 if (num_movable &&
2059 (PageLRU(page) || __PageMovable(page)))
2060 (*num_movable)++;
2061
2062 page++;
2063 continue;
2064 }
2065
2066 order = page_order(page);
2067 list_move(&page->lru,
2068 &zone->free_area[order].free_list[migratetype]);
2069 page += 1 << order;
2070 pages_moved += 1 << order;
2071 }
2072
2073 return pages_moved;
2074 }
2075
2076 int move_freepages_block(struct zone *zone, struct page *page,
2077 int migratetype, int *num_movable)
2078 {
2079 unsigned long start_pfn, end_pfn;
2080 struct page *start_page, *end_page;
2081
2082 start_pfn = page_to_pfn(page);
2083 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2084 start_page = pfn_to_page(start_pfn);
2085 end_page = start_page + pageblock_nr_pages - 1;
2086 end_pfn = start_pfn + pageblock_nr_pages - 1;
2087
2088 /* Do not cross zone boundaries */
2089 if (!zone_spans_pfn(zone, start_pfn))
2090 start_page = page;
2091 if (!zone_spans_pfn(zone, end_pfn))
2092 return 0;
2093
2094 return move_freepages(zone, start_page, end_page, migratetype,
2095 num_movable);
2096 }
2097
2098 static void change_pageblock_range(struct page *pageblock_page,
2099 int start_order, int migratetype)
2100 {
2101 int nr_pageblocks = 1 << (start_order - pageblock_order);
2102
2103 while (nr_pageblocks--) {
2104 set_pageblock_migratetype(pageblock_page, migratetype);
2105 pageblock_page += pageblock_nr_pages;
2106 }
2107 }
2108
2109 /*
2110 * When we are falling back to another migratetype during allocation, try to
2111 * steal extra free pages from the same pageblocks to satisfy further
2112 * allocations, instead of polluting multiple pageblocks.
2113 *
2114 * If we are stealing a relatively large buddy page, it is likely there will
2115 * be more free pages in the pageblock, so try to steal them all. For
2116 * reclaimable and unmovable allocations, we steal regardless of page size,
2117 * as fragmentation caused by those allocations polluting movable pageblocks
2118 * is worse than movable allocations stealing from unmovable and reclaimable
2119 * pageblocks.
2120 */
2121 static bool can_steal_fallback(unsigned int order, int start_mt)
2122 {
2123 /*
2124 * Leaving this order check is intended, although there is
2125 * relaxed order check in next check. The reason is that
2126 * we can actually steal whole pageblock if this condition met,
2127 * but, below check doesn't guarantee it and that is just heuristic
2128 * so could be changed anytime.
2129 */
2130 if (order >= pageblock_order)
2131 return true;
2132
2133 if (order >= pageblock_order / 2 ||
2134 start_mt == MIGRATE_RECLAIMABLE ||
2135 start_mt == MIGRATE_UNMOVABLE ||
2136 page_group_by_mobility_disabled)
2137 return true;
2138
2139 return false;
2140 }
2141
2142 /*
2143 * This function implements actual steal behaviour. If order is large enough,
2144 * we can steal whole pageblock. If not, we first move freepages in this
2145 * pageblock to our migratetype and determine how many already-allocated pages
2146 * are there in the pageblock with a compatible migratetype. If at least half
2147 * of pages are free or compatible, we can change migratetype of the pageblock
2148 * itself, so pages freed in the future will be put on the correct free list.
2149 */
2150 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2151 int start_type, bool whole_block)
2152 {
2153 unsigned int current_order = page_order(page);
2154 struct free_area *area;
2155 int free_pages, movable_pages, alike_pages;
2156 int old_block_type;
2157
2158 old_block_type = get_pageblock_migratetype(page);
2159
2160 /*
2161 * This can happen due to races and we want to prevent broken
2162 * highatomic accounting.
2163 */
2164 if (is_migrate_highatomic(old_block_type))
2165 goto single_page;
2166
2167 /* Take ownership for orders >= pageblock_order */
2168 if (current_order >= pageblock_order) {
2169 change_pageblock_range(page, current_order, start_type);
2170 goto single_page;
2171 }
2172
2173 /* We are not allowed to try stealing from the whole block */
2174 if (!whole_block)
2175 goto single_page;
2176
2177 free_pages = move_freepages_block(zone, page, start_type,
2178 &movable_pages);
2179 /*
2180 * Determine how many pages are compatible with our allocation.
2181 * For movable allocation, it's the number of movable pages which
2182 * we just obtained. For other types it's a bit more tricky.
2183 */
2184 if (start_type == MIGRATE_MOVABLE) {
2185 alike_pages = movable_pages;
2186 } else {
2187 /*
2188 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2189 * to MOVABLE pageblock, consider all non-movable pages as
2190 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2191 * vice versa, be conservative since we can't distinguish the
2192 * exact migratetype of non-movable pages.
2193 */
2194 if (old_block_type == MIGRATE_MOVABLE)
2195 alike_pages = pageblock_nr_pages
2196 - (free_pages + movable_pages);
2197 else
2198 alike_pages = 0;
2199 }
2200
2201 /* moving whole block can fail due to zone boundary conditions */
2202 if (!free_pages)
2203 goto single_page;
2204
2205 /*
2206 * If a sufficient number of pages in the block are either free or of
2207 * comparable migratability as our allocation, claim the whole block.
2208 */
2209 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2210 page_group_by_mobility_disabled)
2211 set_pageblock_migratetype(page, start_type);
2212
2213 return;
2214
2215 single_page:
2216 area = &zone->free_area[current_order];
2217 list_move(&page->lru, &area->free_list[start_type]);
2218 }
2219
2220 /*
2221 * Check whether there is a suitable fallback freepage with requested order.
2222 * If only_stealable is true, this function returns fallback_mt only if
2223 * we can steal other freepages all together. This would help to reduce
2224 * fragmentation due to mixed migratetype pages in one pageblock.
2225 */
2226 int find_suitable_fallback(struct free_area *area, unsigned int order,
2227 int migratetype, bool only_stealable, bool *can_steal)
2228 {
2229 int i;
2230 int fallback_mt;
2231
2232 if (area->nr_free == 0)
2233 return -1;
2234
2235 *can_steal = false;
2236 for (i = 0;; i++) {
2237 fallback_mt = fallbacks[migratetype][i];
2238 if (fallback_mt == MIGRATE_TYPES)
2239 break;
2240
2241 if (list_empty(&area->free_list[fallback_mt]))
2242 continue;
2243
2244 if (can_steal_fallback(order, migratetype))
2245 *can_steal = true;
2246
2247 if (!only_stealable)
2248 return fallback_mt;
2249
2250 if (*can_steal)
2251 return fallback_mt;
2252 }
2253
2254 return -1;
2255 }
2256
2257 /*
2258 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2259 * there are no empty page blocks that contain a page with a suitable order
2260 */
2261 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2262 unsigned int alloc_order)
2263 {
2264 int mt;
2265 unsigned long max_managed, flags;
2266
2267 /*
2268 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2269 * Check is race-prone but harmless.
2270 */
2271 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2272 if (zone->nr_reserved_highatomic >= max_managed)
2273 return;
2274
2275 spin_lock_irqsave(&zone->lock, flags);
2276
2277 /* Recheck the nr_reserved_highatomic limit under the lock */
2278 if (zone->nr_reserved_highatomic >= max_managed)
2279 goto out_unlock;
2280
2281 /* Yoink! */
2282 mt = get_pageblock_migratetype(page);
2283 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2284 && !is_migrate_cma(mt)) {
2285 zone->nr_reserved_highatomic += pageblock_nr_pages;
2286 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2287 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2288 }
2289
2290 out_unlock:
2291 spin_unlock_irqrestore(&zone->lock, flags);
2292 }
2293
2294 /*
2295 * Used when an allocation is about to fail under memory pressure. This
2296 * potentially hurts the reliability of high-order allocations when under
2297 * intense memory pressure but failed atomic allocations should be easier
2298 * to recover from than an OOM.
2299 *
2300 * If @force is true, try to unreserve a pageblock even though highatomic
2301 * pageblock is exhausted.
2302 */
2303 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2304 bool force)
2305 {
2306 struct zonelist *zonelist = ac->zonelist;
2307 unsigned long flags;
2308 struct zoneref *z;
2309 struct zone *zone;
2310 struct page *page;
2311 int order;
2312 bool ret;
2313
2314 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2315 ac->nodemask) {
2316 /*
2317 * Preserve at least one pageblock unless memory pressure
2318 * is really high.
2319 */
2320 if (!force && zone->nr_reserved_highatomic <=
2321 pageblock_nr_pages)
2322 continue;
2323
2324 spin_lock_irqsave(&zone->lock, flags);
2325 for (order = 0; order < MAX_ORDER; order++) {
2326 struct free_area *area = &(zone->free_area[order]);
2327
2328 page = list_first_entry_or_null(
2329 &area->free_list[MIGRATE_HIGHATOMIC],
2330 struct page, lru);
2331 if (!page)
2332 continue;
2333
2334 /*
2335 * In page freeing path, migratetype change is racy so
2336 * we can counter several free pages in a pageblock
2337 * in this loop althoug we changed the pageblock type
2338 * from highatomic to ac->migratetype. So we should
2339 * adjust the count once.
2340 */
2341 if (is_migrate_highatomic_page(page)) {
2342 /*
2343 * It should never happen but changes to
2344 * locking could inadvertently allow a per-cpu
2345 * drain to add pages to MIGRATE_HIGHATOMIC
2346 * while unreserving so be safe and watch for
2347 * underflows.
2348 */
2349 zone->nr_reserved_highatomic -= min(
2350 pageblock_nr_pages,
2351 zone->nr_reserved_highatomic);
2352 }
2353
2354 /*
2355 * Convert to ac->migratetype and avoid the normal
2356 * pageblock stealing heuristics. Minimally, the caller
2357 * is doing the work and needs the pages. More
2358 * importantly, if the block was always converted to
2359 * MIGRATE_UNMOVABLE or another type then the number
2360 * of pageblocks that cannot be completely freed
2361 * may increase.
2362 */
2363 set_pageblock_migratetype(page, ac->migratetype);
2364 ret = move_freepages_block(zone, page, ac->migratetype,
2365 NULL);
2366 if (ret) {
2367 spin_unlock_irqrestore(&zone->lock, flags);
2368 return ret;
2369 }
2370 }
2371 spin_unlock_irqrestore(&zone->lock, flags);
2372 }
2373
2374 return false;
2375 }
2376
2377 /*
2378 * Try finding a free buddy page on the fallback list and put it on the free
2379 * list of requested migratetype, possibly along with other pages from the same
2380 * block, depending on fragmentation avoidance heuristics. Returns true if
2381 * fallback was found so that __rmqueue_smallest() can grab it.
2382 *
2383 * The use of signed ints for order and current_order is a deliberate
2384 * deviation from the rest of this file, to make the for loop
2385 * condition simpler.
2386 */
2387 static __always_inline bool
2388 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2389 {
2390 struct free_area *area;
2391 int current_order;
2392 struct page *page;
2393 int fallback_mt;
2394 bool can_steal;
2395
2396 /*
2397 * Find the largest available free page in the other list. This roughly
2398 * approximates finding the pageblock with the most free pages, which
2399 * would be too costly to do exactly.
2400 */
2401 for (current_order = MAX_ORDER - 1; current_order >= order;
2402 --current_order) {
2403 area = &(zone->free_area[current_order]);
2404 fallback_mt = find_suitable_fallback(area, current_order,
2405 start_migratetype, false, &can_steal);
2406 if (fallback_mt == -1)
2407 continue;
2408
2409 /*
2410 * We cannot steal all free pages from the pageblock and the
2411 * requested migratetype is movable. In that case it's better to
2412 * steal and split the smallest available page instead of the
2413 * largest available page, because even if the next movable
2414 * allocation falls back into a different pageblock than this
2415 * one, it won't cause permanent fragmentation.
2416 */
2417 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2418 && current_order > order)
2419 goto find_smallest;
2420
2421 goto do_steal;
2422 }
2423
2424 return false;
2425
2426 find_smallest:
2427 for (current_order = order; current_order < MAX_ORDER;
2428 current_order++) {
2429 area = &(zone->free_area[current_order]);
2430 fallback_mt = find_suitable_fallback(area, current_order,
2431 start_migratetype, false, &can_steal);
2432 if (fallback_mt != -1)
2433 break;
2434 }
2435
2436 /*
2437 * This should not happen - we already found a suitable fallback
2438 * when looking for the largest page.
2439 */
2440 VM_BUG_ON(current_order == MAX_ORDER);
2441
2442 do_steal:
2443 page = list_first_entry(&area->free_list[fallback_mt],
2444 struct page, lru);
2445
2446 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2447
2448 trace_mm_page_alloc_extfrag(page, order, current_order,
2449 start_migratetype, fallback_mt);
2450
2451 return true;
2452
2453 }
2454
2455 /*
2456 * Do the hard work of removing an element from the buddy allocator.
2457 * Call me with the zone->lock already held.
2458 */
2459 static __always_inline struct page *
2460 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2461 {
2462 struct page *page;
2463
2464 retry:
2465 page = __rmqueue_smallest(zone, order, migratetype);
2466 if (unlikely(!page)) {
2467 if (migratetype == MIGRATE_MOVABLE)
2468 page = __rmqueue_cma_fallback(zone, order);
2469
2470 if (!page && __rmqueue_fallback(zone, order, migratetype))
2471 goto retry;
2472 }
2473
2474 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2475 return page;
2476 }
2477
2478 /*
2479 * Obtain a specified number of elements from the buddy allocator, all under
2480 * a single hold of the lock, for efficiency. Add them to the supplied list.
2481 * Returns the number of new pages which were placed at *list.
2482 */
2483 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2484 unsigned long count, struct list_head *list,
2485 int migratetype)
2486 {
2487 int i, alloced = 0;
2488
2489 spin_lock(&zone->lock);
2490 for (i = 0; i < count; ++i) {
2491 struct page *page = __rmqueue(zone, order, migratetype);
2492 if (unlikely(page == NULL))
2493 break;
2494
2495 if (unlikely(check_pcp_refill(page)))
2496 continue;
2497
2498 /*
2499 * Split buddy pages returned by expand() are received here in
2500 * physical page order. The page is added to the tail of
2501 * caller's list. From the callers perspective, the linked list
2502 * is ordered by page number under some conditions. This is
2503 * useful for IO devices that can forward direction from the
2504 * head, thus also in the physical page order. This is useful
2505 * for IO devices that can merge IO requests if the physical
2506 * pages are ordered properly.
2507 */
2508 list_add_tail(&page->lru, list);
2509 alloced++;
2510 if (is_migrate_cma(get_pcppage_migratetype(page)))
2511 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2512 -(1 << order));
2513 }
2514
2515 /*
2516 * i pages were removed from the buddy list even if some leak due
2517 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2518 * on i. Do not confuse with 'alloced' which is the number of
2519 * pages added to the pcp list.
2520 */
2521 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2522 spin_unlock(&zone->lock);
2523 return alloced;
2524 }
2525
2526 #ifdef CONFIG_NUMA
2527 /*
2528 * Called from the vmstat counter updater to drain pagesets of this
2529 * currently executing processor on remote nodes after they have
2530 * expired.
2531 *
2532 * Note that this function must be called with the thread pinned to
2533 * a single processor.
2534 */
2535 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2536 {
2537 unsigned long flags;
2538 int to_drain, batch;
2539
2540 local_irq_save(flags);
2541 batch = READ_ONCE(pcp->batch);
2542 to_drain = min(pcp->count, batch);
2543 if (to_drain > 0)
2544 free_pcppages_bulk(zone, to_drain, pcp);
2545 local_irq_restore(flags);
2546 }
2547 #endif
2548
2549 /*
2550 * Drain pcplists of the indicated processor and zone.
2551 *
2552 * The processor must either be the current processor and the
2553 * thread pinned to the current processor or a processor that
2554 * is not online.
2555 */
2556 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2557 {
2558 unsigned long flags;
2559 struct per_cpu_pageset *pset;
2560 struct per_cpu_pages *pcp;
2561
2562 local_irq_save(flags);
2563 pset = per_cpu_ptr(zone->pageset, cpu);
2564
2565 pcp = &pset->pcp;
2566 if (pcp->count)
2567 free_pcppages_bulk(zone, pcp->count, pcp);
2568 local_irq_restore(flags);
2569 }
2570
2571 /*
2572 * Drain pcplists of all zones on the indicated processor.
2573 *
2574 * The processor must either be the current processor and the
2575 * thread pinned to the current processor or a processor that
2576 * is not online.
2577 */
2578 static void drain_pages(unsigned int cpu)
2579 {
2580 struct zone *zone;
2581
2582 for_each_populated_zone(zone) {
2583 drain_pages_zone(cpu, zone);
2584 }
2585 }
2586
2587 /*
2588 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2589 *
2590 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2591 * the single zone's pages.
2592 */
2593 void drain_local_pages(struct zone *zone)
2594 {
2595 int cpu = smp_processor_id();
2596
2597 if (zone)
2598 drain_pages_zone(cpu, zone);
2599 else
2600 drain_pages(cpu);
2601 }
2602
2603 static void drain_local_pages_wq(struct work_struct *work)
2604 {
2605 /*
2606 * drain_all_pages doesn't use proper cpu hotplug protection so
2607 * we can race with cpu offline when the WQ can move this from
2608 * a cpu pinned worker to an unbound one. We can operate on a different
2609 * cpu which is allright but we also have to make sure to not move to
2610 * a different one.
2611 */
2612 preempt_disable();
2613 drain_local_pages(NULL);
2614 preempt_enable();
2615 }
2616
2617 /*
2618 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2619 *
2620 * When zone parameter is non-NULL, spill just the single zone's pages.
2621 *
2622 * Note that this can be extremely slow as the draining happens in a workqueue.
2623 */
2624 void drain_all_pages(struct zone *zone)
2625 {
2626 int cpu;
2627
2628 /*
2629 * Allocate in the BSS so we wont require allocation in
2630 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2631 */
2632 static cpumask_t cpus_with_pcps;
2633
2634 /*
2635 * Make sure nobody triggers this path before mm_percpu_wq is fully
2636 * initialized.
2637 */
2638 if (WARN_ON_ONCE(!mm_percpu_wq))
2639 return;
2640
2641 /*
2642 * Do not drain if one is already in progress unless it's specific to
2643 * a zone. Such callers are primarily CMA and memory hotplug and need
2644 * the drain to be complete when the call returns.
2645 */
2646 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2647 if (!zone)
2648 return;
2649 mutex_lock(&pcpu_drain_mutex);
2650 }
2651
2652 /*
2653 * We don't care about racing with CPU hotplug event
2654 * as offline notification will cause the notified
2655 * cpu to drain that CPU pcps and on_each_cpu_mask
2656 * disables preemption as part of its processing
2657 */
2658 for_each_online_cpu(cpu) {
2659 struct per_cpu_pageset *pcp;
2660 struct zone *z;
2661 bool has_pcps = false;
2662
2663 if (zone) {
2664 pcp = per_cpu_ptr(zone->pageset, cpu);
2665 if (pcp->pcp.count)
2666 has_pcps = true;
2667 } else {
2668 for_each_populated_zone(z) {
2669 pcp = per_cpu_ptr(z->pageset, cpu);
2670 if (pcp->pcp.count) {
2671 has_pcps = true;
2672 break;
2673 }
2674 }
2675 }
2676
2677 if (has_pcps)
2678 cpumask_set_cpu(cpu, &cpus_with_pcps);
2679 else
2680 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2681 }
2682
2683 for_each_cpu(cpu, &cpus_with_pcps) {
2684 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2685 INIT_WORK(work, drain_local_pages_wq);
2686 queue_work_on(cpu, mm_percpu_wq, work);
2687 }
2688 for_each_cpu(cpu, &cpus_with_pcps)
2689 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2690
2691 mutex_unlock(&pcpu_drain_mutex);
2692 }
2693
2694 #ifdef CONFIG_HIBERNATION
2695
2696 /*
2697 * Touch the watchdog for every WD_PAGE_COUNT pages.
2698 */
2699 #define WD_PAGE_COUNT (128*1024)
2700
2701 void mark_free_pages(struct zone *zone)
2702 {
2703 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2704 unsigned long flags;
2705 unsigned int order, t;
2706 struct page *page;
2707
2708 if (zone_is_empty(zone))
2709 return;
2710
2711 spin_lock_irqsave(&zone->lock, flags);
2712
2713 max_zone_pfn = zone_end_pfn(zone);
2714 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2715 if (pfn_valid(pfn)) {
2716 page = pfn_to_page(pfn);
2717
2718 if (!--page_count) {
2719 touch_nmi_watchdog();
2720 page_count = WD_PAGE_COUNT;
2721 }
2722
2723 if (page_zone(page) != zone)
2724 continue;
2725
2726 if (!swsusp_page_is_forbidden(page))
2727 swsusp_unset_page_free(page);
2728 }
2729
2730 for_each_migratetype_order(order, t) {
2731 list_for_each_entry(page,
2732 &zone->free_area[order].free_list[t], lru) {
2733 unsigned long i;
2734
2735 pfn = page_to_pfn(page);
2736 for (i = 0; i < (1UL << order); i++) {
2737 if (!--page_count) {
2738 touch_nmi_watchdog();
2739 page_count = WD_PAGE_COUNT;
2740 }
2741 swsusp_set_page_free(pfn_to_page(pfn + i));
2742 }
2743 }
2744 }
2745 spin_unlock_irqrestore(&zone->lock, flags);
2746 }
2747 #endif /* CONFIG_PM */
2748
2749 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2750 {
2751 int migratetype;
2752
2753 if (!free_pcp_prepare(page))
2754 return false;
2755
2756 migratetype = get_pfnblock_migratetype(page, pfn);
2757 set_pcppage_migratetype(page, migratetype);
2758 return true;
2759 }
2760
2761 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2762 {
2763 struct zone *zone = page_zone(page);
2764 struct per_cpu_pages *pcp;
2765 int migratetype;
2766
2767 migratetype = get_pcppage_migratetype(page);
2768 __count_vm_event(PGFREE);
2769
2770 /*
2771 * We only track unmovable, reclaimable and movable on pcp lists.
2772 * Free ISOLATE pages back to the allocator because they are being
2773 * offlined but treat HIGHATOMIC as movable pages so we can get those
2774 * areas back if necessary. Otherwise, we may have to free
2775 * excessively into the page allocator
2776 */
2777 if (migratetype >= MIGRATE_PCPTYPES) {
2778 if (unlikely(is_migrate_isolate(migratetype))) {
2779 free_one_page(zone, page, pfn, 0, migratetype);
2780 return;
2781 }
2782 migratetype = MIGRATE_MOVABLE;
2783 }
2784
2785 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2786 list_add(&page->lru, &pcp->lists[migratetype]);
2787 pcp->count++;
2788 if (pcp->count >= pcp->high) {
2789 unsigned long batch = READ_ONCE(pcp->batch);
2790 free_pcppages_bulk(zone, batch, pcp);
2791 }
2792 }
2793
2794 /*
2795 * Free a 0-order page
2796 */
2797 void free_unref_page(struct page *page)
2798 {
2799 unsigned long flags;
2800 unsigned long pfn = page_to_pfn(page);
2801
2802 if (!free_unref_page_prepare(page, pfn))
2803 return;
2804
2805 local_irq_save(flags);
2806 free_unref_page_commit(page, pfn);
2807 local_irq_restore(flags);
2808 }
2809
2810 /*
2811 * Free a list of 0-order pages
2812 */
2813 void free_unref_page_list(struct list_head *list)
2814 {
2815 struct page *page, *next;
2816 unsigned long flags, pfn;
2817 int batch_count = 0;
2818
2819 /* Prepare pages for freeing */
2820 list_for_each_entry_safe(page, next, list, lru) {
2821 pfn = page_to_pfn(page);
2822 if (!free_unref_page_prepare(page, pfn))
2823 list_del(&page->lru);
2824 set_page_private(page, pfn);
2825 }
2826
2827 local_irq_save(flags);
2828 list_for_each_entry_safe(page, next, list, lru) {
2829 unsigned long pfn = page_private(page);
2830
2831 set_page_private(page, 0);
2832 trace_mm_page_free_batched(page);
2833 free_unref_page_commit(page, pfn);
2834
2835 /*
2836 * Guard against excessive IRQ disabled times when we get
2837 * a large list of pages to free.
2838 */
2839 if (++batch_count == SWAP_CLUSTER_MAX) {
2840 local_irq_restore(flags);
2841 batch_count = 0;
2842 local_irq_save(flags);
2843 }
2844 }
2845 local_irq_restore(flags);
2846 }
2847
2848 /*
2849 * split_page takes a non-compound higher-order page, and splits it into
2850 * n (1<<order) sub-pages: page[0..n]
2851 * Each sub-page must be freed individually.
2852 *
2853 * Note: this is probably too low level an operation for use in drivers.
2854 * Please consult with lkml before using this in your driver.
2855 */
2856 void split_page(struct page *page, unsigned int order)
2857 {
2858 int i;
2859
2860 VM_BUG_ON_PAGE(PageCompound(page), page);
2861 VM_BUG_ON_PAGE(!page_count(page), page);
2862
2863 for (i = 1; i < (1 << order); i++)
2864 set_page_refcounted(page + i);
2865 split_page_owner(page, order);
2866 }
2867 EXPORT_SYMBOL_GPL(split_page);
2868
2869 int __isolate_free_page(struct page *page, unsigned int order)
2870 {
2871 unsigned long watermark;
2872 struct zone *zone;
2873 int mt;
2874
2875 BUG_ON(!PageBuddy(page));
2876
2877 zone = page_zone(page);
2878 mt = get_pageblock_migratetype(page);
2879
2880 if (!is_migrate_isolate(mt)) {
2881 /*
2882 * Obey watermarks as if the page was being allocated. We can
2883 * emulate a high-order watermark check with a raised order-0
2884 * watermark, because we already know our high-order page
2885 * exists.
2886 */
2887 watermark = min_wmark_pages(zone) + (1UL << order);
2888 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2889 return 0;
2890
2891 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2892 }
2893
2894 /* Remove page from free list */
2895 list_del(&page->lru);
2896 zone->free_area[order].nr_free--;
2897 rmv_page_order(page);
2898
2899 /*
2900 * Set the pageblock if the isolated page is at least half of a
2901 * pageblock
2902 */
2903 if (order >= pageblock_order - 1) {
2904 struct page *endpage = page + (1 << order) - 1;
2905 for (; page < endpage; page += pageblock_nr_pages) {
2906 int mt = get_pageblock_migratetype(page);
2907 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2908 && !is_migrate_highatomic(mt))
2909 set_pageblock_migratetype(page,
2910 MIGRATE_MOVABLE);
2911 }
2912 }
2913
2914
2915 return 1UL << order;
2916 }
2917
2918 /*
2919 * Update NUMA hit/miss statistics
2920 *
2921 * Must be called with interrupts disabled.
2922 */
2923 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2924 {
2925 #ifdef CONFIG_NUMA
2926 enum numa_stat_item local_stat = NUMA_LOCAL;
2927
2928 /* skip numa counters update if numa stats is disabled */
2929 if (!static_branch_likely(&vm_numa_stat_key))
2930 return;
2931
2932 if (zone_to_nid(z) != numa_node_id())
2933 local_stat = NUMA_OTHER;
2934
2935 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2936 __inc_numa_state(z, NUMA_HIT);
2937 else {
2938 __inc_numa_state(z, NUMA_MISS);
2939 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2940 }
2941 __inc_numa_state(z, local_stat);
2942 #endif
2943 }
2944
2945 /* Remove page from the per-cpu list, caller must protect the list */
2946 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2947 struct per_cpu_pages *pcp,
2948 struct list_head *list)
2949 {
2950 struct page *page;
2951
2952 do {
2953 if (list_empty(list)) {
2954 pcp->count += rmqueue_bulk(zone, 0,
2955 pcp->batch, list,
2956 migratetype);
2957 if (unlikely(list_empty(list)))
2958 return NULL;
2959 }
2960
2961 page = list_first_entry(list, struct page, lru);
2962 list_del(&page->lru);
2963 pcp->count--;
2964 } while (check_new_pcp(page));
2965
2966 return page;
2967 }
2968
2969 /* Lock and remove page from the per-cpu list */
2970 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2971 struct zone *zone, unsigned int order,
2972 gfp_t gfp_flags, int migratetype)
2973 {
2974 struct per_cpu_pages *pcp;
2975 struct list_head *list;
2976 struct page *page;
2977 unsigned long flags;
2978
2979 local_irq_save(flags);
2980 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2981 list = &pcp->lists[migratetype];
2982 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2983 if (page) {
2984 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2985 zone_statistics(preferred_zone, zone);
2986 }
2987 local_irq_restore(flags);
2988 return page;
2989 }
2990
2991 /*
2992 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2993 */
2994 static inline
2995 struct page *rmqueue(struct zone *preferred_zone,
2996 struct zone *zone, unsigned int order,
2997 gfp_t gfp_flags, unsigned int alloc_flags,
2998 int migratetype)
2999 {
3000 unsigned long flags;
3001 struct page *page;
3002
3003 if (likely(order == 0)) {
3004 page = rmqueue_pcplist(preferred_zone, zone, order,
3005 gfp_flags, migratetype);
3006 goto out;
3007 }
3008
3009 /*
3010 * We most definitely don't want callers attempting to
3011 * allocate greater than order-1 page units with __GFP_NOFAIL.
3012 */
3013 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3014 spin_lock_irqsave(&zone->lock, flags);
3015
3016 do {
3017 page = NULL;
3018 if (alloc_flags & ALLOC_HARDER) {
3019 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3020 if (page)
3021 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3022 }
3023 if (!page)
3024 page = __rmqueue(zone, order, migratetype);
3025 } while (page && check_new_pages(page, order));
3026 spin_unlock(&zone->lock);
3027 if (!page)
3028 goto failed;
3029 __mod_zone_freepage_state(zone, -(1 << order),
3030 get_pcppage_migratetype(page));
3031
3032 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3033 zone_statistics(preferred_zone, zone);
3034 local_irq_restore(flags);
3035
3036 out:
3037 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3038 return page;
3039
3040 failed:
3041 local_irq_restore(flags);
3042 return NULL;
3043 }
3044
3045 #ifdef CONFIG_FAIL_PAGE_ALLOC
3046
3047 static struct {
3048 struct fault_attr attr;
3049
3050 bool ignore_gfp_highmem;
3051 bool ignore_gfp_reclaim;
3052 u32 min_order;
3053 } fail_page_alloc = {
3054 .attr = FAULT_ATTR_INITIALIZER,
3055 .ignore_gfp_reclaim = true,
3056 .ignore_gfp_highmem = true,
3057 .min_order = 1,
3058 };
3059
3060 static int __init setup_fail_page_alloc(char *str)
3061 {
3062 return setup_fault_attr(&fail_page_alloc.attr, str);
3063 }
3064 __setup("fail_page_alloc=", setup_fail_page_alloc);
3065
3066 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3067 {
3068 if (order < fail_page_alloc.min_order)
3069 return false;
3070 if (gfp_mask & __GFP_NOFAIL)
3071 return false;
3072 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3073 return false;
3074 if (fail_page_alloc.ignore_gfp_reclaim &&
3075 (gfp_mask & __GFP_DIRECT_RECLAIM))
3076 return false;
3077
3078 return should_fail(&fail_page_alloc.attr, 1 << order);
3079 }
3080
3081 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3082
3083 static int __init fail_page_alloc_debugfs(void)
3084 {
3085 umode_t mode = S_IFREG | 0600;
3086 struct dentry *dir;
3087
3088 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3089 &fail_page_alloc.attr);
3090 if (IS_ERR(dir))
3091 return PTR_ERR(dir);
3092
3093 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3094 &fail_page_alloc.ignore_gfp_reclaim))
3095 goto fail;
3096 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3097 &fail_page_alloc.ignore_gfp_highmem))
3098 goto fail;
3099 if (!debugfs_create_u32("min-order", mode, dir,
3100 &fail_page_alloc.min_order))
3101 goto fail;
3102
3103 return 0;
3104 fail:
3105 debugfs_remove_recursive(dir);
3106
3107 return -ENOMEM;
3108 }
3109
3110 late_initcall(fail_page_alloc_debugfs);
3111
3112 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3113
3114 #else /* CONFIG_FAIL_PAGE_ALLOC */
3115
3116 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3117 {
3118 return false;
3119 }
3120
3121 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3122
3123 /*
3124 * Return true if free base pages are above 'mark'. For high-order checks it
3125 * will return true of the order-0 watermark is reached and there is at least
3126 * one free page of a suitable size. Checking now avoids taking the zone lock
3127 * to check in the allocation paths if no pages are free.
3128 */
3129 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3130 int classzone_idx, unsigned int alloc_flags,
3131 long free_pages)
3132 {
3133 long min = mark;
3134 int o;
3135 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3136
3137 /* free_pages may go negative - that's OK */
3138 free_pages -= (1 << order) - 1;
3139
3140 if (alloc_flags & ALLOC_HIGH)
3141 min -= min / 2;
3142
3143 /*
3144 * If the caller does not have rights to ALLOC_HARDER then subtract
3145 * the high-atomic reserves. This will over-estimate the size of the
3146 * atomic reserve but it avoids a search.
3147 */
3148 if (likely(!alloc_harder)) {
3149 free_pages -= z->nr_reserved_highatomic;
3150 } else {
3151 /*
3152 * OOM victims can try even harder than normal ALLOC_HARDER
3153 * users on the grounds that it's definitely going to be in
3154 * the exit path shortly and free memory. Any allocation it
3155 * makes during the free path will be small and short-lived.
3156 */
3157 if (alloc_flags & ALLOC_OOM)
3158 min -= min / 2;
3159 else
3160 min -= min / 4;
3161 }
3162
3163
3164 #ifdef CONFIG_CMA
3165 /* If allocation can't use CMA areas don't use free CMA pages */
3166 if (!(alloc_flags & ALLOC_CMA))
3167 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3168 #endif
3169
3170 /*
3171 * Check watermarks for an order-0 allocation request. If these
3172 * are not met, then a high-order request also cannot go ahead
3173 * even if a suitable page happened to be free.
3174 */
3175 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3176 return false;
3177
3178 /* If this is an order-0 request then the watermark is fine */
3179 if (!order)
3180 return true;
3181
3182 /* For a high-order request, check at least one suitable page is free */
3183 for (o = order; o < MAX_ORDER; o++) {
3184 struct free_area *area = &z->free_area[o];
3185 int mt;
3186
3187 if (!area->nr_free)
3188 continue;
3189
3190 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3191 if (!list_empty(&area->free_list[mt]))
3192 return true;
3193 }
3194
3195 #ifdef CONFIG_CMA
3196 if ((alloc_flags & ALLOC_CMA) &&
3197 !list_empty(&area->free_list[MIGRATE_CMA])) {
3198 return true;
3199 }
3200 #endif
3201 if (alloc_harder &&
3202 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3203 return true;
3204 }
3205 return false;
3206 }
3207
3208 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3209 int classzone_idx, unsigned int alloc_flags)
3210 {
3211 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3212 zone_page_state(z, NR_FREE_PAGES));
3213 }
3214
3215 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3216 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3217 {
3218 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3219 long cma_pages = 0;
3220
3221 #ifdef CONFIG_CMA
3222 /* If allocation can't use CMA areas don't use free CMA pages */
3223 if (!(alloc_flags & ALLOC_CMA))
3224 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3225 #endif
3226
3227 /*
3228 * Fast check for order-0 only. If this fails then the reserves
3229 * need to be calculated. There is a corner case where the check
3230 * passes but only the high-order atomic reserve are free. If
3231 * the caller is !atomic then it'll uselessly search the free
3232 * list. That corner case is then slower but it is harmless.
3233 */
3234 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3235 return true;
3236
3237 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3238 free_pages);
3239 }
3240
3241 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3242 unsigned long mark, int classzone_idx)
3243 {
3244 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3245
3246 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3247 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3248
3249 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3250 free_pages);
3251 }
3252
3253 #ifdef CONFIG_NUMA
3254 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3255 {
3256 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3257 RECLAIM_DISTANCE;
3258 }
3259 #else /* CONFIG_NUMA */
3260 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3261 {
3262 return true;
3263 }
3264 #endif /* CONFIG_NUMA */
3265
3266 /*
3267 * get_page_from_freelist goes through the zonelist trying to allocate
3268 * a page.
3269 */
3270 static struct page *
3271 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3272 const struct alloc_context *ac)
3273 {
3274 struct zoneref *z = ac->preferred_zoneref;
3275 struct zone *zone;
3276 struct pglist_data *last_pgdat_dirty_limit = NULL;
3277
3278 /*
3279 * Scan zonelist, looking for a zone with enough free.
3280 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3281 */
3282 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3283 ac->nodemask) {
3284 struct page *page;
3285 unsigned long mark;
3286
3287 if (cpusets_enabled() &&
3288 (alloc_flags & ALLOC_CPUSET) &&
3289 !__cpuset_zone_allowed(zone, gfp_mask))
3290 continue;
3291 /*
3292 * When allocating a page cache page for writing, we
3293 * want to get it from a node that is within its dirty
3294 * limit, such that no single node holds more than its
3295 * proportional share of globally allowed dirty pages.
3296 * The dirty limits take into account the node's
3297 * lowmem reserves and high watermark so that kswapd
3298 * should be able to balance it without having to
3299 * write pages from its LRU list.
3300 *
3301 * XXX: For now, allow allocations to potentially
3302 * exceed the per-node dirty limit in the slowpath
3303 * (spread_dirty_pages unset) before going into reclaim,
3304 * which is important when on a NUMA setup the allowed
3305 * nodes are together not big enough to reach the
3306 * global limit. The proper fix for these situations
3307 * will require awareness of nodes in the
3308 * dirty-throttling and the flusher threads.
3309 */
3310 if (ac->spread_dirty_pages) {
3311 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3312 continue;
3313
3314 if (!node_dirty_ok(zone->zone_pgdat)) {
3315 last_pgdat_dirty_limit = zone->zone_pgdat;
3316 continue;
3317 }
3318 }
3319
3320 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3321 if (!zone_watermark_fast(zone, order, mark,
3322 ac_classzone_idx(ac), alloc_flags)) {
3323 int ret;
3324
3325 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3326 /*
3327 * Watermark failed for this zone, but see if we can
3328 * grow this zone if it contains deferred pages.
3329 */
3330 if (static_branch_unlikely(&deferred_pages)) {
3331 if (_deferred_grow_zone(zone, order))
3332 goto try_this_zone;
3333 }
3334 #endif
3335 /* Checked here to keep the fast path fast */
3336 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3337 if (alloc_flags & ALLOC_NO_WATERMARKS)
3338 goto try_this_zone;
3339
3340 if (node_reclaim_mode == 0 ||
3341 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3342 continue;
3343
3344 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3345 switch (ret) {
3346 case NODE_RECLAIM_NOSCAN:
3347 /* did not scan */
3348 continue;
3349 case NODE_RECLAIM_FULL:
3350 /* scanned but unreclaimable */
3351 continue;
3352 default:
3353 /* did we reclaim enough */
3354 if (zone_watermark_ok(zone, order, mark,
3355 ac_classzone_idx(ac), alloc_flags))
3356 goto try_this_zone;
3357
3358 continue;
3359 }
3360 }
3361
3362 try_this_zone:
3363 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3364 gfp_mask, alloc_flags, ac->migratetype);
3365 if (page) {
3366 prep_new_page(page, order, gfp_mask, alloc_flags);
3367
3368 /*
3369 * If this is a high-order atomic allocation then check
3370 * if the pageblock should be reserved for the future
3371 */
3372 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3373 reserve_highatomic_pageblock(page, zone, order);
3374
3375 return page;
3376 } else {
3377 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3378 /* Try again if zone has deferred pages */
3379 if (static_branch_unlikely(&deferred_pages)) {
3380 if (_deferred_grow_zone(zone, order))
3381 goto try_this_zone;
3382 }
3383 #endif
3384 }
3385 }
3386
3387 return NULL;
3388 }
3389
3390 /*
3391 * Large machines with many possible nodes should not always dump per-node
3392 * meminfo in irq context.
3393 */
3394 static inline bool should_suppress_show_mem(void)
3395 {
3396 bool ret = false;
3397
3398 #if NODES_SHIFT > 8
3399 ret = in_interrupt();
3400 #endif
3401 return ret;
3402 }
3403
3404 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3405 {
3406 unsigned int filter = SHOW_MEM_FILTER_NODES;
3407 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3408
3409 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3410 return;
3411
3412 /*
3413 * This documents exceptions given to allocations in certain
3414 * contexts that are allowed to allocate outside current's set
3415 * of allowed nodes.
3416 */
3417 if (!(gfp_mask & __GFP_NOMEMALLOC))
3418 if (tsk_is_oom_victim(current) ||
3419 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3420 filter &= ~SHOW_MEM_FILTER_NODES;
3421 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3422 filter &= ~SHOW_MEM_FILTER_NODES;
3423
3424 show_mem(filter, nodemask);
3425 }
3426
3427 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3428 {
3429 struct va_format vaf;
3430 va_list args;
3431 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3432 DEFAULT_RATELIMIT_BURST);
3433
3434 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3435 return;
3436
3437 va_start(args, fmt);
3438 vaf.fmt = fmt;
3439 vaf.va = &args;
3440 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3441 current->comm, &vaf, gfp_mask, &gfp_mask,
3442 nodemask_pr_args(nodemask));
3443 va_end(args);
3444
3445 cpuset_print_current_mems_allowed();
3446
3447 dump_stack();
3448 warn_alloc_show_mem(gfp_mask, nodemask);
3449 }
3450
3451 static inline struct page *
3452 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3453 unsigned int alloc_flags,
3454 const struct alloc_context *ac)
3455 {
3456 struct page *page;
3457
3458 page = get_page_from_freelist(gfp_mask, order,
3459 alloc_flags|ALLOC_CPUSET, ac);
3460 /*
3461 * fallback to ignore cpuset restriction if our nodes
3462 * are depleted
3463 */
3464 if (!page)
3465 page = get_page_from_freelist(gfp_mask, order,
3466 alloc_flags, ac);
3467
3468 return page;
3469 }
3470
3471 static inline struct page *
3472 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3473 const struct alloc_context *ac, unsigned long *did_some_progress)
3474 {
3475 struct oom_control oc = {
3476 .zonelist = ac->zonelist,
3477 .nodemask = ac->nodemask,
3478 .memcg = NULL,
3479 .gfp_mask = gfp_mask,
3480 .order = order,
3481 };
3482 struct page *page;
3483
3484 *did_some_progress = 0;
3485
3486 /*
3487 * Acquire the oom lock. If that fails, somebody else is
3488 * making progress for us.
3489 */
3490 if (!mutex_trylock(&oom_lock)) {
3491 *did_some_progress = 1;
3492 schedule_timeout_uninterruptible(1);
3493 return NULL;
3494 }
3495
3496 /*
3497 * Go through the zonelist yet one more time, keep very high watermark
3498 * here, this is only to catch a parallel oom killing, we must fail if
3499 * we're still under heavy pressure. But make sure that this reclaim
3500 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3501 * allocation which will never fail due to oom_lock already held.
3502 */
3503 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3504 ~__GFP_DIRECT_RECLAIM, order,
3505 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3506 if (page)
3507 goto out;
3508
3509 /* Coredumps can quickly deplete all memory reserves */
3510 if (current->flags & PF_DUMPCORE)
3511 goto out;
3512 /* The OOM killer will not help higher order allocs */
3513 if (order > PAGE_ALLOC_COSTLY_ORDER)
3514 goto out;
3515 /*
3516 * We have already exhausted all our reclaim opportunities without any
3517 * success so it is time to admit defeat. We will skip the OOM killer
3518 * because it is very likely that the caller has a more reasonable
3519 * fallback than shooting a random task.
3520 */
3521 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3522 goto out;
3523 /* The OOM killer does not needlessly kill tasks for lowmem */
3524 if (ac->high_zoneidx < ZONE_NORMAL)
3525 goto out;
3526 if (pm_suspended_storage())
3527 goto out;
3528 /*
3529 * XXX: GFP_NOFS allocations should rather fail than rely on
3530 * other request to make a forward progress.
3531 * We are in an unfortunate situation where out_of_memory cannot
3532 * do much for this context but let's try it to at least get
3533 * access to memory reserved if the current task is killed (see
3534 * out_of_memory). Once filesystems are ready to handle allocation
3535 * failures more gracefully we should just bail out here.
3536 */
3537
3538 /* The OOM killer may not free memory on a specific node */
3539 if (gfp_mask & __GFP_THISNODE)
3540 goto out;
3541
3542 /* Exhausted what can be done so it's blame time */
3543 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3544 *did_some_progress = 1;
3545
3546 /*
3547 * Help non-failing allocations by giving them access to memory
3548 * reserves
3549 */
3550 if (gfp_mask & __GFP_NOFAIL)
3551 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3552 ALLOC_NO_WATERMARKS, ac);
3553 }
3554 out:
3555 mutex_unlock(&oom_lock);
3556 return page;
3557 }
3558
3559 /*
3560 * Maximum number of compaction retries wit a progress before OOM
3561 * killer is consider as the only way to move forward.
3562 */
3563 #define MAX_COMPACT_RETRIES 16
3564
3565 #ifdef CONFIG_COMPACTION
3566 /* Try memory compaction for high-order allocations before reclaim */
3567 static struct page *
3568 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3569 unsigned int alloc_flags, const struct alloc_context *ac,
3570 enum compact_priority prio, enum compact_result *compact_result)
3571 {
3572 struct page *page;
3573 unsigned int noreclaim_flag;
3574
3575 if (!order)
3576 return NULL;
3577
3578 noreclaim_flag = memalloc_noreclaim_save();
3579 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3580 prio);
3581 memalloc_noreclaim_restore(noreclaim_flag);
3582
3583 if (*compact_result <= COMPACT_INACTIVE)
3584 return NULL;
3585
3586 /*
3587 * At least in one zone compaction wasn't deferred or skipped, so let's
3588 * count a compaction stall
3589 */
3590 count_vm_event(COMPACTSTALL);
3591
3592 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3593
3594 if (page) {
3595 struct zone *zone = page_zone(page);
3596
3597 zone->compact_blockskip_flush = false;
3598 compaction_defer_reset(zone, order, true);
3599 count_vm_event(COMPACTSUCCESS);
3600 return page;
3601 }
3602
3603 /*
3604 * It's bad if compaction run occurs and fails. The most likely reason
3605 * is that pages exist, but not enough to satisfy watermarks.
3606 */
3607 count_vm_event(COMPACTFAIL);
3608
3609 cond_resched();
3610
3611 return NULL;
3612 }
3613
3614 static inline bool
3615 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3616 enum compact_result compact_result,
3617 enum compact_priority *compact_priority,
3618 int *compaction_retries)
3619 {
3620 int max_retries = MAX_COMPACT_RETRIES;
3621 int min_priority;
3622 bool ret = false;
3623 int retries = *compaction_retries;
3624 enum compact_priority priority = *compact_priority;
3625
3626 if (!order)
3627 return false;
3628
3629 if (compaction_made_progress(compact_result))
3630 (*compaction_retries)++;
3631
3632 /*
3633 * compaction considers all the zone as desperately out of memory
3634 * so it doesn't really make much sense to retry except when the
3635 * failure could be caused by insufficient priority
3636 */
3637 if (compaction_failed(compact_result))
3638 goto check_priority;
3639
3640 /*
3641 * make sure the compaction wasn't deferred or didn't bail out early
3642 * due to locks contention before we declare that we should give up.
3643 * But do not retry if the given zonelist is not suitable for
3644 * compaction.
3645 */
3646 if (compaction_withdrawn(compact_result)) {
3647 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3648 goto out;
3649 }
3650
3651 /*
3652 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3653 * costly ones because they are de facto nofail and invoke OOM
3654 * killer to move on while costly can fail and users are ready
3655 * to cope with that. 1/4 retries is rather arbitrary but we
3656 * would need much more detailed feedback from compaction to
3657 * make a better decision.
3658 */
3659 if (order > PAGE_ALLOC_COSTLY_ORDER)
3660 max_retries /= 4;
3661 if (*compaction_retries <= max_retries) {
3662 ret = true;
3663 goto out;
3664 }
3665
3666 /*
3667 * Make sure there are attempts at the highest priority if we exhausted
3668 * all retries or failed at the lower priorities.
3669 */
3670 check_priority:
3671 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3672 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3673
3674 if (*compact_priority > min_priority) {
3675 (*compact_priority)--;
3676 *compaction_retries = 0;
3677 ret = true;
3678 }
3679 out:
3680 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3681 return ret;
3682 }
3683 #else
3684 static inline struct page *
3685 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3686 unsigned int alloc_flags, const struct alloc_context *ac,
3687 enum compact_priority prio, enum compact_result *compact_result)
3688 {
3689 *compact_result = COMPACT_SKIPPED;
3690 return NULL;
3691 }
3692
3693 static inline bool
3694 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3695 enum compact_result compact_result,
3696 enum compact_priority *compact_priority,
3697 int *compaction_retries)
3698 {
3699 struct zone *zone;
3700 struct zoneref *z;
3701
3702 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3703 return false;
3704
3705 /*
3706 * There are setups with compaction disabled which would prefer to loop
3707 * inside the allocator rather than hit the oom killer prematurely.
3708 * Let's give them a good hope and keep retrying while the order-0
3709 * watermarks are OK.
3710 */
3711 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3712 ac->nodemask) {
3713 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3714 ac_classzone_idx(ac), alloc_flags))
3715 return true;
3716 }
3717 return false;
3718 }
3719 #endif /* CONFIG_COMPACTION */
3720
3721 #ifdef CONFIG_LOCKDEP
3722 static struct lockdep_map __fs_reclaim_map =
3723 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3724
3725 static bool __need_fs_reclaim(gfp_t gfp_mask)
3726 {
3727 gfp_mask = current_gfp_context(gfp_mask);
3728
3729 /* no reclaim without waiting on it */
3730 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3731 return false;
3732
3733 /* this guy won't enter reclaim */
3734 if (current->flags & PF_MEMALLOC)
3735 return false;
3736
3737 /* We're only interested __GFP_FS allocations for now */
3738 if (!(gfp_mask & __GFP_FS))
3739 return false;
3740
3741 if (gfp_mask & __GFP_NOLOCKDEP)
3742 return false;
3743
3744 return true;
3745 }
3746
3747 void __fs_reclaim_acquire(void)
3748 {
3749 lock_map_acquire(&__fs_reclaim_map);
3750 }
3751
3752 void __fs_reclaim_release(void)
3753 {
3754 lock_map_release(&__fs_reclaim_map);
3755 }
3756
3757 void fs_reclaim_acquire(gfp_t gfp_mask)
3758 {
3759 if (__need_fs_reclaim(gfp_mask))
3760 __fs_reclaim_acquire();
3761 }
3762 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3763
3764 void fs_reclaim_release(gfp_t gfp_mask)
3765 {
3766 if (__need_fs_reclaim(gfp_mask))
3767 __fs_reclaim_release();
3768 }
3769 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3770 #endif
3771
3772 /* Perform direct synchronous page reclaim */
3773 static int
3774 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3775 const struct alloc_context *ac)
3776 {
3777 struct reclaim_state reclaim_state;
3778 int progress;
3779 unsigned int noreclaim_flag;
3780
3781 cond_resched();
3782
3783 /* We now go into synchronous reclaim */
3784 cpuset_memory_pressure_bump();
3785 fs_reclaim_acquire(gfp_mask);
3786 noreclaim_flag = memalloc_noreclaim_save();
3787 reclaim_state.reclaimed_slab = 0;
3788 current->reclaim_state = &reclaim_state;
3789
3790 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3791 ac->nodemask);
3792
3793 current->reclaim_state = NULL;
3794 memalloc_noreclaim_restore(noreclaim_flag);
3795 fs_reclaim_release(gfp_mask);
3796
3797 cond_resched();
3798
3799 return progress;
3800 }
3801
3802 /* The really slow allocator path where we enter direct reclaim */
3803 static inline struct page *
3804 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3805 unsigned int alloc_flags, const struct alloc_context *ac,
3806 unsigned long *did_some_progress)
3807 {
3808 struct page *page = NULL;
3809 bool drained = false;
3810
3811 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3812 if (unlikely(!(*did_some_progress)))
3813 return NULL;
3814
3815 retry:
3816 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3817
3818 /*
3819 * If an allocation failed after direct reclaim, it could be because
3820 * pages are pinned on the per-cpu lists or in high alloc reserves.
3821 * Shrink them them and try again
3822 */
3823 if (!page && !drained) {
3824 unreserve_highatomic_pageblock(ac, false);
3825 drain_all_pages(NULL);
3826 drained = true;
3827 goto retry;
3828 }
3829
3830 return page;
3831 }
3832
3833 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3834 const struct alloc_context *ac)
3835 {
3836 struct zoneref *z;
3837 struct zone *zone;
3838 pg_data_t *last_pgdat = NULL;
3839 enum zone_type high_zoneidx = ac->high_zoneidx;
3840
3841 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3842 ac->nodemask) {
3843 if (last_pgdat != zone->zone_pgdat)
3844 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3845 last_pgdat = zone->zone_pgdat;
3846 }
3847 }
3848
3849 static inline unsigned int
3850 gfp_to_alloc_flags(gfp_t gfp_mask)
3851 {
3852 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3853
3854 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3855 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3856
3857 /*
3858 * The caller may dip into page reserves a bit more if the caller
3859 * cannot run direct reclaim, or if the caller has realtime scheduling
3860 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3861 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3862 */
3863 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3864
3865 if (gfp_mask & __GFP_ATOMIC) {
3866 /*
3867 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3868 * if it can't schedule.
3869 */
3870 if (!(gfp_mask & __GFP_NOMEMALLOC))
3871 alloc_flags |= ALLOC_HARDER;
3872 /*
3873 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3874 * comment for __cpuset_node_allowed().
3875 */
3876 alloc_flags &= ~ALLOC_CPUSET;
3877 } else if (unlikely(rt_task(current)) && !in_interrupt())
3878 alloc_flags |= ALLOC_HARDER;
3879
3880 #ifdef CONFIG_CMA
3881 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3882 alloc_flags |= ALLOC_CMA;
3883 #endif
3884 return alloc_flags;
3885 }
3886
3887 static bool oom_reserves_allowed(struct task_struct *tsk)
3888 {
3889 if (!tsk_is_oom_victim(tsk))
3890 return false;
3891
3892 /*
3893 * !MMU doesn't have oom reaper so give access to memory reserves
3894 * only to the thread with TIF_MEMDIE set
3895 */
3896 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3897 return false;
3898
3899 return true;
3900 }
3901
3902 /*
3903 * Distinguish requests which really need access to full memory
3904 * reserves from oom victims which can live with a portion of it
3905 */
3906 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3907 {
3908 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3909 return 0;
3910 if (gfp_mask & __GFP_MEMALLOC)
3911 return ALLOC_NO_WATERMARKS;
3912 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3913 return ALLOC_NO_WATERMARKS;
3914 if (!in_interrupt()) {
3915 if (current->flags & PF_MEMALLOC)
3916 return ALLOC_NO_WATERMARKS;
3917 else if (oom_reserves_allowed(current))
3918 return ALLOC_OOM;
3919 }
3920
3921 return 0;
3922 }
3923
3924 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3925 {
3926 return !!__gfp_pfmemalloc_flags(gfp_mask);
3927 }
3928
3929 /*
3930 * Checks whether it makes sense to retry the reclaim to make a forward progress
3931 * for the given allocation request.
3932 *
3933 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3934 * without success, or when we couldn't even meet the watermark if we
3935 * reclaimed all remaining pages on the LRU lists.
3936 *
3937 * Returns true if a retry is viable or false to enter the oom path.
3938 */
3939 static inline bool
3940 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3941 struct alloc_context *ac, int alloc_flags,
3942 bool did_some_progress, int *no_progress_loops)
3943 {
3944 struct zone *zone;
3945 struct zoneref *z;
3946
3947 /*
3948 * Costly allocations might have made a progress but this doesn't mean
3949 * their order will become available due to high fragmentation so
3950 * always increment the no progress counter for them
3951 */
3952 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3953 *no_progress_loops = 0;
3954 else
3955 (*no_progress_loops)++;
3956
3957 /*
3958 * Make sure we converge to OOM if we cannot make any progress
3959 * several times in the row.
3960 */
3961 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3962 /* Before OOM, exhaust highatomic_reserve */
3963 return unreserve_highatomic_pageblock(ac, true);
3964 }
3965
3966 /*
3967 * Keep reclaiming pages while there is a chance this will lead
3968 * somewhere. If none of the target zones can satisfy our allocation
3969 * request even if all reclaimable pages are considered then we are
3970 * screwed and have to go OOM.
3971 */
3972 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3973 ac->nodemask) {
3974 unsigned long available;
3975 unsigned long reclaimable;
3976 unsigned long min_wmark = min_wmark_pages(zone);
3977 bool wmark;
3978
3979 available = reclaimable = zone_reclaimable_pages(zone);
3980 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3981
3982 /*
3983 * Would the allocation succeed if we reclaimed all
3984 * reclaimable pages?
3985 */
3986 wmark = __zone_watermark_ok(zone, order, min_wmark,
3987 ac_classzone_idx(ac), alloc_flags, available);
3988 trace_reclaim_retry_zone(z, order, reclaimable,
3989 available, min_wmark, *no_progress_loops, wmark);
3990 if (wmark) {
3991 /*
3992 * If we didn't make any progress and have a lot of
3993 * dirty + writeback pages then we should wait for
3994 * an IO to complete to slow down the reclaim and
3995 * prevent from pre mature OOM
3996 */
3997 if (!did_some_progress) {
3998 unsigned long write_pending;
3999
4000 write_pending = zone_page_state_snapshot(zone,
4001 NR_ZONE_WRITE_PENDING);
4002
4003 if (2 * write_pending > reclaimable) {
4004 congestion_wait(BLK_RW_ASYNC, HZ/10);
4005 return true;
4006 }
4007 }
4008
4009 /*
4010 * Memory allocation/reclaim might be called from a WQ
4011 * context and the current implementation of the WQ
4012 * concurrency control doesn't recognize that
4013 * a particular WQ is congested if the worker thread is
4014 * looping without ever sleeping. Therefore we have to
4015 * do a short sleep here rather than calling
4016 * cond_resched().
4017 */
4018 if (current->flags & PF_WQ_WORKER)
4019 schedule_timeout_uninterruptible(1);
4020 else
4021 cond_resched();
4022
4023 return true;
4024 }
4025 }
4026
4027 return false;
4028 }
4029
4030 static inline bool
4031 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4032 {
4033 /*
4034 * It's possible that cpuset's mems_allowed and the nodemask from
4035 * mempolicy don't intersect. This should be normally dealt with by
4036 * policy_nodemask(), but it's possible to race with cpuset update in
4037 * such a way the check therein was true, and then it became false
4038 * before we got our cpuset_mems_cookie here.
4039 * This assumes that for all allocations, ac->nodemask can come only
4040 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4041 * when it does not intersect with the cpuset restrictions) or the
4042 * caller can deal with a violated nodemask.
4043 */
4044 if (cpusets_enabled() && ac->nodemask &&
4045 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4046 ac->nodemask = NULL;
4047 return true;
4048 }
4049
4050 /*
4051 * When updating a task's mems_allowed or mempolicy nodemask, it is
4052 * possible to race with parallel threads in such a way that our
4053 * allocation can fail while the mask is being updated. If we are about
4054 * to fail, check if the cpuset changed during allocation and if so,
4055 * retry.
4056 */
4057 if (read_mems_allowed_retry(cpuset_mems_cookie))
4058 return true;
4059
4060 return false;
4061 }
4062
4063 static inline struct page *
4064 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4065 struct alloc_context *ac)
4066 {
4067 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4068 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4069 struct page *page = NULL;
4070 unsigned int alloc_flags;
4071 unsigned long did_some_progress;
4072 enum compact_priority compact_priority;
4073 enum compact_result compact_result;
4074 int compaction_retries;
4075 int no_progress_loops;
4076 unsigned int cpuset_mems_cookie;
4077 int reserve_flags;
4078
4079 /*
4080 * We also sanity check to catch abuse of atomic reserves being used by
4081 * callers that are not in atomic context.
4082 */
4083 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4084 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4085 gfp_mask &= ~__GFP_ATOMIC;
4086
4087 retry_cpuset:
4088 compaction_retries = 0;
4089 no_progress_loops = 0;
4090 compact_priority = DEF_COMPACT_PRIORITY;
4091 cpuset_mems_cookie = read_mems_allowed_begin();
4092
4093 /*
4094 * The fast path uses conservative alloc_flags to succeed only until
4095 * kswapd needs to be woken up, and to avoid the cost of setting up
4096 * alloc_flags precisely. So we do that now.
4097 */
4098 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4099
4100 /*
4101 * We need to recalculate the starting point for the zonelist iterator
4102 * because we might have used different nodemask in the fast path, or
4103 * there was a cpuset modification and we are retrying - otherwise we
4104 * could end up iterating over non-eligible zones endlessly.
4105 */
4106 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4107 ac->high_zoneidx, ac->nodemask);
4108 if (!ac->preferred_zoneref->zone)
4109 goto nopage;
4110
4111 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4112 wake_all_kswapds(order, gfp_mask, ac);
4113
4114 /*
4115 * The adjusted alloc_flags might result in immediate success, so try
4116 * that first
4117 */
4118 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4119 if (page)
4120 goto got_pg;
4121
4122 /*
4123 * For costly allocations, try direct compaction first, as it's likely
4124 * that we have enough base pages and don't need to reclaim. For non-
4125 * movable high-order allocations, do that as well, as compaction will
4126 * try prevent permanent fragmentation by migrating from blocks of the
4127 * same migratetype.
4128 * Don't try this for allocations that are allowed to ignore
4129 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4130 */
4131 if (can_direct_reclaim &&
4132 (costly_order ||
4133 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4134 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4135 page = __alloc_pages_direct_compact(gfp_mask, order,
4136 alloc_flags, ac,
4137 INIT_COMPACT_PRIORITY,
4138 &compact_result);
4139 if (page)
4140 goto got_pg;
4141
4142 /*
4143 * Checks for costly allocations with __GFP_NORETRY, which
4144 * includes THP page fault allocations
4145 */
4146 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4147 /*
4148 * If compaction is deferred for high-order allocations,
4149 * it is because sync compaction recently failed. If
4150 * this is the case and the caller requested a THP
4151 * allocation, we do not want to heavily disrupt the
4152 * system, so we fail the allocation instead of entering
4153 * direct reclaim.
4154 */
4155 if (compact_result == COMPACT_DEFERRED)
4156 goto nopage;
4157
4158 /*
4159 * Looks like reclaim/compaction is worth trying, but
4160 * sync compaction could be very expensive, so keep
4161 * using async compaction.
4162 */
4163 compact_priority = INIT_COMPACT_PRIORITY;
4164 }
4165 }
4166
4167 retry:
4168 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4169 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4170 wake_all_kswapds(order, gfp_mask, ac);
4171
4172 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4173 if (reserve_flags)
4174 alloc_flags = reserve_flags;
4175
4176 /*
4177 * Reset the nodemask and zonelist iterators if memory policies can be
4178 * ignored. These allocations are high priority and system rather than
4179 * user oriented.
4180 */
4181 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4182 ac->nodemask = NULL;
4183 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4184 ac->high_zoneidx, ac->nodemask);
4185 }
4186
4187 /* Attempt with potentially adjusted zonelist and alloc_flags */
4188 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4189 if (page)
4190 goto got_pg;
4191
4192 /* Caller is not willing to reclaim, we can't balance anything */
4193 if (!can_direct_reclaim)
4194 goto nopage;
4195
4196 /* Avoid recursion of direct reclaim */
4197 if (current->flags & PF_MEMALLOC)
4198 goto nopage;
4199
4200 /* Try direct reclaim and then allocating */
4201 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4202 &did_some_progress);
4203 if (page)
4204 goto got_pg;
4205
4206 /* Try direct compaction and then allocating */
4207 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4208 compact_priority, &compact_result);
4209 if (page)
4210 goto got_pg;
4211
4212 /* Do not loop if specifically requested */
4213 if (gfp_mask & __GFP_NORETRY)
4214 goto nopage;
4215
4216 /*
4217 * Do not retry costly high order allocations unless they are
4218 * __GFP_RETRY_MAYFAIL
4219 */
4220 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4221 goto nopage;
4222
4223 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4224 did_some_progress > 0, &no_progress_loops))
4225 goto retry;
4226
4227 /*
4228 * It doesn't make any sense to retry for the compaction if the order-0
4229 * reclaim is not able to make any progress because the current
4230 * implementation of the compaction depends on the sufficient amount
4231 * of free memory (see __compaction_suitable)
4232 */
4233 if (did_some_progress > 0 &&
4234 should_compact_retry(ac, order, alloc_flags,
4235 compact_result, &compact_priority,
4236 &compaction_retries))
4237 goto retry;
4238
4239
4240 /* Deal with possible cpuset update races before we start OOM killing */
4241 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4242 goto retry_cpuset;
4243
4244 /* Reclaim has failed us, start killing things */
4245 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4246 if (page)
4247 goto got_pg;
4248
4249 /* Avoid allocations with no watermarks from looping endlessly */
4250 if (tsk_is_oom_victim(current) &&
4251 (alloc_flags == ALLOC_OOM ||
4252 (gfp_mask & __GFP_NOMEMALLOC)))
4253 goto nopage;
4254
4255 /* Retry as long as the OOM killer is making progress */
4256 if (did_some_progress) {
4257 no_progress_loops = 0;
4258 goto retry;
4259 }
4260
4261 nopage:
4262 /* Deal with possible cpuset update races before we fail */
4263 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4264 goto retry_cpuset;
4265
4266 /*
4267 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4268 * we always retry
4269 */
4270 if (gfp_mask & __GFP_NOFAIL) {
4271 /*
4272 * All existing users of the __GFP_NOFAIL are blockable, so warn
4273 * of any new users that actually require GFP_NOWAIT
4274 */
4275 if (WARN_ON_ONCE(!can_direct_reclaim))
4276 goto fail;
4277
4278 /*
4279 * PF_MEMALLOC request from this context is rather bizarre
4280 * because we cannot reclaim anything and only can loop waiting
4281 * for somebody to do a work for us
4282 */
4283 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4284
4285 /*
4286 * non failing costly orders are a hard requirement which we
4287 * are not prepared for much so let's warn about these users
4288 * so that we can identify them and convert them to something
4289 * else.
4290 */
4291 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4292
4293 /*
4294 * Help non-failing allocations by giving them access to memory
4295 * reserves but do not use ALLOC_NO_WATERMARKS because this
4296 * could deplete whole memory reserves which would just make
4297 * the situation worse
4298 */
4299 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4300 if (page)
4301 goto got_pg;
4302
4303 cond_resched();
4304 goto retry;
4305 }
4306 fail:
4307 warn_alloc(gfp_mask, ac->nodemask,
4308 "page allocation failure: order:%u", order);
4309 got_pg:
4310 return page;
4311 }
4312
4313 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4314 int preferred_nid, nodemask_t *nodemask,
4315 struct alloc_context *ac, gfp_t *alloc_mask,
4316 unsigned int *alloc_flags)
4317 {
4318 ac->high_zoneidx = gfp_zone(gfp_mask);
4319 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4320 ac->nodemask = nodemask;
4321 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4322
4323 if (cpusets_enabled()) {
4324 *alloc_mask |= __GFP_HARDWALL;
4325 if (!ac->nodemask)
4326 ac->nodemask = &cpuset_current_mems_allowed;
4327 else
4328 *alloc_flags |= ALLOC_CPUSET;
4329 }
4330
4331 fs_reclaim_acquire(gfp_mask);
4332 fs_reclaim_release(gfp_mask);
4333
4334 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4335
4336 if (should_fail_alloc_page(gfp_mask, order))
4337 return false;
4338
4339 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4340 *alloc_flags |= ALLOC_CMA;
4341
4342 return true;
4343 }
4344
4345 /* Determine whether to spread dirty pages and what the first usable zone */
4346 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4347 {
4348 /* Dirty zone balancing only done in the fast path */
4349 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4350
4351 /*
4352 * The preferred zone is used for statistics but crucially it is
4353 * also used as the starting point for the zonelist iterator. It
4354 * may get reset for allocations that ignore memory policies.
4355 */
4356 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4357 ac->high_zoneidx, ac->nodemask);
4358 }
4359
4360 /*
4361 * This is the 'heart' of the zoned buddy allocator.
4362 */
4363 struct page *
4364 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4365 nodemask_t *nodemask)
4366 {
4367 struct page *page;
4368 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4369 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4370 struct alloc_context ac = { };
4371
4372 /*
4373 * There are several places where we assume that the order value is sane
4374 * so bail out early if the request is out of bound.
4375 */
4376 if (unlikely(order >= MAX_ORDER)) {
4377 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4378 return NULL;
4379 }
4380
4381 gfp_mask &= gfp_allowed_mask;
4382 alloc_mask = gfp_mask;
4383 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4384 return NULL;
4385
4386 finalise_ac(gfp_mask, &ac);
4387
4388 /* First allocation attempt */
4389 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4390 if (likely(page))
4391 goto out;
4392
4393 /*
4394 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4395 * resp. GFP_NOIO which has to be inherited for all allocation requests
4396 * from a particular context which has been marked by
4397 * memalloc_no{fs,io}_{save,restore}.
4398 */
4399 alloc_mask = current_gfp_context(gfp_mask);
4400 ac.spread_dirty_pages = false;
4401
4402 /*
4403 * Restore the original nodemask if it was potentially replaced with
4404 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4405 */
4406 if (unlikely(ac.nodemask != nodemask))
4407 ac.nodemask = nodemask;
4408
4409 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4410
4411 out:
4412 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4413 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4414 __free_pages(page, order);
4415 page = NULL;
4416 }
4417
4418 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4419
4420 return page;
4421 }
4422 EXPORT_SYMBOL(__alloc_pages_nodemask);
4423
4424 /*
4425 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4426 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4427 * you need to access high mem.
4428 */
4429 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4430 {
4431 struct page *page;
4432
4433 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4434 if (!page)
4435 return 0;
4436 return (unsigned long) page_address(page);
4437 }
4438 EXPORT_SYMBOL(__get_free_pages);
4439
4440 unsigned long get_zeroed_page(gfp_t gfp_mask)
4441 {
4442 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4443 }
4444 EXPORT_SYMBOL(get_zeroed_page);
4445
4446 void __free_pages(struct page *page, unsigned int order)
4447 {
4448 if (put_page_testzero(page)) {
4449 if (order == 0)
4450 free_unref_page(page);
4451 else
4452 __free_pages_ok(page, order);
4453 }
4454 }
4455
4456 EXPORT_SYMBOL(__free_pages);
4457
4458 void free_pages(unsigned long addr, unsigned int order)
4459 {
4460 if (addr != 0) {
4461 VM_BUG_ON(!virt_addr_valid((void *)addr));
4462 __free_pages(virt_to_page((void *)addr), order);
4463 }
4464 }
4465
4466 EXPORT_SYMBOL(free_pages);
4467
4468 /*
4469 * Page Fragment:
4470 * An arbitrary-length arbitrary-offset area of memory which resides
4471 * within a 0 or higher order page. Multiple fragments within that page
4472 * are individually refcounted, in the page's reference counter.
4473 *
4474 * The page_frag functions below provide a simple allocation framework for
4475 * page fragments. This is used by the network stack and network device
4476 * drivers to provide a backing region of memory for use as either an
4477 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4478 */
4479 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4480 gfp_t gfp_mask)
4481 {
4482 struct page *page = NULL;
4483 gfp_t gfp = gfp_mask;
4484
4485 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4486 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4487 __GFP_NOMEMALLOC;
4488 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4489 PAGE_FRAG_CACHE_MAX_ORDER);
4490 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4491 #endif
4492 if (unlikely(!page))
4493 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4494
4495 nc->va = page ? page_address(page) : NULL;
4496
4497 return page;
4498 }
4499
4500 void __page_frag_cache_drain(struct page *page, unsigned int count)
4501 {
4502 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4503
4504 if (page_ref_sub_and_test(page, count)) {
4505 unsigned int order = compound_order(page);
4506
4507 if (order == 0)
4508 free_unref_page(page);
4509 else
4510 __free_pages_ok(page, order);
4511 }
4512 }
4513 EXPORT_SYMBOL(__page_frag_cache_drain);
4514
4515 void *page_frag_alloc(struct page_frag_cache *nc,
4516 unsigned int fragsz, gfp_t gfp_mask)
4517 {
4518 unsigned int size = PAGE_SIZE;
4519 struct page *page;
4520 int offset;
4521
4522 if (unlikely(!nc->va)) {
4523 refill:
4524 page = __page_frag_cache_refill(nc, gfp_mask);
4525 if (!page)
4526 return NULL;
4527
4528 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4529 /* if size can vary use size else just use PAGE_SIZE */
4530 size = nc->size;
4531 #endif
4532 /* Even if we own the page, we do not use atomic_set().
4533 * This would break get_page_unless_zero() users.
4534 */
4535 page_ref_add(page, size);
4536
4537 /* reset page count bias and offset to start of new frag */
4538 nc->pfmemalloc = page_is_pfmemalloc(page);
4539 nc->pagecnt_bias = size + 1;
4540 nc->offset = size;
4541 }
4542
4543 offset = nc->offset - fragsz;
4544 if (unlikely(offset < 0)) {
4545 page = virt_to_page(nc->va);
4546
4547 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4548 goto refill;
4549
4550 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4551 /* if size can vary use size else just use PAGE_SIZE */
4552 size = nc->size;
4553 #endif
4554 /* OK, page count is 0, we can safely set it */
4555 set_page_count(page, size + 1);
4556
4557 /* reset page count bias and offset to start of new frag */
4558 nc->pagecnt_bias = size + 1;
4559 offset = size - fragsz;
4560 }
4561
4562 nc->pagecnt_bias--;
4563 nc->offset = offset;
4564
4565 return nc->va + offset;
4566 }
4567 EXPORT_SYMBOL(page_frag_alloc);
4568
4569 /*
4570 * Frees a page fragment allocated out of either a compound or order 0 page.
4571 */
4572 void page_frag_free(void *addr)
4573 {
4574 struct page *page = virt_to_head_page(addr);
4575
4576 if (unlikely(put_page_testzero(page)))
4577 __free_pages_ok(page, compound_order(page));
4578 }
4579 EXPORT_SYMBOL(page_frag_free);
4580
4581 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4582 size_t size)
4583 {
4584 if (addr) {
4585 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4586 unsigned long used = addr + PAGE_ALIGN(size);
4587
4588 split_page(virt_to_page((void *)addr), order);
4589 while (used < alloc_end) {
4590 free_page(used);
4591 used += PAGE_SIZE;
4592 }
4593 }
4594 return (void *)addr;
4595 }
4596
4597 /**
4598 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4599 * @size: the number of bytes to allocate
4600 * @gfp_mask: GFP flags for the allocation
4601 *
4602 * This function is similar to alloc_pages(), except that it allocates the
4603 * minimum number of pages to satisfy the request. alloc_pages() can only
4604 * allocate memory in power-of-two pages.
4605 *
4606 * This function is also limited by MAX_ORDER.
4607 *
4608 * Memory allocated by this function must be released by free_pages_exact().
4609 */
4610 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4611 {
4612 unsigned int order = get_order(size);
4613 unsigned long addr;
4614
4615 addr = __get_free_pages(gfp_mask, order);
4616 return make_alloc_exact(addr, order, size);
4617 }
4618 EXPORT_SYMBOL(alloc_pages_exact);
4619
4620 /**
4621 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4622 * pages on a node.
4623 * @nid: the preferred node ID where memory should be allocated
4624 * @size: the number of bytes to allocate
4625 * @gfp_mask: GFP flags for the allocation
4626 *
4627 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4628 * back.
4629 */
4630 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4631 {
4632 unsigned int order = get_order(size);
4633 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4634 if (!p)
4635 return NULL;
4636 return make_alloc_exact((unsigned long)page_address(p), order, size);
4637 }
4638
4639 /**
4640 * free_pages_exact - release memory allocated via alloc_pages_exact()
4641 * @virt: the value returned by alloc_pages_exact.
4642 * @size: size of allocation, same value as passed to alloc_pages_exact().
4643 *
4644 * Release the memory allocated by a previous call to alloc_pages_exact.
4645 */
4646 void free_pages_exact(void *virt, size_t size)
4647 {
4648 unsigned long addr = (unsigned long)virt;
4649 unsigned long end = addr + PAGE_ALIGN(size);
4650
4651 while (addr < end) {
4652 free_page(addr);
4653 addr += PAGE_SIZE;
4654 }
4655 }
4656 EXPORT_SYMBOL(free_pages_exact);
4657
4658 /**
4659 * nr_free_zone_pages - count number of pages beyond high watermark
4660 * @offset: The zone index of the highest zone
4661 *
4662 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4663 * high watermark within all zones at or below a given zone index. For each
4664 * zone, the number of pages is calculated as:
4665 *
4666 * nr_free_zone_pages = managed_pages - high_pages
4667 */
4668 static unsigned long nr_free_zone_pages(int offset)
4669 {
4670 struct zoneref *z;
4671 struct zone *zone;
4672
4673 /* Just pick one node, since fallback list is circular */
4674 unsigned long sum = 0;
4675
4676 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4677
4678 for_each_zone_zonelist(zone, z, zonelist, offset) {
4679 unsigned long size = zone->managed_pages;
4680 unsigned long high = high_wmark_pages(zone);
4681 if (size > high)
4682 sum += size - high;
4683 }
4684
4685 return sum;
4686 }
4687
4688 /**
4689 * nr_free_buffer_pages - count number of pages beyond high watermark
4690 *
4691 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4692 * watermark within ZONE_DMA and ZONE_NORMAL.
4693 */
4694 unsigned long nr_free_buffer_pages(void)
4695 {
4696 return nr_free_zone_pages(gfp_zone(GFP_USER));
4697 }
4698 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4699
4700 /**
4701 * nr_free_pagecache_pages - count number of pages beyond high watermark
4702 *
4703 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4704 * high watermark within all zones.
4705 */
4706 unsigned long nr_free_pagecache_pages(void)
4707 {
4708 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4709 }
4710
4711 static inline void show_node(struct zone *zone)
4712 {
4713 if (IS_ENABLED(CONFIG_NUMA))
4714 printk("Node %d ", zone_to_nid(zone));
4715 }
4716
4717 long si_mem_available(void)
4718 {
4719 long available;
4720 unsigned long pagecache;
4721 unsigned long wmark_low = 0;
4722 unsigned long pages[NR_LRU_LISTS];
4723 struct zone *zone;
4724 int lru;
4725
4726 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4727 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4728
4729 for_each_zone(zone)
4730 wmark_low += zone->watermark[WMARK_LOW];
4731
4732 /*
4733 * Estimate the amount of memory available for userspace allocations,
4734 * without causing swapping.
4735 */
4736 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4737
4738 /*
4739 * Not all the page cache can be freed, otherwise the system will
4740 * start swapping. Assume at least half of the page cache, or the
4741 * low watermark worth of cache, needs to stay.
4742 */
4743 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4744 pagecache -= min(pagecache / 2, wmark_low);
4745 available += pagecache;
4746
4747 /*
4748 * Part of the reclaimable slab consists of items that are in use,
4749 * and cannot be freed. Cap this estimate at the low watermark.
4750 */
4751 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4752 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4753 wmark_low);
4754
4755 /*
4756 * Part of the kernel memory, which can be released under memory
4757 * pressure.
4758 */
4759 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4760 PAGE_SHIFT;
4761
4762 if (available < 0)
4763 available = 0;
4764 return available;
4765 }
4766 EXPORT_SYMBOL_GPL(si_mem_available);
4767
4768 void si_meminfo(struct sysinfo *val)
4769 {
4770 val->totalram = totalram_pages;
4771 val->sharedram = global_node_page_state(NR_SHMEM);
4772 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4773 val->bufferram = nr_blockdev_pages();
4774 val->totalhigh = totalhigh_pages;
4775 val->freehigh = nr_free_highpages();
4776 val->mem_unit = PAGE_SIZE;
4777 }
4778
4779 EXPORT_SYMBOL(si_meminfo);
4780
4781 #ifdef CONFIG_NUMA
4782 void si_meminfo_node(struct sysinfo *val, int nid)
4783 {
4784 int zone_type; /* needs to be signed */
4785 unsigned long managed_pages = 0;
4786 unsigned long managed_highpages = 0;
4787 unsigned long free_highpages = 0;
4788 pg_data_t *pgdat = NODE_DATA(nid);
4789
4790 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4791 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4792 val->totalram = managed_pages;
4793 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4794 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4795 #ifdef CONFIG_HIGHMEM
4796 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4797 struct zone *zone = &pgdat->node_zones[zone_type];
4798
4799 if (is_highmem(zone)) {
4800 managed_highpages += zone->managed_pages;
4801 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4802 }
4803 }
4804 val->totalhigh = managed_highpages;
4805 val->freehigh = free_highpages;
4806 #else
4807 val->totalhigh = managed_highpages;
4808 val->freehigh = free_highpages;
4809 #endif
4810 val->mem_unit = PAGE_SIZE;
4811 }
4812 #endif
4813
4814 /*
4815 * Determine whether the node should be displayed or not, depending on whether
4816 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4817 */
4818 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4819 {
4820 if (!(flags & SHOW_MEM_FILTER_NODES))
4821 return false;
4822
4823 /*
4824 * no node mask - aka implicit memory numa policy. Do not bother with
4825 * the synchronization - read_mems_allowed_begin - because we do not
4826 * have to be precise here.
4827 */
4828 if (!nodemask)
4829 nodemask = &cpuset_current_mems_allowed;
4830
4831 return !node_isset(nid, *nodemask);
4832 }
4833
4834 #define K(x) ((x) << (PAGE_SHIFT-10))
4835
4836 static void show_migration_types(unsigned char type)
4837 {
4838 static const char types[MIGRATE_TYPES] = {
4839 [MIGRATE_UNMOVABLE] = 'U',
4840 [MIGRATE_MOVABLE] = 'M',
4841 [MIGRATE_RECLAIMABLE] = 'E',
4842 [MIGRATE_HIGHATOMIC] = 'H',
4843 #ifdef CONFIG_CMA
4844 [MIGRATE_CMA] = 'C',
4845 #endif
4846 #ifdef CONFIG_MEMORY_ISOLATION
4847 [MIGRATE_ISOLATE] = 'I',
4848 #endif
4849 };
4850 char tmp[MIGRATE_TYPES + 1];
4851 char *p = tmp;
4852 int i;
4853
4854 for (i = 0; i < MIGRATE_TYPES; i++) {
4855 if (type & (1 << i))
4856 *p++ = types[i];
4857 }
4858
4859 *p = '\0';
4860 printk(KERN_CONT "(%s) ", tmp);
4861 }
4862
4863 /*
4864 * Show free area list (used inside shift_scroll-lock stuff)
4865 * We also calculate the percentage fragmentation. We do this by counting the
4866 * memory on each free list with the exception of the first item on the list.
4867 *
4868 * Bits in @filter:
4869 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4870 * cpuset.
4871 */
4872 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4873 {
4874 unsigned long free_pcp = 0;
4875 int cpu;
4876 struct zone *zone;
4877 pg_data_t *pgdat;
4878
4879 for_each_populated_zone(zone) {
4880 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4881 continue;
4882
4883 for_each_online_cpu(cpu)
4884 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4885 }
4886
4887 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4888 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4889 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4890 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4891 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4892 " free:%lu free_pcp:%lu free_cma:%lu\n",
4893 global_node_page_state(NR_ACTIVE_ANON),
4894 global_node_page_state(NR_INACTIVE_ANON),
4895 global_node_page_state(NR_ISOLATED_ANON),
4896 global_node_page_state(NR_ACTIVE_FILE),
4897 global_node_page_state(NR_INACTIVE_FILE),
4898 global_node_page_state(NR_ISOLATED_FILE),
4899 global_node_page_state(NR_UNEVICTABLE),
4900 global_node_page_state(NR_FILE_DIRTY),
4901 global_node_page_state(NR_WRITEBACK),
4902 global_node_page_state(NR_UNSTABLE_NFS),
4903 global_node_page_state(NR_SLAB_RECLAIMABLE),
4904 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4905 global_node_page_state(NR_FILE_MAPPED),
4906 global_node_page_state(NR_SHMEM),
4907 global_zone_page_state(NR_PAGETABLE),
4908 global_zone_page_state(NR_BOUNCE),
4909 global_zone_page_state(NR_FREE_PAGES),
4910 free_pcp,
4911 global_zone_page_state(NR_FREE_CMA_PAGES));
4912
4913 for_each_online_pgdat(pgdat) {
4914 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4915 continue;
4916
4917 printk("Node %d"
4918 " active_anon:%lukB"
4919 " inactive_anon:%lukB"
4920 " active_file:%lukB"
4921 " inactive_file:%lukB"
4922 " unevictable:%lukB"
4923 " isolated(anon):%lukB"
4924 " isolated(file):%lukB"
4925 " mapped:%lukB"
4926 " dirty:%lukB"
4927 " writeback:%lukB"
4928 " shmem:%lukB"
4929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930 " shmem_thp: %lukB"
4931 " shmem_pmdmapped: %lukB"
4932 " anon_thp: %lukB"
4933 #endif
4934 " writeback_tmp:%lukB"
4935 " unstable:%lukB"
4936 " all_unreclaimable? %s"
4937 "\n",
4938 pgdat->node_id,
4939 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4940 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4941 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4942 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4943 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4944 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4945 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4946 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4947 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4948 K(node_page_state(pgdat, NR_WRITEBACK)),
4949 K(node_page_state(pgdat, NR_SHMEM)),
4950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4951 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4952 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4953 * HPAGE_PMD_NR),
4954 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4955 #endif
4956 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4957 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4958 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4959 "yes" : "no");
4960 }
4961
4962 for_each_populated_zone(zone) {
4963 int i;
4964
4965 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4966 continue;
4967
4968 free_pcp = 0;
4969 for_each_online_cpu(cpu)
4970 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4971
4972 show_node(zone);
4973 printk(KERN_CONT
4974 "%s"
4975 " free:%lukB"
4976 " min:%lukB"
4977 " low:%lukB"
4978 " high:%lukB"
4979 " active_anon:%lukB"
4980 " inactive_anon:%lukB"
4981 " active_file:%lukB"
4982 " inactive_file:%lukB"
4983 " unevictable:%lukB"
4984 " writepending:%lukB"
4985 " present:%lukB"
4986 " managed:%lukB"
4987 " mlocked:%lukB"
4988 " kernel_stack:%lukB"
4989 " pagetables:%lukB"
4990 " bounce:%lukB"
4991 " free_pcp:%lukB"
4992 " local_pcp:%ukB"
4993 " free_cma:%lukB"
4994 "\n",
4995 zone->name,
4996 K(zone_page_state(zone, NR_FREE_PAGES)),
4997 K(min_wmark_pages(zone)),
4998 K(low_wmark_pages(zone)),
4999 K(high_wmark_pages(zone)),
5000 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5001 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5002 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5003 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5004 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5005 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5006 K(zone->present_pages),
5007 K(zone->managed_pages),
5008 K(zone_page_state(zone, NR_MLOCK)),
5009 zone_page_state(zone, NR_KERNEL_STACK_KB),
5010 K(zone_page_state(zone, NR_PAGETABLE)),
5011 K(zone_page_state(zone, NR_BOUNCE)),
5012 K(free_pcp),
5013 K(this_cpu_read(zone->pageset->pcp.count)),
5014 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5015 printk("lowmem_reserve[]:");
5016 for (i = 0; i < MAX_NR_ZONES; i++)
5017 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5018 printk(KERN_CONT "\n");
5019 }
5020
5021 for_each_populated_zone(zone) {
5022 unsigned int order;
5023 unsigned long nr[MAX_ORDER], flags, total = 0;
5024 unsigned char types[MAX_ORDER];
5025
5026 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5027 continue;
5028 show_node(zone);
5029 printk(KERN_CONT "%s: ", zone->name);
5030
5031 spin_lock_irqsave(&zone->lock, flags);
5032 for (order = 0; order < MAX_ORDER; order++) {
5033 struct free_area *area = &zone->free_area[order];
5034 int type;
5035
5036 nr[order] = area->nr_free;
5037 total += nr[order] << order;
5038
5039 types[order] = 0;
5040 for (type = 0; type < MIGRATE_TYPES; type++) {
5041 if (!list_empty(&area->free_list[type]))
5042 types[order] |= 1 << type;
5043 }
5044 }
5045 spin_unlock_irqrestore(&zone->lock, flags);
5046 for (order = 0; order < MAX_ORDER; order++) {
5047 printk(KERN_CONT "%lu*%lukB ",
5048 nr[order], K(1UL) << order);
5049 if (nr[order])
5050 show_migration_types(types[order]);
5051 }
5052 printk(KERN_CONT "= %lukB\n", K(total));
5053 }
5054
5055 hugetlb_show_meminfo();
5056
5057 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5058
5059 show_swap_cache_info();
5060 }
5061
5062 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5063 {
5064 zoneref->zone = zone;
5065 zoneref->zone_idx = zone_idx(zone);
5066 }
5067
5068 /*
5069 * Builds allocation fallback zone lists.
5070 *
5071 * Add all populated zones of a node to the zonelist.
5072 */
5073 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5074 {
5075 struct zone *zone;
5076 enum zone_type zone_type = MAX_NR_ZONES;
5077 int nr_zones = 0;
5078
5079 do {
5080 zone_type--;
5081 zone = pgdat->node_zones + zone_type;
5082 if (managed_zone(zone)) {
5083 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5084 check_highest_zone(zone_type);
5085 }
5086 } while (zone_type);
5087
5088 return nr_zones;
5089 }
5090
5091 #ifdef CONFIG_NUMA
5092
5093 static int __parse_numa_zonelist_order(char *s)
5094 {
5095 /*
5096 * We used to support different zonlists modes but they turned
5097 * out to be just not useful. Let's keep the warning in place
5098 * if somebody still use the cmd line parameter so that we do
5099 * not fail it silently
5100 */
5101 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5102 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5103 return -EINVAL;
5104 }
5105 return 0;
5106 }
5107
5108 static __init int setup_numa_zonelist_order(char *s)
5109 {
5110 if (!s)
5111 return 0;
5112
5113 return __parse_numa_zonelist_order(s);
5114 }
5115 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5116
5117 char numa_zonelist_order[] = "Node";
5118
5119 /*
5120 * sysctl handler for numa_zonelist_order
5121 */
5122 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5123 void __user *buffer, size_t *length,
5124 loff_t *ppos)
5125 {
5126 char *str;
5127 int ret;
5128
5129 if (!write)
5130 return proc_dostring(table, write, buffer, length, ppos);
5131 str = memdup_user_nul(buffer, 16);
5132 if (IS_ERR(str))
5133 return PTR_ERR(str);
5134
5135 ret = __parse_numa_zonelist_order(str);
5136 kfree(str);
5137 return ret;
5138 }
5139
5140
5141 #define MAX_NODE_LOAD (nr_online_nodes)
5142 static int node_load[MAX_NUMNODES];
5143
5144 /**
5145 * find_next_best_node - find the next node that should appear in a given node's fallback list
5146 * @node: node whose fallback list we're appending
5147 * @used_node_mask: nodemask_t of already used nodes
5148 *
5149 * We use a number of factors to determine which is the next node that should
5150 * appear on a given node's fallback list. The node should not have appeared
5151 * already in @node's fallback list, and it should be the next closest node
5152 * according to the distance array (which contains arbitrary distance values
5153 * from each node to each node in the system), and should also prefer nodes
5154 * with no CPUs, since presumably they'll have very little allocation pressure
5155 * on them otherwise.
5156 * It returns -1 if no node is found.
5157 */
5158 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5159 {
5160 int n, val;
5161 int min_val = INT_MAX;
5162 int best_node = NUMA_NO_NODE;
5163 const struct cpumask *tmp = cpumask_of_node(0);
5164
5165 /* Use the local node if we haven't already */
5166 if (!node_isset(node, *used_node_mask)) {
5167 node_set(node, *used_node_mask);
5168 return node;
5169 }
5170
5171 for_each_node_state(n, N_MEMORY) {
5172
5173 /* Don't want a node to appear more than once */
5174 if (node_isset(n, *used_node_mask))
5175 continue;
5176
5177 /* Use the distance array to find the distance */
5178 val = node_distance(node, n);
5179
5180 /* Penalize nodes under us ("prefer the next node") */
5181 val += (n < node);
5182
5183 /* Give preference to headless and unused nodes */
5184 tmp = cpumask_of_node(n);
5185 if (!cpumask_empty(tmp))
5186 val += PENALTY_FOR_NODE_WITH_CPUS;
5187
5188 /* Slight preference for less loaded node */
5189 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5190 val += node_load[n];
5191
5192 if (val < min_val) {
5193 min_val = val;
5194 best_node = n;
5195 }
5196 }
5197
5198 if (best_node >= 0)
5199 node_set(best_node, *used_node_mask);
5200
5201 return best_node;
5202 }
5203
5204
5205 /*
5206 * Build zonelists ordered by node and zones within node.
5207 * This results in maximum locality--normal zone overflows into local
5208 * DMA zone, if any--but risks exhausting DMA zone.
5209 */
5210 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5211 unsigned nr_nodes)
5212 {
5213 struct zoneref *zonerefs;
5214 int i;
5215
5216 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5217
5218 for (i = 0; i < nr_nodes; i++) {
5219 int nr_zones;
5220
5221 pg_data_t *node = NODE_DATA(node_order[i]);
5222
5223 nr_zones = build_zonerefs_node(node, zonerefs);
5224 zonerefs += nr_zones;
5225 }
5226 zonerefs->zone = NULL;
5227 zonerefs->zone_idx = 0;
5228 }
5229
5230 /*
5231 * Build gfp_thisnode zonelists
5232 */
5233 static void build_thisnode_zonelists(pg_data_t *pgdat)
5234 {
5235 struct zoneref *zonerefs;
5236 int nr_zones;
5237
5238 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5239 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5240 zonerefs += nr_zones;
5241 zonerefs->zone = NULL;
5242 zonerefs->zone_idx = 0;
5243 }
5244
5245 /*
5246 * Build zonelists ordered by zone and nodes within zones.
5247 * This results in conserving DMA zone[s] until all Normal memory is
5248 * exhausted, but results in overflowing to remote node while memory
5249 * may still exist in local DMA zone.
5250 */
5251
5252 static void build_zonelists(pg_data_t *pgdat)
5253 {
5254 static int node_order[MAX_NUMNODES];
5255 int node, load, nr_nodes = 0;
5256 nodemask_t used_mask;
5257 int local_node, prev_node;
5258
5259 /* NUMA-aware ordering of nodes */
5260 local_node = pgdat->node_id;
5261 load = nr_online_nodes;
5262 prev_node = local_node;
5263 nodes_clear(used_mask);
5264
5265 memset(node_order, 0, sizeof(node_order));
5266 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5267 /*
5268 * We don't want to pressure a particular node.
5269 * So adding penalty to the first node in same
5270 * distance group to make it round-robin.
5271 */
5272 if (node_distance(local_node, node) !=
5273 node_distance(local_node, prev_node))
5274 node_load[node] = load;
5275
5276 node_order[nr_nodes++] = node;
5277 prev_node = node;
5278 load--;
5279 }
5280
5281 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5282 build_thisnode_zonelists(pgdat);
5283 }
5284
5285 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5286 /*
5287 * Return node id of node used for "local" allocations.
5288 * I.e., first node id of first zone in arg node's generic zonelist.
5289 * Used for initializing percpu 'numa_mem', which is used primarily
5290 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5291 */
5292 int local_memory_node(int node)
5293 {
5294 struct zoneref *z;
5295
5296 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5297 gfp_zone(GFP_KERNEL),
5298 NULL);
5299 return zone_to_nid(z->zone);
5300 }
5301 #endif
5302
5303 static void setup_min_unmapped_ratio(void);
5304 static void setup_min_slab_ratio(void);
5305 #else /* CONFIG_NUMA */
5306
5307 static void build_zonelists(pg_data_t *pgdat)
5308 {
5309 int node, local_node;
5310 struct zoneref *zonerefs;
5311 int nr_zones;
5312
5313 local_node = pgdat->node_id;
5314
5315 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5316 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5317 zonerefs += nr_zones;
5318
5319 /*
5320 * Now we build the zonelist so that it contains the zones
5321 * of all the other nodes.
5322 * We don't want to pressure a particular node, so when
5323 * building the zones for node N, we make sure that the
5324 * zones coming right after the local ones are those from
5325 * node N+1 (modulo N)
5326 */
5327 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5328 if (!node_online(node))
5329 continue;
5330 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5331 zonerefs += nr_zones;
5332 }
5333 for (node = 0; node < local_node; node++) {
5334 if (!node_online(node))
5335 continue;
5336 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5337 zonerefs += nr_zones;
5338 }
5339
5340 zonerefs->zone = NULL;
5341 zonerefs->zone_idx = 0;
5342 }
5343
5344 #endif /* CONFIG_NUMA */
5345
5346 /*
5347 * Boot pageset table. One per cpu which is going to be used for all
5348 * zones and all nodes. The parameters will be set in such a way
5349 * that an item put on a list will immediately be handed over to
5350 * the buddy list. This is safe since pageset manipulation is done
5351 * with interrupts disabled.
5352 *
5353 * The boot_pagesets must be kept even after bootup is complete for
5354 * unused processors and/or zones. They do play a role for bootstrapping
5355 * hotplugged processors.
5356 *
5357 * zoneinfo_show() and maybe other functions do
5358 * not check if the processor is online before following the pageset pointer.
5359 * Other parts of the kernel may not check if the zone is available.
5360 */
5361 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5362 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5363 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5364
5365 static void __build_all_zonelists(void *data)
5366 {
5367 int nid;
5368 int __maybe_unused cpu;
5369 pg_data_t *self = data;
5370 static DEFINE_SPINLOCK(lock);
5371
5372 spin_lock(&lock);
5373
5374 #ifdef CONFIG_NUMA
5375 memset(node_load, 0, sizeof(node_load));
5376 #endif
5377
5378 /*
5379 * This node is hotadded and no memory is yet present. So just
5380 * building zonelists is fine - no need to touch other nodes.
5381 */
5382 if (self && !node_online(self->node_id)) {
5383 build_zonelists(self);
5384 } else {
5385 for_each_online_node(nid) {
5386 pg_data_t *pgdat = NODE_DATA(nid);
5387
5388 build_zonelists(pgdat);
5389 }
5390
5391 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5392 /*
5393 * We now know the "local memory node" for each node--
5394 * i.e., the node of the first zone in the generic zonelist.
5395 * Set up numa_mem percpu variable for on-line cpus. During
5396 * boot, only the boot cpu should be on-line; we'll init the
5397 * secondary cpus' numa_mem as they come on-line. During
5398 * node/memory hotplug, we'll fixup all on-line cpus.
5399 */
5400 for_each_online_cpu(cpu)
5401 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5402 #endif
5403 }
5404
5405 spin_unlock(&lock);
5406 }
5407
5408 static noinline void __init
5409 build_all_zonelists_init(void)
5410 {
5411 int cpu;
5412
5413 __build_all_zonelists(NULL);
5414
5415 /*
5416 * Initialize the boot_pagesets that are going to be used
5417 * for bootstrapping processors. The real pagesets for
5418 * each zone will be allocated later when the per cpu
5419 * allocator is available.
5420 *
5421 * boot_pagesets are used also for bootstrapping offline
5422 * cpus if the system is already booted because the pagesets
5423 * are needed to initialize allocators on a specific cpu too.
5424 * F.e. the percpu allocator needs the page allocator which
5425 * needs the percpu allocator in order to allocate its pagesets
5426 * (a chicken-egg dilemma).
5427 */
5428 for_each_possible_cpu(cpu)
5429 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5430
5431 mminit_verify_zonelist();
5432 cpuset_init_current_mems_allowed();
5433 }
5434
5435 /*
5436 * unless system_state == SYSTEM_BOOTING.
5437 *
5438 * __ref due to call of __init annotated helper build_all_zonelists_init
5439 * [protected by SYSTEM_BOOTING].
5440 */
5441 void __ref build_all_zonelists(pg_data_t *pgdat)
5442 {
5443 if (system_state == SYSTEM_BOOTING) {
5444 build_all_zonelists_init();
5445 } else {
5446 __build_all_zonelists(pgdat);
5447 /* cpuset refresh routine should be here */
5448 }
5449 vm_total_pages = nr_free_pagecache_pages();
5450 /*
5451 * Disable grouping by mobility if the number of pages in the
5452 * system is too low to allow the mechanism to work. It would be
5453 * more accurate, but expensive to check per-zone. This check is
5454 * made on memory-hotadd so a system can start with mobility
5455 * disabled and enable it later
5456 */
5457 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5458 page_group_by_mobility_disabled = 1;
5459 else
5460 page_group_by_mobility_disabled = 0;
5461
5462 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5463 nr_online_nodes,
5464 page_group_by_mobility_disabled ? "off" : "on",
5465 vm_total_pages);
5466 #ifdef CONFIG_NUMA
5467 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5468 #endif
5469 }
5470
5471 /*
5472 * Initially all pages are reserved - free ones are freed
5473 * up by free_all_bootmem() once the early boot process is
5474 * done. Non-atomic initialization, single-pass.
5475 */
5476 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5477 unsigned long start_pfn, enum memmap_context context,
5478 struct vmem_altmap *altmap)
5479 {
5480 unsigned long end_pfn = start_pfn + size;
5481 pg_data_t *pgdat = NODE_DATA(nid);
5482 unsigned long pfn;
5483 unsigned long nr_initialised = 0;
5484 struct page *page;
5485 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5486 struct memblock_region *r = NULL, *tmp;
5487 #endif
5488
5489 if (highest_memmap_pfn < end_pfn - 1)
5490 highest_memmap_pfn = end_pfn - 1;
5491
5492 /*
5493 * Honor reservation requested by the driver for this ZONE_DEVICE
5494 * memory
5495 */
5496 if (altmap && start_pfn == altmap->base_pfn)
5497 start_pfn += altmap->reserve;
5498
5499 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5500 /*
5501 * There can be holes in boot-time mem_map[]s handed to this
5502 * function. They do not exist on hotplugged memory.
5503 */
5504 if (context != MEMMAP_EARLY)
5505 goto not_early;
5506
5507 if (!early_pfn_valid(pfn))
5508 continue;
5509 if (!early_pfn_in_nid(pfn, nid))
5510 continue;
5511 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5512 break;
5513
5514 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5515 /*
5516 * Check given memblock attribute by firmware which can affect
5517 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5518 * mirrored, it's an overlapped memmap init. skip it.
5519 */
5520 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5521 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5522 for_each_memblock(memory, tmp)
5523 if (pfn < memblock_region_memory_end_pfn(tmp))
5524 break;
5525 r = tmp;
5526 }
5527 if (pfn >= memblock_region_memory_base_pfn(r) &&
5528 memblock_is_mirror(r)) {
5529 /* already initialized as NORMAL */
5530 pfn = memblock_region_memory_end_pfn(r);
5531 continue;
5532 }
5533 }
5534 #endif
5535
5536 not_early:
5537 page = pfn_to_page(pfn);
5538 __init_single_page(page, pfn, zone, nid);
5539 if (context == MEMMAP_HOTPLUG)
5540 SetPageReserved(page);
5541
5542 /*
5543 * Mark the block movable so that blocks are reserved for
5544 * movable at startup. This will force kernel allocations
5545 * to reserve their blocks rather than leaking throughout
5546 * the address space during boot when many long-lived
5547 * kernel allocations are made.
5548 *
5549 * bitmap is created for zone's valid pfn range. but memmap
5550 * can be created for invalid pages (for alignment)
5551 * check here not to call set_pageblock_migratetype() against
5552 * pfn out of zone.
5553 *
5554 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5555 * because this is done early in sparse_add_one_section
5556 */
5557 if (!(pfn & (pageblock_nr_pages - 1))) {
5558 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5559 cond_resched();
5560 }
5561 }
5562 }
5563
5564 static void __meminit zone_init_free_lists(struct zone *zone)
5565 {
5566 unsigned int order, t;
5567 for_each_migratetype_order(order, t) {
5568 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5569 zone->free_area[order].nr_free = 0;
5570 }
5571 }
5572
5573 #ifndef __HAVE_ARCH_MEMMAP_INIT
5574 #define memmap_init(size, nid, zone, start_pfn) \
5575 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5576 #endif
5577
5578 static int zone_batchsize(struct zone *zone)
5579 {
5580 #ifdef CONFIG_MMU
5581 int batch;
5582
5583 /*
5584 * The per-cpu-pages pools are set to around 1000th of the
5585 * size of the zone.
5586 */
5587 batch = zone->managed_pages / 1024;
5588 /* But no more than a meg. */
5589 if (batch * PAGE_SIZE > 1024 * 1024)
5590 batch = (1024 * 1024) / PAGE_SIZE;
5591 batch /= 4; /* We effectively *= 4 below */
5592 if (batch < 1)
5593 batch = 1;
5594
5595 /*
5596 * Clamp the batch to a 2^n - 1 value. Having a power
5597 * of 2 value was found to be more likely to have
5598 * suboptimal cache aliasing properties in some cases.
5599 *
5600 * For example if 2 tasks are alternately allocating
5601 * batches of pages, one task can end up with a lot
5602 * of pages of one half of the possible page colors
5603 * and the other with pages of the other colors.
5604 */
5605 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5606
5607 return batch;
5608
5609 #else
5610 /* The deferral and batching of frees should be suppressed under NOMMU
5611 * conditions.
5612 *
5613 * The problem is that NOMMU needs to be able to allocate large chunks
5614 * of contiguous memory as there's no hardware page translation to
5615 * assemble apparent contiguous memory from discontiguous pages.
5616 *
5617 * Queueing large contiguous runs of pages for batching, however,
5618 * causes the pages to actually be freed in smaller chunks. As there
5619 * can be a significant delay between the individual batches being
5620 * recycled, this leads to the once large chunks of space being
5621 * fragmented and becoming unavailable for high-order allocations.
5622 */
5623 return 0;
5624 #endif
5625 }
5626
5627 /*
5628 * pcp->high and pcp->batch values are related and dependent on one another:
5629 * ->batch must never be higher then ->high.
5630 * The following function updates them in a safe manner without read side
5631 * locking.
5632 *
5633 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5634 * those fields changing asynchronously (acording the the above rule).
5635 *
5636 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5637 * outside of boot time (or some other assurance that no concurrent updaters
5638 * exist).
5639 */
5640 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5641 unsigned long batch)
5642 {
5643 /* start with a fail safe value for batch */
5644 pcp->batch = 1;
5645 smp_wmb();
5646
5647 /* Update high, then batch, in order */
5648 pcp->high = high;
5649 smp_wmb();
5650
5651 pcp->batch = batch;
5652 }
5653
5654 /* a companion to pageset_set_high() */
5655 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5656 {
5657 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5658 }
5659
5660 static void pageset_init(struct per_cpu_pageset *p)
5661 {
5662 struct per_cpu_pages *pcp;
5663 int migratetype;
5664
5665 memset(p, 0, sizeof(*p));
5666
5667 pcp = &p->pcp;
5668 pcp->count = 0;
5669 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5670 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5671 }
5672
5673 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5674 {
5675 pageset_init(p);
5676 pageset_set_batch(p, batch);
5677 }
5678
5679 /*
5680 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5681 * to the value high for the pageset p.
5682 */
5683 static void pageset_set_high(struct per_cpu_pageset *p,
5684 unsigned long high)
5685 {
5686 unsigned long batch = max(1UL, high / 4);
5687 if ((high / 4) > (PAGE_SHIFT * 8))
5688 batch = PAGE_SHIFT * 8;
5689
5690 pageset_update(&p->pcp, high, batch);
5691 }
5692
5693 static void pageset_set_high_and_batch(struct zone *zone,
5694 struct per_cpu_pageset *pcp)
5695 {
5696 if (percpu_pagelist_fraction)
5697 pageset_set_high(pcp,
5698 (zone->managed_pages /
5699 percpu_pagelist_fraction));
5700 else
5701 pageset_set_batch(pcp, zone_batchsize(zone));
5702 }
5703
5704 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5705 {
5706 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5707
5708 pageset_init(pcp);
5709 pageset_set_high_and_batch(zone, pcp);
5710 }
5711
5712 void __meminit setup_zone_pageset(struct zone *zone)
5713 {
5714 int cpu;
5715 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5716 for_each_possible_cpu(cpu)
5717 zone_pageset_init(zone, cpu);
5718 }
5719
5720 /*
5721 * Allocate per cpu pagesets and initialize them.
5722 * Before this call only boot pagesets were available.
5723 */
5724 void __init setup_per_cpu_pageset(void)
5725 {
5726 struct pglist_data *pgdat;
5727 struct zone *zone;
5728
5729 for_each_populated_zone(zone)
5730 setup_zone_pageset(zone);
5731
5732 for_each_online_pgdat(pgdat)
5733 pgdat->per_cpu_nodestats =
5734 alloc_percpu(struct per_cpu_nodestat);
5735 }
5736
5737 static __meminit void zone_pcp_init(struct zone *zone)
5738 {
5739 /*
5740 * per cpu subsystem is not up at this point. The following code
5741 * relies on the ability of the linker to provide the
5742 * offset of a (static) per cpu variable into the per cpu area.
5743 */
5744 zone->pageset = &boot_pageset;
5745
5746 if (populated_zone(zone))
5747 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5748 zone->name, zone->present_pages,
5749 zone_batchsize(zone));
5750 }
5751
5752 void __meminit init_currently_empty_zone(struct zone *zone,
5753 unsigned long zone_start_pfn,
5754 unsigned long size)
5755 {
5756 struct pglist_data *pgdat = zone->zone_pgdat;
5757 int zone_idx = zone_idx(zone) + 1;
5758
5759 if (zone_idx > pgdat->nr_zones)
5760 pgdat->nr_zones = zone_idx;
5761
5762 zone->zone_start_pfn = zone_start_pfn;
5763
5764 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5765 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5766 pgdat->node_id,
5767 (unsigned long)zone_idx(zone),
5768 zone_start_pfn, (zone_start_pfn + size));
5769
5770 zone_init_free_lists(zone);
5771 zone->initialized = 1;
5772 }
5773
5774 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5775 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5776
5777 /*
5778 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5779 */
5780 int __meminit __early_pfn_to_nid(unsigned long pfn,
5781 struct mminit_pfnnid_cache *state)
5782 {
5783 unsigned long start_pfn, end_pfn;
5784 int nid;
5785
5786 if (state->last_start <= pfn && pfn < state->last_end)
5787 return state->last_nid;
5788
5789 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5790 if (nid != -1) {
5791 state->last_start = start_pfn;
5792 state->last_end = end_pfn;
5793 state->last_nid = nid;
5794 }
5795
5796 return nid;
5797 }
5798 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5799
5800 /**
5801 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5802 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5803 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5804 *
5805 * If an architecture guarantees that all ranges registered contain no holes
5806 * and may be freed, this this function may be used instead of calling
5807 * memblock_free_early_nid() manually.
5808 */
5809 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5810 {
5811 unsigned long start_pfn, end_pfn;
5812 int i, this_nid;
5813
5814 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5815 start_pfn = min(start_pfn, max_low_pfn);
5816 end_pfn = min(end_pfn, max_low_pfn);
5817
5818 if (start_pfn < end_pfn)
5819 memblock_free_early_nid(PFN_PHYS(start_pfn),
5820 (end_pfn - start_pfn) << PAGE_SHIFT,
5821 this_nid);
5822 }
5823 }
5824
5825 /**
5826 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5827 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5828 *
5829 * If an architecture guarantees that all ranges registered contain no holes and may
5830 * be freed, this function may be used instead of calling memory_present() manually.
5831 */
5832 void __init sparse_memory_present_with_active_regions(int nid)
5833 {
5834 unsigned long start_pfn, end_pfn;
5835 int i, this_nid;
5836
5837 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5838 memory_present(this_nid, start_pfn, end_pfn);
5839 }
5840
5841 /**
5842 * get_pfn_range_for_nid - Return the start and end page frames for a node
5843 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5844 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5845 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5846 *
5847 * It returns the start and end page frame of a node based on information
5848 * provided by memblock_set_node(). If called for a node
5849 * with no available memory, a warning is printed and the start and end
5850 * PFNs will be 0.
5851 */
5852 void __meminit get_pfn_range_for_nid(unsigned int nid,
5853 unsigned long *start_pfn, unsigned long *end_pfn)
5854 {
5855 unsigned long this_start_pfn, this_end_pfn;
5856 int i;
5857
5858 *start_pfn = -1UL;
5859 *end_pfn = 0;
5860
5861 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5862 *start_pfn = min(*start_pfn, this_start_pfn);
5863 *end_pfn = max(*end_pfn, this_end_pfn);
5864 }
5865
5866 if (*start_pfn == -1UL)
5867 *start_pfn = 0;
5868 }
5869
5870 /*
5871 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5872 * assumption is made that zones within a node are ordered in monotonic
5873 * increasing memory addresses so that the "highest" populated zone is used
5874 */
5875 static void __init find_usable_zone_for_movable(void)
5876 {
5877 int zone_index;
5878 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5879 if (zone_index == ZONE_MOVABLE)
5880 continue;
5881
5882 if (arch_zone_highest_possible_pfn[zone_index] >
5883 arch_zone_lowest_possible_pfn[zone_index])
5884 break;
5885 }
5886
5887 VM_BUG_ON(zone_index == -1);
5888 movable_zone = zone_index;
5889 }
5890
5891 /*
5892 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5893 * because it is sized independent of architecture. Unlike the other zones,
5894 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5895 * in each node depending on the size of each node and how evenly kernelcore
5896 * is distributed. This helper function adjusts the zone ranges
5897 * provided by the architecture for a given node by using the end of the
5898 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5899 * zones within a node are in order of monotonic increases memory addresses
5900 */
5901 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5902 unsigned long zone_type,
5903 unsigned long node_start_pfn,
5904 unsigned long node_end_pfn,
5905 unsigned long *zone_start_pfn,
5906 unsigned long *zone_end_pfn)
5907 {
5908 /* Only adjust if ZONE_MOVABLE is on this node */
5909 if (zone_movable_pfn[nid]) {
5910 /* Size ZONE_MOVABLE */
5911 if (zone_type == ZONE_MOVABLE) {
5912 *zone_start_pfn = zone_movable_pfn[nid];
5913 *zone_end_pfn = min(node_end_pfn,
5914 arch_zone_highest_possible_pfn[movable_zone]);
5915
5916 /* Adjust for ZONE_MOVABLE starting within this range */
5917 } else if (!mirrored_kernelcore &&
5918 *zone_start_pfn < zone_movable_pfn[nid] &&
5919 *zone_end_pfn > zone_movable_pfn[nid]) {
5920 *zone_end_pfn = zone_movable_pfn[nid];
5921
5922 /* Check if this whole range is within ZONE_MOVABLE */
5923 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5924 *zone_start_pfn = *zone_end_pfn;
5925 }
5926 }
5927
5928 /*
5929 * Return the number of pages a zone spans in a node, including holes
5930 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5931 */
5932 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5933 unsigned long zone_type,
5934 unsigned long node_start_pfn,
5935 unsigned long node_end_pfn,
5936 unsigned long *zone_start_pfn,
5937 unsigned long *zone_end_pfn,
5938 unsigned long *ignored)
5939 {
5940 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5941 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5942 /* When hotadd a new node from cpu_up(), the node should be empty */
5943 if (!node_start_pfn && !node_end_pfn)
5944 return 0;
5945
5946 /* Get the start and end of the zone */
5947 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5948 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5949 adjust_zone_range_for_zone_movable(nid, zone_type,
5950 node_start_pfn, node_end_pfn,
5951 zone_start_pfn, zone_end_pfn);
5952
5953 /* Check that this node has pages within the zone's required range */
5954 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5955 return 0;
5956
5957 /* Move the zone boundaries inside the node if necessary */
5958 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5959 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5960
5961 /* Return the spanned pages */
5962 return *zone_end_pfn - *zone_start_pfn;
5963 }
5964
5965 /*
5966 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5967 * then all holes in the requested range will be accounted for.
5968 */
5969 unsigned long __meminit __absent_pages_in_range(int nid,
5970 unsigned long range_start_pfn,
5971 unsigned long range_end_pfn)
5972 {
5973 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5974 unsigned long start_pfn, end_pfn;
5975 int i;
5976
5977 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5978 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5979 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5980 nr_absent -= end_pfn - start_pfn;
5981 }
5982 return nr_absent;
5983 }
5984
5985 /**
5986 * absent_pages_in_range - Return number of page frames in holes within a range
5987 * @start_pfn: The start PFN to start searching for holes
5988 * @end_pfn: The end PFN to stop searching for holes
5989 *
5990 * It returns the number of pages frames in memory holes within a range.
5991 */
5992 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5993 unsigned long end_pfn)
5994 {
5995 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5996 }
5997
5998 /* Return the number of page frames in holes in a zone on a node */
5999 static unsigned long __meminit zone_absent_pages_in_node(int nid,
6000 unsigned long zone_type,
6001 unsigned long node_start_pfn,
6002 unsigned long node_end_pfn,
6003 unsigned long *ignored)
6004 {
6005 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6006 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6007 unsigned long zone_start_pfn, zone_end_pfn;
6008 unsigned long nr_absent;
6009
6010 /* When hotadd a new node from cpu_up(), the node should be empty */
6011 if (!node_start_pfn && !node_end_pfn)
6012 return 0;
6013
6014 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6015 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6016
6017 adjust_zone_range_for_zone_movable(nid, zone_type,
6018 node_start_pfn, node_end_pfn,
6019 &zone_start_pfn, &zone_end_pfn);
6020 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6021
6022 /*
6023 * ZONE_MOVABLE handling.
6024 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6025 * and vice versa.
6026 */
6027 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6028 unsigned long start_pfn, end_pfn;
6029 struct memblock_region *r;
6030
6031 for_each_memblock(memory, r) {
6032 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6033 zone_start_pfn, zone_end_pfn);
6034 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6035 zone_start_pfn, zone_end_pfn);
6036
6037 if (zone_type == ZONE_MOVABLE &&
6038 memblock_is_mirror(r))
6039 nr_absent += end_pfn - start_pfn;
6040
6041 if (zone_type == ZONE_NORMAL &&
6042 !memblock_is_mirror(r))
6043 nr_absent += end_pfn - start_pfn;
6044 }
6045 }
6046
6047 return nr_absent;
6048 }
6049
6050 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6051 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6052 unsigned long zone_type,
6053 unsigned long node_start_pfn,
6054 unsigned long node_end_pfn,
6055 unsigned long *zone_start_pfn,
6056 unsigned long *zone_end_pfn,
6057 unsigned long *zones_size)
6058 {
6059 unsigned int zone;
6060
6061 *zone_start_pfn = node_start_pfn;
6062 for (zone = 0; zone < zone_type; zone++)
6063 *zone_start_pfn += zones_size[zone];
6064
6065 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6066
6067 return zones_size[zone_type];
6068 }
6069
6070 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6071 unsigned long zone_type,
6072 unsigned long node_start_pfn,
6073 unsigned long node_end_pfn,
6074 unsigned long *zholes_size)
6075 {
6076 if (!zholes_size)
6077 return 0;
6078
6079 return zholes_size[zone_type];
6080 }
6081
6082 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6083
6084 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6085 unsigned long node_start_pfn,
6086 unsigned long node_end_pfn,
6087 unsigned long *zones_size,
6088 unsigned long *zholes_size)
6089 {
6090 unsigned long realtotalpages = 0, totalpages = 0;
6091 enum zone_type i;
6092
6093 for (i = 0; i < MAX_NR_ZONES; i++) {
6094 struct zone *zone = pgdat->node_zones + i;
6095 unsigned long zone_start_pfn, zone_end_pfn;
6096 unsigned long size, real_size;
6097
6098 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6099 node_start_pfn,
6100 node_end_pfn,
6101 &zone_start_pfn,
6102 &zone_end_pfn,
6103 zones_size);
6104 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6105 node_start_pfn, node_end_pfn,
6106 zholes_size);
6107 if (size)
6108 zone->zone_start_pfn = zone_start_pfn;
6109 else
6110 zone->zone_start_pfn = 0;
6111 zone->spanned_pages = size;
6112 zone->present_pages = real_size;
6113
6114 totalpages += size;
6115 realtotalpages += real_size;
6116 }
6117
6118 pgdat->node_spanned_pages = totalpages;
6119 pgdat->node_present_pages = realtotalpages;
6120 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6121 realtotalpages);
6122 }
6123
6124 #ifndef CONFIG_SPARSEMEM
6125 /*
6126 * Calculate the size of the zone->blockflags rounded to an unsigned long
6127 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6128 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6129 * round what is now in bits to nearest long in bits, then return it in
6130 * bytes.
6131 */
6132 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6133 {
6134 unsigned long usemapsize;
6135
6136 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6137 usemapsize = roundup(zonesize, pageblock_nr_pages);
6138 usemapsize = usemapsize >> pageblock_order;
6139 usemapsize *= NR_PAGEBLOCK_BITS;
6140 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6141
6142 return usemapsize / 8;
6143 }
6144
6145 static void __ref setup_usemap(struct pglist_data *pgdat,
6146 struct zone *zone,
6147 unsigned long zone_start_pfn,
6148 unsigned long zonesize)
6149 {
6150 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6151 zone->pageblock_flags = NULL;
6152 if (usemapsize)
6153 zone->pageblock_flags =
6154 memblock_virt_alloc_node_nopanic(usemapsize,
6155 pgdat->node_id);
6156 }
6157 #else
6158 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6159 unsigned long zone_start_pfn, unsigned long zonesize) {}
6160 #endif /* CONFIG_SPARSEMEM */
6161
6162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6163
6164 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6165 void __init set_pageblock_order(void)
6166 {
6167 unsigned int order;
6168
6169 /* Check that pageblock_nr_pages has not already been setup */
6170 if (pageblock_order)
6171 return;
6172
6173 if (HPAGE_SHIFT > PAGE_SHIFT)
6174 order = HUGETLB_PAGE_ORDER;
6175 else
6176 order = MAX_ORDER - 1;
6177
6178 /*
6179 * Assume the largest contiguous order of interest is a huge page.
6180 * This value may be variable depending on boot parameters on IA64 and
6181 * powerpc.
6182 */
6183 pageblock_order = order;
6184 }
6185 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6186
6187 /*
6188 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6189 * is unused as pageblock_order is set at compile-time. See
6190 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6191 * the kernel config
6192 */
6193 void __init set_pageblock_order(void)
6194 {
6195 }
6196
6197 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6198
6199 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6200 unsigned long present_pages)
6201 {
6202 unsigned long pages = spanned_pages;
6203
6204 /*
6205 * Provide a more accurate estimation if there are holes within
6206 * the zone and SPARSEMEM is in use. If there are holes within the
6207 * zone, each populated memory region may cost us one or two extra
6208 * memmap pages due to alignment because memmap pages for each
6209 * populated regions may not be naturally aligned on page boundary.
6210 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6211 */
6212 if (spanned_pages > present_pages + (present_pages >> 4) &&
6213 IS_ENABLED(CONFIG_SPARSEMEM))
6214 pages = present_pages;
6215
6216 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6217 }
6218
6219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6220 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6221 {
6222 spin_lock_init(&pgdat->split_queue_lock);
6223 INIT_LIST_HEAD(&pgdat->split_queue);
6224 pgdat->split_queue_len = 0;
6225 }
6226 #else
6227 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6228 #endif
6229
6230 #ifdef CONFIG_COMPACTION
6231 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6232 {
6233 init_waitqueue_head(&pgdat->kcompactd_wait);
6234 }
6235 #else
6236 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6237 #endif
6238
6239 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6240 {
6241 pgdat_resize_init(pgdat);
6242
6243 pgdat_init_split_queue(pgdat);
6244 pgdat_init_kcompactd(pgdat);
6245
6246 init_waitqueue_head(&pgdat->kswapd_wait);
6247 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6248
6249 pgdat_page_ext_init(pgdat);
6250 spin_lock_init(&pgdat->lru_lock);
6251 lruvec_init(node_lruvec(pgdat));
6252 }
6253
6254 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6255 unsigned long remaining_pages)
6256 {
6257 zone->managed_pages = remaining_pages;
6258 zone_set_nid(zone, nid);
6259 zone->name = zone_names[idx];
6260 zone->zone_pgdat = NODE_DATA(nid);
6261 spin_lock_init(&zone->lock);
6262 zone_seqlock_init(zone);
6263 zone_pcp_init(zone);
6264 }
6265
6266 /*
6267 * Set up the zone data structures
6268 * - init pgdat internals
6269 * - init all zones belonging to this node
6270 *
6271 * NOTE: this function is only called during memory hotplug
6272 */
6273 #ifdef CONFIG_MEMORY_HOTPLUG
6274 void __ref free_area_init_core_hotplug(int nid)
6275 {
6276 enum zone_type z;
6277 pg_data_t *pgdat = NODE_DATA(nid);
6278
6279 pgdat_init_internals(pgdat);
6280 for (z = 0; z < MAX_NR_ZONES; z++)
6281 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6282 }
6283 #endif
6284
6285 /*
6286 * Set up the zone data structures:
6287 * - mark all pages reserved
6288 * - mark all memory queues empty
6289 * - clear the memory bitmaps
6290 *
6291 * NOTE: pgdat should get zeroed by caller.
6292 * NOTE: this function is only called during early init.
6293 */
6294 static void __init free_area_init_core(struct pglist_data *pgdat)
6295 {
6296 enum zone_type j;
6297 int nid = pgdat->node_id;
6298
6299 pgdat_init_internals(pgdat);
6300 pgdat->per_cpu_nodestats = &boot_nodestats;
6301
6302 for (j = 0; j < MAX_NR_ZONES; j++) {
6303 struct zone *zone = pgdat->node_zones + j;
6304 unsigned long size, freesize, memmap_pages;
6305 unsigned long zone_start_pfn = zone->zone_start_pfn;
6306
6307 size = zone->spanned_pages;
6308 freesize = zone->present_pages;
6309
6310 /*
6311 * Adjust freesize so that it accounts for how much memory
6312 * is used by this zone for memmap. This affects the watermark
6313 * and per-cpu initialisations
6314 */
6315 memmap_pages = calc_memmap_size(size, freesize);
6316 if (!is_highmem_idx(j)) {
6317 if (freesize >= memmap_pages) {
6318 freesize -= memmap_pages;
6319 if (memmap_pages)
6320 printk(KERN_DEBUG
6321 " %s zone: %lu pages used for memmap\n",
6322 zone_names[j], memmap_pages);
6323 } else
6324 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6325 zone_names[j], memmap_pages, freesize);
6326 }
6327
6328 /* Account for reserved pages */
6329 if (j == 0 && freesize > dma_reserve) {
6330 freesize -= dma_reserve;
6331 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6332 zone_names[0], dma_reserve);
6333 }
6334
6335 if (!is_highmem_idx(j))
6336 nr_kernel_pages += freesize;
6337 /* Charge for highmem memmap if there are enough kernel pages */
6338 else if (nr_kernel_pages > memmap_pages * 2)
6339 nr_kernel_pages -= memmap_pages;
6340 nr_all_pages += freesize;
6341
6342 /*
6343 * Set an approximate value for lowmem here, it will be adjusted
6344 * when the bootmem allocator frees pages into the buddy system.
6345 * And all highmem pages will be managed by the buddy system.
6346 */
6347 zone_init_internals(zone, j, nid, freesize);
6348
6349 if (!size)
6350 continue;
6351
6352 set_pageblock_order();
6353 setup_usemap(pgdat, zone, zone_start_pfn, size);
6354 init_currently_empty_zone(zone, zone_start_pfn, size);
6355 memmap_init(size, nid, j, zone_start_pfn);
6356 }
6357 }
6358
6359 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6360 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6361 {
6362 unsigned long __maybe_unused start = 0;
6363 unsigned long __maybe_unused offset = 0;
6364
6365 /* Skip empty nodes */
6366 if (!pgdat->node_spanned_pages)
6367 return;
6368
6369 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6370 offset = pgdat->node_start_pfn - start;
6371 /* ia64 gets its own node_mem_map, before this, without bootmem */
6372 if (!pgdat->node_mem_map) {
6373 unsigned long size, end;
6374 struct page *map;
6375
6376 /*
6377 * The zone's endpoints aren't required to be MAX_ORDER
6378 * aligned but the node_mem_map endpoints must be in order
6379 * for the buddy allocator to function correctly.
6380 */
6381 end = pgdat_end_pfn(pgdat);
6382 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6383 size = (end - start) * sizeof(struct page);
6384 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6385 pgdat->node_mem_map = map + offset;
6386 }
6387 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6388 __func__, pgdat->node_id, (unsigned long)pgdat,
6389 (unsigned long)pgdat->node_mem_map);
6390 #ifndef CONFIG_NEED_MULTIPLE_NODES
6391 /*
6392 * With no DISCONTIG, the global mem_map is just set as node 0's
6393 */
6394 if (pgdat == NODE_DATA(0)) {
6395 mem_map = NODE_DATA(0)->node_mem_map;
6396 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6397 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6398 mem_map -= offset;
6399 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6400 }
6401 #endif
6402 }
6403 #else
6404 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6405 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6406
6407 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6408 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6409 {
6410 /*
6411 * We start only with one section of pages, more pages are added as
6412 * needed until the rest of deferred pages are initialized.
6413 */
6414 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6415 pgdat->node_spanned_pages);
6416 pgdat->first_deferred_pfn = ULONG_MAX;
6417 }
6418 #else
6419 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6420 #endif
6421
6422 void __init free_area_init_node(int nid, unsigned long *zones_size,
6423 unsigned long node_start_pfn,
6424 unsigned long *zholes_size)
6425 {
6426 pg_data_t *pgdat = NODE_DATA(nid);
6427 unsigned long start_pfn = 0;
6428 unsigned long end_pfn = 0;
6429
6430 /* pg_data_t should be reset to zero when it's allocated */
6431 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6432
6433 pgdat->node_id = nid;
6434 pgdat->node_start_pfn = node_start_pfn;
6435 pgdat->per_cpu_nodestats = NULL;
6436 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6437 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6438 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6439 (u64)start_pfn << PAGE_SHIFT,
6440 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6441 #else
6442 start_pfn = node_start_pfn;
6443 #endif
6444 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6445 zones_size, zholes_size);
6446
6447 alloc_node_mem_map(pgdat);
6448 pgdat_set_deferred_range(pgdat);
6449
6450 free_area_init_core(pgdat);
6451 }
6452
6453 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6454 /*
6455 * Only struct pages that are backed by physical memory are zeroed and
6456 * initialized by going through __init_single_page(). But, there are some
6457 * struct pages which are reserved in memblock allocator and their fields
6458 * may be accessed (for example page_to_pfn() on some configuration accesses
6459 * flags). We must explicitly zero those struct pages.
6460 */
6461 void __init zero_resv_unavail(void)
6462 {
6463 phys_addr_t start, end;
6464 unsigned long pfn;
6465 u64 i, pgcnt;
6466
6467 /*
6468 * Loop through ranges that are reserved, but do not have reported
6469 * physical memory backing.
6470 */
6471 pgcnt = 0;
6472 for_each_resv_unavail_range(i, &start, &end) {
6473 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6474 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6475 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6476 + pageblock_nr_pages - 1;
6477 continue;
6478 }
6479 mm_zero_struct_page(pfn_to_page(pfn));
6480 pgcnt++;
6481 }
6482 }
6483
6484 /*
6485 * Struct pages that do not have backing memory. This could be because
6486 * firmware is using some of this memory, or for some other reasons.
6487 * Once memblock is changed so such behaviour is not allowed: i.e.
6488 * list of "reserved" memory must be a subset of list of "memory", then
6489 * this code can be removed.
6490 */
6491 if (pgcnt)
6492 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6493 }
6494 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6495
6496 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6497
6498 #if MAX_NUMNODES > 1
6499 /*
6500 * Figure out the number of possible node ids.
6501 */
6502 void __init setup_nr_node_ids(void)
6503 {
6504 unsigned int highest;
6505
6506 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6507 nr_node_ids = highest + 1;
6508 }
6509 #endif
6510
6511 /**
6512 * node_map_pfn_alignment - determine the maximum internode alignment
6513 *
6514 * This function should be called after node map is populated and sorted.
6515 * It calculates the maximum power of two alignment which can distinguish
6516 * all the nodes.
6517 *
6518 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6519 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6520 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6521 * shifted, 1GiB is enough and this function will indicate so.
6522 *
6523 * This is used to test whether pfn -> nid mapping of the chosen memory
6524 * model has fine enough granularity to avoid incorrect mapping for the
6525 * populated node map.
6526 *
6527 * Returns the determined alignment in pfn's. 0 if there is no alignment
6528 * requirement (single node).
6529 */
6530 unsigned long __init node_map_pfn_alignment(void)
6531 {
6532 unsigned long accl_mask = 0, last_end = 0;
6533 unsigned long start, end, mask;
6534 int last_nid = -1;
6535 int i, nid;
6536
6537 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6538 if (!start || last_nid < 0 || last_nid == nid) {
6539 last_nid = nid;
6540 last_end = end;
6541 continue;
6542 }
6543
6544 /*
6545 * Start with a mask granular enough to pin-point to the
6546 * start pfn and tick off bits one-by-one until it becomes
6547 * too coarse to separate the current node from the last.
6548 */
6549 mask = ~((1 << __ffs(start)) - 1);
6550 while (mask && last_end <= (start & (mask << 1)))
6551 mask <<= 1;
6552
6553 /* accumulate all internode masks */
6554 accl_mask |= mask;
6555 }
6556
6557 /* convert mask to number of pages */
6558 return ~accl_mask + 1;
6559 }
6560
6561 /* Find the lowest pfn for a node */
6562 static unsigned long __init find_min_pfn_for_node(int nid)
6563 {
6564 unsigned long min_pfn = ULONG_MAX;
6565 unsigned long start_pfn;
6566 int i;
6567
6568 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6569 min_pfn = min(min_pfn, start_pfn);
6570
6571 if (min_pfn == ULONG_MAX) {
6572 pr_warn("Could not find start_pfn for node %d\n", nid);
6573 return 0;
6574 }
6575
6576 return min_pfn;
6577 }
6578
6579 /**
6580 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6581 *
6582 * It returns the minimum PFN based on information provided via
6583 * memblock_set_node().
6584 */
6585 unsigned long __init find_min_pfn_with_active_regions(void)
6586 {
6587 return find_min_pfn_for_node(MAX_NUMNODES);
6588 }
6589
6590 /*
6591 * early_calculate_totalpages()
6592 * Sum pages in active regions for movable zone.
6593 * Populate N_MEMORY for calculating usable_nodes.
6594 */
6595 static unsigned long __init early_calculate_totalpages(void)
6596 {
6597 unsigned long totalpages = 0;
6598 unsigned long start_pfn, end_pfn;
6599 int i, nid;
6600
6601 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6602 unsigned long pages = end_pfn - start_pfn;
6603
6604 totalpages += pages;
6605 if (pages)
6606 node_set_state(nid, N_MEMORY);
6607 }
6608 return totalpages;
6609 }
6610
6611 /*
6612 * Find the PFN the Movable zone begins in each node. Kernel memory
6613 * is spread evenly between nodes as long as the nodes have enough
6614 * memory. When they don't, some nodes will have more kernelcore than
6615 * others
6616 */
6617 static void __init find_zone_movable_pfns_for_nodes(void)
6618 {
6619 int i, nid;
6620 unsigned long usable_startpfn;
6621 unsigned long kernelcore_node, kernelcore_remaining;
6622 /* save the state before borrow the nodemask */
6623 nodemask_t saved_node_state = node_states[N_MEMORY];
6624 unsigned long totalpages = early_calculate_totalpages();
6625 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6626 struct memblock_region *r;
6627
6628 /* Need to find movable_zone earlier when movable_node is specified. */
6629 find_usable_zone_for_movable();
6630
6631 /*
6632 * If movable_node is specified, ignore kernelcore and movablecore
6633 * options.
6634 */
6635 if (movable_node_is_enabled()) {
6636 for_each_memblock(memory, r) {
6637 if (!memblock_is_hotpluggable(r))
6638 continue;
6639
6640 nid = r->nid;
6641
6642 usable_startpfn = PFN_DOWN(r->base);
6643 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6644 min(usable_startpfn, zone_movable_pfn[nid]) :
6645 usable_startpfn;
6646 }
6647
6648 goto out2;
6649 }
6650
6651 /*
6652 * If kernelcore=mirror is specified, ignore movablecore option
6653 */
6654 if (mirrored_kernelcore) {
6655 bool mem_below_4gb_not_mirrored = false;
6656
6657 for_each_memblock(memory, r) {
6658 if (memblock_is_mirror(r))
6659 continue;
6660
6661 nid = r->nid;
6662
6663 usable_startpfn = memblock_region_memory_base_pfn(r);
6664
6665 if (usable_startpfn < 0x100000) {
6666 mem_below_4gb_not_mirrored = true;
6667 continue;
6668 }
6669
6670 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6671 min(usable_startpfn, zone_movable_pfn[nid]) :
6672 usable_startpfn;
6673 }
6674
6675 if (mem_below_4gb_not_mirrored)
6676 pr_warn("This configuration results in unmirrored kernel memory.");
6677
6678 goto out2;
6679 }
6680
6681 /*
6682 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6683 * amount of necessary memory.
6684 */
6685 if (required_kernelcore_percent)
6686 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6687 10000UL;
6688 if (required_movablecore_percent)
6689 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6690 10000UL;
6691
6692 /*
6693 * If movablecore= was specified, calculate what size of
6694 * kernelcore that corresponds so that memory usable for
6695 * any allocation type is evenly spread. If both kernelcore
6696 * and movablecore are specified, then the value of kernelcore
6697 * will be used for required_kernelcore if it's greater than
6698 * what movablecore would have allowed.
6699 */
6700 if (required_movablecore) {
6701 unsigned long corepages;
6702
6703 /*
6704 * Round-up so that ZONE_MOVABLE is at least as large as what
6705 * was requested by the user
6706 */
6707 required_movablecore =
6708 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6709 required_movablecore = min(totalpages, required_movablecore);
6710 corepages = totalpages - required_movablecore;
6711
6712 required_kernelcore = max(required_kernelcore, corepages);
6713 }
6714
6715 /*
6716 * If kernelcore was not specified or kernelcore size is larger
6717 * than totalpages, there is no ZONE_MOVABLE.
6718 */
6719 if (!required_kernelcore || required_kernelcore >= totalpages)
6720 goto out;
6721
6722 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6723 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6724
6725 restart:
6726 /* Spread kernelcore memory as evenly as possible throughout nodes */
6727 kernelcore_node = required_kernelcore / usable_nodes;
6728 for_each_node_state(nid, N_MEMORY) {
6729 unsigned long start_pfn, end_pfn;
6730
6731 /*
6732 * Recalculate kernelcore_node if the division per node
6733 * now exceeds what is necessary to satisfy the requested
6734 * amount of memory for the kernel
6735 */
6736 if (required_kernelcore < kernelcore_node)
6737 kernelcore_node = required_kernelcore / usable_nodes;
6738
6739 /*
6740 * As the map is walked, we track how much memory is usable
6741 * by the kernel using kernelcore_remaining. When it is
6742 * 0, the rest of the node is usable by ZONE_MOVABLE
6743 */
6744 kernelcore_remaining = kernelcore_node;
6745
6746 /* Go through each range of PFNs within this node */
6747 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6748 unsigned long size_pages;
6749
6750 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6751 if (start_pfn >= end_pfn)
6752 continue;
6753
6754 /* Account for what is only usable for kernelcore */
6755 if (start_pfn < usable_startpfn) {
6756 unsigned long kernel_pages;
6757 kernel_pages = min(end_pfn, usable_startpfn)
6758 - start_pfn;
6759
6760 kernelcore_remaining -= min(kernel_pages,
6761 kernelcore_remaining);
6762 required_kernelcore -= min(kernel_pages,
6763 required_kernelcore);
6764
6765 /* Continue if range is now fully accounted */
6766 if (end_pfn <= usable_startpfn) {
6767
6768 /*
6769 * Push zone_movable_pfn to the end so
6770 * that if we have to rebalance
6771 * kernelcore across nodes, we will
6772 * not double account here
6773 */
6774 zone_movable_pfn[nid] = end_pfn;
6775 continue;
6776 }
6777 start_pfn = usable_startpfn;
6778 }
6779
6780 /*
6781 * The usable PFN range for ZONE_MOVABLE is from
6782 * start_pfn->end_pfn. Calculate size_pages as the
6783 * number of pages used as kernelcore
6784 */
6785 size_pages = end_pfn - start_pfn;
6786 if (size_pages > kernelcore_remaining)
6787 size_pages = kernelcore_remaining;
6788 zone_movable_pfn[nid] = start_pfn + size_pages;
6789
6790 /*
6791 * Some kernelcore has been met, update counts and
6792 * break if the kernelcore for this node has been
6793 * satisfied
6794 */
6795 required_kernelcore -= min(required_kernelcore,
6796 size_pages);
6797 kernelcore_remaining -= size_pages;
6798 if (!kernelcore_remaining)
6799 break;
6800 }
6801 }
6802
6803 /*
6804 * If there is still required_kernelcore, we do another pass with one
6805 * less node in the count. This will push zone_movable_pfn[nid] further
6806 * along on the nodes that still have memory until kernelcore is
6807 * satisfied
6808 */
6809 usable_nodes--;
6810 if (usable_nodes && required_kernelcore > usable_nodes)
6811 goto restart;
6812
6813 out2:
6814 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6815 for (nid = 0; nid < MAX_NUMNODES; nid++)
6816 zone_movable_pfn[nid] =
6817 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6818
6819 out:
6820 /* restore the node_state */
6821 node_states[N_MEMORY] = saved_node_state;
6822 }
6823
6824 /* Any regular or high memory on that node ? */
6825 static void check_for_memory(pg_data_t *pgdat, int nid)
6826 {
6827 enum zone_type zone_type;
6828
6829 if (N_MEMORY == N_NORMAL_MEMORY)
6830 return;
6831
6832 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6833 struct zone *zone = &pgdat->node_zones[zone_type];
6834 if (populated_zone(zone)) {
6835 node_set_state(nid, N_HIGH_MEMORY);
6836 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6837 zone_type <= ZONE_NORMAL)
6838 node_set_state(nid, N_NORMAL_MEMORY);
6839 break;
6840 }
6841 }
6842 }
6843
6844 /**
6845 * free_area_init_nodes - Initialise all pg_data_t and zone data
6846 * @max_zone_pfn: an array of max PFNs for each zone
6847 *
6848 * This will call free_area_init_node() for each active node in the system.
6849 * Using the page ranges provided by memblock_set_node(), the size of each
6850 * zone in each node and their holes is calculated. If the maximum PFN
6851 * between two adjacent zones match, it is assumed that the zone is empty.
6852 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6853 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6854 * starts where the previous one ended. For example, ZONE_DMA32 starts
6855 * at arch_max_dma_pfn.
6856 */
6857 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6858 {
6859 unsigned long start_pfn, end_pfn;
6860 int i, nid;
6861
6862 /* Record where the zone boundaries are */
6863 memset(arch_zone_lowest_possible_pfn, 0,
6864 sizeof(arch_zone_lowest_possible_pfn));
6865 memset(arch_zone_highest_possible_pfn, 0,
6866 sizeof(arch_zone_highest_possible_pfn));
6867
6868 start_pfn = find_min_pfn_with_active_regions();
6869
6870 for (i = 0; i < MAX_NR_ZONES; i++) {
6871 if (i == ZONE_MOVABLE)
6872 continue;
6873
6874 end_pfn = max(max_zone_pfn[i], start_pfn);
6875 arch_zone_lowest_possible_pfn[i] = start_pfn;
6876 arch_zone_highest_possible_pfn[i] = end_pfn;
6877
6878 start_pfn = end_pfn;
6879 }
6880
6881 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6882 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6883 find_zone_movable_pfns_for_nodes();
6884
6885 /* Print out the zone ranges */
6886 pr_info("Zone ranges:\n");
6887 for (i = 0; i < MAX_NR_ZONES; i++) {
6888 if (i == ZONE_MOVABLE)
6889 continue;
6890 pr_info(" %-8s ", zone_names[i]);
6891 if (arch_zone_lowest_possible_pfn[i] ==
6892 arch_zone_highest_possible_pfn[i])
6893 pr_cont("empty\n");
6894 else
6895 pr_cont("[mem %#018Lx-%#018Lx]\n",
6896 (u64)arch_zone_lowest_possible_pfn[i]
6897 << PAGE_SHIFT,
6898 ((u64)arch_zone_highest_possible_pfn[i]
6899 << PAGE_SHIFT) - 1);
6900 }
6901
6902 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6903 pr_info("Movable zone start for each node\n");
6904 for (i = 0; i < MAX_NUMNODES; i++) {
6905 if (zone_movable_pfn[i])
6906 pr_info(" Node %d: %#018Lx\n", i,
6907 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6908 }
6909
6910 /* Print out the early node map */
6911 pr_info("Early memory node ranges\n");
6912 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6913 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6914 (u64)start_pfn << PAGE_SHIFT,
6915 ((u64)end_pfn << PAGE_SHIFT) - 1);
6916
6917 /* Initialise every node */
6918 mminit_verify_pageflags_layout();
6919 setup_nr_node_ids();
6920 zero_resv_unavail();
6921 for_each_online_node(nid) {
6922 pg_data_t *pgdat = NODE_DATA(nid);
6923 free_area_init_node(nid, NULL,
6924 find_min_pfn_for_node(nid), NULL);
6925
6926 /* Any memory on that node */
6927 if (pgdat->node_present_pages)
6928 node_set_state(nid, N_MEMORY);
6929 check_for_memory(pgdat, nid);
6930 }
6931 }
6932
6933 static int __init cmdline_parse_core(char *p, unsigned long *core,
6934 unsigned long *percent)
6935 {
6936 unsigned long long coremem;
6937 char *endptr;
6938
6939 if (!p)
6940 return -EINVAL;
6941
6942 /* Value may be a percentage of total memory, otherwise bytes */
6943 coremem = simple_strtoull(p, &endptr, 0);
6944 if (*endptr == '%') {
6945 /* Paranoid check for percent values greater than 100 */
6946 WARN_ON(coremem > 100);
6947
6948 *percent = coremem;
6949 } else {
6950 coremem = memparse(p, &p);
6951 /* Paranoid check that UL is enough for the coremem value */
6952 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6953
6954 *core = coremem >> PAGE_SHIFT;
6955 *percent = 0UL;
6956 }
6957 return 0;
6958 }
6959
6960 /*
6961 * kernelcore=size sets the amount of memory for use for allocations that
6962 * cannot be reclaimed or migrated.
6963 */
6964 static int __init cmdline_parse_kernelcore(char *p)
6965 {
6966 /* parse kernelcore=mirror */
6967 if (parse_option_str(p, "mirror")) {
6968 mirrored_kernelcore = true;
6969 return 0;
6970 }
6971
6972 return cmdline_parse_core(p, &required_kernelcore,
6973 &required_kernelcore_percent);
6974 }
6975
6976 /*
6977 * movablecore=size sets the amount of memory for use for allocations that
6978 * can be reclaimed or migrated.
6979 */
6980 static int __init cmdline_parse_movablecore(char *p)
6981 {
6982 return cmdline_parse_core(p, &required_movablecore,
6983 &required_movablecore_percent);
6984 }
6985
6986 early_param("kernelcore", cmdline_parse_kernelcore);
6987 early_param("movablecore", cmdline_parse_movablecore);
6988
6989 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6990
6991 void adjust_managed_page_count(struct page *page, long count)
6992 {
6993 spin_lock(&managed_page_count_lock);
6994 page_zone(page)->managed_pages += count;
6995 totalram_pages += count;
6996 #ifdef CONFIG_HIGHMEM
6997 if (PageHighMem(page))
6998 totalhigh_pages += count;
6999 #endif
7000 spin_unlock(&managed_page_count_lock);
7001 }
7002 EXPORT_SYMBOL(adjust_managed_page_count);
7003
7004 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7005 {
7006 void *pos;
7007 unsigned long pages = 0;
7008
7009 start = (void *)PAGE_ALIGN((unsigned long)start);
7010 end = (void *)((unsigned long)end & PAGE_MASK);
7011 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7012 struct page *page = virt_to_page(pos);
7013 void *direct_map_addr;
7014
7015 /*
7016 * 'direct_map_addr' might be different from 'pos'
7017 * because some architectures' virt_to_page()
7018 * work with aliases. Getting the direct map
7019 * address ensures that we get a _writeable_
7020 * alias for the memset().
7021 */
7022 direct_map_addr = page_address(page);
7023 if ((unsigned int)poison <= 0xFF)
7024 memset(direct_map_addr, poison, PAGE_SIZE);
7025
7026 free_reserved_page(page);
7027 }
7028
7029 if (pages && s)
7030 pr_info("Freeing %s memory: %ldK\n",
7031 s, pages << (PAGE_SHIFT - 10));
7032
7033 return pages;
7034 }
7035 EXPORT_SYMBOL(free_reserved_area);
7036
7037 #ifdef CONFIG_HIGHMEM
7038 void free_highmem_page(struct page *page)
7039 {
7040 __free_reserved_page(page);
7041 totalram_pages++;
7042 page_zone(page)->managed_pages++;
7043 totalhigh_pages++;
7044 }
7045 #endif
7046
7047
7048 void __init mem_init_print_info(const char *str)
7049 {
7050 unsigned long physpages, codesize, datasize, rosize, bss_size;
7051 unsigned long init_code_size, init_data_size;
7052
7053 physpages = get_num_physpages();
7054 codesize = _etext - _stext;
7055 datasize = _edata - _sdata;
7056 rosize = __end_rodata - __start_rodata;
7057 bss_size = __bss_stop - __bss_start;
7058 init_data_size = __init_end - __init_begin;
7059 init_code_size = _einittext - _sinittext;
7060
7061 /*
7062 * Detect special cases and adjust section sizes accordingly:
7063 * 1) .init.* may be embedded into .data sections
7064 * 2) .init.text.* may be out of [__init_begin, __init_end],
7065 * please refer to arch/tile/kernel/vmlinux.lds.S.
7066 * 3) .rodata.* may be embedded into .text or .data sections.
7067 */
7068 #define adj_init_size(start, end, size, pos, adj) \
7069 do { \
7070 if (start <= pos && pos < end && size > adj) \
7071 size -= adj; \
7072 } while (0)
7073
7074 adj_init_size(__init_begin, __init_end, init_data_size,
7075 _sinittext, init_code_size);
7076 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7077 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7078 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7079 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7080
7081 #undef adj_init_size
7082
7083 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7084 #ifdef CONFIG_HIGHMEM
7085 ", %luK highmem"
7086 #endif
7087 "%s%s)\n",
7088 nr_free_pages() << (PAGE_SHIFT - 10),
7089 physpages << (PAGE_SHIFT - 10),
7090 codesize >> 10, datasize >> 10, rosize >> 10,
7091 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7092 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7093 totalcma_pages << (PAGE_SHIFT - 10),
7094 #ifdef CONFIG_HIGHMEM
7095 totalhigh_pages << (PAGE_SHIFT - 10),
7096 #endif
7097 str ? ", " : "", str ? str : "");
7098 }
7099
7100 /**
7101 * set_dma_reserve - set the specified number of pages reserved in the first zone
7102 * @new_dma_reserve: The number of pages to mark reserved
7103 *
7104 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7105 * In the DMA zone, a significant percentage may be consumed by kernel image
7106 * and other unfreeable allocations which can skew the watermarks badly. This
7107 * function may optionally be used to account for unfreeable pages in the
7108 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7109 * smaller per-cpu batchsize.
7110 */
7111 void __init set_dma_reserve(unsigned long new_dma_reserve)
7112 {
7113 dma_reserve = new_dma_reserve;
7114 }
7115
7116 void __init free_area_init(unsigned long *zones_size)
7117 {
7118 zero_resv_unavail();
7119 free_area_init_node(0, zones_size,
7120 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7121 }
7122
7123 static int page_alloc_cpu_dead(unsigned int cpu)
7124 {
7125
7126 lru_add_drain_cpu(cpu);
7127 drain_pages(cpu);
7128
7129 /*
7130 * Spill the event counters of the dead processor
7131 * into the current processors event counters.
7132 * This artificially elevates the count of the current
7133 * processor.
7134 */
7135 vm_events_fold_cpu(cpu);
7136
7137 /*
7138 * Zero the differential counters of the dead processor
7139 * so that the vm statistics are consistent.
7140 *
7141 * This is only okay since the processor is dead and cannot
7142 * race with what we are doing.
7143 */
7144 cpu_vm_stats_fold(cpu);
7145 return 0;
7146 }
7147
7148 void __init page_alloc_init(void)
7149 {
7150 int ret;
7151
7152 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7153 "mm/page_alloc:dead", NULL,
7154 page_alloc_cpu_dead);
7155 WARN_ON(ret < 0);
7156 }
7157
7158 /*
7159 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7160 * or min_free_kbytes changes.
7161 */
7162 static void calculate_totalreserve_pages(void)
7163 {
7164 struct pglist_data *pgdat;
7165 unsigned long reserve_pages = 0;
7166 enum zone_type i, j;
7167
7168 for_each_online_pgdat(pgdat) {
7169
7170 pgdat->totalreserve_pages = 0;
7171
7172 for (i = 0; i < MAX_NR_ZONES; i++) {
7173 struct zone *zone = pgdat->node_zones + i;
7174 long max = 0;
7175
7176 /* Find valid and maximum lowmem_reserve in the zone */
7177 for (j = i; j < MAX_NR_ZONES; j++) {
7178 if (zone->lowmem_reserve[j] > max)
7179 max = zone->lowmem_reserve[j];
7180 }
7181
7182 /* we treat the high watermark as reserved pages. */
7183 max += high_wmark_pages(zone);
7184
7185 if (max > zone->managed_pages)
7186 max = zone->managed_pages;
7187
7188 pgdat->totalreserve_pages += max;
7189
7190 reserve_pages += max;
7191 }
7192 }
7193 totalreserve_pages = reserve_pages;
7194 }
7195
7196 /*
7197 * setup_per_zone_lowmem_reserve - called whenever
7198 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7199 * has a correct pages reserved value, so an adequate number of
7200 * pages are left in the zone after a successful __alloc_pages().
7201 */
7202 static void setup_per_zone_lowmem_reserve(void)
7203 {
7204 struct pglist_data *pgdat;
7205 enum zone_type j, idx;
7206
7207 for_each_online_pgdat(pgdat) {
7208 for (j = 0; j < MAX_NR_ZONES; j++) {
7209 struct zone *zone = pgdat->node_zones + j;
7210 unsigned long managed_pages = zone->managed_pages;
7211
7212 zone->lowmem_reserve[j] = 0;
7213
7214 idx = j;
7215 while (idx) {
7216 struct zone *lower_zone;
7217
7218 idx--;
7219 lower_zone = pgdat->node_zones + idx;
7220
7221 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7222 sysctl_lowmem_reserve_ratio[idx] = 0;
7223 lower_zone->lowmem_reserve[j] = 0;
7224 } else {
7225 lower_zone->lowmem_reserve[j] =
7226 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7227 }
7228 managed_pages += lower_zone->managed_pages;
7229 }
7230 }
7231 }
7232
7233 /* update totalreserve_pages */
7234 calculate_totalreserve_pages();
7235 }
7236
7237 static void __setup_per_zone_wmarks(void)
7238 {
7239 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7240 unsigned long lowmem_pages = 0;
7241 struct zone *zone;
7242 unsigned long flags;
7243
7244 /* Calculate total number of !ZONE_HIGHMEM pages */
7245 for_each_zone(zone) {
7246 if (!is_highmem(zone))
7247 lowmem_pages += zone->managed_pages;
7248 }
7249
7250 for_each_zone(zone) {
7251 u64 tmp;
7252
7253 spin_lock_irqsave(&zone->lock, flags);
7254 tmp = (u64)pages_min * zone->managed_pages;
7255 do_div(tmp, lowmem_pages);
7256 if (is_highmem(zone)) {
7257 /*
7258 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7259 * need highmem pages, so cap pages_min to a small
7260 * value here.
7261 *
7262 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7263 * deltas control asynch page reclaim, and so should
7264 * not be capped for highmem.
7265 */
7266 unsigned long min_pages;
7267
7268 min_pages = zone->managed_pages / 1024;
7269 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7270 zone->watermark[WMARK_MIN] = min_pages;
7271 } else {
7272 /*
7273 * If it's a lowmem zone, reserve a number of pages
7274 * proportionate to the zone's size.
7275 */
7276 zone->watermark[WMARK_MIN] = tmp;
7277 }
7278
7279 /*
7280 * Set the kswapd watermarks distance according to the
7281 * scale factor in proportion to available memory, but
7282 * ensure a minimum size on small systems.
7283 */
7284 tmp = max_t(u64, tmp >> 2,
7285 mult_frac(zone->managed_pages,
7286 watermark_scale_factor, 10000));
7287
7288 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7289 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7290
7291 spin_unlock_irqrestore(&zone->lock, flags);
7292 }
7293
7294 /* update totalreserve_pages */
7295 calculate_totalreserve_pages();
7296 }
7297
7298 /**
7299 * setup_per_zone_wmarks - called when min_free_kbytes changes
7300 * or when memory is hot-{added|removed}
7301 *
7302 * Ensures that the watermark[min,low,high] values for each zone are set
7303 * correctly with respect to min_free_kbytes.
7304 */
7305 void setup_per_zone_wmarks(void)
7306 {
7307 static DEFINE_SPINLOCK(lock);
7308
7309 spin_lock(&lock);
7310 __setup_per_zone_wmarks();
7311 spin_unlock(&lock);
7312 }
7313
7314 /*
7315 * Initialise min_free_kbytes.
7316 *
7317 * For small machines we want it small (128k min). For large machines
7318 * we want it large (64MB max). But it is not linear, because network
7319 * bandwidth does not increase linearly with machine size. We use
7320 *
7321 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7322 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7323 *
7324 * which yields
7325 *
7326 * 16MB: 512k
7327 * 32MB: 724k
7328 * 64MB: 1024k
7329 * 128MB: 1448k
7330 * 256MB: 2048k
7331 * 512MB: 2896k
7332 * 1024MB: 4096k
7333 * 2048MB: 5792k
7334 * 4096MB: 8192k
7335 * 8192MB: 11584k
7336 * 16384MB: 16384k
7337 */
7338 int __meminit init_per_zone_wmark_min(void)
7339 {
7340 unsigned long lowmem_kbytes;
7341 int new_min_free_kbytes;
7342
7343 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7344 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7345
7346 if (new_min_free_kbytes > user_min_free_kbytes) {
7347 min_free_kbytes = new_min_free_kbytes;
7348 if (min_free_kbytes < 128)
7349 min_free_kbytes = 128;
7350 if (min_free_kbytes > 65536)
7351 min_free_kbytes = 65536;
7352 } else {
7353 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7354 new_min_free_kbytes, user_min_free_kbytes);
7355 }
7356 setup_per_zone_wmarks();
7357 refresh_zone_stat_thresholds();
7358 setup_per_zone_lowmem_reserve();
7359
7360 #ifdef CONFIG_NUMA
7361 setup_min_unmapped_ratio();
7362 setup_min_slab_ratio();
7363 #endif
7364
7365 return 0;
7366 }
7367 core_initcall(init_per_zone_wmark_min)
7368
7369 /*
7370 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7371 * that we can call two helper functions whenever min_free_kbytes
7372 * changes.
7373 */
7374 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7375 void __user *buffer, size_t *length, loff_t *ppos)
7376 {
7377 int rc;
7378
7379 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7380 if (rc)
7381 return rc;
7382
7383 if (write) {
7384 user_min_free_kbytes = min_free_kbytes;
7385 setup_per_zone_wmarks();
7386 }
7387 return 0;
7388 }
7389
7390 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7391 void __user *buffer, size_t *length, loff_t *ppos)
7392 {
7393 int rc;
7394
7395 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7396 if (rc)
7397 return rc;
7398
7399 if (write)
7400 setup_per_zone_wmarks();
7401
7402 return 0;
7403 }
7404
7405 #ifdef CONFIG_NUMA
7406 static void setup_min_unmapped_ratio(void)
7407 {
7408 pg_data_t *pgdat;
7409 struct zone *zone;
7410
7411 for_each_online_pgdat(pgdat)
7412 pgdat->min_unmapped_pages = 0;
7413
7414 for_each_zone(zone)
7415 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7416 sysctl_min_unmapped_ratio) / 100;
7417 }
7418
7419
7420 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7421 void __user *buffer, size_t *length, loff_t *ppos)
7422 {
7423 int rc;
7424
7425 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7426 if (rc)
7427 return rc;
7428
7429 setup_min_unmapped_ratio();
7430
7431 return 0;
7432 }
7433
7434 static void setup_min_slab_ratio(void)
7435 {
7436 pg_data_t *pgdat;
7437 struct zone *zone;
7438
7439 for_each_online_pgdat(pgdat)
7440 pgdat->min_slab_pages = 0;
7441
7442 for_each_zone(zone)
7443 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7444 sysctl_min_slab_ratio) / 100;
7445 }
7446
7447 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7448 void __user *buffer, size_t *length, loff_t *ppos)
7449 {
7450 int rc;
7451
7452 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7453 if (rc)
7454 return rc;
7455
7456 setup_min_slab_ratio();
7457
7458 return 0;
7459 }
7460 #endif
7461
7462 /*
7463 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7464 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7465 * whenever sysctl_lowmem_reserve_ratio changes.
7466 *
7467 * The reserve ratio obviously has absolutely no relation with the
7468 * minimum watermarks. The lowmem reserve ratio can only make sense
7469 * if in function of the boot time zone sizes.
7470 */
7471 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7472 void __user *buffer, size_t *length, loff_t *ppos)
7473 {
7474 proc_dointvec_minmax(table, write, buffer, length, ppos);
7475 setup_per_zone_lowmem_reserve();
7476 return 0;
7477 }
7478
7479 /*
7480 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7481 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7482 * pagelist can have before it gets flushed back to buddy allocator.
7483 */
7484 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7485 void __user *buffer, size_t *length, loff_t *ppos)
7486 {
7487 struct zone *zone;
7488 int old_percpu_pagelist_fraction;
7489 int ret;
7490
7491 mutex_lock(&pcp_batch_high_lock);
7492 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7493
7494 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7495 if (!write || ret < 0)
7496 goto out;
7497
7498 /* Sanity checking to avoid pcp imbalance */
7499 if (percpu_pagelist_fraction &&
7500 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7501 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7502 ret = -EINVAL;
7503 goto out;
7504 }
7505
7506 /* No change? */
7507 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7508 goto out;
7509
7510 for_each_populated_zone(zone) {
7511 unsigned int cpu;
7512
7513 for_each_possible_cpu(cpu)
7514 pageset_set_high_and_batch(zone,
7515 per_cpu_ptr(zone->pageset, cpu));
7516 }
7517 out:
7518 mutex_unlock(&pcp_batch_high_lock);
7519 return ret;
7520 }
7521
7522 #ifdef CONFIG_NUMA
7523 int hashdist = HASHDIST_DEFAULT;
7524
7525 static int __init set_hashdist(char *str)
7526 {
7527 if (!str)
7528 return 0;
7529 hashdist = simple_strtoul(str, &str, 0);
7530 return 1;
7531 }
7532 __setup("hashdist=", set_hashdist);
7533 #endif
7534
7535 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7536 /*
7537 * Returns the number of pages that arch has reserved but
7538 * is not known to alloc_large_system_hash().
7539 */
7540 static unsigned long __init arch_reserved_kernel_pages(void)
7541 {
7542 return 0;
7543 }
7544 #endif
7545
7546 /*
7547 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7548 * machines. As memory size is increased the scale is also increased but at
7549 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7550 * quadruples the scale is increased by one, which means the size of hash table
7551 * only doubles, instead of quadrupling as well.
7552 * Because 32-bit systems cannot have large physical memory, where this scaling
7553 * makes sense, it is disabled on such platforms.
7554 */
7555 #if __BITS_PER_LONG > 32
7556 #define ADAPT_SCALE_BASE (64ul << 30)
7557 #define ADAPT_SCALE_SHIFT 2
7558 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7559 #endif
7560
7561 /*
7562 * allocate a large system hash table from bootmem
7563 * - it is assumed that the hash table must contain an exact power-of-2
7564 * quantity of entries
7565 * - limit is the number of hash buckets, not the total allocation size
7566 */
7567 void *__init alloc_large_system_hash(const char *tablename,
7568 unsigned long bucketsize,
7569 unsigned long numentries,
7570 int scale,
7571 int flags,
7572 unsigned int *_hash_shift,
7573 unsigned int *_hash_mask,
7574 unsigned long low_limit,
7575 unsigned long high_limit)
7576 {
7577 unsigned long long max = high_limit;
7578 unsigned long log2qty, size;
7579 void *table = NULL;
7580 gfp_t gfp_flags;
7581
7582 /* allow the kernel cmdline to have a say */
7583 if (!numentries) {
7584 /* round applicable memory size up to nearest megabyte */
7585 numentries = nr_kernel_pages;
7586 numentries -= arch_reserved_kernel_pages();
7587
7588 /* It isn't necessary when PAGE_SIZE >= 1MB */
7589 if (PAGE_SHIFT < 20)
7590 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7591
7592 #if __BITS_PER_LONG > 32
7593 if (!high_limit) {
7594 unsigned long adapt;
7595
7596 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7597 adapt <<= ADAPT_SCALE_SHIFT)
7598 scale++;
7599 }
7600 #endif
7601
7602 /* limit to 1 bucket per 2^scale bytes of low memory */
7603 if (scale > PAGE_SHIFT)
7604 numentries >>= (scale - PAGE_SHIFT);
7605 else
7606 numentries <<= (PAGE_SHIFT - scale);
7607
7608 /* Make sure we've got at least a 0-order allocation.. */
7609 if (unlikely(flags & HASH_SMALL)) {
7610 /* Makes no sense without HASH_EARLY */
7611 WARN_ON(!(flags & HASH_EARLY));
7612 if (!(numentries >> *_hash_shift)) {
7613 numentries = 1UL << *_hash_shift;
7614 BUG_ON(!numentries);
7615 }
7616 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7617 numentries = PAGE_SIZE / bucketsize;
7618 }
7619 numentries = roundup_pow_of_two(numentries);
7620
7621 /* limit allocation size to 1/16 total memory by default */
7622 if (max == 0) {
7623 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7624 do_div(max, bucketsize);
7625 }
7626 max = min(max, 0x80000000ULL);
7627
7628 if (numentries < low_limit)
7629 numentries = low_limit;
7630 if (numentries > max)
7631 numentries = max;
7632
7633 log2qty = ilog2(numentries);
7634
7635 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7636 do {
7637 size = bucketsize << log2qty;
7638 if (flags & HASH_EARLY) {
7639 if (flags & HASH_ZERO)
7640 table = memblock_virt_alloc_nopanic(size, 0);
7641 else
7642 table = memblock_virt_alloc_raw(size, 0);
7643 } else if (hashdist) {
7644 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7645 } else {
7646 /*
7647 * If bucketsize is not a power-of-two, we may free
7648 * some pages at the end of hash table which
7649 * alloc_pages_exact() automatically does
7650 */
7651 if (get_order(size) < MAX_ORDER) {
7652 table = alloc_pages_exact(size, gfp_flags);
7653 kmemleak_alloc(table, size, 1, gfp_flags);
7654 }
7655 }
7656 } while (!table && size > PAGE_SIZE && --log2qty);
7657
7658 if (!table)
7659 panic("Failed to allocate %s hash table\n", tablename);
7660
7661 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7662 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7663
7664 if (_hash_shift)
7665 *_hash_shift = log2qty;
7666 if (_hash_mask)
7667 *_hash_mask = (1 << log2qty) - 1;
7668
7669 return table;
7670 }
7671
7672 /*
7673 * This function checks whether pageblock includes unmovable pages or not.
7674 * If @count is not zero, it is okay to include less @count unmovable pages
7675 *
7676 * PageLRU check without isolation or lru_lock could race so that
7677 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7678 * check without lock_page also may miss some movable non-lru pages at
7679 * race condition. So you can't expect this function should be exact.
7680 */
7681 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7682 int migratetype,
7683 bool skip_hwpoisoned_pages)
7684 {
7685 unsigned long pfn, iter, found;
7686
7687 /*
7688 * TODO we could make this much more efficient by not checking every
7689 * page in the range if we know all of them are in MOVABLE_ZONE and
7690 * that the movable zone guarantees that pages are migratable but
7691 * the later is not the case right now unfortunatelly. E.g. movablecore
7692 * can still lead to having bootmem allocations in zone_movable.
7693 */
7694
7695 /*
7696 * CMA allocations (alloc_contig_range) really need to mark isolate
7697 * CMA pageblocks even when they are not movable in fact so consider
7698 * them movable here.
7699 */
7700 if (is_migrate_cma(migratetype) &&
7701 is_migrate_cma(get_pageblock_migratetype(page)))
7702 return false;
7703
7704 pfn = page_to_pfn(page);
7705 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7706 unsigned long check = pfn + iter;
7707
7708 if (!pfn_valid_within(check))
7709 continue;
7710
7711 page = pfn_to_page(check);
7712
7713 if (PageReserved(page))
7714 goto unmovable;
7715
7716 /*
7717 * If the zone is movable and we have ruled out all reserved
7718 * pages then it should be reasonably safe to assume the rest
7719 * is movable.
7720 */
7721 if (zone_idx(zone) == ZONE_MOVABLE)
7722 continue;
7723
7724 /*
7725 * Hugepages are not in LRU lists, but they're movable.
7726 * We need not scan over tail pages bacause we don't
7727 * handle each tail page individually in migration.
7728 */
7729 if (PageHuge(page)) {
7730 struct page *head = compound_head(page);
7731 unsigned int skip_pages;
7732
7733 if (!hugepage_migration_supported(page_hstate(head)))
7734 goto unmovable;
7735
7736 skip_pages = (1 << compound_order(head)) - (page - head);
7737 iter += skip_pages - 1;
7738 continue;
7739 }
7740
7741 /*
7742 * We can't use page_count without pin a page
7743 * because another CPU can free compound page.
7744 * This check already skips compound tails of THP
7745 * because their page->_refcount is zero at all time.
7746 */
7747 if (!page_ref_count(page)) {
7748 if (PageBuddy(page))
7749 iter += (1 << page_order(page)) - 1;
7750 continue;
7751 }
7752
7753 /*
7754 * The HWPoisoned page may be not in buddy system, and
7755 * page_count() is not 0.
7756 */
7757 if (skip_hwpoisoned_pages && PageHWPoison(page))
7758 continue;
7759
7760 if (__PageMovable(page))
7761 continue;
7762
7763 if (!PageLRU(page))
7764 found++;
7765 /*
7766 * If there are RECLAIMABLE pages, we need to check
7767 * it. But now, memory offline itself doesn't call
7768 * shrink_node_slabs() and it still to be fixed.
7769 */
7770 /*
7771 * If the page is not RAM, page_count()should be 0.
7772 * we don't need more check. This is an _used_ not-movable page.
7773 *
7774 * The problematic thing here is PG_reserved pages. PG_reserved
7775 * is set to both of a memory hole page and a _used_ kernel
7776 * page at boot.
7777 */
7778 if (found > count)
7779 goto unmovable;
7780 }
7781 return false;
7782 unmovable:
7783 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7784 return true;
7785 }
7786
7787 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7788
7789 static unsigned long pfn_max_align_down(unsigned long pfn)
7790 {
7791 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7792 pageblock_nr_pages) - 1);
7793 }
7794
7795 static unsigned long pfn_max_align_up(unsigned long pfn)
7796 {
7797 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7798 pageblock_nr_pages));
7799 }
7800
7801 /* [start, end) must belong to a single zone. */
7802 static int __alloc_contig_migrate_range(struct compact_control *cc,
7803 unsigned long start, unsigned long end)
7804 {
7805 /* This function is based on compact_zone() from compaction.c. */
7806 unsigned long nr_reclaimed;
7807 unsigned long pfn = start;
7808 unsigned int tries = 0;
7809 int ret = 0;
7810
7811 migrate_prep();
7812
7813 while (pfn < end || !list_empty(&cc->migratepages)) {
7814 if (fatal_signal_pending(current)) {
7815 ret = -EINTR;
7816 break;
7817 }
7818
7819 if (list_empty(&cc->migratepages)) {
7820 cc->nr_migratepages = 0;
7821 pfn = isolate_migratepages_range(cc, pfn, end);
7822 if (!pfn) {
7823 ret = -EINTR;
7824 break;
7825 }
7826 tries = 0;
7827 } else if (++tries == 5) {
7828 ret = ret < 0 ? ret : -EBUSY;
7829 break;
7830 }
7831
7832 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7833 &cc->migratepages);
7834 cc->nr_migratepages -= nr_reclaimed;
7835
7836 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7837 NULL, 0, cc->mode, MR_CONTIG_RANGE);
7838 }
7839 if (ret < 0) {
7840 putback_movable_pages(&cc->migratepages);
7841 return ret;
7842 }
7843 return 0;
7844 }
7845
7846 /**
7847 * alloc_contig_range() -- tries to allocate given range of pages
7848 * @start: start PFN to allocate
7849 * @end: one-past-the-last PFN to allocate
7850 * @migratetype: migratetype of the underlaying pageblocks (either
7851 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7852 * in range must have the same migratetype and it must
7853 * be either of the two.
7854 * @gfp_mask: GFP mask to use during compaction
7855 *
7856 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7857 * aligned. The PFN range must belong to a single zone.
7858 *
7859 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7860 * pageblocks in the range. Once isolated, the pageblocks should not
7861 * be modified by others.
7862 *
7863 * Returns zero on success or negative error code. On success all
7864 * pages which PFN is in [start, end) are allocated for the caller and
7865 * need to be freed with free_contig_range().
7866 */
7867 int alloc_contig_range(unsigned long start, unsigned long end,
7868 unsigned migratetype, gfp_t gfp_mask)
7869 {
7870 unsigned long outer_start, outer_end;
7871 unsigned int order;
7872 int ret = 0;
7873
7874 struct compact_control cc = {
7875 .nr_migratepages = 0,
7876 .order = -1,
7877 .zone = page_zone(pfn_to_page(start)),
7878 .mode = MIGRATE_SYNC,
7879 .ignore_skip_hint = true,
7880 .no_set_skip_hint = true,
7881 .gfp_mask = current_gfp_context(gfp_mask),
7882 };
7883 INIT_LIST_HEAD(&cc.migratepages);
7884
7885 /*
7886 * What we do here is we mark all pageblocks in range as
7887 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7888 * have different sizes, and due to the way page allocator
7889 * work, we align the range to biggest of the two pages so
7890 * that page allocator won't try to merge buddies from
7891 * different pageblocks and change MIGRATE_ISOLATE to some
7892 * other migration type.
7893 *
7894 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7895 * migrate the pages from an unaligned range (ie. pages that
7896 * we are interested in). This will put all the pages in
7897 * range back to page allocator as MIGRATE_ISOLATE.
7898 *
7899 * When this is done, we take the pages in range from page
7900 * allocator removing them from the buddy system. This way
7901 * page allocator will never consider using them.
7902 *
7903 * This lets us mark the pageblocks back as
7904 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7905 * aligned range but not in the unaligned, original range are
7906 * put back to page allocator so that buddy can use them.
7907 */
7908
7909 ret = start_isolate_page_range(pfn_max_align_down(start),
7910 pfn_max_align_up(end), migratetype,
7911 false);
7912 if (ret)
7913 return ret;
7914
7915 /*
7916 * In case of -EBUSY, we'd like to know which page causes problem.
7917 * So, just fall through. test_pages_isolated() has a tracepoint
7918 * which will report the busy page.
7919 *
7920 * It is possible that busy pages could become available before
7921 * the call to test_pages_isolated, and the range will actually be
7922 * allocated. So, if we fall through be sure to clear ret so that
7923 * -EBUSY is not accidentally used or returned to caller.
7924 */
7925 ret = __alloc_contig_migrate_range(&cc, start, end);
7926 if (ret && ret != -EBUSY)
7927 goto done;
7928 ret =0;
7929
7930 /*
7931 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7932 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7933 * more, all pages in [start, end) are free in page allocator.
7934 * What we are going to do is to allocate all pages from
7935 * [start, end) (that is remove them from page allocator).
7936 *
7937 * The only problem is that pages at the beginning and at the
7938 * end of interesting range may be not aligned with pages that
7939 * page allocator holds, ie. they can be part of higher order
7940 * pages. Because of this, we reserve the bigger range and
7941 * once this is done free the pages we are not interested in.
7942 *
7943 * We don't have to hold zone->lock here because the pages are
7944 * isolated thus they won't get removed from buddy.
7945 */
7946
7947 lru_add_drain_all();
7948 drain_all_pages(cc.zone);
7949
7950 order = 0;
7951 outer_start = start;
7952 while (!PageBuddy(pfn_to_page(outer_start))) {
7953 if (++order >= MAX_ORDER) {
7954 outer_start = start;
7955 break;
7956 }
7957 outer_start &= ~0UL << order;
7958 }
7959
7960 if (outer_start != start) {
7961 order = page_order(pfn_to_page(outer_start));
7962
7963 /*
7964 * outer_start page could be small order buddy page and
7965 * it doesn't include start page. Adjust outer_start
7966 * in this case to report failed page properly
7967 * on tracepoint in test_pages_isolated()
7968 */
7969 if (outer_start + (1UL << order) <= start)
7970 outer_start = start;
7971 }
7972
7973 /* Make sure the range is really isolated. */
7974 if (test_pages_isolated(outer_start, end, false)) {
7975 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7976 __func__, outer_start, end);
7977 ret = -EBUSY;
7978 goto done;
7979 }
7980
7981 /* Grab isolated pages from freelists. */
7982 outer_end = isolate_freepages_range(&cc, outer_start, end);
7983 if (!outer_end) {
7984 ret = -EBUSY;
7985 goto done;
7986 }
7987
7988 /* Free head and tail (if any) */
7989 if (start != outer_start)
7990 free_contig_range(outer_start, start - outer_start);
7991 if (end != outer_end)
7992 free_contig_range(end, outer_end - end);
7993
7994 done:
7995 undo_isolate_page_range(pfn_max_align_down(start),
7996 pfn_max_align_up(end), migratetype);
7997 return ret;
7998 }
7999
8000 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8001 {
8002 unsigned int count = 0;
8003
8004 for (; nr_pages--; pfn++) {
8005 struct page *page = pfn_to_page(pfn);
8006
8007 count += page_count(page) != 1;
8008 __free_page(page);
8009 }
8010 WARN(count != 0, "%d pages are still in use!\n", count);
8011 }
8012 #endif
8013
8014 #ifdef CONFIG_MEMORY_HOTPLUG
8015 /*
8016 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8017 * page high values need to be recalulated.
8018 */
8019 void __meminit zone_pcp_update(struct zone *zone)
8020 {
8021 unsigned cpu;
8022 mutex_lock(&pcp_batch_high_lock);
8023 for_each_possible_cpu(cpu)
8024 pageset_set_high_and_batch(zone,
8025 per_cpu_ptr(zone->pageset, cpu));
8026 mutex_unlock(&pcp_batch_high_lock);
8027 }
8028 #endif
8029
8030 void zone_pcp_reset(struct zone *zone)
8031 {
8032 unsigned long flags;
8033 int cpu;
8034 struct per_cpu_pageset *pset;
8035
8036 /* avoid races with drain_pages() */
8037 local_irq_save(flags);
8038 if (zone->pageset != &boot_pageset) {
8039 for_each_online_cpu(cpu) {
8040 pset = per_cpu_ptr(zone->pageset, cpu);
8041 drain_zonestat(zone, pset);
8042 }
8043 free_percpu(zone->pageset);
8044 zone->pageset = &boot_pageset;
8045 }
8046 local_irq_restore(flags);
8047 }
8048
8049 #ifdef CONFIG_MEMORY_HOTREMOVE
8050 /*
8051 * All pages in the range must be in a single zone and isolated
8052 * before calling this.
8053 */
8054 void
8055 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8056 {
8057 struct page *page;
8058 struct zone *zone;
8059 unsigned int order, i;
8060 unsigned long pfn;
8061 unsigned long flags;
8062 /* find the first valid pfn */
8063 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8064 if (pfn_valid(pfn))
8065 break;
8066 if (pfn == end_pfn)
8067 return;
8068 offline_mem_sections(pfn, end_pfn);
8069 zone = page_zone(pfn_to_page(pfn));
8070 spin_lock_irqsave(&zone->lock, flags);
8071 pfn = start_pfn;
8072 while (pfn < end_pfn) {
8073 if (!pfn_valid(pfn)) {
8074 pfn++;
8075 continue;
8076 }
8077 page = pfn_to_page(pfn);
8078 /*
8079 * The HWPoisoned page may be not in buddy system, and
8080 * page_count() is not 0.
8081 */
8082 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8083 pfn++;
8084 SetPageReserved(page);
8085 continue;
8086 }
8087
8088 BUG_ON(page_count(page));
8089 BUG_ON(!PageBuddy(page));
8090 order = page_order(page);
8091 #ifdef CONFIG_DEBUG_VM
8092 pr_info("remove from free list %lx %d %lx\n",
8093 pfn, 1 << order, end_pfn);
8094 #endif
8095 list_del(&page->lru);
8096 rmv_page_order(page);
8097 zone->free_area[order].nr_free--;
8098 for (i = 0; i < (1 << order); i++)
8099 SetPageReserved((page+i));
8100 pfn += (1 << order);
8101 }
8102 spin_unlock_irqrestore(&zone->lock, flags);
8103 }
8104 #endif
8105
8106 bool is_free_buddy_page(struct page *page)
8107 {
8108 struct zone *zone = page_zone(page);
8109 unsigned long pfn = page_to_pfn(page);
8110 unsigned long flags;
8111 unsigned int order;
8112
8113 spin_lock_irqsave(&zone->lock, flags);
8114 for (order = 0; order < MAX_ORDER; order++) {
8115 struct page *page_head = page - (pfn & ((1 << order) - 1));
8116
8117 if (PageBuddy(page_head) && page_order(page_head) >= order)
8118 break;
8119 }
8120 spin_unlock_irqrestore(&zone->lock, flags);
8121
8122 return order < MAX_ORDER;
8123 }
8124
8125 #ifdef CONFIG_MEMORY_FAILURE
8126 /*
8127 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8128 * test is performed under the zone lock to prevent a race against page
8129 * allocation.
8130 */
8131 bool set_hwpoison_free_buddy_page(struct page *page)
8132 {
8133 struct zone *zone = page_zone(page);
8134 unsigned long pfn = page_to_pfn(page);
8135 unsigned long flags;
8136 unsigned int order;
8137 bool hwpoisoned = false;
8138
8139 spin_lock_irqsave(&zone->lock, flags);
8140 for (order = 0; order < MAX_ORDER; order++) {
8141 struct page *page_head = page - (pfn & ((1 << order) - 1));
8142
8143 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8144 if (!TestSetPageHWPoison(page))
8145 hwpoisoned = true;
8146 break;
8147 }
8148 }
8149 spin_unlock_irqrestore(&zone->lock, flags);
8150
8151 return hwpoisoned;
8152 }
8153 #endif