]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/page_alloc.c
Merge branch 'linus' into locking/core, to pick up fixes
[people/arne_f/kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84
85 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
86 /*
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
91 */
92 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
93 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
94 int _node_numa_mem_[MAX_NUMNODES];
95 #endif
96
97 /* work_structs for global per-cpu drains */
98 DEFINE_MUTEX(pcpu_drain_mutex);
99 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100
101 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
102 volatile unsigned long latent_entropy __latent_entropy;
103 EXPORT_SYMBOL(latent_entropy);
104 #endif
105
106 /*
107 * Array of node states.
108 */
109 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
110 [N_POSSIBLE] = NODE_MASK_ALL,
111 [N_ONLINE] = { { [0] = 1UL } },
112 #ifndef CONFIG_NUMA
113 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
114 #ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY] = { { [0] = 1UL } },
116 #endif
117 [N_MEMORY] = { { [0] = 1UL } },
118 [N_CPU] = { { [0] = 1UL } },
119 #endif /* NUMA */
120 };
121 EXPORT_SYMBOL(node_states);
122
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
125
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132
133 /*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141 static inline int get_pcppage_migratetype(struct page *page)
142 {
143 return page->index;
144 }
145
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147 {
148 page->index = migratetype;
149 }
150
151 #ifdef CONFIG_PM_SLEEP
152 /*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
160
161 static gfp_t saved_gfp_mask;
162
163 void pm_restore_gfp_mask(void)
164 {
165 WARN_ON(!mutex_is_locked(&pm_mutex));
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
170 }
171
172 void pm_restrict_gfp_mask(void)
173 {
174 WARN_ON(!mutex_is_locked(&pm_mutex));
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178 }
179
180 bool pm_suspended_storage(void)
181 {
182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 return false;
184 return true;
185 }
186 #endif /* CONFIG_PM_SLEEP */
187
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
191
192 static void __free_pages_ok(struct page *page, unsigned int order);
193
194 /*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
204 */
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
213 32,
214 #endif
215 32,
216 };
217
218 EXPORT_SYMBOL(totalram_pages);
219
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 "DMA32",
226 #endif
227 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 "HighMem",
230 #endif
231 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 "Device",
234 #endif
235 };
236
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242 #ifdef CONFIG_CMA
243 "CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247 #endif
248 };
249
250 compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258 #endif
259 };
260
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
264
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
268
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
276
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
288
289 int page_group_by_mobility_disabled __read_mostly;
290
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292 static inline void reset_deferred_meminit(pg_data_t *pgdat)
293 {
294 unsigned long max_initialise;
295 unsigned long reserved_lowmem;
296
297 /*
298 * Initialise at least 2G of a node but also take into account that
299 * two large system hashes that can take up 1GB for 0.25TB/node.
300 */
301 max_initialise = max(2UL << (30 - PAGE_SHIFT),
302 (pgdat->node_spanned_pages >> 8));
303
304 /*
305 * Compensate the all the memblock reservations (e.g. crash kernel)
306 * from the initial estimation to make sure we will initialize enough
307 * memory to boot.
308 */
309 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
310 pgdat->node_start_pfn + max_initialise);
311 max_initialise += reserved_lowmem;
312
313 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
314 pgdat->first_deferred_pfn = ULONG_MAX;
315 }
316
317 /* Returns true if the struct page for the pfn is uninitialised */
318 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
319 {
320 int nid = early_pfn_to_nid(pfn);
321
322 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
323 return true;
324
325 return false;
326 }
327
328 /*
329 * Returns false when the remaining initialisation should be deferred until
330 * later in the boot cycle when it can be parallelised.
331 */
332 static inline bool update_defer_init(pg_data_t *pgdat,
333 unsigned long pfn, unsigned long zone_end,
334 unsigned long *nr_initialised)
335 {
336 /* Always populate low zones for address-contrained allocations */
337 if (zone_end < pgdat_end_pfn(pgdat))
338 return true;
339 (*nr_initialised)++;
340 if ((*nr_initialised > pgdat->static_init_size) &&
341 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
342 pgdat->first_deferred_pfn = pfn;
343 return false;
344 }
345
346 return true;
347 }
348 #else
349 static inline void reset_deferred_meminit(pg_data_t *pgdat)
350 {
351 }
352
353 static inline bool early_page_uninitialised(unsigned long pfn)
354 {
355 return false;
356 }
357
358 static inline bool update_defer_init(pg_data_t *pgdat,
359 unsigned long pfn, unsigned long zone_end,
360 unsigned long *nr_initialised)
361 {
362 return true;
363 }
364 #endif
365
366 /* Return a pointer to the bitmap storing bits affecting a block of pages */
367 static inline unsigned long *get_pageblock_bitmap(struct page *page,
368 unsigned long pfn)
369 {
370 #ifdef CONFIG_SPARSEMEM
371 return __pfn_to_section(pfn)->pageblock_flags;
372 #else
373 return page_zone(page)->pageblock_flags;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376
377 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
378 {
379 #ifdef CONFIG_SPARSEMEM
380 pfn &= (PAGES_PER_SECTION-1);
381 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
382 #else
383 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
384 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
385 #endif /* CONFIG_SPARSEMEM */
386 }
387
388 /**
389 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
390 * @page: The page within the block of interest
391 * @pfn: The target page frame number
392 * @end_bitidx: The last bit of interest to retrieve
393 * @mask: mask of bits that the caller is interested in
394 *
395 * Return: pageblock_bits flags
396 */
397 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
398 unsigned long pfn,
399 unsigned long end_bitidx,
400 unsigned long mask)
401 {
402 unsigned long *bitmap;
403 unsigned long bitidx, word_bitidx;
404 unsigned long word;
405
406 bitmap = get_pageblock_bitmap(page, pfn);
407 bitidx = pfn_to_bitidx(page, pfn);
408 word_bitidx = bitidx / BITS_PER_LONG;
409 bitidx &= (BITS_PER_LONG-1);
410
411 word = bitmap[word_bitidx];
412 bitidx += end_bitidx;
413 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
414 }
415
416 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419 {
420 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
421 }
422
423 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
424 {
425 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
426 }
427
428 /**
429 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
430 * @page: The page within the block of interest
431 * @flags: The flags to set
432 * @pfn: The target page frame number
433 * @end_bitidx: The last bit of interest
434 * @mask: mask of bits that the caller is interested in
435 */
436 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
437 unsigned long pfn,
438 unsigned long end_bitidx,
439 unsigned long mask)
440 {
441 unsigned long *bitmap;
442 unsigned long bitidx, word_bitidx;
443 unsigned long old_word, word;
444
445 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
446
447 bitmap = get_pageblock_bitmap(page, pfn);
448 bitidx = pfn_to_bitidx(page, pfn);
449 word_bitidx = bitidx / BITS_PER_LONG;
450 bitidx &= (BITS_PER_LONG-1);
451
452 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
453
454 bitidx += end_bitidx;
455 mask <<= (BITS_PER_LONG - bitidx - 1);
456 flags <<= (BITS_PER_LONG - bitidx - 1);
457
458 word = READ_ONCE(bitmap[word_bitidx]);
459 for (;;) {
460 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
461 if (word == old_word)
462 break;
463 word = old_word;
464 }
465 }
466
467 void set_pageblock_migratetype(struct page *page, int migratetype)
468 {
469 if (unlikely(page_group_by_mobility_disabled &&
470 migratetype < MIGRATE_PCPTYPES))
471 migratetype = MIGRATE_UNMOVABLE;
472
473 set_pageblock_flags_group(page, (unsigned long)migratetype,
474 PB_migrate, PB_migrate_end);
475 }
476
477 #ifdef CONFIG_DEBUG_VM
478 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
479 {
480 int ret = 0;
481 unsigned seq;
482 unsigned long pfn = page_to_pfn(page);
483 unsigned long sp, start_pfn;
484
485 do {
486 seq = zone_span_seqbegin(zone);
487 start_pfn = zone->zone_start_pfn;
488 sp = zone->spanned_pages;
489 if (!zone_spans_pfn(zone, pfn))
490 ret = 1;
491 } while (zone_span_seqretry(zone, seq));
492
493 if (ret)
494 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
495 pfn, zone_to_nid(zone), zone->name,
496 start_pfn, start_pfn + sp);
497
498 return ret;
499 }
500
501 static int page_is_consistent(struct zone *zone, struct page *page)
502 {
503 if (!pfn_valid_within(page_to_pfn(page)))
504 return 0;
505 if (zone != page_zone(page))
506 return 0;
507
508 return 1;
509 }
510 /*
511 * Temporary debugging check for pages not lying within a given zone.
512 */
513 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
514 {
515 if (page_outside_zone_boundaries(zone, page))
516 return 1;
517 if (!page_is_consistent(zone, page))
518 return 1;
519
520 return 0;
521 }
522 #else
523 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
524 {
525 return 0;
526 }
527 #endif
528
529 static void bad_page(struct page *page, const char *reason,
530 unsigned long bad_flags)
531 {
532 static unsigned long resume;
533 static unsigned long nr_shown;
534 static unsigned long nr_unshown;
535
536 /*
537 * Allow a burst of 60 reports, then keep quiet for that minute;
538 * or allow a steady drip of one report per second.
539 */
540 if (nr_shown == 60) {
541 if (time_before(jiffies, resume)) {
542 nr_unshown++;
543 goto out;
544 }
545 if (nr_unshown) {
546 pr_alert(
547 "BUG: Bad page state: %lu messages suppressed\n",
548 nr_unshown);
549 nr_unshown = 0;
550 }
551 nr_shown = 0;
552 }
553 if (nr_shown++ == 0)
554 resume = jiffies + 60 * HZ;
555
556 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
557 current->comm, page_to_pfn(page));
558 __dump_page(page, reason);
559 bad_flags &= page->flags;
560 if (bad_flags)
561 pr_alert("bad because of flags: %#lx(%pGp)\n",
562 bad_flags, &bad_flags);
563 dump_page_owner(page);
564
565 print_modules();
566 dump_stack();
567 out:
568 /* Leave bad fields for debug, except PageBuddy could make trouble */
569 page_mapcount_reset(page); /* remove PageBuddy */
570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
571 }
572
573 /*
574 * Higher-order pages are called "compound pages". They are structured thusly:
575 *
576 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
577 *
578 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
579 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
580 *
581 * The first tail page's ->compound_dtor holds the offset in array of compound
582 * page destructors. See compound_page_dtors.
583 *
584 * The first tail page's ->compound_order holds the order of allocation.
585 * This usage means that zero-order pages may not be compound.
586 */
587
588 void free_compound_page(struct page *page)
589 {
590 __free_pages_ok(page, compound_order(page));
591 }
592
593 void prep_compound_page(struct page *page, unsigned int order)
594 {
595 int i;
596 int nr_pages = 1 << order;
597
598 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
599 set_compound_order(page, order);
600 __SetPageHead(page);
601 for (i = 1; i < nr_pages; i++) {
602 struct page *p = page + i;
603 set_page_count(p, 0);
604 p->mapping = TAIL_MAPPING;
605 set_compound_head(p, page);
606 }
607 atomic_set(compound_mapcount_ptr(page), -1);
608 }
609
610 #ifdef CONFIG_DEBUG_PAGEALLOC
611 unsigned int _debug_guardpage_minorder;
612 bool _debug_pagealloc_enabled __read_mostly
613 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
614 EXPORT_SYMBOL(_debug_pagealloc_enabled);
615 bool _debug_guardpage_enabled __read_mostly;
616
617 static int __init early_debug_pagealloc(char *buf)
618 {
619 if (!buf)
620 return -EINVAL;
621 return kstrtobool(buf, &_debug_pagealloc_enabled);
622 }
623 early_param("debug_pagealloc", early_debug_pagealloc);
624
625 static bool need_debug_guardpage(void)
626 {
627 /* If we don't use debug_pagealloc, we don't need guard page */
628 if (!debug_pagealloc_enabled())
629 return false;
630
631 if (!debug_guardpage_minorder())
632 return false;
633
634 return true;
635 }
636
637 static void init_debug_guardpage(void)
638 {
639 if (!debug_pagealloc_enabled())
640 return;
641
642 if (!debug_guardpage_minorder())
643 return;
644
645 _debug_guardpage_enabled = true;
646 }
647
648 struct page_ext_operations debug_guardpage_ops = {
649 .need = need_debug_guardpage,
650 .init = init_debug_guardpage,
651 };
652
653 static int __init debug_guardpage_minorder_setup(char *buf)
654 {
655 unsigned long res;
656
657 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
658 pr_err("Bad debug_guardpage_minorder value\n");
659 return 0;
660 }
661 _debug_guardpage_minorder = res;
662 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
663 return 0;
664 }
665 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
666
667 static inline bool set_page_guard(struct zone *zone, struct page *page,
668 unsigned int order, int migratetype)
669 {
670 struct page_ext *page_ext;
671
672 if (!debug_guardpage_enabled())
673 return false;
674
675 if (order >= debug_guardpage_minorder())
676 return false;
677
678 page_ext = lookup_page_ext(page);
679 if (unlikely(!page_ext))
680 return false;
681
682 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
683
684 INIT_LIST_HEAD(&page->lru);
685 set_page_private(page, order);
686 /* Guard pages are not available for any usage */
687 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
688
689 return true;
690 }
691
692 static inline void clear_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype)
694 {
695 struct page_ext *page_ext;
696
697 if (!debug_guardpage_enabled())
698 return;
699
700 page_ext = lookup_page_ext(page);
701 if (unlikely(!page_ext))
702 return;
703
704 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
705
706 set_page_private(page, 0);
707 if (!is_migrate_isolate(migratetype))
708 __mod_zone_freepage_state(zone, (1 << order), migratetype);
709 }
710 #else
711 struct page_ext_operations debug_guardpage_ops;
712 static inline bool set_page_guard(struct zone *zone, struct page *page,
713 unsigned int order, int migratetype) { return false; }
714 static inline void clear_page_guard(struct zone *zone, struct page *page,
715 unsigned int order, int migratetype) {}
716 #endif
717
718 static inline void set_page_order(struct page *page, unsigned int order)
719 {
720 set_page_private(page, order);
721 __SetPageBuddy(page);
722 }
723
724 static inline void rmv_page_order(struct page *page)
725 {
726 __ClearPageBuddy(page);
727 set_page_private(page, 0);
728 }
729
730 /*
731 * This function checks whether a page is free && is the buddy
732 * we can do coalesce a page and its buddy if
733 * (a) the buddy is not in a hole (check before calling!) &&
734 * (b) the buddy is in the buddy system &&
735 * (c) a page and its buddy have the same order &&
736 * (d) a page and its buddy are in the same zone.
737 *
738 * For recording whether a page is in the buddy system, we set ->_mapcount
739 * PAGE_BUDDY_MAPCOUNT_VALUE.
740 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
741 * serialized by zone->lock.
742 *
743 * For recording page's order, we use page_private(page).
744 */
745 static inline int page_is_buddy(struct page *page, struct page *buddy,
746 unsigned int order)
747 {
748 if (page_is_guard(buddy) && page_order(buddy) == order) {
749 if (page_zone_id(page) != page_zone_id(buddy))
750 return 0;
751
752 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
753
754 return 1;
755 }
756
757 if (PageBuddy(buddy) && page_order(buddy) == order) {
758 /*
759 * zone check is done late to avoid uselessly
760 * calculating zone/node ids for pages that could
761 * never merge.
762 */
763 if (page_zone_id(page) != page_zone_id(buddy))
764 return 0;
765
766 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
767
768 return 1;
769 }
770 return 0;
771 }
772
773 /*
774 * Freeing function for a buddy system allocator.
775 *
776 * The concept of a buddy system is to maintain direct-mapped table
777 * (containing bit values) for memory blocks of various "orders".
778 * The bottom level table contains the map for the smallest allocatable
779 * units of memory (here, pages), and each level above it describes
780 * pairs of units from the levels below, hence, "buddies".
781 * At a high level, all that happens here is marking the table entry
782 * at the bottom level available, and propagating the changes upward
783 * as necessary, plus some accounting needed to play nicely with other
784 * parts of the VM system.
785 * At each level, we keep a list of pages, which are heads of continuous
786 * free pages of length of (1 << order) and marked with _mapcount
787 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
788 * field.
789 * So when we are allocating or freeing one, we can derive the state of the
790 * other. That is, if we allocate a small block, and both were
791 * free, the remainder of the region must be split into blocks.
792 * If a block is freed, and its buddy is also free, then this
793 * triggers coalescing into a block of larger size.
794 *
795 * -- nyc
796 */
797
798 static inline void __free_one_page(struct page *page,
799 unsigned long pfn,
800 struct zone *zone, unsigned int order,
801 int migratetype)
802 {
803 unsigned long combined_pfn;
804 unsigned long uninitialized_var(buddy_pfn);
805 struct page *buddy;
806 unsigned int max_order;
807
808 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
809
810 VM_BUG_ON(!zone_is_initialized(zone));
811 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
812
813 VM_BUG_ON(migratetype == -1);
814 if (likely(!is_migrate_isolate(migratetype)))
815 __mod_zone_freepage_state(zone, 1 << order, migratetype);
816
817 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
818 VM_BUG_ON_PAGE(bad_range(zone, page), page);
819
820 continue_merging:
821 while (order < max_order - 1) {
822 buddy_pfn = __find_buddy_pfn(pfn, order);
823 buddy = page + (buddy_pfn - pfn);
824
825 if (!pfn_valid_within(buddy_pfn))
826 goto done_merging;
827 if (!page_is_buddy(page, buddy, order))
828 goto done_merging;
829 /*
830 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
831 * merge with it and move up one order.
832 */
833 if (page_is_guard(buddy)) {
834 clear_page_guard(zone, buddy, order, migratetype);
835 } else {
836 list_del(&buddy->lru);
837 zone->free_area[order].nr_free--;
838 rmv_page_order(buddy);
839 }
840 combined_pfn = buddy_pfn & pfn;
841 page = page + (combined_pfn - pfn);
842 pfn = combined_pfn;
843 order++;
844 }
845 if (max_order < MAX_ORDER) {
846 /* If we are here, it means order is >= pageblock_order.
847 * We want to prevent merge between freepages on isolate
848 * pageblock and normal pageblock. Without this, pageblock
849 * isolation could cause incorrect freepage or CMA accounting.
850 *
851 * We don't want to hit this code for the more frequent
852 * low-order merging.
853 */
854 if (unlikely(has_isolate_pageblock(zone))) {
855 int buddy_mt;
856
857 buddy_pfn = __find_buddy_pfn(pfn, order);
858 buddy = page + (buddy_pfn - pfn);
859 buddy_mt = get_pageblock_migratetype(buddy);
860
861 if (migratetype != buddy_mt
862 && (is_migrate_isolate(migratetype) ||
863 is_migrate_isolate(buddy_mt)))
864 goto done_merging;
865 }
866 max_order++;
867 goto continue_merging;
868 }
869
870 done_merging:
871 set_page_order(page, order);
872
873 /*
874 * If this is not the largest possible page, check if the buddy
875 * of the next-highest order is free. If it is, it's possible
876 * that pages are being freed that will coalesce soon. In case,
877 * that is happening, add the free page to the tail of the list
878 * so it's less likely to be used soon and more likely to be merged
879 * as a higher order page
880 */
881 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
882 struct page *higher_page, *higher_buddy;
883 combined_pfn = buddy_pfn & pfn;
884 higher_page = page + (combined_pfn - pfn);
885 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
886 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
887 if (pfn_valid_within(buddy_pfn) &&
888 page_is_buddy(higher_page, higher_buddy, order + 1)) {
889 list_add_tail(&page->lru,
890 &zone->free_area[order].free_list[migratetype]);
891 goto out;
892 }
893 }
894
895 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
896 out:
897 zone->free_area[order].nr_free++;
898 }
899
900 /*
901 * A bad page could be due to a number of fields. Instead of multiple branches,
902 * try and check multiple fields with one check. The caller must do a detailed
903 * check if necessary.
904 */
905 static inline bool page_expected_state(struct page *page,
906 unsigned long check_flags)
907 {
908 if (unlikely(atomic_read(&page->_mapcount) != -1))
909 return false;
910
911 if (unlikely((unsigned long)page->mapping |
912 page_ref_count(page) |
913 #ifdef CONFIG_MEMCG
914 (unsigned long)page->mem_cgroup |
915 #endif
916 (page->flags & check_flags)))
917 return false;
918
919 return true;
920 }
921
922 static void free_pages_check_bad(struct page *page)
923 {
924 const char *bad_reason;
925 unsigned long bad_flags;
926
927 bad_reason = NULL;
928 bad_flags = 0;
929
930 if (unlikely(atomic_read(&page->_mapcount) != -1))
931 bad_reason = "nonzero mapcount";
932 if (unlikely(page->mapping != NULL))
933 bad_reason = "non-NULL mapping";
934 if (unlikely(page_ref_count(page) != 0))
935 bad_reason = "nonzero _refcount";
936 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
937 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
938 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
939 }
940 #ifdef CONFIG_MEMCG
941 if (unlikely(page->mem_cgroup))
942 bad_reason = "page still charged to cgroup";
943 #endif
944 bad_page(page, bad_reason, bad_flags);
945 }
946
947 static inline int free_pages_check(struct page *page)
948 {
949 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
950 return 0;
951
952 /* Something has gone sideways, find it */
953 free_pages_check_bad(page);
954 return 1;
955 }
956
957 static int free_tail_pages_check(struct page *head_page, struct page *page)
958 {
959 int ret = 1;
960
961 /*
962 * We rely page->lru.next never has bit 0 set, unless the page
963 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
964 */
965 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
966
967 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
968 ret = 0;
969 goto out;
970 }
971 switch (page - head_page) {
972 case 1:
973 /* the first tail page: ->mapping is compound_mapcount() */
974 if (unlikely(compound_mapcount(page))) {
975 bad_page(page, "nonzero compound_mapcount", 0);
976 goto out;
977 }
978 break;
979 case 2:
980 /*
981 * the second tail page: ->mapping is
982 * page_deferred_list().next -- ignore value.
983 */
984 break;
985 default:
986 if (page->mapping != TAIL_MAPPING) {
987 bad_page(page, "corrupted mapping in tail page", 0);
988 goto out;
989 }
990 break;
991 }
992 if (unlikely(!PageTail(page))) {
993 bad_page(page, "PageTail not set", 0);
994 goto out;
995 }
996 if (unlikely(compound_head(page) != head_page)) {
997 bad_page(page, "compound_head not consistent", 0);
998 goto out;
999 }
1000 ret = 0;
1001 out:
1002 page->mapping = NULL;
1003 clear_compound_head(page);
1004 return ret;
1005 }
1006
1007 static __always_inline bool free_pages_prepare(struct page *page,
1008 unsigned int order, bool check_free)
1009 {
1010 int bad = 0;
1011
1012 VM_BUG_ON_PAGE(PageTail(page), page);
1013
1014 trace_mm_page_free(page, order);
1015 kmemcheck_free_shadow(page, order);
1016
1017 /*
1018 * Check tail pages before head page information is cleared to
1019 * avoid checking PageCompound for order-0 pages.
1020 */
1021 if (unlikely(order)) {
1022 bool compound = PageCompound(page);
1023 int i;
1024
1025 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1026
1027 if (compound)
1028 ClearPageDoubleMap(page);
1029 for (i = 1; i < (1 << order); i++) {
1030 if (compound)
1031 bad += free_tail_pages_check(page, page + i);
1032 if (unlikely(free_pages_check(page + i))) {
1033 bad++;
1034 continue;
1035 }
1036 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1037 }
1038 }
1039 if (PageMappingFlags(page))
1040 page->mapping = NULL;
1041 if (memcg_kmem_enabled() && PageKmemcg(page))
1042 memcg_kmem_uncharge(page, order);
1043 if (check_free)
1044 bad += free_pages_check(page);
1045 if (bad)
1046 return false;
1047
1048 page_cpupid_reset_last(page);
1049 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1050 reset_page_owner(page, order);
1051
1052 if (!PageHighMem(page)) {
1053 debug_check_no_locks_freed(page_address(page),
1054 PAGE_SIZE << order);
1055 debug_check_no_obj_freed(page_address(page),
1056 PAGE_SIZE << order);
1057 }
1058 arch_free_page(page, order);
1059 kernel_poison_pages(page, 1 << order, 0);
1060 kernel_map_pages(page, 1 << order, 0);
1061 kasan_free_pages(page, order);
1062
1063 return true;
1064 }
1065
1066 #ifdef CONFIG_DEBUG_VM
1067 static inline bool free_pcp_prepare(struct page *page)
1068 {
1069 return free_pages_prepare(page, 0, true);
1070 }
1071
1072 static inline bool bulkfree_pcp_prepare(struct page *page)
1073 {
1074 return false;
1075 }
1076 #else
1077 static bool free_pcp_prepare(struct page *page)
1078 {
1079 return free_pages_prepare(page, 0, false);
1080 }
1081
1082 static bool bulkfree_pcp_prepare(struct page *page)
1083 {
1084 return free_pages_check(page);
1085 }
1086 #endif /* CONFIG_DEBUG_VM */
1087
1088 /*
1089 * Frees a number of pages from the PCP lists
1090 * Assumes all pages on list are in same zone, and of same order.
1091 * count is the number of pages to free.
1092 *
1093 * If the zone was previously in an "all pages pinned" state then look to
1094 * see if this freeing clears that state.
1095 *
1096 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1097 * pinned" detection logic.
1098 */
1099 static void free_pcppages_bulk(struct zone *zone, int count,
1100 struct per_cpu_pages *pcp)
1101 {
1102 int migratetype = 0;
1103 int batch_free = 0;
1104 bool isolated_pageblocks;
1105
1106 spin_lock(&zone->lock);
1107 isolated_pageblocks = has_isolate_pageblock(zone);
1108
1109 while (count) {
1110 struct page *page;
1111 struct list_head *list;
1112
1113 /*
1114 * Remove pages from lists in a round-robin fashion. A
1115 * batch_free count is maintained that is incremented when an
1116 * empty list is encountered. This is so more pages are freed
1117 * off fuller lists instead of spinning excessively around empty
1118 * lists
1119 */
1120 do {
1121 batch_free++;
1122 if (++migratetype == MIGRATE_PCPTYPES)
1123 migratetype = 0;
1124 list = &pcp->lists[migratetype];
1125 } while (list_empty(list));
1126
1127 /* This is the only non-empty list. Free them all. */
1128 if (batch_free == MIGRATE_PCPTYPES)
1129 batch_free = count;
1130
1131 do {
1132 int mt; /* migratetype of the to-be-freed page */
1133
1134 page = list_last_entry(list, struct page, lru);
1135 /* must delete as __free_one_page list manipulates */
1136 list_del(&page->lru);
1137
1138 mt = get_pcppage_migratetype(page);
1139 /* MIGRATE_ISOLATE page should not go to pcplists */
1140 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1141 /* Pageblock could have been isolated meanwhile */
1142 if (unlikely(isolated_pageblocks))
1143 mt = get_pageblock_migratetype(page);
1144
1145 if (bulkfree_pcp_prepare(page))
1146 continue;
1147
1148 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1149 trace_mm_page_pcpu_drain(page, 0, mt);
1150 } while (--count && --batch_free && !list_empty(list));
1151 }
1152 spin_unlock(&zone->lock);
1153 }
1154
1155 static void free_one_page(struct zone *zone,
1156 struct page *page, unsigned long pfn,
1157 unsigned int order,
1158 int migratetype)
1159 {
1160 spin_lock(&zone->lock);
1161 if (unlikely(has_isolate_pageblock(zone) ||
1162 is_migrate_isolate(migratetype))) {
1163 migratetype = get_pfnblock_migratetype(page, pfn);
1164 }
1165 __free_one_page(page, pfn, zone, order, migratetype);
1166 spin_unlock(&zone->lock);
1167 }
1168
1169 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1170 unsigned long zone, int nid)
1171 {
1172 set_page_links(page, zone, nid, pfn);
1173 init_page_count(page);
1174 page_mapcount_reset(page);
1175 page_cpupid_reset_last(page);
1176
1177 INIT_LIST_HEAD(&page->lru);
1178 #ifdef WANT_PAGE_VIRTUAL
1179 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1180 if (!is_highmem_idx(zone))
1181 set_page_address(page, __va(pfn << PAGE_SHIFT));
1182 #endif
1183 }
1184
1185 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1186 int nid)
1187 {
1188 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1189 }
1190
1191 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192 static void init_reserved_page(unsigned long pfn)
1193 {
1194 pg_data_t *pgdat;
1195 int nid, zid;
1196
1197 if (!early_page_uninitialised(pfn))
1198 return;
1199
1200 nid = early_pfn_to_nid(pfn);
1201 pgdat = NODE_DATA(nid);
1202
1203 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204 struct zone *zone = &pgdat->node_zones[zid];
1205
1206 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207 break;
1208 }
1209 __init_single_pfn(pfn, zid, nid);
1210 }
1211 #else
1212 static inline void init_reserved_page(unsigned long pfn)
1213 {
1214 }
1215 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216
1217 /*
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1222 */
1223 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1224 {
1225 unsigned long start_pfn = PFN_DOWN(start);
1226 unsigned long end_pfn = PFN_UP(end);
1227
1228 for (; start_pfn < end_pfn; start_pfn++) {
1229 if (pfn_valid(start_pfn)) {
1230 struct page *page = pfn_to_page(start_pfn);
1231
1232 init_reserved_page(start_pfn);
1233
1234 /* Avoid false-positive PageTail() */
1235 INIT_LIST_HEAD(&page->lru);
1236
1237 SetPageReserved(page);
1238 }
1239 }
1240 }
1241
1242 static void __free_pages_ok(struct page *page, unsigned int order)
1243 {
1244 unsigned long flags;
1245 int migratetype;
1246 unsigned long pfn = page_to_pfn(page);
1247
1248 if (!free_pages_prepare(page, order, true))
1249 return;
1250
1251 migratetype = get_pfnblock_migratetype(page, pfn);
1252 local_irq_save(flags);
1253 __count_vm_events(PGFREE, 1 << order);
1254 free_one_page(page_zone(page), page, pfn, order, migratetype);
1255 local_irq_restore(flags);
1256 }
1257
1258 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1259 {
1260 unsigned int nr_pages = 1 << order;
1261 struct page *p = page;
1262 unsigned int loop;
1263
1264 prefetchw(p);
1265 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266 prefetchw(p + 1);
1267 __ClearPageReserved(p);
1268 set_page_count(p, 0);
1269 }
1270 __ClearPageReserved(p);
1271 set_page_count(p, 0);
1272
1273 page_zone(page)->managed_pages += nr_pages;
1274 set_page_refcounted(page);
1275 __free_pages(page, order);
1276 }
1277
1278 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1280
1281 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282
1283 int __meminit early_pfn_to_nid(unsigned long pfn)
1284 {
1285 static DEFINE_SPINLOCK(early_pfn_lock);
1286 int nid;
1287
1288 spin_lock(&early_pfn_lock);
1289 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1290 if (nid < 0)
1291 nid = first_online_node;
1292 spin_unlock(&early_pfn_lock);
1293
1294 return nid;
1295 }
1296 #endif
1297
1298 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299 static inline bool __meminit __maybe_unused
1300 meminit_pfn_in_nid(unsigned long pfn, int node,
1301 struct mminit_pfnnid_cache *state)
1302 {
1303 int nid;
1304
1305 nid = __early_pfn_to_nid(pfn, state);
1306 if (nid >= 0 && nid != node)
1307 return false;
1308 return true;
1309 }
1310
1311 /* Only safe to use early in boot when initialisation is single-threaded */
1312 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313 {
1314 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315 }
1316
1317 #else
1318
1319 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320 {
1321 return true;
1322 }
1323 static inline bool __meminit __maybe_unused
1324 meminit_pfn_in_nid(unsigned long pfn, int node,
1325 struct mminit_pfnnid_cache *state)
1326 {
1327 return true;
1328 }
1329 #endif
1330
1331
1332 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1333 unsigned int order)
1334 {
1335 if (early_page_uninitialised(pfn))
1336 return;
1337 return __free_pages_boot_core(page, order);
1338 }
1339
1340 /*
1341 * Check that the whole (or subset of) a pageblock given by the interval of
1342 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343 * with the migration of free compaction scanner. The scanners then need to
1344 * use only pfn_valid_within() check for arches that allow holes within
1345 * pageblocks.
1346 *
1347 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 *
1349 * It's possible on some configurations to have a setup like node0 node1 node0
1350 * i.e. it's possible that all pages within a zones range of pages do not
1351 * belong to a single zone. We assume that a border between node0 and node1
1352 * can occur within a single pageblock, but not a node0 node1 node0
1353 * interleaving within a single pageblock. It is therefore sufficient to check
1354 * the first and last page of a pageblock and avoid checking each individual
1355 * page in a pageblock.
1356 */
1357 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358 unsigned long end_pfn, struct zone *zone)
1359 {
1360 struct page *start_page;
1361 struct page *end_page;
1362
1363 /* end_pfn is one past the range we are checking */
1364 end_pfn--;
1365
1366 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367 return NULL;
1368
1369 start_page = pfn_to_online_page(start_pfn);
1370 if (!start_page)
1371 return NULL;
1372
1373 if (page_zone(start_page) != zone)
1374 return NULL;
1375
1376 end_page = pfn_to_page(end_pfn);
1377
1378 /* This gives a shorter code than deriving page_zone(end_page) */
1379 if (page_zone_id(start_page) != page_zone_id(end_page))
1380 return NULL;
1381
1382 return start_page;
1383 }
1384
1385 void set_zone_contiguous(struct zone *zone)
1386 {
1387 unsigned long block_start_pfn = zone->zone_start_pfn;
1388 unsigned long block_end_pfn;
1389
1390 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391 for (; block_start_pfn < zone_end_pfn(zone);
1392 block_start_pfn = block_end_pfn,
1393 block_end_pfn += pageblock_nr_pages) {
1394
1395 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396
1397 if (!__pageblock_pfn_to_page(block_start_pfn,
1398 block_end_pfn, zone))
1399 return;
1400 }
1401
1402 /* We confirm that there is no hole */
1403 zone->contiguous = true;
1404 }
1405
1406 void clear_zone_contiguous(struct zone *zone)
1407 {
1408 zone->contiguous = false;
1409 }
1410
1411 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412 static void __init deferred_free_range(struct page *page,
1413 unsigned long pfn, int nr_pages)
1414 {
1415 int i;
1416
1417 if (!page)
1418 return;
1419
1420 /* Free a large naturally-aligned chunk if possible */
1421 if (nr_pages == pageblock_nr_pages &&
1422 (pfn & (pageblock_nr_pages - 1)) == 0) {
1423 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1424 __free_pages_boot_core(page, pageblock_order);
1425 return;
1426 }
1427
1428 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1429 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1430 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1431 __free_pages_boot_core(page, 0);
1432 }
1433 }
1434
1435 /* Completion tracking for deferred_init_memmap() threads */
1436 static atomic_t pgdat_init_n_undone __initdata;
1437 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1438
1439 static inline void __init pgdat_init_report_one_done(void)
1440 {
1441 if (atomic_dec_and_test(&pgdat_init_n_undone))
1442 complete(&pgdat_init_all_done_comp);
1443 }
1444
1445 /* Initialise remaining memory on a node */
1446 static int __init deferred_init_memmap(void *data)
1447 {
1448 pg_data_t *pgdat = data;
1449 int nid = pgdat->node_id;
1450 struct mminit_pfnnid_cache nid_init_state = { };
1451 unsigned long start = jiffies;
1452 unsigned long nr_pages = 0;
1453 unsigned long walk_start, walk_end;
1454 int i, zid;
1455 struct zone *zone;
1456 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1457 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1458
1459 if (first_init_pfn == ULONG_MAX) {
1460 pgdat_init_report_one_done();
1461 return 0;
1462 }
1463
1464 /* Bind memory initialisation thread to a local node if possible */
1465 if (!cpumask_empty(cpumask))
1466 set_cpus_allowed_ptr(current, cpumask);
1467
1468 /* Sanity check boundaries */
1469 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1470 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1471 pgdat->first_deferred_pfn = ULONG_MAX;
1472
1473 /* Only the highest zone is deferred so find it */
1474 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1475 zone = pgdat->node_zones + zid;
1476 if (first_init_pfn < zone_end_pfn(zone))
1477 break;
1478 }
1479
1480 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1481 unsigned long pfn, end_pfn;
1482 struct page *page = NULL;
1483 struct page *free_base_page = NULL;
1484 unsigned long free_base_pfn = 0;
1485 int nr_to_free = 0;
1486
1487 end_pfn = min(walk_end, zone_end_pfn(zone));
1488 pfn = first_init_pfn;
1489 if (pfn < walk_start)
1490 pfn = walk_start;
1491 if (pfn < zone->zone_start_pfn)
1492 pfn = zone->zone_start_pfn;
1493
1494 for (; pfn < end_pfn; pfn++) {
1495 if (!pfn_valid_within(pfn))
1496 goto free_range;
1497
1498 /*
1499 * Ensure pfn_valid is checked every
1500 * pageblock_nr_pages for memory holes
1501 */
1502 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1503 if (!pfn_valid(pfn)) {
1504 page = NULL;
1505 goto free_range;
1506 }
1507 }
1508
1509 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1510 page = NULL;
1511 goto free_range;
1512 }
1513
1514 /* Minimise pfn page lookups and scheduler checks */
1515 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1516 page++;
1517 } else {
1518 nr_pages += nr_to_free;
1519 deferred_free_range(free_base_page,
1520 free_base_pfn, nr_to_free);
1521 free_base_page = NULL;
1522 free_base_pfn = nr_to_free = 0;
1523
1524 page = pfn_to_page(pfn);
1525 cond_resched();
1526 }
1527
1528 if (page->flags) {
1529 VM_BUG_ON(page_zone(page) != zone);
1530 goto free_range;
1531 }
1532
1533 __init_single_page(page, pfn, zid, nid);
1534 if (!free_base_page) {
1535 free_base_page = page;
1536 free_base_pfn = pfn;
1537 nr_to_free = 0;
1538 }
1539 nr_to_free++;
1540
1541 /* Where possible, batch up pages for a single free */
1542 continue;
1543 free_range:
1544 /* Free the current block of pages to allocator */
1545 nr_pages += nr_to_free;
1546 deferred_free_range(free_base_page, free_base_pfn,
1547 nr_to_free);
1548 free_base_page = NULL;
1549 free_base_pfn = nr_to_free = 0;
1550 }
1551 /* Free the last block of pages to allocator */
1552 nr_pages += nr_to_free;
1553 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1554
1555 first_init_pfn = max(end_pfn, first_init_pfn);
1556 }
1557
1558 /* Sanity check that the next zone really is unpopulated */
1559 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1560
1561 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1562 jiffies_to_msecs(jiffies - start));
1563
1564 pgdat_init_report_one_done();
1565 return 0;
1566 }
1567 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1568
1569 void __init page_alloc_init_late(void)
1570 {
1571 struct zone *zone;
1572
1573 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1574 int nid;
1575
1576 /* There will be num_node_state(N_MEMORY) threads */
1577 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1578 for_each_node_state(nid, N_MEMORY) {
1579 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1580 }
1581
1582 /* Block until all are initialised */
1583 wait_for_completion(&pgdat_init_all_done_comp);
1584
1585 /* Reinit limits that are based on free pages after the kernel is up */
1586 files_maxfiles_init();
1587 #endif
1588 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1589 /* Discard memblock private memory */
1590 memblock_discard();
1591 #endif
1592
1593 for_each_populated_zone(zone)
1594 set_zone_contiguous(zone);
1595 }
1596
1597 #ifdef CONFIG_CMA
1598 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1599 void __init init_cma_reserved_pageblock(struct page *page)
1600 {
1601 unsigned i = pageblock_nr_pages;
1602 struct page *p = page;
1603
1604 do {
1605 __ClearPageReserved(p);
1606 set_page_count(p, 0);
1607 } while (++p, --i);
1608
1609 set_pageblock_migratetype(page, MIGRATE_CMA);
1610
1611 if (pageblock_order >= MAX_ORDER) {
1612 i = pageblock_nr_pages;
1613 p = page;
1614 do {
1615 set_page_refcounted(p);
1616 __free_pages(p, MAX_ORDER - 1);
1617 p += MAX_ORDER_NR_PAGES;
1618 } while (i -= MAX_ORDER_NR_PAGES);
1619 } else {
1620 set_page_refcounted(page);
1621 __free_pages(page, pageblock_order);
1622 }
1623
1624 adjust_managed_page_count(page, pageblock_nr_pages);
1625 }
1626 #endif
1627
1628 /*
1629 * The order of subdivision here is critical for the IO subsystem.
1630 * Please do not alter this order without good reasons and regression
1631 * testing. Specifically, as large blocks of memory are subdivided,
1632 * the order in which smaller blocks are delivered depends on the order
1633 * they're subdivided in this function. This is the primary factor
1634 * influencing the order in which pages are delivered to the IO
1635 * subsystem according to empirical testing, and this is also justified
1636 * by considering the behavior of a buddy system containing a single
1637 * large block of memory acted on by a series of small allocations.
1638 * This behavior is a critical factor in sglist merging's success.
1639 *
1640 * -- nyc
1641 */
1642 static inline void expand(struct zone *zone, struct page *page,
1643 int low, int high, struct free_area *area,
1644 int migratetype)
1645 {
1646 unsigned long size = 1 << high;
1647
1648 while (high > low) {
1649 area--;
1650 high--;
1651 size >>= 1;
1652 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1653
1654 /*
1655 * Mark as guard pages (or page), that will allow to
1656 * merge back to allocator when buddy will be freed.
1657 * Corresponding page table entries will not be touched,
1658 * pages will stay not present in virtual address space
1659 */
1660 if (set_page_guard(zone, &page[size], high, migratetype))
1661 continue;
1662
1663 list_add(&page[size].lru, &area->free_list[migratetype]);
1664 area->nr_free++;
1665 set_page_order(&page[size], high);
1666 }
1667 }
1668
1669 static void check_new_page_bad(struct page *page)
1670 {
1671 const char *bad_reason = NULL;
1672 unsigned long bad_flags = 0;
1673
1674 if (unlikely(atomic_read(&page->_mapcount) != -1))
1675 bad_reason = "nonzero mapcount";
1676 if (unlikely(page->mapping != NULL))
1677 bad_reason = "non-NULL mapping";
1678 if (unlikely(page_ref_count(page) != 0))
1679 bad_reason = "nonzero _count";
1680 if (unlikely(page->flags & __PG_HWPOISON)) {
1681 bad_reason = "HWPoisoned (hardware-corrupted)";
1682 bad_flags = __PG_HWPOISON;
1683 /* Don't complain about hwpoisoned pages */
1684 page_mapcount_reset(page); /* remove PageBuddy */
1685 return;
1686 }
1687 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1688 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1689 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1690 }
1691 #ifdef CONFIG_MEMCG
1692 if (unlikely(page->mem_cgroup))
1693 bad_reason = "page still charged to cgroup";
1694 #endif
1695 bad_page(page, bad_reason, bad_flags);
1696 }
1697
1698 /*
1699 * This page is about to be returned from the page allocator
1700 */
1701 static inline int check_new_page(struct page *page)
1702 {
1703 if (likely(page_expected_state(page,
1704 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1705 return 0;
1706
1707 check_new_page_bad(page);
1708 return 1;
1709 }
1710
1711 static inline bool free_pages_prezeroed(void)
1712 {
1713 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1714 page_poisoning_enabled();
1715 }
1716
1717 #ifdef CONFIG_DEBUG_VM
1718 static bool check_pcp_refill(struct page *page)
1719 {
1720 return false;
1721 }
1722
1723 static bool check_new_pcp(struct page *page)
1724 {
1725 return check_new_page(page);
1726 }
1727 #else
1728 static bool check_pcp_refill(struct page *page)
1729 {
1730 return check_new_page(page);
1731 }
1732 static bool check_new_pcp(struct page *page)
1733 {
1734 return false;
1735 }
1736 #endif /* CONFIG_DEBUG_VM */
1737
1738 static bool check_new_pages(struct page *page, unsigned int order)
1739 {
1740 int i;
1741 for (i = 0; i < (1 << order); i++) {
1742 struct page *p = page + i;
1743
1744 if (unlikely(check_new_page(p)))
1745 return true;
1746 }
1747
1748 return false;
1749 }
1750
1751 inline void post_alloc_hook(struct page *page, unsigned int order,
1752 gfp_t gfp_flags)
1753 {
1754 set_page_private(page, 0);
1755 set_page_refcounted(page);
1756
1757 arch_alloc_page(page, order);
1758 kernel_map_pages(page, 1 << order, 1);
1759 kernel_poison_pages(page, 1 << order, 1);
1760 kasan_alloc_pages(page, order);
1761 set_page_owner(page, order, gfp_flags);
1762 }
1763
1764 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1765 unsigned int alloc_flags)
1766 {
1767 int i;
1768
1769 post_alloc_hook(page, order, gfp_flags);
1770
1771 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1772 for (i = 0; i < (1 << order); i++)
1773 clear_highpage(page + i);
1774
1775 if (order && (gfp_flags & __GFP_COMP))
1776 prep_compound_page(page, order);
1777
1778 /*
1779 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1780 * allocate the page. The expectation is that the caller is taking
1781 * steps that will free more memory. The caller should avoid the page
1782 * being used for !PFMEMALLOC purposes.
1783 */
1784 if (alloc_flags & ALLOC_NO_WATERMARKS)
1785 set_page_pfmemalloc(page);
1786 else
1787 clear_page_pfmemalloc(page);
1788 }
1789
1790 /*
1791 * Go through the free lists for the given migratetype and remove
1792 * the smallest available page from the freelists
1793 */
1794 static inline
1795 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1796 int migratetype)
1797 {
1798 unsigned int current_order;
1799 struct free_area *area;
1800 struct page *page;
1801
1802 /* Find a page of the appropriate size in the preferred list */
1803 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1804 area = &(zone->free_area[current_order]);
1805 page = list_first_entry_or_null(&area->free_list[migratetype],
1806 struct page, lru);
1807 if (!page)
1808 continue;
1809 list_del(&page->lru);
1810 rmv_page_order(page);
1811 area->nr_free--;
1812 expand(zone, page, order, current_order, area, migratetype);
1813 set_pcppage_migratetype(page, migratetype);
1814 return page;
1815 }
1816
1817 return NULL;
1818 }
1819
1820
1821 /*
1822 * This array describes the order lists are fallen back to when
1823 * the free lists for the desirable migrate type are depleted
1824 */
1825 static int fallbacks[MIGRATE_TYPES][4] = {
1826 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1827 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1828 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1829 #ifdef CONFIG_CMA
1830 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1831 #endif
1832 #ifdef CONFIG_MEMORY_ISOLATION
1833 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1834 #endif
1835 };
1836
1837 #ifdef CONFIG_CMA
1838 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order)
1840 {
1841 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1842 }
1843 #else
1844 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1845 unsigned int order) { return NULL; }
1846 #endif
1847
1848 /*
1849 * Move the free pages in a range to the free lists of the requested type.
1850 * Note that start_page and end_pages are not aligned on a pageblock
1851 * boundary. If alignment is required, use move_freepages_block()
1852 */
1853 static int move_freepages(struct zone *zone,
1854 struct page *start_page, struct page *end_page,
1855 int migratetype, int *num_movable)
1856 {
1857 struct page *page;
1858 unsigned int order;
1859 int pages_moved = 0;
1860
1861 #ifndef CONFIG_HOLES_IN_ZONE
1862 /*
1863 * page_zone is not safe to call in this context when
1864 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1865 * anyway as we check zone boundaries in move_freepages_block().
1866 * Remove at a later date when no bug reports exist related to
1867 * grouping pages by mobility
1868 */
1869 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1870 #endif
1871
1872 if (num_movable)
1873 *num_movable = 0;
1874
1875 for (page = start_page; page <= end_page;) {
1876 if (!pfn_valid_within(page_to_pfn(page))) {
1877 page++;
1878 continue;
1879 }
1880
1881 /* Make sure we are not inadvertently changing nodes */
1882 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1883
1884 if (!PageBuddy(page)) {
1885 /*
1886 * We assume that pages that could be isolated for
1887 * migration are movable. But we don't actually try
1888 * isolating, as that would be expensive.
1889 */
1890 if (num_movable &&
1891 (PageLRU(page) || __PageMovable(page)))
1892 (*num_movable)++;
1893
1894 page++;
1895 continue;
1896 }
1897
1898 order = page_order(page);
1899 list_move(&page->lru,
1900 &zone->free_area[order].free_list[migratetype]);
1901 page += 1 << order;
1902 pages_moved += 1 << order;
1903 }
1904
1905 return pages_moved;
1906 }
1907
1908 int move_freepages_block(struct zone *zone, struct page *page,
1909 int migratetype, int *num_movable)
1910 {
1911 unsigned long start_pfn, end_pfn;
1912 struct page *start_page, *end_page;
1913
1914 start_pfn = page_to_pfn(page);
1915 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1916 start_page = pfn_to_page(start_pfn);
1917 end_page = start_page + pageblock_nr_pages - 1;
1918 end_pfn = start_pfn + pageblock_nr_pages - 1;
1919
1920 /* Do not cross zone boundaries */
1921 if (!zone_spans_pfn(zone, start_pfn))
1922 start_page = page;
1923 if (!zone_spans_pfn(zone, end_pfn))
1924 return 0;
1925
1926 return move_freepages(zone, start_page, end_page, migratetype,
1927 num_movable);
1928 }
1929
1930 static void change_pageblock_range(struct page *pageblock_page,
1931 int start_order, int migratetype)
1932 {
1933 int nr_pageblocks = 1 << (start_order - pageblock_order);
1934
1935 while (nr_pageblocks--) {
1936 set_pageblock_migratetype(pageblock_page, migratetype);
1937 pageblock_page += pageblock_nr_pages;
1938 }
1939 }
1940
1941 /*
1942 * When we are falling back to another migratetype during allocation, try to
1943 * steal extra free pages from the same pageblocks to satisfy further
1944 * allocations, instead of polluting multiple pageblocks.
1945 *
1946 * If we are stealing a relatively large buddy page, it is likely there will
1947 * be more free pages in the pageblock, so try to steal them all. For
1948 * reclaimable and unmovable allocations, we steal regardless of page size,
1949 * as fragmentation caused by those allocations polluting movable pageblocks
1950 * is worse than movable allocations stealing from unmovable and reclaimable
1951 * pageblocks.
1952 */
1953 static bool can_steal_fallback(unsigned int order, int start_mt)
1954 {
1955 /*
1956 * Leaving this order check is intended, although there is
1957 * relaxed order check in next check. The reason is that
1958 * we can actually steal whole pageblock if this condition met,
1959 * but, below check doesn't guarantee it and that is just heuristic
1960 * so could be changed anytime.
1961 */
1962 if (order >= pageblock_order)
1963 return true;
1964
1965 if (order >= pageblock_order / 2 ||
1966 start_mt == MIGRATE_RECLAIMABLE ||
1967 start_mt == MIGRATE_UNMOVABLE ||
1968 page_group_by_mobility_disabled)
1969 return true;
1970
1971 return false;
1972 }
1973
1974 /*
1975 * This function implements actual steal behaviour. If order is large enough,
1976 * we can steal whole pageblock. If not, we first move freepages in this
1977 * pageblock to our migratetype and determine how many already-allocated pages
1978 * are there in the pageblock with a compatible migratetype. If at least half
1979 * of pages are free or compatible, we can change migratetype of the pageblock
1980 * itself, so pages freed in the future will be put on the correct free list.
1981 */
1982 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1983 int start_type, bool whole_block)
1984 {
1985 unsigned int current_order = page_order(page);
1986 struct free_area *area;
1987 int free_pages, movable_pages, alike_pages;
1988 int old_block_type;
1989
1990 old_block_type = get_pageblock_migratetype(page);
1991
1992 /*
1993 * This can happen due to races and we want to prevent broken
1994 * highatomic accounting.
1995 */
1996 if (is_migrate_highatomic(old_block_type))
1997 goto single_page;
1998
1999 /* Take ownership for orders >= pageblock_order */
2000 if (current_order >= pageblock_order) {
2001 change_pageblock_range(page, current_order, start_type);
2002 goto single_page;
2003 }
2004
2005 /* We are not allowed to try stealing from the whole block */
2006 if (!whole_block)
2007 goto single_page;
2008
2009 free_pages = move_freepages_block(zone, page, start_type,
2010 &movable_pages);
2011 /*
2012 * Determine how many pages are compatible with our allocation.
2013 * For movable allocation, it's the number of movable pages which
2014 * we just obtained. For other types it's a bit more tricky.
2015 */
2016 if (start_type == MIGRATE_MOVABLE) {
2017 alike_pages = movable_pages;
2018 } else {
2019 /*
2020 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2021 * to MOVABLE pageblock, consider all non-movable pages as
2022 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2023 * vice versa, be conservative since we can't distinguish the
2024 * exact migratetype of non-movable pages.
2025 */
2026 if (old_block_type == MIGRATE_MOVABLE)
2027 alike_pages = pageblock_nr_pages
2028 - (free_pages + movable_pages);
2029 else
2030 alike_pages = 0;
2031 }
2032
2033 /* moving whole block can fail due to zone boundary conditions */
2034 if (!free_pages)
2035 goto single_page;
2036
2037 /*
2038 * If a sufficient number of pages in the block are either free or of
2039 * comparable migratability as our allocation, claim the whole block.
2040 */
2041 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2042 page_group_by_mobility_disabled)
2043 set_pageblock_migratetype(page, start_type);
2044
2045 return;
2046
2047 single_page:
2048 area = &zone->free_area[current_order];
2049 list_move(&page->lru, &area->free_list[start_type]);
2050 }
2051
2052 /*
2053 * Check whether there is a suitable fallback freepage with requested order.
2054 * If only_stealable is true, this function returns fallback_mt only if
2055 * we can steal other freepages all together. This would help to reduce
2056 * fragmentation due to mixed migratetype pages in one pageblock.
2057 */
2058 int find_suitable_fallback(struct free_area *area, unsigned int order,
2059 int migratetype, bool only_stealable, bool *can_steal)
2060 {
2061 int i;
2062 int fallback_mt;
2063
2064 if (area->nr_free == 0)
2065 return -1;
2066
2067 *can_steal = false;
2068 for (i = 0;; i++) {
2069 fallback_mt = fallbacks[migratetype][i];
2070 if (fallback_mt == MIGRATE_TYPES)
2071 break;
2072
2073 if (list_empty(&area->free_list[fallback_mt]))
2074 continue;
2075
2076 if (can_steal_fallback(order, migratetype))
2077 *can_steal = true;
2078
2079 if (!only_stealable)
2080 return fallback_mt;
2081
2082 if (*can_steal)
2083 return fallback_mt;
2084 }
2085
2086 return -1;
2087 }
2088
2089 /*
2090 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2091 * there are no empty page blocks that contain a page with a suitable order
2092 */
2093 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2094 unsigned int alloc_order)
2095 {
2096 int mt;
2097 unsigned long max_managed, flags;
2098
2099 /*
2100 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2101 * Check is race-prone but harmless.
2102 */
2103 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2104 if (zone->nr_reserved_highatomic >= max_managed)
2105 return;
2106
2107 spin_lock_irqsave(&zone->lock, flags);
2108
2109 /* Recheck the nr_reserved_highatomic limit under the lock */
2110 if (zone->nr_reserved_highatomic >= max_managed)
2111 goto out_unlock;
2112
2113 /* Yoink! */
2114 mt = get_pageblock_migratetype(page);
2115 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2116 && !is_migrate_cma(mt)) {
2117 zone->nr_reserved_highatomic += pageblock_nr_pages;
2118 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2119 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2120 }
2121
2122 out_unlock:
2123 spin_unlock_irqrestore(&zone->lock, flags);
2124 }
2125
2126 /*
2127 * Used when an allocation is about to fail under memory pressure. This
2128 * potentially hurts the reliability of high-order allocations when under
2129 * intense memory pressure but failed atomic allocations should be easier
2130 * to recover from than an OOM.
2131 *
2132 * If @force is true, try to unreserve a pageblock even though highatomic
2133 * pageblock is exhausted.
2134 */
2135 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2136 bool force)
2137 {
2138 struct zonelist *zonelist = ac->zonelist;
2139 unsigned long flags;
2140 struct zoneref *z;
2141 struct zone *zone;
2142 struct page *page;
2143 int order;
2144 bool ret;
2145
2146 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2147 ac->nodemask) {
2148 /*
2149 * Preserve at least one pageblock unless memory pressure
2150 * is really high.
2151 */
2152 if (!force && zone->nr_reserved_highatomic <=
2153 pageblock_nr_pages)
2154 continue;
2155
2156 spin_lock_irqsave(&zone->lock, flags);
2157 for (order = 0; order < MAX_ORDER; order++) {
2158 struct free_area *area = &(zone->free_area[order]);
2159
2160 page = list_first_entry_or_null(
2161 &area->free_list[MIGRATE_HIGHATOMIC],
2162 struct page, lru);
2163 if (!page)
2164 continue;
2165
2166 /*
2167 * In page freeing path, migratetype change is racy so
2168 * we can counter several free pages in a pageblock
2169 * in this loop althoug we changed the pageblock type
2170 * from highatomic to ac->migratetype. So we should
2171 * adjust the count once.
2172 */
2173 if (is_migrate_highatomic_page(page)) {
2174 /*
2175 * It should never happen but changes to
2176 * locking could inadvertently allow a per-cpu
2177 * drain to add pages to MIGRATE_HIGHATOMIC
2178 * while unreserving so be safe and watch for
2179 * underflows.
2180 */
2181 zone->nr_reserved_highatomic -= min(
2182 pageblock_nr_pages,
2183 zone->nr_reserved_highatomic);
2184 }
2185
2186 /*
2187 * Convert to ac->migratetype and avoid the normal
2188 * pageblock stealing heuristics. Minimally, the caller
2189 * is doing the work and needs the pages. More
2190 * importantly, if the block was always converted to
2191 * MIGRATE_UNMOVABLE or another type then the number
2192 * of pageblocks that cannot be completely freed
2193 * may increase.
2194 */
2195 set_pageblock_migratetype(page, ac->migratetype);
2196 ret = move_freepages_block(zone, page, ac->migratetype,
2197 NULL);
2198 if (ret) {
2199 spin_unlock_irqrestore(&zone->lock, flags);
2200 return ret;
2201 }
2202 }
2203 spin_unlock_irqrestore(&zone->lock, flags);
2204 }
2205
2206 return false;
2207 }
2208
2209 /*
2210 * Try finding a free buddy page on the fallback list and put it on the free
2211 * list of requested migratetype, possibly along with other pages from the same
2212 * block, depending on fragmentation avoidance heuristics. Returns true if
2213 * fallback was found so that __rmqueue_smallest() can grab it.
2214 *
2215 * The use of signed ints for order and current_order is a deliberate
2216 * deviation from the rest of this file, to make the for loop
2217 * condition simpler.
2218 */
2219 static inline bool
2220 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2221 {
2222 struct free_area *area;
2223 int current_order;
2224 struct page *page;
2225 int fallback_mt;
2226 bool can_steal;
2227
2228 /*
2229 * Find the largest available free page in the other list. This roughly
2230 * approximates finding the pageblock with the most free pages, which
2231 * would be too costly to do exactly.
2232 */
2233 for (current_order = MAX_ORDER - 1; current_order >= order;
2234 --current_order) {
2235 area = &(zone->free_area[current_order]);
2236 fallback_mt = find_suitable_fallback(area, current_order,
2237 start_migratetype, false, &can_steal);
2238 if (fallback_mt == -1)
2239 continue;
2240
2241 /*
2242 * We cannot steal all free pages from the pageblock and the
2243 * requested migratetype is movable. In that case it's better to
2244 * steal and split the smallest available page instead of the
2245 * largest available page, because even if the next movable
2246 * allocation falls back into a different pageblock than this
2247 * one, it won't cause permanent fragmentation.
2248 */
2249 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2250 && current_order > order)
2251 goto find_smallest;
2252
2253 goto do_steal;
2254 }
2255
2256 return false;
2257
2258 find_smallest:
2259 for (current_order = order; current_order < MAX_ORDER;
2260 current_order++) {
2261 area = &(zone->free_area[current_order]);
2262 fallback_mt = find_suitable_fallback(area, current_order,
2263 start_migratetype, false, &can_steal);
2264 if (fallback_mt != -1)
2265 break;
2266 }
2267
2268 /*
2269 * This should not happen - we already found a suitable fallback
2270 * when looking for the largest page.
2271 */
2272 VM_BUG_ON(current_order == MAX_ORDER);
2273
2274 do_steal:
2275 page = list_first_entry(&area->free_list[fallback_mt],
2276 struct page, lru);
2277
2278 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2279
2280 trace_mm_page_alloc_extfrag(page, order, current_order,
2281 start_migratetype, fallback_mt);
2282
2283 return true;
2284
2285 }
2286
2287 /*
2288 * Do the hard work of removing an element from the buddy allocator.
2289 * Call me with the zone->lock already held.
2290 */
2291 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2292 int migratetype)
2293 {
2294 struct page *page;
2295
2296 retry:
2297 page = __rmqueue_smallest(zone, order, migratetype);
2298 if (unlikely(!page)) {
2299 if (migratetype == MIGRATE_MOVABLE)
2300 page = __rmqueue_cma_fallback(zone, order);
2301
2302 if (!page && __rmqueue_fallback(zone, order, migratetype))
2303 goto retry;
2304 }
2305
2306 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2307 return page;
2308 }
2309
2310 /*
2311 * Obtain a specified number of elements from the buddy allocator, all under
2312 * a single hold of the lock, for efficiency. Add them to the supplied list.
2313 * Returns the number of new pages which were placed at *list.
2314 */
2315 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2316 unsigned long count, struct list_head *list,
2317 int migratetype, bool cold)
2318 {
2319 int i, alloced = 0;
2320
2321 spin_lock(&zone->lock);
2322 for (i = 0; i < count; ++i) {
2323 struct page *page = __rmqueue(zone, order, migratetype);
2324 if (unlikely(page == NULL))
2325 break;
2326
2327 if (unlikely(check_pcp_refill(page)))
2328 continue;
2329
2330 /*
2331 * Split buddy pages returned by expand() are received here
2332 * in physical page order. The page is added to the callers and
2333 * list and the list head then moves forward. From the callers
2334 * perspective, the linked list is ordered by page number in
2335 * some conditions. This is useful for IO devices that can
2336 * merge IO requests if the physical pages are ordered
2337 * properly.
2338 */
2339 if (likely(!cold))
2340 list_add(&page->lru, list);
2341 else
2342 list_add_tail(&page->lru, list);
2343 list = &page->lru;
2344 alloced++;
2345 if (is_migrate_cma(get_pcppage_migratetype(page)))
2346 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2347 -(1 << order));
2348 }
2349
2350 /*
2351 * i pages were removed from the buddy list even if some leak due
2352 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2353 * on i. Do not confuse with 'alloced' which is the number of
2354 * pages added to the pcp list.
2355 */
2356 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2357 spin_unlock(&zone->lock);
2358 return alloced;
2359 }
2360
2361 #ifdef CONFIG_NUMA
2362 /*
2363 * Called from the vmstat counter updater to drain pagesets of this
2364 * currently executing processor on remote nodes after they have
2365 * expired.
2366 *
2367 * Note that this function must be called with the thread pinned to
2368 * a single processor.
2369 */
2370 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2371 {
2372 unsigned long flags;
2373 int to_drain, batch;
2374
2375 local_irq_save(flags);
2376 batch = READ_ONCE(pcp->batch);
2377 to_drain = min(pcp->count, batch);
2378 if (to_drain > 0) {
2379 free_pcppages_bulk(zone, to_drain, pcp);
2380 pcp->count -= to_drain;
2381 }
2382 local_irq_restore(flags);
2383 }
2384 #endif
2385
2386 /*
2387 * Drain pcplists of the indicated processor and zone.
2388 *
2389 * The processor must either be the current processor and the
2390 * thread pinned to the current processor or a processor that
2391 * is not online.
2392 */
2393 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2394 {
2395 unsigned long flags;
2396 struct per_cpu_pageset *pset;
2397 struct per_cpu_pages *pcp;
2398
2399 local_irq_save(flags);
2400 pset = per_cpu_ptr(zone->pageset, cpu);
2401
2402 pcp = &pset->pcp;
2403 if (pcp->count) {
2404 free_pcppages_bulk(zone, pcp->count, pcp);
2405 pcp->count = 0;
2406 }
2407 local_irq_restore(flags);
2408 }
2409
2410 /*
2411 * Drain pcplists of all zones on the indicated processor.
2412 *
2413 * The processor must either be the current processor and the
2414 * thread pinned to the current processor or a processor that
2415 * is not online.
2416 */
2417 static void drain_pages(unsigned int cpu)
2418 {
2419 struct zone *zone;
2420
2421 for_each_populated_zone(zone) {
2422 drain_pages_zone(cpu, zone);
2423 }
2424 }
2425
2426 /*
2427 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2428 *
2429 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2430 * the single zone's pages.
2431 */
2432 void drain_local_pages(struct zone *zone)
2433 {
2434 int cpu = smp_processor_id();
2435
2436 if (zone)
2437 drain_pages_zone(cpu, zone);
2438 else
2439 drain_pages(cpu);
2440 }
2441
2442 static void drain_local_pages_wq(struct work_struct *work)
2443 {
2444 /*
2445 * drain_all_pages doesn't use proper cpu hotplug protection so
2446 * we can race with cpu offline when the WQ can move this from
2447 * a cpu pinned worker to an unbound one. We can operate on a different
2448 * cpu which is allright but we also have to make sure to not move to
2449 * a different one.
2450 */
2451 preempt_disable();
2452 drain_local_pages(NULL);
2453 preempt_enable();
2454 }
2455
2456 /*
2457 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2458 *
2459 * When zone parameter is non-NULL, spill just the single zone's pages.
2460 *
2461 * Note that this can be extremely slow as the draining happens in a workqueue.
2462 */
2463 void drain_all_pages(struct zone *zone)
2464 {
2465 int cpu;
2466
2467 /*
2468 * Allocate in the BSS so we wont require allocation in
2469 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2470 */
2471 static cpumask_t cpus_with_pcps;
2472
2473 /*
2474 * Make sure nobody triggers this path before mm_percpu_wq is fully
2475 * initialized.
2476 */
2477 if (WARN_ON_ONCE(!mm_percpu_wq))
2478 return;
2479
2480 /* Workqueues cannot recurse */
2481 if (current->flags & PF_WQ_WORKER)
2482 return;
2483
2484 /*
2485 * Do not drain if one is already in progress unless it's specific to
2486 * a zone. Such callers are primarily CMA and memory hotplug and need
2487 * the drain to be complete when the call returns.
2488 */
2489 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2490 if (!zone)
2491 return;
2492 mutex_lock(&pcpu_drain_mutex);
2493 }
2494
2495 /*
2496 * We don't care about racing with CPU hotplug event
2497 * as offline notification will cause the notified
2498 * cpu to drain that CPU pcps and on_each_cpu_mask
2499 * disables preemption as part of its processing
2500 */
2501 for_each_online_cpu(cpu) {
2502 struct per_cpu_pageset *pcp;
2503 struct zone *z;
2504 bool has_pcps = false;
2505
2506 if (zone) {
2507 pcp = per_cpu_ptr(zone->pageset, cpu);
2508 if (pcp->pcp.count)
2509 has_pcps = true;
2510 } else {
2511 for_each_populated_zone(z) {
2512 pcp = per_cpu_ptr(z->pageset, cpu);
2513 if (pcp->pcp.count) {
2514 has_pcps = true;
2515 break;
2516 }
2517 }
2518 }
2519
2520 if (has_pcps)
2521 cpumask_set_cpu(cpu, &cpus_with_pcps);
2522 else
2523 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2524 }
2525
2526 for_each_cpu(cpu, &cpus_with_pcps) {
2527 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2528 INIT_WORK(work, drain_local_pages_wq);
2529 queue_work_on(cpu, mm_percpu_wq, work);
2530 }
2531 for_each_cpu(cpu, &cpus_with_pcps)
2532 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2533
2534 mutex_unlock(&pcpu_drain_mutex);
2535 }
2536
2537 #ifdef CONFIG_HIBERNATION
2538
2539 void mark_free_pages(struct zone *zone)
2540 {
2541 unsigned long pfn, max_zone_pfn;
2542 unsigned long flags;
2543 unsigned int order, t;
2544 struct page *page;
2545
2546 if (zone_is_empty(zone))
2547 return;
2548
2549 spin_lock_irqsave(&zone->lock, flags);
2550
2551 max_zone_pfn = zone_end_pfn(zone);
2552 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2553 if (pfn_valid(pfn)) {
2554 page = pfn_to_page(pfn);
2555
2556 if (page_zone(page) != zone)
2557 continue;
2558
2559 if (!swsusp_page_is_forbidden(page))
2560 swsusp_unset_page_free(page);
2561 }
2562
2563 for_each_migratetype_order(order, t) {
2564 list_for_each_entry(page,
2565 &zone->free_area[order].free_list[t], lru) {
2566 unsigned long i;
2567
2568 pfn = page_to_pfn(page);
2569 for (i = 0; i < (1UL << order); i++)
2570 swsusp_set_page_free(pfn_to_page(pfn + i));
2571 }
2572 }
2573 spin_unlock_irqrestore(&zone->lock, flags);
2574 }
2575 #endif /* CONFIG_PM */
2576
2577 /*
2578 * Free a 0-order page
2579 * cold == true ? free a cold page : free a hot page
2580 */
2581 void free_hot_cold_page(struct page *page, bool cold)
2582 {
2583 struct zone *zone = page_zone(page);
2584 struct per_cpu_pages *pcp;
2585 unsigned long flags;
2586 unsigned long pfn = page_to_pfn(page);
2587 int migratetype;
2588
2589 if (!free_pcp_prepare(page))
2590 return;
2591
2592 migratetype = get_pfnblock_migratetype(page, pfn);
2593 set_pcppage_migratetype(page, migratetype);
2594 local_irq_save(flags);
2595 __count_vm_event(PGFREE);
2596
2597 /*
2598 * We only track unmovable, reclaimable and movable on pcp lists.
2599 * Free ISOLATE pages back to the allocator because they are being
2600 * offlined but treat HIGHATOMIC as movable pages so we can get those
2601 * areas back if necessary. Otherwise, we may have to free
2602 * excessively into the page allocator
2603 */
2604 if (migratetype >= MIGRATE_PCPTYPES) {
2605 if (unlikely(is_migrate_isolate(migratetype))) {
2606 free_one_page(zone, page, pfn, 0, migratetype);
2607 goto out;
2608 }
2609 migratetype = MIGRATE_MOVABLE;
2610 }
2611
2612 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2613 if (!cold)
2614 list_add(&page->lru, &pcp->lists[migratetype]);
2615 else
2616 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2617 pcp->count++;
2618 if (pcp->count >= pcp->high) {
2619 unsigned long batch = READ_ONCE(pcp->batch);
2620 free_pcppages_bulk(zone, batch, pcp);
2621 pcp->count -= batch;
2622 }
2623
2624 out:
2625 local_irq_restore(flags);
2626 }
2627
2628 /*
2629 * Free a list of 0-order pages
2630 */
2631 void free_hot_cold_page_list(struct list_head *list, bool cold)
2632 {
2633 struct page *page, *next;
2634
2635 list_for_each_entry_safe(page, next, list, lru) {
2636 trace_mm_page_free_batched(page, cold);
2637 free_hot_cold_page(page, cold);
2638 }
2639 }
2640
2641 /*
2642 * split_page takes a non-compound higher-order page, and splits it into
2643 * n (1<<order) sub-pages: page[0..n]
2644 * Each sub-page must be freed individually.
2645 *
2646 * Note: this is probably too low level an operation for use in drivers.
2647 * Please consult with lkml before using this in your driver.
2648 */
2649 void split_page(struct page *page, unsigned int order)
2650 {
2651 int i;
2652
2653 VM_BUG_ON_PAGE(PageCompound(page), page);
2654 VM_BUG_ON_PAGE(!page_count(page), page);
2655
2656 #ifdef CONFIG_KMEMCHECK
2657 /*
2658 * Split shadow pages too, because free(page[0]) would
2659 * otherwise free the whole shadow.
2660 */
2661 if (kmemcheck_page_is_tracked(page))
2662 split_page(virt_to_page(page[0].shadow), order);
2663 #endif
2664
2665 for (i = 1; i < (1 << order); i++)
2666 set_page_refcounted(page + i);
2667 split_page_owner(page, order);
2668 }
2669 EXPORT_SYMBOL_GPL(split_page);
2670
2671 int __isolate_free_page(struct page *page, unsigned int order)
2672 {
2673 unsigned long watermark;
2674 struct zone *zone;
2675 int mt;
2676
2677 BUG_ON(!PageBuddy(page));
2678
2679 zone = page_zone(page);
2680 mt = get_pageblock_migratetype(page);
2681
2682 if (!is_migrate_isolate(mt)) {
2683 /*
2684 * Obey watermarks as if the page was being allocated. We can
2685 * emulate a high-order watermark check with a raised order-0
2686 * watermark, because we already know our high-order page
2687 * exists.
2688 */
2689 watermark = min_wmark_pages(zone) + (1UL << order);
2690 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2691 return 0;
2692
2693 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2694 }
2695
2696 /* Remove page from free list */
2697 list_del(&page->lru);
2698 zone->free_area[order].nr_free--;
2699 rmv_page_order(page);
2700
2701 /*
2702 * Set the pageblock if the isolated page is at least half of a
2703 * pageblock
2704 */
2705 if (order >= pageblock_order - 1) {
2706 struct page *endpage = page + (1 << order) - 1;
2707 for (; page < endpage; page += pageblock_nr_pages) {
2708 int mt = get_pageblock_migratetype(page);
2709 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2710 && !is_migrate_highatomic(mt))
2711 set_pageblock_migratetype(page,
2712 MIGRATE_MOVABLE);
2713 }
2714 }
2715
2716
2717 return 1UL << order;
2718 }
2719
2720 /*
2721 * Update NUMA hit/miss statistics
2722 *
2723 * Must be called with interrupts disabled.
2724 */
2725 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2726 {
2727 #ifdef CONFIG_NUMA
2728 enum zone_stat_item local_stat = NUMA_LOCAL;
2729
2730 if (z->node != numa_node_id())
2731 local_stat = NUMA_OTHER;
2732
2733 if (z->node == preferred_zone->node)
2734 __inc_zone_state(z, NUMA_HIT);
2735 else {
2736 __inc_zone_state(z, NUMA_MISS);
2737 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2738 }
2739 __inc_zone_state(z, local_stat);
2740 #endif
2741 }
2742
2743 /* Remove page from the per-cpu list, caller must protect the list */
2744 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2745 bool cold, struct per_cpu_pages *pcp,
2746 struct list_head *list)
2747 {
2748 struct page *page;
2749
2750 do {
2751 if (list_empty(list)) {
2752 pcp->count += rmqueue_bulk(zone, 0,
2753 pcp->batch, list,
2754 migratetype, cold);
2755 if (unlikely(list_empty(list)))
2756 return NULL;
2757 }
2758
2759 if (cold)
2760 page = list_last_entry(list, struct page, lru);
2761 else
2762 page = list_first_entry(list, struct page, lru);
2763
2764 list_del(&page->lru);
2765 pcp->count--;
2766 } while (check_new_pcp(page));
2767
2768 return page;
2769 }
2770
2771 /* Lock and remove page from the per-cpu list */
2772 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2773 struct zone *zone, unsigned int order,
2774 gfp_t gfp_flags, int migratetype)
2775 {
2776 struct per_cpu_pages *pcp;
2777 struct list_head *list;
2778 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2779 struct page *page;
2780 unsigned long flags;
2781
2782 local_irq_save(flags);
2783 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2784 list = &pcp->lists[migratetype];
2785 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2786 if (page) {
2787 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2788 zone_statistics(preferred_zone, zone);
2789 }
2790 local_irq_restore(flags);
2791 return page;
2792 }
2793
2794 /*
2795 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2796 */
2797 static inline
2798 struct page *rmqueue(struct zone *preferred_zone,
2799 struct zone *zone, unsigned int order,
2800 gfp_t gfp_flags, unsigned int alloc_flags,
2801 int migratetype)
2802 {
2803 unsigned long flags;
2804 struct page *page;
2805
2806 if (likely(order == 0)) {
2807 page = rmqueue_pcplist(preferred_zone, zone, order,
2808 gfp_flags, migratetype);
2809 goto out;
2810 }
2811
2812 /*
2813 * We most definitely don't want callers attempting to
2814 * allocate greater than order-1 page units with __GFP_NOFAIL.
2815 */
2816 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2817 spin_lock_irqsave(&zone->lock, flags);
2818
2819 do {
2820 page = NULL;
2821 if (alloc_flags & ALLOC_HARDER) {
2822 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2823 if (page)
2824 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2825 }
2826 if (!page)
2827 page = __rmqueue(zone, order, migratetype);
2828 } while (page && check_new_pages(page, order));
2829 spin_unlock(&zone->lock);
2830 if (!page)
2831 goto failed;
2832 __mod_zone_freepage_state(zone, -(1 << order),
2833 get_pcppage_migratetype(page));
2834
2835 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2836 zone_statistics(preferred_zone, zone);
2837 local_irq_restore(flags);
2838
2839 out:
2840 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2841 return page;
2842
2843 failed:
2844 local_irq_restore(flags);
2845 return NULL;
2846 }
2847
2848 #ifdef CONFIG_FAIL_PAGE_ALLOC
2849
2850 static struct {
2851 struct fault_attr attr;
2852
2853 bool ignore_gfp_highmem;
2854 bool ignore_gfp_reclaim;
2855 u32 min_order;
2856 } fail_page_alloc = {
2857 .attr = FAULT_ATTR_INITIALIZER,
2858 .ignore_gfp_reclaim = true,
2859 .ignore_gfp_highmem = true,
2860 .min_order = 1,
2861 };
2862
2863 static int __init setup_fail_page_alloc(char *str)
2864 {
2865 return setup_fault_attr(&fail_page_alloc.attr, str);
2866 }
2867 __setup("fail_page_alloc=", setup_fail_page_alloc);
2868
2869 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2870 {
2871 if (order < fail_page_alloc.min_order)
2872 return false;
2873 if (gfp_mask & __GFP_NOFAIL)
2874 return false;
2875 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2876 return false;
2877 if (fail_page_alloc.ignore_gfp_reclaim &&
2878 (gfp_mask & __GFP_DIRECT_RECLAIM))
2879 return false;
2880
2881 return should_fail(&fail_page_alloc.attr, 1 << order);
2882 }
2883
2884 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2885
2886 static int __init fail_page_alloc_debugfs(void)
2887 {
2888 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2889 struct dentry *dir;
2890
2891 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2892 &fail_page_alloc.attr);
2893 if (IS_ERR(dir))
2894 return PTR_ERR(dir);
2895
2896 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2897 &fail_page_alloc.ignore_gfp_reclaim))
2898 goto fail;
2899 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2900 &fail_page_alloc.ignore_gfp_highmem))
2901 goto fail;
2902 if (!debugfs_create_u32("min-order", mode, dir,
2903 &fail_page_alloc.min_order))
2904 goto fail;
2905
2906 return 0;
2907 fail:
2908 debugfs_remove_recursive(dir);
2909
2910 return -ENOMEM;
2911 }
2912
2913 late_initcall(fail_page_alloc_debugfs);
2914
2915 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2916
2917 #else /* CONFIG_FAIL_PAGE_ALLOC */
2918
2919 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2920 {
2921 return false;
2922 }
2923
2924 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2925
2926 /*
2927 * Return true if free base pages are above 'mark'. For high-order checks it
2928 * will return true of the order-0 watermark is reached and there is at least
2929 * one free page of a suitable size. Checking now avoids taking the zone lock
2930 * to check in the allocation paths if no pages are free.
2931 */
2932 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2933 int classzone_idx, unsigned int alloc_flags,
2934 long free_pages)
2935 {
2936 long min = mark;
2937 int o;
2938 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2939
2940 /* free_pages may go negative - that's OK */
2941 free_pages -= (1 << order) - 1;
2942
2943 if (alloc_flags & ALLOC_HIGH)
2944 min -= min / 2;
2945
2946 /*
2947 * If the caller does not have rights to ALLOC_HARDER then subtract
2948 * the high-atomic reserves. This will over-estimate the size of the
2949 * atomic reserve but it avoids a search.
2950 */
2951 if (likely(!alloc_harder))
2952 free_pages -= z->nr_reserved_highatomic;
2953 else
2954 min -= min / 4;
2955
2956 #ifdef CONFIG_CMA
2957 /* If allocation can't use CMA areas don't use free CMA pages */
2958 if (!(alloc_flags & ALLOC_CMA))
2959 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2960 #endif
2961
2962 /*
2963 * Check watermarks for an order-0 allocation request. If these
2964 * are not met, then a high-order request also cannot go ahead
2965 * even if a suitable page happened to be free.
2966 */
2967 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2968 return false;
2969
2970 /* If this is an order-0 request then the watermark is fine */
2971 if (!order)
2972 return true;
2973
2974 /* For a high-order request, check at least one suitable page is free */
2975 for (o = order; o < MAX_ORDER; o++) {
2976 struct free_area *area = &z->free_area[o];
2977 int mt;
2978
2979 if (!area->nr_free)
2980 continue;
2981
2982 if (alloc_harder)
2983 return true;
2984
2985 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2986 if (!list_empty(&area->free_list[mt]))
2987 return true;
2988 }
2989
2990 #ifdef CONFIG_CMA
2991 if ((alloc_flags & ALLOC_CMA) &&
2992 !list_empty(&area->free_list[MIGRATE_CMA])) {
2993 return true;
2994 }
2995 #endif
2996 }
2997 return false;
2998 }
2999
3000 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3001 int classzone_idx, unsigned int alloc_flags)
3002 {
3003 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3004 zone_page_state(z, NR_FREE_PAGES));
3005 }
3006
3007 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3008 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3009 {
3010 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3011 long cma_pages = 0;
3012
3013 #ifdef CONFIG_CMA
3014 /* If allocation can't use CMA areas don't use free CMA pages */
3015 if (!(alloc_flags & ALLOC_CMA))
3016 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3017 #endif
3018
3019 /*
3020 * Fast check for order-0 only. If this fails then the reserves
3021 * need to be calculated. There is a corner case where the check
3022 * passes but only the high-order atomic reserve are free. If
3023 * the caller is !atomic then it'll uselessly search the free
3024 * list. That corner case is then slower but it is harmless.
3025 */
3026 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3027 return true;
3028
3029 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3030 free_pages);
3031 }
3032
3033 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3034 unsigned long mark, int classzone_idx)
3035 {
3036 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3037
3038 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3039 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3040
3041 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3042 free_pages);
3043 }
3044
3045 #ifdef CONFIG_NUMA
3046 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3047 {
3048 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3049 RECLAIM_DISTANCE;
3050 }
3051 #else /* CONFIG_NUMA */
3052 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3053 {
3054 return true;
3055 }
3056 #endif /* CONFIG_NUMA */
3057
3058 /*
3059 * get_page_from_freelist goes through the zonelist trying to allocate
3060 * a page.
3061 */
3062 static struct page *
3063 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3064 const struct alloc_context *ac)
3065 {
3066 struct zoneref *z = ac->preferred_zoneref;
3067 struct zone *zone;
3068 struct pglist_data *last_pgdat_dirty_limit = NULL;
3069
3070 /*
3071 * Scan zonelist, looking for a zone with enough free.
3072 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3073 */
3074 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3075 ac->nodemask) {
3076 struct page *page;
3077 unsigned long mark;
3078
3079 if (cpusets_enabled() &&
3080 (alloc_flags & ALLOC_CPUSET) &&
3081 !__cpuset_zone_allowed(zone, gfp_mask))
3082 continue;
3083 /*
3084 * When allocating a page cache page for writing, we
3085 * want to get it from a node that is within its dirty
3086 * limit, such that no single node holds more than its
3087 * proportional share of globally allowed dirty pages.
3088 * The dirty limits take into account the node's
3089 * lowmem reserves and high watermark so that kswapd
3090 * should be able to balance it without having to
3091 * write pages from its LRU list.
3092 *
3093 * XXX: For now, allow allocations to potentially
3094 * exceed the per-node dirty limit in the slowpath
3095 * (spread_dirty_pages unset) before going into reclaim,
3096 * which is important when on a NUMA setup the allowed
3097 * nodes are together not big enough to reach the
3098 * global limit. The proper fix for these situations
3099 * will require awareness of nodes in the
3100 * dirty-throttling and the flusher threads.
3101 */
3102 if (ac->spread_dirty_pages) {
3103 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3104 continue;
3105
3106 if (!node_dirty_ok(zone->zone_pgdat)) {
3107 last_pgdat_dirty_limit = zone->zone_pgdat;
3108 continue;
3109 }
3110 }
3111
3112 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3113 if (!zone_watermark_fast(zone, order, mark,
3114 ac_classzone_idx(ac), alloc_flags)) {
3115 int ret;
3116
3117 /* Checked here to keep the fast path fast */
3118 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3119 if (alloc_flags & ALLOC_NO_WATERMARKS)
3120 goto try_this_zone;
3121
3122 if (node_reclaim_mode == 0 ||
3123 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3124 continue;
3125
3126 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3127 switch (ret) {
3128 case NODE_RECLAIM_NOSCAN:
3129 /* did not scan */
3130 continue;
3131 case NODE_RECLAIM_FULL:
3132 /* scanned but unreclaimable */
3133 continue;
3134 default:
3135 /* did we reclaim enough */
3136 if (zone_watermark_ok(zone, order, mark,
3137 ac_classzone_idx(ac), alloc_flags))
3138 goto try_this_zone;
3139
3140 continue;
3141 }
3142 }
3143
3144 try_this_zone:
3145 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3146 gfp_mask, alloc_flags, ac->migratetype);
3147 if (page) {
3148 prep_new_page(page, order, gfp_mask, alloc_flags);
3149
3150 /*
3151 * If this is a high-order atomic allocation then check
3152 * if the pageblock should be reserved for the future
3153 */
3154 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3155 reserve_highatomic_pageblock(page, zone, order);
3156
3157 return page;
3158 }
3159 }
3160
3161 return NULL;
3162 }
3163
3164 /*
3165 * Large machines with many possible nodes should not always dump per-node
3166 * meminfo in irq context.
3167 */
3168 static inline bool should_suppress_show_mem(void)
3169 {
3170 bool ret = false;
3171
3172 #if NODES_SHIFT > 8
3173 ret = in_interrupt();
3174 #endif
3175 return ret;
3176 }
3177
3178 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3179 {
3180 unsigned int filter = SHOW_MEM_FILTER_NODES;
3181 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3182
3183 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3184 return;
3185
3186 /*
3187 * This documents exceptions given to allocations in certain
3188 * contexts that are allowed to allocate outside current's set
3189 * of allowed nodes.
3190 */
3191 if (!(gfp_mask & __GFP_NOMEMALLOC))
3192 if (test_thread_flag(TIF_MEMDIE) ||
3193 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3194 filter &= ~SHOW_MEM_FILTER_NODES;
3195 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3196 filter &= ~SHOW_MEM_FILTER_NODES;
3197
3198 show_mem(filter, nodemask);
3199 }
3200
3201 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3202 {
3203 struct va_format vaf;
3204 va_list args;
3205 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3206 DEFAULT_RATELIMIT_BURST);
3207
3208 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3209 return;
3210
3211 pr_warn("%s: ", current->comm);
3212
3213 va_start(args, fmt);
3214 vaf.fmt = fmt;
3215 vaf.va = &args;
3216 pr_cont("%pV", &vaf);
3217 va_end(args);
3218
3219 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3220 if (nodemask)
3221 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3222 else
3223 pr_cont("(null)\n");
3224
3225 cpuset_print_current_mems_allowed();
3226
3227 dump_stack();
3228 warn_alloc_show_mem(gfp_mask, nodemask);
3229 }
3230
3231 static inline struct page *
3232 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3233 unsigned int alloc_flags,
3234 const struct alloc_context *ac)
3235 {
3236 struct page *page;
3237
3238 page = get_page_from_freelist(gfp_mask, order,
3239 alloc_flags|ALLOC_CPUSET, ac);
3240 /*
3241 * fallback to ignore cpuset restriction if our nodes
3242 * are depleted
3243 */
3244 if (!page)
3245 page = get_page_from_freelist(gfp_mask, order,
3246 alloc_flags, ac);
3247
3248 return page;
3249 }
3250
3251 static inline struct page *
3252 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3253 const struct alloc_context *ac, unsigned long *did_some_progress)
3254 {
3255 struct oom_control oc = {
3256 .zonelist = ac->zonelist,
3257 .nodemask = ac->nodemask,
3258 .memcg = NULL,
3259 .gfp_mask = gfp_mask,
3260 .order = order,
3261 };
3262 struct page *page;
3263
3264 *did_some_progress = 0;
3265
3266 /*
3267 * Acquire the oom lock. If that fails, somebody else is
3268 * making progress for us.
3269 */
3270 if (!mutex_trylock(&oom_lock)) {
3271 *did_some_progress = 1;
3272 schedule_timeout_uninterruptible(1);
3273 return NULL;
3274 }
3275
3276 /*
3277 * Go through the zonelist yet one more time, keep very high watermark
3278 * here, this is only to catch a parallel oom killing, we must fail if
3279 * we're still under heavy pressure.
3280 */
3281 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3282 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3283 if (page)
3284 goto out;
3285
3286 /* Coredumps can quickly deplete all memory reserves */
3287 if (current->flags & PF_DUMPCORE)
3288 goto out;
3289 /* The OOM killer will not help higher order allocs */
3290 if (order > PAGE_ALLOC_COSTLY_ORDER)
3291 goto out;
3292 /*
3293 * We have already exhausted all our reclaim opportunities without any
3294 * success so it is time to admit defeat. We will skip the OOM killer
3295 * because it is very likely that the caller has a more reasonable
3296 * fallback than shooting a random task.
3297 */
3298 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3299 goto out;
3300 /* The OOM killer does not needlessly kill tasks for lowmem */
3301 if (ac->high_zoneidx < ZONE_NORMAL)
3302 goto out;
3303 if (pm_suspended_storage())
3304 goto out;
3305 /*
3306 * XXX: GFP_NOFS allocations should rather fail than rely on
3307 * other request to make a forward progress.
3308 * We are in an unfortunate situation where out_of_memory cannot
3309 * do much for this context but let's try it to at least get
3310 * access to memory reserved if the current task is killed (see
3311 * out_of_memory). Once filesystems are ready to handle allocation
3312 * failures more gracefully we should just bail out here.
3313 */
3314
3315 /* The OOM killer may not free memory on a specific node */
3316 if (gfp_mask & __GFP_THISNODE)
3317 goto out;
3318
3319 /* Exhausted what can be done so it's blamo time */
3320 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3321 *did_some_progress = 1;
3322
3323 /*
3324 * Help non-failing allocations by giving them access to memory
3325 * reserves
3326 */
3327 if (gfp_mask & __GFP_NOFAIL)
3328 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3329 ALLOC_NO_WATERMARKS, ac);
3330 }
3331 out:
3332 mutex_unlock(&oom_lock);
3333 return page;
3334 }
3335
3336 /*
3337 * Maximum number of compaction retries wit a progress before OOM
3338 * killer is consider as the only way to move forward.
3339 */
3340 #define MAX_COMPACT_RETRIES 16
3341
3342 #ifdef CONFIG_COMPACTION
3343 /* Try memory compaction for high-order allocations before reclaim */
3344 static struct page *
3345 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3346 unsigned int alloc_flags, const struct alloc_context *ac,
3347 enum compact_priority prio, enum compact_result *compact_result)
3348 {
3349 struct page *page;
3350 unsigned int noreclaim_flag;
3351
3352 if (!order)
3353 return NULL;
3354
3355 noreclaim_flag = memalloc_noreclaim_save();
3356 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3357 prio);
3358 memalloc_noreclaim_restore(noreclaim_flag);
3359
3360 if (*compact_result <= COMPACT_INACTIVE)
3361 return NULL;
3362
3363 /*
3364 * At least in one zone compaction wasn't deferred or skipped, so let's
3365 * count a compaction stall
3366 */
3367 count_vm_event(COMPACTSTALL);
3368
3369 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3370
3371 if (page) {
3372 struct zone *zone = page_zone(page);
3373
3374 zone->compact_blockskip_flush = false;
3375 compaction_defer_reset(zone, order, true);
3376 count_vm_event(COMPACTSUCCESS);
3377 return page;
3378 }
3379
3380 /*
3381 * It's bad if compaction run occurs and fails. The most likely reason
3382 * is that pages exist, but not enough to satisfy watermarks.
3383 */
3384 count_vm_event(COMPACTFAIL);
3385
3386 cond_resched();
3387
3388 return NULL;
3389 }
3390
3391 static inline bool
3392 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3393 enum compact_result compact_result,
3394 enum compact_priority *compact_priority,
3395 int *compaction_retries)
3396 {
3397 int max_retries = MAX_COMPACT_RETRIES;
3398 int min_priority;
3399 bool ret = false;
3400 int retries = *compaction_retries;
3401 enum compact_priority priority = *compact_priority;
3402
3403 if (!order)
3404 return false;
3405
3406 if (compaction_made_progress(compact_result))
3407 (*compaction_retries)++;
3408
3409 /*
3410 * compaction considers all the zone as desperately out of memory
3411 * so it doesn't really make much sense to retry except when the
3412 * failure could be caused by insufficient priority
3413 */
3414 if (compaction_failed(compact_result))
3415 goto check_priority;
3416
3417 /*
3418 * make sure the compaction wasn't deferred or didn't bail out early
3419 * due to locks contention before we declare that we should give up.
3420 * But do not retry if the given zonelist is not suitable for
3421 * compaction.
3422 */
3423 if (compaction_withdrawn(compact_result)) {
3424 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3425 goto out;
3426 }
3427
3428 /*
3429 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3430 * costly ones because they are de facto nofail and invoke OOM
3431 * killer to move on while costly can fail and users are ready
3432 * to cope with that. 1/4 retries is rather arbitrary but we
3433 * would need much more detailed feedback from compaction to
3434 * make a better decision.
3435 */
3436 if (order > PAGE_ALLOC_COSTLY_ORDER)
3437 max_retries /= 4;
3438 if (*compaction_retries <= max_retries) {
3439 ret = true;
3440 goto out;
3441 }
3442
3443 /*
3444 * Make sure there are attempts at the highest priority if we exhausted
3445 * all retries or failed at the lower priorities.
3446 */
3447 check_priority:
3448 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3449 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3450
3451 if (*compact_priority > min_priority) {
3452 (*compact_priority)--;
3453 *compaction_retries = 0;
3454 ret = true;
3455 }
3456 out:
3457 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3458 return ret;
3459 }
3460 #else
3461 static inline struct page *
3462 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3463 unsigned int alloc_flags, const struct alloc_context *ac,
3464 enum compact_priority prio, enum compact_result *compact_result)
3465 {
3466 *compact_result = COMPACT_SKIPPED;
3467 return NULL;
3468 }
3469
3470 static inline bool
3471 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3472 enum compact_result compact_result,
3473 enum compact_priority *compact_priority,
3474 int *compaction_retries)
3475 {
3476 struct zone *zone;
3477 struct zoneref *z;
3478
3479 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3480 return false;
3481
3482 /*
3483 * There are setups with compaction disabled which would prefer to loop
3484 * inside the allocator rather than hit the oom killer prematurely.
3485 * Let's give them a good hope and keep retrying while the order-0
3486 * watermarks are OK.
3487 */
3488 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3489 ac->nodemask) {
3490 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3491 ac_classzone_idx(ac), alloc_flags))
3492 return true;
3493 }
3494 return false;
3495 }
3496 #endif /* CONFIG_COMPACTION */
3497
3498 #ifdef CONFIG_LOCKDEP
3499 struct lockdep_map __fs_reclaim_map =
3500 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3501
3502 static bool __need_fs_reclaim(gfp_t gfp_mask)
3503 {
3504 gfp_mask = current_gfp_context(gfp_mask);
3505
3506 /* no reclaim without waiting on it */
3507 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3508 return false;
3509
3510 /* this guy won't enter reclaim */
3511 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3512 return false;
3513
3514 /* We're only interested __GFP_FS allocations for now */
3515 if (!(gfp_mask & __GFP_FS))
3516 return false;
3517
3518 if (gfp_mask & __GFP_NOLOCKDEP)
3519 return false;
3520
3521 return true;
3522 }
3523
3524 void fs_reclaim_acquire(gfp_t gfp_mask)
3525 {
3526 if (__need_fs_reclaim(gfp_mask))
3527 lock_map_acquire(&__fs_reclaim_map);
3528 }
3529 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3530
3531 void fs_reclaim_release(gfp_t gfp_mask)
3532 {
3533 if (__need_fs_reclaim(gfp_mask))
3534 lock_map_release(&__fs_reclaim_map);
3535 }
3536 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3537 #endif
3538
3539 /* Perform direct synchronous page reclaim */
3540 static int
3541 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3542 const struct alloc_context *ac)
3543 {
3544 struct reclaim_state reclaim_state;
3545 int progress;
3546 unsigned int noreclaim_flag;
3547
3548 cond_resched();
3549
3550 /* We now go into synchronous reclaim */
3551 cpuset_memory_pressure_bump();
3552 noreclaim_flag = memalloc_noreclaim_save();
3553 fs_reclaim_acquire(gfp_mask);
3554 reclaim_state.reclaimed_slab = 0;
3555 current->reclaim_state = &reclaim_state;
3556
3557 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3558 ac->nodemask);
3559
3560 current->reclaim_state = NULL;
3561 fs_reclaim_release(gfp_mask);
3562 memalloc_noreclaim_restore(noreclaim_flag);
3563
3564 cond_resched();
3565
3566 return progress;
3567 }
3568
3569 /* The really slow allocator path where we enter direct reclaim */
3570 static inline struct page *
3571 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3572 unsigned int alloc_flags, const struct alloc_context *ac,
3573 unsigned long *did_some_progress)
3574 {
3575 struct page *page = NULL;
3576 bool drained = false;
3577
3578 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3579 if (unlikely(!(*did_some_progress)))
3580 return NULL;
3581
3582 retry:
3583 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3584
3585 /*
3586 * If an allocation failed after direct reclaim, it could be because
3587 * pages are pinned on the per-cpu lists or in high alloc reserves.
3588 * Shrink them them and try again
3589 */
3590 if (!page && !drained) {
3591 unreserve_highatomic_pageblock(ac, false);
3592 drain_all_pages(NULL);
3593 drained = true;
3594 goto retry;
3595 }
3596
3597 return page;
3598 }
3599
3600 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3601 {
3602 struct zoneref *z;
3603 struct zone *zone;
3604 pg_data_t *last_pgdat = NULL;
3605
3606 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3607 ac->high_zoneidx, ac->nodemask) {
3608 if (last_pgdat != zone->zone_pgdat)
3609 wakeup_kswapd(zone, order, ac->high_zoneidx);
3610 last_pgdat = zone->zone_pgdat;
3611 }
3612 }
3613
3614 static inline unsigned int
3615 gfp_to_alloc_flags(gfp_t gfp_mask)
3616 {
3617 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3618
3619 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3620 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3621
3622 /*
3623 * The caller may dip into page reserves a bit more if the caller
3624 * cannot run direct reclaim, or if the caller has realtime scheduling
3625 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3626 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3627 */
3628 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3629
3630 if (gfp_mask & __GFP_ATOMIC) {
3631 /*
3632 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3633 * if it can't schedule.
3634 */
3635 if (!(gfp_mask & __GFP_NOMEMALLOC))
3636 alloc_flags |= ALLOC_HARDER;
3637 /*
3638 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3639 * comment for __cpuset_node_allowed().
3640 */
3641 alloc_flags &= ~ALLOC_CPUSET;
3642 } else if (unlikely(rt_task(current)) && !in_interrupt())
3643 alloc_flags |= ALLOC_HARDER;
3644
3645 #ifdef CONFIG_CMA
3646 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3647 alloc_flags |= ALLOC_CMA;
3648 #endif
3649 return alloc_flags;
3650 }
3651
3652 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3653 {
3654 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3655 return false;
3656
3657 if (gfp_mask & __GFP_MEMALLOC)
3658 return true;
3659 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3660 return true;
3661 if (!in_interrupt() &&
3662 ((current->flags & PF_MEMALLOC) ||
3663 unlikely(test_thread_flag(TIF_MEMDIE))))
3664 return true;
3665
3666 return false;
3667 }
3668
3669 /*
3670 * Checks whether it makes sense to retry the reclaim to make a forward progress
3671 * for the given allocation request.
3672 *
3673 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3674 * without success, or when we couldn't even meet the watermark if we
3675 * reclaimed all remaining pages on the LRU lists.
3676 *
3677 * Returns true if a retry is viable or false to enter the oom path.
3678 */
3679 static inline bool
3680 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3681 struct alloc_context *ac, int alloc_flags,
3682 bool did_some_progress, int *no_progress_loops)
3683 {
3684 struct zone *zone;
3685 struct zoneref *z;
3686
3687 /*
3688 * Costly allocations might have made a progress but this doesn't mean
3689 * their order will become available due to high fragmentation so
3690 * always increment the no progress counter for them
3691 */
3692 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3693 *no_progress_loops = 0;
3694 else
3695 (*no_progress_loops)++;
3696
3697 /*
3698 * Make sure we converge to OOM if we cannot make any progress
3699 * several times in the row.
3700 */
3701 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3702 /* Before OOM, exhaust highatomic_reserve */
3703 return unreserve_highatomic_pageblock(ac, true);
3704 }
3705
3706 /*
3707 * Keep reclaiming pages while there is a chance this will lead
3708 * somewhere. If none of the target zones can satisfy our allocation
3709 * request even if all reclaimable pages are considered then we are
3710 * screwed and have to go OOM.
3711 */
3712 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3713 ac->nodemask) {
3714 unsigned long available;
3715 unsigned long reclaimable;
3716 unsigned long min_wmark = min_wmark_pages(zone);
3717 bool wmark;
3718
3719 available = reclaimable = zone_reclaimable_pages(zone);
3720 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3721
3722 /*
3723 * Would the allocation succeed if we reclaimed all
3724 * reclaimable pages?
3725 */
3726 wmark = __zone_watermark_ok(zone, order, min_wmark,
3727 ac_classzone_idx(ac), alloc_flags, available);
3728 trace_reclaim_retry_zone(z, order, reclaimable,
3729 available, min_wmark, *no_progress_loops, wmark);
3730 if (wmark) {
3731 /*
3732 * If we didn't make any progress and have a lot of
3733 * dirty + writeback pages then we should wait for
3734 * an IO to complete to slow down the reclaim and
3735 * prevent from pre mature OOM
3736 */
3737 if (!did_some_progress) {
3738 unsigned long write_pending;
3739
3740 write_pending = zone_page_state_snapshot(zone,
3741 NR_ZONE_WRITE_PENDING);
3742
3743 if (2 * write_pending > reclaimable) {
3744 congestion_wait(BLK_RW_ASYNC, HZ/10);
3745 return true;
3746 }
3747 }
3748
3749 /*
3750 * Memory allocation/reclaim might be called from a WQ
3751 * context and the current implementation of the WQ
3752 * concurrency control doesn't recognize that
3753 * a particular WQ is congested if the worker thread is
3754 * looping without ever sleeping. Therefore we have to
3755 * do a short sleep here rather than calling
3756 * cond_resched().
3757 */
3758 if (current->flags & PF_WQ_WORKER)
3759 schedule_timeout_uninterruptible(1);
3760 else
3761 cond_resched();
3762
3763 return true;
3764 }
3765 }
3766
3767 return false;
3768 }
3769
3770 static inline bool
3771 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3772 {
3773 /*
3774 * It's possible that cpuset's mems_allowed and the nodemask from
3775 * mempolicy don't intersect. This should be normally dealt with by
3776 * policy_nodemask(), but it's possible to race with cpuset update in
3777 * such a way the check therein was true, and then it became false
3778 * before we got our cpuset_mems_cookie here.
3779 * This assumes that for all allocations, ac->nodemask can come only
3780 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3781 * when it does not intersect with the cpuset restrictions) or the
3782 * caller can deal with a violated nodemask.
3783 */
3784 if (cpusets_enabled() && ac->nodemask &&
3785 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3786 ac->nodemask = NULL;
3787 return true;
3788 }
3789
3790 /*
3791 * When updating a task's mems_allowed or mempolicy nodemask, it is
3792 * possible to race with parallel threads in such a way that our
3793 * allocation can fail while the mask is being updated. If we are about
3794 * to fail, check if the cpuset changed during allocation and if so,
3795 * retry.
3796 */
3797 if (read_mems_allowed_retry(cpuset_mems_cookie))
3798 return true;
3799
3800 return false;
3801 }
3802
3803 static inline struct page *
3804 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3805 struct alloc_context *ac)
3806 {
3807 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3808 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3809 struct page *page = NULL;
3810 unsigned int alloc_flags;
3811 unsigned long did_some_progress;
3812 enum compact_priority compact_priority;
3813 enum compact_result compact_result;
3814 int compaction_retries;
3815 int no_progress_loops;
3816 unsigned long alloc_start = jiffies;
3817 unsigned int stall_timeout = 10 * HZ;
3818 unsigned int cpuset_mems_cookie;
3819
3820 /*
3821 * In the slowpath, we sanity check order to avoid ever trying to
3822 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3823 * be using allocators in order of preference for an area that is
3824 * too large.
3825 */
3826 if (order >= MAX_ORDER) {
3827 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3828 return NULL;
3829 }
3830
3831 /*
3832 * We also sanity check to catch abuse of atomic reserves being used by
3833 * callers that are not in atomic context.
3834 */
3835 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3836 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3837 gfp_mask &= ~__GFP_ATOMIC;
3838
3839 retry_cpuset:
3840 compaction_retries = 0;
3841 no_progress_loops = 0;
3842 compact_priority = DEF_COMPACT_PRIORITY;
3843 cpuset_mems_cookie = read_mems_allowed_begin();
3844
3845 /*
3846 * The fast path uses conservative alloc_flags to succeed only until
3847 * kswapd needs to be woken up, and to avoid the cost of setting up
3848 * alloc_flags precisely. So we do that now.
3849 */
3850 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3851
3852 /*
3853 * We need to recalculate the starting point for the zonelist iterator
3854 * because we might have used different nodemask in the fast path, or
3855 * there was a cpuset modification and we are retrying - otherwise we
3856 * could end up iterating over non-eligible zones endlessly.
3857 */
3858 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3859 ac->high_zoneidx, ac->nodemask);
3860 if (!ac->preferred_zoneref->zone)
3861 goto nopage;
3862
3863 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3864 wake_all_kswapds(order, ac);
3865
3866 /*
3867 * The adjusted alloc_flags might result in immediate success, so try
3868 * that first
3869 */
3870 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3871 if (page)
3872 goto got_pg;
3873
3874 /*
3875 * For costly allocations, try direct compaction first, as it's likely
3876 * that we have enough base pages and don't need to reclaim. For non-
3877 * movable high-order allocations, do that as well, as compaction will
3878 * try prevent permanent fragmentation by migrating from blocks of the
3879 * same migratetype.
3880 * Don't try this for allocations that are allowed to ignore
3881 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3882 */
3883 if (can_direct_reclaim &&
3884 (costly_order ||
3885 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3886 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3887 page = __alloc_pages_direct_compact(gfp_mask, order,
3888 alloc_flags, ac,
3889 INIT_COMPACT_PRIORITY,
3890 &compact_result);
3891 if (page)
3892 goto got_pg;
3893
3894 /*
3895 * Checks for costly allocations with __GFP_NORETRY, which
3896 * includes THP page fault allocations
3897 */
3898 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3899 /*
3900 * If compaction is deferred for high-order allocations,
3901 * it is because sync compaction recently failed. If
3902 * this is the case and the caller requested a THP
3903 * allocation, we do not want to heavily disrupt the
3904 * system, so we fail the allocation instead of entering
3905 * direct reclaim.
3906 */
3907 if (compact_result == COMPACT_DEFERRED)
3908 goto nopage;
3909
3910 /*
3911 * Looks like reclaim/compaction is worth trying, but
3912 * sync compaction could be very expensive, so keep
3913 * using async compaction.
3914 */
3915 compact_priority = INIT_COMPACT_PRIORITY;
3916 }
3917 }
3918
3919 retry:
3920 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3921 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3922 wake_all_kswapds(order, ac);
3923
3924 if (gfp_pfmemalloc_allowed(gfp_mask))
3925 alloc_flags = ALLOC_NO_WATERMARKS;
3926
3927 /*
3928 * Reset the zonelist iterators if memory policies can be ignored.
3929 * These allocations are high priority and system rather than user
3930 * orientated.
3931 */
3932 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3933 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3934 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3935 ac->high_zoneidx, ac->nodemask);
3936 }
3937
3938 /* Attempt with potentially adjusted zonelist and alloc_flags */
3939 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3940 if (page)
3941 goto got_pg;
3942
3943 /* Caller is not willing to reclaim, we can't balance anything */
3944 if (!can_direct_reclaim)
3945 goto nopage;
3946
3947 /* Make sure we know about allocations which stall for too long */
3948 if (time_after(jiffies, alloc_start + stall_timeout)) {
3949 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3950 "page allocation stalls for %ums, order:%u",
3951 jiffies_to_msecs(jiffies-alloc_start), order);
3952 stall_timeout += 10 * HZ;
3953 }
3954
3955 /* Avoid recursion of direct reclaim */
3956 if (current->flags & PF_MEMALLOC)
3957 goto nopage;
3958
3959 /* Try direct reclaim and then allocating */
3960 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3961 &did_some_progress);
3962 if (page)
3963 goto got_pg;
3964
3965 /* Try direct compaction and then allocating */
3966 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3967 compact_priority, &compact_result);
3968 if (page)
3969 goto got_pg;
3970
3971 /* Do not loop if specifically requested */
3972 if (gfp_mask & __GFP_NORETRY)
3973 goto nopage;
3974
3975 /*
3976 * Do not retry costly high order allocations unless they are
3977 * __GFP_RETRY_MAYFAIL
3978 */
3979 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
3980 goto nopage;
3981
3982 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3983 did_some_progress > 0, &no_progress_loops))
3984 goto retry;
3985
3986 /*
3987 * It doesn't make any sense to retry for the compaction if the order-0
3988 * reclaim is not able to make any progress because the current
3989 * implementation of the compaction depends on the sufficient amount
3990 * of free memory (see __compaction_suitable)
3991 */
3992 if (did_some_progress > 0 &&
3993 should_compact_retry(ac, order, alloc_flags,
3994 compact_result, &compact_priority,
3995 &compaction_retries))
3996 goto retry;
3997
3998
3999 /* Deal with possible cpuset update races before we start OOM killing */
4000 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4001 goto retry_cpuset;
4002
4003 /* Reclaim has failed us, start killing things */
4004 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4005 if (page)
4006 goto got_pg;
4007
4008 /* Avoid allocations with no watermarks from looping endlessly */
4009 if (test_thread_flag(TIF_MEMDIE) &&
4010 (alloc_flags == ALLOC_NO_WATERMARKS ||
4011 (gfp_mask & __GFP_NOMEMALLOC)))
4012 goto nopage;
4013
4014 /* Retry as long as the OOM killer is making progress */
4015 if (did_some_progress) {
4016 no_progress_loops = 0;
4017 goto retry;
4018 }
4019
4020 nopage:
4021 /* Deal with possible cpuset update races before we fail */
4022 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4023 goto retry_cpuset;
4024
4025 /*
4026 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4027 * we always retry
4028 */
4029 if (gfp_mask & __GFP_NOFAIL) {
4030 /*
4031 * All existing users of the __GFP_NOFAIL are blockable, so warn
4032 * of any new users that actually require GFP_NOWAIT
4033 */
4034 if (WARN_ON_ONCE(!can_direct_reclaim))
4035 goto fail;
4036
4037 /*
4038 * PF_MEMALLOC request from this context is rather bizarre
4039 * because we cannot reclaim anything and only can loop waiting
4040 * for somebody to do a work for us
4041 */
4042 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4043
4044 /*
4045 * non failing costly orders are a hard requirement which we
4046 * are not prepared for much so let's warn about these users
4047 * so that we can identify them and convert them to something
4048 * else.
4049 */
4050 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4051
4052 /*
4053 * Help non-failing allocations by giving them access to memory
4054 * reserves but do not use ALLOC_NO_WATERMARKS because this
4055 * could deplete whole memory reserves which would just make
4056 * the situation worse
4057 */
4058 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4059 if (page)
4060 goto got_pg;
4061
4062 cond_resched();
4063 goto retry;
4064 }
4065 fail:
4066 warn_alloc(gfp_mask, ac->nodemask,
4067 "page allocation failure: order:%u", order);
4068 got_pg:
4069 return page;
4070 }
4071
4072 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4073 int preferred_nid, nodemask_t *nodemask,
4074 struct alloc_context *ac, gfp_t *alloc_mask,
4075 unsigned int *alloc_flags)
4076 {
4077 ac->high_zoneidx = gfp_zone(gfp_mask);
4078 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4079 ac->nodemask = nodemask;
4080 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4081
4082 if (cpusets_enabled()) {
4083 *alloc_mask |= __GFP_HARDWALL;
4084 if (!ac->nodemask)
4085 ac->nodemask = &cpuset_current_mems_allowed;
4086 else
4087 *alloc_flags |= ALLOC_CPUSET;
4088 }
4089
4090 fs_reclaim_acquire(gfp_mask);
4091 fs_reclaim_release(gfp_mask);
4092
4093 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4094
4095 if (should_fail_alloc_page(gfp_mask, order))
4096 return false;
4097
4098 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4099 *alloc_flags |= ALLOC_CMA;
4100
4101 return true;
4102 }
4103
4104 /* Determine whether to spread dirty pages and what the first usable zone */
4105 static inline void finalise_ac(gfp_t gfp_mask,
4106 unsigned int order, struct alloc_context *ac)
4107 {
4108 /* Dirty zone balancing only done in the fast path */
4109 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4110
4111 /*
4112 * The preferred zone is used for statistics but crucially it is
4113 * also used as the starting point for the zonelist iterator. It
4114 * may get reset for allocations that ignore memory policies.
4115 */
4116 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4117 ac->high_zoneidx, ac->nodemask);
4118 }
4119
4120 /*
4121 * This is the 'heart' of the zoned buddy allocator.
4122 */
4123 struct page *
4124 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4125 nodemask_t *nodemask)
4126 {
4127 struct page *page;
4128 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4129 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
4130 struct alloc_context ac = { };
4131
4132 gfp_mask &= gfp_allowed_mask;
4133 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4134 return NULL;
4135
4136 finalise_ac(gfp_mask, order, &ac);
4137
4138 /* First allocation attempt */
4139 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4140 if (likely(page))
4141 goto out;
4142
4143 /*
4144 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4145 * resp. GFP_NOIO which has to be inherited for all allocation requests
4146 * from a particular context which has been marked by
4147 * memalloc_no{fs,io}_{save,restore}.
4148 */
4149 alloc_mask = current_gfp_context(gfp_mask);
4150 ac.spread_dirty_pages = false;
4151
4152 /*
4153 * Restore the original nodemask if it was potentially replaced with
4154 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4155 */
4156 if (unlikely(ac.nodemask != nodemask))
4157 ac.nodemask = nodemask;
4158
4159 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4160
4161 out:
4162 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4163 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4164 __free_pages(page, order);
4165 page = NULL;
4166 }
4167
4168 if (kmemcheck_enabled && page)
4169 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4170
4171 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4172
4173 return page;
4174 }
4175 EXPORT_SYMBOL(__alloc_pages_nodemask);
4176
4177 /*
4178 * Common helper functions.
4179 */
4180 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4181 {
4182 struct page *page;
4183
4184 /*
4185 * __get_free_pages() returns a 32-bit address, which cannot represent
4186 * a highmem page
4187 */
4188 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4189
4190 page = alloc_pages(gfp_mask, order);
4191 if (!page)
4192 return 0;
4193 return (unsigned long) page_address(page);
4194 }
4195 EXPORT_SYMBOL(__get_free_pages);
4196
4197 unsigned long get_zeroed_page(gfp_t gfp_mask)
4198 {
4199 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4200 }
4201 EXPORT_SYMBOL(get_zeroed_page);
4202
4203 void __free_pages(struct page *page, unsigned int order)
4204 {
4205 if (put_page_testzero(page)) {
4206 if (order == 0)
4207 free_hot_cold_page(page, false);
4208 else
4209 __free_pages_ok(page, order);
4210 }
4211 }
4212
4213 EXPORT_SYMBOL(__free_pages);
4214
4215 void free_pages(unsigned long addr, unsigned int order)
4216 {
4217 if (addr != 0) {
4218 VM_BUG_ON(!virt_addr_valid((void *)addr));
4219 __free_pages(virt_to_page((void *)addr), order);
4220 }
4221 }
4222
4223 EXPORT_SYMBOL(free_pages);
4224
4225 /*
4226 * Page Fragment:
4227 * An arbitrary-length arbitrary-offset area of memory which resides
4228 * within a 0 or higher order page. Multiple fragments within that page
4229 * are individually refcounted, in the page's reference counter.
4230 *
4231 * The page_frag functions below provide a simple allocation framework for
4232 * page fragments. This is used by the network stack and network device
4233 * drivers to provide a backing region of memory for use as either an
4234 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4235 */
4236 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4237 gfp_t gfp_mask)
4238 {
4239 struct page *page = NULL;
4240 gfp_t gfp = gfp_mask;
4241
4242 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4243 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4244 __GFP_NOMEMALLOC;
4245 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4246 PAGE_FRAG_CACHE_MAX_ORDER);
4247 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4248 #endif
4249 if (unlikely(!page))
4250 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4251
4252 nc->va = page ? page_address(page) : NULL;
4253
4254 return page;
4255 }
4256
4257 void __page_frag_cache_drain(struct page *page, unsigned int count)
4258 {
4259 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4260
4261 if (page_ref_sub_and_test(page, count)) {
4262 unsigned int order = compound_order(page);
4263
4264 if (order == 0)
4265 free_hot_cold_page(page, false);
4266 else
4267 __free_pages_ok(page, order);
4268 }
4269 }
4270 EXPORT_SYMBOL(__page_frag_cache_drain);
4271
4272 void *page_frag_alloc(struct page_frag_cache *nc,
4273 unsigned int fragsz, gfp_t gfp_mask)
4274 {
4275 unsigned int size = PAGE_SIZE;
4276 struct page *page;
4277 int offset;
4278
4279 if (unlikely(!nc->va)) {
4280 refill:
4281 page = __page_frag_cache_refill(nc, gfp_mask);
4282 if (!page)
4283 return NULL;
4284
4285 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4286 /* if size can vary use size else just use PAGE_SIZE */
4287 size = nc->size;
4288 #endif
4289 /* Even if we own the page, we do not use atomic_set().
4290 * This would break get_page_unless_zero() users.
4291 */
4292 page_ref_add(page, size - 1);
4293
4294 /* reset page count bias and offset to start of new frag */
4295 nc->pfmemalloc = page_is_pfmemalloc(page);
4296 nc->pagecnt_bias = size;
4297 nc->offset = size;
4298 }
4299
4300 offset = nc->offset - fragsz;
4301 if (unlikely(offset < 0)) {
4302 page = virt_to_page(nc->va);
4303
4304 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4305 goto refill;
4306
4307 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4308 /* if size can vary use size else just use PAGE_SIZE */
4309 size = nc->size;
4310 #endif
4311 /* OK, page count is 0, we can safely set it */
4312 set_page_count(page, size);
4313
4314 /* reset page count bias and offset to start of new frag */
4315 nc->pagecnt_bias = size;
4316 offset = size - fragsz;
4317 }
4318
4319 nc->pagecnt_bias--;
4320 nc->offset = offset;
4321
4322 return nc->va + offset;
4323 }
4324 EXPORT_SYMBOL(page_frag_alloc);
4325
4326 /*
4327 * Frees a page fragment allocated out of either a compound or order 0 page.
4328 */
4329 void page_frag_free(void *addr)
4330 {
4331 struct page *page = virt_to_head_page(addr);
4332
4333 if (unlikely(put_page_testzero(page)))
4334 __free_pages_ok(page, compound_order(page));
4335 }
4336 EXPORT_SYMBOL(page_frag_free);
4337
4338 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4339 size_t size)
4340 {
4341 if (addr) {
4342 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4343 unsigned long used = addr + PAGE_ALIGN(size);
4344
4345 split_page(virt_to_page((void *)addr), order);
4346 while (used < alloc_end) {
4347 free_page(used);
4348 used += PAGE_SIZE;
4349 }
4350 }
4351 return (void *)addr;
4352 }
4353
4354 /**
4355 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4356 * @size: the number of bytes to allocate
4357 * @gfp_mask: GFP flags for the allocation
4358 *
4359 * This function is similar to alloc_pages(), except that it allocates the
4360 * minimum number of pages to satisfy the request. alloc_pages() can only
4361 * allocate memory in power-of-two pages.
4362 *
4363 * This function is also limited by MAX_ORDER.
4364 *
4365 * Memory allocated by this function must be released by free_pages_exact().
4366 */
4367 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4368 {
4369 unsigned int order = get_order(size);
4370 unsigned long addr;
4371
4372 addr = __get_free_pages(gfp_mask, order);
4373 return make_alloc_exact(addr, order, size);
4374 }
4375 EXPORT_SYMBOL(alloc_pages_exact);
4376
4377 /**
4378 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4379 * pages on a node.
4380 * @nid: the preferred node ID where memory should be allocated
4381 * @size: the number of bytes to allocate
4382 * @gfp_mask: GFP flags for the allocation
4383 *
4384 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4385 * back.
4386 */
4387 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4388 {
4389 unsigned int order = get_order(size);
4390 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4391 if (!p)
4392 return NULL;
4393 return make_alloc_exact((unsigned long)page_address(p), order, size);
4394 }
4395
4396 /**
4397 * free_pages_exact - release memory allocated via alloc_pages_exact()
4398 * @virt: the value returned by alloc_pages_exact.
4399 * @size: size of allocation, same value as passed to alloc_pages_exact().
4400 *
4401 * Release the memory allocated by a previous call to alloc_pages_exact.
4402 */
4403 void free_pages_exact(void *virt, size_t size)
4404 {
4405 unsigned long addr = (unsigned long)virt;
4406 unsigned long end = addr + PAGE_ALIGN(size);
4407
4408 while (addr < end) {
4409 free_page(addr);
4410 addr += PAGE_SIZE;
4411 }
4412 }
4413 EXPORT_SYMBOL(free_pages_exact);
4414
4415 /**
4416 * nr_free_zone_pages - count number of pages beyond high watermark
4417 * @offset: The zone index of the highest zone
4418 *
4419 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4420 * high watermark within all zones at or below a given zone index. For each
4421 * zone, the number of pages is calculated as:
4422 *
4423 * nr_free_zone_pages = managed_pages - high_pages
4424 */
4425 static unsigned long nr_free_zone_pages(int offset)
4426 {
4427 struct zoneref *z;
4428 struct zone *zone;
4429
4430 /* Just pick one node, since fallback list is circular */
4431 unsigned long sum = 0;
4432
4433 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4434
4435 for_each_zone_zonelist(zone, z, zonelist, offset) {
4436 unsigned long size = zone->managed_pages;
4437 unsigned long high = high_wmark_pages(zone);
4438 if (size > high)
4439 sum += size - high;
4440 }
4441
4442 return sum;
4443 }
4444
4445 /**
4446 * nr_free_buffer_pages - count number of pages beyond high watermark
4447 *
4448 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4449 * watermark within ZONE_DMA and ZONE_NORMAL.
4450 */
4451 unsigned long nr_free_buffer_pages(void)
4452 {
4453 return nr_free_zone_pages(gfp_zone(GFP_USER));
4454 }
4455 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4456
4457 /**
4458 * nr_free_pagecache_pages - count number of pages beyond high watermark
4459 *
4460 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4461 * high watermark within all zones.
4462 */
4463 unsigned long nr_free_pagecache_pages(void)
4464 {
4465 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4466 }
4467
4468 static inline void show_node(struct zone *zone)
4469 {
4470 if (IS_ENABLED(CONFIG_NUMA))
4471 printk("Node %d ", zone_to_nid(zone));
4472 }
4473
4474 long si_mem_available(void)
4475 {
4476 long available;
4477 unsigned long pagecache;
4478 unsigned long wmark_low = 0;
4479 unsigned long pages[NR_LRU_LISTS];
4480 struct zone *zone;
4481 int lru;
4482
4483 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4484 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4485
4486 for_each_zone(zone)
4487 wmark_low += zone->watermark[WMARK_LOW];
4488
4489 /*
4490 * Estimate the amount of memory available for userspace allocations,
4491 * without causing swapping.
4492 */
4493 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4494
4495 /*
4496 * Not all the page cache can be freed, otherwise the system will
4497 * start swapping. Assume at least half of the page cache, or the
4498 * low watermark worth of cache, needs to stay.
4499 */
4500 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4501 pagecache -= min(pagecache / 2, wmark_low);
4502 available += pagecache;
4503
4504 /*
4505 * Part of the reclaimable slab consists of items that are in use,
4506 * and cannot be freed. Cap this estimate at the low watermark.
4507 */
4508 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4509 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4510 wmark_low);
4511
4512 if (available < 0)
4513 available = 0;
4514 return available;
4515 }
4516 EXPORT_SYMBOL_GPL(si_mem_available);
4517
4518 void si_meminfo(struct sysinfo *val)
4519 {
4520 val->totalram = totalram_pages;
4521 val->sharedram = global_node_page_state(NR_SHMEM);
4522 val->freeram = global_page_state(NR_FREE_PAGES);
4523 val->bufferram = nr_blockdev_pages();
4524 val->totalhigh = totalhigh_pages;
4525 val->freehigh = nr_free_highpages();
4526 val->mem_unit = PAGE_SIZE;
4527 }
4528
4529 EXPORT_SYMBOL(si_meminfo);
4530
4531 #ifdef CONFIG_NUMA
4532 void si_meminfo_node(struct sysinfo *val, int nid)
4533 {
4534 int zone_type; /* needs to be signed */
4535 unsigned long managed_pages = 0;
4536 unsigned long managed_highpages = 0;
4537 unsigned long free_highpages = 0;
4538 pg_data_t *pgdat = NODE_DATA(nid);
4539
4540 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4541 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4542 val->totalram = managed_pages;
4543 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4544 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4545 #ifdef CONFIG_HIGHMEM
4546 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4547 struct zone *zone = &pgdat->node_zones[zone_type];
4548
4549 if (is_highmem(zone)) {
4550 managed_highpages += zone->managed_pages;
4551 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4552 }
4553 }
4554 val->totalhigh = managed_highpages;
4555 val->freehigh = free_highpages;
4556 #else
4557 val->totalhigh = managed_highpages;
4558 val->freehigh = free_highpages;
4559 #endif
4560 val->mem_unit = PAGE_SIZE;
4561 }
4562 #endif
4563
4564 /*
4565 * Determine whether the node should be displayed or not, depending on whether
4566 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4567 */
4568 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4569 {
4570 if (!(flags & SHOW_MEM_FILTER_NODES))
4571 return false;
4572
4573 /*
4574 * no node mask - aka implicit memory numa policy. Do not bother with
4575 * the synchronization - read_mems_allowed_begin - because we do not
4576 * have to be precise here.
4577 */
4578 if (!nodemask)
4579 nodemask = &cpuset_current_mems_allowed;
4580
4581 return !node_isset(nid, *nodemask);
4582 }
4583
4584 #define K(x) ((x) << (PAGE_SHIFT-10))
4585
4586 static void show_migration_types(unsigned char type)
4587 {
4588 static const char types[MIGRATE_TYPES] = {
4589 [MIGRATE_UNMOVABLE] = 'U',
4590 [MIGRATE_MOVABLE] = 'M',
4591 [MIGRATE_RECLAIMABLE] = 'E',
4592 [MIGRATE_HIGHATOMIC] = 'H',
4593 #ifdef CONFIG_CMA
4594 [MIGRATE_CMA] = 'C',
4595 #endif
4596 #ifdef CONFIG_MEMORY_ISOLATION
4597 [MIGRATE_ISOLATE] = 'I',
4598 #endif
4599 };
4600 char tmp[MIGRATE_TYPES + 1];
4601 char *p = tmp;
4602 int i;
4603
4604 for (i = 0; i < MIGRATE_TYPES; i++) {
4605 if (type & (1 << i))
4606 *p++ = types[i];
4607 }
4608
4609 *p = '\0';
4610 printk(KERN_CONT "(%s) ", tmp);
4611 }
4612
4613 /*
4614 * Show free area list (used inside shift_scroll-lock stuff)
4615 * We also calculate the percentage fragmentation. We do this by counting the
4616 * memory on each free list with the exception of the first item on the list.
4617 *
4618 * Bits in @filter:
4619 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4620 * cpuset.
4621 */
4622 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4623 {
4624 unsigned long free_pcp = 0;
4625 int cpu;
4626 struct zone *zone;
4627 pg_data_t *pgdat;
4628
4629 for_each_populated_zone(zone) {
4630 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4631 continue;
4632
4633 for_each_online_cpu(cpu)
4634 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4635 }
4636
4637 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4638 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4639 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4640 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4641 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4642 " free:%lu free_pcp:%lu free_cma:%lu\n",
4643 global_node_page_state(NR_ACTIVE_ANON),
4644 global_node_page_state(NR_INACTIVE_ANON),
4645 global_node_page_state(NR_ISOLATED_ANON),
4646 global_node_page_state(NR_ACTIVE_FILE),
4647 global_node_page_state(NR_INACTIVE_FILE),
4648 global_node_page_state(NR_ISOLATED_FILE),
4649 global_node_page_state(NR_UNEVICTABLE),
4650 global_node_page_state(NR_FILE_DIRTY),
4651 global_node_page_state(NR_WRITEBACK),
4652 global_node_page_state(NR_UNSTABLE_NFS),
4653 global_node_page_state(NR_SLAB_RECLAIMABLE),
4654 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4655 global_node_page_state(NR_FILE_MAPPED),
4656 global_node_page_state(NR_SHMEM),
4657 global_page_state(NR_PAGETABLE),
4658 global_page_state(NR_BOUNCE),
4659 global_page_state(NR_FREE_PAGES),
4660 free_pcp,
4661 global_page_state(NR_FREE_CMA_PAGES));
4662
4663 for_each_online_pgdat(pgdat) {
4664 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4665 continue;
4666
4667 printk("Node %d"
4668 " active_anon:%lukB"
4669 " inactive_anon:%lukB"
4670 " active_file:%lukB"
4671 " inactive_file:%lukB"
4672 " unevictable:%lukB"
4673 " isolated(anon):%lukB"
4674 " isolated(file):%lukB"
4675 " mapped:%lukB"
4676 " dirty:%lukB"
4677 " writeback:%lukB"
4678 " shmem:%lukB"
4679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4680 " shmem_thp: %lukB"
4681 " shmem_pmdmapped: %lukB"
4682 " anon_thp: %lukB"
4683 #endif
4684 " writeback_tmp:%lukB"
4685 " unstable:%lukB"
4686 " all_unreclaimable? %s"
4687 "\n",
4688 pgdat->node_id,
4689 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4690 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4691 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4692 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4693 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4694 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4695 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4696 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4697 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4698 K(node_page_state(pgdat, NR_WRITEBACK)),
4699 K(node_page_state(pgdat, NR_SHMEM)),
4700 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4701 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4702 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4703 * HPAGE_PMD_NR),
4704 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4705 #endif
4706 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4707 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4708 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4709 "yes" : "no");
4710 }
4711
4712 for_each_populated_zone(zone) {
4713 int i;
4714
4715 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4716 continue;
4717
4718 free_pcp = 0;
4719 for_each_online_cpu(cpu)
4720 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4721
4722 show_node(zone);
4723 printk(KERN_CONT
4724 "%s"
4725 " free:%lukB"
4726 " min:%lukB"
4727 " low:%lukB"
4728 " high:%lukB"
4729 " active_anon:%lukB"
4730 " inactive_anon:%lukB"
4731 " active_file:%lukB"
4732 " inactive_file:%lukB"
4733 " unevictable:%lukB"
4734 " writepending:%lukB"
4735 " present:%lukB"
4736 " managed:%lukB"
4737 " mlocked:%lukB"
4738 " kernel_stack:%lukB"
4739 " pagetables:%lukB"
4740 " bounce:%lukB"
4741 " free_pcp:%lukB"
4742 " local_pcp:%ukB"
4743 " free_cma:%lukB"
4744 "\n",
4745 zone->name,
4746 K(zone_page_state(zone, NR_FREE_PAGES)),
4747 K(min_wmark_pages(zone)),
4748 K(low_wmark_pages(zone)),
4749 K(high_wmark_pages(zone)),
4750 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4751 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4752 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4753 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4754 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4755 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4756 K(zone->present_pages),
4757 K(zone->managed_pages),
4758 K(zone_page_state(zone, NR_MLOCK)),
4759 zone_page_state(zone, NR_KERNEL_STACK_KB),
4760 K(zone_page_state(zone, NR_PAGETABLE)),
4761 K(zone_page_state(zone, NR_BOUNCE)),
4762 K(free_pcp),
4763 K(this_cpu_read(zone->pageset->pcp.count)),
4764 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4765 printk("lowmem_reserve[]:");
4766 for (i = 0; i < MAX_NR_ZONES; i++)
4767 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4768 printk(KERN_CONT "\n");
4769 }
4770
4771 for_each_populated_zone(zone) {
4772 unsigned int order;
4773 unsigned long nr[MAX_ORDER], flags, total = 0;
4774 unsigned char types[MAX_ORDER];
4775
4776 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4777 continue;
4778 show_node(zone);
4779 printk(KERN_CONT "%s: ", zone->name);
4780
4781 spin_lock_irqsave(&zone->lock, flags);
4782 for (order = 0; order < MAX_ORDER; order++) {
4783 struct free_area *area = &zone->free_area[order];
4784 int type;
4785
4786 nr[order] = area->nr_free;
4787 total += nr[order] << order;
4788
4789 types[order] = 0;
4790 for (type = 0; type < MIGRATE_TYPES; type++) {
4791 if (!list_empty(&area->free_list[type]))
4792 types[order] |= 1 << type;
4793 }
4794 }
4795 spin_unlock_irqrestore(&zone->lock, flags);
4796 for (order = 0; order < MAX_ORDER; order++) {
4797 printk(KERN_CONT "%lu*%lukB ",
4798 nr[order], K(1UL) << order);
4799 if (nr[order])
4800 show_migration_types(types[order]);
4801 }
4802 printk(KERN_CONT "= %lukB\n", K(total));
4803 }
4804
4805 hugetlb_show_meminfo();
4806
4807 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4808
4809 show_swap_cache_info();
4810 }
4811
4812 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4813 {
4814 zoneref->zone = zone;
4815 zoneref->zone_idx = zone_idx(zone);
4816 }
4817
4818 /*
4819 * Builds allocation fallback zone lists.
4820 *
4821 * Add all populated zones of a node to the zonelist.
4822 */
4823 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4824 int nr_zones)
4825 {
4826 struct zone *zone;
4827 enum zone_type zone_type = MAX_NR_ZONES;
4828
4829 do {
4830 zone_type--;
4831 zone = pgdat->node_zones + zone_type;
4832 if (managed_zone(zone)) {
4833 zoneref_set_zone(zone,
4834 &zonelist->_zonerefs[nr_zones++]);
4835 check_highest_zone(zone_type);
4836 }
4837 } while (zone_type);
4838
4839 return nr_zones;
4840 }
4841
4842
4843 /*
4844 * zonelist_order:
4845 * 0 = automatic detection of better ordering.
4846 * 1 = order by ([node] distance, -zonetype)
4847 * 2 = order by (-zonetype, [node] distance)
4848 *
4849 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4850 * the same zonelist. So only NUMA can configure this param.
4851 */
4852 #define ZONELIST_ORDER_DEFAULT 0
4853 #define ZONELIST_ORDER_NODE 1
4854 #define ZONELIST_ORDER_ZONE 2
4855
4856 /* zonelist order in the kernel.
4857 * set_zonelist_order() will set this to NODE or ZONE.
4858 */
4859 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4860 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4861
4862
4863 #ifdef CONFIG_NUMA
4864 /* The value user specified ....changed by config */
4865 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4866 /* string for sysctl */
4867 #define NUMA_ZONELIST_ORDER_LEN 16
4868 char numa_zonelist_order[16] = "default";
4869
4870 /*
4871 * interface for configure zonelist ordering.
4872 * command line option "numa_zonelist_order"
4873 * = "[dD]efault - default, automatic configuration.
4874 * = "[nN]ode - order by node locality, then by zone within node
4875 * = "[zZ]one - order by zone, then by locality within zone
4876 */
4877
4878 static int __parse_numa_zonelist_order(char *s)
4879 {
4880 if (*s == 'd' || *s == 'D') {
4881 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4882 } else if (*s == 'n' || *s == 'N') {
4883 user_zonelist_order = ZONELIST_ORDER_NODE;
4884 } else if (*s == 'z' || *s == 'Z') {
4885 user_zonelist_order = ZONELIST_ORDER_ZONE;
4886 } else {
4887 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4888 return -EINVAL;
4889 }
4890 return 0;
4891 }
4892
4893 static __init int setup_numa_zonelist_order(char *s)
4894 {
4895 int ret;
4896
4897 if (!s)
4898 return 0;
4899
4900 ret = __parse_numa_zonelist_order(s);
4901 if (ret == 0)
4902 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4903
4904 return ret;
4905 }
4906 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4907
4908 /*
4909 * sysctl handler for numa_zonelist_order
4910 */
4911 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4912 void __user *buffer, size_t *length,
4913 loff_t *ppos)
4914 {
4915 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4916 int ret;
4917 static DEFINE_MUTEX(zl_order_mutex);
4918
4919 mutex_lock(&zl_order_mutex);
4920 if (write) {
4921 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4922 ret = -EINVAL;
4923 goto out;
4924 }
4925 strcpy(saved_string, (char *)table->data);
4926 }
4927 ret = proc_dostring(table, write, buffer, length, ppos);
4928 if (ret)
4929 goto out;
4930 if (write) {
4931 int oldval = user_zonelist_order;
4932
4933 ret = __parse_numa_zonelist_order((char *)table->data);
4934 if (ret) {
4935 /*
4936 * bogus value. restore saved string
4937 */
4938 strncpy((char *)table->data, saved_string,
4939 NUMA_ZONELIST_ORDER_LEN);
4940 user_zonelist_order = oldval;
4941 } else if (oldval != user_zonelist_order) {
4942 mem_hotplug_begin();
4943 mutex_lock(&zonelists_mutex);
4944 build_all_zonelists(NULL, NULL);
4945 mutex_unlock(&zonelists_mutex);
4946 mem_hotplug_done();
4947 }
4948 }
4949 out:
4950 mutex_unlock(&zl_order_mutex);
4951 return ret;
4952 }
4953
4954
4955 #define MAX_NODE_LOAD (nr_online_nodes)
4956 static int node_load[MAX_NUMNODES];
4957
4958 /**
4959 * find_next_best_node - find the next node that should appear in a given node's fallback list
4960 * @node: node whose fallback list we're appending
4961 * @used_node_mask: nodemask_t of already used nodes
4962 *
4963 * We use a number of factors to determine which is the next node that should
4964 * appear on a given node's fallback list. The node should not have appeared
4965 * already in @node's fallback list, and it should be the next closest node
4966 * according to the distance array (which contains arbitrary distance values
4967 * from each node to each node in the system), and should also prefer nodes
4968 * with no CPUs, since presumably they'll have very little allocation pressure
4969 * on them otherwise.
4970 * It returns -1 if no node is found.
4971 */
4972 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4973 {
4974 int n, val;
4975 int min_val = INT_MAX;
4976 int best_node = NUMA_NO_NODE;
4977 const struct cpumask *tmp = cpumask_of_node(0);
4978
4979 /* Use the local node if we haven't already */
4980 if (!node_isset(node, *used_node_mask)) {
4981 node_set(node, *used_node_mask);
4982 return node;
4983 }
4984
4985 for_each_node_state(n, N_MEMORY) {
4986
4987 /* Don't want a node to appear more than once */
4988 if (node_isset(n, *used_node_mask))
4989 continue;
4990
4991 /* Use the distance array to find the distance */
4992 val = node_distance(node, n);
4993
4994 /* Penalize nodes under us ("prefer the next node") */
4995 val += (n < node);
4996
4997 /* Give preference to headless and unused nodes */
4998 tmp = cpumask_of_node(n);
4999 if (!cpumask_empty(tmp))
5000 val += PENALTY_FOR_NODE_WITH_CPUS;
5001
5002 /* Slight preference for less loaded node */
5003 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5004 val += node_load[n];
5005
5006 if (val < min_val) {
5007 min_val = val;
5008 best_node = n;
5009 }
5010 }
5011
5012 if (best_node >= 0)
5013 node_set(best_node, *used_node_mask);
5014
5015 return best_node;
5016 }
5017
5018
5019 /*
5020 * Build zonelists ordered by node and zones within node.
5021 * This results in maximum locality--normal zone overflows into local
5022 * DMA zone, if any--but risks exhausting DMA zone.
5023 */
5024 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
5025 {
5026 int j;
5027 struct zonelist *zonelist;
5028
5029 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5030 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
5031 ;
5032 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5033 zonelist->_zonerefs[j].zone = NULL;
5034 zonelist->_zonerefs[j].zone_idx = 0;
5035 }
5036
5037 /*
5038 * Build gfp_thisnode zonelists
5039 */
5040 static void build_thisnode_zonelists(pg_data_t *pgdat)
5041 {
5042 int j;
5043 struct zonelist *zonelist;
5044
5045 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
5046 j = build_zonelists_node(pgdat, zonelist, 0);
5047 zonelist->_zonerefs[j].zone = NULL;
5048 zonelist->_zonerefs[j].zone_idx = 0;
5049 }
5050
5051 /*
5052 * Build zonelists ordered by zone and nodes within zones.
5053 * This results in conserving DMA zone[s] until all Normal memory is
5054 * exhausted, but results in overflowing to remote node while memory
5055 * may still exist in local DMA zone.
5056 */
5057 static int node_order[MAX_NUMNODES];
5058
5059 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
5060 {
5061 int pos, j, node;
5062 int zone_type; /* needs to be signed */
5063 struct zone *z;
5064 struct zonelist *zonelist;
5065
5066 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5067 pos = 0;
5068 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
5069 for (j = 0; j < nr_nodes; j++) {
5070 node = node_order[j];
5071 z = &NODE_DATA(node)->node_zones[zone_type];
5072 if (managed_zone(z)) {
5073 zoneref_set_zone(z,
5074 &zonelist->_zonerefs[pos++]);
5075 check_highest_zone(zone_type);
5076 }
5077 }
5078 }
5079 zonelist->_zonerefs[pos].zone = NULL;
5080 zonelist->_zonerefs[pos].zone_idx = 0;
5081 }
5082
5083 #if defined(CONFIG_64BIT)
5084 /*
5085 * Devices that require DMA32/DMA are relatively rare and do not justify a
5086 * penalty to every machine in case the specialised case applies. Default
5087 * to Node-ordering on 64-bit NUMA machines
5088 */
5089 static int default_zonelist_order(void)
5090 {
5091 return ZONELIST_ORDER_NODE;
5092 }
5093 #else
5094 /*
5095 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
5096 * by the kernel. If processes running on node 0 deplete the low memory zone
5097 * then reclaim will occur more frequency increasing stalls and potentially
5098 * be easier to OOM if a large percentage of the zone is under writeback or
5099 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
5100 * Hence, default to zone ordering on 32-bit.
5101 */
5102 static int default_zonelist_order(void)
5103 {
5104 return ZONELIST_ORDER_ZONE;
5105 }
5106 #endif /* CONFIG_64BIT */
5107
5108 static void set_zonelist_order(void)
5109 {
5110 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
5111 current_zonelist_order = default_zonelist_order();
5112 else
5113 current_zonelist_order = user_zonelist_order;
5114 }
5115
5116 static void build_zonelists(pg_data_t *pgdat)
5117 {
5118 int i, node, load;
5119 nodemask_t used_mask;
5120 int local_node, prev_node;
5121 struct zonelist *zonelist;
5122 unsigned int order = current_zonelist_order;
5123
5124 /* initialize zonelists */
5125 for (i = 0; i < MAX_ZONELISTS; i++) {
5126 zonelist = pgdat->node_zonelists + i;
5127 zonelist->_zonerefs[0].zone = NULL;
5128 zonelist->_zonerefs[0].zone_idx = 0;
5129 }
5130
5131 /* NUMA-aware ordering of nodes */
5132 local_node = pgdat->node_id;
5133 load = nr_online_nodes;
5134 prev_node = local_node;
5135 nodes_clear(used_mask);
5136
5137 memset(node_order, 0, sizeof(node_order));
5138 i = 0;
5139
5140 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5141 /*
5142 * We don't want to pressure a particular node.
5143 * So adding penalty to the first node in same
5144 * distance group to make it round-robin.
5145 */
5146 if (node_distance(local_node, node) !=
5147 node_distance(local_node, prev_node))
5148 node_load[node] = load;
5149
5150 prev_node = node;
5151 load--;
5152 if (order == ZONELIST_ORDER_NODE)
5153 build_zonelists_in_node_order(pgdat, node);
5154 else
5155 node_order[i++] = node; /* remember order */
5156 }
5157
5158 if (order == ZONELIST_ORDER_ZONE) {
5159 /* calculate node order -- i.e., DMA last! */
5160 build_zonelists_in_zone_order(pgdat, i);
5161 }
5162
5163 build_thisnode_zonelists(pgdat);
5164 }
5165
5166 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5167 /*
5168 * Return node id of node used for "local" allocations.
5169 * I.e., first node id of first zone in arg node's generic zonelist.
5170 * Used for initializing percpu 'numa_mem', which is used primarily
5171 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5172 */
5173 int local_memory_node(int node)
5174 {
5175 struct zoneref *z;
5176
5177 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5178 gfp_zone(GFP_KERNEL),
5179 NULL);
5180 return z->zone->node;
5181 }
5182 #endif
5183
5184 static void setup_min_unmapped_ratio(void);
5185 static void setup_min_slab_ratio(void);
5186 #else /* CONFIG_NUMA */
5187
5188 static void set_zonelist_order(void)
5189 {
5190 current_zonelist_order = ZONELIST_ORDER_ZONE;
5191 }
5192
5193 static void build_zonelists(pg_data_t *pgdat)
5194 {
5195 int node, local_node;
5196 enum zone_type j;
5197 struct zonelist *zonelist;
5198
5199 local_node = pgdat->node_id;
5200
5201 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5202 j = build_zonelists_node(pgdat, zonelist, 0);
5203
5204 /*
5205 * Now we build the zonelist so that it contains the zones
5206 * of all the other nodes.
5207 * We don't want to pressure a particular node, so when
5208 * building the zones for node N, we make sure that the
5209 * zones coming right after the local ones are those from
5210 * node N+1 (modulo N)
5211 */
5212 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5213 if (!node_online(node))
5214 continue;
5215 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5216 }
5217 for (node = 0; node < local_node; node++) {
5218 if (!node_online(node))
5219 continue;
5220 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5221 }
5222
5223 zonelist->_zonerefs[j].zone = NULL;
5224 zonelist->_zonerefs[j].zone_idx = 0;
5225 }
5226
5227 #endif /* CONFIG_NUMA */
5228
5229 /*
5230 * Boot pageset table. One per cpu which is going to be used for all
5231 * zones and all nodes. The parameters will be set in such a way
5232 * that an item put on a list will immediately be handed over to
5233 * the buddy list. This is safe since pageset manipulation is done
5234 * with interrupts disabled.
5235 *
5236 * The boot_pagesets must be kept even after bootup is complete for
5237 * unused processors and/or zones. They do play a role for bootstrapping
5238 * hotplugged processors.
5239 *
5240 * zoneinfo_show() and maybe other functions do
5241 * not check if the processor is online before following the pageset pointer.
5242 * Other parts of the kernel may not check if the zone is available.
5243 */
5244 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5245 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5246 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5247 static void setup_zone_pageset(struct zone *zone);
5248
5249 /*
5250 * Global mutex to protect against size modification of zonelists
5251 * as well as to serialize pageset setup for the new populated zone.
5252 */
5253 DEFINE_MUTEX(zonelists_mutex);
5254
5255 /* return values int ....just for stop_machine() */
5256 static int __build_all_zonelists(void *data)
5257 {
5258 int nid;
5259 int cpu;
5260 pg_data_t *self = data;
5261
5262 #ifdef CONFIG_NUMA
5263 memset(node_load, 0, sizeof(node_load));
5264 #endif
5265
5266 if (self && !node_online(self->node_id)) {
5267 build_zonelists(self);
5268 }
5269
5270 for_each_online_node(nid) {
5271 pg_data_t *pgdat = NODE_DATA(nid);
5272
5273 build_zonelists(pgdat);
5274 }
5275
5276 /*
5277 * Initialize the boot_pagesets that are going to be used
5278 * for bootstrapping processors. The real pagesets for
5279 * each zone will be allocated later when the per cpu
5280 * allocator is available.
5281 *
5282 * boot_pagesets are used also for bootstrapping offline
5283 * cpus if the system is already booted because the pagesets
5284 * are needed to initialize allocators on a specific cpu too.
5285 * F.e. the percpu allocator needs the page allocator which
5286 * needs the percpu allocator in order to allocate its pagesets
5287 * (a chicken-egg dilemma).
5288 */
5289 for_each_possible_cpu(cpu) {
5290 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5291
5292 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5293 /*
5294 * We now know the "local memory node" for each node--
5295 * i.e., the node of the first zone in the generic zonelist.
5296 * Set up numa_mem percpu variable for on-line cpus. During
5297 * boot, only the boot cpu should be on-line; we'll init the
5298 * secondary cpus' numa_mem as they come on-line. During
5299 * node/memory hotplug, we'll fixup all on-line cpus.
5300 */
5301 if (cpu_online(cpu))
5302 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5303 #endif
5304 }
5305
5306 return 0;
5307 }
5308
5309 static noinline void __init
5310 build_all_zonelists_init(void)
5311 {
5312 __build_all_zonelists(NULL);
5313 mminit_verify_zonelist();
5314 cpuset_init_current_mems_allowed();
5315 }
5316
5317 /*
5318 * Called with zonelists_mutex held always
5319 * unless system_state == SYSTEM_BOOTING.
5320 *
5321 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5322 * [we're only called with non-NULL zone through __meminit paths] and
5323 * (2) call of __init annotated helper build_all_zonelists_init
5324 * [protected by SYSTEM_BOOTING].
5325 */
5326 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5327 {
5328 set_zonelist_order();
5329
5330 if (system_state == SYSTEM_BOOTING) {
5331 build_all_zonelists_init();
5332 } else {
5333 #ifdef CONFIG_MEMORY_HOTPLUG
5334 if (zone)
5335 setup_zone_pageset(zone);
5336 #endif
5337 /* we have to stop all cpus to guarantee there is no user
5338 of zonelist */
5339 stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL);
5340 /* cpuset refresh routine should be here */
5341 }
5342 vm_total_pages = nr_free_pagecache_pages();
5343 /*
5344 * Disable grouping by mobility if the number of pages in the
5345 * system is too low to allow the mechanism to work. It would be
5346 * more accurate, but expensive to check per-zone. This check is
5347 * made on memory-hotadd so a system can start with mobility
5348 * disabled and enable it later
5349 */
5350 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5351 page_group_by_mobility_disabled = 1;
5352 else
5353 page_group_by_mobility_disabled = 0;
5354
5355 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5356 nr_online_nodes,
5357 zonelist_order_name[current_zonelist_order],
5358 page_group_by_mobility_disabled ? "off" : "on",
5359 vm_total_pages);
5360 #ifdef CONFIG_NUMA
5361 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5362 #endif
5363 }
5364
5365 /*
5366 * Initially all pages are reserved - free ones are freed
5367 * up by free_all_bootmem() once the early boot process is
5368 * done. Non-atomic initialization, single-pass.
5369 */
5370 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5371 unsigned long start_pfn, enum memmap_context context)
5372 {
5373 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5374 unsigned long end_pfn = start_pfn + size;
5375 pg_data_t *pgdat = NODE_DATA(nid);
5376 unsigned long pfn;
5377 unsigned long nr_initialised = 0;
5378 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5379 struct memblock_region *r = NULL, *tmp;
5380 #endif
5381
5382 if (highest_memmap_pfn < end_pfn - 1)
5383 highest_memmap_pfn = end_pfn - 1;
5384
5385 /*
5386 * Honor reservation requested by the driver for this ZONE_DEVICE
5387 * memory
5388 */
5389 if (altmap && start_pfn == altmap->base_pfn)
5390 start_pfn += altmap->reserve;
5391
5392 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5393 /*
5394 * There can be holes in boot-time mem_map[]s handed to this
5395 * function. They do not exist on hotplugged memory.
5396 */
5397 if (context != MEMMAP_EARLY)
5398 goto not_early;
5399
5400 if (!early_pfn_valid(pfn)) {
5401 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5402 /*
5403 * Skip to the pfn preceding the next valid one (or
5404 * end_pfn), such that we hit a valid pfn (or end_pfn)
5405 * on our next iteration of the loop.
5406 */
5407 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5408 #endif
5409 continue;
5410 }
5411 if (!early_pfn_in_nid(pfn, nid))
5412 continue;
5413 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5414 break;
5415
5416 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5417 /*
5418 * Check given memblock attribute by firmware which can affect
5419 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5420 * mirrored, it's an overlapped memmap init. skip it.
5421 */
5422 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5423 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5424 for_each_memblock(memory, tmp)
5425 if (pfn < memblock_region_memory_end_pfn(tmp))
5426 break;
5427 r = tmp;
5428 }
5429 if (pfn >= memblock_region_memory_base_pfn(r) &&
5430 memblock_is_mirror(r)) {
5431 /* already initialized as NORMAL */
5432 pfn = memblock_region_memory_end_pfn(r);
5433 continue;
5434 }
5435 }
5436 #endif
5437
5438 not_early:
5439 /*
5440 * Mark the block movable so that blocks are reserved for
5441 * movable at startup. This will force kernel allocations
5442 * to reserve their blocks rather than leaking throughout
5443 * the address space during boot when many long-lived
5444 * kernel allocations are made.
5445 *
5446 * bitmap is created for zone's valid pfn range. but memmap
5447 * can be created for invalid pages (for alignment)
5448 * check here not to call set_pageblock_migratetype() against
5449 * pfn out of zone.
5450 */
5451 if (!(pfn & (pageblock_nr_pages - 1))) {
5452 struct page *page = pfn_to_page(pfn);
5453
5454 __init_single_page(page, pfn, zone, nid);
5455 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5456 } else {
5457 __init_single_pfn(pfn, zone, nid);
5458 }
5459 }
5460 }
5461
5462 static void __meminit zone_init_free_lists(struct zone *zone)
5463 {
5464 unsigned int order, t;
5465 for_each_migratetype_order(order, t) {
5466 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5467 zone->free_area[order].nr_free = 0;
5468 }
5469 }
5470
5471 #ifndef __HAVE_ARCH_MEMMAP_INIT
5472 #define memmap_init(size, nid, zone, start_pfn) \
5473 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5474 #endif
5475
5476 static int zone_batchsize(struct zone *zone)
5477 {
5478 #ifdef CONFIG_MMU
5479 int batch;
5480
5481 /*
5482 * The per-cpu-pages pools are set to around 1000th of the
5483 * size of the zone. But no more than 1/2 of a meg.
5484 *
5485 * OK, so we don't know how big the cache is. So guess.
5486 */
5487 batch = zone->managed_pages / 1024;
5488 if (batch * PAGE_SIZE > 512 * 1024)
5489 batch = (512 * 1024) / PAGE_SIZE;
5490 batch /= 4; /* We effectively *= 4 below */
5491 if (batch < 1)
5492 batch = 1;
5493
5494 /*
5495 * Clamp the batch to a 2^n - 1 value. Having a power
5496 * of 2 value was found to be more likely to have
5497 * suboptimal cache aliasing properties in some cases.
5498 *
5499 * For example if 2 tasks are alternately allocating
5500 * batches of pages, one task can end up with a lot
5501 * of pages of one half of the possible page colors
5502 * and the other with pages of the other colors.
5503 */
5504 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5505
5506 return batch;
5507
5508 #else
5509 /* The deferral and batching of frees should be suppressed under NOMMU
5510 * conditions.
5511 *
5512 * The problem is that NOMMU needs to be able to allocate large chunks
5513 * of contiguous memory as there's no hardware page translation to
5514 * assemble apparent contiguous memory from discontiguous pages.
5515 *
5516 * Queueing large contiguous runs of pages for batching, however,
5517 * causes the pages to actually be freed in smaller chunks. As there
5518 * can be a significant delay between the individual batches being
5519 * recycled, this leads to the once large chunks of space being
5520 * fragmented and becoming unavailable for high-order allocations.
5521 */
5522 return 0;
5523 #endif
5524 }
5525
5526 /*
5527 * pcp->high and pcp->batch values are related and dependent on one another:
5528 * ->batch must never be higher then ->high.
5529 * The following function updates them in a safe manner without read side
5530 * locking.
5531 *
5532 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5533 * those fields changing asynchronously (acording the the above rule).
5534 *
5535 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5536 * outside of boot time (or some other assurance that no concurrent updaters
5537 * exist).
5538 */
5539 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5540 unsigned long batch)
5541 {
5542 /* start with a fail safe value for batch */
5543 pcp->batch = 1;
5544 smp_wmb();
5545
5546 /* Update high, then batch, in order */
5547 pcp->high = high;
5548 smp_wmb();
5549
5550 pcp->batch = batch;
5551 }
5552
5553 /* a companion to pageset_set_high() */
5554 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5555 {
5556 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5557 }
5558
5559 static void pageset_init(struct per_cpu_pageset *p)
5560 {
5561 struct per_cpu_pages *pcp;
5562 int migratetype;
5563
5564 memset(p, 0, sizeof(*p));
5565
5566 pcp = &p->pcp;
5567 pcp->count = 0;
5568 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5569 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5570 }
5571
5572 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5573 {
5574 pageset_init(p);
5575 pageset_set_batch(p, batch);
5576 }
5577
5578 /*
5579 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5580 * to the value high for the pageset p.
5581 */
5582 static void pageset_set_high(struct per_cpu_pageset *p,
5583 unsigned long high)
5584 {
5585 unsigned long batch = max(1UL, high / 4);
5586 if ((high / 4) > (PAGE_SHIFT * 8))
5587 batch = PAGE_SHIFT * 8;
5588
5589 pageset_update(&p->pcp, high, batch);
5590 }
5591
5592 static void pageset_set_high_and_batch(struct zone *zone,
5593 struct per_cpu_pageset *pcp)
5594 {
5595 if (percpu_pagelist_fraction)
5596 pageset_set_high(pcp,
5597 (zone->managed_pages /
5598 percpu_pagelist_fraction));
5599 else
5600 pageset_set_batch(pcp, zone_batchsize(zone));
5601 }
5602
5603 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5604 {
5605 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5606
5607 pageset_init(pcp);
5608 pageset_set_high_and_batch(zone, pcp);
5609 }
5610
5611 static void __meminit setup_zone_pageset(struct zone *zone)
5612 {
5613 int cpu;
5614 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5615 for_each_possible_cpu(cpu)
5616 zone_pageset_init(zone, cpu);
5617 }
5618
5619 /*
5620 * Allocate per cpu pagesets and initialize them.
5621 * Before this call only boot pagesets were available.
5622 */
5623 void __init setup_per_cpu_pageset(void)
5624 {
5625 struct pglist_data *pgdat;
5626 struct zone *zone;
5627
5628 for_each_populated_zone(zone)
5629 setup_zone_pageset(zone);
5630
5631 for_each_online_pgdat(pgdat)
5632 pgdat->per_cpu_nodestats =
5633 alloc_percpu(struct per_cpu_nodestat);
5634 }
5635
5636 static __meminit void zone_pcp_init(struct zone *zone)
5637 {
5638 /*
5639 * per cpu subsystem is not up at this point. The following code
5640 * relies on the ability of the linker to provide the
5641 * offset of a (static) per cpu variable into the per cpu area.
5642 */
5643 zone->pageset = &boot_pageset;
5644
5645 if (populated_zone(zone))
5646 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5647 zone->name, zone->present_pages,
5648 zone_batchsize(zone));
5649 }
5650
5651 void __meminit init_currently_empty_zone(struct zone *zone,
5652 unsigned long zone_start_pfn,
5653 unsigned long size)
5654 {
5655 struct pglist_data *pgdat = zone->zone_pgdat;
5656
5657 pgdat->nr_zones = zone_idx(zone) + 1;
5658
5659 zone->zone_start_pfn = zone_start_pfn;
5660
5661 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5662 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5663 pgdat->node_id,
5664 (unsigned long)zone_idx(zone),
5665 zone_start_pfn, (zone_start_pfn + size));
5666
5667 zone_init_free_lists(zone);
5668 zone->initialized = 1;
5669 }
5670
5671 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5672 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5673
5674 /*
5675 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5676 */
5677 int __meminit __early_pfn_to_nid(unsigned long pfn,
5678 struct mminit_pfnnid_cache *state)
5679 {
5680 unsigned long start_pfn, end_pfn;
5681 int nid;
5682
5683 if (state->last_start <= pfn && pfn < state->last_end)
5684 return state->last_nid;
5685
5686 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5687 if (nid != -1) {
5688 state->last_start = start_pfn;
5689 state->last_end = end_pfn;
5690 state->last_nid = nid;
5691 }
5692
5693 return nid;
5694 }
5695 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5696
5697 /**
5698 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5699 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5700 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5701 *
5702 * If an architecture guarantees that all ranges registered contain no holes
5703 * and may be freed, this this function may be used instead of calling
5704 * memblock_free_early_nid() manually.
5705 */
5706 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5707 {
5708 unsigned long start_pfn, end_pfn;
5709 int i, this_nid;
5710
5711 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5712 start_pfn = min(start_pfn, max_low_pfn);
5713 end_pfn = min(end_pfn, max_low_pfn);
5714
5715 if (start_pfn < end_pfn)
5716 memblock_free_early_nid(PFN_PHYS(start_pfn),
5717 (end_pfn - start_pfn) << PAGE_SHIFT,
5718 this_nid);
5719 }
5720 }
5721
5722 /**
5723 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5724 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5725 *
5726 * If an architecture guarantees that all ranges registered contain no holes and may
5727 * be freed, this function may be used instead of calling memory_present() manually.
5728 */
5729 void __init sparse_memory_present_with_active_regions(int nid)
5730 {
5731 unsigned long start_pfn, end_pfn;
5732 int i, this_nid;
5733
5734 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5735 memory_present(this_nid, start_pfn, end_pfn);
5736 }
5737
5738 /**
5739 * get_pfn_range_for_nid - Return the start and end page frames for a node
5740 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5741 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5742 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5743 *
5744 * It returns the start and end page frame of a node based on information
5745 * provided by memblock_set_node(). If called for a node
5746 * with no available memory, a warning is printed and the start and end
5747 * PFNs will be 0.
5748 */
5749 void __meminit get_pfn_range_for_nid(unsigned int nid,
5750 unsigned long *start_pfn, unsigned long *end_pfn)
5751 {
5752 unsigned long this_start_pfn, this_end_pfn;
5753 int i;
5754
5755 *start_pfn = -1UL;
5756 *end_pfn = 0;
5757
5758 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5759 *start_pfn = min(*start_pfn, this_start_pfn);
5760 *end_pfn = max(*end_pfn, this_end_pfn);
5761 }
5762
5763 if (*start_pfn == -1UL)
5764 *start_pfn = 0;
5765 }
5766
5767 /*
5768 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5769 * assumption is made that zones within a node are ordered in monotonic
5770 * increasing memory addresses so that the "highest" populated zone is used
5771 */
5772 static void __init find_usable_zone_for_movable(void)
5773 {
5774 int zone_index;
5775 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5776 if (zone_index == ZONE_MOVABLE)
5777 continue;
5778
5779 if (arch_zone_highest_possible_pfn[zone_index] >
5780 arch_zone_lowest_possible_pfn[zone_index])
5781 break;
5782 }
5783
5784 VM_BUG_ON(zone_index == -1);
5785 movable_zone = zone_index;
5786 }
5787
5788 /*
5789 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5790 * because it is sized independent of architecture. Unlike the other zones,
5791 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5792 * in each node depending on the size of each node and how evenly kernelcore
5793 * is distributed. This helper function adjusts the zone ranges
5794 * provided by the architecture for a given node by using the end of the
5795 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5796 * zones within a node are in order of monotonic increases memory addresses
5797 */
5798 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5799 unsigned long zone_type,
5800 unsigned long node_start_pfn,
5801 unsigned long node_end_pfn,
5802 unsigned long *zone_start_pfn,
5803 unsigned long *zone_end_pfn)
5804 {
5805 /* Only adjust if ZONE_MOVABLE is on this node */
5806 if (zone_movable_pfn[nid]) {
5807 /* Size ZONE_MOVABLE */
5808 if (zone_type == ZONE_MOVABLE) {
5809 *zone_start_pfn = zone_movable_pfn[nid];
5810 *zone_end_pfn = min(node_end_pfn,
5811 arch_zone_highest_possible_pfn[movable_zone]);
5812
5813 /* Adjust for ZONE_MOVABLE starting within this range */
5814 } else if (!mirrored_kernelcore &&
5815 *zone_start_pfn < zone_movable_pfn[nid] &&
5816 *zone_end_pfn > zone_movable_pfn[nid]) {
5817 *zone_end_pfn = zone_movable_pfn[nid];
5818
5819 /* Check if this whole range is within ZONE_MOVABLE */
5820 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5821 *zone_start_pfn = *zone_end_pfn;
5822 }
5823 }
5824
5825 /*
5826 * Return the number of pages a zone spans in a node, including holes
5827 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5828 */
5829 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5830 unsigned long zone_type,
5831 unsigned long node_start_pfn,
5832 unsigned long node_end_pfn,
5833 unsigned long *zone_start_pfn,
5834 unsigned long *zone_end_pfn,
5835 unsigned long *ignored)
5836 {
5837 /* When hotadd a new node from cpu_up(), the node should be empty */
5838 if (!node_start_pfn && !node_end_pfn)
5839 return 0;
5840
5841 /* Get the start and end of the zone */
5842 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5843 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5844 adjust_zone_range_for_zone_movable(nid, zone_type,
5845 node_start_pfn, node_end_pfn,
5846 zone_start_pfn, zone_end_pfn);
5847
5848 /* Check that this node has pages within the zone's required range */
5849 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5850 return 0;
5851
5852 /* Move the zone boundaries inside the node if necessary */
5853 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5854 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5855
5856 /* Return the spanned pages */
5857 return *zone_end_pfn - *zone_start_pfn;
5858 }
5859
5860 /*
5861 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5862 * then all holes in the requested range will be accounted for.
5863 */
5864 unsigned long __meminit __absent_pages_in_range(int nid,
5865 unsigned long range_start_pfn,
5866 unsigned long range_end_pfn)
5867 {
5868 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5869 unsigned long start_pfn, end_pfn;
5870 int i;
5871
5872 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5873 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5874 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5875 nr_absent -= end_pfn - start_pfn;
5876 }
5877 return nr_absent;
5878 }
5879
5880 /**
5881 * absent_pages_in_range - Return number of page frames in holes within a range
5882 * @start_pfn: The start PFN to start searching for holes
5883 * @end_pfn: The end PFN to stop searching for holes
5884 *
5885 * It returns the number of pages frames in memory holes within a range.
5886 */
5887 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5888 unsigned long end_pfn)
5889 {
5890 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5891 }
5892
5893 /* Return the number of page frames in holes in a zone on a node */
5894 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5895 unsigned long zone_type,
5896 unsigned long node_start_pfn,
5897 unsigned long node_end_pfn,
5898 unsigned long *ignored)
5899 {
5900 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5901 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5902 unsigned long zone_start_pfn, zone_end_pfn;
5903 unsigned long nr_absent;
5904
5905 /* When hotadd a new node from cpu_up(), the node should be empty */
5906 if (!node_start_pfn && !node_end_pfn)
5907 return 0;
5908
5909 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5910 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5911
5912 adjust_zone_range_for_zone_movable(nid, zone_type,
5913 node_start_pfn, node_end_pfn,
5914 &zone_start_pfn, &zone_end_pfn);
5915 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5916
5917 /*
5918 * ZONE_MOVABLE handling.
5919 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5920 * and vice versa.
5921 */
5922 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5923 unsigned long start_pfn, end_pfn;
5924 struct memblock_region *r;
5925
5926 for_each_memblock(memory, r) {
5927 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5928 zone_start_pfn, zone_end_pfn);
5929 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5930 zone_start_pfn, zone_end_pfn);
5931
5932 if (zone_type == ZONE_MOVABLE &&
5933 memblock_is_mirror(r))
5934 nr_absent += end_pfn - start_pfn;
5935
5936 if (zone_type == ZONE_NORMAL &&
5937 !memblock_is_mirror(r))
5938 nr_absent += end_pfn - start_pfn;
5939 }
5940 }
5941
5942 return nr_absent;
5943 }
5944
5945 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5946 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5947 unsigned long zone_type,
5948 unsigned long node_start_pfn,
5949 unsigned long node_end_pfn,
5950 unsigned long *zone_start_pfn,
5951 unsigned long *zone_end_pfn,
5952 unsigned long *zones_size)
5953 {
5954 unsigned int zone;
5955
5956 *zone_start_pfn = node_start_pfn;
5957 for (zone = 0; zone < zone_type; zone++)
5958 *zone_start_pfn += zones_size[zone];
5959
5960 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5961
5962 return zones_size[zone_type];
5963 }
5964
5965 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5966 unsigned long zone_type,
5967 unsigned long node_start_pfn,
5968 unsigned long node_end_pfn,
5969 unsigned long *zholes_size)
5970 {
5971 if (!zholes_size)
5972 return 0;
5973
5974 return zholes_size[zone_type];
5975 }
5976
5977 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5978
5979 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5980 unsigned long node_start_pfn,
5981 unsigned long node_end_pfn,
5982 unsigned long *zones_size,
5983 unsigned long *zholes_size)
5984 {
5985 unsigned long realtotalpages = 0, totalpages = 0;
5986 enum zone_type i;
5987
5988 for (i = 0; i < MAX_NR_ZONES; i++) {
5989 struct zone *zone = pgdat->node_zones + i;
5990 unsigned long zone_start_pfn, zone_end_pfn;
5991 unsigned long size, real_size;
5992
5993 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5994 node_start_pfn,
5995 node_end_pfn,
5996 &zone_start_pfn,
5997 &zone_end_pfn,
5998 zones_size);
5999 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6000 node_start_pfn, node_end_pfn,
6001 zholes_size);
6002 if (size)
6003 zone->zone_start_pfn = zone_start_pfn;
6004 else
6005 zone->zone_start_pfn = 0;
6006 zone->spanned_pages = size;
6007 zone->present_pages = real_size;
6008
6009 totalpages += size;
6010 realtotalpages += real_size;
6011 }
6012
6013 pgdat->node_spanned_pages = totalpages;
6014 pgdat->node_present_pages = realtotalpages;
6015 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6016 realtotalpages);
6017 }
6018
6019 #ifndef CONFIG_SPARSEMEM
6020 /*
6021 * Calculate the size of the zone->blockflags rounded to an unsigned long
6022 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6023 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6024 * round what is now in bits to nearest long in bits, then return it in
6025 * bytes.
6026 */
6027 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6028 {
6029 unsigned long usemapsize;
6030
6031 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6032 usemapsize = roundup(zonesize, pageblock_nr_pages);
6033 usemapsize = usemapsize >> pageblock_order;
6034 usemapsize *= NR_PAGEBLOCK_BITS;
6035 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6036
6037 return usemapsize / 8;
6038 }
6039
6040 static void __init setup_usemap(struct pglist_data *pgdat,
6041 struct zone *zone,
6042 unsigned long zone_start_pfn,
6043 unsigned long zonesize)
6044 {
6045 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6046 zone->pageblock_flags = NULL;
6047 if (usemapsize)
6048 zone->pageblock_flags =
6049 memblock_virt_alloc_node_nopanic(usemapsize,
6050 pgdat->node_id);
6051 }
6052 #else
6053 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6054 unsigned long zone_start_pfn, unsigned long zonesize) {}
6055 #endif /* CONFIG_SPARSEMEM */
6056
6057 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6058
6059 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6060 void __paginginit set_pageblock_order(void)
6061 {
6062 unsigned int order;
6063
6064 /* Check that pageblock_nr_pages has not already been setup */
6065 if (pageblock_order)
6066 return;
6067
6068 if (HPAGE_SHIFT > PAGE_SHIFT)
6069 order = HUGETLB_PAGE_ORDER;
6070 else
6071 order = MAX_ORDER - 1;
6072
6073 /*
6074 * Assume the largest contiguous order of interest is a huge page.
6075 * This value may be variable depending on boot parameters on IA64 and
6076 * powerpc.
6077 */
6078 pageblock_order = order;
6079 }
6080 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6081
6082 /*
6083 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6084 * is unused as pageblock_order is set at compile-time. See
6085 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6086 * the kernel config
6087 */
6088 void __paginginit set_pageblock_order(void)
6089 {
6090 }
6091
6092 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6093
6094 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6095 unsigned long present_pages)
6096 {
6097 unsigned long pages = spanned_pages;
6098
6099 /*
6100 * Provide a more accurate estimation if there are holes within
6101 * the zone and SPARSEMEM is in use. If there are holes within the
6102 * zone, each populated memory region may cost us one or two extra
6103 * memmap pages due to alignment because memmap pages for each
6104 * populated regions may not be naturally aligned on page boundary.
6105 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6106 */
6107 if (spanned_pages > present_pages + (present_pages >> 4) &&
6108 IS_ENABLED(CONFIG_SPARSEMEM))
6109 pages = present_pages;
6110
6111 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6112 }
6113
6114 /*
6115 * Set up the zone data structures:
6116 * - mark all pages reserved
6117 * - mark all memory queues empty
6118 * - clear the memory bitmaps
6119 *
6120 * NOTE: pgdat should get zeroed by caller.
6121 */
6122 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6123 {
6124 enum zone_type j;
6125 int nid = pgdat->node_id;
6126
6127 pgdat_resize_init(pgdat);
6128 #ifdef CONFIG_NUMA_BALANCING
6129 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6130 pgdat->numabalancing_migrate_nr_pages = 0;
6131 pgdat->numabalancing_migrate_next_window = jiffies;
6132 #endif
6133 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6134 spin_lock_init(&pgdat->split_queue_lock);
6135 INIT_LIST_HEAD(&pgdat->split_queue);
6136 pgdat->split_queue_len = 0;
6137 #endif
6138 init_waitqueue_head(&pgdat->kswapd_wait);
6139 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6140 #ifdef CONFIG_COMPACTION
6141 init_waitqueue_head(&pgdat->kcompactd_wait);
6142 #endif
6143 pgdat_page_ext_init(pgdat);
6144 spin_lock_init(&pgdat->lru_lock);
6145 lruvec_init(node_lruvec(pgdat));
6146
6147 pgdat->per_cpu_nodestats = &boot_nodestats;
6148
6149 for (j = 0; j < MAX_NR_ZONES; j++) {
6150 struct zone *zone = pgdat->node_zones + j;
6151 unsigned long size, realsize, freesize, memmap_pages;
6152 unsigned long zone_start_pfn = zone->zone_start_pfn;
6153
6154 size = zone->spanned_pages;
6155 realsize = freesize = zone->present_pages;
6156
6157 /*
6158 * Adjust freesize so that it accounts for how much memory
6159 * is used by this zone for memmap. This affects the watermark
6160 * and per-cpu initialisations
6161 */
6162 memmap_pages = calc_memmap_size(size, realsize);
6163 if (!is_highmem_idx(j)) {
6164 if (freesize >= memmap_pages) {
6165 freesize -= memmap_pages;
6166 if (memmap_pages)
6167 printk(KERN_DEBUG
6168 " %s zone: %lu pages used for memmap\n",
6169 zone_names[j], memmap_pages);
6170 } else
6171 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6172 zone_names[j], memmap_pages, freesize);
6173 }
6174
6175 /* Account for reserved pages */
6176 if (j == 0 && freesize > dma_reserve) {
6177 freesize -= dma_reserve;
6178 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6179 zone_names[0], dma_reserve);
6180 }
6181
6182 if (!is_highmem_idx(j))
6183 nr_kernel_pages += freesize;
6184 /* Charge for highmem memmap if there are enough kernel pages */
6185 else if (nr_kernel_pages > memmap_pages * 2)
6186 nr_kernel_pages -= memmap_pages;
6187 nr_all_pages += freesize;
6188
6189 /*
6190 * Set an approximate value for lowmem here, it will be adjusted
6191 * when the bootmem allocator frees pages into the buddy system.
6192 * And all highmem pages will be managed by the buddy system.
6193 */
6194 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6195 #ifdef CONFIG_NUMA
6196 zone->node = nid;
6197 #endif
6198 zone->name = zone_names[j];
6199 zone->zone_pgdat = pgdat;
6200 spin_lock_init(&zone->lock);
6201 zone_seqlock_init(zone);
6202 zone_pcp_init(zone);
6203
6204 if (!size)
6205 continue;
6206
6207 set_pageblock_order();
6208 setup_usemap(pgdat, zone, zone_start_pfn, size);
6209 init_currently_empty_zone(zone, zone_start_pfn, size);
6210 memmap_init(size, nid, j, zone_start_pfn);
6211 }
6212 }
6213
6214 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6215 {
6216 unsigned long __maybe_unused start = 0;
6217 unsigned long __maybe_unused offset = 0;
6218
6219 /* Skip empty nodes */
6220 if (!pgdat->node_spanned_pages)
6221 return;
6222
6223 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6224 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6225 offset = pgdat->node_start_pfn - start;
6226 /* ia64 gets its own node_mem_map, before this, without bootmem */
6227 if (!pgdat->node_mem_map) {
6228 unsigned long size, end;
6229 struct page *map;
6230
6231 /*
6232 * The zone's endpoints aren't required to be MAX_ORDER
6233 * aligned but the node_mem_map endpoints must be in order
6234 * for the buddy allocator to function correctly.
6235 */
6236 end = pgdat_end_pfn(pgdat);
6237 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6238 size = (end - start) * sizeof(struct page);
6239 map = alloc_remap(pgdat->node_id, size);
6240 if (!map)
6241 map = memblock_virt_alloc_node_nopanic(size,
6242 pgdat->node_id);
6243 pgdat->node_mem_map = map + offset;
6244 }
6245 #ifndef CONFIG_NEED_MULTIPLE_NODES
6246 /*
6247 * With no DISCONTIG, the global mem_map is just set as node 0's
6248 */
6249 if (pgdat == NODE_DATA(0)) {
6250 mem_map = NODE_DATA(0)->node_mem_map;
6251 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6252 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6253 mem_map -= offset;
6254 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6255 }
6256 #endif
6257 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6258 }
6259
6260 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6261 unsigned long node_start_pfn, unsigned long *zholes_size)
6262 {
6263 pg_data_t *pgdat = NODE_DATA(nid);
6264 unsigned long start_pfn = 0;
6265 unsigned long end_pfn = 0;
6266
6267 /* pg_data_t should be reset to zero when it's allocated */
6268 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6269
6270 pgdat->node_id = nid;
6271 pgdat->node_start_pfn = node_start_pfn;
6272 pgdat->per_cpu_nodestats = NULL;
6273 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6274 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6275 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6276 (u64)start_pfn << PAGE_SHIFT,
6277 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6278 #else
6279 start_pfn = node_start_pfn;
6280 #endif
6281 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6282 zones_size, zholes_size);
6283
6284 alloc_node_mem_map(pgdat);
6285 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6286 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6287 nid, (unsigned long)pgdat,
6288 (unsigned long)pgdat->node_mem_map);
6289 #endif
6290
6291 reset_deferred_meminit(pgdat);
6292 free_area_init_core(pgdat);
6293 }
6294
6295 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6296
6297 #if MAX_NUMNODES > 1
6298 /*
6299 * Figure out the number of possible node ids.
6300 */
6301 void __init setup_nr_node_ids(void)
6302 {
6303 unsigned int highest;
6304
6305 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6306 nr_node_ids = highest + 1;
6307 }
6308 #endif
6309
6310 /**
6311 * node_map_pfn_alignment - determine the maximum internode alignment
6312 *
6313 * This function should be called after node map is populated and sorted.
6314 * It calculates the maximum power of two alignment which can distinguish
6315 * all the nodes.
6316 *
6317 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6318 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6319 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6320 * shifted, 1GiB is enough and this function will indicate so.
6321 *
6322 * This is used to test whether pfn -> nid mapping of the chosen memory
6323 * model has fine enough granularity to avoid incorrect mapping for the
6324 * populated node map.
6325 *
6326 * Returns the determined alignment in pfn's. 0 if there is no alignment
6327 * requirement (single node).
6328 */
6329 unsigned long __init node_map_pfn_alignment(void)
6330 {
6331 unsigned long accl_mask = 0, last_end = 0;
6332 unsigned long start, end, mask;
6333 int last_nid = -1;
6334 int i, nid;
6335
6336 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6337 if (!start || last_nid < 0 || last_nid == nid) {
6338 last_nid = nid;
6339 last_end = end;
6340 continue;
6341 }
6342
6343 /*
6344 * Start with a mask granular enough to pin-point to the
6345 * start pfn and tick off bits one-by-one until it becomes
6346 * too coarse to separate the current node from the last.
6347 */
6348 mask = ~((1 << __ffs(start)) - 1);
6349 while (mask && last_end <= (start & (mask << 1)))
6350 mask <<= 1;
6351
6352 /* accumulate all internode masks */
6353 accl_mask |= mask;
6354 }
6355
6356 /* convert mask to number of pages */
6357 return ~accl_mask + 1;
6358 }
6359
6360 /* Find the lowest pfn for a node */
6361 static unsigned long __init find_min_pfn_for_node(int nid)
6362 {
6363 unsigned long min_pfn = ULONG_MAX;
6364 unsigned long start_pfn;
6365 int i;
6366
6367 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6368 min_pfn = min(min_pfn, start_pfn);
6369
6370 if (min_pfn == ULONG_MAX) {
6371 pr_warn("Could not find start_pfn for node %d\n", nid);
6372 return 0;
6373 }
6374
6375 return min_pfn;
6376 }
6377
6378 /**
6379 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6380 *
6381 * It returns the minimum PFN based on information provided via
6382 * memblock_set_node().
6383 */
6384 unsigned long __init find_min_pfn_with_active_regions(void)
6385 {
6386 return find_min_pfn_for_node(MAX_NUMNODES);
6387 }
6388
6389 /*
6390 * early_calculate_totalpages()
6391 * Sum pages in active regions for movable zone.
6392 * Populate N_MEMORY for calculating usable_nodes.
6393 */
6394 static unsigned long __init early_calculate_totalpages(void)
6395 {
6396 unsigned long totalpages = 0;
6397 unsigned long start_pfn, end_pfn;
6398 int i, nid;
6399
6400 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6401 unsigned long pages = end_pfn - start_pfn;
6402
6403 totalpages += pages;
6404 if (pages)
6405 node_set_state(nid, N_MEMORY);
6406 }
6407 return totalpages;
6408 }
6409
6410 /*
6411 * Find the PFN the Movable zone begins in each node. Kernel memory
6412 * is spread evenly between nodes as long as the nodes have enough
6413 * memory. When they don't, some nodes will have more kernelcore than
6414 * others
6415 */
6416 static void __init find_zone_movable_pfns_for_nodes(void)
6417 {
6418 int i, nid;
6419 unsigned long usable_startpfn;
6420 unsigned long kernelcore_node, kernelcore_remaining;
6421 /* save the state before borrow the nodemask */
6422 nodemask_t saved_node_state = node_states[N_MEMORY];
6423 unsigned long totalpages = early_calculate_totalpages();
6424 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6425 struct memblock_region *r;
6426
6427 /* Need to find movable_zone earlier when movable_node is specified. */
6428 find_usable_zone_for_movable();
6429
6430 /*
6431 * If movable_node is specified, ignore kernelcore and movablecore
6432 * options.
6433 */
6434 if (movable_node_is_enabled()) {
6435 for_each_memblock(memory, r) {
6436 if (!memblock_is_hotpluggable(r))
6437 continue;
6438
6439 nid = r->nid;
6440
6441 usable_startpfn = PFN_DOWN(r->base);
6442 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6443 min(usable_startpfn, zone_movable_pfn[nid]) :
6444 usable_startpfn;
6445 }
6446
6447 goto out2;
6448 }
6449
6450 /*
6451 * If kernelcore=mirror is specified, ignore movablecore option
6452 */
6453 if (mirrored_kernelcore) {
6454 bool mem_below_4gb_not_mirrored = false;
6455
6456 for_each_memblock(memory, r) {
6457 if (memblock_is_mirror(r))
6458 continue;
6459
6460 nid = r->nid;
6461
6462 usable_startpfn = memblock_region_memory_base_pfn(r);
6463
6464 if (usable_startpfn < 0x100000) {
6465 mem_below_4gb_not_mirrored = true;
6466 continue;
6467 }
6468
6469 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6470 min(usable_startpfn, zone_movable_pfn[nid]) :
6471 usable_startpfn;
6472 }
6473
6474 if (mem_below_4gb_not_mirrored)
6475 pr_warn("This configuration results in unmirrored kernel memory.");
6476
6477 goto out2;
6478 }
6479
6480 /*
6481 * If movablecore=nn[KMG] was specified, calculate what size of
6482 * kernelcore that corresponds so that memory usable for
6483 * any allocation type is evenly spread. If both kernelcore
6484 * and movablecore are specified, then the value of kernelcore
6485 * will be used for required_kernelcore if it's greater than
6486 * what movablecore would have allowed.
6487 */
6488 if (required_movablecore) {
6489 unsigned long corepages;
6490
6491 /*
6492 * Round-up so that ZONE_MOVABLE is at least as large as what
6493 * was requested by the user
6494 */
6495 required_movablecore =
6496 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6497 required_movablecore = min(totalpages, required_movablecore);
6498 corepages = totalpages - required_movablecore;
6499
6500 required_kernelcore = max(required_kernelcore, corepages);
6501 }
6502
6503 /*
6504 * If kernelcore was not specified or kernelcore size is larger
6505 * than totalpages, there is no ZONE_MOVABLE.
6506 */
6507 if (!required_kernelcore || required_kernelcore >= totalpages)
6508 goto out;
6509
6510 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6511 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6512
6513 restart:
6514 /* Spread kernelcore memory as evenly as possible throughout nodes */
6515 kernelcore_node = required_kernelcore / usable_nodes;
6516 for_each_node_state(nid, N_MEMORY) {
6517 unsigned long start_pfn, end_pfn;
6518
6519 /*
6520 * Recalculate kernelcore_node if the division per node
6521 * now exceeds what is necessary to satisfy the requested
6522 * amount of memory for the kernel
6523 */
6524 if (required_kernelcore < kernelcore_node)
6525 kernelcore_node = required_kernelcore / usable_nodes;
6526
6527 /*
6528 * As the map is walked, we track how much memory is usable
6529 * by the kernel using kernelcore_remaining. When it is
6530 * 0, the rest of the node is usable by ZONE_MOVABLE
6531 */
6532 kernelcore_remaining = kernelcore_node;
6533
6534 /* Go through each range of PFNs within this node */
6535 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6536 unsigned long size_pages;
6537
6538 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6539 if (start_pfn >= end_pfn)
6540 continue;
6541
6542 /* Account for what is only usable for kernelcore */
6543 if (start_pfn < usable_startpfn) {
6544 unsigned long kernel_pages;
6545 kernel_pages = min(end_pfn, usable_startpfn)
6546 - start_pfn;
6547
6548 kernelcore_remaining -= min(kernel_pages,
6549 kernelcore_remaining);
6550 required_kernelcore -= min(kernel_pages,
6551 required_kernelcore);
6552
6553 /* Continue if range is now fully accounted */
6554 if (end_pfn <= usable_startpfn) {
6555
6556 /*
6557 * Push zone_movable_pfn to the end so
6558 * that if we have to rebalance
6559 * kernelcore across nodes, we will
6560 * not double account here
6561 */
6562 zone_movable_pfn[nid] = end_pfn;
6563 continue;
6564 }
6565 start_pfn = usable_startpfn;
6566 }
6567
6568 /*
6569 * The usable PFN range for ZONE_MOVABLE is from
6570 * start_pfn->end_pfn. Calculate size_pages as the
6571 * number of pages used as kernelcore
6572 */
6573 size_pages = end_pfn - start_pfn;
6574 if (size_pages > kernelcore_remaining)
6575 size_pages = kernelcore_remaining;
6576 zone_movable_pfn[nid] = start_pfn + size_pages;
6577
6578 /*
6579 * Some kernelcore has been met, update counts and
6580 * break if the kernelcore for this node has been
6581 * satisfied
6582 */
6583 required_kernelcore -= min(required_kernelcore,
6584 size_pages);
6585 kernelcore_remaining -= size_pages;
6586 if (!kernelcore_remaining)
6587 break;
6588 }
6589 }
6590
6591 /*
6592 * If there is still required_kernelcore, we do another pass with one
6593 * less node in the count. This will push zone_movable_pfn[nid] further
6594 * along on the nodes that still have memory until kernelcore is
6595 * satisfied
6596 */
6597 usable_nodes--;
6598 if (usable_nodes && required_kernelcore > usable_nodes)
6599 goto restart;
6600
6601 out2:
6602 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6603 for (nid = 0; nid < MAX_NUMNODES; nid++)
6604 zone_movable_pfn[nid] =
6605 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6606
6607 out:
6608 /* restore the node_state */
6609 node_states[N_MEMORY] = saved_node_state;
6610 }
6611
6612 /* Any regular or high memory on that node ? */
6613 static void check_for_memory(pg_data_t *pgdat, int nid)
6614 {
6615 enum zone_type zone_type;
6616
6617 if (N_MEMORY == N_NORMAL_MEMORY)
6618 return;
6619
6620 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6621 struct zone *zone = &pgdat->node_zones[zone_type];
6622 if (populated_zone(zone)) {
6623 node_set_state(nid, N_HIGH_MEMORY);
6624 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6625 zone_type <= ZONE_NORMAL)
6626 node_set_state(nid, N_NORMAL_MEMORY);
6627 break;
6628 }
6629 }
6630 }
6631
6632 /**
6633 * free_area_init_nodes - Initialise all pg_data_t and zone data
6634 * @max_zone_pfn: an array of max PFNs for each zone
6635 *
6636 * This will call free_area_init_node() for each active node in the system.
6637 * Using the page ranges provided by memblock_set_node(), the size of each
6638 * zone in each node and their holes is calculated. If the maximum PFN
6639 * between two adjacent zones match, it is assumed that the zone is empty.
6640 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6641 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6642 * starts where the previous one ended. For example, ZONE_DMA32 starts
6643 * at arch_max_dma_pfn.
6644 */
6645 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6646 {
6647 unsigned long start_pfn, end_pfn;
6648 int i, nid;
6649
6650 /* Record where the zone boundaries are */
6651 memset(arch_zone_lowest_possible_pfn, 0,
6652 sizeof(arch_zone_lowest_possible_pfn));
6653 memset(arch_zone_highest_possible_pfn, 0,
6654 sizeof(arch_zone_highest_possible_pfn));
6655
6656 start_pfn = find_min_pfn_with_active_regions();
6657
6658 for (i = 0; i < MAX_NR_ZONES; i++) {
6659 if (i == ZONE_MOVABLE)
6660 continue;
6661
6662 end_pfn = max(max_zone_pfn[i], start_pfn);
6663 arch_zone_lowest_possible_pfn[i] = start_pfn;
6664 arch_zone_highest_possible_pfn[i] = end_pfn;
6665
6666 start_pfn = end_pfn;
6667 }
6668
6669 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6670 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6671 find_zone_movable_pfns_for_nodes();
6672
6673 /* Print out the zone ranges */
6674 pr_info("Zone ranges:\n");
6675 for (i = 0; i < MAX_NR_ZONES; i++) {
6676 if (i == ZONE_MOVABLE)
6677 continue;
6678 pr_info(" %-8s ", zone_names[i]);
6679 if (arch_zone_lowest_possible_pfn[i] ==
6680 arch_zone_highest_possible_pfn[i])
6681 pr_cont("empty\n");
6682 else
6683 pr_cont("[mem %#018Lx-%#018Lx]\n",
6684 (u64)arch_zone_lowest_possible_pfn[i]
6685 << PAGE_SHIFT,
6686 ((u64)arch_zone_highest_possible_pfn[i]
6687 << PAGE_SHIFT) - 1);
6688 }
6689
6690 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6691 pr_info("Movable zone start for each node\n");
6692 for (i = 0; i < MAX_NUMNODES; i++) {
6693 if (zone_movable_pfn[i])
6694 pr_info(" Node %d: %#018Lx\n", i,
6695 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6696 }
6697
6698 /* Print out the early node map */
6699 pr_info("Early memory node ranges\n");
6700 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6701 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6702 (u64)start_pfn << PAGE_SHIFT,
6703 ((u64)end_pfn << PAGE_SHIFT) - 1);
6704
6705 /* Initialise every node */
6706 mminit_verify_pageflags_layout();
6707 setup_nr_node_ids();
6708 for_each_online_node(nid) {
6709 pg_data_t *pgdat = NODE_DATA(nid);
6710 free_area_init_node(nid, NULL,
6711 find_min_pfn_for_node(nid), NULL);
6712
6713 /* Any memory on that node */
6714 if (pgdat->node_present_pages)
6715 node_set_state(nid, N_MEMORY);
6716 check_for_memory(pgdat, nid);
6717 }
6718 }
6719
6720 static int __init cmdline_parse_core(char *p, unsigned long *core)
6721 {
6722 unsigned long long coremem;
6723 if (!p)
6724 return -EINVAL;
6725
6726 coremem = memparse(p, &p);
6727 *core = coremem >> PAGE_SHIFT;
6728
6729 /* Paranoid check that UL is enough for the coremem value */
6730 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6731
6732 return 0;
6733 }
6734
6735 /*
6736 * kernelcore=size sets the amount of memory for use for allocations that
6737 * cannot be reclaimed or migrated.
6738 */
6739 static int __init cmdline_parse_kernelcore(char *p)
6740 {
6741 /* parse kernelcore=mirror */
6742 if (parse_option_str(p, "mirror")) {
6743 mirrored_kernelcore = true;
6744 return 0;
6745 }
6746
6747 return cmdline_parse_core(p, &required_kernelcore);
6748 }
6749
6750 /*
6751 * movablecore=size sets the amount of memory for use for allocations that
6752 * can be reclaimed or migrated.
6753 */
6754 static int __init cmdline_parse_movablecore(char *p)
6755 {
6756 return cmdline_parse_core(p, &required_movablecore);
6757 }
6758
6759 early_param("kernelcore", cmdline_parse_kernelcore);
6760 early_param("movablecore", cmdline_parse_movablecore);
6761
6762 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6763
6764 void adjust_managed_page_count(struct page *page, long count)
6765 {
6766 spin_lock(&managed_page_count_lock);
6767 page_zone(page)->managed_pages += count;
6768 totalram_pages += count;
6769 #ifdef CONFIG_HIGHMEM
6770 if (PageHighMem(page))
6771 totalhigh_pages += count;
6772 #endif
6773 spin_unlock(&managed_page_count_lock);
6774 }
6775 EXPORT_SYMBOL(adjust_managed_page_count);
6776
6777 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6778 {
6779 void *pos;
6780 unsigned long pages = 0;
6781
6782 start = (void *)PAGE_ALIGN((unsigned long)start);
6783 end = (void *)((unsigned long)end & PAGE_MASK);
6784 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6785 if ((unsigned int)poison <= 0xFF)
6786 memset(pos, poison, PAGE_SIZE);
6787 free_reserved_page(virt_to_page(pos));
6788 }
6789
6790 if (pages && s)
6791 pr_info("Freeing %s memory: %ldK\n",
6792 s, pages << (PAGE_SHIFT - 10));
6793
6794 return pages;
6795 }
6796 EXPORT_SYMBOL(free_reserved_area);
6797
6798 #ifdef CONFIG_HIGHMEM
6799 void free_highmem_page(struct page *page)
6800 {
6801 __free_reserved_page(page);
6802 totalram_pages++;
6803 page_zone(page)->managed_pages++;
6804 totalhigh_pages++;
6805 }
6806 #endif
6807
6808
6809 void __init mem_init_print_info(const char *str)
6810 {
6811 unsigned long physpages, codesize, datasize, rosize, bss_size;
6812 unsigned long init_code_size, init_data_size;
6813
6814 physpages = get_num_physpages();
6815 codesize = _etext - _stext;
6816 datasize = _edata - _sdata;
6817 rosize = __end_rodata - __start_rodata;
6818 bss_size = __bss_stop - __bss_start;
6819 init_data_size = __init_end - __init_begin;
6820 init_code_size = _einittext - _sinittext;
6821
6822 /*
6823 * Detect special cases and adjust section sizes accordingly:
6824 * 1) .init.* may be embedded into .data sections
6825 * 2) .init.text.* may be out of [__init_begin, __init_end],
6826 * please refer to arch/tile/kernel/vmlinux.lds.S.
6827 * 3) .rodata.* may be embedded into .text or .data sections.
6828 */
6829 #define adj_init_size(start, end, size, pos, adj) \
6830 do { \
6831 if (start <= pos && pos < end && size > adj) \
6832 size -= adj; \
6833 } while (0)
6834
6835 adj_init_size(__init_begin, __init_end, init_data_size,
6836 _sinittext, init_code_size);
6837 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6838 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6839 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6840 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6841
6842 #undef adj_init_size
6843
6844 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6845 #ifdef CONFIG_HIGHMEM
6846 ", %luK highmem"
6847 #endif
6848 "%s%s)\n",
6849 nr_free_pages() << (PAGE_SHIFT - 10),
6850 physpages << (PAGE_SHIFT - 10),
6851 codesize >> 10, datasize >> 10, rosize >> 10,
6852 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6853 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6854 totalcma_pages << (PAGE_SHIFT - 10),
6855 #ifdef CONFIG_HIGHMEM
6856 totalhigh_pages << (PAGE_SHIFT - 10),
6857 #endif
6858 str ? ", " : "", str ? str : "");
6859 }
6860
6861 /**
6862 * set_dma_reserve - set the specified number of pages reserved in the first zone
6863 * @new_dma_reserve: The number of pages to mark reserved
6864 *
6865 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6866 * In the DMA zone, a significant percentage may be consumed by kernel image
6867 * and other unfreeable allocations which can skew the watermarks badly. This
6868 * function may optionally be used to account for unfreeable pages in the
6869 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6870 * smaller per-cpu batchsize.
6871 */
6872 void __init set_dma_reserve(unsigned long new_dma_reserve)
6873 {
6874 dma_reserve = new_dma_reserve;
6875 }
6876
6877 void __init free_area_init(unsigned long *zones_size)
6878 {
6879 free_area_init_node(0, zones_size,
6880 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6881 }
6882
6883 static int page_alloc_cpu_dead(unsigned int cpu)
6884 {
6885
6886 lru_add_drain_cpu(cpu);
6887 drain_pages(cpu);
6888
6889 /*
6890 * Spill the event counters of the dead processor
6891 * into the current processors event counters.
6892 * This artificially elevates the count of the current
6893 * processor.
6894 */
6895 vm_events_fold_cpu(cpu);
6896
6897 /*
6898 * Zero the differential counters of the dead processor
6899 * so that the vm statistics are consistent.
6900 *
6901 * This is only okay since the processor is dead and cannot
6902 * race with what we are doing.
6903 */
6904 cpu_vm_stats_fold(cpu);
6905 return 0;
6906 }
6907
6908 void __init page_alloc_init(void)
6909 {
6910 int ret;
6911
6912 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6913 "mm/page_alloc:dead", NULL,
6914 page_alloc_cpu_dead);
6915 WARN_ON(ret < 0);
6916 }
6917
6918 /*
6919 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6920 * or min_free_kbytes changes.
6921 */
6922 static void calculate_totalreserve_pages(void)
6923 {
6924 struct pglist_data *pgdat;
6925 unsigned long reserve_pages = 0;
6926 enum zone_type i, j;
6927
6928 for_each_online_pgdat(pgdat) {
6929
6930 pgdat->totalreserve_pages = 0;
6931
6932 for (i = 0; i < MAX_NR_ZONES; i++) {
6933 struct zone *zone = pgdat->node_zones + i;
6934 long max = 0;
6935
6936 /* Find valid and maximum lowmem_reserve in the zone */
6937 for (j = i; j < MAX_NR_ZONES; j++) {
6938 if (zone->lowmem_reserve[j] > max)
6939 max = zone->lowmem_reserve[j];
6940 }
6941
6942 /* we treat the high watermark as reserved pages. */
6943 max += high_wmark_pages(zone);
6944
6945 if (max > zone->managed_pages)
6946 max = zone->managed_pages;
6947
6948 pgdat->totalreserve_pages += max;
6949
6950 reserve_pages += max;
6951 }
6952 }
6953 totalreserve_pages = reserve_pages;
6954 }
6955
6956 /*
6957 * setup_per_zone_lowmem_reserve - called whenever
6958 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6959 * has a correct pages reserved value, so an adequate number of
6960 * pages are left in the zone after a successful __alloc_pages().
6961 */
6962 static void setup_per_zone_lowmem_reserve(void)
6963 {
6964 struct pglist_data *pgdat;
6965 enum zone_type j, idx;
6966
6967 for_each_online_pgdat(pgdat) {
6968 for (j = 0; j < MAX_NR_ZONES; j++) {
6969 struct zone *zone = pgdat->node_zones + j;
6970 unsigned long managed_pages = zone->managed_pages;
6971
6972 zone->lowmem_reserve[j] = 0;
6973
6974 idx = j;
6975 while (idx) {
6976 struct zone *lower_zone;
6977
6978 idx--;
6979
6980 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6981 sysctl_lowmem_reserve_ratio[idx] = 1;
6982
6983 lower_zone = pgdat->node_zones + idx;
6984 lower_zone->lowmem_reserve[j] = managed_pages /
6985 sysctl_lowmem_reserve_ratio[idx];
6986 managed_pages += lower_zone->managed_pages;
6987 }
6988 }
6989 }
6990
6991 /* update totalreserve_pages */
6992 calculate_totalreserve_pages();
6993 }
6994
6995 static void __setup_per_zone_wmarks(void)
6996 {
6997 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6998 unsigned long lowmem_pages = 0;
6999 struct zone *zone;
7000 unsigned long flags;
7001
7002 /* Calculate total number of !ZONE_HIGHMEM pages */
7003 for_each_zone(zone) {
7004 if (!is_highmem(zone))
7005 lowmem_pages += zone->managed_pages;
7006 }
7007
7008 for_each_zone(zone) {
7009 u64 tmp;
7010
7011 spin_lock_irqsave(&zone->lock, flags);
7012 tmp = (u64)pages_min * zone->managed_pages;
7013 do_div(tmp, lowmem_pages);
7014 if (is_highmem(zone)) {
7015 /*
7016 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7017 * need highmem pages, so cap pages_min to a small
7018 * value here.
7019 *
7020 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7021 * deltas control asynch page reclaim, and so should
7022 * not be capped for highmem.
7023 */
7024 unsigned long min_pages;
7025
7026 min_pages = zone->managed_pages / 1024;
7027 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7028 zone->watermark[WMARK_MIN] = min_pages;
7029 } else {
7030 /*
7031 * If it's a lowmem zone, reserve a number of pages
7032 * proportionate to the zone's size.
7033 */
7034 zone->watermark[WMARK_MIN] = tmp;
7035 }
7036
7037 /*
7038 * Set the kswapd watermarks distance according to the
7039 * scale factor in proportion to available memory, but
7040 * ensure a minimum size on small systems.
7041 */
7042 tmp = max_t(u64, tmp >> 2,
7043 mult_frac(zone->managed_pages,
7044 watermark_scale_factor, 10000));
7045
7046 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7047 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7048
7049 spin_unlock_irqrestore(&zone->lock, flags);
7050 }
7051
7052 /* update totalreserve_pages */
7053 calculate_totalreserve_pages();
7054 }
7055
7056 /**
7057 * setup_per_zone_wmarks - called when min_free_kbytes changes
7058 * or when memory is hot-{added|removed}
7059 *
7060 * Ensures that the watermark[min,low,high] values for each zone are set
7061 * correctly with respect to min_free_kbytes.
7062 */
7063 void setup_per_zone_wmarks(void)
7064 {
7065 mutex_lock(&zonelists_mutex);
7066 __setup_per_zone_wmarks();
7067 mutex_unlock(&zonelists_mutex);
7068 }
7069
7070 /*
7071 * Initialise min_free_kbytes.
7072 *
7073 * For small machines we want it small (128k min). For large machines
7074 * we want it large (64MB max). But it is not linear, because network
7075 * bandwidth does not increase linearly with machine size. We use
7076 *
7077 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7078 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7079 *
7080 * which yields
7081 *
7082 * 16MB: 512k
7083 * 32MB: 724k
7084 * 64MB: 1024k
7085 * 128MB: 1448k
7086 * 256MB: 2048k
7087 * 512MB: 2896k
7088 * 1024MB: 4096k
7089 * 2048MB: 5792k
7090 * 4096MB: 8192k
7091 * 8192MB: 11584k
7092 * 16384MB: 16384k
7093 */
7094 int __meminit init_per_zone_wmark_min(void)
7095 {
7096 unsigned long lowmem_kbytes;
7097 int new_min_free_kbytes;
7098
7099 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7100 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7101
7102 if (new_min_free_kbytes > user_min_free_kbytes) {
7103 min_free_kbytes = new_min_free_kbytes;
7104 if (min_free_kbytes < 128)
7105 min_free_kbytes = 128;
7106 if (min_free_kbytes > 65536)
7107 min_free_kbytes = 65536;
7108 } else {
7109 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7110 new_min_free_kbytes, user_min_free_kbytes);
7111 }
7112 setup_per_zone_wmarks();
7113 refresh_zone_stat_thresholds();
7114 setup_per_zone_lowmem_reserve();
7115
7116 #ifdef CONFIG_NUMA
7117 setup_min_unmapped_ratio();
7118 setup_min_slab_ratio();
7119 #endif
7120
7121 return 0;
7122 }
7123 core_initcall(init_per_zone_wmark_min)
7124
7125 /*
7126 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7127 * that we can call two helper functions whenever min_free_kbytes
7128 * changes.
7129 */
7130 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7131 void __user *buffer, size_t *length, loff_t *ppos)
7132 {
7133 int rc;
7134
7135 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7136 if (rc)
7137 return rc;
7138
7139 if (write) {
7140 user_min_free_kbytes = min_free_kbytes;
7141 setup_per_zone_wmarks();
7142 }
7143 return 0;
7144 }
7145
7146 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7147 void __user *buffer, size_t *length, loff_t *ppos)
7148 {
7149 int rc;
7150
7151 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7152 if (rc)
7153 return rc;
7154
7155 if (write)
7156 setup_per_zone_wmarks();
7157
7158 return 0;
7159 }
7160
7161 #ifdef CONFIG_NUMA
7162 static void setup_min_unmapped_ratio(void)
7163 {
7164 pg_data_t *pgdat;
7165 struct zone *zone;
7166
7167 for_each_online_pgdat(pgdat)
7168 pgdat->min_unmapped_pages = 0;
7169
7170 for_each_zone(zone)
7171 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7172 sysctl_min_unmapped_ratio) / 100;
7173 }
7174
7175
7176 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7177 void __user *buffer, size_t *length, loff_t *ppos)
7178 {
7179 int rc;
7180
7181 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7182 if (rc)
7183 return rc;
7184
7185 setup_min_unmapped_ratio();
7186
7187 return 0;
7188 }
7189
7190 static void setup_min_slab_ratio(void)
7191 {
7192 pg_data_t *pgdat;
7193 struct zone *zone;
7194
7195 for_each_online_pgdat(pgdat)
7196 pgdat->min_slab_pages = 0;
7197
7198 for_each_zone(zone)
7199 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7200 sysctl_min_slab_ratio) / 100;
7201 }
7202
7203 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7204 void __user *buffer, size_t *length, loff_t *ppos)
7205 {
7206 int rc;
7207
7208 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7209 if (rc)
7210 return rc;
7211
7212 setup_min_slab_ratio();
7213
7214 return 0;
7215 }
7216 #endif
7217
7218 /*
7219 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7220 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7221 * whenever sysctl_lowmem_reserve_ratio changes.
7222 *
7223 * The reserve ratio obviously has absolutely no relation with the
7224 * minimum watermarks. The lowmem reserve ratio can only make sense
7225 * if in function of the boot time zone sizes.
7226 */
7227 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7228 void __user *buffer, size_t *length, loff_t *ppos)
7229 {
7230 proc_dointvec_minmax(table, write, buffer, length, ppos);
7231 setup_per_zone_lowmem_reserve();
7232 return 0;
7233 }
7234
7235 /*
7236 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7237 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7238 * pagelist can have before it gets flushed back to buddy allocator.
7239 */
7240 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7241 void __user *buffer, size_t *length, loff_t *ppos)
7242 {
7243 struct zone *zone;
7244 int old_percpu_pagelist_fraction;
7245 int ret;
7246
7247 mutex_lock(&pcp_batch_high_lock);
7248 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7249
7250 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7251 if (!write || ret < 0)
7252 goto out;
7253
7254 /* Sanity checking to avoid pcp imbalance */
7255 if (percpu_pagelist_fraction &&
7256 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7257 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7258 ret = -EINVAL;
7259 goto out;
7260 }
7261
7262 /* No change? */
7263 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7264 goto out;
7265
7266 for_each_populated_zone(zone) {
7267 unsigned int cpu;
7268
7269 for_each_possible_cpu(cpu)
7270 pageset_set_high_and_batch(zone,
7271 per_cpu_ptr(zone->pageset, cpu));
7272 }
7273 out:
7274 mutex_unlock(&pcp_batch_high_lock);
7275 return ret;
7276 }
7277
7278 #ifdef CONFIG_NUMA
7279 int hashdist = HASHDIST_DEFAULT;
7280
7281 static int __init set_hashdist(char *str)
7282 {
7283 if (!str)
7284 return 0;
7285 hashdist = simple_strtoul(str, &str, 0);
7286 return 1;
7287 }
7288 __setup("hashdist=", set_hashdist);
7289 #endif
7290
7291 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7292 /*
7293 * Returns the number of pages that arch has reserved but
7294 * is not known to alloc_large_system_hash().
7295 */
7296 static unsigned long __init arch_reserved_kernel_pages(void)
7297 {
7298 return 0;
7299 }
7300 #endif
7301
7302 /*
7303 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7304 * machines. As memory size is increased the scale is also increased but at
7305 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7306 * quadruples the scale is increased by one, which means the size of hash table
7307 * only doubles, instead of quadrupling as well.
7308 * Because 32-bit systems cannot have large physical memory, where this scaling
7309 * makes sense, it is disabled on such platforms.
7310 */
7311 #if __BITS_PER_LONG > 32
7312 #define ADAPT_SCALE_BASE (64ul << 30)
7313 #define ADAPT_SCALE_SHIFT 2
7314 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7315 #endif
7316
7317 /*
7318 * allocate a large system hash table from bootmem
7319 * - it is assumed that the hash table must contain an exact power-of-2
7320 * quantity of entries
7321 * - limit is the number of hash buckets, not the total allocation size
7322 */
7323 void *__init alloc_large_system_hash(const char *tablename,
7324 unsigned long bucketsize,
7325 unsigned long numentries,
7326 int scale,
7327 int flags,
7328 unsigned int *_hash_shift,
7329 unsigned int *_hash_mask,
7330 unsigned long low_limit,
7331 unsigned long high_limit)
7332 {
7333 unsigned long long max = high_limit;
7334 unsigned long log2qty, size;
7335 void *table = NULL;
7336 gfp_t gfp_flags;
7337
7338 /* allow the kernel cmdline to have a say */
7339 if (!numentries) {
7340 /* round applicable memory size up to nearest megabyte */
7341 numentries = nr_kernel_pages;
7342 numentries -= arch_reserved_kernel_pages();
7343
7344 /* It isn't necessary when PAGE_SIZE >= 1MB */
7345 if (PAGE_SHIFT < 20)
7346 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7347
7348 #if __BITS_PER_LONG > 32
7349 if (!high_limit) {
7350 unsigned long adapt;
7351
7352 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7353 adapt <<= ADAPT_SCALE_SHIFT)
7354 scale++;
7355 }
7356 #endif
7357
7358 /* limit to 1 bucket per 2^scale bytes of low memory */
7359 if (scale > PAGE_SHIFT)
7360 numentries >>= (scale - PAGE_SHIFT);
7361 else
7362 numentries <<= (PAGE_SHIFT - scale);
7363
7364 /* Make sure we've got at least a 0-order allocation.. */
7365 if (unlikely(flags & HASH_SMALL)) {
7366 /* Makes no sense without HASH_EARLY */
7367 WARN_ON(!(flags & HASH_EARLY));
7368 if (!(numentries >> *_hash_shift)) {
7369 numentries = 1UL << *_hash_shift;
7370 BUG_ON(!numentries);
7371 }
7372 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7373 numentries = PAGE_SIZE / bucketsize;
7374 }
7375 numentries = roundup_pow_of_two(numentries);
7376
7377 /* limit allocation size to 1/16 total memory by default */
7378 if (max == 0) {
7379 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7380 do_div(max, bucketsize);
7381 }
7382 max = min(max, 0x80000000ULL);
7383
7384 if (numentries < low_limit)
7385 numentries = low_limit;
7386 if (numentries > max)
7387 numentries = max;
7388
7389 log2qty = ilog2(numentries);
7390
7391 /*
7392 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7393 * currently not used when HASH_EARLY is specified.
7394 */
7395 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7396 do {
7397 size = bucketsize << log2qty;
7398 if (flags & HASH_EARLY)
7399 table = memblock_virt_alloc_nopanic(size, 0);
7400 else if (hashdist)
7401 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7402 else {
7403 /*
7404 * If bucketsize is not a power-of-two, we may free
7405 * some pages at the end of hash table which
7406 * alloc_pages_exact() automatically does
7407 */
7408 if (get_order(size) < MAX_ORDER) {
7409 table = alloc_pages_exact(size, gfp_flags);
7410 kmemleak_alloc(table, size, 1, gfp_flags);
7411 }
7412 }
7413 } while (!table && size > PAGE_SIZE && --log2qty);
7414
7415 if (!table)
7416 panic("Failed to allocate %s hash table\n", tablename);
7417
7418 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7419 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7420
7421 if (_hash_shift)
7422 *_hash_shift = log2qty;
7423 if (_hash_mask)
7424 *_hash_mask = (1 << log2qty) - 1;
7425
7426 return table;
7427 }
7428
7429 /*
7430 * This function checks whether pageblock includes unmovable pages or not.
7431 * If @count is not zero, it is okay to include less @count unmovable pages
7432 *
7433 * PageLRU check without isolation or lru_lock could race so that
7434 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7435 * check without lock_page also may miss some movable non-lru pages at
7436 * race condition. So you can't expect this function should be exact.
7437 */
7438 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7439 bool skip_hwpoisoned_pages)
7440 {
7441 unsigned long pfn, iter, found;
7442 int mt;
7443
7444 /*
7445 * For avoiding noise data, lru_add_drain_all() should be called
7446 * If ZONE_MOVABLE, the zone never contains unmovable pages
7447 */
7448 if (zone_idx(zone) == ZONE_MOVABLE)
7449 return false;
7450 mt = get_pageblock_migratetype(page);
7451 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7452 return false;
7453
7454 pfn = page_to_pfn(page);
7455 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7456 unsigned long check = pfn + iter;
7457
7458 if (!pfn_valid_within(check))
7459 continue;
7460
7461 page = pfn_to_page(check);
7462
7463 /*
7464 * Hugepages are not in LRU lists, but they're movable.
7465 * We need not scan over tail pages bacause we don't
7466 * handle each tail page individually in migration.
7467 */
7468 if (PageHuge(page)) {
7469 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7470 continue;
7471 }
7472
7473 /*
7474 * We can't use page_count without pin a page
7475 * because another CPU can free compound page.
7476 * This check already skips compound tails of THP
7477 * because their page->_refcount is zero at all time.
7478 */
7479 if (!page_ref_count(page)) {
7480 if (PageBuddy(page))
7481 iter += (1 << page_order(page)) - 1;
7482 continue;
7483 }
7484
7485 /*
7486 * The HWPoisoned page may be not in buddy system, and
7487 * page_count() is not 0.
7488 */
7489 if (skip_hwpoisoned_pages && PageHWPoison(page))
7490 continue;
7491
7492 if (__PageMovable(page))
7493 continue;
7494
7495 if (!PageLRU(page))
7496 found++;
7497 /*
7498 * If there are RECLAIMABLE pages, we need to check
7499 * it. But now, memory offline itself doesn't call
7500 * shrink_node_slabs() and it still to be fixed.
7501 */
7502 /*
7503 * If the page is not RAM, page_count()should be 0.
7504 * we don't need more check. This is an _used_ not-movable page.
7505 *
7506 * The problematic thing here is PG_reserved pages. PG_reserved
7507 * is set to both of a memory hole page and a _used_ kernel
7508 * page at boot.
7509 */
7510 if (found > count)
7511 return true;
7512 }
7513 return false;
7514 }
7515
7516 bool is_pageblock_removable_nolock(struct page *page)
7517 {
7518 struct zone *zone;
7519 unsigned long pfn;
7520
7521 /*
7522 * We have to be careful here because we are iterating over memory
7523 * sections which are not zone aware so we might end up outside of
7524 * the zone but still within the section.
7525 * We have to take care about the node as well. If the node is offline
7526 * its NODE_DATA will be NULL - see page_zone.
7527 */
7528 if (!node_online(page_to_nid(page)))
7529 return false;
7530
7531 zone = page_zone(page);
7532 pfn = page_to_pfn(page);
7533 if (!zone_spans_pfn(zone, pfn))
7534 return false;
7535
7536 return !has_unmovable_pages(zone, page, 0, true);
7537 }
7538
7539 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7540
7541 static unsigned long pfn_max_align_down(unsigned long pfn)
7542 {
7543 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7544 pageblock_nr_pages) - 1);
7545 }
7546
7547 static unsigned long pfn_max_align_up(unsigned long pfn)
7548 {
7549 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7550 pageblock_nr_pages));
7551 }
7552
7553 /* [start, end) must belong to a single zone. */
7554 static int __alloc_contig_migrate_range(struct compact_control *cc,
7555 unsigned long start, unsigned long end)
7556 {
7557 /* This function is based on compact_zone() from compaction.c. */
7558 unsigned long nr_reclaimed;
7559 unsigned long pfn = start;
7560 unsigned int tries = 0;
7561 int ret = 0;
7562
7563 migrate_prep();
7564
7565 while (pfn < end || !list_empty(&cc->migratepages)) {
7566 if (fatal_signal_pending(current)) {
7567 ret = -EINTR;
7568 break;
7569 }
7570
7571 if (list_empty(&cc->migratepages)) {
7572 cc->nr_migratepages = 0;
7573 pfn = isolate_migratepages_range(cc, pfn, end);
7574 if (!pfn) {
7575 ret = -EINTR;
7576 break;
7577 }
7578 tries = 0;
7579 } else if (++tries == 5) {
7580 ret = ret < 0 ? ret : -EBUSY;
7581 break;
7582 }
7583
7584 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7585 &cc->migratepages);
7586 cc->nr_migratepages -= nr_reclaimed;
7587
7588 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7589 NULL, 0, cc->mode, MR_CMA);
7590 }
7591 if (ret < 0) {
7592 putback_movable_pages(&cc->migratepages);
7593 return ret;
7594 }
7595 return 0;
7596 }
7597
7598 /**
7599 * alloc_contig_range() -- tries to allocate given range of pages
7600 * @start: start PFN to allocate
7601 * @end: one-past-the-last PFN to allocate
7602 * @migratetype: migratetype of the underlaying pageblocks (either
7603 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7604 * in range must have the same migratetype and it must
7605 * be either of the two.
7606 * @gfp_mask: GFP mask to use during compaction
7607 *
7608 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7609 * aligned, however it's the caller's responsibility to guarantee that
7610 * we are the only thread that changes migrate type of pageblocks the
7611 * pages fall in.
7612 *
7613 * The PFN range must belong to a single zone.
7614 *
7615 * Returns zero on success or negative error code. On success all
7616 * pages which PFN is in [start, end) are allocated for the caller and
7617 * need to be freed with free_contig_range().
7618 */
7619 int alloc_contig_range(unsigned long start, unsigned long end,
7620 unsigned migratetype, gfp_t gfp_mask)
7621 {
7622 unsigned long outer_start, outer_end;
7623 unsigned int order;
7624 int ret = 0;
7625
7626 struct compact_control cc = {
7627 .nr_migratepages = 0,
7628 .order = -1,
7629 .zone = page_zone(pfn_to_page(start)),
7630 .mode = MIGRATE_SYNC,
7631 .ignore_skip_hint = true,
7632 .gfp_mask = current_gfp_context(gfp_mask),
7633 };
7634 INIT_LIST_HEAD(&cc.migratepages);
7635
7636 /*
7637 * What we do here is we mark all pageblocks in range as
7638 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7639 * have different sizes, and due to the way page allocator
7640 * work, we align the range to biggest of the two pages so
7641 * that page allocator won't try to merge buddies from
7642 * different pageblocks and change MIGRATE_ISOLATE to some
7643 * other migration type.
7644 *
7645 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7646 * migrate the pages from an unaligned range (ie. pages that
7647 * we are interested in). This will put all the pages in
7648 * range back to page allocator as MIGRATE_ISOLATE.
7649 *
7650 * When this is done, we take the pages in range from page
7651 * allocator removing them from the buddy system. This way
7652 * page allocator will never consider using them.
7653 *
7654 * This lets us mark the pageblocks back as
7655 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7656 * aligned range but not in the unaligned, original range are
7657 * put back to page allocator so that buddy can use them.
7658 */
7659
7660 ret = start_isolate_page_range(pfn_max_align_down(start),
7661 pfn_max_align_up(end), migratetype,
7662 false);
7663 if (ret)
7664 return ret;
7665
7666 /*
7667 * In case of -EBUSY, we'd like to know which page causes problem.
7668 * So, just fall through. We will check it in test_pages_isolated().
7669 */
7670 ret = __alloc_contig_migrate_range(&cc, start, end);
7671 if (ret && ret != -EBUSY)
7672 goto done;
7673
7674 /*
7675 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7676 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7677 * more, all pages in [start, end) are free in page allocator.
7678 * What we are going to do is to allocate all pages from
7679 * [start, end) (that is remove them from page allocator).
7680 *
7681 * The only problem is that pages at the beginning and at the
7682 * end of interesting range may be not aligned with pages that
7683 * page allocator holds, ie. they can be part of higher order
7684 * pages. Because of this, we reserve the bigger range and
7685 * once this is done free the pages we are not interested in.
7686 *
7687 * We don't have to hold zone->lock here because the pages are
7688 * isolated thus they won't get removed from buddy.
7689 */
7690
7691 lru_add_drain_all();
7692 drain_all_pages(cc.zone);
7693
7694 order = 0;
7695 outer_start = start;
7696 while (!PageBuddy(pfn_to_page(outer_start))) {
7697 if (++order >= MAX_ORDER) {
7698 outer_start = start;
7699 break;
7700 }
7701 outer_start &= ~0UL << order;
7702 }
7703
7704 if (outer_start != start) {
7705 order = page_order(pfn_to_page(outer_start));
7706
7707 /*
7708 * outer_start page could be small order buddy page and
7709 * it doesn't include start page. Adjust outer_start
7710 * in this case to report failed page properly
7711 * on tracepoint in test_pages_isolated()
7712 */
7713 if (outer_start + (1UL << order) <= start)
7714 outer_start = start;
7715 }
7716
7717 /* Make sure the range is really isolated. */
7718 if (test_pages_isolated(outer_start, end, false)) {
7719 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7720 __func__, outer_start, end);
7721 ret = -EBUSY;
7722 goto done;
7723 }
7724
7725 /* Grab isolated pages from freelists. */
7726 outer_end = isolate_freepages_range(&cc, outer_start, end);
7727 if (!outer_end) {
7728 ret = -EBUSY;
7729 goto done;
7730 }
7731
7732 /* Free head and tail (if any) */
7733 if (start != outer_start)
7734 free_contig_range(outer_start, start - outer_start);
7735 if (end != outer_end)
7736 free_contig_range(end, outer_end - end);
7737
7738 done:
7739 undo_isolate_page_range(pfn_max_align_down(start),
7740 pfn_max_align_up(end), migratetype);
7741 return ret;
7742 }
7743
7744 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7745 {
7746 unsigned int count = 0;
7747
7748 for (; nr_pages--; pfn++) {
7749 struct page *page = pfn_to_page(pfn);
7750
7751 count += page_count(page) != 1;
7752 __free_page(page);
7753 }
7754 WARN(count != 0, "%d pages are still in use!\n", count);
7755 }
7756 #endif
7757
7758 #ifdef CONFIG_MEMORY_HOTPLUG
7759 /*
7760 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7761 * page high values need to be recalulated.
7762 */
7763 void __meminit zone_pcp_update(struct zone *zone)
7764 {
7765 unsigned cpu;
7766 mutex_lock(&pcp_batch_high_lock);
7767 for_each_possible_cpu(cpu)
7768 pageset_set_high_and_batch(zone,
7769 per_cpu_ptr(zone->pageset, cpu));
7770 mutex_unlock(&pcp_batch_high_lock);
7771 }
7772 #endif
7773
7774 void zone_pcp_reset(struct zone *zone)
7775 {
7776 unsigned long flags;
7777 int cpu;
7778 struct per_cpu_pageset *pset;
7779
7780 /* avoid races with drain_pages() */
7781 local_irq_save(flags);
7782 if (zone->pageset != &boot_pageset) {
7783 for_each_online_cpu(cpu) {
7784 pset = per_cpu_ptr(zone->pageset, cpu);
7785 drain_zonestat(zone, pset);
7786 }
7787 free_percpu(zone->pageset);
7788 zone->pageset = &boot_pageset;
7789 }
7790 local_irq_restore(flags);
7791 }
7792
7793 #ifdef CONFIG_MEMORY_HOTREMOVE
7794 /*
7795 * All pages in the range must be in a single zone and isolated
7796 * before calling this.
7797 */
7798 void
7799 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7800 {
7801 struct page *page;
7802 struct zone *zone;
7803 unsigned int order, i;
7804 unsigned long pfn;
7805 unsigned long flags;
7806 /* find the first valid pfn */
7807 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7808 if (pfn_valid(pfn))
7809 break;
7810 if (pfn == end_pfn)
7811 return;
7812 offline_mem_sections(pfn, end_pfn);
7813 zone = page_zone(pfn_to_page(pfn));
7814 spin_lock_irqsave(&zone->lock, flags);
7815 pfn = start_pfn;
7816 while (pfn < end_pfn) {
7817 if (!pfn_valid(pfn)) {
7818 pfn++;
7819 continue;
7820 }
7821 page = pfn_to_page(pfn);
7822 /*
7823 * The HWPoisoned page may be not in buddy system, and
7824 * page_count() is not 0.
7825 */
7826 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7827 pfn++;
7828 SetPageReserved(page);
7829 continue;
7830 }
7831
7832 BUG_ON(page_count(page));
7833 BUG_ON(!PageBuddy(page));
7834 order = page_order(page);
7835 #ifdef CONFIG_DEBUG_VM
7836 pr_info("remove from free list %lx %d %lx\n",
7837 pfn, 1 << order, end_pfn);
7838 #endif
7839 list_del(&page->lru);
7840 rmv_page_order(page);
7841 zone->free_area[order].nr_free--;
7842 for (i = 0; i < (1 << order); i++)
7843 SetPageReserved((page+i));
7844 pfn += (1 << order);
7845 }
7846 spin_unlock_irqrestore(&zone->lock, flags);
7847 }
7848 #endif
7849
7850 bool is_free_buddy_page(struct page *page)
7851 {
7852 struct zone *zone = page_zone(page);
7853 unsigned long pfn = page_to_pfn(page);
7854 unsigned long flags;
7855 unsigned int order;
7856
7857 spin_lock_irqsave(&zone->lock, flags);
7858 for (order = 0; order < MAX_ORDER; order++) {
7859 struct page *page_head = page - (pfn & ((1 << order) - 1));
7860
7861 if (PageBuddy(page_head) && page_order(page_head) >= order)
7862 break;
7863 }
7864 spin_unlock_irqrestore(&zone->lock, flags);
7865
7866 return order < MAX_ORDER;
7867 }