]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/page_alloc.c
x86, mm: use add_highpages_with_active_regions() for high pages init v2
[thirdparty/kernel/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53
54 /*
55 * Array of node states.
56 */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
74
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78
79 static void __free_pages_ok(struct page *page, unsigned int order);
80
81 /*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
91 */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 32,
101 #endif
102 32,
103 };
104
105 EXPORT_SYMBOL(totalram_pages);
106
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
119 };
120
121 int min_free_kbytes = 1024;
122
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169
170 int page_group_by_mobility_disabled __read_mostly;
171
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176 }
177
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
184
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
194 }
195
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
202
203 return 1;
204 }
205 /*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
214
215 return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 return 0;
221 }
222 #endif
223
224 static void bad_page(struct page *page)
225 {
226 void *pc = page_get_page_cgroup(page);
227
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
233 if (pc) {
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
236 }
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
239 dump_stack();
240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
245 }
246
247 /*
248 * Higher-order pages are called "compound pages". They are structured thusly:
249 *
250 * The first PAGE_SIZE page is called the "head page".
251 *
252 * The remaining PAGE_SIZE pages are called "tail pages".
253 *
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
256 *
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
260 */
261
262 static void free_compound_page(struct page *page)
263 {
264 __free_pages_ok(page, compound_order(page));
265 }
266
267 static void prep_compound_page(struct page *page, unsigned long order)
268 {
269 int i;
270 int nr_pages = 1 << order;
271
272 set_compound_page_dtor(page, free_compound_page);
273 set_compound_order(page, order);
274 __SetPageHead(page);
275 for (i = 1; i < nr_pages; i++) {
276 struct page *p = page + i;
277
278 __SetPageTail(p);
279 p->first_page = page;
280 }
281 }
282
283 static void destroy_compound_page(struct page *page, unsigned long order)
284 {
285 int i;
286 int nr_pages = 1 << order;
287
288 if (unlikely(compound_order(page) != order))
289 bad_page(page);
290
291 if (unlikely(!PageHead(page)))
292 bad_page(page);
293 __ClearPageHead(page);
294 for (i = 1; i < nr_pages; i++) {
295 struct page *p = page + i;
296
297 if (unlikely(!PageTail(p) |
298 (p->first_page != page)))
299 bad_page(page);
300 __ClearPageTail(p);
301 }
302 }
303
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305 {
306 int i;
307
308 /*
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
311 */
312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313 for (i = 0; i < (1 << order); i++)
314 clear_highpage(page + i);
315 }
316
317 static inline void set_page_order(struct page *page, int order)
318 {
319 set_page_private(page, order);
320 __SetPageBuddy(page);
321 }
322
323 static inline void rmv_page_order(struct page *page)
324 {
325 __ClearPageBuddy(page);
326 set_page_private(page, 0);
327 }
328
329 /*
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
332 *
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 * B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339 *
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 * P = B & ~(1 << O)
343 *
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
345 */
346 static inline struct page *
347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348 {
349 unsigned long buddy_idx = page_idx ^ (1 << order);
350
351 return page + (buddy_idx - page_idx);
352 }
353
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx, unsigned int order)
356 {
357 return (page_idx & ~(1 << order));
358 }
359
360 /*
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
367 *
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
370 *
371 * For recording page's order, we use page_private(page).
372 */
373 static inline int page_is_buddy(struct page *page, struct page *buddy,
374 int order)
375 {
376 if (!pfn_valid_within(page_to_pfn(buddy)))
377 return 0;
378
379 if (page_zone_id(page) != page_zone_id(buddy))
380 return 0;
381
382 if (PageBuddy(buddy) && page_order(buddy) == order) {
383 BUG_ON(page_count(buddy) != 0);
384 return 1;
385 }
386 return 0;
387 }
388
389 /*
390 * Freeing function for a buddy system allocator.
391 *
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
409 *
410 * -- wli
411 */
412
413 static inline void __free_one_page(struct page *page,
414 struct zone *zone, unsigned int order)
415 {
416 unsigned long page_idx;
417 int order_size = 1 << order;
418 int migratetype = get_pageblock_migratetype(page);
419
420 if (unlikely(PageCompound(page)))
421 destroy_compound_page(page, order);
422
423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424
425 VM_BUG_ON(page_idx & (order_size - 1));
426 VM_BUG_ON(bad_range(zone, page));
427
428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429 while (order < MAX_ORDER-1) {
430 unsigned long combined_idx;
431 struct page *buddy;
432
433 buddy = __page_find_buddy(page, page_idx, order);
434 if (!page_is_buddy(page, buddy, order))
435 break; /* Move the buddy up one level. */
436
437 list_del(&buddy->lru);
438 zone->free_area[order].nr_free--;
439 rmv_page_order(buddy);
440 combined_idx = __find_combined_index(page_idx, order);
441 page = page + (combined_idx - page_idx);
442 page_idx = combined_idx;
443 order++;
444 }
445 set_page_order(page, order);
446 list_add(&page->lru,
447 &zone->free_area[order].free_list[migratetype]);
448 zone->free_area[order].nr_free++;
449 }
450
451 static inline int free_pages_check(struct page *page)
452 {
453 if (unlikely(page_mapcount(page) |
454 (page->mapping != NULL) |
455 (page_get_page_cgroup(page) != NULL) |
456 (page_count(page) != 0) |
457 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
458 bad_page(page);
459 if (PageDirty(page))
460 __ClearPageDirty(page);
461 /*
462 * For now, we report if PG_reserved was found set, but do not
463 * clear it, and do not free the page. But we shall soon need
464 * to do more, for when the ZERO_PAGE count wraps negative.
465 */
466 return PageReserved(page);
467 }
468
469 /*
470 * Frees a list of pages.
471 * Assumes all pages on list are in same zone, and of same order.
472 * count is the number of pages to free.
473 *
474 * If the zone was previously in an "all pages pinned" state then look to
475 * see if this freeing clears that state.
476 *
477 * And clear the zone's pages_scanned counter, to hold off the "all pages are
478 * pinned" detection logic.
479 */
480 static void free_pages_bulk(struct zone *zone, int count,
481 struct list_head *list, int order)
482 {
483 spin_lock(&zone->lock);
484 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
485 zone->pages_scanned = 0;
486 while (count--) {
487 struct page *page;
488
489 VM_BUG_ON(list_empty(list));
490 page = list_entry(list->prev, struct page, lru);
491 /* have to delete it as __free_one_page list manipulates */
492 list_del(&page->lru);
493 __free_one_page(page, zone, order);
494 }
495 spin_unlock(&zone->lock);
496 }
497
498 static void free_one_page(struct zone *zone, struct page *page, int order)
499 {
500 spin_lock(&zone->lock);
501 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
502 zone->pages_scanned = 0;
503 __free_one_page(page, zone, order);
504 spin_unlock(&zone->lock);
505 }
506
507 static void __free_pages_ok(struct page *page, unsigned int order)
508 {
509 unsigned long flags;
510 int i;
511 int reserved = 0;
512
513 for (i = 0 ; i < (1 << order) ; ++i)
514 reserved += free_pages_check(page + i);
515 if (reserved)
516 return;
517
518 if (!PageHighMem(page)) {
519 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
520 debug_check_no_obj_freed(page_address(page),
521 PAGE_SIZE << order);
522 }
523 arch_free_page(page, order);
524 kernel_map_pages(page, 1 << order, 0);
525
526 local_irq_save(flags);
527 __count_vm_events(PGFREE, 1 << order);
528 free_one_page(page_zone(page), page, order);
529 local_irq_restore(flags);
530 }
531
532 /*
533 * permit the bootmem allocator to evade page validation on high-order frees
534 */
535 void __free_pages_bootmem(struct page *page, unsigned int order)
536 {
537 if (order == 0) {
538 __ClearPageReserved(page);
539 set_page_count(page, 0);
540 set_page_refcounted(page);
541 __free_page(page);
542 } else {
543 int loop;
544
545 prefetchw(page);
546 for (loop = 0; loop < BITS_PER_LONG; loop++) {
547 struct page *p = &page[loop];
548
549 if (loop + 1 < BITS_PER_LONG)
550 prefetchw(p + 1);
551 __ClearPageReserved(p);
552 set_page_count(p, 0);
553 }
554
555 set_page_refcounted(page);
556 __free_pages(page, order);
557 }
558 }
559
560
561 /*
562 * The order of subdivision here is critical for the IO subsystem.
563 * Please do not alter this order without good reasons and regression
564 * testing. Specifically, as large blocks of memory are subdivided,
565 * the order in which smaller blocks are delivered depends on the order
566 * they're subdivided in this function. This is the primary factor
567 * influencing the order in which pages are delivered to the IO
568 * subsystem according to empirical testing, and this is also justified
569 * by considering the behavior of a buddy system containing a single
570 * large block of memory acted on by a series of small allocations.
571 * This behavior is a critical factor in sglist merging's success.
572 *
573 * -- wli
574 */
575 static inline void expand(struct zone *zone, struct page *page,
576 int low, int high, struct free_area *area,
577 int migratetype)
578 {
579 unsigned long size = 1 << high;
580
581 while (high > low) {
582 area--;
583 high--;
584 size >>= 1;
585 VM_BUG_ON(bad_range(zone, &page[size]));
586 list_add(&page[size].lru, &area->free_list[migratetype]);
587 area->nr_free++;
588 set_page_order(&page[size], high);
589 }
590 }
591
592 /*
593 * This page is about to be returned from the page allocator
594 */
595 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
596 {
597 if (unlikely(page_mapcount(page) |
598 (page->mapping != NULL) |
599 (page_get_page_cgroup(page) != NULL) |
600 (page_count(page) != 0) |
601 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
602 bad_page(page);
603
604 /*
605 * For now, we report if PG_reserved was found set, but do not
606 * clear it, and do not allocate the page: as a safety net.
607 */
608 if (PageReserved(page))
609 return 1;
610
611 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
612 1 << PG_referenced | 1 << PG_arch_1 |
613 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
614 set_page_private(page, 0);
615 set_page_refcounted(page);
616
617 arch_alloc_page(page, order);
618 kernel_map_pages(page, 1 << order, 1);
619
620 if (gfp_flags & __GFP_ZERO)
621 prep_zero_page(page, order, gfp_flags);
622
623 if (order && (gfp_flags & __GFP_COMP))
624 prep_compound_page(page, order);
625
626 return 0;
627 }
628
629 /*
630 * Go through the free lists for the given migratetype and remove
631 * the smallest available page from the freelists
632 */
633 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
634 int migratetype)
635 {
636 unsigned int current_order;
637 struct free_area * area;
638 struct page *page;
639
640 /* Find a page of the appropriate size in the preferred list */
641 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
642 area = &(zone->free_area[current_order]);
643 if (list_empty(&area->free_list[migratetype]))
644 continue;
645
646 page = list_entry(area->free_list[migratetype].next,
647 struct page, lru);
648 list_del(&page->lru);
649 rmv_page_order(page);
650 area->nr_free--;
651 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
652 expand(zone, page, order, current_order, area, migratetype);
653 return page;
654 }
655
656 return NULL;
657 }
658
659
660 /*
661 * This array describes the order lists are fallen back to when
662 * the free lists for the desirable migrate type are depleted
663 */
664 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
665 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
666 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
667 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
668 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
669 };
670
671 /*
672 * Move the free pages in a range to the free lists of the requested type.
673 * Note that start_page and end_pages are not aligned on a pageblock
674 * boundary. If alignment is required, use move_freepages_block()
675 */
676 int move_freepages(struct zone *zone,
677 struct page *start_page, struct page *end_page,
678 int migratetype)
679 {
680 struct page *page;
681 unsigned long order;
682 int pages_moved = 0;
683
684 #ifndef CONFIG_HOLES_IN_ZONE
685 /*
686 * page_zone is not safe to call in this context when
687 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
688 * anyway as we check zone boundaries in move_freepages_block().
689 * Remove at a later date when no bug reports exist related to
690 * grouping pages by mobility
691 */
692 BUG_ON(page_zone(start_page) != page_zone(end_page));
693 #endif
694
695 for (page = start_page; page <= end_page;) {
696 if (!pfn_valid_within(page_to_pfn(page))) {
697 page++;
698 continue;
699 }
700
701 if (!PageBuddy(page)) {
702 page++;
703 continue;
704 }
705
706 order = page_order(page);
707 list_del(&page->lru);
708 list_add(&page->lru,
709 &zone->free_area[order].free_list[migratetype]);
710 page += 1 << order;
711 pages_moved += 1 << order;
712 }
713
714 return pages_moved;
715 }
716
717 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
718 {
719 unsigned long start_pfn, end_pfn;
720 struct page *start_page, *end_page;
721
722 start_pfn = page_to_pfn(page);
723 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
724 start_page = pfn_to_page(start_pfn);
725 end_page = start_page + pageblock_nr_pages - 1;
726 end_pfn = start_pfn + pageblock_nr_pages - 1;
727
728 /* Do not cross zone boundaries */
729 if (start_pfn < zone->zone_start_pfn)
730 start_page = page;
731 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
732 return 0;
733
734 return move_freepages(zone, start_page, end_page, migratetype);
735 }
736
737 /* Remove an element from the buddy allocator from the fallback list */
738 static struct page *__rmqueue_fallback(struct zone *zone, int order,
739 int start_migratetype)
740 {
741 struct free_area * area;
742 int current_order;
743 struct page *page;
744 int migratetype, i;
745
746 /* Find the largest possible block of pages in the other list */
747 for (current_order = MAX_ORDER-1; current_order >= order;
748 --current_order) {
749 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
750 migratetype = fallbacks[start_migratetype][i];
751
752 /* MIGRATE_RESERVE handled later if necessary */
753 if (migratetype == MIGRATE_RESERVE)
754 continue;
755
756 area = &(zone->free_area[current_order]);
757 if (list_empty(&area->free_list[migratetype]))
758 continue;
759
760 page = list_entry(area->free_list[migratetype].next,
761 struct page, lru);
762 area->nr_free--;
763
764 /*
765 * If breaking a large block of pages, move all free
766 * pages to the preferred allocation list. If falling
767 * back for a reclaimable kernel allocation, be more
768 * agressive about taking ownership of free pages
769 */
770 if (unlikely(current_order >= (pageblock_order >> 1)) ||
771 start_migratetype == MIGRATE_RECLAIMABLE) {
772 unsigned long pages;
773 pages = move_freepages_block(zone, page,
774 start_migratetype);
775
776 /* Claim the whole block if over half of it is free */
777 if (pages >= (1 << (pageblock_order-1)))
778 set_pageblock_migratetype(page,
779 start_migratetype);
780
781 migratetype = start_migratetype;
782 }
783
784 /* Remove the page from the freelists */
785 list_del(&page->lru);
786 rmv_page_order(page);
787 __mod_zone_page_state(zone, NR_FREE_PAGES,
788 -(1UL << order));
789
790 if (current_order == pageblock_order)
791 set_pageblock_migratetype(page,
792 start_migratetype);
793
794 expand(zone, page, order, current_order, area, migratetype);
795 return page;
796 }
797 }
798
799 /* Use MIGRATE_RESERVE rather than fail an allocation */
800 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
801 }
802
803 /*
804 * Do the hard work of removing an element from the buddy allocator.
805 * Call me with the zone->lock already held.
806 */
807 static struct page *__rmqueue(struct zone *zone, unsigned int order,
808 int migratetype)
809 {
810 struct page *page;
811
812 page = __rmqueue_smallest(zone, order, migratetype);
813
814 if (unlikely(!page))
815 page = __rmqueue_fallback(zone, order, migratetype);
816
817 return page;
818 }
819
820 /*
821 * Obtain a specified number of elements from the buddy allocator, all under
822 * a single hold of the lock, for efficiency. Add them to the supplied list.
823 * Returns the number of new pages which were placed at *list.
824 */
825 static int rmqueue_bulk(struct zone *zone, unsigned int order,
826 unsigned long count, struct list_head *list,
827 int migratetype)
828 {
829 int i;
830
831 spin_lock(&zone->lock);
832 for (i = 0; i < count; ++i) {
833 struct page *page = __rmqueue(zone, order, migratetype);
834 if (unlikely(page == NULL))
835 break;
836
837 /*
838 * Split buddy pages returned by expand() are received here
839 * in physical page order. The page is added to the callers and
840 * list and the list head then moves forward. From the callers
841 * perspective, the linked list is ordered by page number in
842 * some conditions. This is useful for IO devices that can
843 * merge IO requests if the physical pages are ordered
844 * properly.
845 */
846 list_add(&page->lru, list);
847 set_page_private(page, migratetype);
848 list = &page->lru;
849 }
850 spin_unlock(&zone->lock);
851 return i;
852 }
853
854 #ifdef CONFIG_NUMA
855 /*
856 * Called from the vmstat counter updater to drain pagesets of this
857 * currently executing processor on remote nodes after they have
858 * expired.
859 *
860 * Note that this function must be called with the thread pinned to
861 * a single processor.
862 */
863 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
864 {
865 unsigned long flags;
866 int to_drain;
867
868 local_irq_save(flags);
869 if (pcp->count >= pcp->batch)
870 to_drain = pcp->batch;
871 else
872 to_drain = pcp->count;
873 free_pages_bulk(zone, to_drain, &pcp->list, 0);
874 pcp->count -= to_drain;
875 local_irq_restore(flags);
876 }
877 #endif
878
879 /*
880 * Drain pages of the indicated processor.
881 *
882 * The processor must either be the current processor and the
883 * thread pinned to the current processor or a processor that
884 * is not online.
885 */
886 static void drain_pages(unsigned int cpu)
887 {
888 unsigned long flags;
889 struct zone *zone;
890
891 for_each_zone(zone) {
892 struct per_cpu_pageset *pset;
893 struct per_cpu_pages *pcp;
894
895 if (!populated_zone(zone))
896 continue;
897
898 pset = zone_pcp(zone, cpu);
899
900 pcp = &pset->pcp;
901 local_irq_save(flags);
902 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
903 pcp->count = 0;
904 local_irq_restore(flags);
905 }
906 }
907
908 /*
909 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
910 */
911 void drain_local_pages(void *arg)
912 {
913 drain_pages(smp_processor_id());
914 }
915
916 /*
917 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
918 */
919 void drain_all_pages(void)
920 {
921 on_each_cpu(drain_local_pages, NULL, 0, 1);
922 }
923
924 #ifdef CONFIG_HIBERNATION
925
926 void mark_free_pages(struct zone *zone)
927 {
928 unsigned long pfn, max_zone_pfn;
929 unsigned long flags;
930 int order, t;
931 struct list_head *curr;
932
933 if (!zone->spanned_pages)
934 return;
935
936 spin_lock_irqsave(&zone->lock, flags);
937
938 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
939 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
940 if (pfn_valid(pfn)) {
941 struct page *page = pfn_to_page(pfn);
942
943 if (!swsusp_page_is_forbidden(page))
944 swsusp_unset_page_free(page);
945 }
946
947 for_each_migratetype_order(order, t) {
948 list_for_each(curr, &zone->free_area[order].free_list[t]) {
949 unsigned long i;
950
951 pfn = page_to_pfn(list_entry(curr, struct page, lru));
952 for (i = 0; i < (1UL << order); i++)
953 swsusp_set_page_free(pfn_to_page(pfn + i));
954 }
955 }
956 spin_unlock_irqrestore(&zone->lock, flags);
957 }
958 #endif /* CONFIG_PM */
959
960 /*
961 * Free a 0-order page
962 */
963 static void free_hot_cold_page(struct page *page, int cold)
964 {
965 struct zone *zone = page_zone(page);
966 struct per_cpu_pages *pcp;
967 unsigned long flags;
968
969 if (PageAnon(page))
970 page->mapping = NULL;
971 if (free_pages_check(page))
972 return;
973
974 if (!PageHighMem(page)) {
975 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
976 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
977 }
978 arch_free_page(page, 0);
979 kernel_map_pages(page, 1, 0);
980
981 pcp = &zone_pcp(zone, get_cpu())->pcp;
982 local_irq_save(flags);
983 __count_vm_event(PGFREE);
984 if (cold)
985 list_add_tail(&page->lru, &pcp->list);
986 else
987 list_add(&page->lru, &pcp->list);
988 set_page_private(page, get_pageblock_migratetype(page));
989 pcp->count++;
990 if (pcp->count >= pcp->high) {
991 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
992 pcp->count -= pcp->batch;
993 }
994 local_irq_restore(flags);
995 put_cpu();
996 }
997
998 void free_hot_page(struct page *page)
999 {
1000 free_hot_cold_page(page, 0);
1001 }
1002
1003 void free_cold_page(struct page *page)
1004 {
1005 free_hot_cold_page(page, 1);
1006 }
1007
1008 /*
1009 * split_page takes a non-compound higher-order page, and splits it into
1010 * n (1<<order) sub-pages: page[0..n]
1011 * Each sub-page must be freed individually.
1012 *
1013 * Note: this is probably too low level an operation for use in drivers.
1014 * Please consult with lkml before using this in your driver.
1015 */
1016 void split_page(struct page *page, unsigned int order)
1017 {
1018 int i;
1019
1020 VM_BUG_ON(PageCompound(page));
1021 VM_BUG_ON(!page_count(page));
1022 for (i = 1; i < (1 << order); i++)
1023 set_page_refcounted(page + i);
1024 }
1025
1026 /*
1027 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1028 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1029 * or two.
1030 */
1031 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1032 struct zone *zone, int order, gfp_t gfp_flags)
1033 {
1034 unsigned long flags;
1035 struct page *page;
1036 int cold = !!(gfp_flags & __GFP_COLD);
1037 int cpu;
1038 int migratetype = allocflags_to_migratetype(gfp_flags);
1039
1040 again:
1041 cpu = get_cpu();
1042 if (likely(order == 0)) {
1043 struct per_cpu_pages *pcp;
1044
1045 pcp = &zone_pcp(zone, cpu)->pcp;
1046 local_irq_save(flags);
1047 if (!pcp->count) {
1048 pcp->count = rmqueue_bulk(zone, 0,
1049 pcp->batch, &pcp->list, migratetype);
1050 if (unlikely(!pcp->count))
1051 goto failed;
1052 }
1053
1054 /* Find a page of the appropriate migrate type */
1055 if (cold) {
1056 list_for_each_entry_reverse(page, &pcp->list, lru)
1057 if (page_private(page) == migratetype)
1058 break;
1059 } else {
1060 list_for_each_entry(page, &pcp->list, lru)
1061 if (page_private(page) == migratetype)
1062 break;
1063 }
1064
1065 /* Allocate more to the pcp list if necessary */
1066 if (unlikely(&page->lru == &pcp->list)) {
1067 pcp->count += rmqueue_bulk(zone, 0,
1068 pcp->batch, &pcp->list, migratetype);
1069 page = list_entry(pcp->list.next, struct page, lru);
1070 }
1071
1072 list_del(&page->lru);
1073 pcp->count--;
1074 } else {
1075 spin_lock_irqsave(&zone->lock, flags);
1076 page = __rmqueue(zone, order, migratetype);
1077 spin_unlock(&zone->lock);
1078 if (!page)
1079 goto failed;
1080 }
1081
1082 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1083 zone_statistics(preferred_zone, zone);
1084 local_irq_restore(flags);
1085 put_cpu();
1086
1087 VM_BUG_ON(bad_range(zone, page));
1088 if (prep_new_page(page, order, gfp_flags))
1089 goto again;
1090 return page;
1091
1092 failed:
1093 local_irq_restore(flags);
1094 put_cpu();
1095 return NULL;
1096 }
1097
1098 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1099 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1100 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1101 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1102 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1103 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1104 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1105
1106 #ifdef CONFIG_FAIL_PAGE_ALLOC
1107
1108 static struct fail_page_alloc_attr {
1109 struct fault_attr attr;
1110
1111 u32 ignore_gfp_highmem;
1112 u32 ignore_gfp_wait;
1113 u32 min_order;
1114
1115 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1116
1117 struct dentry *ignore_gfp_highmem_file;
1118 struct dentry *ignore_gfp_wait_file;
1119 struct dentry *min_order_file;
1120
1121 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1122
1123 } fail_page_alloc = {
1124 .attr = FAULT_ATTR_INITIALIZER,
1125 .ignore_gfp_wait = 1,
1126 .ignore_gfp_highmem = 1,
1127 .min_order = 1,
1128 };
1129
1130 static int __init setup_fail_page_alloc(char *str)
1131 {
1132 return setup_fault_attr(&fail_page_alloc.attr, str);
1133 }
1134 __setup("fail_page_alloc=", setup_fail_page_alloc);
1135
1136 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1137 {
1138 if (order < fail_page_alloc.min_order)
1139 return 0;
1140 if (gfp_mask & __GFP_NOFAIL)
1141 return 0;
1142 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1143 return 0;
1144 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1145 return 0;
1146
1147 return should_fail(&fail_page_alloc.attr, 1 << order);
1148 }
1149
1150 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1151
1152 static int __init fail_page_alloc_debugfs(void)
1153 {
1154 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1155 struct dentry *dir;
1156 int err;
1157
1158 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1159 "fail_page_alloc");
1160 if (err)
1161 return err;
1162 dir = fail_page_alloc.attr.dentries.dir;
1163
1164 fail_page_alloc.ignore_gfp_wait_file =
1165 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1166 &fail_page_alloc.ignore_gfp_wait);
1167
1168 fail_page_alloc.ignore_gfp_highmem_file =
1169 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1170 &fail_page_alloc.ignore_gfp_highmem);
1171 fail_page_alloc.min_order_file =
1172 debugfs_create_u32("min-order", mode, dir,
1173 &fail_page_alloc.min_order);
1174
1175 if (!fail_page_alloc.ignore_gfp_wait_file ||
1176 !fail_page_alloc.ignore_gfp_highmem_file ||
1177 !fail_page_alloc.min_order_file) {
1178 err = -ENOMEM;
1179 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1180 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1181 debugfs_remove(fail_page_alloc.min_order_file);
1182 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1183 }
1184
1185 return err;
1186 }
1187
1188 late_initcall(fail_page_alloc_debugfs);
1189
1190 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1191
1192 #else /* CONFIG_FAIL_PAGE_ALLOC */
1193
1194 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1195 {
1196 return 0;
1197 }
1198
1199 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1200
1201 /*
1202 * Return 1 if free pages are above 'mark'. This takes into account the order
1203 * of the allocation.
1204 */
1205 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1206 int classzone_idx, int alloc_flags)
1207 {
1208 /* free_pages my go negative - that's OK */
1209 long min = mark;
1210 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1211 int o;
1212
1213 if (alloc_flags & ALLOC_HIGH)
1214 min -= min / 2;
1215 if (alloc_flags & ALLOC_HARDER)
1216 min -= min / 4;
1217
1218 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1219 return 0;
1220 for (o = 0; o < order; o++) {
1221 /* At the next order, this order's pages become unavailable */
1222 free_pages -= z->free_area[o].nr_free << o;
1223
1224 /* Require fewer higher order pages to be free */
1225 min >>= 1;
1226
1227 if (free_pages <= min)
1228 return 0;
1229 }
1230 return 1;
1231 }
1232
1233 #ifdef CONFIG_NUMA
1234 /*
1235 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1236 * skip over zones that are not allowed by the cpuset, or that have
1237 * been recently (in last second) found to be nearly full. See further
1238 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1239 * that have to skip over a lot of full or unallowed zones.
1240 *
1241 * If the zonelist cache is present in the passed in zonelist, then
1242 * returns a pointer to the allowed node mask (either the current
1243 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1244 *
1245 * If the zonelist cache is not available for this zonelist, does
1246 * nothing and returns NULL.
1247 *
1248 * If the fullzones BITMAP in the zonelist cache is stale (more than
1249 * a second since last zap'd) then we zap it out (clear its bits.)
1250 *
1251 * We hold off even calling zlc_setup, until after we've checked the
1252 * first zone in the zonelist, on the theory that most allocations will
1253 * be satisfied from that first zone, so best to examine that zone as
1254 * quickly as we can.
1255 */
1256 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1257 {
1258 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1259 nodemask_t *allowednodes; /* zonelist_cache approximation */
1260
1261 zlc = zonelist->zlcache_ptr;
1262 if (!zlc)
1263 return NULL;
1264
1265 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1266 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1267 zlc->last_full_zap = jiffies;
1268 }
1269
1270 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1271 &cpuset_current_mems_allowed :
1272 &node_states[N_HIGH_MEMORY];
1273 return allowednodes;
1274 }
1275
1276 /*
1277 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1278 * if it is worth looking at further for free memory:
1279 * 1) Check that the zone isn't thought to be full (doesn't have its
1280 * bit set in the zonelist_cache fullzones BITMAP).
1281 * 2) Check that the zones node (obtained from the zonelist_cache
1282 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1283 * Return true (non-zero) if zone is worth looking at further, or
1284 * else return false (zero) if it is not.
1285 *
1286 * This check -ignores- the distinction between various watermarks,
1287 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1288 * found to be full for any variation of these watermarks, it will
1289 * be considered full for up to one second by all requests, unless
1290 * we are so low on memory on all allowed nodes that we are forced
1291 * into the second scan of the zonelist.
1292 *
1293 * In the second scan we ignore this zonelist cache and exactly
1294 * apply the watermarks to all zones, even it is slower to do so.
1295 * We are low on memory in the second scan, and should leave no stone
1296 * unturned looking for a free page.
1297 */
1298 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1299 nodemask_t *allowednodes)
1300 {
1301 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1302 int i; /* index of *z in zonelist zones */
1303 int n; /* node that zone *z is on */
1304
1305 zlc = zonelist->zlcache_ptr;
1306 if (!zlc)
1307 return 1;
1308
1309 i = z - zonelist->_zonerefs;
1310 n = zlc->z_to_n[i];
1311
1312 /* This zone is worth trying if it is allowed but not full */
1313 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1314 }
1315
1316 /*
1317 * Given 'z' scanning a zonelist, set the corresponding bit in
1318 * zlc->fullzones, so that subsequent attempts to allocate a page
1319 * from that zone don't waste time re-examining it.
1320 */
1321 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1322 {
1323 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1324 int i; /* index of *z in zonelist zones */
1325
1326 zlc = zonelist->zlcache_ptr;
1327 if (!zlc)
1328 return;
1329
1330 i = z - zonelist->_zonerefs;
1331
1332 set_bit(i, zlc->fullzones);
1333 }
1334
1335 #else /* CONFIG_NUMA */
1336
1337 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1338 {
1339 return NULL;
1340 }
1341
1342 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1343 nodemask_t *allowednodes)
1344 {
1345 return 1;
1346 }
1347
1348 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1349 {
1350 }
1351 #endif /* CONFIG_NUMA */
1352
1353 /*
1354 * get_page_from_freelist goes through the zonelist trying to allocate
1355 * a page.
1356 */
1357 static struct page *
1358 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1359 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1360 {
1361 struct zoneref *z;
1362 struct page *page = NULL;
1363 int classzone_idx;
1364 struct zone *zone, *preferred_zone;
1365 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1366 int zlc_active = 0; /* set if using zonelist_cache */
1367 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1368
1369 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1370 &preferred_zone);
1371 if (!preferred_zone)
1372 return NULL;
1373
1374 classzone_idx = zone_idx(preferred_zone);
1375
1376 zonelist_scan:
1377 /*
1378 * Scan zonelist, looking for a zone with enough free.
1379 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1380 */
1381 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1382 high_zoneidx, nodemask) {
1383 if (NUMA_BUILD && zlc_active &&
1384 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1385 continue;
1386 if ((alloc_flags & ALLOC_CPUSET) &&
1387 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1388 goto try_next_zone;
1389
1390 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1391 unsigned long mark;
1392 if (alloc_flags & ALLOC_WMARK_MIN)
1393 mark = zone->pages_min;
1394 else if (alloc_flags & ALLOC_WMARK_LOW)
1395 mark = zone->pages_low;
1396 else
1397 mark = zone->pages_high;
1398 if (!zone_watermark_ok(zone, order, mark,
1399 classzone_idx, alloc_flags)) {
1400 if (!zone_reclaim_mode ||
1401 !zone_reclaim(zone, gfp_mask, order))
1402 goto this_zone_full;
1403 }
1404 }
1405
1406 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1407 if (page)
1408 break;
1409 this_zone_full:
1410 if (NUMA_BUILD)
1411 zlc_mark_zone_full(zonelist, z);
1412 try_next_zone:
1413 if (NUMA_BUILD && !did_zlc_setup) {
1414 /* we do zlc_setup after the first zone is tried */
1415 allowednodes = zlc_setup(zonelist, alloc_flags);
1416 zlc_active = 1;
1417 did_zlc_setup = 1;
1418 }
1419 }
1420
1421 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1422 /* Disable zlc cache for second zonelist scan */
1423 zlc_active = 0;
1424 goto zonelist_scan;
1425 }
1426 return page;
1427 }
1428
1429 /*
1430 * This is the 'heart' of the zoned buddy allocator.
1431 */
1432 static struct page *
1433 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1434 struct zonelist *zonelist, nodemask_t *nodemask)
1435 {
1436 const gfp_t wait = gfp_mask & __GFP_WAIT;
1437 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1438 struct zoneref *z;
1439 struct zone *zone;
1440 struct page *page;
1441 struct reclaim_state reclaim_state;
1442 struct task_struct *p = current;
1443 int do_retry;
1444 int alloc_flags;
1445 unsigned long did_some_progress;
1446 unsigned long pages_reclaimed = 0;
1447
1448 might_sleep_if(wait);
1449
1450 if (should_fail_alloc_page(gfp_mask, order))
1451 return NULL;
1452
1453 restart:
1454 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1455
1456 if (unlikely(!z->zone)) {
1457 /*
1458 * Happens if we have an empty zonelist as a result of
1459 * GFP_THISNODE being used on a memoryless node
1460 */
1461 return NULL;
1462 }
1463
1464 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1465 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1466 if (page)
1467 goto got_pg;
1468
1469 /*
1470 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1471 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1472 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1473 * using a larger set of nodes after it has established that the
1474 * allowed per node queues are empty and that nodes are
1475 * over allocated.
1476 */
1477 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1478 goto nopage;
1479
1480 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1481 wakeup_kswapd(zone, order);
1482
1483 /*
1484 * OK, we're below the kswapd watermark and have kicked background
1485 * reclaim. Now things get more complex, so set up alloc_flags according
1486 * to how we want to proceed.
1487 *
1488 * The caller may dip into page reserves a bit more if the caller
1489 * cannot run direct reclaim, or if the caller has realtime scheduling
1490 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1491 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1492 */
1493 alloc_flags = ALLOC_WMARK_MIN;
1494 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1495 alloc_flags |= ALLOC_HARDER;
1496 if (gfp_mask & __GFP_HIGH)
1497 alloc_flags |= ALLOC_HIGH;
1498 if (wait)
1499 alloc_flags |= ALLOC_CPUSET;
1500
1501 /*
1502 * Go through the zonelist again. Let __GFP_HIGH and allocations
1503 * coming from realtime tasks go deeper into reserves.
1504 *
1505 * This is the last chance, in general, before the goto nopage.
1506 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1507 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1508 */
1509 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1510 high_zoneidx, alloc_flags);
1511 if (page)
1512 goto got_pg;
1513
1514 /* This allocation should allow future memory freeing. */
1515
1516 rebalance:
1517 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1518 && !in_interrupt()) {
1519 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1520 nofail_alloc:
1521 /* go through the zonelist yet again, ignoring mins */
1522 page = get_page_from_freelist(gfp_mask, nodemask, order,
1523 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1524 if (page)
1525 goto got_pg;
1526 if (gfp_mask & __GFP_NOFAIL) {
1527 congestion_wait(WRITE, HZ/50);
1528 goto nofail_alloc;
1529 }
1530 }
1531 goto nopage;
1532 }
1533
1534 /* Atomic allocations - we can't balance anything */
1535 if (!wait)
1536 goto nopage;
1537
1538 cond_resched();
1539
1540 /* We now go into synchronous reclaim */
1541 cpuset_memory_pressure_bump();
1542 p->flags |= PF_MEMALLOC;
1543 reclaim_state.reclaimed_slab = 0;
1544 p->reclaim_state = &reclaim_state;
1545
1546 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1547
1548 p->reclaim_state = NULL;
1549 p->flags &= ~PF_MEMALLOC;
1550
1551 cond_resched();
1552
1553 if (order != 0)
1554 drain_all_pages();
1555
1556 if (likely(did_some_progress)) {
1557 page = get_page_from_freelist(gfp_mask, nodemask, order,
1558 zonelist, high_zoneidx, alloc_flags);
1559 if (page)
1560 goto got_pg;
1561 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1562 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1563 schedule_timeout_uninterruptible(1);
1564 goto restart;
1565 }
1566
1567 /*
1568 * Go through the zonelist yet one more time, keep
1569 * very high watermark here, this is only to catch
1570 * a parallel oom killing, we must fail if we're still
1571 * under heavy pressure.
1572 */
1573 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1574 order, zonelist, high_zoneidx,
1575 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1576 if (page) {
1577 clear_zonelist_oom(zonelist, gfp_mask);
1578 goto got_pg;
1579 }
1580
1581 /* The OOM killer will not help higher order allocs so fail */
1582 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1583 clear_zonelist_oom(zonelist, gfp_mask);
1584 goto nopage;
1585 }
1586
1587 out_of_memory(zonelist, gfp_mask, order);
1588 clear_zonelist_oom(zonelist, gfp_mask);
1589 goto restart;
1590 }
1591
1592 /*
1593 * Don't let big-order allocations loop unless the caller explicitly
1594 * requests that. Wait for some write requests to complete then retry.
1595 *
1596 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1597 * means __GFP_NOFAIL, but that may not be true in other
1598 * implementations.
1599 *
1600 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1601 * specified, then we retry until we no longer reclaim any pages
1602 * (above), or we've reclaimed an order of pages at least as
1603 * large as the allocation's order. In both cases, if the
1604 * allocation still fails, we stop retrying.
1605 */
1606 pages_reclaimed += did_some_progress;
1607 do_retry = 0;
1608 if (!(gfp_mask & __GFP_NORETRY)) {
1609 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1610 do_retry = 1;
1611 } else {
1612 if (gfp_mask & __GFP_REPEAT &&
1613 pages_reclaimed < (1 << order))
1614 do_retry = 1;
1615 }
1616 if (gfp_mask & __GFP_NOFAIL)
1617 do_retry = 1;
1618 }
1619 if (do_retry) {
1620 congestion_wait(WRITE, HZ/50);
1621 goto rebalance;
1622 }
1623
1624 nopage:
1625 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1626 printk(KERN_WARNING "%s: page allocation failure."
1627 " order:%d, mode:0x%x\n",
1628 p->comm, order, gfp_mask);
1629 dump_stack();
1630 show_mem();
1631 }
1632 got_pg:
1633 return page;
1634 }
1635
1636 struct page *
1637 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1638 struct zonelist *zonelist)
1639 {
1640 return __alloc_pages_internal(gfp_mask, order, zonelist, NULL);
1641 }
1642
1643 struct page *
1644 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1645 struct zonelist *zonelist, nodemask_t *nodemask)
1646 {
1647 return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask);
1648 }
1649
1650 EXPORT_SYMBOL(__alloc_pages);
1651
1652 /*
1653 * Common helper functions.
1654 */
1655 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1656 {
1657 struct page * page;
1658 page = alloc_pages(gfp_mask, order);
1659 if (!page)
1660 return 0;
1661 return (unsigned long) page_address(page);
1662 }
1663
1664 EXPORT_SYMBOL(__get_free_pages);
1665
1666 unsigned long get_zeroed_page(gfp_t gfp_mask)
1667 {
1668 struct page * page;
1669
1670 /*
1671 * get_zeroed_page() returns a 32-bit address, which cannot represent
1672 * a highmem page
1673 */
1674 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1675
1676 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1677 if (page)
1678 return (unsigned long) page_address(page);
1679 return 0;
1680 }
1681
1682 EXPORT_SYMBOL(get_zeroed_page);
1683
1684 void __pagevec_free(struct pagevec *pvec)
1685 {
1686 int i = pagevec_count(pvec);
1687
1688 while (--i >= 0)
1689 free_hot_cold_page(pvec->pages[i], pvec->cold);
1690 }
1691
1692 void __free_pages(struct page *page, unsigned int order)
1693 {
1694 if (put_page_testzero(page)) {
1695 if (order == 0)
1696 free_hot_page(page);
1697 else
1698 __free_pages_ok(page, order);
1699 }
1700 }
1701
1702 EXPORT_SYMBOL(__free_pages);
1703
1704 void free_pages(unsigned long addr, unsigned int order)
1705 {
1706 if (addr != 0) {
1707 VM_BUG_ON(!virt_addr_valid((void *)addr));
1708 __free_pages(virt_to_page((void *)addr), order);
1709 }
1710 }
1711
1712 EXPORT_SYMBOL(free_pages);
1713
1714 static unsigned int nr_free_zone_pages(int offset)
1715 {
1716 struct zoneref *z;
1717 struct zone *zone;
1718
1719 /* Just pick one node, since fallback list is circular */
1720 unsigned int sum = 0;
1721
1722 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1723
1724 for_each_zone_zonelist(zone, z, zonelist, offset) {
1725 unsigned long size = zone->present_pages;
1726 unsigned long high = zone->pages_high;
1727 if (size > high)
1728 sum += size - high;
1729 }
1730
1731 return sum;
1732 }
1733
1734 /*
1735 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1736 */
1737 unsigned int nr_free_buffer_pages(void)
1738 {
1739 return nr_free_zone_pages(gfp_zone(GFP_USER));
1740 }
1741 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1742
1743 /*
1744 * Amount of free RAM allocatable within all zones
1745 */
1746 unsigned int nr_free_pagecache_pages(void)
1747 {
1748 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1749 }
1750
1751 static inline void show_node(struct zone *zone)
1752 {
1753 if (NUMA_BUILD)
1754 printk("Node %d ", zone_to_nid(zone));
1755 }
1756
1757 void si_meminfo(struct sysinfo *val)
1758 {
1759 val->totalram = totalram_pages;
1760 val->sharedram = 0;
1761 val->freeram = global_page_state(NR_FREE_PAGES);
1762 val->bufferram = nr_blockdev_pages();
1763 val->totalhigh = totalhigh_pages;
1764 val->freehigh = nr_free_highpages();
1765 val->mem_unit = PAGE_SIZE;
1766 }
1767
1768 EXPORT_SYMBOL(si_meminfo);
1769
1770 #ifdef CONFIG_NUMA
1771 void si_meminfo_node(struct sysinfo *val, int nid)
1772 {
1773 pg_data_t *pgdat = NODE_DATA(nid);
1774
1775 val->totalram = pgdat->node_present_pages;
1776 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1777 #ifdef CONFIG_HIGHMEM
1778 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1779 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1780 NR_FREE_PAGES);
1781 #else
1782 val->totalhigh = 0;
1783 val->freehigh = 0;
1784 #endif
1785 val->mem_unit = PAGE_SIZE;
1786 }
1787 #endif
1788
1789 #define K(x) ((x) << (PAGE_SHIFT-10))
1790
1791 /*
1792 * Show free area list (used inside shift_scroll-lock stuff)
1793 * We also calculate the percentage fragmentation. We do this by counting the
1794 * memory on each free list with the exception of the first item on the list.
1795 */
1796 void show_free_areas(void)
1797 {
1798 int cpu;
1799 struct zone *zone;
1800
1801 for_each_zone(zone) {
1802 if (!populated_zone(zone))
1803 continue;
1804
1805 show_node(zone);
1806 printk("%s per-cpu:\n", zone->name);
1807
1808 for_each_online_cpu(cpu) {
1809 struct per_cpu_pageset *pageset;
1810
1811 pageset = zone_pcp(zone, cpu);
1812
1813 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1814 cpu, pageset->pcp.high,
1815 pageset->pcp.batch, pageset->pcp.count);
1816 }
1817 }
1818
1819 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1820 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1821 global_page_state(NR_ACTIVE),
1822 global_page_state(NR_INACTIVE),
1823 global_page_state(NR_FILE_DIRTY),
1824 global_page_state(NR_WRITEBACK),
1825 global_page_state(NR_UNSTABLE_NFS),
1826 global_page_state(NR_FREE_PAGES),
1827 global_page_state(NR_SLAB_RECLAIMABLE) +
1828 global_page_state(NR_SLAB_UNRECLAIMABLE),
1829 global_page_state(NR_FILE_MAPPED),
1830 global_page_state(NR_PAGETABLE),
1831 global_page_state(NR_BOUNCE));
1832
1833 for_each_zone(zone) {
1834 int i;
1835
1836 if (!populated_zone(zone))
1837 continue;
1838
1839 show_node(zone);
1840 printk("%s"
1841 " free:%lukB"
1842 " min:%lukB"
1843 " low:%lukB"
1844 " high:%lukB"
1845 " active:%lukB"
1846 " inactive:%lukB"
1847 " present:%lukB"
1848 " pages_scanned:%lu"
1849 " all_unreclaimable? %s"
1850 "\n",
1851 zone->name,
1852 K(zone_page_state(zone, NR_FREE_PAGES)),
1853 K(zone->pages_min),
1854 K(zone->pages_low),
1855 K(zone->pages_high),
1856 K(zone_page_state(zone, NR_ACTIVE)),
1857 K(zone_page_state(zone, NR_INACTIVE)),
1858 K(zone->present_pages),
1859 zone->pages_scanned,
1860 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1861 );
1862 printk("lowmem_reserve[]:");
1863 for (i = 0; i < MAX_NR_ZONES; i++)
1864 printk(" %lu", zone->lowmem_reserve[i]);
1865 printk("\n");
1866 }
1867
1868 for_each_zone(zone) {
1869 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1870
1871 if (!populated_zone(zone))
1872 continue;
1873
1874 show_node(zone);
1875 printk("%s: ", zone->name);
1876
1877 spin_lock_irqsave(&zone->lock, flags);
1878 for (order = 0; order < MAX_ORDER; order++) {
1879 nr[order] = zone->free_area[order].nr_free;
1880 total += nr[order] << order;
1881 }
1882 spin_unlock_irqrestore(&zone->lock, flags);
1883 for (order = 0; order < MAX_ORDER; order++)
1884 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1885 printk("= %lukB\n", K(total));
1886 }
1887
1888 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1889
1890 show_swap_cache_info();
1891 }
1892
1893 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1894 {
1895 zoneref->zone = zone;
1896 zoneref->zone_idx = zone_idx(zone);
1897 }
1898
1899 /*
1900 * Builds allocation fallback zone lists.
1901 *
1902 * Add all populated zones of a node to the zonelist.
1903 */
1904 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1905 int nr_zones, enum zone_type zone_type)
1906 {
1907 struct zone *zone;
1908
1909 BUG_ON(zone_type >= MAX_NR_ZONES);
1910 zone_type++;
1911
1912 do {
1913 zone_type--;
1914 zone = pgdat->node_zones + zone_type;
1915 if (populated_zone(zone)) {
1916 zoneref_set_zone(zone,
1917 &zonelist->_zonerefs[nr_zones++]);
1918 check_highest_zone(zone_type);
1919 }
1920
1921 } while (zone_type);
1922 return nr_zones;
1923 }
1924
1925
1926 /*
1927 * zonelist_order:
1928 * 0 = automatic detection of better ordering.
1929 * 1 = order by ([node] distance, -zonetype)
1930 * 2 = order by (-zonetype, [node] distance)
1931 *
1932 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1933 * the same zonelist. So only NUMA can configure this param.
1934 */
1935 #define ZONELIST_ORDER_DEFAULT 0
1936 #define ZONELIST_ORDER_NODE 1
1937 #define ZONELIST_ORDER_ZONE 2
1938
1939 /* zonelist order in the kernel.
1940 * set_zonelist_order() will set this to NODE or ZONE.
1941 */
1942 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1943 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1944
1945
1946 #ifdef CONFIG_NUMA
1947 /* The value user specified ....changed by config */
1948 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1949 /* string for sysctl */
1950 #define NUMA_ZONELIST_ORDER_LEN 16
1951 char numa_zonelist_order[16] = "default";
1952
1953 /*
1954 * interface for configure zonelist ordering.
1955 * command line option "numa_zonelist_order"
1956 * = "[dD]efault - default, automatic configuration.
1957 * = "[nN]ode - order by node locality, then by zone within node
1958 * = "[zZ]one - order by zone, then by locality within zone
1959 */
1960
1961 static int __parse_numa_zonelist_order(char *s)
1962 {
1963 if (*s == 'd' || *s == 'D') {
1964 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1965 } else if (*s == 'n' || *s == 'N') {
1966 user_zonelist_order = ZONELIST_ORDER_NODE;
1967 } else if (*s == 'z' || *s == 'Z') {
1968 user_zonelist_order = ZONELIST_ORDER_ZONE;
1969 } else {
1970 printk(KERN_WARNING
1971 "Ignoring invalid numa_zonelist_order value: "
1972 "%s\n", s);
1973 return -EINVAL;
1974 }
1975 return 0;
1976 }
1977
1978 static __init int setup_numa_zonelist_order(char *s)
1979 {
1980 if (s)
1981 return __parse_numa_zonelist_order(s);
1982 return 0;
1983 }
1984 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1985
1986 /*
1987 * sysctl handler for numa_zonelist_order
1988 */
1989 int numa_zonelist_order_handler(ctl_table *table, int write,
1990 struct file *file, void __user *buffer, size_t *length,
1991 loff_t *ppos)
1992 {
1993 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1994 int ret;
1995
1996 if (write)
1997 strncpy(saved_string, (char*)table->data,
1998 NUMA_ZONELIST_ORDER_LEN);
1999 ret = proc_dostring(table, write, file, buffer, length, ppos);
2000 if (ret)
2001 return ret;
2002 if (write) {
2003 int oldval = user_zonelist_order;
2004 if (__parse_numa_zonelist_order((char*)table->data)) {
2005 /*
2006 * bogus value. restore saved string
2007 */
2008 strncpy((char*)table->data, saved_string,
2009 NUMA_ZONELIST_ORDER_LEN);
2010 user_zonelist_order = oldval;
2011 } else if (oldval != user_zonelist_order)
2012 build_all_zonelists();
2013 }
2014 return 0;
2015 }
2016
2017
2018 #define MAX_NODE_LOAD (num_online_nodes())
2019 static int node_load[MAX_NUMNODES];
2020
2021 /**
2022 * find_next_best_node - find the next node that should appear in a given node's fallback list
2023 * @node: node whose fallback list we're appending
2024 * @used_node_mask: nodemask_t of already used nodes
2025 *
2026 * We use a number of factors to determine which is the next node that should
2027 * appear on a given node's fallback list. The node should not have appeared
2028 * already in @node's fallback list, and it should be the next closest node
2029 * according to the distance array (which contains arbitrary distance values
2030 * from each node to each node in the system), and should also prefer nodes
2031 * with no CPUs, since presumably they'll have very little allocation pressure
2032 * on them otherwise.
2033 * It returns -1 if no node is found.
2034 */
2035 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2036 {
2037 int n, val;
2038 int min_val = INT_MAX;
2039 int best_node = -1;
2040 node_to_cpumask_ptr(tmp, 0);
2041
2042 /* Use the local node if we haven't already */
2043 if (!node_isset(node, *used_node_mask)) {
2044 node_set(node, *used_node_mask);
2045 return node;
2046 }
2047
2048 for_each_node_state(n, N_HIGH_MEMORY) {
2049
2050 /* Don't want a node to appear more than once */
2051 if (node_isset(n, *used_node_mask))
2052 continue;
2053
2054 /* Use the distance array to find the distance */
2055 val = node_distance(node, n);
2056
2057 /* Penalize nodes under us ("prefer the next node") */
2058 val += (n < node);
2059
2060 /* Give preference to headless and unused nodes */
2061 node_to_cpumask_ptr_next(tmp, n);
2062 if (!cpus_empty(*tmp))
2063 val += PENALTY_FOR_NODE_WITH_CPUS;
2064
2065 /* Slight preference for less loaded node */
2066 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2067 val += node_load[n];
2068
2069 if (val < min_val) {
2070 min_val = val;
2071 best_node = n;
2072 }
2073 }
2074
2075 if (best_node >= 0)
2076 node_set(best_node, *used_node_mask);
2077
2078 return best_node;
2079 }
2080
2081
2082 /*
2083 * Build zonelists ordered by node and zones within node.
2084 * This results in maximum locality--normal zone overflows into local
2085 * DMA zone, if any--but risks exhausting DMA zone.
2086 */
2087 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2088 {
2089 int j;
2090 struct zonelist *zonelist;
2091
2092 zonelist = &pgdat->node_zonelists[0];
2093 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2094 ;
2095 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2096 MAX_NR_ZONES - 1);
2097 zonelist->_zonerefs[j].zone = NULL;
2098 zonelist->_zonerefs[j].zone_idx = 0;
2099 }
2100
2101 /*
2102 * Build gfp_thisnode zonelists
2103 */
2104 static void build_thisnode_zonelists(pg_data_t *pgdat)
2105 {
2106 int j;
2107 struct zonelist *zonelist;
2108
2109 zonelist = &pgdat->node_zonelists[1];
2110 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2111 zonelist->_zonerefs[j].zone = NULL;
2112 zonelist->_zonerefs[j].zone_idx = 0;
2113 }
2114
2115 /*
2116 * Build zonelists ordered by zone and nodes within zones.
2117 * This results in conserving DMA zone[s] until all Normal memory is
2118 * exhausted, but results in overflowing to remote node while memory
2119 * may still exist in local DMA zone.
2120 */
2121 static int node_order[MAX_NUMNODES];
2122
2123 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2124 {
2125 int pos, j, node;
2126 int zone_type; /* needs to be signed */
2127 struct zone *z;
2128 struct zonelist *zonelist;
2129
2130 zonelist = &pgdat->node_zonelists[0];
2131 pos = 0;
2132 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2133 for (j = 0; j < nr_nodes; j++) {
2134 node = node_order[j];
2135 z = &NODE_DATA(node)->node_zones[zone_type];
2136 if (populated_zone(z)) {
2137 zoneref_set_zone(z,
2138 &zonelist->_zonerefs[pos++]);
2139 check_highest_zone(zone_type);
2140 }
2141 }
2142 }
2143 zonelist->_zonerefs[pos].zone = NULL;
2144 zonelist->_zonerefs[pos].zone_idx = 0;
2145 }
2146
2147 static int default_zonelist_order(void)
2148 {
2149 int nid, zone_type;
2150 unsigned long low_kmem_size,total_size;
2151 struct zone *z;
2152 int average_size;
2153 /*
2154 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2155 * If they are really small and used heavily, the system can fall
2156 * into OOM very easily.
2157 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2158 */
2159 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2160 low_kmem_size = 0;
2161 total_size = 0;
2162 for_each_online_node(nid) {
2163 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2164 z = &NODE_DATA(nid)->node_zones[zone_type];
2165 if (populated_zone(z)) {
2166 if (zone_type < ZONE_NORMAL)
2167 low_kmem_size += z->present_pages;
2168 total_size += z->present_pages;
2169 }
2170 }
2171 }
2172 if (!low_kmem_size || /* there are no DMA area. */
2173 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2174 return ZONELIST_ORDER_NODE;
2175 /*
2176 * look into each node's config.
2177 * If there is a node whose DMA/DMA32 memory is very big area on
2178 * local memory, NODE_ORDER may be suitable.
2179 */
2180 average_size = total_size /
2181 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2182 for_each_online_node(nid) {
2183 low_kmem_size = 0;
2184 total_size = 0;
2185 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2186 z = &NODE_DATA(nid)->node_zones[zone_type];
2187 if (populated_zone(z)) {
2188 if (zone_type < ZONE_NORMAL)
2189 low_kmem_size += z->present_pages;
2190 total_size += z->present_pages;
2191 }
2192 }
2193 if (low_kmem_size &&
2194 total_size > average_size && /* ignore small node */
2195 low_kmem_size > total_size * 70/100)
2196 return ZONELIST_ORDER_NODE;
2197 }
2198 return ZONELIST_ORDER_ZONE;
2199 }
2200
2201 static void set_zonelist_order(void)
2202 {
2203 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2204 current_zonelist_order = default_zonelist_order();
2205 else
2206 current_zonelist_order = user_zonelist_order;
2207 }
2208
2209 static void build_zonelists(pg_data_t *pgdat)
2210 {
2211 int j, node, load;
2212 enum zone_type i;
2213 nodemask_t used_mask;
2214 int local_node, prev_node;
2215 struct zonelist *zonelist;
2216 int order = current_zonelist_order;
2217
2218 /* initialize zonelists */
2219 for (i = 0; i < MAX_ZONELISTS; i++) {
2220 zonelist = pgdat->node_zonelists + i;
2221 zonelist->_zonerefs[0].zone = NULL;
2222 zonelist->_zonerefs[0].zone_idx = 0;
2223 }
2224
2225 /* NUMA-aware ordering of nodes */
2226 local_node = pgdat->node_id;
2227 load = num_online_nodes();
2228 prev_node = local_node;
2229 nodes_clear(used_mask);
2230
2231 memset(node_load, 0, sizeof(node_load));
2232 memset(node_order, 0, sizeof(node_order));
2233 j = 0;
2234
2235 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2236 int distance = node_distance(local_node, node);
2237
2238 /*
2239 * If another node is sufficiently far away then it is better
2240 * to reclaim pages in a zone before going off node.
2241 */
2242 if (distance > RECLAIM_DISTANCE)
2243 zone_reclaim_mode = 1;
2244
2245 /*
2246 * We don't want to pressure a particular node.
2247 * So adding penalty to the first node in same
2248 * distance group to make it round-robin.
2249 */
2250 if (distance != node_distance(local_node, prev_node))
2251 node_load[node] = load;
2252
2253 prev_node = node;
2254 load--;
2255 if (order == ZONELIST_ORDER_NODE)
2256 build_zonelists_in_node_order(pgdat, node);
2257 else
2258 node_order[j++] = node; /* remember order */
2259 }
2260
2261 if (order == ZONELIST_ORDER_ZONE) {
2262 /* calculate node order -- i.e., DMA last! */
2263 build_zonelists_in_zone_order(pgdat, j);
2264 }
2265
2266 build_thisnode_zonelists(pgdat);
2267 }
2268
2269 /* Construct the zonelist performance cache - see further mmzone.h */
2270 static void build_zonelist_cache(pg_data_t *pgdat)
2271 {
2272 struct zonelist *zonelist;
2273 struct zonelist_cache *zlc;
2274 struct zoneref *z;
2275
2276 zonelist = &pgdat->node_zonelists[0];
2277 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2278 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2279 for (z = zonelist->_zonerefs; z->zone; z++)
2280 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2281 }
2282
2283
2284 #else /* CONFIG_NUMA */
2285
2286 static void set_zonelist_order(void)
2287 {
2288 current_zonelist_order = ZONELIST_ORDER_ZONE;
2289 }
2290
2291 static void build_zonelists(pg_data_t *pgdat)
2292 {
2293 int node, local_node;
2294 enum zone_type j;
2295 struct zonelist *zonelist;
2296
2297 local_node = pgdat->node_id;
2298
2299 zonelist = &pgdat->node_zonelists[0];
2300 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2301
2302 /*
2303 * Now we build the zonelist so that it contains the zones
2304 * of all the other nodes.
2305 * We don't want to pressure a particular node, so when
2306 * building the zones for node N, we make sure that the
2307 * zones coming right after the local ones are those from
2308 * node N+1 (modulo N)
2309 */
2310 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2311 if (!node_online(node))
2312 continue;
2313 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2314 MAX_NR_ZONES - 1);
2315 }
2316 for (node = 0; node < local_node; node++) {
2317 if (!node_online(node))
2318 continue;
2319 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2320 MAX_NR_ZONES - 1);
2321 }
2322
2323 zonelist->_zonerefs[j].zone = NULL;
2324 zonelist->_zonerefs[j].zone_idx = 0;
2325 }
2326
2327 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2328 static void build_zonelist_cache(pg_data_t *pgdat)
2329 {
2330 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2331 }
2332
2333 #endif /* CONFIG_NUMA */
2334
2335 /* return values int ....just for stop_machine_run() */
2336 static int __build_all_zonelists(void *dummy)
2337 {
2338 int nid;
2339
2340 for_each_online_node(nid) {
2341 pg_data_t *pgdat = NODE_DATA(nid);
2342
2343 build_zonelists(pgdat);
2344 build_zonelist_cache(pgdat);
2345 }
2346 return 0;
2347 }
2348
2349 void build_all_zonelists(void)
2350 {
2351 set_zonelist_order();
2352
2353 if (system_state == SYSTEM_BOOTING) {
2354 __build_all_zonelists(NULL);
2355 cpuset_init_current_mems_allowed();
2356 } else {
2357 /* we have to stop all cpus to guarantee there is no user
2358 of zonelist */
2359 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2360 /* cpuset refresh routine should be here */
2361 }
2362 vm_total_pages = nr_free_pagecache_pages();
2363 /*
2364 * Disable grouping by mobility if the number of pages in the
2365 * system is too low to allow the mechanism to work. It would be
2366 * more accurate, but expensive to check per-zone. This check is
2367 * made on memory-hotadd so a system can start with mobility
2368 * disabled and enable it later
2369 */
2370 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2371 page_group_by_mobility_disabled = 1;
2372 else
2373 page_group_by_mobility_disabled = 0;
2374
2375 printk("Built %i zonelists in %s order, mobility grouping %s. "
2376 "Total pages: %ld\n",
2377 num_online_nodes(),
2378 zonelist_order_name[current_zonelist_order],
2379 page_group_by_mobility_disabled ? "off" : "on",
2380 vm_total_pages);
2381 #ifdef CONFIG_NUMA
2382 printk("Policy zone: %s\n", zone_names[policy_zone]);
2383 #endif
2384 }
2385
2386 /*
2387 * Helper functions to size the waitqueue hash table.
2388 * Essentially these want to choose hash table sizes sufficiently
2389 * large so that collisions trying to wait on pages are rare.
2390 * But in fact, the number of active page waitqueues on typical
2391 * systems is ridiculously low, less than 200. So this is even
2392 * conservative, even though it seems large.
2393 *
2394 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2395 * waitqueues, i.e. the size of the waitq table given the number of pages.
2396 */
2397 #define PAGES_PER_WAITQUEUE 256
2398
2399 #ifndef CONFIG_MEMORY_HOTPLUG
2400 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2401 {
2402 unsigned long size = 1;
2403
2404 pages /= PAGES_PER_WAITQUEUE;
2405
2406 while (size < pages)
2407 size <<= 1;
2408
2409 /*
2410 * Once we have dozens or even hundreds of threads sleeping
2411 * on IO we've got bigger problems than wait queue collision.
2412 * Limit the size of the wait table to a reasonable size.
2413 */
2414 size = min(size, 4096UL);
2415
2416 return max(size, 4UL);
2417 }
2418 #else
2419 /*
2420 * A zone's size might be changed by hot-add, so it is not possible to determine
2421 * a suitable size for its wait_table. So we use the maximum size now.
2422 *
2423 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2424 *
2425 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2426 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2427 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2428 *
2429 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2430 * or more by the traditional way. (See above). It equals:
2431 *
2432 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2433 * ia64(16K page size) : = ( 8G + 4M)byte.
2434 * powerpc (64K page size) : = (32G +16M)byte.
2435 */
2436 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2437 {
2438 return 4096UL;
2439 }
2440 #endif
2441
2442 /*
2443 * This is an integer logarithm so that shifts can be used later
2444 * to extract the more random high bits from the multiplicative
2445 * hash function before the remainder is taken.
2446 */
2447 static inline unsigned long wait_table_bits(unsigned long size)
2448 {
2449 return ffz(~size);
2450 }
2451
2452 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2453
2454 /*
2455 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2456 * of blocks reserved is based on zone->pages_min. The memory within the
2457 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2458 * higher will lead to a bigger reserve which will get freed as contiguous
2459 * blocks as reclaim kicks in
2460 */
2461 static void setup_zone_migrate_reserve(struct zone *zone)
2462 {
2463 unsigned long start_pfn, pfn, end_pfn;
2464 struct page *page;
2465 unsigned long reserve, block_migratetype;
2466
2467 /* Get the start pfn, end pfn and the number of blocks to reserve */
2468 start_pfn = zone->zone_start_pfn;
2469 end_pfn = start_pfn + zone->spanned_pages;
2470 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2471 pageblock_order;
2472
2473 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2474 if (!pfn_valid(pfn))
2475 continue;
2476 page = pfn_to_page(pfn);
2477
2478 /* Blocks with reserved pages will never free, skip them. */
2479 if (PageReserved(page))
2480 continue;
2481
2482 block_migratetype = get_pageblock_migratetype(page);
2483
2484 /* If this block is reserved, account for it */
2485 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2486 reserve--;
2487 continue;
2488 }
2489
2490 /* Suitable for reserving if this block is movable */
2491 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2492 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2493 move_freepages_block(zone, page, MIGRATE_RESERVE);
2494 reserve--;
2495 continue;
2496 }
2497
2498 /*
2499 * If the reserve is met and this is a previous reserved block,
2500 * take it back
2501 */
2502 if (block_migratetype == MIGRATE_RESERVE) {
2503 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2504 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2505 }
2506 }
2507 }
2508
2509 /*
2510 * Initially all pages are reserved - free ones are freed
2511 * up by free_all_bootmem() once the early boot process is
2512 * done. Non-atomic initialization, single-pass.
2513 */
2514 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2515 unsigned long start_pfn, enum memmap_context context)
2516 {
2517 struct page *page;
2518 unsigned long end_pfn = start_pfn + size;
2519 unsigned long pfn;
2520 struct zone *z;
2521
2522 z = &NODE_DATA(nid)->node_zones[zone];
2523 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2524 /*
2525 * There can be holes in boot-time mem_map[]s
2526 * handed to this function. They do not
2527 * exist on hotplugged memory.
2528 */
2529 if (context == MEMMAP_EARLY) {
2530 if (!early_pfn_valid(pfn))
2531 continue;
2532 if (!early_pfn_in_nid(pfn, nid))
2533 continue;
2534 }
2535 page = pfn_to_page(pfn);
2536 set_page_links(page, zone, nid, pfn);
2537 init_page_count(page);
2538 reset_page_mapcount(page);
2539 SetPageReserved(page);
2540 /*
2541 * Mark the block movable so that blocks are reserved for
2542 * movable at startup. This will force kernel allocations
2543 * to reserve their blocks rather than leaking throughout
2544 * the address space during boot when many long-lived
2545 * kernel allocations are made. Later some blocks near
2546 * the start are marked MIGRATE_RESERVE by
2547 * setup_zone_migrate_reserve()
2548 *
2549 * bitmap is created for zone's valid pfn range. but memmap
2550 * can be created for invalid pages (for alignment)
2551 * check here not to call set_pageblock_migratetype() against
2552 * pfn out of zone.
2553 */
2554 if ((z->zone_start_pfn <= pfn)
2555 && (pfn < z->zone_start_pfn + z->spanned_pages)
2556 && !(pfn & (pageblock_nr_pages - 1)))
2557 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2558
2559 INIT_LIST_HEAD(&page->lru);
2560 #ifdef WANT_PAGE_VIRTUAL
2561 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2562 if (!is_highmem_idx(zone))
2563 set_page_address(page, __va(pfn << PAGE_SHIFT));
2564 #endif
2565 }
2566 }
2567
2568 static void __meminit zone_init_free_lists(struct zone *zone)
2569 {
2570 int order, t;
2571 for_each_migratetype_order(order, t) {
2572 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2573 zone->free_area[order].nr_free = 0;
2574 }
2575 }
2576
2577 #ifndef __HAVE_ARCH_MEMMAP_INIT
2578 #define memmap_init(size, nid, zone, start_pfn) \
2579 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2580 #endif
2581
2582 static int zone_batchsize(struct zone *zone)
2583 {
2584 int batch;
2585
2586 /*
2587 * The per-cpu-pages pools are set to around 1000th of the
2588 * size of the zone. But no more than 1/2 of a meg.
2589 *
2590 * OK, so we don't know how big the cache is. So guess.
2591 */
2592 batch = zone->present_pages / 1024;
2593 if (batch * PAGE_SIZE > 512 * 1024)
2594 batch = (512 * 1024) / PAGE_SIZE;
2595 batch /= 4; /* We effectively *= 4 below */
2596 if (batch < 1)
2597 batch = 1;
2598
2599 /*
2600 * Clamp the batch to a 2^n - 1 value. Having a power
2601 * of 2 value was found to be more likely to have
2602 * suboptimal cache aliasing properties in some cases.
2603 *
2604 * For example if 2 tasks are alternately allocating
2605 * batches of pages, one task can end up with a lot
2606 * of pages of one half of the possible page colors
2607 * and the other with pages of the other colors.
2608 */
2609 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2610
2611 return batch;
2612 }
2613
2614 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2615 {
2616 struct per_cpu_pages *pcp;
2617
2618 memset(p, 0, sizeof(*p));
2619
2620 pcp = &p->pcp;
2621 pcp->count = 0;
2622 pcp->high = 6 * batch;
2623 pcp->batch = max(1UL, 1 * batch);
2624 INIT_LIST_HEAD(&pcp->list);
2625 }
2626
2627 /*
2628 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2629 * to the value high for the pageset p.
2630 */
2631
2632 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2633 unsigned long high)
2634 {
2635 struct per_cpu_pages *pcp;
2636
2637 pcp = &p->pcp;
2638 pcp->high = high;
2639 pcp->batch = max(1UL, high/4);
2640 if ((high/4) > (PAGE_SHIFT * 8))
2641 pcp->batch = PAGE_SHIFT * 8;
2642 }
2643
2644
2645 #ifdef CONFIG_NUMA
2646 /*
2647 * Boot pageset table. One per cpu which is going to be used for all
2648 * zones and all nodes. The parameters will be set in such a way
2649 * that an item put on a list will immediately be handed over to
2650 * the buddy list. This is safe since pageset manipulation is done
2651 * with interrupts disabled.
2652 *
2653 * Some NUMA counter updates may also be caught by the boot pagesets.
2654 *
2655 * The boot_pagesets must be kept even after bootup is complete for
2656 * unused processors and/or zones. They do play a role for bootstrapping
2657 * hotplugged processors.
2658 *
2659 * zoneinfo_show() and maybe other functions do
2660 * not check if the processor is online before following the pageset pointer.
2661 * Other parts of the kernel may not check if the zone is available.
2662 */
2663 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2664
2665 /*
2666 * Dynamically allocate memory for the
2667 * per cpu pageset array in struct zone.
2668 */
2669 static int __cpuinit process_zones(int cpu)
2670 {
2671 struct zone *zone, *dzone;
2672 int node = cpu_to_node(cpu);
2673
2674 node_set_state(node, N_CPU); /* this node has a cpu */
2675
2676 for_each_zone(zone) {
2677
2678 if (!populated_zone(zone))
2679 continue;
2680
2681 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2682 GFP_KERNEL, node);
2683 if (!zone_pcp(zone, cpu))
2684 goto bad;
2685
2686 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2687
2688 if (percpu_pagelist_fraction)
2689 setup_pagelist_highmark(zone_pcp(zone, cpu),
2690 (zone->present_pages / percpu_pagelist_fraction));
2691 }
2692
2693 return 0;
2694 bad:
2695 for_each_zone(dzone) {
2696 if (!populated_zone(dzone))
2697 continue;
2698 if (dzone == zone)
2699 break;
2700 kfree(zone_pcp(dzone, cpu));
2701 zone_pcp(dzone, cpu) = NULL;
2702 }
2703 return -ENOMEM;
2704 }
2705
2706 static inline void free_zone_pagesets(int cpu)
2707 {
2708 struct zone *zone;
2709
2710 for_each_zone(zone) {
2711 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2712
2713 /* Free per_cpu_pageset if it is slab allocated */
2714 if (pset != &boot_pageset[cpu])
2715 kfree(pset);
2716 zone_pcp(zone, cpu) = NULL;
2717 }
2718 }
2719
2720 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2721 unsigned long action,
2722 void *hcpu)
2723 {
2724 int cpu = (long)hcpu;
2725 int ret = NOTIFY_OK;
2726
2727 switch (action) {
2728 case CPU_UP_PREPARE:
2729 case CPU_UP_PREPARE_FROZEN:
2730 if (process_zones(cpu))
2731 ret = NOTIFY_BAD;
2732 break;
2733 case CPU_UP_CANCELED:
2734 case CPU_UP_CANCELED_FROZEN:
2735 case CPU_DEAD:
2736 case CPU_DEAD_FROZEN:
2737 free_zone_pagesets(cpu);
2738 break;
2739 default:
2740 break;
2741 }
2742 return ret;
2743 }
2744
2745 static struct notifier_block __cpuinitdata pageset_notifier =
2746 { &pageset_cpuup_callback, NULL, 0 };
2747
2748 void __init setup_per_cpu_pageset(void)
2749 {
2750 int err;
2751
2752 /* Initialize per_cpu_pageset for cpu 0.
2753 * A cpuup callback will do this for every cpu
2754 * as it comes online
2755 */
2756 err = process_zones(smp_processor_id());
2757 BUG_ON(err);
2758 register_cpu_notifier(&pageset_notifier);
2759 }
2760
2761 #endif
2762
2763 static noinline __init_refok
2764 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2765 {
2766 int i;
2767 struct pglist_data *pgdat = zone->zone_pgdat;
2768 size_t alloc_size;
2769
2770 /*
2771 * The per-page waitqueue mechanism uses hashed waitqueues
2772 * per zone.
2773 */
2774 zone->wait_table_hash_nr_entries =
2775 wait_table_hash_nr_entries(zone_size_pages);
2776 zone->wait_table_bits =
2777 wait_table_bits(zone->wait_table_hash_nr_entries);
2778 alloc_size = zone->wait_table_hash_nr_entries
2779 * sizeof(wait_queue_head_t);
2780
2781 if (!slab_is_available()) {
2782 zone->wait_table = (wait_queue_head_t *)
2783 alloc_bootmem_node(pgdat, alloc_size);
2784 } else {
2785 /*
2786 * This case means that a zone whose size was 0 gets new memory
2787 * via memory hot-add.
2788 * But it may be the case that a new node was hot-added. In
2789 * this case vmalloc() will not be able to use this new node's
2790 * memory - this wait_table must be initialized to use this new
2791 * node itself as well.
2792 * To use this new node's memory, further consideration will be
2793 * necessary.
2794 */
2795 zone->wait_table = vmalloc(alloc_size);
2796 }
2797 if (!zone->wait_table)
2798 return -ENOMEM;
2799
2800 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2801 init_waitqueue_head(zone->wait_table + i);
2802
2803 return 0;
2804 }
2805
2806 static __meminit void zone_pcp_init(struct zone *zone)
2807 {
2808 int cpu;
2809 unsigned long batch = zone_batchsize(zone);
2810
2811 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2812 #ifdef CONFIG_NUMA
2813 /* Early boot. Slab allocator not functional yet */
2814 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2815 setup_pageset(&boot_pageset[cpu],0);
2816 #else
2817 setup_pageset(zone_pcp(zone,cpu), batch);
2818 #endif
2819 }
2820 if (zone->present_pages)
2821 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2822 zone->name, zone->present_pages, batch);
2823 }
2824
2825 __meminit int init_currently_empty_zone(struct zone *zone,
2826 unsigned long zone_start_pfn,
2827 unsigned long size,
2828 enum memmap_context context)
2829 {
2830 struct pglist_data *pgdat = zone->zone_pgdat;
2831 int ret;
2832 ret = zone_wait_table_init(zone, size);
2833 if (ret)
2834 return ret;
2835 pgdat->nr_zones = zone_idx(zone) + 1;
2836
2837 zone->zone_start_pfn = zone_start_pfn;
2838
2839 zone_init_free_lists(zone);
2840
2841 return 0;
2842 }
2843
2844 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2845 /*
2846 * Basic iterator support. Return the first range of PFNs for a node
2847 * Note: nid == MAX_NUMNODES returns first region regardless of node
2848 */
2849 static int __meminit first_active_region_index_in_nid(int nid)
2850 {
2851 int i;
2852
2853 for (i = 0; i < nr_nodemap_entries; i++)
2854 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2855 return i;
2856
2857 return -1;
2858 }
2859
2860 /*
2861 * Basic iterator support. Return the next active range of PFNs for a node
2862 * Note: nid == MAX_NUMNODES returns next region regardless of node
2863 */
2864 static int __meminit next_active_region_index_in_nid(int index, int nid)
2865 {
2866 for (index = index + 1; index < nr_nodemap_entries; index++)
2867 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2868 return index;
2869
2870 return -1;
2871 }
2872
2873 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2874 /*
2875 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2876 * Architectures may implement their own version but if add_active_range()
2877 * was used and there are no special requirements, this is a convenient
2878 * alternative
2879 */
2880 int __meminit early_pfn_to_nid(unsigned long pfn)
2881 {
2882 int i;
2883
2884 for (i = 0; i < nr_nodemap_entries; i++) {
2885 unsigned long start_pfn = early_node_map[i].start_pfn;
2886 unsigned long end_pfn = early_node_map[i].end_pfn;
2887
2888 if (start_pfn <= pfn && pfn < end_pfn)
2889 return early_node_map[i].nid;
2890 }
2891
2892 return 0;
2893 }
2894 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2895
2896 /* Basic iterator support to walk early_node_map[] */
2897 #define for_each_active_range_index_in_nid(i, nid) \
2898 for (i = first_active_region_index_in_nid(nid); i != -1; \
2899 i = next_active_region_index_in_nid(i, nid))
2900
2901 /**
2902 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2903 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2904 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2905 *
2906 * If an architecture guarantees that all ranges registered with
2907 * add_active_ranges() contain no holes and may be freed, this
2908 * this function may be used instead of calling free_bootmem() manually.
2909 */
2910 void __init free_bootmem_with_active_regions(int nid,
2911 unsigned long max_low_pfn)
2912 {
2913 int i;
2914
2915 for_each_active_range_index_in_nid(i, nid) {
2916 unsigned long size_pages = 0;
2917 unsigned long end_pfn = early_node_map[i].end_pfn;
2918
2919 if (early_node_map[i].start_pfn >= max_low_pfn)
2920 continue;
2921
2922 if (end_pfn > max_low_pfn)
2923 end_pfn = max_low_pfn;
2924
2925 size_pages = end_pfn - early_node_map[i].start_pfn;
2926 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2927 PFN_PHYS(early_node_map[i].start_pfn),
2928 size_pages << PAGE_SHIFT);
2929 }
2930 }
2931
2932 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
2933 {
2934 int i;
2935
2936 for_each_active_range_index_in_nid(i, nid)
2937 work_fn(early_node_map[i].start_pfn, early_node_map[i].end_pfn,
2938 data);
2939 }
2940 /**
2941 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2942 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2943 *
2944 * If an architecture guarantees that all ranges registered with
2945 * add_active_ranges() contain no holes and may be freed, this
2946 * function may be used instead of calling memory_present() manually.
2947 */
2948 void __init sparse_memory_present_with_active_regions(int nid)
2949 {
2950 int i;
2951
2952 for_each_active_range_index_in_nid(i, nid)
2953 memory_present(early_node_map[i].nid,
2954 early_node_map[i].start_pfn,
2955 early_node_map[i].end_pfn);
2956 }
2957
2958 /**
2959 * push_node_boundaries - Push node boundaries to at least the requested boundary
2960 * @nid: The nid of the node to push the boundary for
2961 * @start_pfn: The start pfn of the node
2962 * @end_pfn: The end pfn of the node
2963 *
2964 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2965 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2966 * be hotplugged even though no physical memory exists. This function allows
2967 * an arch to push out the node boundaries so mem_map is allocated that can
2968 * be used later.
2969 */
2970 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2971 void __init push_node_boundaries(unsigned int nid,
2972 unsigned long start_pfn, unsigned long end_pfn)
2973 {
2974 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2975 nid, start_pfn, end_pfn);
2976
2977 /* Initialise the boundary for this node if necessary */
2978 if (node_boundary_end_pfn[nid] == 0)
2979 node_boundary_start_pfn[nid] = -1UL;
2980
2981 /* Update the boundaries */
2982 if (node_boundary_start_pfn[nid] > start_pfn)
2983 node_boundary_start_pfn[nid] = start_pfn;
2984 if (node_boundary_end_pfn[nid] < end_pfn)
2985 node_boundary_end_pfn[nid] = end_pfn;
2986 }
2987
2988 /* If necessary, push the node boundary out for reserve hotadd */
2989 static void __meminit account_node_boundary(unsigned int nid,
2990 unsigned long *start_pfn, unsigned long *end_pfn)
2991 {
2992 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2993 nid, *start_pfn, *end_pfn);
2994
2995 /* Return if boundary information has not been provided */
2996 if (node_boundary_end_pfn[nid] == 0)
2997 return;
2998
2999 /* Check the boundaries and update if necessary */
3000 if (node_boundary_start_pfn[nid] < *start_pfn)
3001 *start_pfn = node_boundary_start_pfn[nid];
3002 if (node_boundary_end_pfn[nid] > *end_pfn)
3003 *end_pfn = node_boundary_end_pfn[nid];
3004 }
3005 #else
3006 void __init push_node_boundaries(unsigned int nid,
3007 unsigned long start_pfn, unsigned long end_pfn) {}
3008
3009 static void __meminit account_node_boundary(unsigned int nid,
3010 unsigned long *start_pfn, unsigned long *end_pfn) {}
3011 #endif
3012
3013
3014 /**
3015 * get_pfn_range_for_nid - Return the start and end page frames for a node
3016 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3017 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3018 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3019 *
3020 * It returns the start and end page frame of a node based on information
3021 * provided by an arch calling add_active_range(). If called for a node
3022 * with no available memory, a warning is printed and the start and end
3023 * PFNs will be 0.
3024 */
3025 void __meminit get_pfn_range_for_nid(unsigned int nid,
3026 unsigned long *start_pfn, unsigned long *end_pfn)
3027 {
3028 int i;
3029 *start_pfn = -1UL;
3030 *end_pfn = 0;
3031
3032 for_each_active_range_index_in_nid(i, nid) {
3033 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3034 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3035 }
3036
3037 if (*start_pfn == -1UL)
3038 *start_pfn = 0;
3039
3040 /* Push the node boundaries out if requested */
3041 account_node_boundary(nid, start_pfn, end_pfn);
3042 }
3043
3044 /*
3045 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3046 * assumption is made that zones within a node are ordered in monotonic
3047 * increasing memory addresses so that the "highest" populated zone is used
3048 */
3049 void __init find_usable_zone_for_movable(void)
3050 {
3051 int zone_index;
3052 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3053 if (zone_index == ZONE_MOVABLE)
3054 continue;
3055
3056 if (arch_zone_highest_possible_pfn[zone_index] >
3057 arch_zone_lowest_possible_pfn[zone_index])
3058 break;
3059 }
3060
3061 VM_BUG_ON(zone_index == -1);
3062 movable_zone = zone_index;
3063 }
3064
3065 /*
3066 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3067 * because it is sized independant of architecture. Unlike the other zones,
3068 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3069 * in each node depending on the size of each node and how evenly kernelcore
3070 * is distributed. This helper function adjusts the zone ranges
3071 * provided by the architecture for a given node by using the end of the
3072 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3073 * zones within a node are in order of monotonic increases memory addresses
3074 */
3075 void __meminit adjust_zone_range_for_zone_movable(int nid,
3076 unsigned long zone_type,
3077 unsigned long node_start_pfn,
3078 unsigned long node_end_pfn,
3079 unsigned long *zone_start_pfn,
3080 unsigned long *zone_end_pfn)
3081 {
3082 /* Only adjust if ZONE_MOVABLE is on this node */
3083 if (zone_movable_pfn[nid]) {
3084 /* Size ZONE_MOVABLE */
3085 if (zone_type == ZONE_MOVABLE) {
3086 *zone_start_pfn = zone_movable_pfn[nid];
3087 *zone_end_pfn = min(node_end_pfn,
3088 arch_zone_highest_possible_pfn[movable_zone]);
3089
3090 /* Adjust for ZONE_MOVABLE starting within this range */
3091 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3092 *zone_end_pfn > zone_movable_pfn[nid]) {
3093 *zone_end_pfn = zone_movable_pfn[nid];
3094
3095 /* Check if this whole range is within ZONE_MOVABLE */
3096 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3097 *zone_start_pfn = *zone_end_pfn;
3098 }
3099 }
3100
3101 /*
3102 * Return the number of pages a zone spans in a node, including holes
3103 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3104 */
3105 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3106 unsigned long zone_type,
3107 unsigned long *ignored)
3108 {
3109 unsigned long node_start_pfn, node_end_pfn;
3110 unsigned long zone_start_pfn, zone_end_pfn;
3111
3112 /* Get the start and end of the node and zone */
3113 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3114 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3115 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3116 adjust_zone_range_for_zone_movable(nid, zone_type,
3117 node_start_pfn, node_end_pfn,
3118 &zone_start_pfn, &zone_end_pfn);
3119
3120 /* Check that this node has pages within the zone's required range */
3121 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3122 return 0;
3123
3124 /* Move the zone boundaries inside the node if necessary */
3125 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3126 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3127
3128 /* Return the spanned pages */
3129 return zone_end_pfn - zone_start_pfn;
3130 }
3131
3132 /*
3133 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3134 * then all holes in the requested range will be accounted for.
3135 */
3136 unsigned long __meminit __absent_pages_in_range(int nid,
3137 unsigned long range_start_pfn,
3138 unsigned long range_end_pfn)
3139 {
3140 int i = 0;
3141 unsigned long prev_end_pfn = 0, hole_pages = 0;
3142 unsigned long start_pfn;
3143
3144 /* Find the end_pfn of the first active range of pfns in the node */
3145 i = first_active_region_index_in_nid(nid);
3146 if (i == -1)
3147 return 0;
3148
3149 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3150
3151 /* Account for ranges before physical memory on this node */
3152 if (early_node_map[i].start_pfn > range_start_pfn)
3153 hole_pages = prev_end_pfn - range_start_pfn;
3154
3155 /* Find all holes for the zone within the node */
3156 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3157
3158 /* No need to continue if prev_end_pfn is outside the zone */
3159 if (prev_end_pfn >= range_end_pfn)
3160 break;
3161
3162 /* Make sure the end of the zone is not within the hole */
3163 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3164 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3165
3166 /* Update the hole size cound and move on */
3167 if (start_pfn > range_start_pfn) {
3168 BUG_ON(prev_end_pfn > start_pfn);
3169 hole_pages += start_pfn - prev_end_pfn;
3170 }
3171 prev_end_pfn = early_node_map[i].end_pfn;
3172 }
3173
3174 /* Account for ranges past physical memory on this node */
3175 if (range_end_pfn > prev_end_pfn)
3176 hole_pages += range_end_pfn -
3177 max(range_start_pfn, prev_end_pfn);
3178
3179 return hole_pages;
3180 }
3181
3182 /**
3183 * absent_pages_in_range - Return number of page frames in holes within a range
3184 * @start_pfn: The start PFN to start searching for holes
3185 * @end_pfn: The end PFN to stop searching for holes
3186 *
3187 * It returns the number of pages frames in memory holes within a range.
3188 */
3189 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3190 unsigned long end_pfn)
3191 {
3192 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3193 }
3194
3195 /* Return the number of page frames in holes in a zone on a node */
3196 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3197 unsigned long zone_type,
3198 unsigned long *ignored)
3199 {
3200 unsigned long node_start_pfn, node_end_pfn;
3201 unsigned long zone_start_pfn, zone_end_pfn;
3202
3203 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3204 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3205 node_start_pfn);
3206 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3207 node_end_pfn);
3208
3209 adjust_zone_range_for_zone_movable(nid, zone_type,
3210 node_start_pfn, node_end_pfn,
3211 &zone_start_pfn, &zone_end_pfn);
3212 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3213 }
3214
3215 #else
3216 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3217 unsigned long zone_type,
3218 unsigned long *zones_size)
3219 {
3220 return zones_size[zone_type];
3221 }
3222
3223 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3224 unsigned long zone_type,
3225 unsigned long *zholes_size)
3226 {
3227 if (!zholes_size)
3228 return 0;
3229
3230 return zholes_size[zone_type];
3231 }
3232
3233 #endif
3234
3235 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3236 unsigned long *zones_size, unsigned long *zholes_size)
3237 {
3238 unsigned long realtotalpages, totalpages = 0;
3239 enum zone_type i;
3240
3241 for (i = 0; i < MAX_NR_ZONES; i++)
3242 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3243 zones_size);
3244 pgdat->node_spanned_pages = totalpages;
3245
3246 realtotalpages = totalpages;
3247 for (i = 0; i < MAX_NR_ZONES; i++)
3248 realtotalpages -=
3249 zone_absent_pages_in_node(pgdat->node_id, i,
3250 zholes_size);
3251 pgdat->node_present_pages = realtotalpages;
3252 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3253 realtotalpages);
3254 }
3255
3256 #ifndef CONFIG_SPARSEMEM
3257 /*
3258 * Calculate the size of the zone->blockflags rounded to an unsigned long
3259 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3260 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3261 * round what is now in bits to nearest long in bits, then return it in
3262 * bytes.
3263 */
3264 static unsigned long __init usemap_size(unsigned long zonesize)
3265 {
3266 unsigned long usemapsize;
3267
3268 usemapsize = roundup(zonesize, pageblock_nr_pages);
3269 usemapsize = usemapsize >> pageblock_order;
3270 usemapsize *= NR_PAGEBLOCK_BITS;
3271 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3272
3273 return usemapsize / 8;
3274 }
3275
3276 static void __init setup_usemap(struct pglist_data *pgdat,
3277 struct zone *zone, unsigned long zonesize)
3278 {
3279 unsigned long usemapsize = usemap_size(zonesize);
3280 zone->pageblock_flags = NULL;
3281 if (usemapsize) {
3282 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3283 memset(zone->pageblock_flags, 0, usemapsize);
3284 }
3285 }
3286 #else
3287 static void inline setup_usemap(struct pglist_data *pgdat,
3288 struct zone *zone, unsigned long zonesize) {}
3289 #endif /* CONFIG_SPARSEMEM */
3290
3291 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3292
3293 /* Return a sensible default order for the pageblock size. */
3294 static inline int pageblock_default_order(void)
3295 {
3296 if (HPAGE_SHIFT > PAGE_SHIFT)
3297 return HUGETLB_PAGE_ORDER;
3298
3299 return MAX_ORDER-1;
3300 }
3301
3302 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3303 static inline void __init set_pageblock_order(unsigned int order)
3304 {
3305 /* Check that pageblock_nr_pages has not already been setup */
3306 if (pageblock_order)
3307 return;
3308
3309 /*
3310 * Assume the largest contiguous order of interest is a huge page.
3311 * This value may be variable depending on boot parameters on IA64
3312 */
3313 pageblock_order = order;
3314 }
3315 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3316
3317 /*
3318 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3319 * and pageblock_default_order() are unused as pageblock_order is set
3320 * at compile-time. See include/linux/pageblock-flags.h for the values of
3321 * pageblock_order based on the kernel config
3322 */
3323 static inline int pageblock_default_order(unsigned int order)
3324 {
3325 return MAX_ORDER-1;
3326 }
3327 #define set_pageblock_order(x) do {} while (0)
3328
3329 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3330
3331 /*
3332 * Set up the zone data structures:
3333 * - mark all pages reserved
3334 * - mark all memory queues empty
3335 * - clear the memory bitmaps
3336 */
3337 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3338 unsigned long *zones_size, unsigned long *zholes_size)
3339 {
3340 enum zone_type j;
3341 int nid = pgdat->node_id;
3342 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3343 int ret;
3344
3345 pgdat_resize_init(pgdat);
3346 pgdat->nr_zones = 0;
3347 init_waitqueue_head(&pgdat->kswapd_wait);
3348 pgdat->kswapd_max_order = 0;
3349
3350 for (j = 0; j < MAX_NR_ZONES; j++) {
3351 struct zone *zone = pgdat->node_zones + j;
3352 unsigned long size, realsize, memmap_pages;
3353
3354 size = zone_spanned_pages_in_node(nid, j, zones_size);
3355 realsize = size - zone_absent_pages_in_node(nid, j,
3356 zholes_size);
3357
3358 /*
3359 * Adjust realsize so that it accounts for how much memory
3360 * is used by this zone for memmap. This affects the watermark
3361 * and per-cpu initialisations
3362 */
3363 memmap_pages =
3364 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3365 if (realsize >= memmap_pages) {
3366 realsize -= memmap_pages;
3367 printk(KERN_DEBUG
3368 " %s zone: %lu pages used for memmap\n",
3369 zone_names[j], memmap_pages);
3370 } else
3371 printk(KERN_WARNING
3372 " %s zone: %lu pages exceeds realsize %lu\n",
3373 zone_names[j], memmap_pages, realsize);
3374
3375 /* Account for reserved pages */
3376 if (j == 0 && realsize > dma_reserve) {
3377 realsize -= dma_reserve;
3378 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3379 zone_names[0], dma_reserve);
3380 }
3381
3382 if (!is_highmem_idx(j))
3383 nr_kernel_pages += realsize;
3384 nr_all_pages += realsize;
3385
3386 zone->spanned_pages = size;
3387 zone->present_pages = realsize;
3388 #ifdef CONFIG_NUMA
3389 zone->node = nid;
3390 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3391 / 100;
3392 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3393 #endif
3394 zone->name = zone_names[j];
3395 spin_lock_init(&zone->lock);
3396 spin_lock_init(&zone->lru_lock);
3397 zone_seqlock_init(zone);
3398 zone->zone_pgdat = pgdat;
3399
3400 zone->prev_priority = DEF_PRIORITY;
3401
3402 zone_pcp_init(zone);
3403 INIT_LIST_HEAD(&zone->active_list);
3404 INIT_LIST_HEAD(&zone->inactive_list);
3405 zone->nr_scan_active = 0;
3406 zone->nr_scan_inactive = 0;
3407 zap_zone_vm_stats(zone);
3408 zone->flags = 0;
3409 if (!size)
3410 continue;
3411
3412 set_pageblock_order(pageblock_default_order());
3413 setup_usemap(pgdat, zone, size);
3414 ret = init_currently_empty_zone(zone, zone_start_pfn,
3415 size, MEMMAP_EARLY);
3416 BUG_ON(ret);
3417 memmap_init(size, nid, j, zone_start_pfn);
3418 zone_start_pfn += size;
3419 }
3420 }
3421
3422 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3423 {
3424 /* Skip empty nodes */
3425 if (!pgdat->node_spanned_pages)
3426 return;
3427
3428 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3429 /* ia64 gets its own node_mem_map, before this, without bootmem */
3430 if (!pgdat->node_mem_map) {
3431 unsigned long size, start, end;
3432 struct page *map;
3433
3434 /*
3435 * The zone's endpoints aren't required to be MAX_ORDER
3436 * aligned but the node_mem_map endpoints must be in order
3437 * for the buddy allocator to function correctly.
3438 */
3439 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3440 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3441 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3442 size = (end - start) * sizeof(struct page);
3443 map = alloc_remap(pgdat->node_id, size);
3444 if (!map)
3445 map = alloc_bootmem_node(pgdat, size);
3446 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3447 }
3448 #ifndef CONFIG_NEED_MULTIPLE_NODES
3449 /*
3450 * With no DISCONTIG, the global mem_map is just set as node 0's
3451 */
3452 if (pgdat == NODE_DATA(0)) {
3453 mem_map = NODE_DATA(0)->node_mem_map;
3454 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3455 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3456 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3457 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3458 }
3459 #endif
3460 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3461 }
3462
3463 void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
3464 unsigned long *zones_size, unsigned long node_start_pfn,
3465 unsigned long *zholes_size)
3466 {
3467 pgdat->node_id = nid;
3468 pgdat->node_start_pfn = node_start_pfn;
3469 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3470
3471 alloc_node_mem_map(pgdat);
3472 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3473 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3474 nid, (unsigned long)pgdat,
3475 (unsigned long)pgdat->node_mem_map);
3476 #endif
3477
3478 free_area_init_core(pgdat, zones_size, zholes_size);
3479 }
3480
3481 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3482
3483 #if MAX_NUMNODES > 1
3484 /*
3485 * Figure out the number of possible node ids.
3486 */
3487 static void __init setup_nr_node_ids(void)
3488 {
3489 unsigned int node;
3490 unsigned int highest = 0;
3491
3492 for_each_node_mask(node, node_possible_map)
3493 highest = node;
3494 nr_node_ids = highest + 1;
3495 }
3496 #else
3497 static inline void setup_nr_node_ids(void)
3498 {
3499 }
3500 #endif
3501
3502 /**
3503 * add_active_range - Register a range of PFNs backed by physical memory
3504 * @nid: The node ID the range resides on
3505 * @start_pfn: The start PFN of the available physical memory
3506 * @end_pfn: The end PFN of the available physical memory
3507 *
3508 * These ranges are stored in an early_node_map[] and later used by
3509 * free_area_init_nodes() to calculate zone sizes and holes. If the
3510 * range spans a memory hole, it is up to the architecture to ensure
3511 * the memory is not freed by the bootmem allocator. If possible
3512 * the range being registered will be merged with existing ranges.
3513 */
3514 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3515 unsigned long end_pfn)
3516 {
3517 int i;
3518
3519 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3520 "%d entries of %d used\n",
3521 nid, start_pfn, end_pfn,
3522 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3523
3524 /* Merge with existing active regions if possible */
3525 for (i = 0; i < nr_nodemap_entries; i++) {
3526 if (early_node_map[i].nid != nid)
3527 continue;
3528
3529 /* Skip if an existing region covers this new one */
3530 if (start_pfn >= early_node_map[i].start_pfn &&
3531 end_pfn <= early_node_map[i].end_pfn)
3532 return;
3533
3534 /* Merge forward if suitable */
3535 if (start_pfn <= early_node_map[i].end_pfn &&
3536 end_pfn > early_node_map[i].end_pfn) {
3537 early_node_map[i].end_pfn = end_pfn;
3538 return;
3539 }
3540
3541 /* Merge backward if suitable */
3542 if (start_pfn < early_node_map[i].end_pfn &&
3543 end_pfn >= early_node_map[i].start_pfn) {
3544 early_node_map[i].start_pfn = start_pfn;
3545 return;
3546 }
3547 }
3548
3549 /* Check that early_node_map is large enough */
3550 if (i >= MAX_ACTIVE_REGIONS) {
3551 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3552 MAX_ACTIVE_REGIONS);
3553 return;
3554 }
3555
3556 early_node_map[i].nid = nid;
3557 early_node_map[i].start_pfn = start_pfn;
3558 early_node_map[i].end_pfn = end_pfn;
3559 nr_nodemap_entries = i + 1;
3560 }
3561
3562 /**
3563 * remove_active_range - Shrink an existing registered range of PFNs
3564 * @nid: The node id the range is on that should be shrunk
3565 * @start_pfn: The new PFN of the range
3566 * @end_pfn: The new PFN of the range
3567 *
3568 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3569 * The map is kept near the end physical page range that has already been
3570 * registered. This function allows an arch to shrink an existing registered
3571 * range.
3572 */
3573 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3574 unsigned long end_pfn)
3575 {
3576 int i, j;
3577 int removed = 0;
3578
3579 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3580 nid, start_pfn, end_pfn);
3581
3582 /* Find the old active region end and shrink */
3583 for_each_active_range_index_in_nid(i, nid) {
3584 if (early_node_map[i].start_pfn >= start_pfn &&
3585 early_node_map[i].end_pfn <= end_pfn) {
3586 /* clear it */
3587 early_node_map[i].start_pfn = 0;
3588 early_node_map[i].end_pfn = 0;
3589 removed = 1;
3590 continue;
3591 }
3592 if (early_node_map[i].start_pfn < start_pfn &&
3593 early_node_map[i].end_pfn > start_pfn) {
3594 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3595 early_node_map[i].end_pfn = start_pfn;
3596 if (temp_end_pfn > end_pfn)
3597 add_active_range(nid, end_pfn, temp_end_pfn);
3598 continue;
3599 }
3600 if (early_node_map[i].start_pfn >= start_pfn &&
3601 early_node_map[i].end_pfn > end_pfn &&
3602 early_node_map[i].start_pfn < end_pfn) {
3603 early_node_map[i].start_pfn = end_pfn;
3604 continue;
3605 }
3606 }
3607
3608 if (!removed)
3609 return;
3610
3611 /* remove the blank ones */
3612 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3613 if (early_node_map[i].nid != nid)
3614 continue;
3615 if (early_node_map[i].end_pfn)
3616 continue;
3617 /* we found it, get rid of it */
3618 for (j = i; j < nr_nodemap_entries - 1; j++)
3619 memcpy(&early_node_map[j], &early_node_map[j+1],
3620 sizeof(early_node_map[j]));
3621 j = nr_nodemap_entries - 1;
3622 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3623 nr_nodemap_entries--;
3624 }
3625 }
3626
3627 /**
3628 * remove_all_active_ranges - Remove all currently registered regions
3629 *
3630 * During discovery, it may be found that a table like SRAT is invalid
3631 * and an alternative discovery method must be used. This function removes
3632 * all currently registered regions.
3633 */
3634 void __init remove_all_active_ranges(void)
3635 {
3636 memset(early_node_map, 0, sizeof(early_node_map));
3637 nr_nodemap_entries = 0;
3638 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3639 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3640 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3641 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3642 }
3643
3644 /* Compare two active node_active_regions */
3645 static int __init cmp_node_active_region(const void *a, const void *b)
3646 {
3647 struct node_active_region *arange = (struct node_active_region *)a;
3648 struct node_active_region *brange = (struct node_active_region *)b;
3649
3650 /* Done this way to avoid overflows */
3651 if (arange->start_pfn > brange->start_pfn)
3652 return 1;
3653 if (arange->start_pfn < brange->start_pfn)
3654 return -1;
3655
3656 return 0;
3657 }
3658
3659 /* sort the node_map by start_pfn */
3660 static void __init sort_node_map(void)
3661 {
3662 sort(early_node_map, (size_t)nr_nodemap_entries,
3663 sizeof(struct node_active_region),
3664 cmp_node_active_region, NULL);
3665 }
3666
3667 /* Find the lowest pfn for a node */
3668 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3669 {
3670 int i;
3671 unsigned long min_pfn = ULONG_MAX;
3672
3673 /* Assuming a sorted map, the first range found has the starting pfn */
3674 for_each_active_range_index_in_nid(i, nid)
3675 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3676
3677 if (min_pfn == ULONG_MAX) {
3678 printk(KERN_WARNING
3679 "Could not find start_pfn for node %lu\n", nid);
3680 return 0;
3681 }
3682
3683 return min_pfn;
3684 }
3685
3686 /**
3687 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3688 *
3689 * It returns the minimum PFN based on information provided via
3690 * add_active_range().
3691 */
3692 unsigned long __init find_min_pfn_with_active_regions(void)
3693 {
3694 return find_min_pfn_for_node(MAX_NUMNODES);
3695 }
3696
3697 /**
3698 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3699 *
3700 * It returns the maximum PFN based on information provided via
3701 * add_active_range().
3702 */
3703 unsigned long __init find_max_pfn_with_active_regions(void)
3704 {
3705 int i;
3706 unsigned long max_pfn = 0;
3707
3708 for (i = 0; i < nr_nodemap_entries; i++)
3709 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3710
3711 return max_pfn;
3712 }
3713
3714 /*
3715 * early_calculate_totalpages()
3716 * Sum pages in active regions for movable zone.
3717 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3718 */
3719 static unsigned long __init early_calculate_totalpages(void)
3720 {
3721 int i;
3722 unsigned long totalpages = 0;
3723
3724 for (i = 0; i < nr_nodemap_entries; i++) {
3725 unsigned long pages = early_node_map[i].end_pfn -
3726 early_node_map[i].start_pfn;
3727 totalpages += pages;
3728 if (pages)
3729 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3730 }
3731 return totalpages;
3732 }
3733
3734 /*
3735 * Find the PFN the Movable zone begins in each node. Kernel memory
3736 * is spread evenly between nodes as long as the nodes have enough
3737 * memory. When they don't, some nodes will have more kernelcore than
3738 * others
3739 */
3740 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3741 {
3742 int i, nid;
3743 unsigned long usable_startpfn;
3744 unsigned long kernelcore_node, kernelcore_remaining;
3745 unsigned long totalpages = early_calculate_totalpages();
3746 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3747
3748 /*
3749 * If movablecore was specified, calculate what size of
3750 * kernelcore that corresponds so that memory usable for
3751 * any allocation type is evenly spread. If both kernelcore
3752 * and movablecore are specified, then the value of kernelcore
3753 * will be used for required_kernelcore if it's greater than
3754 * what movablecore would have allowed.
3755 */
3756 if (required_movablecore) {
3757 unsigned long corepages;
3758
3759 /*
3760 * Round-up so that ZONE_MOVABLE is at least as large as what
3761 * was requested by the user
3762 */
3763 required_movablecore =
3764 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3765 corepages = totalpages - required_movablecore;
3766
3767 required_kernelcore = max(required_kernelcore, corepages);
3768 }
3769
3770 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3771 if (!required_kernelcore)
3772 return;
3773
3774 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3775 find_usable_zone_for_movable();
3776 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3777
3778 restart:
3779 /* Spread kernelcore memory as evenly as possible throughout nodes */
3780 kernelcore_node = required_kernelcore / usable_nodes;
3781 for_each_node_state(nid, N_HIGH_MEMORY) {
3782 /*
3783 * Recalculate kernelcore_node if the division per node
3784 * now exceeds what is necessary to satisfy the requested
3785 * amount of memory for the kernel
3786 */
3787 if (required_kernelcore < kernelcore_node)
3788 kernelcore_node = required_kernelcore / usable_nodes;
3789
3790 /*
3791 * As the map is walked, we track how much memory is usable
3792 * by the kernel using kernelcore_remaining. When it is
3793 * 0, the rest of the node is usable by ZONE_MOVABLE
3794 */
3795 kernelcore_remaining = kernelcore_node;
3796
3797 /* Go through each range of PFNs within this node */
3798 for_each_active_range_index_in_nid(i, nid) {
3799 unsigned long start_pfn, end_pfn;
3800 unsigned long size_pages;
3801
3802 start_pfn = max(early_node_map[i].start_pfn,
3803 zone_movable_pfn[nid]);
3804 end_pfn = early_node_map[i].end_pfn;
3805 if (start_pfn >= end_pfn)
3806 continue;
3807
3808 /* Account for what is only usable for kernelcore */
3809 if (start_pfn < usable_startpfn) {
3810 unsigned long kernel_pages;
3811 kernel_pages = min(end_pfn, usable_startpfn)
3812 - start_pfn;
3813
3814 kernelcore_remaining -= min(kernel_pages,
3815 kernelcore_remaining);
3816 required_kernelcore -= min(kernel_pages,
3817 required_kernelcore);
3818
3819 /* Continue if range is now fully accounted */
3820 if (end_pfn <= usable_startpfn) {
3821
3822 /*
3823 * Push zone_movable_pfn to the end so
3824 * that if we have to rebalance
3825 * kernelcore across nodes, we will
3826 * not double account here
3827 */
3828 zone_movable_pfn[nid] = end_pfn;
3829 continue;
3830 }
3831 start_pfn = usable_startpfn;
3832 }
3833
3834 /*
3835 * The usable PFN range for ZONE_MOVABLE is from
3836 * start_pfn->end_pfn. Calculate size_pages as the
3837 * number of pages used as kernelcore
3838 */
3839 size_pages = end_pfn - start_pfn;
3840 if (size_pages > kernelcore_remaining)
3841 size_pages = kernelcore_remaining;
3842 zone_movable_pfn[nid] = start_pfn + size_pages;
3843
3844 /*
3845 * Some kernelcore has been met, update counts and
3846 * break if the kernelcore for this node has been
3847 * satisified
3848 */
3849 required_kernelcore -= min(required_kernelcore,
3850 size_pages);
3851 kernelcore_remaining -= size_pages;
3852 if (!kernelcore_remaining)
3853 break;
3854 }
3855 }
3856
3857 /*
3858 * If there is still required_kernelcore, we do another pass with one
3859 * less node in the count. This will push zone_movable_pfn[nid] further
3860 * along on the nodes that still have memory until kernelcore is
3861 * satisified
3862 */
3863 usable_nodes--;
3864 if (usable_nodes && required_kernelcore > usable_nodes)
3865 goto restart;
3866
3867 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3868 for (nid = 0; nid < MAX_NUMNODES; nid++)
3869 zone_movable_pfn[nid] =
3870 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3871 }
3872
3873 /* Any regular memory on that node ? */
3874 static void check_for_regular_memory(pg_data_t *pgdat)
3875 {
3876 #ifdef CONFIG_HIGHMEM
3877 enum zone_type zone_type;
3878
3879 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3880 struct zone *zone = &pgdat->node_zones[zone_type];
3881 if (zone->present_pages)
3882 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3883 }
3884 #endif
3885 }
3886
3887 /**
3888 * free_area_init_nodes - Initialise all pg_data_t and zone data
3889 * @max_zone_pfn: an array of max PFNs for each zone
3890 *
3891 * This will call free_area_init_node() for each active node in the system.
3892 * Using the page ranges provided by add_active_range(), the size of each
3893 * zone in each node and their holes is calculated. If the maximum PFN
3894 * between two adjacent zones match, it is assumed that the zone is empty.
3895 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3896 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3897 * starts where the previous one ended. For example, ZONE_DMA32 starts
3898 * at arch_max_dma_pfn.
3899 */
3900 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3901 {
3902 unsigned long nid;
3903 enum zone_type i;
3904
3905 /* Sort early_node_map as initialisation assumes it is sorted */
3906 sort_node_map();
3907
3908 /* Record where the zone boundaries are */
3909 memset(arch_zone_lowest_possible_pfn, 0,
3910 sizeof(arch_zone_lowest_possible_pfn));
3911 memset(arch_zone_highest_possible_pfn, 0,
3912 sizeof(arch_zone_highest_possible_pfn));
3913 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3914 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3915 for (i = 1; i < MAX_NR_ZONES; i++) {
3916 if (i == ZONE_MOVABLE)
3917 continue;
3918 arch_zone_lowest_possible_pfn[i] =
3919 arch_zone_highest_possible_pfn[i-1];
3920 arch_zone_highest_possible_pfn[i] =
3921 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3922 }
3923 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3924 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3925
3926 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3927 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3928 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3929
3930 /* Print out the zone ranges */
3931 printk("Zone PFN ranges:\n");
3932 for (i = 0; i < MAX_NR_ZONES; i++) {
3933 if (i == ZONE_MOVABLE)
3934 continue;
3935 printk(" %-8s %8lu -> %8lu\n",
3936 zone_names[i],
3937 arch_zone_lowest_possible_pfn[i],
3938 arch_zone_highest_possible_pfn[i]);
3939 }
3940
3941 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3942 printk("Movable zone start PFN for each node\n");
3943 for (i = 0; i < MAX_NUMNODES; i++) {
3944 if (zone_movable_pfn[i])
3945 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3946 }
3947
3948 /* Print out the early_node_map[] */
3949 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3950 for (i = 0; i < nr_nodemap_entries; i++)
3951 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3952 early_node_map[i].start_pfn,
3953 early_node_map[i].end_pfn);
3954
3955 /* Initialise every node */
3956 setup_nr_node_ids();
3957 for_each_online_node(nid) {
3958 pg_data_t *pgdat = NODE_DATA(nid);
3959 free_area_init_node(nid, pgdat, NULL,
3960 find_min_pfn_for_node(nid), NULL);
3961
3962 /* Any memory on that node */
3963 if (pgdat->node_present_pages)
3964 node_set_state(nid, N_HIGH_MEMORY);
3965 check_for_regular_memory(pgdat);
3966 }
3967 }
3968
3969 static int __init cmdline_parse_core(char *p, unsigned long *core)
3970 {
3971 unsigned long long coremem;
3972 if (!p)
3973 return -EINVAL;
3974
3975 coremem = memparse(p, &p);
3976 *core = coremem >> PAGE_SHIFT;
3977
3978 /* Paranoid check that UL is enough for the coremem value */
3979 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3980
3981 return 0;
3982 }
3983
3984 /*
3985 * kernelcore=size sets the amount of memory for use for allocations that
3986 * cannot be reclaimed or migrated.
3987 */
3988 static int __init cmdline_parse_kernelcore(char *p)
3989 {
3990 return cmdline_parse_core(p, &required_kernelcore);
3991 }
3992
3993 /*
3994 * movablecore=size sets the amount of memory for use for allocations that
3995 * can be reclaimed or migrated.
3996 */
3997 static int __init cmdline_parse_movablecore(char *p)
3998 {
3999 return cmdline_parse_core(p, &required_movablecore);
4000 }
4001
4002 early_param("kernelcore", cmdline_parse_kernelcore);
4003 early_param("movablecore", cmdline_parse_movablecore);
4004
4005 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4006
4007 /**
4008 * set_dma_reserve - set the specified number of pages reserved in the first zone
4009 * @new_dma_reserve: The number of pages to mark reserved
4010 *
4011 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4012 * In the DMA zone, a significant percentage may be consumed by kernel image
4013 * and other unfreeable allocations which can skew the watermarks badly. This
4014 * function may optionally be used to account for unfreeable pages in the
4015 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4016 * smaller per-cpu batchsize.
4017 */
4018 void __init set_dma_reserve(unsigned long new_dma_reserve)
4019 {
4020 dma_reserve = new_dma_reserve;
4021 }
4022
4023 #ifndef CONFIG_NEED_MULTIPLE_NODES
4024 static bootmem_data_t contig_bootmem_data;
4025 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
4026
4027 EXPORT_SYMBOL(contig_page_data);
4028 #endif
4029
4030 void __init free_area_init(unsigned long *zones_size)
4031 {
4032 free_area_init_node(0, NODE_DATA(0), zones_size,
4033 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4034 }
4035
4036 static int page_alloc_cpu_notify(struct notifier_block *self,
4037 unsigned long action, void *hcpu)
4038 {
4039 int cpu = (unsigned long)hcpu;
4040
4041 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4042 drain_pages(cpu);
4043
4044 /*
4045 * Spill the event counters of the dead processor
4046 * into the current processors event counters.
4047 * This artificially elevates the count of the current
4048 * processor.
4049 */
4050 vm_events_fold_cpu(cpu);
4051
4052 /*
4053 * Zero the differential counters of the dead processor
4054 * so that the vm statistics are consistent.
4055 *
4056 * This is only okay since the processor is dead and cannot
4057 * race with what we are doing.
4058 */
4059 refresh_cpu_vm_stats(cpu);
4060 }
4061 return NOTIFY_OK;
4062 }
4063
4064 void __init page_alloc_init(void)
4065 {
4066 hotcpu_notifier(page_alloc_cpu_notify, 0);
4067 }
4068
4069 /*
4070 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4071 * or min_free_kbytes changes.
4072 */
4073 static void calculate_totalreserve_pages(void)
4074 {
4075 struct pglist_data *pgdat;
4076 unsigned long reserve_pages = 0;
4077 enum zone_type i, j;
4078
4079 for_each_online_pgdat(pgdat) {
4080 for (i = 0; i < MAX_NR_ZONES; i++) {
4081 struct zone *zone = pgdat->node_zones + i;
4082 unsigned long max = 0;
4083
4084 /* Find valid and maximum lowmem_reserve in the zone */
4085 for (j = i; j < MAX_NR_ZONES; j++) {
4086 if (zone->lowmem_reserve[j] > max)
4087 max = zone->lowmem_reserve[j];
4088 }
4089
4090 /* we treat pages_high as reserved pages. */
4091 max += zone->pages_high;
4092
4093 if (max > zone->present_pages)
4094 max = zone->present_pages;
4095 reserve_pages += max;
4096 }
4097 }
4098 totalreserve_pages = reserve_pages;
4099 }
4100
4101 /*
4102 * setup_per_zone_lowmem_reserve - called whenever
4103 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4104 * has a correct pages reserved value, so an adequate number of
4105 * pages are left in the zone after a successful __alloc_pages().
4106 */
4107 static void setup_per_zone_lowmem_reserve(void)
4108 {
4109 struct pglist_data *pgdat;
4110 enum zone_type j, idx;
4111
4112 for_each_online_pgdat(pgdat) {
4113 for (j = 0; j < MAX_NR_ZONES; j++) {
4114 struct zone *zone = pgdat->node_zones + j;
4115 unsigned long present_pages = zone->present_pages;
4116
4117 zone->lowmem_reserve[j] = 0;
4118
4119 idx = j;
4120 while (idx) {
4121 struct zone *lower_zone;
4122
4123 idx--;
4124
4125 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4126 sysctl_lowmem_reserve_ratio[idx] = 1;
4127
4128 lower_zone = pgdat->node_zones + idx;
4129 lower_zone->lowmem_reserve[j] = present_pages /
4130 sysctl_lowmem_reserve_ratio[idx];
4131 present_pages += lower_zone->present_pages;
4132 }
4133 }
4134 }
4135
4136 /* update totalreserve_pages */
4137 calculate_totalreserve_pages();
4138 }
4139
4140 /**
4141 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4142 *
4143 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4144 * with respect to min_free_kbytes.
4145 */
4146 void setup_per_zone_pages_min(void)
4147 {
4148 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4149 unsigned long lowmem_pages = 0;
4150 struct zone *zone;
4151 unsigned long flags;
4152
4153 /* Calculate total number of !ZONE_HIGHMEM pages */
4154 for_each_zone(zone) {
4155 if (!is_highmem(zone))
4156 lowmem_pages += zone->present_pages;
4157 }
4158
4159 for_each_zone(zone) {
4160 u64 tmp;
4161
4162 spin_lock_irqsave(&zone->lru_lock, flags);
4163 tmp = (u64)pages_min * zone->present_pages;
4164 do_div(tmp, lowmem_pages);
4165 if (is_highmem(zone)) {
4166 /*
4167 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4168 * need highmem pages, so cap pages_min to a small
4169 * value here.
4170 *
4171 * The (pages_high-pages_low) and (pages_low-pages_min)
4172 * deltas controls asynch page reclaim, and so should
4173 * not be capped for highmem.
4174 */
4175 int min_pages;
4176
4177 min_pages = zone->present_pages / 1024;
4178 if (min_pages < SWAP_CLUSTER_MAX)
4179 min_pages = SWAP_CLUSTER_MAX;
4180 if (min_pages > 128)
4181 min_pages = 128;
4182 zone->pages_min = min_pages;
4183 } else {
4184 /*
4185 * If it's a lowmem zone, reserve a number of pages
4186 * proportionate to the zone's size.
4187 */
4188 zone->pages_min = tmp;
4189 }
4190
4191 zone->pages_low = zone->pages_min + (tmp >> 2);
4192 zone->pages_high = zone->pages_min + (tmp >> 1);
4193 setup_zone_migrate_reserve(zone);
4194 spin_unlock_irqrestore(&zone->lru_lock, flags);
4195 }
4196
4197 /* update totalreserve_pages */
4198 calculate_totalreserve_pages();
4199 }
4200
4201 /*
4202 * Initialise min_free_kbytes.
4203 *
4204 * For small machines we want it small (128k min). For large machines
4205 * we want it large (64MB max). But it is not linear, because network
4206 * bandwidth does not increase linearly with machine size. We use
4207 *
4208 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4209 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4210 *
4211 * which yields
4212 *
4213 * 16MB: 512k
4214 * 32MB: 724k
4215 * 64MB: 1024k
4216 * 128MB: 1448k
4217 * 256MB: 2048k
4218 * 512MB: 2896k
4219 * 1024MB: 4096k
4220 * 2048MB: 5792k
4221 * 4096MB: 8192k
4222 * 8192MB: 11584k
4223 * 16384MB: 16384k
4224 */
4225 static int __init init_per_zone_pages_min(void)
4226 {
4227 unsigned long lowmem_kbytes;
4228
4229 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4230
4231 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4232 if (min_free_kbytes < 128)
4233 min_free_kbytes = 128;
4234 if (min_free_kbytes > 65536)
4235 min_free_kbytes = 65536;
4236 setup_per_zone_pages_min();
4237 setup_per_zone_lowmem_reserve();
4238 return 0;
4239 }
4240 module_init(init_per_zone_pages_min)
4241
4242 /*
4243 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4244 * that we can call two helper functions whenever min_free_kbytes
4245 * changes.
4246 */
4247 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4248 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4249 {
4250 proc_dointvec(table, write, file, buffer, length, ppos);
4251 if (write)
4252 setup_per_zone_pages_min();
4253 return 0;
4254 }
4255
4256 #ifdef CONFIG_NUMA
4257 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4258 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4259 {
4260 struct zone *zone;
4261 int rc;
4262
4263 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4264 if (rc)
4265 return rc;
4266
4267 for_each_zone(zone)
4268 zone->min_unmapped_pages = (zone->present_pages *
4269 sysctl_min_unmapped_ratio) / 100;
4270 return 0;
4271 }
4272
4273 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4274 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4275 {
4276 struct zone *zone;
4277 int rc;
4278
4279 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4280 if (rc)
4281 return rc;
4282
4283 for_each_zone(zone)
4284 zone->min_slab_pages = (zone->present_pages *
4285 sysctl_min_slab_ratio) / 100;
4286 return 0;
4287 }
4288 #endif
4289
4290 /*
4291 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4292 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4293 * whenever sysctl_lowmem_reserve_ratio changes.
4294 *
4295 * The reserve ratio obviously has absolutely no relation with the
4296 * pages_min watermarks. The lowmem reserve ratio can only make sense
4297 * if in function of the boot time zone sizes.
4298 */
4299 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4300 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4301 {
4302 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4303 setup_per_zone_lowmem_reserve();
4304 return 0;
4305 }
4306
4307 /*
4308 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4309 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4310 * can have before it gets flushed back to buddy allocator.
4311 */
4312
4313 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4314 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4315 {
4316 struct zone *zone;
4317 unsigned int cpu;
4318 int ret;
4319
4320 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4321 if (!write || (ret == -EINVAL))
4322 return ret;
4323 for_each_zone(zone) {
4324 for_each_online_cpu(cpu) {
4325 unsigned long high;
4326 high = zone->present_pages / percpu_pagelist_fraction;
4327 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4328 }
4329 }
4330 return 0;
4331 }
4332
4333 int hashdist = HASHDIST_DEFAULT;
4334
4335 #ifdef CONFIG_NUMA
4336 static int __init set_hashdist(char *str)
4337 {
4338 if (!str)
4339 return 0;
4340 hashdist = simple_strtoul(str, &str, 0);
4341 return 1;
4342 }
4343 __setup("hashdist=", set_hashdist);
4344 #endif
4345
4346 /*
4347 * allocate a large system hash table from bootmem
4348 * - it is assumed that the hash table must contain an exact power-of-2
4349 * quantity of entries
4350 * - limit is the number of hash buckets, not the total allocation size
4351 */
4352 void *__init alloc_large_system_hash(const char *tablename,
4353 unsigned long bucketsize,
4354 unsigned long numentries,
4355 int scale,
4356 int flags,
4357 unsigned int *_hash_shift,
4358 unsigned int *_hash_mask,
4359 unsigned long limit)
4360 {
4361 unsigned long long max = limit;
4362 unsigned long log2qty, size;
4363 void *table = NULL;
4364
4365 /* allow the kernel cmdline to have a say */
4366 if (!numentries) {
4367 /* round applicable memory size up to nearest megabyte */
4368 numentries = nr_kernel_pages;
4369 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4370 numentries >>= 20 - PAGE_SHIFT;
4371 numentries <<= 20 - PAGE_SHIFT;
4372
4373 /* limit to 1 bucket per 2^scale bytes of low memory */
4374 if (scale > PAGE_SHIFT)
4375 numentries >>= (scale - PAGE_SHIFT);
4376 else
4377 numentries <<= (PAGE_SHIFT - scale);
4378
4379 /* Make sure we've got at least a 0-order allocation.. */
4380 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4381 numentries = PAGE_SIZE / bucketsize;
4382 }
4383 numentries = roundup_pow_of_two(numentries);
4384
4385 /* limit allocation size to 1/16 total memory by default */
4386 if (max == 0) {
4387 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4388 do_div(max, bucketsize);
4389 }
4390
4391 if (numentries > max)
4392 numentries = max;
4393
4394 log2qty = ilog2(numentries);
4395
4396 do {
4397 size = bucketsize << log2qty;
4398 if (flags & HASH_EARLY)
4399 table = alloc_bootmem(size);
4400 else if (hashdist)
4401 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4402 else {
4403 unsigned long order = get_order(size);
4404 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4405 /*
4406 * If bucketsize is not a power-of-two, we may free
4407 * some pages at the end of hash table.
4408 */
4409 if (table) {
4410 unsigned long alloc_end = (unsigned long)table +
4411 (PAGE_SIZE << order);
4412 unsigned long used = (unsigned long)table +
4413 PAGE_ALIGN(size);
4414 split_page(virt_to_page(table), order);
4415 while (used < alloc_end) {
4416 free_page(used);
4417 used += PAGE_SIZE;
4418 }
4419 }
4420 }
4421 } while (!table && size > PAGE_SIZE && --log2qty);
4422
4423 if (!table)
4424 panic("Failed to allocate %s hash table\n", tablename);
4425
4426 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4427 tablename,
4428 (1U << log2qty),
4429 ilog2(size) - PAGE_SHIFT,
4430 size);
4431
4432 if (_hash_shift)
4433 *_hash_shift = log2qty;
4434 if (_hash_mask)
4435 *_hash_mask = (1 << log2qty) - 1;
4436
4437 return table;
4438 }
4439
4440 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4441 struct page *pfn_to_page(unsigned long pfn)
4442 {
4443 return __pfn_to_page(pfn);
4444 }
4445 unsigned long page_to_pfn(struct page *page)
4446 {
4447 return __page_to_pfn(page);
4448 }
4449 EXPORT_SYMBOL(pfn_to_page);
4450 EXPORT_SYMBOL(page_to_pfn);
4451 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4452
4453 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4454 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4455 unsigned long pfn)
4456 {
4457 #ifdef CONFIG_SPARSEMEM
4458 return __pfn_to_section(pfn)->pageblock_flags;
4459 #else
4460 return zone->pageblock_flags;
4461 #endif /* CONFIG_SPARSEMEM */
4462 }
4463
4464 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4465 {
4466 #ifdef CONFIG_SPARSEMEM
4467 pfn &= (PAGES_PER_SECTION-1);
4468 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4469 #else
4470 pfn = pfn - zone->zone_start_pfn;
4471 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4472 #endif /* CONFIG_SPARSEMEM */
4473 }
4474
4475 /**
4476 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4477 * @page: The page within the block of interest
4478 * @start_bitidx: The first bit of interest to retrieve
4479 * @end_bitidx: The last bit of interest
4480 * returns pageblock_bits flags
4481 */
4482 unsigned long get_pageblock_flags_group(struct page *page,
4483 int start_bitidx, int end_bitidx)
4484 {
4485 struct zone *zone;
4486 unsigned long *bitmap;
4487 unsigned long pfn, bitidx;
4488 unsigned long flags = 0;
4489 unsigned long value = 1;
4490
4491 zone = page_zone(page);
4492 pfn = page_to_pfn(page);
4493 bitmap = get_pageblock_bitmap(zone, pfn);
4494 bitidx = pfn_to_bitidx(zone, pfn);
4495
4496 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4497 if (test_bit(bitidx + start_bitidx, bitmap))
4498 flags |= value;
4499
4500 return flags;
4501 }
4502
4503 /**
4504 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4505 * @page: The page within the block of interest
4506 * @start_bitidx: The first bit of interest
4507 * @end_bitidx: The last bit of interest
4508 * @flags: The flags to set
4509 */
4510 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4511 int start_bitidx, int end_bitidx)
4512 {
4513 struct zone *zone;
4514 unsigned long *bitmap;
4515 unsigned long pfn, bitidx;
4516 unsigned long value = 1;
4517
4518 zone = page_zone(page);
4519 pfn = page_to_pfn(page);
4520 bitmap = get_pageblock_bitmap(zone, pfn);
4521 bitidx = pfn_to_bitidx(zone, pfn);
4522 VM_BUG_ON(pfn < zone->zone_start_pfn);
4523 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4524
4525 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4526 if (flags & value)
4527 __set_bit(bitidx + start_bitidx, bitmap);
4528 else
4529 __clear_bit(bitidx + start_bitidx, bitmap);
4530 }
4531
4532 /*
4533 * This is designed as sub function...plz see page_isolation.c also.
4534 * set/clear page block's type to be ISOLATE.
4535 * page allocater never alloc memory from ISOLATE block.
4536 */
4537
4538 int set_migratetype_isolate(struct page *page)
4539 {
4540 struct zone *zone;
4541 unsigned long flags;
4542 int ret = -EBUSY;
4543
4544 zone = page_zone(page);
4545 spin_lock_irqsave(&zone->lock, flags);
4546 /*
4547 * In future, more migrate types will be able to be isolation target.
4548 */
4549 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4550 goto out;
4551 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4552 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4553 ret = 0;
4554 out:
4555 spin_unlock_irqrestore(&zone->lock, flags);
4556 if (!ret)
4557 drain_all_pages();
4558 return ret;
4559 }
4560
4561 void unset_migratetype_isolate(struct page *page)
4562 {
4563 struct zone *zone;
4564 unsigned long flags;
4565 zone = page_zone(page);
4566 spin_lock_irqsave(&zone->lock, flags);
4567 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4568 goto out;
4569 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4570 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4571 out:
4572 spin_unlock_irqrestore(&zone->lock, flags);
4573 }
4574
4575 #ifdef CONFIG_MEMORY_HOTREMOVE
4576 /*
4577 * All pages in the range must be isolated before calling this.
4578 */
4579 void
4580 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4581 {
4582 struct page *page;
4583 struct zone *zone;
4584 int order, i;
4585 unsigned long pfn;
4586 unsigned long flags;
4587 /* find the first valid pfn */
4588 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4589 if (pfn_valid(pfn))
4590 break;
4591 if (pfn == end_pfn)
4592 return;
4593 zone = page_zone(pfn_to_page(pfn));
4594 spin_lock_irqsave(&zone->lock, flags);
4595 pfn = start_pfn;
4596 while (pfn < end_pfn) {
4597 if (!pfn_valid(pfn)) {
4598 pfn++;
4599 continue;
4600 }
4601 page = pfn_to_page(pfn);
4602 BUG_ON(page_count(page));
4603 BUG_ON(!PageBuddy(page));
4604 order = page_order(page);
4605 #ifdef CONFIG_DEBUG_VM
4606 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4607 pfn, 1 << order, end_pfn);
4608 #endif
4609 list_del(&page->lru);
4610 rmv_page_order(page);
4611 zone->free_area[order].nr_free--;
4612 __mod_zone_page_state(zone, NR_FREE_PAGES,
4613 - (1UL << order));
4614 for (i = 0; i < (1 << order); i++)
4615 SetPageReserved((page+i));
4616 pfn += (1 << order);
4617 }
4618 spin_unlock_irqrestore(&zone->lock, flags);
4619 }
4620 #endif