]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/page_alloc.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77 #include "page_reporting.h"
78
79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80 static DEFINE_MUTEX(pcp_batch_high_lock);
81 #define MIN_PERCPU_PAGELIST_FRACTION (8)
82
83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84 DEFINE_PER_CPU(int, numa_node);
85 EXPORT_PER_CPU_SYMBOL(numa_node);
86 #endif
87
88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89
90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 /*
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
96 */
97 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99 #endif
100
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105 };
106 static DEFINE_MUTEX(pcpu_drain_mutex);
107 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113
114 /*
115 * Array of node states.
116 */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
127 #endif /* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151
152 static int __init early_init_on_alloc(char *buf)
153 {
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169
170 static int __init early_init_on_free(char *buf)
171 {
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187
188 /*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 return page->index;
199 }
200
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 page->index = migratetype;
204 }
205
206 #ifdef CONFIG_PM_SLEEP
207 /*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
215 */
216
217 static gfp_t saved_gfp_mask;
218
219 void pm_restore_gfp_mask(void)
220 {
221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
226 }
227
228 void pm_restrict_gfp_mask(void)
229 {
230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235
236 bool pm_suspended_storage(void)
237 {
238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 return false;
240 return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247
248 static void __free_pages_ok(struct page *page, unsigned int order);
249
250 /*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
260 */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 [ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 [ZONE_DMA32] = 256,
267 #endif
268 [ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 [ZONE_HIGHMEM] = 0,
271 #endif
272 [ZONE_MOVABLE] = 0,
273 };
274
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 "DMA32",
281 #endif
282 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 "HighMem",
285 #endif
286 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 "Device",
289 #endif
290 };
291
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297 #ifdef CONFIG_CMA
298 "CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302 #endif
303 };
304
305 compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313 #endif
314 };
315
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
319 /*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
333
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
337
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359
360 int page_group_by_mobility_disabled __read_mostly;
361
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370 /*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387 }
388
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 return true;
396
397 return false;
398 }
399
400 /*
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
403 */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 return false;
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
426 nr_initialised++;
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
431 }
432 return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 return false;
440 }
441
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 return false;
445 }
446 #endif
447
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
468 }
469
470 /**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483 {
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496 }
497
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501 {
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503 }
504
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508 }
509
510 /**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522 {
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548 }
549
550 void set_pageblock_migratetype(struct page *page, int migratetype)
551 {
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
554 migratetype = MIGRATE_UNMOVABLE;
555
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558 }
559
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562 {
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
566 unsigned long sp, start_pfn;
567
568 do {
569 seq = zone_span_seqbegin(zone);
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
572 if (!zone_spans_pfn(zone, pfn))
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
576 if (ret)
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
580
581 return ret;
582 }
583
584 static int page_is_consistent(struct zone *zone, struct page *page)
585 {
586 if (!pfn_valid_within(page_to_pfn(page)))
587 return 0;
588 if (zone != page_zone(page))
589 return 0;
590
591 return 1;
592 }
593 /*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 {
598 if (page_outside_zone_boundaries(zone, page))
599 return 1;
600 if (!page_is_consistent(zone, page))
601 return 1;
602
603 return 0;
604 }
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 {
608 return 0;
609 }
610 #endif
611
612 static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
614 {
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
629 pr_alert(
630 "BUG: Bad page state: %lu messages suppressed\n",
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current->comm, page_to_pfn(page));
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
646 dump_page_owner(page);
647
648 print_modules();
649 dump_stack();
650 out:
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655
656 /*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
660 *
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
663 *
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
666 *
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
669 */
670
671 void free_compound_page(struct page *page)
672 {
673 mem_cgroup_uncharge(page);
674 __free_pages_ok(page, compound_order(page));
675 }
676
677 void prep_compound_page(struct page *page, unsigned int order)
678 {
679 int i;
680 int nr_pages = 1 << order;
681
682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
687 set_page_count(p, 0);
688 p->mapping = TAIL_MAPPING;
689 set_compound_head(p, page);
690 }
691 atomic_set(compound_mapcount_ptr(page), -1);
692 if (hpage_pincount_available(page))
693 atomic_set(compound_pincount_ptr(page), 0);
694 }
695
696 #ifdef CONFIG_DEBUG_PAGEALLOC
697 unsigned int _debug_guardpage_minorder;
698
699 bool _debug_pagealloc_enabled_early __read_mostly
700 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
701 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
702 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
703 EXPORT_SYMBOL(_debug_pagealloc_enabled);
704
705 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
706
707 static int __init early_debug_pagealloc(char *buf)
708 {
709 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
710 }
711 early_param("debug_pagealloc", early_debug_pagealloc);
712
713 void init_debug_pagealloc(void)
714 {
715 if (!debug_pagealloc_enabled())
716 return;
717
718 static_branch_enable(&_debug_pagealloc_enabled);
719
720 if (!debug_guardpage_minorder())
721 return;
722
723 static_branch_enable(&_debug_guardpage_enabled);
724 }
725
726 static int __init debug_guardpage_minorder_setup(char *buf)
727 {
728 unsigned long res;
729
730 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
731 pr_err("Bad debug_guardpage_minorder value\n");
732 return 0;
733 }
734 _debug_guardpage_minorder = res;
735 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
736 return 0;
737 }
738 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
739
740 static inline bool set_page_guard(struct zone *zone, struct page *page,
741 unsigned int order, int migratetype)
742 {
743 if (!debug_guardpage_enabled())
744 return false;
745
746 if (order >= debug_guardpage_minorder())
747 return false;
748
749 __SetPageGuard(page);
750 INIT_LIST_HEAD(&page->lru);
751 set_page_private(page, order);
752 /* Guard pages are not available for any usage */
753 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
754
755 return true;
756 }
757
758 static inline void clear_page_guard(struct zone *zone, struct page *page,
759 unsigned int order, int migratetype)
760 {
761 if (!debug_guardpage_enabled())
762 return;
763
764 __ClearPageGuard(page);
765
766 set_page_private(page, 0);
767 if (!is_migrate_isolate(migratetype))
768 __mod_zone_freepage_state(zone, (1 << order), migratetype);
769 }
770 #else
771 static inline bool set_page_guard(struct zone *zone, struct page *page,
772 unsigned int order, int migratetype) { return false; }
773 static inline void clear_page_guard(struct zone *zone, struct page *page,
774 unsigned int order, int migratetype) {}
775 #endif
776
777 static inline void set_page_order(struct page *page, unsigned int order)
778 {
779 set_page_private(page, order);
780 __SetPageBuddy(page);
781 }
782
783 /*
784 * This function checks whether a page is free && is the buddy
785 * we can coalesce a page and its buddy if
786 * (a) the buddy is not in a hole (check before calling!) &&
787 * (b) the buddy is in the buddy system &&
788 * (c) a page and its buddy have the same order &&
789 * (d) a page and its buddy are in the same zone.
790 *
791 * For recording whether a page is in the buddy system, we set PageBuddy.
792 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
793 *
794 * For recording page's order, we use page_private(page).
795 */
796 static inline bool page_is_buddy(struct page *page, struct page *buddy,
797 unsigned int order)
798 {
799 if (!page_is_guard(buddy) && !PageBuddy(buddy))
800 return false;
801
802 if (page_order(buddy) != order)
803 return false;
804
805 /*
806 * zone check is done late to avoid uselessly calculating
807 * zone/node ids for pages that could never merge.
808 */
809 if (page_zone_id(page) != page_zone_id(buddy))
810 return false;
811
812 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
813
814 return true;
815 }
816
817 #ifdef CONFIG_COMPACTION
818 static inline struct capture_control *task_capc(struct zone *zone)
819 {
820 struct capture_control *capc = current->capture_control;
821
822 return capc &&
823 !(current->flags & PF_KTHREAD) &&
824 !capc->page &&
825 capc->cc->zone == zone &&
826 capc->cc->direct_compaction ? capc : NULL;
827 }
828
829 static inline bool
830 compaction_capture(struct capture_control *capc, struct page *page,
831 int order, int migratetype)
832 {
833 if (!capc || order != capc->cc->order)
834 return false;
835
836 /* Do not accidentally pollute CMA or isolated regions*/
837 if (is_migrate_cma(migratetype) ||
838 is_migrate_isolate(migratetype))
839 return false;
840
841 /*
842 * Do not let lower order allocations polluate a movable pageblock.
843 * This might let an unmovable request use a reclaimable pageblock
844 * and vice-versa but no more than normal fallback logic which can
845 * have trouble finding a high-order free page.
846 */
847 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
848 return false;
849
850 capc->page = page;
851 return true;
852 }
853
854 #else
855 static inline struct capture_control *task_capc(struct zone *zone)
856 {
857 return NULL;
858 }
859
860 static inline bool
861 compaction_capture(struct capture_control *capc, struct page *page,
862 int order, int migratetype)
863 {
864 return false;
865 }
866 #endif /* CONFIG_COMPACTION */
867
868 /* Used for pages not on another list */
869 static inline void add_to_free_list(struct page *page, struct zone *zone,
870 unsigned int order, int migratetype)
871 {
872 struct free_area *area = &zone->free_area[order];
873
874 list_add(&page->lru, &area->free_list[migratetype]);
875 area->nr_free++;
876 }
877
878 /* Used for pages not on another list */
879 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
880 unsigned int order, int migratetype)
881 {
882 struct free_area *area = &zone->free_area[order];
883
884 list_add_tail(&page->lru, &area->free_list[migratetype]);
885 area->nr_free++;
886 }
887
888 /* Used for pages which are on another list */
889 static inline void move_to_free_list(struct page *page, struct zone *zone,
890 unsigned int order, int migratetype)
891 {
892 struct free_area *area = &zone->free_area[order];
893
894 list_move(&page->lru, &area->free_list[migratetype]);
895 }
896
897 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
898 unsigned int order)
899 {
900 /* clear reported state and update reported page count */
901 if (page_reported(page))
902 __ClearPageReported(page);
903
904 list_del(&page->lru);
905 __ClearPageBuddy(page);
906 set_page_private(page, 0);
907 zone->free_area[order].nr_free--;
908 }
909
910 /*
911 * If this is not the largest possible page, check if the buddy
912 * of the next-highest order is free. If it is, it's possible
913 * that pages are being freed that will coalesce soon. In case,
914 * that is happening, add the free page to the tail of the list
915 * so it's less likely to be used soon and more likely to be merged
916 * as a higher order page
917 */
918 static inline bool
919 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
920 struct page *page, unsigned int order)
921 {
922 struct page *higher_page, *higher_buddy;
923 unsigned long combined_pfn;
924
925 if (order >= MAX_ORDER - 2)
926 return false;
927
928 if (!pfn_valid_within(buddy_pfn))
929 return false;
930
931 combined_pfn = buddy_pfn & pfn;
932 higher_page = page + (combined_pfn - pfn);
933 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
934 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
935
936 return pfn_valid_within(buddy_pfn) &&
937 page_is_buddy(higher_page, higher_buddy, order + 1);
938 }
939
940 /*
941 * Freeing function for a buddy system allocator.
942 *
943 * The concept of a buddy system is to maintain direct-mapped table
944 * (containing bit values) for memory blocks of various "orders".
945 * The bottom level table contains the map for the smallest allocatable
946 * units of memory (here, pages), and each level above it describes
947 * pairs of units from the levels below, hence, "buddies".
948 * At a high level, all that happens here is marking the table entry
949 * at the bottom level available, and propagating the changes upward
950 * as necessary, plus some accounting needed to play nicely with other
951 * parts of the VM system.
952 * At each level, we keep a list of pages, which are heads of continuous
953 * free pages of length of (1 << order) and marked with PageBuddy.
954 * Page's order is recorded in page_private(page) field.
955 * So when we are allocating or freeing one, we can derive the state of the
956 * other. That is, if we allocate a small block, and both were
957 * free, the remainder of the region must be split into blocks.
958 * If a block is freed, and its buddy is also free, then this
959 * triggers coalescing into a block of larger size.
960 *
961 * -- nyc
962 */
963
964 static inline void __free_one_page(struct page *page,
965 unsigned long pfn,
966 struct zone *zone, unsigned int order,
967 int migratetype, bool report)
968 {
969 struct capture_control *capc = task_capc(zone);
970 unsigned long uninitialized_var(buddy_pfn);
971 unsigned long combined_pfn;
972 unsigned int max_order;
973 struct page *buddy;
974 bool to_tail;
975
976 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
977
978 VM_BUG_ON(!zone_is_initialized(zone));
979 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
980
981 VM_BUG_ON(migratetype == -1);
982 if (likely(!is_migrate_isolate(migratetype)))
983 __mod_zone_freepage_state(zone, 1 << order, migratetype);
984
985 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
986 VM_BUG_ON_PAGE(bad_range(zone, page), page);
987
988 continue_merging:
989 while (order < max_order - 1) {
990 if (compaction_capture(capc, page, order, migratetype)) {
991 __mod_zone_freepage_state(zone, -(1 << order),
992 migratetype);
993 return;
994 }
995 buddy_pfn = __find_buddy_pfn(pfn, order);
996 buddy = page + (buddy_pfn - pfn);
997
998 if (!pfn_valid_within(buddy_pfn))
999 goto done_merging;
1000 if (!page_is_buddy(page, buddy, order))
1001 goto done_merging;
1002 /*
1003 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1004 * merge with it and move up one order.
1005 */
1006 if (page_is_guard(buddy))
1007 clear_page_guard(zone, buddy, order, migratetype);
1008 else
1009 del_page_from_free_list(buddy, zone, order);
1010 combined_pfn = buddy_pfn & pfn;
1011 page = page + (combined_pfn - pfn);
1012 pfn = combined_pfn;
1013 order++;
1014 }
1015 if (max_order < MAX_ORDER) {
1016 /* If we are here, it means order is >= pageblock_order.
1017 * We want to prevent merge between freepages on isolate
1018 * pageblock and normal pageblock. Without this, pageblock
1019 * isolation could cause incorrect freepage or CMA accounting.
1020 *
1021 * We don't want to hit this code for the more frequent
1022 * low-order merging.
1023 */
1024 if (unlikely(has_isolate_pageblock(zone))) {
1025 int buddy_mt;
1026
1027 buddy_pfn = __find_buddy_pfn(pfn, order);
1028 buddy = page + (buddy_pfn - pfn);
1029 buddy_mt = get_pageblock_migratetype(buddy);
1030
1031 if (migratetype != buddy_mt
1032 && (is_migrate_isolate(migratetype) ||
1033 is_migrate_isolate(buddy_mt)))
1034 goto done_merging;
1035 }
1036 max_order++;
1037 goto continue_merging;
1038 }
1039
1040 done_merging:
1041 set_page_order(page, order);
1042
1043 if (is_shuffle_order(order))
1044 to_tail = shuffle_pick_tail();
1045 else
1046 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1047
1048 if (to_tail)
1049 add_to_free_list_tail(page, zone, order, migratetype);
1050 else
1051 add_to_free_list(page, zone, order, migratetype);
1052
1053 /* Notify page reporting subsystem of freed page */
1054 if (report)
1055 page_reporting_notify_free(order);
1056 }
1057
1058 /*
1059 * A bad page could be due to a number of fields. Instead of multiple branches,
1060 * try and check multiple fields with one check. The caller must do a detailed
1061 * check if necessary.
1062 */
1063 static inline bool page_expected_state(struct page *page,
1064 unsigned long check_flags)
1065 {
1066 if (unlikely(atomic_read(&page->_mapcount) != -1))
1067 return false;
1068
1069 if (unlikely((unsigned long)page->mapping |
1070 page_ref_count(page) |
1071 #ifdef CONFIG_MEMCG
1072 (unsigned long)page->mem_cgroup |
1073 #endif
1074 (page->flags & check_flags)))
1075 return false;
1076
1077 return true;
1078 }
1079
1080 static void free_pages_check_bad(struct page *page)
1081 {
1082 const char *bad_reason;
1083 unsigned long bad_flags;
1084
1085 bad_reason = NULL;
1086 bad_flags = 0;
1087
1088 if (unlikely(atomic_read(&page->_mapcount) != -1))
1089 bad_reason = "nonzero mapcount";
1090 if (unlikely(page->mapping != NULL))
1091 bad_reason = "non-NULL mapping";
1092 if (unlikely(page_ref_count(page) != 0))
1093 bad_reason = "nonzero _refcount";
1094 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1095 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1096 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1097 }
1098 #ifdef CONFIG_MEMCG
1099 if (unlikely(page->mem_cgroup))
1100 bad_reason = "page still charged to cgroup";
1101 #endif
1102 bad_page(page, bad_reason, bad_flags);
1103 }
1104
1105 static inline int free_pages_check(struct page *page)
1106 {
1107 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1108 return 0;
1109
1110 /* Something has gone sideways, find it */
1111 free_pages_check_bad(page);
1112 return 1;
1113 }
1114
1115 static int free_tail_pages_check(struct page *head_page, struct page *page)
1116 {
1117 int ret = 1;
1118
1119 /*
1120 * We rely page->lru.next never has bit 0 set, unless the page
1121 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1122 */
1123 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1124
1125 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1126 ret = 0;
1127 goto out;
1128 }
1129 switch (page - head_page) {
1130 case 1:
1131 /* the first tail page: ->mapping may be compound_mapcount() */
1132 if (unlikely(compound_mapcount(page))) {
1133 bad_page(page, "nonzero compound_mapcount", 0);
1134 goto out;
1135 }
1136 break;
1137 case 2:
1138 /*
1139 * the second tail page: ->mapping is
1140 * deferred_list.next -- ignore value.
1141 */
1142 break;
1143 default:
1144 if (page->mapping != TAIL_MAPPING) {
1145 bad_page(page, "corrupted mapping in tail page", 0);
1146 goto out;
1147 }
1148 break;
1149 }
1150 if (unlikely(!PageTail(page))) {
1151 bad_page(page, "PageTail not set", 0);
1152 goto out;
1153 }
1154 if (unlikely(compound_head(page) != head_page)) {
1155 bad_page(page, "compound_head not consistent", 0);
1156 goto out;
1157 }
1158 ret = 0;
1159 out:
1160 page->mapping = NULL;
1161 clear_compound_head(page);
1162 return ret;
1163 }
1164
1165 static void kernel_init_free_pages(struct page *page, int numpages)
1166 {
1167 int i;
1168
1169 for (i = 0; i < numpages; i++)
1170 clear_highpage(page + i);
1171 }
1172
1173 static __always_inline bool free_pages_prepare(struct page *page,
1174 unsigned int order, bool check_free)
1175 {
1176 int bad = 0;
1177
1178 VM_BUG_ON_PAGE(PageTail(page), page);
1179
1180 trace_mm_page_free(page, order);
1181
1182 /*
1183 * Check tail pages before head page information is cleared to
1184 * avoid checking PageCompound for order-0 pages.
1185 */
1186 if (unlikely(order)) {
1187 bool compound = PageCompound(page);
1188 int i;
1189
1190 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1191
1192 if (compound)
1193 ClearPageDoubleMap(page);
1194 for (i = 1; i < (1 << order); i++) {
1195 if (compound)
1196 bad += free_tail_pages_check(page, page + i);
1197 if (unlikely(free_pages_check(page + i))) {
1198 bad++;
1199 continue;
1200 }
1201 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1202 }
1203 }
1204 if (PageMappingFlags(page))
1205 page->mapping = NULL;
1206 if (memcg_kmem_enabled() && PageKmemcg(page))
1207 __memcg_kmem_uncharge_page(page, order);
1208 if (check_free)
1209 bad += free_pages_check(page);
1210 if (bad)
1211 return false;
1212
1213 page_cpupid_reset_last(page);
1214 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1215 reset_page_owner(page, order);
1216
1217 if (!PageHighMem(page)) {
1218 debug_check_no_locks_freed(page_address(page),
1219 PAGE_SIZE << order);
1220 debug_check_no_obj_freed(page_address(page),
1221 PAGE_SIZE << order);
1222 }
1223 if (want_init_on_free())
1224 kernel_init_free_pages(page, 1 << order);
1225
1226 kernel_poison_pages(page, 1 << order, 0);
1227 /*
1228 * arch_free_page() can make the page's contents inaccessible. s390
1229 * does this. So nothing which can access the page's contents should
1230 * happen after this.
1231 */
1232 arch_free_page(page, order);
1233
1234 if (debug_pagealloc_enabled_static())
1235 kernel_map_pages(page, 1 << order, 0);
1236
1237 kasan_free_nondeferred_pages(page, order);
1238
1239 return true;
1240 }
1241
1242 #ifdef CONFIG_DEBUG_VM
1243 /*
1244 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1245 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1246 * moved from pcp lists to free lists.
1247 */
1248 static bool free_pcp_prepare(struct page *page)
1249 {
1250 return free_pages_prepare(page, 0, true);
1251 }
1252
1253 static bool bulkfree_pcp_prepare(struct page *page)
1254 {
1255 if (debug_pagealloc_enabled_static())
1256 return free_pages_check(page);
1257 else
1258 return false;
1259 }
1260 #else
1261 /*
1262 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1263 * moving from pcp lists to free list in order to reduce overhead. With
1264 * debug_pagealloc enabled, they are checked also immediately when being freed
1265 * to the pcp lists.
1266 */
1267 static bool free_pcp_prepare(struct page *page)
1268 {
1269 if (debug_pagealloc_enabled_static())
1270 return free_pages_prepare(page, 0, true);
1271 else
1272 return free_pages_prepare(page, 0, false);
1273 }
1274
1275 static bool bulkfree_pcp_prepare(struct page *page)
1276 {
1277 return free_pages_check(page);
1278 }
1279 #endif /* CONFIG_DEBUG_VM */
1280
1281 static inline void prefetch_buddy(struct page *page)
1282 {
1283 unsigned long pfn = page_to_pfn(page);
1284 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1285 struct page *buddy = page + (buddy_pfn - pfn);
1286
1287 prefetch(buddy);
1288 }
1289
1290 /*
1291 * Frees a number of pages from the PCP lists
1292 * Assumes all pages on list are in same zone, and of same order.
1293 * count is the number of pages to free.
1294 *
1295 * If the zone was previously in an "all pages pinned" state then look to
1296 * see if this freeing clears that state.
1297 *
1298 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1299 * pinned" detection logic.
1300 */
1301 static void free_pcppages_bulk(struct zone *zone, int count,
1302 struct per_cpu_pages *pcp)
1303 {
1304 int migratetype = 0;
1305 int batch_free = 0;
1306 int prefetch_nr = 0;
1307 bool isolated_pageblocks;
1308 struct page *page, *tmp;
1309 LIST_HEAD(head);
1310
1311 while (count) {
1312 struct list_head *list;
1313
1314 /*
1315 * Remove pages from lists in a round-robin fashion. A
1316 * batch_free count is maintained that is incremented when an
1317 * empty list is encountered. This is so more pages are freed
1318 * off fuller lists instead of spinning excessively around empty
1319 * lists
1320 */
1321 do {
1322 batch_free++;
1323 if (++migratetype == MIGRATE_PCPTYPES)
1324 migratetype = 0;
1325 list = &pcp->lists[migratetype];
1326 } while (list_empty(list));
1327
1328 /* This is the only non-empty list. Free them all. */
1329 if (batch_free == MIGRATE_PCPTYPES)
1330 batch_free = count;
1331
1332 do {
1333 page = list_last_entry(list, struct page, lru);
1334 /* must delete to avoid corrupting pcp list */
1335 list_del(&page->lru);
1336 pcp->count--;
1337
1338 if (bulkfree_pcp_prepare(page))
1339 continue;
1340
1341 list_add_tail(&page->lru, &head);
1342
1343 /*
1344 * We are going to put the page back to the global
1345 * pool, prefetch its buddy to speed up later access
1346 * under zone->lock. It is believed the overhead of
1347 * an additional test and calculating buddy_pfn here
1348 * can be offset by reduced memory latency later. To
1349 * avoid excessive prefetching due to large count, only
1350 * prefetch buddy for the first pcp->batch nr of pages.
1351 */
1352 if (prefetch_nr++ < pcp->batch)
1353 prefetch_buddy(page);
1354 } while (--count && --batch_free && !list_empty(list));
1355 }
1356
1357 spin_lock(&zone->lock);
1358 isolated_pageblocks = has_isolate_pageblock(zone);
1359
1360 /*
1361 * Use safe version since after __free_one_page(),
1362 * page->lru.next will not point to original list.
1363 */
1364 list_for_each_entry_safe(page, tmp, &head, lru) {
1365 int mt = get_pcppage_migratetype(page);
1366 /* MIGRATE_ISOLATE page should not go to pcplists */
1367 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1368 /* Pageblock could have been isolated meanwhile */
1369 if (unlikely(isolated_pageblocks))
1370 mt = get_pageblock_migratetype(page);
1371
1372 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1373 trace_mm_page_pcpu_drain(page, 0, mt);
1374 }
1375 spin_unlock(&zone->lock);
1376 }
1377
1378 static void free_one_page(struct zone *zone,
1379 struct page *page, unsigned long pfn,
1380 unsigned int order,
1381 int migratetype)
1382 {
1383 spin_lock(&zone->lock);
1384 if (unlikely(has_isolate_pageblock(zone) ||
1385 is_migrate_isolate(migratetype))) {
1386 migratetype = get_pfnblock_migratetype(page, pfn);
1387 }
1388 __free_one_page(page, pfn, zone, order, migratetype, true);
1389 spin_unlock(&zone->lock);
1390 }
1391
1392 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1393 unsigned long zone, int nid)
1394 {
1395 mm_zero_struct_page(page);
1396 set_page_links(page, zone, nid, pfn);
1397 init_page_count(page);
1398 page_mapcount_reset(page);
1399 page_cpupid_reset_last(page);
1400 page_kasan_tag_reset(page);
1401
1402 INIT_LIST_HEAD(&page->lru);
1403 #ifdef WANT_PAGE_VIRTUAL
1404 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405 if (!is_highmem_idx(zone))
1406 set_page_address(page, __va(pfn << PAGE_SHIFT));
1407 #endif
1408 }
1409
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __meminit init_reserved_page(unsigned long pfn)
1412 {
1413 pg_data_t *pgdat;
1414 int nid, zid;
1415
1416 if (!early_page_uninitialised(pfn))
1417 return;
1418
1419 nid = early_pfn_to_nid(pfn);
1420 pgdat = NODE_DATA(nid);
1421
1422 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1423 struct zone *zone = &pgdat->node_zones[zid];
1424
1425 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1426 break;
1427 }
1428 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1429 }
1430 #else
1431 static inline void init_reserved_page(unsigned long pfn)
1432 {
1433 }
1434 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1435
1436 /*
1437 * Initialised pages do not have PageReserved set. This function is
1438 * called for each range allocated by the bootmem allocator and
1439 * marks the pages PageReserved. The remaining valid pages are later
1440 * sent to the buddy page allocator.
1441 */
1442 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1443 {
1444 unsigned long start_pfn = PFN_DOWN(start);
1445 unsigned long end_pfn = PFN_UP(end);
1446
1447 for (; start_pfn < end_pfn; start_pfn++) {
1448 if (pfn_valid(start_pfn)) {
1449 struct page *page = pfn_to_page(start_pfn);
1450
1451 init_reserved_page(start_pfn);
1452
1453 /* Avoid false-positive PageTail() */
1454 INIT_LIST_HEAD(&page->lru);
1455
1456 /*
1457 * no need for atomic set_bit because the struct
1458 * page is not visible yet so nobody should
1459 * access it yet.
1460 */
1461 __SetPageReserved(page);
1462 }
1463 }
1464 }
1465
1466 static void __free_pages_ok(struct page *page, unsigned int order)
1467 {
1468 unsigned long flags;
1469 int migratetype;
1470 unsigned long pfn = page_to_pfn(page);
1471
1472 if (!free_pages_prepare(page, order, true))
1473 return;
1474
1475 migratetype = get_pfnblock_migratetype(page, pfn);
1476 local_irq_save(flags);
1477 __count_vm_events(PGFREE, 1 << order);
1478 free_one_page(page_zone(page), page, pfn, order, migratetype);
1479 local_irq_restore(flags);
1480 }
1481
1482 void __free_pages_core(struct page *page, unsigned int order)
1483 {
1484 unsigned int nr_pages = 1 << order;
1485 struct page *p = page;
1486 unsigned int loop;
1487
1488 prefetchw(p);
1489 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490 prefetchw(p + 1);
1491 __ClearPageReserved(p);
1492 set_page_count(p, 0);
1493 }
1494 __ClearPageReserved(p);
1495 set_page_count(p, 0);
1496
1497 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1498 set_page_refcounted(page);
1499 __free_pages(page, order);
1500 }
1501
1502 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1503 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1504
1505 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1506
1507 int __meminit early_pfn_to_nid(unsigned long pfn)
1508 {
1509 static DEFINE_SPINLOCK(early_pfn_lock);
1510 int nid;
1511
1512 spin_lock(&early_pfn_lock);
1513 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1514 if (nid < 0)
1515 nid = first_online_node;
1516 spin_unlock(&early_pfn_lock);
1517
1518 return nid;
1519 }
1520 #endif
1521
1522 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1523 /* Only safe to use early in boot when initialisation is single-threaded */
1524 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1525 {
1526 int nid;
1527
1528 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1529 if (nid >= 0 && nid != node)
1530 return false;
1531 return true;
1532 }
1533
1534 #else
1535 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1536 {
1537 return true;
1538 }
1539 #endif
1540
1541
1542 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1543 unsigned int order)
1544 {
1545 if (early_page_uninitialised(pfn))
1546 return;
1547 __free_pages_core(page, order);
1548 }
1549
1550 /*
1551 * Check that the whole (or subset of) a pageblock given by the interval of
1552 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1553 * with the migration of free compaction scanner. The scanners then need to
1554 * use only pfn_valid_within() check for arches that allow holes within
1555 * pageblocks.
1556 *
1557 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1558 *
1559 * It's possible on some configurations to have a setup like node0 node1 node0
1560 * i.e. it's possible that all pages within a zones range of pages do not
1561 * belong to a single zone. We assume that a border between node0 and node1
1562 * can occur within a single pageblock, but not a node0 node1 node0
1563 * interleaving within a single pageblock. It is therefore sufficient to check
1564 * the first and last page of a pageblock and avoid checking each individual
1565 * page in a pageblock.
1566 */
1567 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1568 unsigned long end_pfn, struct zone *zone)
1569 {
1570 struct page *start_page;
1571 struct page *end_page;
1572
1573 /* end_pfn is one past the range we are checking */
1574 end_pfn--;
1575
1576 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1577 return NULL;
1578
1579 start_page = pfn_to_online_page(start_pfn);
1580 if (!start_page)
1581 return NULL;
1582
1583 if (page_zone(start_page) != zone)
1584 return NULL;
1585
1586 end_page = pfn_to_page(end_pfn);
1587
1588 /* This gives a shorter code than deriving page_zone(end_page) */
1589 if (page_zone_id(start_page) != page_zone_id(end_page))
1590 return NULL;
1591
1592 return start_page;
1593 }
1594
1595 void set_zone_contiguous(struct zone *zone)
1596 {
1597 unsigned long block_start_pfn = zone->zone_start_pfn;
1598 unsigned long block_end_pfn;
1599
1600 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1601 for (; block_start_pfn < zone_end_pfn(zone);
1602 block_start_pfn = block_end_pfn,
1603 block_end_pfn += pageblock_nr_pages) {
1604
1605 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1606
1607 if (!__pageblock_pfn_to_page(block_start_pfn,
1608 block_end_pfn, zone))
1609 return;
1610 }
1611
1612 /* We confirm that there is no hole */
1613 zone->contiguous = true;
1614 }
1615
1616 void clear_zone_contiguous(struct zone *zone)
1617 {
1618 zone->contiguous = false;
1619 }
1620
1621 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1622 static void __init deferred_free_range(unsigned long pfn,
1623 unsigned long nr_pages)
1624 {
1625 struct page *page;
1626 unsigned long i;
1627
1628 if (!nr_pages)
1629 return;
1630
1631 page = pfn_to_page(pfn);
1632
1633 /* Free a large naturally-aligned chunk if possible */
1634 if (nr_pages == pageblock_nr_pages &&
1635 (pfn & (pageblock_nr_pages - 1)) == 0) {
1636 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1637 __free_pages_core(page, pageblock_order);
1638 return;
1639 }
1640
1641 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1642 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1643 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1644 __free_pages_core(page, 0);
1645 }
1646 }
1647
1648 /* Completion tracking for deferred_init_memmap() threads */
1649 static atomic_t pgdat_init_n_undone __initdata;
1650 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1651
1652 static inline void __init pgdat_init_report_one_done(void)
1653 {
1654 if (atomic_dec_and_test(&pgdat_init_n_undone))
1655 complete(&pgdat_init_all_done_comp);
1656 }
1657
1658 /*
1659 * Returns true if page needs to be initialized or freed to buddy allocator.
1660 *
1661 * First we check if pfn is valid on architectures where it is possible to have
1662 * holes within pageblock_nr_pages. On systems where it is not possible, this
1663 * function is optimized out.
1664 *
1665 * Then, we check if a current large page is valid by only checking the validity
1666 * of the head pfn.
1667 */
1668 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1669 {
1670 if (!pfn_valid_within(pfn))
1671 return false;
1672 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1673 return false;
1674 return true;
1675 }
1676
1677 /*
1678 * Free pages to buddy allocator. Try to free aligned pages in
1679 * pageblock_nr_pages sizes.
1680 */
1681 static void __init deferred_free_pages(unsigned long pfn,
1682 unsigned long end_pfn)
1683 {
1684 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1685 unsigned long nr_free = 0;
1686
1687 for (; pfn < end_pfn; pfn++) {
1688 if (!deferred_pfn_valid(pfn)) {
1689 deferred_free_range(pfn - nr_free, nr_free);
1690 nr_free = 0;
1691 } else if (!(pfn & nr_pgmask)) {
1692 deferred_free_range(pfn - nr_free, nr_free);
1693 nr_free = 1;
1694 touch_nmi_watchdog();
1695 } else {
1696 nr_free++;
1697 }
1698 }
1699 /* Free the last block of pages to allocator */
1700 deferred_free_range(pfn - nr_free, nr_free);
1701 }
1702
1703 /*
1704 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1705 * by performing it only once every pageblock_nr_pages.
1706 * Return number of pages initialized.
1707 */
1708 static unsigned long __init deferred_init_pages(struct zone *zone,
1709 unsigned long pfn,
1710 unsigned long end_pfn)
1711 {
1712 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1713 int nid = zone_to_nid(zone);
1714 unsigned long nr_pages = 0;
1715 int zid = zone_idx(zone);
1716 struct page *page = NULL;
1717
1718 for (; pfn < end_pfn; pfn++) {
1719 if (!deferred_pfn_valid(pfn)) {
1720 page = NULL;
1721 continue;
1722 } else if (!page || !(pfn & nr_pgmask)) {
1723 page = pfn_to_page(pfn);
1724 touch_nmi_watchdog();
1725 } else {
1726 page++;
1727 }
1728 __init_single_page(page, pfn, zid, nid);
1729 nr_pages++;
1730 }
1731 return (nr_pages);
1732 }
1733
1734 /*
1735 * This function is meant to pre-load the iterator for the zone init.
1736 * Specifically it walks through the ranges until we are caught up to the
1737 * first_init_pfn value and exits there. If we never encounter the value we
1738 * return false indicating there are no valid ranges left.
1739 */
1740 static bool __init
1741 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1742 unsigned long *spfn, unsigned long *epfn,
1743 unsigned long first_init_pfn)
1744 {
1745 u64 j;
1746
1747 /*
1748 * Start out by walking through the ranges in this zone that have
1749 * already been initialized. We don't need to do anything with them
1750 * so we just need to flush them out of the system.
1751 */
1752 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1753 if (*epfn <= first_init_pfn)
1754 continue;
1755 if (*spfn < first_init_pfn)
1756 *spfn = first_init_pfn;
1757 *i = j;
1758 return true;
1759 }
1760
1761 return false;
1762 }
1763
1764 /*
1765 * Initialize and free pages. We do it in two loops: first we initialize
1766 * struct page, then free to buddy allocator, because while we are
1767 * freeing pages we can access pages that are ahead (computing buddy
1768 * page in __free_one_page()).
1769 *
1770 * In order to try and keep some memory in the cache we have the loop
1771 * broken along max page order boundaries. This way we will not cause
1772 * any issues with the buddy page computation.
1773 */
1774 static unsigned long __init
1775 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1776 unsigned long *end_pfn)
1777 {
1778 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1779 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1780 unsigned long nr_pages = 0;
1781 u64 j = *i;
1782
1783 /* First we loop through and initialize the page values */
1784 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1785 unsigned long t;
1786
1787 if (mo_pfn <= *start_pfn)
1788 break;
1789
1790 t = min(mo_pfn, *end_pfn);
1791 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1792
1793 if (mo_pfn < *end_pfn) {
1794 *start_pfn = mo_pfn;
1795 break;
1796 }
1797 }
1798
1799 /* Reset values and now loop through freeing pages as needed */
1800 swap(j, *i);
1801
1802 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1803 unsigned long t;
1804
1805 if (mo_pfn <= spfn)
1806 break;
1807
1808 t = min(mo_pfn, epfn);
1809 deferred_free_pages(spfn, t);
1810
1811 if (mo_pfn <= epfn)
1812 break;
1813 }
1814
1815 return nr_pages;
1816 }
1817
1818 /* Initialise remaining memory on a node */
1819 static int __init deferred_init_memmap(void *data)
1820 {
1821 pg_data_t *pgdat = data;
1822 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1823 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1824 unsigned long first_init_pfn, flags;
1825 unsigned long start = jiffies;
1826 struct zone *zone;
1827 int zid;
1828 u64 i;
1829
1830 /* Bind memory initialisation thread to a local node if possible */
1831 if (!cpumask_empty(cpumask))
1832 set_cpus_allowed_ptr(current, cpumask);
1833
1834 pgdat_resize_lock(pgdat, &flags);
1835 first_init_pfn = pgdat->first_deferred_pfn;
1836 if (first_init_pfn == ULONG_MAX) {
1837 pgdat_resize_unlock(pgdat, &flags);
1838 pgdat_init_report_one_done();
1839 return 0;
1840 }
1841
1842 /* Sanity check boundaries */
1843 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1844 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1845 pgdat->first_deferred_pfn = ULONG_MAX;
1846
1847 /* Only the highest zone is deferred so find it */
1848 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1849 zone = pgdat->node_zones + zid;
1850 if (first_init_pfn < zone_end_pfn(zone))
1851 break;
1852 }
1853
1854 /* If the zone is empty somebody else may have cleared out the zone */
1855 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1856 first_init_pfn))
1857 goto zone_empty;
1858
1859 /*
1860 * Initialize and free pages in MAX_ORDER sized increments so
1861 * that we can avoid introducing any issues with the buddy
1862 * allocator.
1863 */
1864 while (spfn < epfn)
1865 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1866 zone_empty:
1867 pgdat_resize_unlock(pgdat, &flags);
1868
1869 /* Sanity check that the next zone really is unpopulated */
1870 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1871
1872 pr_info("node %d initialised, %lu pages in %ums\n",
1873 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1874
1875 pgdat_init_report_one_done();
1876 return 0;
1877 }
1878
1879 /*
1880 * If this zone has deferred pages, try to grow it by initializing enough
1881 * deferred pages to satisfy the allocation specified by order, rounded up to
1882 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1883 * of SECTION_SIZE bytes by initializing struct pages in increments of
1884 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1885 *
1886 * Return true when zone was grown, otherwise return false. We return true even
1887 * when we grow less than requested, to let the caller decide if there are
1888 * enough pages to satisfy the allocation.
1889 *
1890 * Note: We use noinline because this function is needed only during boot, and
1891 * it is called from a __ref function _deferred_grow_zone. This way we are
1892 * making sure that it is not inlined into permanent text section.
1893 */
1894 static noinline bool __init
1895 deferred_grow_zone(struct zone *zone, unsigned int order)
1896 {
1897 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1898 pg_data_t *pgdat = zone->zone_pgdat;
1899 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1900 unsigned long spfn, epfn, flags;
1901 unsigned long nr_pages = 0;
1902 u64 i;
1903
1904 /* Only the last zone may have deferred pages */
1905 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1906 return false;
1907
1908 pgdat_resize_lock(pgdat, &flags);
1909
1910 /*
1911 * If deferred pages have been initialized while we were waiting for
1912 * the lock, return true, as the zone was grown. The caller will retry
1913 * this zone. We won't return to this function since the caller also
1914 * has this static branch.
1915 */
1916 if (!static_branch_unlikely(&deferred_pages)) {
1917 pgdat_resize_unlock(pgdat, &flags);
1918 return true;
1919 }
1920
1921 /*
1922 * If someone grew this zone while we were waiting for spinlock, return
1923 * true, as there might be enough pages already.
1924 */
1925 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1926 pgdat_resize_unlock(pgdat, &flags);
1927 return true;
1928 }
1929
1930 /* If the zone is empty somebody else may have cleared out the zone */
1931 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1932 first_deferred_pfn)) {
1933 pgdat->first_deferred_pfn = ULONG_MAX;
1934 pgdat_resize_unlock(pgdat, &flags);
1935 /* Retry only once. */
1936 return first_deferred_pfn != ULONG_MAX;
1937 }
1938
1939 /*
1940 * Initialize and free pages in MAX_ORDER sized increments so
1941 * that we can avoid introducing any issues with the buddy
1942 * allocator.
1943 */
1944 while (spfn < epfn) {
1945 /* update our first deferred PFN for this section */
1946 first_deferred_pfn = spfn;
1947
1948 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1949
1950 /* We should only stop along section boundaries */
1951 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1952 continue;
1953
1954 /* If our quota has been met we can stop here */
1955 if (nr_pages >= nr_pages_needed)
1956 break;
1957 }
1958
1959 pgdat->first_deferred_pfn = spfn;
1960 pgdat_resize_unlock(pgdat, &flags);
1961
1962 return nr_pages > 0;
1963 }
1964
1965 /*
1966 * deferred_grow_zone() is __init, but it is called from
1967 * get_page_from_freelist() during early boot until deferred_pages permanently
1968 * disables this call. This is why we have refdata wrapper to avoid warning,
1969 * and to ensure that the function body gets unloaded.
1970 */
1971 static bool __ref
1972 _deferred_grow_zone(struct zone *zone, unsigned int order)
1973 {
1974 return deferred_grow_zone(zone, order);
1975 }
1976
1977 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1978
1979 void __init page_alloc_init_late(void)
1980 {
1981 struct zone *zone;
1982 int nid;
1983
1984 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1985
1986 /* There will be num_node_state(N_MEMORY) threads */
1987 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1988 for_each_node_state(nid, N_MEMORY) {
1989 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1990 }
1991
1992 /* Block until all are initialised */
1993 wait_for_completion(&pgdat_init_all_done_comp);
1994
1995 /*
1996 * The number of managed pages has changed due to the initialisation
1997 * so the pcpu batch and high limits needs to be updated or the limits
1998 * will be artificially small.
1999 */
2000 for_each_populated_zone(zone)
2001 zone_pcp_update(zone);
2002
2003 /*
2004 * We initialized the rest of the deferred pages. Permanently disable
2005 * on-demand struct page initialization.
2006 */
2007 static_branch_disable(&deferred_pages);
2008
2009 /* Reinit limits that are based on free pages after the kernel is up */
2010 files_maxfiles_init();
2011 #endif
2012
2013 /* Discard memblock private memory */
2014 memblock_discard();
2015
2016 for_each_node_state(nid, N_MEMORY)
2017 shuffle_free_memory(NODE_DATA(nid));
2018
2019 for_each_populated_zone(zone)
2020 set_zone_contiguous(zone);
2021 }
2022
2023 #ifdef CONFIG_CMA
2024 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2025 void __init init_cma_reserved_pageblock(struct page *page)
2026 {
2027 unsigned i = pageblock_nr_pages;
2028 struct page *p = page;
2029
2030 do {
2031 __ClearPageReserved(p);
2032 set_page_count(p, 0);
2033 } while (++p, --i);
2034
2035 set_pageblock_migratetype(page, MIGRATE_CMA);
2036
2037 if (pageblock_order >= MAX_ORDER) {
2038 i = pageblock_nr_pages;
2039 p = page;
2040 do {
2041 set_page_refcounted(p);
2042 __free_pages(p, MAX_ORDER - 1);
2043 p += MAX_ORDER_NR_PAGES;
2044 } while (i -= MAX_ORDER_NR_PAGES);
2045 } else {
2046 set_page_refcounted(page);
2047 __free_pages(page, pageblock_order);
2048 }
2049
2050 adjust_managed_page_count(page, pageblock_nr_pages);
2051 }
2052 #endif
2053
2054 /*
2055 * The order of subdivision here is critical for the IO subsystem.
2056 * Please do not alter this order without good reasons and regression
2057 * testing. Specifically, as large blocks of memory are subdivided,
2058 * the order in which smaller blocks are delivered depends on the order
2059 * they're subdivided in this function. This is the primary factor
2060 * influencing the order in which pages are delivered to the IO
2061 * subsystem according to empirical testing, and this is also justified
2062 * by considering the behavior of a buddy system containing a single
2063 * large block of memory acted on by a series of small allocations.
2064 * This behavior is a critical factor in sglist merging's success.
2065 *
2066 * -- nyc
2067 */
2068 static inline void expand(struct zone *zone, struct page *page,
2069 int low, int high, int migratetype)
2070 {
2071 unsigned long size = 1 << high;
2072
2073 while (high > low) {
2074 high--;
2075 size >>= 1;
2076 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2077
2078 /*
2079 * Mark as guard pages (or page), that will allow to
2080 * merge back to allocator when buddy will be freed.
2081 * Corresponding page table entries will not be touched,
2082 * pages will stay not present in virtual address space
2083 */
2084 if (set_page_guard(zone, &page[size], high, migratetype))
2085 continue;
2086
2087 add_to_free_list(&page[size], zone, high, migratetype);
2088 set_page_order(&page[size], high);
2089 }
2090 }
2091
2092 static void check_new_page_bad(struct page *page)
2093 {
2094 const char *bad_reason = NULL;
2095 unsigned long bad_flags = 0;
2096
2097 if (unlikely(atomic_read(&page->_mapcount) != -1))
2098 bad_reason = "nonzero mapcount";
2099 if (unlikely(page->mapping != NULL))
2100 bad_reason = "non-NULL mapping";
2101 if (unlikely(page_ref_count(page) != 0))
2102 bad_reason = "nonzero _refcount";
2103 if (unlikely(page->flags & __PG_HWPOISON)) {
2104 bad_reason = "HWPoisoned (hardware-corrupted)";
2105 bad_flags = __PG_HWPOISON;
2106 /* Don't complain about hwpoisoned pages */
2107 page_mapcount_reset(page); /* remove PageBuddy */
2108 return;
2109 }
2110 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2111 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2112 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2113 }
2114 #ifdef CONFIG_MEMCG
2115 if (unlikely(page->mem_cgroup))
2116 bad_reason = "page still charged to cgroup";
2117 #endif
2118 bad_page(page, bad_reason, bad_flags);
2119 }
2120
2121 /*
2122 * This page is about to be returned from the page allocator
2123 */
2124 static inline int check_new_page(struct page *page)
2125 {
2126 if (likely(page_expected_state(page,
2127 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2128 return 0;
2129
2130 check_new_page_bad(page);
2131 return 1;
2132 }
2133
2134 static inline bool free_pages_prezeroed(void)
2135 {
2136 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2137 page_poisoning_enabled()) || want_init_on_free();
2138 }
2139
2140 #ifdef CONFIG_DEBUG_VM
2141 /*
2142 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2143 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2144 * also checked when pcp lists are refilled from the free lists.
2145 */
2146 static inline bool check_pcp_refill(struct page *page)
2147 {
2148 if (debug_pagealloc_enabled_static())
2149 return check_new_page(page);
2150 else
2151 return false;
2152 }
2153
2154 static inline bool check_new_pcp(struct page *page)
2155 {
2156 return check_new_page(page);
2157 }
2158 #else
2159 /*
2160 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2161 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2162 * enabled, they are also checked when being allocated from the pcp lists.
2163 */
2164 static inline bool check_pcp_refill(struct page *page)
2165 {
2166 return check_new_page(page);
2167 }
2168 static inline bool check_new_pcp(struct page *page)
2169 {
2170 if (debug_pagealloc_enabled_static())
2171 return check_new_page(page);
2172 else
2173 return false;
2174 }
2175 #endif /* CONFIG_DEBUG_VM */
2176
2177 static bool check_new_pages(struct page *page, unsigned int order)
2178 {
2179 int i;
2180 for (i = 0; i < (1 << order); i++) {
2181 struct page *p = page + i;
2182
2183 if (unlikely(check_new_page(p)))
2184 return true;
2185 }
2186
2187 return false;
2188 }
2189
2190 inline void post_alloc_hook(struct page *page, unsigned int order,
2191 gfp_t gfp_flags)
2192 {
2193 set_page_private(page, 0);
2194 set_page_refcounted(page);
2195
2196 arch_alloc_page(page, order);
2197 if (debug_pagealloc_enabled_static())
2198 kernel_map_pages(page, 1 << order, 1);
2199 kasan_alloc_pages(page, order);
2200 kernel_poison_pages(page, 1 << order, 1);
2201 set_page_owner(page, order, gfp_flags);
2202 }
2203
2204 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2205 unsigned int alloc_flags)
2206 {
2207 post_alloc_hook(page, order, gfp_flags);
2208
2209 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2210 kernel_init_free_pages(page, 1 << order);
2211
2212 if (order && (gfp_flags & __GFP_COMP))
2213 prep_compound_page(page, order);
2214
2215 /*
2216 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2217 * allocate the page. The expectation is that the caller is taking
2218 * steps that will free more memory. The caller should avoid the page
2219 * being used for !PFMEMALLOC purposes.
2220 */
2221 if (alloc_flags & ALLOC_NO_WATERMARKS)
2222 set_page_pfmemalloc(page);
2223 else
2224 clear_page_pfmemalloc(page);
2225 }
2226
2227 /*
2228 * Go through the free lists for the given migratetype and remove
2229 * the smallest available page from the freelists
2230 */
2231 static __always_inline
2232 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2233 int migratetype)
2234 {
2235 unsigned int current_order;
2236 struct free_area *area;
2237 struct page *page;
2238
2239 /* Find a page of the appropriate size in the preferred list */
2240 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2241 area = &(zone->free_area[current_order]);
2242 page = get_page_from_free_area(area, migratetype);
2243 if (!page)
2244 continue;
2245 del_page_from_free_list(page, zone, current_order);
2246 expand(zone, page, order, current_order, migratetype);
2247 set_pcppage_migratetype(page, migratetype);
2248 return page;
2249 }
2250
2251 return NULL;
2252 }
2253
2254
2255 /*
2256 * This array describes the order lists are fallen back to when
2257 * the free lists for the desirable migrate type are depleted
2258 */
2259 static int fallbacks[MIGRATE_TYPES][4] = {
2260 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2261 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2262 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2263 #ifdef CONFIG_CMA
2264 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2265 #endif
2266 #ifdef CONFIG_MEMORY_ISOLATION
2267 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2268 #endif
2269 };
2270
2271 #ifdef CONFIG_CMA
2272 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2273 unsigned int order)
2274 {
2275 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2276 }
2277 #else
2278 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2279 unsigned int order) { return NULL; }
2280 #endif
2281
2282 /*
2283 * Move the free pages in a range to the free lists of the requested type.
2284 * Note that start_page and end_pages are not aligned on a pageblock
2285 * boundary. If alignment is required, use move_freepages_block()
2286 */
2287 static int move_freepages(struct zone *zone,
2288 struct page *start_page, struct page *end_page,
2289 int migratetype, int *num_movable)
2290 {
2291 struct page *page;
2292 unsigned int order;
2293 int pages_moved = 0;
2294
2295 for (page = start_page; page <= end_page;) {
2296 if (!pfn_valid_within(page_to_pfn(page))) {
2297 page++;
2298 continue;
2299 }
2300
2301 if (!PageBuddy(page)) {
2302 /*
2303 * We assume that pages that could be isolated for
2304 * migration are movable. But we don't actually try
2305 * isolating, as that would be expensive.
2306 */
2307 if (num_movable &&
2308 (PageLRU(page) || __PageMovable(page)))
2309 (*num_movable)++;
2310
2311 page++;
2312 continue;
2313 }
2314
2315 /* Make sure we are not inadvertently changing nodes */
2316 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2317 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2318
2319 order = page_order(page);
2320 move_to_free_list(page, zone, order, migratetype);
2321 page += 1 << order;
2322 pages_moved += 1 << order;
2323 }
2324
2325 return pages_moved;
2326 }
2327
2328 int move_freepages_block(struct zone *zone, struct page *page,
2329 int migratetype, int *num_movable)
2330 {
2331 unsigned long start_pfn, end_pfn;
2332 struct page *start_page, *end_page;
2333
2334 if (num_movable)
2335 *num_movable = 0;
2336
2337 start_pfn = page_to_pfn(page);
2338 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2339 start_page = pfn_to_page(start_pfn);
2340 end_page = start_page + pageblock_nr_pages - 1;
2341 end_pfn = start_pfn + pageblock_nr_pages - 1;
2342
2343 /* Do not cross zone boundaries */
2344 if (!zone_spans_pfn(zone, start_pfn))
2345 start_page = page;
2346 if (!zone_spans_pfn(zone, end_pfn))
2347 return 0;
2348
2349 return move_freepages(zone, start_page, end_page, migratetype,
2350 num_movable);
2351 }
2352
2353 static void change_pageblock_range(struct page *pageblock_page,
2354 int start_order, int migratetype)
2355 {
2356 int nr_pageblocks = 1 << (start_order - pageblock_order);
2357
2358 while (nr_pageblocks--) {
2359 set_pageblock_migratetype(pageblock_page, migratetype);
2360 pageblock_page += pageblock_nr_pages;
2361 }
2362 }
2363
2364 /*
2365 * When we are falling back to another migratetype during allocation, try to
2366 * steal extra free pages from the same pageblocks to satisfy further
2367 * allocations, instead of polluting multiple pageblocks.
2368 *
2369 * If we are stealing a relatively large buddy page, it is likely there will
2370 * be more free pages in the pageblock, so try to steal them all. For
2371 * reclaimable and unmovable allocations, we steal regardless of page size,
2372 * as fragmentation caused by those allocations polluting movable pageblocks
2373 * is worse than movable allocations stealing from unmovable and reclaimable
2374 * pageblocks.
2375 */
2376 static bool can_steal_fallback(unsigned int order, int start_mt)
2377 {
2378 /*
2379 * Leaving this order check is intended, although there is
2380 * relaxed order check in next check. The reason is that
2381 * we can actually steal whole pageblock if this condition met,
2382 * but, below check doesn't guarantee it and that is just heuristic
2383 * so could be changed anytime.
2384 */
2385 if (order >= pageblock_order)
2386 return true;
2387
2388 if (order >= pageblock_order / 2 ||
2389 start_mt == MIGRATE_RECLAIMABLE ||
2390 start_mt == MIGRATE_UNMOVABLE ||
2391 page_group_by_mobility_disabled)
2392 return true;
2393
2394 return false;
2395 }
2396
2397 static inline void boost_watermark(struct zone *zone)
2398 {
2399 unsigned long max_boost;
2400
2401 if (!watermark_boost_factor)
2402 return;
2403
2404 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2405 watermark_boost_factor, 10000);
2406
2407 /*
2408 * high watermark may be uninitialised if fragmentation occurs
2409 * very early in boot so do not boost. We do not fall
2410 * through and boost by pageblock_nr_pages as failing
2411 * allocations that early means that reclaim is not going
2412 * to help and it may even be impossible to reclaim the
2413 * boosted watermark resulting in a hang.
2414 */
2415 if (!max_boost)
2416 return;
2417
2418 max_boost = max(pageblock_nr_pages, max_boost);
2419
2420 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2421 max_boost);
2422 }
2423
2424 /*
2425 * This function implements actual steal behaviour. If order is large enough,
2426 * we can steal whole pageblock. If not, we first move freepages in this
2427 * pageblock to our migratetype and determine how many already-allocated pages
2428 * are there in the pageblock with a compatible migratetype. If at least half
2429 * of pages are free or compatible, we can change migratetype of the pageblock
2430 * itself, so pages freed in the future will be put on the correct free list.
2431 */
2432 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2433 unsigned int alloc_flags, int start_type, bool whole_block)
2434 {
2435 unsigned int current_order = page_order(page);
2436 int free_pages, movable_pages, alike_pages;
2437 int old_block_type;
2438
2439 old_block_type = get_pageblock_migratetype(page);
2440
2441 /*
2442 * This can happen due to races and we want to prevent broken
2443 * highatomic accounting.
2444 */
2445 if (is_migrate_highatomic(old_block_type))
2446 goto single_page;
2447
2448 /* Take ownership for orders >= pageblock_order */
2449 if (current_order >= pageblock_order) {
2450 change_pageblock_range(page, current_order, start_type);
2451 goto single_page;
2452 }
2453
2454 /*
2455 * Boost watermarks to increase reclaim pressure to reduce the
2456 * likelihood of future fallbacks. Wake kswapd now as the node
2457 * may be balanced overall and kswapd will not wake naturally.
2458 */
2459 boost_watermark(zone);
2460 if (alloc_flags & ALLOC_KSWAPD)
2461 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2462
2463 /* We are not allowed to try stealing from the whole block */
2464 if (!whole_block)
2465 goto single_page;
2466
2467 free_pages = move_freepages_block(zone, page, start_type,
2468 &movable_pages);
2469 /*
2470 * Determine how many pages are compatible with our allocation.
2471 * For movable allocation, it's the number of movable pages which
2472 * we just obtained. For other types it's a bit more tricky.
2473 */
2474 if (start_type == MIGRATE_MOVABLE) {
2475 alike_pages = movable_pages;
2476 } else {
2477 /*
2478 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2479 * to MOVABLE pageblock, consider all non-movable pages as
2480 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2481 * vice versa, be conservative since we can't distinguish the
2482 * exact migratetype of non-movable pages.
2483 */
2484 if (old_block_type == MIGRATE_MOVABLE)
2485 alike_pages = pageblock_nr_pages
2486 - (free_pages + movable_pages);
2487 else
2488 alike_pages = 0;
2489 }
2490
2491 /* moving whole block can fail due to zone boundary conditions */
2492 if (!free_pages)
2493 goto single_page;
2494
2495 /*
2496 * If a sufficient number of pages in the block are either free or of
2497 * comparable migratability as our allocation, claim the whole block.
2498 */
2499 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2500 page_group_by_mobility_disabled)
2501 set_pageblock_migratetype(page, start_type);
2502
2503 return;
2504
2505 single_page:
2506 move_to_free_list(page, zone, current_order, start_type);
2507 }
2508
2509 /*
2510 * Check whether there is a suitable fallback freepage with requested order.
2511 * If only_stealable is true, this function returns fallback_mt only if
2512 * we can steal other freepages all together. This would help to reduce
2513 * fragmentation due to mixed migratetype pages in one pageblock.
2514 */
2515 int find_suitable_fallback(struct free_area *area, unsigned int order,
2516 int migratetype, bool only_stealable, bool *can_steal)
2517 {
2518 int i;
2519 int fallback_mt;
2520
2521 if (area->nr_free == 0)
2522 return -1;
2523
2524 *can_steal = false;
2525 for (i = 0;; i++) {
2526 fallback_mt = fallbacks[migratetype][i];
2527 if (fallback_mt == MIGRATE_TYPES)
2528 break;
2529
2530 if (free_area_empty(area, fallback_mt))
2531 continue;
2532
2533 if (can_steal_fallback(order, migratetype))
2534 *can_steal = true;
2535
2536 if (!only_stealable)
2537 return fallback_mt;
2538
2539 if (*can_steal)
2540 return fallback_mt;
2541 }
2542
2543 return -1;
2544 }
2545
2546 /*
2547 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2548 * there are no empty page blocks that contain a page with a suitable order
2549 */
2550 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2551 unsigned int alloc_order)
2552 {
2553 int mt;
2554 unsigned long max_managed, flags;
2555
2556 /*
2557 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2558 * Check is race-prone but harmless.
2559 */
2560 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2561 if (zone->nr_reserved_highatomic >= max_managed)
2562 return;
2563
2564 spin_lock_irqsave(&zone->lock, flags);
2565
2566 /* Recheck the nr_reserved_highatomic limit under the lock */
2567 if (zone->nr_reserved_highatomic >= max_managed)
2568 goto out_unlock;
2569
2570 /* Yoink! */
2571 mt = get_pageblock_migratetype(page);
2572 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2573 && !is_migrate_cma(mt)) {
2574 zone->nr_reserved_highatomic += pageblock_nr_pages;
2575 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2576 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2577 }
2578
2579 out_unlock:
2580 spin_unlock_irqrestore(&zone->lock, flags);
2581 }
2582
2583 /*
2584 * Used when an allocation is about to fail under memory pressure. This
2585 * potentially hurts the reliability of high-order allocations when under
2586 * intense memory pressure but failed atomic allocations should be easier
2587 * to recover from than an OOM.
2588 *
2589 * If @force is true, try to unreserve a pageblock even though highatomic
2590 * pageblock is exhausted.
2591 */
2592 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2593 bool force)
2594 {
2595 struct zonelist *zonelist = ac->zonelist;
2596 unsigned long flags;
2597 struct zoneref *z;
2598 struct zone *zone;
2599 struct page *page;
2600 int order;
2601 bool ret;
2602
2603 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2604 ac->nodemask) {
2605 /*
2606 * Preserve at least one pageblock unless memory pressure
2607 * is really high.
2608 */
2609 if (!force && zone->nr_reserved_highatomic <=
2610 pageblock_nr_pages)
2611 continue;
2612
2613 spin_lock_irqsave(&zone->lock, flags);
2614 for (order = 0; order < MAX_ORDER; order++) {
2615 struct free_area *area = &(zone->free_area[order]);
2616
2617 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2618 if (!page)
2619 continue;
2620
2621 /*
2622 * In page freeing path, migratetype change is racy so
2623 * we can counter several free pages in a pageblock
2624 * in this loop althoug we changed the pageblock type
2625 * from highatomic to ac->migratetype. So we should
2626 * adjust the count once.
2627 */
2628 if (is_migrate_highatomic_page(page)) {
2629 /*
2630 * It should never happen but changes to
2631 * locking could inadvertently allow a per-cpu
2632 * drain to add pages to MIGRATE_HIGHATOMIC
2633 * while unreserving so be safe and watch for
2634 * underflows.
2635 */
2636 zone->nr_reserved_highatomic -= min(
2637 pageblock_nr_pages,
2638 zone->nr_reserved_highatomic);
2639 }
2640
2641 /*
2642 * Convert to ac->migratetype and avoid the normal
2643 * pageblock stealing heuristics. Minimally, the caller
2644 * is doing the work and needs the pages. More
2645 * importantly, if the block was always converted to
2646 * MIGRATE_UNMOVABLE or another type then the number
2647 * of pageblocks that cannot be completely freed
2648 * may increase.
2649 */
2650 set_pageblock_migratetype(page, ac->migratetype);
2651 ret = move_freepages_block(zone, page, ac->migratetype,
2652 NULL);
2653 if (ret) {
2654 spin_unlock_irqrestore(&zone->lock, flags);
2655 return ret;
2656 }
2657 }
2658 spin_unlock_irqrestore(&zone->lock, flags);
2659 }
2660
2661 return false;
2662 }
2663
2664 /*
2665 * Try finding a free buddy page on the fallback list and put it on the free
2666 * list of requested migratetype, possibly along with other pages from the same
2667 * block, depending on fragmentation avoidance heuristics. Returns true if
2668 * fallback was found so that __rmqueue_smallest() can grab it.
2669 *
2670 * The use of signed ints for order and current_order is a deliberate
2671 * deviation from the rest of this file, to make the for loop
2672 * condition simpler.
2673 */
2674 static __always_inline bool
2675 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2676 unsigned int alloc_flags)
2677 {
2678 struct free_area *area;
2679 int current_order;
2680 int min_order = order;
2681 struct page *page;
2682 int fallback_mt;
2683 bool can_steal;
2684
2685 /*
2686 * Do not steal pages from freelists belonging to other pageblocks
2687 * i.e. orders < pageblock_order. If there are no local zones free,
2688 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2689 */
2690 if (alloc_flags & ALLOC_NOFRAGMENT)
2691 min_order = pageblock_order;
2692
2693 /*
2694 * Find the largest available free page in the other list. This roughly
2695 * approximates finding the pageblock with the most free pages, which
2696 * would be too costly to do exactly.
2697 */
2698 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2699 --current_order) {
2700 area = &(zone->free_area[current_order]);
2701 fallback_mt = find_suitable_fallback(area, current_order,
2702 start_migratetype, false, &can_steal);
2703 if (fallback_mt == -1)
2704 continue;
2705
2706 /*
2707 * We cannot steal all free pages from the pageblock and the
2708 * requested migratetype is movable. In that case it's better to
2709 * steal and split the smallest available page instead of the
2710 * largest available page, because even if the next movable
2711 * allocation falls back into a different pageblock than this
2712 * one, it won't cause permanent fragmentation.
2713 */
2714 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2715 && current_order > order)
2716 goto find_smallest;
2717
2718 goto do_steal;
2719 }
2720
2721 return false;
2722
2723 find_smallest:
2724 for (current_order = order; current_order < MAX_ORDER;
2725 current_order++) {
2726 area = &(zone->free_area[current_order]);
2727 fallback_mt = find_suitable_fallback(area, current_order,
2728 start_migratetype, false, &can_steal);
2729 if (fallback_mt != -1)
2730 break;
2731 }
2732
2733 /*
2734 * This should not happen - we already found a suitable fallback
2735 * when looking for the largest page.
2736 */
2737 VM_BUG_ON(current_order == MAX_ORDER);
2738
2739 do_steal:
2740 page = get_page_from_free_area(area, fallback_mt);
2741
2742 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2743 can_steal);
2744
2745 trace_mm_page_alloc_extfrag(page, order, current_order,
2746 start_migratetype, fallback_mt);
2747
2748 return true;
2749
2750 }
2751
2752 /*
2753 * Do the hard work of removing an element from the buddy allocator.
2754 * Call me with the zone->lock already held.
2755 */
2756 static __always_inline struct page *
2757 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2758 unsigned int alloc_flags)
2759 {
2760 struct page *page;
2761
2762 retry:
2763 page = __rmqueue_smallest(zone, order, migratetype);
2764 if (unlikely(!page)) {
2765 if (migratetype == MIGRATE_MOVABLE)
2766 page = __rmqueue_cma_fallback(zone, order);
2767
2768 if (!page && __rmqueue_fallback(zone, order, migratetype,
2769 alloc_flags))
2770 goto retry;
2771 }
2772
2773 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2774 return page;
2775 }
2776
2777 /*
2778 * Obtain a specified number of elements from the buddy allocator, all under
2779 * a single hold of the lock, for efficiency. Add them to the supplied list.
2780 * Returns the number of new pages which were placed at *list.
2781 */
2782 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2783 unsigned long count, struct list_head *list,
2784 int migratetype, unsigned int alloc_flags)
2785 {
2786 int i, alloced = 0;
2787
2788 spin_lock(&zone->lock);
2789 for (i = 0; i < count; ++i) {
2790 struct page *page = __rmqueue(zone, order, migratetype,
2791 alloc_flags);
2792 if (unlikely(page == NULL))
2793 break;
2794
2795 if (unlikely(check_pcp_refill(page)))
2796 continue;
2797
2798 /*
2799 * Split buddy pages returned by expand() are received here in
2800 * physical page order. The page is added to the tail of
2801 * caller's list. From the callers perspective, the linked list
2802 * is ordered by page number under some conditions. This is
2803 * useful for IO devices that can forward direction from the
2804 * head, thus also in the physical page order. This is useful
2805 * for IO devices that can merge IO requests if the physical
2806 * pages are ordered properly.
2807 */
2808 list_add_tail(&page->lru, list);
2809 alloced++;
2810 if (is_migrate_cma(get_pcppage_migratetype(page)))
2811 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2812 -(1 << order));
2813 }
2814
2815 /*
2816 * i pages were removed from the buddy list even if some leak due
2817 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2818 * on i. Do not confuse with 'alloced' which is the number of
2819 * pages added to the pcp list.
2820 */
2821 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2822 spin_unlock(&zone->lock);
2823 return alloced;
2824 }
2825
2826 #ifdef CONFIG_NUMA
2827 /*
2828 * Called from the vmstat counter updater to drain pagesets of this
2829 * currently executing processor on remote nodes after they have
2830 * expired.
2831 *
2832 * Note that this function must be called with the thread pinned to
2833 * a single processor.
2834 */
2835 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2836 {
2837 unsigned long flags;
2838 int to_drain, batch;
2839
2840 local_irq_save(flags);
2841 batch = READ_ONCE(pcp->batch);
2842 to_drain = min(pcp->count, batch);
2843 if (to_drain > 0)
2844 free_pcppages_bulk(zone, to_drain, pcp);
2845 local_irq_restore(flags);
2846 }
2847 #endif
2848
2849 /*
2850 * Drain pcplists of the indicated processor and zone.
2851 *
2852 * The processor must either be the current processor and the
2853 * thread pinned to the current processor or a processor that
2854 * is not online.
2855 */
2856 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2857 {
2858 unsigned long flags;
2859 struct per_cpu_pageset *pset;
2860 struct per_cpu_pages *pcp;
2861
2862 local_irq_save(flags);
2863 pset = per_cpu_ptr(zone->pageset, cpu);
2864
2865 pcp = &pset->pcp;
2866 if (pcp->count)
2867 free_pcppages_bulk(zone, pcp->count, pcp);
2868 local_irq_restore(flags);
2869 }
2870
2871 /*
2872 * Drain pcplists of all zones on the indicated processor.
2873 *
2874 * The processor must either be the current processor and the
2875 * thread pinned to the current processor or a processor that
2876 * is not online.
2877 */
2878 static void drain_pages(unsigned int cpu)
2879 {
2880 struct zone *zone;
2881
2882 for_each_populated_zone(zone) {
2883 drain_pages_zone(cpu, zone);
2884 }
2885 }
2886
2887 /*
2888 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2889 *
2890 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2891 * the single zone's pages.
2892 */
2893 void drain_local_pages(struct zone *zone)
2894 {
2895 int cpu = smp_processor_id();
2896
2897 if (zone)
2898 drain_pages_zone(cpu, zone);
2899 else
2900 drain_pages(cpu);
2901 }
2902
2903 static void drain_local_pages_wq(struct work_struct *work)
2904 {
2905 struct pcpu_drain *drain;
2906
2907 drain = container_of(work, struct pcpu_drain, work);
2908
2909 /*
2910 * drain_all_pages doesn't use proper cpu hotplug protection so
2911 * we can race with cpu offline when the WQ can move this from
2912 * a cpu pinned worker to an unbound one. We can operate on a different
2913 * cpu which is allright but we also have to make sure to not move to
2914 * a different one.
2915 */
2916 preempt_disable();
2917 drain_local_pages(drain->zone);
2918 preempt_enable();
2919 }
2920
2921 /*
2922 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2923 *
2924 * When zone parameter is non-NULL, spill just the single zone's pages.
2925 *
2926 * Note that this can be extremely slow as the draining happens in a workqueue.
2927 */
2928 void drain_all_pages(struct zone *zone)
2929 {
2930 int cpu;
2931
2932 /*
2933 * Allocate in the BSS so we wont require allocation in
2934 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2935 */
2936 static cpumask_t cpus_with_pcps;
2937
2938 /*
2939 * Make sure nobody triggers this path before mm_percpu_wq is fully
2940 * initialized.
2941 */
2942 if (WARN_ON_ONCE(!mm_percpu_wq))
2943 return;
2944
2945 /*
2946 * Do not drain if one is already in progress unless it's specific to
2947 * a zone. Such callers are primarily CMA and memory hotplug and need
2948 * the drain to be complete when the call returns.
2949 */
2950 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2951 if (!zone)
2952 return;
2953 mutex_lock(&pcpu_drain_mutex);
2954 }
2955
2956 /*
2957 * We don't care about racing with CPU hotplug event
2958 * as offline notification will cause the notified
2959 * cpu to drain that CPU pcps and on_each_cpu_mask
2960 * disables preemption as part of its processing
2961 */
2962 for_each_online_cpu(cpu) {
2963 struct per_cpu_pageset *pcp;
2964 struct zone *z;
2965 bool has_pcps = false;
2966
2967 if (zone) {
2968 pcp = per_cpu_ptr(zone->pageset, cpu);
2969 if (pcp->pcp.count)
2970 has_pcps = true;
2971 } else {
2972 for_each_populated_zone(z) {
2973 pcp = per_cpu_ptr(z->pageset, cpu);
2974 if (pcp->pcp.count) {
2975 has_pcps = true;
2976 break;
2977 }
2978 }
2979 }
2980
2981 if (has_pcps)
2982 cpumask_set_cpu(cpu, &cpus_with_pcps);
2983 else
2984 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2985 }
2986
2987 for_each_cpu(cpu, &cpus_with_pcps) {
2988 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2989
2990 drain->zone = zone;
2991 INIT_WORK(&drain->work, drain_local_pages_wq);
2992 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2993 }
2994 for_each_cpu(cpu, &cpus_with_pcps)
2995 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2996
2997 mutex_unlock(&pcpu_drain_mutex);
2998 }
2999
3000 #ifdef CONFIG_HIBERNATION
3001
3002 /*
3003 * Touch the watchdog for every WD_PAGE_COUNT pages.
3004 */
3005 #define WD_PAGE_COUNT (128*1024)
3006
3007 void mark_free_pages(struct zone *zone)
3008 {
3009 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3010 unsigned long flags;
3011 unsigned int order, t;
3012 struct page *page;
3013
3014 if (zone_is_empty(zone))
3015 return;
3016
3017 spin_lock_irqsave(&zone->lock, flags);
3018
3019 max_zone_pfn = zone_end_pfn(zone);
3020 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3021 if (pfn_valid(pfn)) {
3022 page = pfn_to_page(pfn);
3023
3024 if (!--page_count) {
3025 touch_nmi_watchdog();
3026 page_count = WD_PAGE_COUNT;
3027 }
3028
3029 if (page_zone(page) != zone)
3030 continue;
3031
3032 if (!swsusp_page_is_forbidden(page))
3033 swsusp_unset_page_free(page);
3034 }
3035
3036 for_each_migratetype_order(order, t) {
3037 list_for_each_entry(page,
3038 &zone->free_area[order].free_list[t], lru) {
3039 unsigned long i;
3040
3041 pfn = page_to_pfn(page);
3042 for (i = 0; i < (1UL << order); i++) {
3043 if (!--page_count) {
3044 touch_nmi_watchdog();
3045 page_count = WD_PAGE_COUNT;
3046 }
3047 swsusp_set_page_free(pfn_to_page(pfn + i));
3048 }
3049 }
3050 }
3051 spin_unlock_irqrestore(&zone->lock, flags);
3052 }
3053 #endif /* CONFIG_PM */
3054
3055 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3056 {
3057 int migratetype;
3058
3059 if (!free_pcp_prepare(page))
3060 return false;
3061
3062 migratetype = get_pfnblock_migratetype(page, pfn);
3063 set_pcppage_migratetype(page, migratetype);
3064 return true;
3065 }
3066
3067 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3068 {
3069 struct zone *zone = page_zone(page);
3070 struct per_cpu_pages *pcp;
3071 int migratetype;
3072
3073 migratetype = get_pcppage_migratetype(page);
3074 __count_vm_event(PGFREE);
3075
3076 /*
3077 * We only track unmovable, reclaimable and movable on pcp lists.
3078 * Free ISOLATE pages back to the allocator because they are being
3079 * offlined but treat HIGHATOMIC as movable pages so we can get those
3080 * areas back if necessary. Otherwise, we may have to free
3081 * excessively into the page allocator
3082 */
3083 if (migratetype >= MIGRATE_PCPTYPES) {
3084 if (unlikely(is_migrate_isolate(migratetype))) {
3085 free_one_page(zone, page, pfn, 0, migratetype);
3086 return;
3087 }
3088 migratetype = MIGRATE_MOVABLE;
3089 }
3090
3091 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3092 list_add(&page->lru, &pcp->lists[migratetype]);
3093 pcp->count++;
3094 if (pcp->count >= pcp->high) {
3095 unsigned long batch = READ_ONCE(pcp->batch);
3096 free_pcppages_bulk(zone, batch, pcp);
3097 }
3098 }
3099
3100 /*
3101 * Free a 0-order page
3102 */
3103 void free_unref_page(struct page *page)
3104 {
3105 unsigned long flags;
3106 unsigned long pfn = page_to_pfn(page);
3107
3108 if (!free_unref_page_prepare(page, pfn))
3109 return;
3110
3111 local_irq_save(flags);
3112 free_unref_page_commit(page, pfn);
3113 local_irq_restore(flags);
3114 }
3115
3116 /*
3117 * Free a list of 0-order pages
3118 */
3119 void free_unref_page_list(struct list_head *list)
3120 {
3121 struct page *page, *next;
3122 unsigned long flags, pfn;
3123 int batch_count = 0;
3124
3125 /* Prepare pages for freeing */
3126 list_for_each_entry_safe(page, next, list, lru) {
3127 pfn = page_to_pfn(page);
3128 if (!free_unref_page_prepare(page, pfn))
3129 list_del(&page->lru);
3130 set_page_private(page, pfn);
3131 }
3132
3133 local_irq_save(flags);
3134 list_for_each_entry_safe(page, next, list, lru) {
3135 unsigned long pfn = page_private(page);
3136
3137 set_page_private(page, 0);
3138 trace_mm_page_free_batched(page);
3139 free_unref_page_commit(page, pfn);
3140
3141 /*
3142 * Guard against excessive IRQ disabled times when we get
3143 * a large list of pages to free.
3144 */
3145 if (++batch_count == SWAP_CLUSTER_MAX) {
3146 local_irq_restore(flags);
3147 batch_count = 0;
3148 local_irq_save(flags);
3149 }
3150 }
3151 local_irq_restore(flags);
3152 }
3153
3154 /*
3155 * split_page takes a non-compound higher-order page, and splits it into
3156 * n (1<<order) sub-pages: page[0..n]
3157 * Each sub-page must be freed individually.
3158 *
3159 * Note: this is probably too low level an operation for use in drivers.
3160 * Please consult with lkml before using this in your driver.
3161 */
3162 void split_page(struct page *page, unsigned int order)
3163 {
3164 int i;
3165
3166 VM_BUG_ON_PAGE(PageCompound(page), page);
3167 VM_BUG_ON_PAGE(!page_count(page), page);
3168
3169 for (i = 1; i < (1 << order); i++)
3170 set_page_refcounted(page + i);
3171 split_page_owner(page, order);
3172 }
3173 EXPORT_SYMBOL_GPL(split_page);
3174
3175 int __isolate_free_page(struct page *page, unsigned int order)
3176 {
3177 unsigned long watermark;
3178 struct zone *zone;
3179 int mt;
3180
3181 BUG_ON(!PageBuddy(page));
3182
3183 zone = page_zone(page);
3184 mt = get_pageblock_migratetype(page);
3185
3186 if (!is_migrate_isolate(mt)) {
3187 /*
3188 * Obey watermarks as if the page was being allocated. We can
3189 * emulate a high-order watermark check with a raised order-0
3190 * watermark, because we already know our high-order page
3191 * exists.
3192 */
3193 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3194 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3195 return 0;
3196
3197 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3198 }
3199
3200 /* Remove page from free list */
3201
3202 del_page_from_free_list(page, zone, order);
3203
3204 /*
3205 * Set the pageblock if the isolated page is at least half of a
3206 * pageblock
3207 */
3208 if (order >= pageblock_order - 1) {
3209 struct page *endpage = page + (1 << order) - 1;
3210 for (; page < endpage; page += pageblock_nr_pages) {
3211 int mt = get_pageblock_migratetype(page);
3212 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3213 && !is_migrate_highatomic(mt))
3214 set_pageblock_migratetype(page,
3215 MIGRATE_MOVABLE);
3216 }
3217 }
3218
3219
3220 return 1UL << order;
3221 }
3222
3223 /**
3224 * __putback_isolated_page - Return a now-isolated page back where we got it
3225 * @page: Page that was isolated
3226 * @order: Order of the isolated page
3227 * @mt: The page's pageblock's migratetype
3228 *
3229 * This function is meant to return a page pulled from the free lists via
3230 * __isolate_free_page back to the free lists they were pulled from.
3231 */
3232 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3233 {
3234 struct zone *zone = page_zone(page);
3235
3236 /* zone lock should be held when this function is called */
3237 lockdep_assert_held(&zone->lock);
3238
3239 /* Return isolated page to tail of freelist. */
3240 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3241 }
3242
3243 /*
3244 * Update NUMA hit/miss statistics
3245 *
3246 * Must be called with interrupts disabled.
3247 */
3248 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3249 {
3250 #ifdef CONFIG_NUMA
3251 enum numa_stat_item local_stat = NUMA_LOCAL;
3252
3253 /* skip numa counters update if numa stats is disabled */
3254 if (!static_branch_likely(&vm_numa_stat_key))
3255 return;
3256
3257 if (zone_to_nid(z) != numa_node_id())
3258 local_stat = NUMA_OTHER;
3259
3260 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3261 __inc_numa_state(z, NUMA_HIT);
3262 else {
3263 __inc_numa_state(z, NUMA_MISS);
3264 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3265 }
3266 __inc_numa_state(z, local_stat);
3267 #endif
3268 }
3269
3270 /* Remove page from the per-cpu list, caller must protect the list */
3271 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3272 unsigned int alloc_flags,
3273 struct per_cpu_pages *pcp,
3274 struct list_head *list)
3275 {
3276 struct page *page;
3277
3278 do {
3279 if (list_empty(list)) {
3280 pcp->count += rmqueue_bulk(zone, 0,
3281 pcp->batch, list,
3282 migratetype, alloc_flags);
3283 if (unlikely(list_empty(list)))
3284 return NULL;
3285 }
3286
3287 page = list_first_entry(list, struct page, lru);
3288 list_del(&page->lru);
3289 pcp->count--;
3290 } while (check_new_pcp(page));
3291
3292 return page;
3293 }
3294
3295 /* Lock and remove page from the per-cpu list */
3296 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3297 struct zone *zone, gfp_t gfp_flags,
3298 int migratetype, unsigned int alloc_flags)
3299 {
3300 struct per_cpu_pages *pcp;
3301 struct list_head *list;
3302 struct page *page;
3303 unsigned long flags;
3304
3305 local_irq_save(flags);
3306 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3307 list = &pcp->lists[migratetype];
3308 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3309 if (page) {
3310 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3311 zone_statistics(preferred_zone, zone);
3312 }
3313 local_irq_restore(flags);
3314 return page;
3315 }
3316
3317 /*
3318 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3319 */
3320 static inline
3321 struct page *rmqueue(struct zone *preferred_zone,
3322 struct zone *zone, unsigned int order,
3323 gfp_t gfp_flags, unsigned int alloc_flags,
3324 int migratetype)
3325 {
3326 unsigned long flags;
3327 struct page *page;
3328
3329 if (likely(order == 0)) {
3330 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3331 migratetype, alloc_flags);
3332 goto out;
3333 }
3334
3335 /*
3336 * We most definitely don't want callers attempting to
3337 * allocate greater than order-1 page units with __GFP_NOFAIL.
3338 */
3339 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3340 spin_lock_irqsave(&zone->lock, flags);
3341
3342 do {
3343 page = NULL;
3344 if (alloc_flags & ALLOC_HARDER) {
3345 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3346 if (page)
3347 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3348 }
3349 if (!page)
3350 page = __rmqueue(zone, order, migratetype, alloc_flags);
3351 } while (page && check_new_pages(page, order));
3352 spin_unlock(&zone->lock);
3353 if (!page)
3354 goto failed;
3355 __mod_zone_freepage_state(zone, -(1 << order),
3356 get_pcppage_migratetype(page));
3357
3358 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3359 zone_statistics(preferred_zone, zone);
3360 local_irq_restore(flags);
3361
3362 out:
3363 /* Separate test+clear to avoid unnecessary atomics */
3364 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3365 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3366 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3367 }
3368
3369 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3370 return page;
3371
3372 failed:
3373 local_irq_restore(flags);
3374 return NULL;
3375 }
3376
3377 #ifdef CONFIG_FAIL_PAGE_ALLOC
3378
3379 static struct {
3380 struct fault_attr attr;
3381
3382 bool ignore_gfp_highmem;
3383 bool ignore_gfp_reclaim;
3384 u32 min_order;
3385 } fail_page_alloc = {
3386 .attr = FAULT_ATTR_INITIALIZER,
3387 .ignore_gfp_reclaim = true,
3388 .ignore_gfp_highmem = true,
3389 .min_order = 1,
3390 };
3391
3392 static int __init setup_fail_page_alloc(char *str)
3393 {
3394 return setup_fault_attr(&fail_page_alloc.attr, str);
3395 }
3396 __setup("fail_page_alloc=", setup_fail_page_alloc);
3397
3398 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3399 {
3400 if (order < fail_page_alloc.min_order)
3401 return false;
3402 if (gfp_mask & __GFP_NOFAIL)
3403 return false;
3404 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3405 return false;
3406 if (fail_page_alloc.ignore_gfp_reclaim &&
3407 (gfp_mask & __GFP_DIRECT_RECLAIM))
3408 return false;
3409
3410 return should_fail(&fail_page_alloc.attr, 1 << order);
3411 }
3412
3413 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3414
3415 static int __init fail_page_alloc_debugfs(void)
3416 {
3417 umode_t mode = S_IFREG | 0600;
3418 struct dentry *dir;
3419
3420 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3421 &fail_page_alloc.attr);
3422
3423 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3424 &fail_page_alloc.ignore_gfp_reclaim);
3425 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3426 &fail_page_alloc.ignore_gfp_highmem);
3427 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3428
3429 return 0;
3430 }
3431
3432 late_initcall(fail_page_alloc_debugfs);
3433
3434 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3435
3436 #else /* CONFIG_FAIL_PAGE_ALLOC */
3437
3438 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3439 {
3440 return false;
3441 }
3442
3443 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3444
3445 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3446 {
3447 return __should_fail_alloc_page(gfp_mask, order);
3448 }
3449 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3450
3451 /*
3452 * Return true if free base pages are above 'mark'. For high-order checks it
3453 * will return true of the order-0 watermark is reached and there is at least
3454 * one free page of a suitable size. Checking now avoids taking the zone lock
3455 * to check in the allocation paths if no pages are free.
3456 */
3457 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3458 int classzone_idx, unsigned int alloc_flags,
3459 long free_pages)
3460 {
3461 long min = mark;
3462 int o;
3463 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3464
3465 /* free_pages may go negative - that's OK */
3466 free_pages -= (1 << order) - 1;
3467
3468 if (alloc_flags & ALLOC_HIGH)
3469 min -= min / 2;
3470
3471 /*
3472 * If the caller does not have rights to ALLOC_HARDER then subtract
3473 * the high-atomic reserves. This will over-estimate the size of the
3474 * atomic reserve but it avoids a search.
3475 */
3476 if (likely(!alloc_harder)) {
3477 free_pages -= z->nr_reserved_highatomic;
3478 } else {
3479 /*
3480 * OOM victims can try even harder than normal ALLOC_HARDER
3481 * users on the grounds that it's definitely going to be in
3482 * the exit path shortly and free memory. Any allocation it
3483 * makes during the free path will be small and short-lived.
3484 */
3485 if (alloc_flags & ALLOC_OOM)
3486 min -= min / 2;
3487 else
3488 min -= min / 4;
3489 }
3490
3491
3492 #ifdef CONFIG_CMA
3493 /* If allocation can't use CMA areas don't use free CMA pages */
3494 if (!(alloc_flags & ALLOC_CMA))
3495 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3496 #endif
3497
3498 /*
3499 * Check watermarks for an order-0 allocation request. If these
3500 * are not met, then a high-order request also cannot go ahead
3501 * even if a suitable page happened to be free.
3502 */
3503 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3504 return false;
3505
3506 /* If this is an order-0 request then the watermark is fine */
3507 if (!order)
3508 return true;
3509
3510 /* For a high-order request, check at least one suitable page is free */
3511 for (o = order; o < MAX_ORDER; o++) {
3512 struct free_area *area = &z->free_area[o];
3513 int mt;
3514
3515 if (!area->nr_free)
3516 continue;
3517
3518 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3519 if (!free_area_empty(area, mt))
3520 return true;
3521 }
3522
3523 #ifdef CONFIG_CMA
3524 if ((alloc_flags & ALLOC_CMA) &&
3525 !free_area_empty(area, MIGRATE_CMA)) {
3526 return true;
3527 }
3528 #endif
3529 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3530 return true;
3531 }
3532 return false;
3533 }
3534
3535 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3536 int classzone_idx, unsigned int alloc_flags)
3537 {
3538 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3539 zone_page_state(z, NR_FREE_PAGES));
3540 }
3541
3542 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3543 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3544 {
3545 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3546 long cma_pages = 0;
3547
3548 #ifdef CONFIG_CMA
3549 /* If allocation can't use CMA areas don't use free CMA pages */
3550 if (!(alloc_flags & ALLOC_CMA))
3551 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3552 #endif
3553
3554 /*
3555 * Fast check for order-0 only. If this fails then the reserves
3556 * need to be calculated. There is a corner case where the check
3557 * passes but only the high-order atomic reserve are free. If
3558 * the caller is !atomic then it'll uselessly search the free
3559 * list. That corner case is then slower but it is harmless.
3560 */
3561 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3562 return true;
3563
3564 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3565 free_pages);
3566 }
3567
3568 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3569 unsigned long mark, int classzone_idx)
3570 {
3571 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3572
3573 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3574 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3575
3576 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3577 free_pages);
3578 }
3579
3580 #ifdef CONFIG_NUMA
3581 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3582 {
3583 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3584 node_reclaim_distance;
3585 }
3586 #else /* CONFIG_NUMA */
3587 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3588 {
3589 return true;
3590 }
3591 #endif /* CONFIG_NUMA */
3592
3593 /*
3594 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3595 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3596 * premature use of a lower zone may cause lowmem pressure problems that
3597 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3598 * probably too small. It only makes sense to spread allocations to avoid
3599 * fragmentation between the Normal and DMA32 zones.
3600 */
3601 static inline unsigned int
3602 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3603 {
3604 unsigned int alloc_flags;
3605
3606 /*
3607 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3608 * to save a branch.
3609 */
3610 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3611
3612 #ifdef CONFIG_ZONE_DMA32
3613 if (!zone)
3614 return alloc_flags;
3615
3616 if (zone_idx(zone) != ZONE_NORMAL)
3617 return alloc_flags;
3618
3619 /*
3620 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3621 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3622 * on UMA that if Normal is populated then so is DMA32.
3623 */
3624 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3625 if (nr_online_nodes > 1 && !populated_zone(--zone))
3626 return alloc_flags;
3627
3628 alloc_flags |= ALLOC_NOFRAGMENT;
3629 #endif /* CONFIG_ZONE_DMA32 */
3630 return alloc_flags;
3631 }
3632
3633 /*
3634 * get_page_from_freelist goes through the zonelist trying to allocate
3635 * a page.
3636 */
3637 static struct page *
3638 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3639 const struct alloc_context *ac)
3640 {
3641 struct zoneref *z;
3642 struct zone *zone;
3643 struct pglist_data *last_pgdat_dirty_limit = NULL;
3644 bool no_fallback;
3645
3646 retry:
3647 /*
3648 * Scan zonelist, looking for a zone with enough free.
3649 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3650 */
3651 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3652 z = ac->preferred_zoneref;
3653 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3654 ac->nodemask) {
3655 struct page *page;
3656 unsigned long mark;
3657
3658 if (cpusets_enabled() &&
3659 (alloc_flags & ALLOC_CPUSET) &&
3660 !__cpuset_zone_allowed(zone, gfp_mask))
3661 continue;
3662 /*
3663 * When allocating a page cache page for writing, we
3664 * want to get it from a node that is within its dirty
3665 * limit, such that no single node holds more than its
3666 * proportional share of globally allowed dirty pages.
3667 * The dirty limits take into account the node's
3668 * lowmem reserves and high watermark so that kswapd
3669 * should be able to balance it without having to
3670 * write pages from its LRU list.
3671 *
3672 * XXX: For now, allow allocations to potentially
3673 * exceed the per-node dirty limit in the slowpath
3674 * (spread_dirty_pages unset) before going into reclaim,
3675 * which is important when on a NUMA setup the allowed
3676 * nodes are together not big enough to reach the
3677 * global limit. The proper fix for these situations
3678 * will require awareness of nodes in the
3679 * dirty-throttling and the flusher threads.
3680 */
3681 if (ac->spread_dirty_pages) {
3682 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3683 continue;
3684
3685 if (!node_dirty_ok(zone->zone_pgdat)) {
3686 last_pgdat_dirty_limit = zone->zone_pgdat;
3687 continue;
3688 }
3689 }
3690
3691 if (no_fallback && nr_online_nodes > 1 &&
3692 zone != ac->preferred_zoneref->zone) {
3693 int local_nid;
3694
3695 /*
3696 * If moving to a remote node, retry but allow
3697 * fragmenting fallbacks. Locality is more important
3698 * than fragmentation avoidance.
3699 */
3700 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3701 if (zone_to_nid(zone) != local_nid) {
3702 alloc_flags &= ~ALLOC_NOFRAGMENT;
3703 goto retry;
3704 }
3705 }
3706
3707 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3708 if (!zone_watermark_fast(zone, order, mark,
3709 ac_classzone_idx(ac), alloc_flags)) {
3710 int ret;
3711
3712 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3713 /*
3714 * Watermark failed for this zone, but see if we can
3715 * grow this zone if it contains deferred pages.
3716 */
3717 if (static_branch_unlikely(&deferred_pages)) {
3718 if (_deferred_grow_zone(zone, order))
3719 goto try_this_zone;
3720 }
3721 #endif
3722 /* Checked here to keep the fast path fast */
3723 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3724 if (alloc_flags & ALLOC_NO_WATERMARKS)
3725 goto try_this_zone;
3726
3727 if (node_reclaim_mode == 0 ||
3728 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3729 continue;
3730
3731 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3732 switch (ret) {
3733 case NODE_RECLAIM_NOSCAN:
3734 /* did not scan */
3735 continue;
3736 case NODE_RECLAIM_FULL:
3737 /* scanned but unreclaimable */
3738 continue;
3739 default:
3740 /* did we reclaim enough */
3741 if (zone_watermark_ok(zone, order, mark,
3742 ac_classzone_idx(ac), alloc_flags))
3743 goto try_this_zone;
3744
3745 continue;
3746 }
3747 }
3748
3749 try_this_zone:
3750 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3751 gfp_mask, alloc_flags, ac->migratetype);
3752 if (page) {
3753 prep_new_page(page, order, gfp_mask, alloc_flags);
3754
3755 /*
3756 * If this is a high-order atomic allocation then check
3757 * if the pageblock should be reserved for the future
3758 */
3759 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3760 reserve_highatomic_pageblock(page, zone, order);
3761
3762 return page;
3763 } else {
3764 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3765 /* Try again if zone has deferred pages */
3766 if (static_branch_unlikely(&deferred_pages)) {
3767 if (_deferred_grow_zone(zone, order))
3768 goto try_this_zone;
3769 }
3770 #endif
3771 }
3772 }
3773
3774 /*
3775 * It's possible on a UMA machine to get through all zones that are
3776 * fragmented. If avoiding fragmentation, reset and try again.
3777 */
3778 if (no_fallback) {
3779 alloc_flags &= ~ALLOC_NOFRAGMENT;
3780 goto retry;
3781 }
3782
3783 return NULL;
3784 }
3785
3786 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3787 {
3788 unsigned int filter = SHOW_MEM_FILTER_NODES;
3789
3790 /*
3791 * This documents exceptions given to allocations in certain
3792 * contexts that are allowed to allocate outside current's set
3793 * of allowed nodes.
3794 */
3795 if (!(gfp_mask & __GFP_NOMEMALLOC))
3796 if (tsk_is_oom_victim(current) ||
3797 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3798 filter &= ~SHOW_MEM_FILTER_NODES;
3799 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3800 filter &= ~SHOW_MEM_FILTER_NODES;
3801
3802 show_mem(filter, nodemask);
3803 }
3804
3805 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3806 {
3807 struct va_format vaf;
3808 va_list args;
3809 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3810
3811 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3812 return;
3813
3814 va_start(args, fmt);
3815 vaf.fmt = fmt;
3816 vaf.va = &args;
3817 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3818 current->comm, &vaf, gfp_mask, &gfp_mask,
3819 nodemask_pr_args(nodemask));
3820 va_end(args);
3821
3822 cpuset_print_current_mems_allowed();
3823 pr_cont("\n");
3824 dump_stack();
3825 warn_alloc_show_mem(gfp_mask, nodemask);
3826 }
3827
3828 static inline struct page *
3829 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3830 unsigned int alloc_flags,
3831 const struct alloc_context *ac)
3832 {
3833 struct page *page;
3834
3835 page = get_page_from_freelist(gfp_mask, order,
3836 alloc_flags|ALLOC_CPUSET, ac);
3837 /*
3838 * fallback to ignore cpuset restriction if our nodes
3839 * are depleted
3840 */
3841 if (!page)
3842 page = get_page_from_freelist(gfp_mask, order,
3843 alloc_flags, ac);
3844
3845 return page;
3846 }
3847
3848 static inline struct page *
3849 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3850 const struct alloc_context *ac, unsigned long *did_some_progress)
3851 {
3852 struct oom_control oc = {
3853 .zonelist = ac->zonelist,
3854 .nodemask = ac->nodemask,
3855 .memcg = NULL,
3856 .gfp_mask = gfp_mask,
3857 .order = order,
3858 };
3859 struct page *page;
3860
3861 *did_some_progress = 0;
3862
3863 /*
3864 * Acquire the oom lock. If that fails, somebody else is
3865 * making progress for us.
3866 */
3867 if (!mutex_trylock(&oom_lock)) {
3868 *did_some_progress = 1;
3869 schedule_timeout_uninterruptible(1);
3870 return NULL;
3871 }
3872
3873 /*
3874 * Go through the zonelist yet one more time, keep very high watermark
3875 * here, this is only to catch a parallel oom killing, we must fail if
3876 * we're still under heavy pressure. But make sure that this reclaim
3877 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3878 * allocation which will never fail due to oom_lock already held.
3879 */
3880 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3881 ~__GFP_DIRECT_RECLAIM, order,
3882 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3883 if (page)
3884 goto out;
3885
3886 /* Coredumps can quickly deplete all memory reserves */
3887 if (current->flags & PF_DUMPCORE)
3888 goto out;
3889 /* The OOM killer will not help higher order allocs */
3890 if (order > PAGE_ALLOC_COSTLY_ORDER)
3891 goto out;
3892 /*
3893 * We have already exhausted all our reclaim opportunities without any
3894 * success so it is time to admit defeat. We will skip the OOM killer
3895 * because it is very likely that the caller has a more reasonable
3896 * fallback than shooting a random task.
3897 */
3898 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3899 goto out;
3900 /* The OOM killer does not needlessly kill tasks for lowmem */
3901 if (ac->high_zoneidx < ZONE_NORMAL)
3902 goto out;
3903 if (pm_suspended_storage())
3904 goto out;
3905 /*
3906 * XXX: GFP_NOFS allocations should rather fail than rely on
3907 * other request to make a forward progress.
3908 * We are in an unfortunate situation where out_of_memory cannot
3909 * do much for this context but let's try it to at least get
3910 * access to memory reserved if the current task is killed (see
3911 * out_of_memory). Once filesystems are ready to handle allocation
3912 * failures more gracefully we should just bail out here.
3913 */
3914
3915 /* The OOM killer may not free memory on a specific node */
3916 if (gfp_mask & __GFP_THISNODE)
3917 goto out;
3918
3919 /* Exhausted what can be done so it's blame time */
3920 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3921 *did_some_progress = 1;
3922
3923 /*
3924 * Help non-failing allocations by giving them access to memory
3925 * reserves
3926 */
3927 if (gfp_mask & __GFP_NOFAIL)
3928 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3929 ALLOC_NO_WATERMARKS, ac);
3930 }
3931 out:
3932 mutex_unlock(&oom_lock);
3933 return page;
3934 }
3935
3936 /*
3937 * Maximum number of compaction retries wit a progress before OOM
3938 * killer is consider as the only way to move forward.
3939 */
3940 #define MAX_COMPACT_RETRIES 16
3941
3942 #ifdef CONFIG_COMPACTION
3943 /* Try memory compaction for high-order allocations before reclaim */
3944 static struct page *
3945 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3946 unsigned int alloc_flags, const struct alloc_context *ac,
3947 enum compact_priority prio, enum compact_result *compact_result)
3948 {
3949 struct page *page = NULL;
3950 unsigned long pflags;
3951 unsigned int noreclaim_flag;
3952
3953 if (!order)
3954 return NULL;
3955
3956 psi_memstall_enter(&pflags);
3957 noreclaim_flag = memalloc_noreclaim_save();
3958
3959 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3960 prio, &page);
3961
3962 memalloc_noreclaim_restore(noreclaim_flag);
3963 psi_memstall_leave(&pflags);
3964
3965 /*
3966 * At least in one zone compaction wasn't deferred or skipped, so let's
3967 * count a compaction stall
3968 */
3969 count_vm_event(COMPACTSTALL);
3970
3971 /* Prep a captured page if available */
3972 if (page)
3973 prep_new_page(page, order, gfp_mask, alloc_flags);
3974
3975 /* Try get a page from the freelist if available */
3976 if (!page)
3977 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3978
3979 if (page) {
3980 struct zone *zone = page_zone(page);
3981
3982 zone->compact_blockskip_flush = false;
3983 compaction_defer_reset(zone, order, true);
3984 count_vm_event(COMPACTSUCCESS);
3985 return page;
3986 }
3987
3988 /*
3989 * It's bad if compaction run occurs and fails. The most likely reason
3990 * is that pages exist, but not enough to satisfy watermarks.
3991 */
3992 count_vm_event(COMPACTFAIL);
3993
3994 cond_resched();
3995
3996 return NULL;
3997 }
3998
3999 static inline bool
4000 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4001 enum compact_result compact_result,
4002 enum compact_priority *compact_priority,
4003 int *compaction_retries)
4004 {
4005 int max_retries = MAX_COMPACT_RETRIES;
4006 int min_priority;
4007 bool ret = false;
4008 int retries = *compaction_retries;
4009 enum compact_priority priority = *compact_priority;
4010
4011 if (!order)
4012 return false;
4013
4014 if (compaction_made_progress(compact_result))
4015 (*compaction_retries)++;
4016
4017 /*
4018 * compaction considers all the zone as desperately out of memory
4019 * so it doesn't really make much sense to retry except when the
4020 * failure could be caused by insufficient priority
4021 */
4022 if (compaction_failed(compact_result))
4023 goto check_priority;
4024
4025 /*
4026 * compaction was skipped because there are not enough order-0 pages
4027 * to work with, so we retry only if it looks like reclaim can help.
4028 */
4029 if (compaction_needs_reclaim(compact_result)) {
4030 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4031 goto out;
4032 }
4033
4034 /*
4035 * make sure the compaction wasn't deferred or didn't bail out early
4036 * due to locks contention before we declare that we should give up.
4037 * But the next retry should use a higher priority if allowed, so
4038 * we don't just keep bailing out endlessly.
4039 */
4040 if (compaction_withdrawn(compact_result)) {
4041 goto check_priority;
4042 }
4043
4044 /*
4045 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4046 * costly ones because they are de facto nofail and invoke OOM
4047 * killer to move on while costly can fail and users are ready
4048 * to cope with that. 1/4 retries is rather arbitrary but we
4049 * would need much more detailed feedback from compaction to
4050 * make a better decision.
4051 */
4052 if (order > PAGE_ALLOC_COSTLY_ORDER)
4053 max_retries /= 4;
4054 if (*compaction_retries <= max_retries) {
4055 ret = true;
4056 goto out;
4057 }
4058
4059 /*
4060 * Make sure there are attempts at the highest priority if we exhausted
4061 * all retries or failed at the lower priorities.
4062 */
4063 check_priority:
4064 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4065 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4066
4067 if (*compact_priority > min_priority) {
4068 (*compact_priority)--;
4069 *compaction_retries = 0;
4070 ret = true;
4071 }
4072 out:
4073 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4074 return ret;
4075 }
4076 #else
4077 static inline struct page *
4078 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4079 unsigned int alloc_flags, const struct alloc_context *ac,
4080 enum compact_priority prio, enum compact_result *compact_result)
4081 {
4082 *compact_result = COMPACT_SKIPPED;
4083 return NULL;
4084 }
4085
4086 static inline bool
4087 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4088 enum compact_result compact_result,
4089 enum compact_priority *compact_priority,
4090 int *compaction_retries)
4091 {
4092 struct zone *zone;
4093 struct zoneref *z;
4094
4095 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4096 return false;
4097
4098 /*
4099 * There are setups with compaction disabled which would prefer to loop
4100 * inside the allocator rather than hit the oom killer prematurely.
4101 * Let's give them a good hope and keep retrying while the order-0
4102 * watermarks are OK.
4103 */
4104 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4105 ac->nodemask) {
4106 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4107 ac_classzone_idx(ac), alloc_flags))
4108 return true;
4109 }
4110 return false;
4111 }
4112 #endif /* CONFIG_COMPACTION */
4113
4114 #ifdef CONFIG_LOCKDEP
4115 static struct lockdep_map __fs_reclaim_map =
4116 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4117
4118 static bool __need_fs_reclaim(gfp_t gfp_mask)
4119 {
4120 gfp_mask = current_gfp_context(gfp_mask);
4121
4122 /* no reclaim without waiting on it */
4123 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4124 return false;
4125
4126 /* this guy won't enter reclaim */
4127 if (current->flags & PF_MEMALLOC)
4128 return false;
4129
4130 /* We're only interested __GFP_FS allocations for now */
4131 if (!(gfp_mask & __GFP_FS))
4132 return false;
4133
4134 if (gfp_mask & __GFP_NOLOCKDEP)
4135 return false;
4136
4137 return true;
4138 }
4139
4140 void __fs_reclaim_acquire(void)
4141 {
4142 lock_map_acquire(&__fs_reclaim_map);
4143 }
4144
4145 void __fs_reclaim_release(void)
4146 {
4147 lock_map_release(&__fs_reclaim_map);
4148 }
4149
4150 void fs_reclaim_acquire(gfp_t gfp_mask)
4151 {
4152 if (__need_fs_reclaim(gfp_mask))
4153 __fs_reclaim_acquire();
4154 }
4155 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4156
4157 void fs_reclaim_release(gfp_t gfp_mask)
4158 {
4159 if (__need_fs_reclaim(gfp_mask))
4160 __fs_reclaim_release();
4161 }
4162 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4163 #endif
4164
4165 /* Perform direct synchronous page reclaim */
4166 static int
4167 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4168 const struct alloc_context *ac)
4169 {
4170 int progress;
4171 unsigned int noreclaim_flag;
4172 unsigned long pflags;
4173
4174 cond_resched();
4175
4176 /* We now go into synchronous reclaim */
4177 cpuset_memory_pressure_bump();
4178 psi_memstall_enter(&pflags);
4179 fs_reclaim_acquire(gfp_mask);
4180 noreclaim_flag = memalloc_noreclaim_save();
4181
4182 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4183 ac->nodemask);
4184
4185 memalloc_noreclaim_restore(noreclaim_flag);
4186 fs_reclaim_release(gfp_mask);
4187 psi_memstall_leave(&pflags);
4188
4189 cond_resched();
4190
4191 return progress;
4192 }
4193
4194 /* The really slow allocator path where we enter direct reclaim */
4195 static inline struct page *
4196 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4197 unsigned int alloc_flags, const struct alloc_context *ac,
4198 unsigned long *did_some_progress)
4199 {
4200 struct page *page = NULL;
4201 bool drained = false;
4202
4203 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4204 if (unlikely(!(*did_some_progress)))
4205 return NULL;
4206
4207 retry:
4208 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4209
4210 /*
4211 * If an allocation failed after direct reclaim, it could be because
4212 * pages are pinned on the per-cpu lists or in high alloc reserves.
4213 * Shrink them them and try again
4214 */
4215 if (!page && !drained) {
4216 unreserve_highatomic_pageblock(ac, false);
4217 drain_all_pages(NULL);
4218 drained = true;
4219 goto retry;
4220 }
4221
4222 return page;
4223 }
4224
4225 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4226 const struct alloc_context *ac)
4227 {
4228 struct zoneref *z;
4229 struct zone *zone;
4230 pg_data_t *last_pgdat = NULL;
4231 enum zone_type high_zoneidx = ac->high_zoneidx;
4232
4233 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4234 ac->nodemask) {
4235 if (last_pgdat != zone->zone_pgdat)
4236 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4237 last_pgdat = zone->zone_pgdat;
4238 }
4239 }
4240
4241 static inline unsigned int
4242 gfp_to_alloc_flags(gfp_t gfp_mask)
4243 {
4244 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4245
4246 /*
4247 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4248 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4249 * to save two branches.
4250 */
4251 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4252 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4253
4254 /*
4255 * The caller may dip into page reserves a bit more if the caller
4256 * cannot run direct reclaim, or if the caller has realtime scheduling
4257 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4258 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4259 */
4260 alloc_flags |= (__force int)
4261 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4262
4263 if (gfp_mask & __GFP_ATOMIC) {
4264 /*
4265 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4266 * if it can't schedule.
4267 */
4268 if (!(gfp_mask & __GFP_NOMEMALLOC))
4269 alloc_flags |= ALLOC_HARDER;
4270 /*
4271 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4272 * comment for __cpuset_node_allowed().
4273 */
4274 alloc_flags &= ~ALLOC_CPUSET;
4275 } else if (unlikely(rt_task(current)) && !in_interrupt())
4276 alloc_flags |= ALLOC_HARDER;
4277
4278 #ifdef CONFIG_CMA
4279 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4280 alloc_flags |= ALLOC_CMA;
4281 #endif
4282 return alloc_flags;
4283 }
4284
4285 static bool oom_reserves_allowed(struct task_struct *tsk)
4286 {
4287 if (!tsk_is_oom_victim(tsk))
4288 return false;
4289
4290 /*
4291 * !MMU doesn't have oom reaper so give access to memory reserves
4292 * only to the thread with TIF_MEMDIE set
4293 */
4294 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4295 return false;
4296
4297 return true;
4298 }
4299
4300 /*
4301 * Distinguish requests which really need access to full memory
4302 * reserves from oom victims which can live with a portion of it
4303 */
4304 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4305 {
4306 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4307 return 0;
4308 if (gfp_mask & __GFP_MEMALLOC)
4309 return ALLOC_NO_WATERMARKS;
4310 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4311 return ALLOC_NO_WATERMARKS;
4312 if (!in_interrupt()) {
4313 if (current->flags & PF_MEMALLOC)
4314 return ALLOC_NO_WATERMARKS;
4315 else if (oom_reserves_allowed(current))
4316 return ALLOC_OOM;
4317 }
4318
4319 return 0;
4320 }
4321
4322 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4323 {
4324 return !!__gfp_pfmemalloc_flags(gfp_mask);
4325 }
4326
4327 /*
4328 * Checks whether it makes sense to retry the reclaim to make a forward progress
4329 * for the given allocation request.
4330 *
4331 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4332 * without success, or when we couldn't even meet the watermark if we
4333 * reclaimed all remaining pages on the LRU lists.
4334 *
4335 * Returns true if a retry is viable or false to enter the oom path.
4336 */
4337 static inline bool
4338 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4339 struct alloc_context *ac, int alloc_flags,
4340 bool did_some_progress, int *no_progress_loops)
4341 {
4342 struct zone *zone;
4343 struct zoneref *z;
4344 bool ret = false;
4345
4346 /*
4347 * Costly allocations might have made a progress but this doesn't mean
4348 * their order will become available due to high fragmentation so
4349 * always increment the no progress counter for them
4350 */
4351 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4352 *no_progress_loops = 0;
4353 else
4354 (*no_progress_loops)++;
4355
4356 /*
4357 * Make sure we converge to OOM if we cannot make any progress
4358 * several times in the row.
4359 */
4360 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4361 /* Before OOM, exhaust highatomic_reserve */
4362 return unreserve_highatomic_pageblock(ac, true);
4363 }
4364
4365 /*
4366 * Keep reclaiming pages while there is a chance this will lead
4367 * somewhere. If none of the target zones can satisfy our allocation
4368 * request even if all reclaimable pages are considered then we are
4369 * screwed and have to go OOM.
4370 */
4371 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4372 ac->nodemask) {
4373 unsigned long available;
4374 unsigned long reclaimable;
4375 unsigned long min_wmark = min_wmark_pages(zone);
4376 bool wmark;
4377
4378 available = reclaimable = zone_reclaimable_pages(zone);
4379 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4380
4381 /*
4382 * Would the allocation succeed if we reclaimed all
4383 * reclaimable pages?
4384 */
4385 wmark = __zone_watermark_ok(zone, order, min_wmark,
4386 ac_classzone_idx(ac), alloc_flags, available);
4387 trace_reclaim_retry_zone(z, order, reclaimable,
4388 available, min_wmark, *no_progress_loops, wmark);
4389 if (wmark) {
4390 /*
4391 * If we didn't make any progress and have a lot of
4392 * dirty + writeback pages then we should wait for
4393 * an IO to complete to slow down the reclaim and
4394 * prevent from pre mature OOM
4395 */
4396 if (!did_some_progress) {
4397 unsigned long write_pending;
4398
4399 write_pending = zone_page_state_snapshot(zone,
4400 NR_ZONE_WRITE_PENDING);
4401
4402 if (2 * write_pending > reclaimable) {
4403 congestion_wait(BLK_RW_ASYNC, HZ/10);
4404 return true;
4405 }
4406 }
4407
4408 ret = true;
4409 goto out;
4410 }
4411 }
4412
4413 out:
4414 /*
4415 * Memory allocation/reclaim might be called from a WQ context and the
4416 * current implementation of the WQ concurrency control doesn't
4417 * recognize that a particular WQ is congested if the worker thread is
4418 * looping without ever sleeping. Therefore we have to do a short sleep
4419 * here rather than calling cond_resched().
4420 */
4421 if (current->flags & PF_WQ_WORKER)
4422 schedule_timeout_uninterruptible(1);
4423 else
4424 cond_resched();
4425 return ret;
4426 }
4427
4428 static inline bool
4429 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4430 {
4431 /*
4432 * It's possible that cpuset's mems_allowed and the nodemask from
4433 * mempolicy don't intersect. This should be normally dealt with by
4434 * policy_nodemask(), but it's possible to race with cpuset update in
4435 * such a way the check therein was true, and then it became false
4436 * before we got our cpuset_mems_cookie here.
4437 * This assumes that for all allocations, ac->nodemask can come only
4438 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4439 * when it does not intersect with the cpuset restrictions) or the
4440 * caller can deal with a violated nodemask.
4441 */
4442 if (cpusets_enabled() && ac->nodemask &&
4443 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4444 ac->nodemask = NULL;
4445 return true;
4446 }
4447
4448 /*
4449 * When updating a task's mems_allowed or mempolicy nodemask, it is
4450 * possible to race with parallel threads in such a way that our
4451 * allocation can fail while the mask is being updated. If we are about
4452 * to fail, check if the cpuset changed during allocation and if so,
4453 * retry.
4454 */
4455 if (read_mems_allowed_retry(cpuset_mems_cookie))
4456 return true;
4457
4458 return false;
4459 }
4460
4461 static inline struct page *
4462 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4463 struct alloc_context *ac)
4464 {
4465 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4466 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4467 struct page *page = NULL;
4468 unsigned int alloc_flags;
4469 unsigned long did_some_progress;
4470 enum compact_priority compact_priority;
4471 enum compact_result compact_result;
4472 int compaction_retries;
4473 int no_progress_loops;
4474 unsigned int cpuset_mems_cookie;
4475 int reserve_flags;
4476
4477 /*
4478 * We also sanity check to catch abuse of atomic reserves being used by
4479 * callers that are not in atomic context.
4480 */
4481 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4482 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4483 gfp_mask &= ~__GFP_ATOMIC;
4484
4485 retry_cpuset:
4486 compaction_retries = 0;
4487 no_progress_loops = 0;
4488 compact_priority = DEF_COMPACT_PRIORITY;
4489 cpuset_mems_cookie = read_mems_allowed_begin();
4490
4491 /*
4492 * The fast path uses conservative alloc_flags to succeed only until
4493 * kswapd needs to be woken up, and to avoid the cost of setting up
4494 * alloc_flags precisely. So we do that now.
4495 */
4496 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4497
4498 /*
4499 * We need to recalculate the starting point for the zonelist iterator
4500 * because we might have used different nodemask in the fast path, or
4501 * there was a cpuset modification and we are retrying - otherwise we
4502 * could end up iterating over non-eligible zones endlessly.
4503 */
4504 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4505 ac->high_zoneidx, ac->nodemask);
4506 if (!ac->preferred_zoneref->zone)
4507 goto nopage;
4508
4509 if (alloc_flags & ALLOC_KSWAPD)
4510 wake_all_kswapds(order, gfp_mask, ac);
4511
4512 /*
4513 * The adjusted alloc_flags might result in immediate success, so try
4514 * that first
4515 */
4516 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4517 if (page)
4518 goto got_pg;
4519
4520 /*
4521 * For costly allocations, try direct compaction first, as it's likely
4522 * that we have enough base pages and don't need to reclaim. For non-
4523 * movable high-order allocations, do that as well, as compaction will
4524 * try prevent permanent fragmentation by migrating from blocks of the
4525 * same migratetype.
4526 * Don't try this for allocations that are allowed to ignore
4527 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4528 */
4529 if (can_direct_reclaim &&
4530 (costly_order ||
4531 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4532 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4533 page = __alloc_pages_direct_compact(gfp_mask, order,
4534 alloc_flags, ac,
4535 INIT_COMPACT_PRIORITY,
4536 &compact_result);
4537 if (page)
4538 goto got_pg;
4539
4540 /*
4541 * Checks for costly allocations with __GFP_NORETRY, which
4542 * includes some THP page fault allocations
4543 */
4544 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4545 /*
4546 * If allocating entire pageblock(s) and compaction
4547 * failed because all zones are below low watermarks
4548 * or is prohibited because it recently failed at this
4549 * order, fail immediately unless the allocator has
4550 * requested compaction and reclaim retry.
4551 *
4552 * Reclaim is
4553 * - potentially very expensive because zones are far
4554 * below their low watermarks or this is part of very
4555 * bursty high order allocations,
4556 * - not guaranteed to help because isolate_freepages()
4557 * may not iterate over freed pages as part of its
4558 * linear scan, and
4559 * - unlikely to make entire pageblocks free on its
4560 * own.
4561 */
4562 if (compact_result == COMPACT_SKIPPED ||
4563 compact_result == COMPACT_DEFERRED)
4564 goto nopage;
4565
4566 /*
4567 * Looks like reclaim/compaction is worth trying, but
4568 * sync compaction could be very expensive, so keep
4569 * using async compaction.
4570 */
4571 compact_priority = INIT_COMPACT_PRIORITY;
4572 }
4573 }
4574
4575 retry:
4576 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4577 if (alloc_flags & ALLOC_KSWAPD)
4578 wake_all_kswapds(order, gfp_mask, ac);
4579
4580 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4581 if (reserve_flags)
4582 alloc_flags = reserve_flags;
4583
4584 /*
4585 * Reset the nodemask and zonelist iterators if memory policies can be
4586 * ignored. These allocations are high priority and system rather than
4587 * user oriented.
4588 */
4589 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4590 ac->nodemask = NULL;
4591 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4592 ac->high_zoneidx, ac->nodemask);
4593 }
4594
4595 /* Attempt with potentially adjusted zonelist and alloc_flags */
4596 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4597 if (page)
4598 goto got_pg;
4599
4600 /* Caller is not willing to reclaim, we can't balance anything */
4601 if (!can_direct_reclaim)
4602 goto nopage;
4603
4604 /* Avoid recursion of direct reclaim */
4605 if (current->flags & PF_MEMALLOC)
4606 goto nopage;
4607
4608 /* Try direct reclaim and then allocating */
4609 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4610 &did_some_progress);
4611 if (page)
4612 goto got_pg;
4613
4614 /* Try direct compaction and then allocating */
4615 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4616 compact_priority, &compact_result);
4617 if (page)
4618 goto got_pg;
4619
4620 /* Do not loop if specifically requested */
4621 if (gfp_mask & __GFP_NORETRY)
4622 goto nopage;
4623
4624 /*
4625 * Do not retry costly high order allocations unless they are
4626 * __GFP_RETRY_MAYFAIL
4627 */
4628 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4629 goto nopage;
4630
4631 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4632 did_some_progress > 0, &no_progress_loops))
4633 goto retry;
4634
4635 /*
4636 * It doesn't make any sense to retry for the compaction if the order-0
4637 * reclaim is not able to make any progress because the current
4638 * implementation of the compaction depends on the sufficient amount
4639 * of free memory (see __compaction_suitable)
4640 */
4641 if (did_some_progress > 0 &&
4642 should_compact_retry(ac, order, alloc_flags,
4643 compact_result, &compact_priority,
4644 &compaction_retries))
4645 goto retry;
4646
4647
4648 /* Deal with possible cpuset update races before we start OOM killing */
4649 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4650 goto retry_cpuset;
4651
4652 /* Reclaim has failed us, start killing things */
4653 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4654 if (page)
4655 goto got_pg;
4656
4657 /* Avoid allocations with no watermarks from looping endlessly */
4658 if (tsk_is_oom_victim(current) &&
4659 (alloc_flags == ALLOC_OOM ||
4660 (gfp_mask & __GFP_NOMEMALLOC)))
4661 goto nopage;
4662
4663 /* Retry as long as the OOM killer is making progress */
4664 if (did_some_progress) {
4665 no_progress_loops = 0;
4666 goto retry;
4667 }
4668
4669 nopage:
4670 /* Deal with possible cpuset update races before we fail */
4671 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4672 goto retry_cpuset;
4673
4674 /*
4675 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4676 * we always retry
4677 */
4678 if (gfp_mask & __GFP_NOFAIL) {
4679 /*
4680 * All existing users of the __GFP_NOFAIL are blockable, so warn
4681 * of any new users that actually require GFP_NOWAIT
4682 */
4683 if (WARN_ON_ONCE(!can_direct_reclaim))
4684 goto fail;
4685
4686 /*
4687 * PF_MEMALLOC request from this context is rather bizarre
4688 * because we cannot reclaim anything and only can loop waiting
4689 * for somebody to do a work for us
4690 */
4691 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4692
4693 /*
4694 * non failing costly orders are a hard requirement which we
4695 * are not prepared for much so let's warn about these users
4696 * so that we can identify them and convert them to something
4697 * else.
4698 */
4699 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4700
4701 /*
4702 * Help non-failing allocations by giving them access to memory
4703 * reserves but do not use ALLOC_NO_WATERMARKS because this
4704 * could deplete whole memory reserves which would just make
4705 * the situation worse
4706 */
4707 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4708 if (page)
4709 goto got_pg;
4710
4711 cond_resched();
4712 goto retry;
4713 }
4714 fail:
4715 warn_alloc(gfp_mask, ac->nodemask,
4716 "page allocation failure: order:%u", order);
4717 got_pg:
4718 return page;
4719 }
4720
4721 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4722 int preferred_nid, nodemask_t *nodemask,
4723 struct alloc_context *ac, gfp_t *alloc_mask,
4724 unsigned int *alloc_flags)
4725 {
4726 ac->high_zoneidx = gfp_zone(gfp_mask);
4727 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4728 ac->nodemask = nodemask;
4729 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4730
4731 if (cpusets_enabled()) {
4732 *alloc_mask |= __GFP_HARDWALL;
4733 if (!ac->nodemask)
4734 ac->nodemask = &cpuset_current_mems_allowed;
4735 else
4736 *alloc_flags |= ALLOC_CPUSET;
4737 }
4738
4739 fs_reclaim_acquire(gfp_mask);
4740 fs_reclaim_release(gfp_mask);
4741
4742 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4743
4744 if (should_fail_alloc_page(gfp_mask, order))
4745 return false;
4746
4747 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4748 *alloc_flags |= ALLOC_CMA;
4749
4750 return true;
4751 }
4752
4753 /* Determine whether to spread dirty pages and what the first usable zone */
4754 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4755 {
4756 /* Dirty zone balancing only done in the fast path */
4757 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4758
4759 /*
4760 * The preferred zone is used for statistics but crucially it is
4761 * also used as the starting point for the zonelist iterator. It
4762 * may get reset for allocations that ignore memory policies.
4763 */
4764 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4765 ac->high_zoneidx, ac->nodemask);
4766 }
4767
4768 /*
4769 * This is the 'heart' of the zoned buddy allocator.
4770 */
4771 struct page *
4772 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4773 nodemask_t *nodemask)
4774 {
4775 struct page *page;
4776 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4777 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4778 struct alloc_context ac = { };
4779
4780 /*
4781 * There are several places where we assume that the order value is sane
4782 * so bail out early if the request is out of bound.
4783 */
4784 if (unlikely(order >= MAX_ORDER)) {
4785 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4786 return NULL;
4787 }
4788
4789 gfp_mask &= gfp_allowed_mask;
4790 alloc_mask = gfp_mask;
4791 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4792 return NULL;
4793
4794 finalise_ac(gfp_mask, &ac);
4795
4796 /*
4797 * Forbid the first pass from falling back to types that fragment
4798 * memory until all local zones are considered.
4799 */
4800 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4801
4802 /* First allocation attempt */
4803 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4804 if (likely(page))
4805 goto out;
4806
4807 /*
4808 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4809 * resp. GFP_NOIO which has to be inherited for all allocation requests
4810 * from a particular context which has been marked by
4811 * memalloc_no{fs,io}_{save,restore}.
4812 */
4813 alloc_mask = current_gfp_context(gfp_mask);
4814 ac.spread_dirty_pages = false;
4815
4816 /*
4817 * Restore the original nodemask if it was potentially replaced with
4818 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4819 */
4820 ac.nodemask = nodemask;
4821
4822 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4823
4824 out:
4825 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4826 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4827 __free_pages(page, order);
4828 page = NULL;
4829 }
4830
4831 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4832
4833 return page;
4834 }
4835 EXPORT_SYMBOL(__alloc_pages_nodemask);
4836
4837 /*
4838 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4839 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4840 * you need to access high mem.
4841 */
4842 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4843 {
4844 struct page *page;
4845
4846 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4847 if (!page)
4848 return 0;
4849 return (unsigned long) page_address(page);
4850 }
4851 EXPORT_SYMBOL(__get_free_pages);
4852
4853 unsigned long get_zeroed_page(gfp_t gfp_mask)
4854 {
4855 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4856 }
4857 EXPORT_SYMBOL(get_zeroed_page);
4858
4859 static inline void free_the_page(struct page *page, unsigned int order)
4860 {
4861 if (order == 0) /* Via pcp? */
4862 free_unref_page(page);
4863 else
4864 __free_pages_ok(page, order);
4865 }
4866
4867 void __free_pages(struct page *page, unsigned int order)
4868 {
4869 if (put_page_testzero(page))
4870 free_the_page(page, order);
4871 }
4872 EXPORT_SYMBOL(__free_pages);
4873
4874 void free_pages(unsigned long addr, unsigned int order)
4875 {
4876 if (addr != 0) {
4877 VM_BUG_ON(!virt_addr_valid((void *)addr));
4878 __free_pages(virt_to_page((void *)addr), order);
4879 }
4880 }
4881
4882 EXPORT_SYMBOL(free_pages);
4883
4884 /*
4885 * Page Fragment:
4886 * An arbitrary-length arbitrary-offset area of memory which resides
4887 * within a 0 or higher order page. Multiple fragments within that page
4888 * are individually refcounted, in the page's reference counter.
4889 *
4890 * The page_frag functions below provide a simple allocation framework for
4891 * page fragments. This is used by the network stack and network device
4892 * drivers to provide a backing region of memory for use as either an
4893 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4894 */
4895 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4896 gfp_t gfp_mask)
4897 {
4898 struct page *page = NULL;
4899 gfp_t gfp = gfp_mask;
4900
4901 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4902 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4903 __GFP_NOMEMALLOC;
4904 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4905 PAGE_FRAG_CACHE_MAX_ORDER);
4906 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4907 #endif
4908 if (unlikely(!page))
4909 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4910
4911 nc->va = page ? page_address(page) : NULL;
4912
4913 return page;
4914 }
4915
4916 void __page_frag_cache_drain(struct page *page, unsigned int count)
4917 {
4918 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4919
4920 if (page_ref_sub_and_test(page, count))
4921 free_the_page(page, compound_order(page));
4922 }
4923 EXPORT_SYMBOL(__page_frag_cache_drain);
4924
4925 void *page_frag_alloc(struct page_frag_cache *nc,
4926 unsigned int fragsz, gfp_t gfp_mask)
4927 {
4928 unsigned int size = PAGE_SIZE;
4929 struct page *page;
4930 int offset;
4931
4932 if (unlikely(!nc->va)) {
4933 refill:
4934 page = __page_frag_cache_refill(nc, gfp_mask);
4935 if (!page)
4936 return NULL;
4937
4938 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4939 /* if size can vary use size else just use PAGE_SIZE */
4940 size = nc->size;
4941 #endif
4942 /* Even if we own the page, we do not use atomic_set().
4943 * This would break get_page_unless_zero() users.
4944 */
4945 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4946
4947 /* reset page count bias and offset to start of new frag */
4948 nc->pfmemalloc = page_is_pfmemalloc(page);
4949 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4950 nc->offset = size;
4951 }
4952
4953 offset = nc->offset - fragsz;
4954 if (unlikely(offset < 0)) {
4955 page = virt_to_page(nc->va);
4956
4957 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4958 goto refill;
4959
4960 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4961 /* if size can vary use size else just use PAGE_SIZE */
4962 size = nc->size;
4963 #endif
4964 /* OK, page count is 0, we can safely set it */
4965 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4966
4967 /* reset page count bias and offset to start of new frag */
4968 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4969 offset = size - fragsz;
4970 }
4971
4972 nc->pagecnt_bias--;
4973 nc->offset = offset;
4974
4975 return nc->va + offset;
4976 }
4977 EXPORT_SYMBOL(page_frag_alloc);
4978
4979 /*
4980 * Frees a page fragment allocated out of either a compound or order 0 page.
4981 */
4982 void page_frag_free(void *addr)
4983 {
4984 struct page *page = virt_to_head_page(addr);
4985
4986 if (unlikely(put_page_testzero(page)))
4987 free_the_page(page, compound_order(page));
4988 }
4989 EXPORT_SYMBOL(page_frag_free);
4990
4991 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4992 size_t size)
4993 {
4994 if (addr) {
4995 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4996 unsigned long used = addr + PAGE_ALIGN(size);
4997
4998 split_page(virt_to_page((void *)addr), order);
4999 while (used < alloc_end) {
5000 free_page(used);
5001 used += PAGE_SIZE;
5002 }
5003 }
5004 return (void *)addr;
5005 }
5006
5007 /**
5008 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5009 * @size: the number of bytes to allocate
5010 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5011 *
5012 * This function is similar to alloc_pages(), except that it allocates the
5013 * minimum number of pages to satisfy the request. alloc_pages() can only
5014 * allocate memory in power-of-two pages.
5015 *
5016 * This function is also limited by MAX_ORDER.
5017 *
5018 * Memory allocated by this function must be released by free_pages_exact().
5019 *
5020 * Return: pointer to the allocated area or %NULL in case of error.
5021 */
5022 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5023 {
5024 unsigned int order = get_order(size);
5025 unsigned long addr;
5026
5027 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5028 gfp_mask &= ~__GFP_COMP;
5029
5030 addr = __get_free_pages(gfp_mask, order);
5031 return make_alloc_exact(addr, order, size);
5032 }
5033 EXPORT_SYMBOL(alloc_pages_exact);
5034
5035 /**
5036 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5037 * pages on a node.
5038 * @nid: the preferred node ID where memory should be allocated
5039 * @size: the number of bytes to allocate
5040 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5041 *
5042 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5043 * back.
5044 *
5045 * Return: pointer to the allocated area or %NULL in case of error.
5046 */
5047 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5048 {
5049 unsigned int order = get_order(size);
5050 struct page *p;
5051
5052 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5053 gfp_mask &= ~__GFP_COMP;
5054
5055 p = alloc_pages_node(nid, gfp_mask, order);
5056 if (!p)
5057 return NULL;
5058 return make_alloc_exact((unsigned long)page_address(p), order, size);
5059 }
5060
5061 /**
5062 * free_pages_exact - release memory allocated via alloc_pages_exact()
5063 * @virt: the value returned by alloc_pages_exact.
5064 * @size: size of allocation, same value as passed to alloc_pages_exact().
5065 *
5066 * Release the memory allocated by a previous call to alloc_pages_exact.
5067 */
5068 void free_pages_exact(void *virt, size_t size)
5069 {
5070 unsigned long addr = (unsigned long)virt;
5071 unsigned long end = addr + PAGE_ALIGN(size);
5072
5073 while (addr < end) {
5074 free_page(addr);
5075 addr += PAGE_SIZE;
5076 }
5077 }
5078 EXPORT_SYMBOL(free_pages_exact);
5079
5080 /**
5081 * nr_free_zone_pages - count number of pages beyond high watermark
5082 * @offset: The zone index of the highest zone
5083 *
5084 * nr_free_zone_pages() counts the number of pages which are beyond the
5085 * high watermark within all zones at or below a given zone index. For each
5086 * zone, the number of pages is calculated as:
5087 *
5088 * nr_free_zone_pages = managed_pages - high_pages
5089 *
5090 * Return: number of pages beyond high watermark.
5091 */
5092 static unsigned long nr_free_zone_pages(int offset)
5093 {
5094 struct zoneref *z;
5095 struct zone *zone;
5096
5097 /* Just pick one node, since fallback list is circular */
5098 unsigned long sum = 0;
5099
5100 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5101
5102 for_each_zone_zonelist(zone, z, zonelist, offset) {
5103 unsigned long size = zone_managed_pages(zone);
5104 unsigned long high = high_wmark_pages(zone);
5105 if (size > high)
5106 sum += size - high;
5107 }
5108
5109 return sum;
5110 }
5111
5112 /**
5113 * nr_free_buffer_pages - count number of pages beyond high watermark
5114 *
5115 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5116 * watermark within ZONE_DMA and ZONE_NORMAL.
5117 *
5118 * Return: number of pages beyond high watermark within ZONE_DMA and
5119 * ZONE_NORMAL.
5120 */
5121 unsigned long nr_free_buffer_pages(void)
5122 {
5123 return nr_free_zone_pages(gfp_zone(GFP_USER));
5124 }
5125 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5126
5127 /**
5128 * nr_free_pagecache_pages - count number of pages beyond high watermark
5129 *
5130 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5131 * high watermark within all zones.
5132 *
5133 * Return: number of pages beyond high watermark within all zones.
5134 */
5135 unsigned long nr_free_pagecache_pages(void)
5136 {
5137 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5138 }
5139
5140 static inline void show_node(struct zone *zone)
5141 {
5142 if (IS_ENABLED(CONFIG_NUMA))
5143 printk("Node %d ", zone_to_nid(zone));
5144 }
5145
5146 long si_mem_available(void)
5147 {
5148 long available;
5149 unsigned long pagecache;
5150 unsigned long wmark_low = 0;
5151 unsigned long pages[NR_LRU_LISTS];
5152 unsigned long reclaimable;
5153 struct zone *zone;
5154 int lru;
5155
5156 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5157 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5158
5159 for_each_zone(zone)
5160 wmark_low += low_wmark_pages(zone);
5161
5162 /*
5163 * Estimate the amount of memory available for userspace allocations,
5164 * without causing swapping.
5165 */
5166 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5167
5168 /*
5169 * Not all the page cache can be freed, otherwise the system will
5170 * start swapping. Assume at least half of the page cache, or the
5171 * low watermark worth of cache, needs to stay.
5172 */
5173 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5174 pagecache -= min(pagecache / 2, wmark_low);
5175 available += pagecache;
5176
5177 /*
5178 * Part of the reclaimable slab and other kernel memory consists of
5179 * items that are in use, and cannot be freed. Cap this estimate at the
5180 * low watermark.
5181 */
5182 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5183 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5184 available += reclaimable - min(reclaimable / 2, wmark_low);
5185
5186 if (available < 0)
5187 available = 0;
5188 return available;
5189 }
5190 EXPORT_SYMBOL_GPL(si_mem_available);
5191
5192 void si_meminfo(struct sysinfo *val)
5193 {
5194 val->totalram = totalram_pages();
5195 val->sharedram = global_node_page_state(NR_SHMEM);
5196 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5197 val->bufferram = nr_blockdev_pages();
5198 val->totalhigh = totalhigh_pages();
5199 val->freehigh = nr_free_highpages();
5200 val->mem_unit = PAGE_SIZE;
5201 }
5202
5203 EXPORT_SYMBOL(si_meminfo);
5204
5205 #ifdef CONFIG_NUMA
5206 void si_meminfo_node(struct sysinfo *val, int nid)
5207 {
5208 int zone_type; /* needs to be signed */
5209 unsigned long managed_pages = 0;
5210 unsigned long managed_highpages = 0;
5211 unsigned long free_highpages = 0;
5212 pg_data_t *pgdat = NODE_DATA(nid);
5213
5214 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5215 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5216 val->totalram = managed_pages;
5217 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5218 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5219 #ifdef CONFIG_HIGHMEM
5220 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5221 struct zone *zone = &pgdat->node_zones[zone_type];
5222
5223 if (is_highmem(zone)) {
5224 managed_highpages += zone_managed_pages(zone);
5225 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5226 }
5227 }
5228 val->totalhigh = managed_highpages;
5229 val->freehigh = free_highpages;
5230 #else
5231 val->totalhigh = managed_highpages;
5232 val->freehigh = free_highpages;
5233 #endif
5234 val->mem_unit = PAGE_SIZE;
5235 }
5236 #endif
5237
5238 /*
5239 * Determine whether the node should be displayed or not, depending on whether
5240 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5241 */
5242 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5243 {
5244 if (!(flags & SHOW_MEM_FILTER_NODES))
5245 return false;
5246
5247 /*
5248 * no node mask - aka implicit memory numa policy. Do not bother with
5249 * the synchronization - read_mems_allowed_begin - because we do not
5250 * have to be precise here.
5251 */
5252 if (!nodemask)
5253 nodemask = &cpuset_current_mems_allowed;
5254
5255 return !node_isset(nid, *nodemask);
5256 }
5257
5258 #define K(x) ((x) << (PAGE_SHIFT-10))
5259
5260 static void show_migration_types(unsigned char type)
5261 {
5262 static const char types[MIGRATE_TYPES] = {
5263 [MIGRATE_UNMOVABLE] = 'U',
5264 [MIGRATE_MOVABLE] = 'M',
5265 [MIGRATE_RECLAIMABLE] = 'E',
5266 [MIGRATE_HIGHATOMIC] = 'H',
5267 #ifdef CONFIG_CMA
5268 [MIGRATE_CMA] = 'C',
5269 #endif
5270 #ifdef CONFIG_MEMORY_ISOLATION
5271 [MIGRATE_ISOLATE] = 'I',
5272 #endif
5273 };
5274 char tmp[MIGRATE_TYPES + 1];
5275 char *p = tmp;
5276 int i;
5277
5278 for (i = 0; i < MIGRATE_TYPES; i++) {
5279 if (type & (1 << i))
5280 *p++ = types[i];
5281 }
5282
5283 *p = '\0';
5284 printk(KERN_CONT "(%s) ", tmp);
5285 }
5286
5287 /*
5288 * Show free area list (used inside shift_scroll-lock stuff)
5289 * We also calculate the percentage fragmentation. We do this by counting the
5290 * memory on each free list with the exception of the first item on the list.
5291 *
5292 * Bits in @filter:
5293 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5294 * cpuset.
5295 */
5296 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5297 {
5298 unsigned long free_pcp = 0;
5299 int cpu;
5300 struct zone *zone;
5301 pg_data_t *pgdat;
5302
5303 for_each_populated_zone(zone) {
5304 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5305 continue;
5306
5307 for_each_online_cpu(cpu)
5308 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5309 }
5310
5311 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5312 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5313 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5314 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5315 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5316 " free:%lu free_pcp:%lu free_cma:%lu\n",
5317 global_node_page_state(NR_ACTIVE_ANON),
5318 global_node_page_state(NR_INACTIVE_ANON),
5319 global_node_page_state(NR_ISOLATED_ANON),
5320 global_node_page_state(NR_ACTIVE_FILE),
5321 global_node_page_state(NR_INACTIVE_FILE),
5322 global_node_page_state(NR_ISOLATED_FILE),
5323 global_node_page_state(NR_UNEVICTABLE),
5324 global_node_page_state(NR_FILE_DIRTY),
5325 global_node_page_state(NR_WRITEBACK),
5326 global_node_page_state(NR_UNSTABLE_NFS),
5327 global_node_page_state(NR_SLAB_RECLAIMABLE),
5328 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5329 global_node_page_state(NR_FILE_MAPPED),
5330 global_node_page_state(NR_SHMEM),
5331 global_zone_page_state(NR_PAGETABLE),
5332 global_zone_page_state(NR_BOUNCE),
5333 global_zone_page_state(NR_FREE_PAGES),
5334 free_pcp,
5335 global_zone_page_state(NR_FREE_CMA_PAGES));
5336
5337 for_each_online_pgdat(pgdat) {
5338 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5339 continue;
5340
5341 printk("Node %d"
5342 " active_anon:%lukB"
5343 " inactive_anon:%lukB"
5344 " active_file:%lukB"
5345 " inactive_file:%lukB"
5346 " unevictable:%lukB"
5347 " isolated(anon):%lukB"
5348 " isolated(file):%lukB"
5349 " mapped:%lukB"
5350 " dirty:%lukB"
5351 " writeback:%lukB"
5352 " shmem:%lukB"
5353 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5354 " shmem_thp: %lukB"
5355 " shmem_pmdmapped: %lukB"
5356 " anon_thp: %lukB"
5357 #endif
5358 " writeback_tmp:%lukB"
5359 " unstable:%lukB"
5360 " all_unreclaimable? %s"
5361 "\n",
5362 pgdat->node_id,
5363 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5364 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5365 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5366 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5367 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5368 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5369 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5370 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5371 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5372 K(node_page_state(pgdat, NR_WRITEBACK)),
5373 K(node_page_state(pgdat, NR_SHMEM)),
5374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5375 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5376 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5377 * HPAGE_PMD_NR),
5378 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5379 #endif
5380 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5381 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5382 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5383 "yes" : "no");
5384 }
5385
5386 for_each_populated_zone(zone) {
5387 int i;
5388
5389 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5390 continue;
5391
5392 free_pcp = 0;
5393 for_each_online_cpu(cpu)
5394 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5395
5396 show_node(zone);
5397 printk(KERN_CONT
5398 "%s"
5399 " free:%lukB"
5400 " min:%lukB"
5401 " low:%lukB"
5402 " high:%lukB"
5403 " reserved_highatomic:%luKB"
5404 " active_anon:%lukB"
5405 " inactive_anon:%lukB"
5406 " active_file:%lukB"
5407 " inactive_file:%lukB"
5408 " unevictable:%lukB"
5409 " writepending:%lukB"
5410 " present:%lukB"
5411 " managed:%lukB"
5412 " mlocked:%lukB"
5413 " kernel_stack:%lukB"
5414 " pagetables:%lukB"
5415 " bounce:%lukB"
5416 " free_pcp:%lukB"
5417 " local_pcp:%ukB"
5418 " free_cma:%lukB"
5419 "\n",
5420 zone->name,
5421 K(zone_page_state(zone, NR_FREE_PAGES)),
5422 K(min_wmark_pages(zone)),
5423 K(low_wmark_pages(zone)),
5424 K(high_wmark_pages(zone)),
5425 K(zone->nr_reserved_highatomic),
5426 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5427 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5428 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5429 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5430 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5431 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5432 K(zone->present_pages),
5433 K(zone_managed_pages(zone)),
5434 K(zone_page_state(zone, NR_MLOCK)),
5435 zone_page_state(zone, NR_KERNEL_STACK_KB),
5436 K(zone_page_state(zone, NR_PAGETABLE)),
5437 K(zone_page_state(zone, NR_BOUNCE)),
5438 K(free_pcp),
5439 K(this_cpu_read(zone->pageset->pcp.count)),
5440 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5441 printk("lowmem_reserve[]:");
5442 for (i = 0; i < MAX_NR_ZONES; i++)
5443 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5444 printk(KERN_CONT "\n");
5445 }
5446
5447 for_each_populated_zone(zone) {
5448 unsigned int order;
5449 unsigned long nr[MAX_ORDER], flags, total = 0;
5450 unsigned char types[MAX_ORDER];
5451
5452 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5453 continue;
5454 show_node(zone);
5455 printk(KERN_CONT "%s: ", zone->name);
5456
5457 spin_lock_irqsave(&zone->lock, flags);
5458 for (order = 0; order < MAX_ORDER; order++) {
5459 struct free_area *area = &zone->free_area[order];
5460 int type;
5461
5462 nr[order] = area->nr_free;
5463 total += nr[order] << order;
5464
5465 types[order] = 0;
5466 for (type = 0; type < MIGRATE_TYPES; type++) {
5467 if (!free_area_empty(area, type))
5468 types[order] |= 1 << type;
5469 }
5470 }
5471 spin_unlock_irqrestore(&zone->lock, flags);
5472 for (order = 0; order < MAX_ORDER; order++) {
5473 printk(KERN_CONT "%lu*%lukB ",
5474 nr[order], K(1UL) << order);
5475 if (nr[order])
5476 show_migration_types(types[order]);
5477 }
5478 printk(KERN_CONT "= %lukB\n", K(total));
5479 }
5480
5481 hugetlb_show_meminfo();
5482
5483 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5484
5485 show_swap_cache_info();
5486 }
5487
5488 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5489 {
5490 zoneref->zone = zone;
5491 zoneref->zone_idx = zone_idx(zone);
5492 }
5493
5494 /*
5495 * Builds allocation fallback zone lists.
5496 *
5497 * Add all populated zones of a node to the zonelist.
5498 */
5499 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5500 {
5501 struct zone *zone;
5502 enum zone_type zone_type = MAX_NR_ZONES;
5503 int nr_zones = 0;
5504
5505 do {
5506 zone_type--;
5507 zone = pgdat->node_zones + zone_type;
5508 if (managed_zone(zone)) {
5509 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5510 check_highest_zone(zone_type);
5511 }
5512 } while (zone_type);
5513
5514 return nr_zones;
5515 }
5516
5517 #ifdef CONFIG_NUMA
5518
5519 static int __parse_numa_zonelist_order(char *s)
5520 {
5521 /*
5522 * We used to support different zonlists modes but they turned
5523 * out to be just not useful. Let's keep the warning in place
5524 * if somebody still use the cmd line parameter so that we do
5525 * not fail it silently
5526 */
5527 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5528 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5529 return -EINVAL;
5530 }
5531 return 0;
5532 }
5533
5534 static __init int setup_numa_zonelist_order(char *s)
5535 {
5536 if (!s)
5537 return 0;
5538
5539 return __parse_numa_zonelist_order(s);
5540 }
5541 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5542
5543 char numa_zonelist_order[] = "Node";
5544
5545 /*
5546 * sysctl handler for numa_zonelist_order
5547 */
5548 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5549 void __user *buffer, size_t *length,
5550 loff_t *ppos)
5551 {
5552 char *str;
5553 int ret;
5554
5555 if (!write)
5556 return proc_dostring(table, write, buffer, length, ppos);
5557 str = memdup_user_nul(buffer, 16);
5558 if (IS_ERR(str))
5559 return PTR_ERR(str);
5560
5561 ret = __parse_numa_zonelist_order(str);
5562 kfree(str);
5563 return ret;
5564 }
5565
5566
5567 #define MAX_NODE_LOAD (nr_online_nodes)
5568 static int node_load[MAX_NUMNODES];
5569
5570 /**
5571 * find_next_best_node - find the next node that should appear in a given node's fallback list
5572 * @node: node whose fallback list we're appending
5573 * @used_node_mask: nodemask_t of already used nodes
5574 *
5575 * We use a number of factors to determine which is the next node that should
5576 * appear on a given node's fallback list. The node should not have appeared
5577 * already in @node's fallback list, and it should be the next closest node
5578 * according to the distance array (which contains arbitrary distance values
5579 * from each node to each node in the system), and should also prefer nodes
5580 * with no CPUs, since presumably they'll have very little allocation pressure
5581 * on them otherwise.
5582 *
5583 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5584 */
5585 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5586 {
5587 int n, val;
5588 int min_val = INT_MAX;
5589 int best_node = NUMA_NO_NODE;
5590 const struct cpumask *tmp = cpumask_of_node(0);
5591
5592 /* Use the local node if we haven't already */
5593 if (!node_isset(node, *used_node_mask)) {
5594 node_set(node, *used_node_mask);
5595 return node;
5596 }
5597
5598 for_each_node_state(n, N_MEMORY) {
5599
5600 /* Don't want a node to appear more than once */
5601 if (node_isset(n, *used_node_mask))
5602 continue;
5603
5604 /* Use the distance array to find the distance */
5605 val = node_distance(node, n);
5606
5607 /* Penalize nodes under us ("prefer the next node") */
5608 val += (n < node);
5609
5610 /* Give preference to headless and unused nodes */
5611 tmp = cpumask_of_node(n);
5612 if (!cpumask_empty(tmp))
5613 val += PENALTY_FOR_NODE_WITH_CPUS;
5614
5615 /* Slight preference for less loaded node */
5616 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5617 val += node_load[n];
5618
5619 if (val < min_val) {
5620 min_val = val;
5621 best_node = n;
5622 }
5623 }
5624
5625 if (best_node >= 0)
5626 node_set(best_node, *used_node_mask);
5627
5628 return best_node;
5629 }
5630
5631
5632 /*
5633 * Build zonelists ordered by node and zones within node.
5634 * This results in maximum locality--normal zone overflows into local
5635 * DMA zone, if any--but risks exhausting DMA zone.
5636 */
5637 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5638 unsigned nr_nodes)
5639 {
5640 struct zoneref *zonerefs;
5641 int i;
5642
5643 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5644
5645 for (i = 0; i < nr_nodes; i++) {
5646 int nr_zones;
5647
5648 pg_data_t *node = NODE_DATA(node_order[i]);
5649
5650 nr_zones = build_zonerefs_node(node, zonerefs);
5651 zonerefs += nr_zones;
5652 }
5653 zonerefs->zone = NULL;
5654 zonerefs->zone_idx = 0;
5655 }
5656
5657 /*
5658 * Build gfp_thisnode zonelists
5659 */
5660 static void build_thisnode_zonelists(pg_data_t *pgdat)
5661 {
5662 struct zoneref *zonerefs;
5663 int nr_zones;
5664
5665 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5666 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5667 zonerefs += nr_zones;
5668 zonerefs->zone = NULL;
5669 zonerefs->zone_idx = 0;
5670 }
5671
5672 /*
5673 * Build zonelists ordered by zone and nodes within zones.
5674 * This results in conserving DMA zone[s] until all Normal memory is
5675 * exhausted, but results in overflowing to remote node while memory
5676 * may still exist in local DMA zone.
5677 */
5678
5679 static void build_zonelists(pg_data_t *pgdat)
5680 {
5681 static int node_order[MAX_NUMNODES];
5682 int node, load, nr_nodes = 0;
5683 nodemask_t used_mask;
5684 int local_node, prev_node;
5685
5686 /* NUMA-aware ordering of nodes */
5687 local_node = pgdat->node_id;
5688 load = nr_online_nodes;
5689 prev_node = local_node;
5690 nodes_clear(used_mask);
5691
5692 memset(node_order, 0, sizeof(node_order));
5693 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5694 /*
5695 * We don't want to pressure a particular node.
5696 * So adding penalty to the first node in same
5697 * distance group to make it round-robin.
5698 */
5699 if (node_distance(local_node, node) !=
5700 node_distance(local_node, prev_node))
5701 node_load[node] = load;
5702
5703 node_order[nr_nodes++] = node;
5704 prev_node = node;
5705 load--;
5706 }
5707
5708 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5709 build_thisnode_zonelists(pgdat);
5710 }
5711
5712 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5713 /*
5714 * Return node id of node used for "local" allocations.
5715 * I.e., first node id of first zone in arg node's generic zonelist.
5716 * Used for initializing percpu 'numa_mem', which is used primarily
5717 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5718 */
5719 int local_memory_node(int node)
5720 {
5721 struct zoneref *z;
5722
5723 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5724 gfp_zone(GFP_KERNEL),
5725 NULL);
5726 return zone_to_nid(z->zone);
5727 }
5728 #endif
5729
5730 static void setup_min_unmapped_ratio(void);
5731 static void setup_min_slab_ratio(void);
5732 #else /* CONFIG_NUMA */
5733
5734 static void build_zonelists(pg_data_t *pgdat)
5735 {
5736 int node, local_node;
5737 struct zoneref *zonerefs;
5738 int nr_zones;
5739
5740 local_node = pgdat->node_id;
5741
5742 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5743 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5744 zonerefs += nr_zones;
5745
5746 /*
5747 * Now we build the zonelist so that it contains the zones
5748 * of all the other nodes.
5749 * We don't want to pressure a particular node, so when
5750 * building the zones for node N, we make sure that the
5751 * zones coming right after the local ones are those from
5752 * node N+1 (modulo N)
5753 */
5754 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5755 if (!node_online(node))
5756 continue;
5757 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5758 zonerefs += nr_zones;
5759 }
5760 for (node = 0; node < local_node; node++) {
5761 if (!node_online(node))
5762 continue;
5763 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5764 zonerefs += nr_zones;
5765 }
5766
5767 zonerefs->zone = NULL;
5768 zonerefs->zone_idx = 0;
5769 }
5770
5771 #endif /* CONFIG_NUMA */
5772
5773 /*
5774 * Boot pageset table. One per cpu which is going to be used for all
5775 * zones and all nodes. The parameters will be set in such a way
5776 * that an item put on a list will immediately be handed over to
5777 * the buddy list. This is safe since pageset manipulation is done
5778 * with interrupts disabled.
5779 *
5780 * The boot_pagesets must be kept even after bootup is complete for
5781 * unused processors and/or zones. They do play a role for bootstrapping
5782 * hotplugged processors.
5783 *
5784 * zoneinfo_show() and maybe other functions do
5785 * not check if the processor is online before following the pageset pointer.
5786 * Other parts of the kernel may not check if the zone is available.
5787 */
5788 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5789 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5790 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5791
5792 static void __build_all_zonelists(void *data)
5793 {
5794 int nid;
5795 int __maybe_unused cpu;
5796 pg_data_t *self = data;
5797 static DEFINE_SPINLOCK(lock);
5798
5799 spin_lock(&lock);
5800
5801 #ifdef CONFIG_NUMA
5802 memset(node_load, 0, sizeof(node_load));
5803 #endif
5804
5805 /*
5806 * This node is hotadded and no memory is yet present. So just
5807 * building zonelists is fine - no need to touch other nodes.
5808 */
5809 if (self && !node_online(self->node_id)) {
5810 build_zonelists(self);
5811 } else {
5812 for_each_online_node(nid) {
5813 pg_data_t *pgdat = NODE_DATA(nid);
5814
5815 build_zonelists(pgdat);
5816 }
5817
5818 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5819 /*
5820 * We now know the "local memory node" for each node--
5821 * i.e., the node of the first zone in the generic zonelist.
5822 * Set up numa_mem percpu variable for on-line cpus. During
5823 * boot, only the boot cpu should be on-line; we'll init the
5824 * secondary cpus' numa_mem as they come on-line. During
5825 * node/memory hotplug, we'll fixup all on-line cpus.
5826 */
5827 for_each_online_cpu(cpu)
5828 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5829 #endif
5830 }
5831
5832 spin_unlock(&lock);
5833 }
5834
5835 static noinline void __init
5836 build_all_zonelists_init(void)
5837 {
5838 int cpu;
5839
5840 __build_all_zonelists(NULL);
5841
5842 /*
5843 * Initialize the boot_pagesets that are going to be used
5844 * for bootstrapping processors. The real pagesets for
5845 * each zone will be allocated later when the per cpu
5846 * allocator is available.
5847 *
5848 * boot_pagesets are used also for bootstrapping offline
5849 * cpus if the system is already booted because the pagesets
5850 * are needed to initialize allocators on a specific cpu too.
5851 * F.e. the percpu allocator needs the page allocator which
5852 * needs the percpu allocator in order to allocate its pagesets
5853 * (a chicken-egg dilemma).
5854 */
5855 for_each_possible_cpu(cpu)
5856 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5857
5858 mminit_verify_zonelist();
5859 cpuset_init_current_mems_allowed();
5860 }
5861
5862 /*
5863 * unless system_state == SYSTEM_BOOTING.
5864 *
5865 * __ref due to call of __init annotated helper build_all_zonelists_init
5866 * [protected by SYSTEM_BOOTING].
5867 */
5868 void __ref build_all_zonelists(pg_data_t *pgdat)
5869 {
5870 if (system_state == SYSTEM_BOOTING) {
5871 build_all_zonelists_init();
5872 } else {
5873 __build_all_zonelists(pgdat);
5874 /* cpuset refresh routine should be here */
5875 }
5876 vm_total_pages = nr_free_pagecache_pages();
5877 /*
5878 * Disable grouping by mobility if the number of pages in the
5879 * system is too low to allow the mechanism to work. It would be
5880 * more accurate, but expensive to check per-zone. This check is
5881 * made on memory-hotadd so a system can start with mobility
5882 * disabled and enable it later
5883 */
5884 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5885 page_group_by_mobility_disabled = 1;
5886 else
5887 page_group_by_mobility_disabled = 0;
5888
5889 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5890 nr_online_nodes,
5891 page_group_by_mobility_disabled ? "off" : "on",
5892 vm_total_pages);
5893 #ifdef CONFIG_NUMA
5894 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5895 #endif
5896 }
5897
5898 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5899 static bool __meminit
5900 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5901 {
5902 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5903 static struct memblock_region *r;
5904
5905 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5906 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5907 for_each_memblock(memory, r) {
5908 if (*pfn < memblock_region_memory_end_pfn(r))
5909 break;
5910 }
5911 }
5912 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5913 memblock_is_mirror(r)) {
5914 *pfn = memblock_region_memory_end_pfn(r);
5915 return true;
5916 }
5917 }
5918 #endif
5919 return false;
5920 }
5921
5922 #ifdef CONFIG_SPARSEMEM
5923 /* Skip PFNs that belong to non-present sections */
5924 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5925 {
5926 const unsigned long section_nr = pfn_to_section_nr(++pfn);
5927
5928 if (present_section_nr(section_nr))
5929 return pfn;
5930 return section_nr_to_pfn(next_present_section_nr(section_nr));
5931 }
5932 #else
5933 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5934 {
5935 return pfn++;
5936 }
5937 #endif
5938
5939 /*
5940 * Initially all pages are reserved - free ones are freed
5941 * up by memblock_free_all() once the early boot process is
5942 * done. Non-atomic initialization, single-pass.
5943 */
5944 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5945 unsigned long start_pfn, enum memmap_context context,
5946 struct vmem_altmap *altmap)
5947 {
5948 unsigned long pfn, end_pfn = start_pfn + size;
5949 struct page *page;
5950
5951 if (highest_memmap_pfn < end_pfn - 1)
5952 highest_memmap_pfn = end_pfn - 1;
5953
5954 #ifdef CONFIG_ZONE_DEVICE
5955 /*
5956 * Honor reservation requested by the driver for this ZONE_DEVICE
5957 * memory. We limit the total number of pages to initialize to just
5958 * those that might contain the memory mapping. We will defer the
5959 * ZONE_DEVICE page initialization until after we have released
5960 * the hotplug lock.
5961 */
5962 if (zone == ZONE_DEVICE) {
5963 if (!altmap)
5964 return;
5965
5966 if (start_pfn == altmap->base_pfn)
5967 start_pfn += altmap->reserve;
5968 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5969 }
5970 #endif
5971
5972 for (pfn = start_pfn; pfn < end_pfn; ) {
5973 /*
5974 * There can be holes in boot-time mem_map[]s handed to this
5975 * function. They do not exist on hotplugged memory.
5976 */
5977 if (context == MEMMAP_EARLY) {
5978 if (!early_pfn_valid(pfn)) {
5979 pfn = next_pfn(pfn);
5980 continue;
5981 }
5982 if (!early_pfn_in_nid(pfn, nid)) {
5983 pfn++;
5984 continue;
5985 }
5986 if (overlap_memmap_init(zone, &pfn))
5987 continue;
5988 if (defer_init(nid, pfn, end_pfn))
5989 break;
5990 }
5991
5992 page = pfn_to_page(pfn);
5993 __init_single_page(page, pfn, zone, nid);
5994 if (context == MEMMAP_HOTPLUG)
5995 __SetPageReserved(page);
5996
5997 /*
5998 * Mark the block movable so that blocks are reserved for
5999 * movable at startup. This will force kernel allocations
6000 * to reserve their blocks rather than leaking throughout
6001 * the address space during boot when many long-lived
6002 * kernel allocations are made.
6003 *
6004 * bitmap is created for zone's valid pfn range. but memmap
6005 * can be created for invalid pages (for alignment)
6006 * check here not to call set_pageblock_migratetype() against
6007 * pfn out of zone.
6008 */
6009 if (!(pfn & (pageblock_nr_pages - 1))) {
6010 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6011 cond_resched();
6012 }
6013 pfn++;
6014 }
6015 }
6016
6017 #ifdef CONFIG_ZONE_DEVICE
6018 void __ref memmap_init_zone_device(struct zone *zone,
6019 unsigned long start_pfn,
6020 unsigned long nr_pages,
6021 struct dev_pagemap *pgmap)
6022 {
6023 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6024 struct pglist_data *pgdat = zone->zone_pgdat;
6025 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6026 unsigned long zone_idx = zone_idx(zone);
6027 unsigned long start = jiffies;
6028 int nid = pgdat->node_id;
6029
6030 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6031 return;
6032
6033 /*
6034 * The call to memmap_init_zone should have already taken care
6035 * of the pages reserved for the memmap, so we can just jump to
6036 * the end of that region and start processing the device pages.
6037 */
6038 if (altmap) {
6039 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6040 nr_pages = end_pfn - start_pfn;
6041 }
6042
6043 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6044 struct page *page = pfn_to_page(pfn);
6045
6046 __init_single_page(page, pfn, zone_idx, nid);
6047
6048 /*
6049 * Mark page reserved as it will need to wait for onlining
6050 * phase for it to be fully associated with a zone.
6051 *
6052 * We can use the non-atomic __set_bit operation for setting
6053 * the flag as we are still initializing the pages.
6054 */
6055 __SetPageReserved(page);
6056
6057 /*
6058 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6059 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6060 * ever freed or placed on a driver-private list.
6061 */
6062 page->pgmap = pgmap;
6063 page->zone_device_data = NULL;
6064
6065 /*
6066 * Mark the block movable so that blocks are reserved for
6067 * movable at startup. This will force kernel allocations
6068 * to reserve their blocks rather than leaking throughout
6069 * the address space during boot when many long-lived
6070 * kernel allocations are made.
6071 *
6072 * bitmap is created for zone's valid pfn range. but memmap
6073 * can be created for invalid pages (for alignment)
6074 * check here not to call set_pageblock_migratetype() against
6075 * pfn out of zone.
6076 *
6077 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6078 * because this is done early in section_activate()
6079 */
6080 if (!(pfn & (pageblock_nr_pages - 1))) {
6081 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6082 cond_resched();
6083 }
6084 }
6085
6086 pr_info("%s initialised %lu pages in %ums\n", __func__,
6087 nr_pages, jiffies_to_msecs(jiffies - start));
6088 }
6089
6090 #endif
6091 static void __meminit zone_init_free_lists(struct zone *zone)
6092 {
6093 unsigned int order, t;
6094 for_each_migratetype_order(order, t) {
6095 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6096 zone->free_area[order].nr_free = 0;
6097 }
6098 }
6099
6100 void __meminit __weak memmap_init(unsigned long size, int nid,
6101 unsigned long zone, unsigned long start_pfn)
6102 {
6103 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6104 }
6105
6106 static int zone_batchsize(struct zone *zone)
6107 {
6108 #ifdef CONFIG_MMU
6109 int batch;
6110
6111 /*
6112 * The per-cpu-pages pools are set to around 1000th of the
6113 * size of the zone.
6114 */
6115 batch = zone_managed_pages(zone) / 1024;
6116 /* But no more than a meg. */
6117 if (batch * PAGE_SIZE > 1024 * 1024)
6118 batch = (1024 * 1024) / PAGE_SIZE;
6119 batch /= 4; /* We effectively *= 4 below */
6120 if (batch < 1)
6121 batch = 1;
6122
6123 /*
6124 * Clamp the batch to a 2^n - 1 value. Having a power
6125 * of 2 value was found to be more likely to have
6126 * suboptimal cache aliasing properties in some cases.
6127 *
6128 * For example if 2 tasks are alternately allocating
6129 * batches of pages, one task can end up with a lot
6130 * of pages of one half of the possible page colors
6131 * and the other with pages of the other colors.
6132 */
6133 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6134
6135 return batch;
6136
6137 #else
6138 /* The deferral and batching of frees should be suppressed under NOMMU
6139 * conditions.
6140 *
6141 * The problem is that NOMMU needs to be able to allocate large chunks
6142 * of contiguous memory as there's no hardware page translation to
6143 * assemble apparent contiguous memory from discontiguous pages.
6144 *
6145 * Queueing large contiguous runs of pages for batching, however,
6146 * causes the pages to actually be freed in smaller chunks. As there
6147 * can be a significant delay between the individual batches being
6148 * recycled, this leads to the once large chunks of space being
6149 * fragmented and becoming unavailable for high-order allocations.
6150 */
6151 return 0;
6152 #endif
6153 }
6154
6155 /*
6156 * pcp->high and pcp->batch values are related and dependent on one another:
6157 * ->batch must never be higher then ->high.
6158 * The following function updates them in a safe manner without read side
6159 * locking.
6160 *
6161 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6162 * those fields changing asynchronously (acording the the above rule).
6163 *
6164 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6165 * outside of boot time (or some other assurance that no concurrent updaters
6166 * exist).
6167 */
6168 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6169 unsigned long batch)
6170 {
6171 /* start with a fail safe value for batch */
6172 pcp->batch = 1;
6173 smp_wmb();
6174
6175 /* Update high, then batch, in order */
6176 pcp->high = high;
6177 smp_wmb();
6178
6179 pcp->batch = batch;
6180 }
6181
6182 /* a companion to pageset_set_high() */
6183 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6184 {
6185 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6186 }
6187
6188 static void pageset_init(struct per_cpu_pageset *p)
6189 {
6190 struct per_cpu_pages *pcp;
6191 int migratetype;
6192
6193 memset(p, 0, sizeof(*p));
6194
6195 pcp = &p->pcp;
6196 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6197 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6198 }
6199
6200 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6201 {
6202 pageset_init(p);
6203 pageset_set_batch(p, batch);
6204 }
6205
6206 /*
6207 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6208 * to the value high for the pageset p.
6209 */
6210 static void pageset_set_high(struct per_cpu_pageset *p,
6211 unsigned long high)
6212 {
6213 unsigned long batch = max(1UL, high / 4);
6214 if ((high / 4) > (PAGE_SHIFT * 8))
6215 batch = PAGE_SHIFT * 8;
6216
6217 pageset_update(&p->pcp, high, batch);
6218 }
6219
6220 static void pageset_set_high_and_batch(struct zone *zone,
6221 struct per_cpu_pageset *pcp)
6222 {
6223 if (percpu_pagelist_fraction)
6224 pageset_set_high(pcp,
6225 (zone_managed_pages(zone) /
6226 percpu_pagelist_fraction));
6227 else
6228 pageset_set_batch(pcp, zone_batchsize(zone));
6229 }
6230
6231 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6232 {
6233 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6234
6235 pageset_init(pcp);
6236 pageset_set_high_and_batch(zone, pcp);
6237 }
6238
6239 void __meminit setup_zone_pageset(struct zone *zone)
6240 {
6241 int cpu;
6242 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6243 for_each_possible_cpu(cpu)
6244 zone_pageset_init(zone, cpu);
6245 }
6246
6247 /*
6248 * Allocate per cpu pagesets and initialize them.
6249 * Before this call only boot pagesets were available.
6250 */
6251 void __init setup_per_cpu_pageset(void)
6252 {
6253 struct pglist_data *pgdat;
6254 struct zone *zone;
6255
6256 for_each_populated_zone(zone)
6257 setup_zone_pageset(zone);
6258
6259 for_each_online_pgdat(pgdat)
6260 pgdat->per_cpu_nodestats =
6261 alloc_percpu(struct per_cpu_nodestat);
6262 }
6263
6264 static __meminit void zone_pcp_init(struct zone *zone)
6265 {
6266 /*
6267 * per cpu subsystem is not up at this point. The following code
6268 * relies on the ability of the linker to provide the
6269 * offset of a (static) per cpu variable into the per cpu area.
6270 */
6271 zone->pageset = &boot_pageset;
6272
6273 if (populated_zone(zone))
6274 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6275 zone->name, zone->present_pages,
6276 zone_batchsize(zone));
6277 }
6278
6279 void __meminit init_currently_empty_zone(struct zone *zone,
6280 unsigned long zone_start_pfn,
6281 unsigned long size)
6282 {
6283 struct pglist_data *pgdat = zone->zone_pgdat;
6284 int zone_idx = zone_idx(zone) + 1;
6285
6286 if (zone_idx > pgdat->nr_zones)
6287 pgdat->nr_zones = zone_idx;
6288
6289 zone->zone_start_pfn = zone_start_pfn;
6290
6291 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6292 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6293 pgdat->node_id,
6294 (unsigned long)zone_idx(zone),
6295 zone_start_pfn, (zone_start_pfn + size));
6296
6297 zone_init_free_lists(zone);
6298 zone->initialized = 1;
6299 }
6300
6301 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6302 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6303
6304 /*
6305 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6306 */
6307 int __meminit __early_pfn_to_nid(unsigned long pfn,
6308 struct mminit_pfnnid_cache *state)
6309 {
6310 unsigned long start_pfn, end_pfn;
6311 int nid;
6312
6313 if (state->last_start <= pfn && pfn < state->last_end)
6314 return state->last_nid;
6315
6316 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6317 if (nid != NUMA_NO_NODE) {
6318 state->last_start = start_pfn;
6319 state->last_end = end_pfn;
6320 state->last_nid = nid;
6321 }
6322
6323 return nid;
6324 }
6325 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6326
6327 /**
6328 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6329 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6330 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6331 *
6332 * If an architecture guarantees that all ranges registered contain no holes
6333 * and may be freed, this this function may be used instead of calling
6334 * memblock_free_early_nid() manually.
6335 */
6336 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6337 {
6338 unsigned long start_pfn, end_pfn;
6339 int i, this_nid;
6340
6341 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6342 start_pfn = min(start_pfn, max_low_pfn);
6343 end_pfn = min(end_pfn, max_low_pfn);
6344
6345 if (start_pfn < end_pfn)
6346 memblock_free_early_nid(PFN_PHYS(start_pfn),
6347 (end_pfn - start_pfn) << PAGE_SHIFT,
6348 this_nid);
6349 }
6350 }
6351
6352 /**
6353 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6354 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6355 *
6356 * If an architecture guarantees that all ranges registered contain no holes and may
6357 * be freed, this function may be used instead of calling memory_present() manually.
6358 */
6359 void __init sparse_memory_present_with_active_regions(int nid)
6360 {
6361 unsigned long start_pfn, end_pfn;
6362 int i, this_nid;
6363
6364 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6365 memory_present(this_nid, start_pfn, end_pfn);
6366 }
6367
6368 /**
6369 * get_pfn_range_for_nid - Return the start and end page frames for a node
6370 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6371 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6372 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6373 *
6374 * It returns the start and end page frame of a node based on information
6375 * provided by memblock_set_node(). If called for a node
6376 * with no available memory, a warning is printed and the start and end
6377 * PFNs will be 0.
6378 */
6379 void __init get_pfn_range_for_nid(unsigned int nid,
6380 unsigned long *start_pfn, unsigned long *end_pfn)
6381 {
6382 unsigned long this_start_pfn, this_end_pfn;
6383 int i;
6384
6385 *start_pfn = -1UL;
6386 *end_pfn = 0;
6387
6388 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6389 *start_pfn = min(*start_pfn, this_start_pfn);
6390 *end_pfn = max(*end_pfn, this_end_pfn);
6391 }
6392
6393 if (*start_pfn == -1UL)
6394 *start_pfn = 0;
6395 }
6396
6397 /*
6398 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6399 * assumption is made that zones within a node are ordered in monotonic
6400 * increasing memory addresses so that the "highest" populated zone is used
6401 */
6402 static void __init find_usable_zone_for_movable(void)
6403 {
6404 int zone_index;
6405 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6406 if (zone_index == ZONE_MOVABLE)
6407 continue;
6408
6409 if (arch_zone_highest_possible_pfn[zone_index] >
6410 arch_zone_lowest_possible_pfn[zone_index])
6411 break;
6412 }
6413
6414 VM_BUG_ON(zone_index == -1);
6415 movable_zone = zone_index;
6416 }
6417
6418 /*
6419 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6420 * because it is sized independent of architecture. Unlike the other zones,
6421 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6422 * in each node depending on the size of each node and how evenly kernelcore
6423 * is distributed. This helper function adjusts the zone ranges
6424 * provided by the architecture for a given node by using the end of the
6425 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6426 * zones within a node are in order of monotonic increases memory addresses
6427 */
6428 static void __init adjust_zone_range_for_zone_movable(int nid,
6429 unsigned long zone_type,
6430 unsigned long node_start_pfn,
6431 unsigned long node_end_pfn,
6432 unsigned long *zone_start_pfn,
6433 unsigned long *zone_end_pfn)
6434 {
6435 /* Only adjust if ZONE_MOVABLE is on this node */
6436 if (zone_movable_pfn[nid]) {
6437 /* Size ZONE_MOVABLE */
6438 if (zone_type == ZONE_MOVABLE) {
6439 *zone_start_pfn = zone_movable_pfn[nid];
6440 *zone_end_pfn = min(node_end_pfn,
6441 arch_zone_highest_possible_pfn[movable_zone]);
6442
6443 /* Adjust for ZONE_MOVABLE starting within this range */
6444 } else if (!mirrored_kernelcore &&
6445 *zone_start_pfn < zone_movable_pfn[nid] &&
6446 *zone_end_pfn > zone_movable_pfn[nid]) {
6447 *zone_end_pfn = zone_movable_pfn[nid];
6448
6449 /* Check if this whole range is within ZONE_MOVABLE */
6450 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6451 *zone_start_pfn = *zone_end_pfn;
6452 }
6453 }
6454
6455 /*
6456 * Return the number of pages a zone spans in a node, including holes
6457 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6458 */
6459 static unsigned long __init zone_spanned_pages_in_node(int nid,
6460 unsigned long zone_type,
6461 unsigned long node_start_pfn,
6462 unsigned long node_end_pfn,
6463 unsigned long *zone_start_pfn,
6464 unsigned long *zone_end_pfn,
6465 unsigned long *ignored)
6466 {
6467 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6468 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6469 /* When hotadd a new node from cpu_up(), the node should be empty */
6470 if (!node_start_pfn && !node_end_pfn)
6471 return 0;
6472
6473 /* Get the start and end of the zone */
6474 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6475 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6476 adjust_zone_range_for_zone_movable(nid, zone_type,
6477 node_start_pfn, node_end_pfn,
6478 zone_start_pfn, zone_end_pfn);
6479
6480 /* Check that this node has pages within the zone's required range */
6481 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6482 return 0;
6483
6484 /* Move the zone boundaries inside the node if necessary */
6485 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6486 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6487
6488 /* Return the spanned pages */
6489 return *zone_end_pfn - *zone_start_pfn;
6490 }
6491
6492 /*
6493 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6494 * then all holes in the requested range will be accounted for.
6495 */
6496 unsigned long __init __absent_pages_in_range(int nid,
6497 unsigned long range_start_pfn,
6498 unsigned long range_end_pfn)
6499 {
6500 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6501 unsigned long start_pfn, end_pfn;
6502 int i;
6503
6504 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6505 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6506 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6507 nr_absent -= end_pfn - start_pfn;
6508 }
6509 return nr_absent;
6510 }
6511
6512 /**
6513 * absent_pages_in_range - Return number of page frames in holes within a range
6514 * @start_pfn: The start PFN to start searching for holes
6515 * @end_pfn: The end PFN to stop searching for holes
6516 *
6517 * Return: the number of pages frames in memory holes within a range.
6518 */
6519 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6520 unsigned long end_pfn)
6521 {
6522 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6523 }
6524
6525 /* Return the number of page frames in holes in a zone on a node */
6526 static unsigned long __init zone_absent_pages_in_node(int nid,
6527 unsigned long zone_type,
6528 unsigned long node_start_pfn,
6529 unsigned long node_end_pfn,
6530 unsigned long *ignored)
6531 {
6532 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6533 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6534 unsigned long zone_start_pfn, zone_end_pfn;
6535 unsigned long nr_absent;
6536
6537 /* When hotadd a new node from cpu_up(), the node should be empty */
6538 if (!node_start_pfn && !node_end_pfn)
6539 return 0;
6540
6541 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6542 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6543
6544 adjust_zone_range_for_zone_movable(nid, zone_type,
6545 node_start_pfn, node_end_pfn,
6546 &zone_start_pfn, &zone_end_pfn);
6547 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6548
6549 /*
6550 * ZONE_MOVABLE handling.
6551 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6552 * and vice versa.
6553 */
6554 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6555 unsigned long start_pfn, end_pfn;
6556 struct memblock_region *r;
6557
6558 for_each_memblock(memory, r) {
6559 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6560 zone_start_pfn, zone_end_pfn);
6561 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6562 zone_start_pfn, zone_end_pfn);
6563
6564 if (zone_type == ZONE_MOVABLE &&
6565 memblock_is_mirror(r))
6566 nr_absent += end_pfn - start_pfn;
6567
6568 if (zone_type == ZONE_NORMAL &&
6569 !memblock_is_mirror(r))
6570 nr_absent += end_pfn - start_pfn;
6571 }
6572 }
6573
6574 return nr_absent;
6575 }
6576
6577 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6578 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6579 unsigned long zone_type,
6580 unsigned long node_start_pfn,
6581 unsigned long node_end_pfn,
6582 unsigned long *zone_start_pfn,
6583 unsigned long *zone_end_pfn,
6584 unsigned long *zones_size)
6585 {
6586 unsigned int zone;
6587
6588 *zone_start_pfn = node_start_pfn;
6589 for (zone = 0; zone < zone_type; zone++)
6590 *zone_start_pfn += zones_size[zone];
6591
6592 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6593
6594 return zones_size[zone_type];
6595 }
6596
6597 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6598 unsigned long zone_type,
6599 unsigned long node_start_pfn,
6600 unsigned long node_end_pfn,
6601 unsigned long *zholes_size)
6602 {
6603 if (!zholes_size)
6604 return 0;
6605
6606 return zholes_size[zone_type];
6607 }
6608
6609 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6610
6611 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6612 unsigned long node_start_pfn,
6613 unsigned long node_end_pfn,
6614 unsigned long *zones_size,
6615 unsigned long *zholes_size)
6616 {
6617 unsigned long realtotalpages = 0, totalpages = 0;
6618 enum zone_type i;
6619
6620 for (i = 0; i < MAX_NR_ZONES; i++) {
6621 struct zone *zone = pgdat->node_zones + i;
6622 unsigned long zone_start_pfn, zone_end_pfn;
6623 unsigned long size, real_size;
6624
6625 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6626 node_start_pfn,
6627 node_end_pfn,
6628 &zone_start_pfn,
6629 &zone_end_pfn,
6630 zones_size);
6631 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6632 node_start_pfn, node_end_pfn,
6633 zholes_size);
6634 if (size)
6635 zone->zone_start_pfn = zone_start_pfn;
6636 else
6637 zone->zone_start_pfn = 0;
6638 zone->spanned_pages = size;
6639 zone->present_pages = real_size;
6640
6641 totalpages += size;
6642 realtotalpages += real_size;
6643 }
6644
6645 pgdat->node_spanned_pages = totalpages;
6646 pgdat->node_present_pages = realtotalpages;
6647 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6648 realtotalpages);
6649 }
6650
6651 #ifndef CONFIG_SPARSEMEM
6652 /*
6653 * Calculate the size of the zone->blockflags rounded to an unsigned long
6654 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6655 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6656 * round what is now in bits to nearest long in bits, then return it in
6657 * bytes.
6658 */
6659 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6660 {
6661 unsigned long usemapsize;
6662
6663 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6664 usemapsize = roundup(zonesize, pageblock_nr_pages);
6665 usemapsize = usemapsize >> pageblock_order;
6666 usemapsize *= NR_PAGEBLOCK_BITS;
6667 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6668
6669 return usemapsize / 8;
6670 }
6671
6672 static void __ref setup_usemap(struct pglist_data *pgdat,
6673 struct zone *zone,
6674 unsigned long zone_start_pfn,
6675 unsigned long zonesize)
6676 {
6677 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6678 zone->pageblock_flags = NULL;
6679 if (usemapsize) {
6680 zone->pageblock_flags =
6681 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6682 pgdat->node_id);
6683 if (!zone->pageblock_flags)
6684 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6685 usemapsize, zone->name, pgdat->node_id);
6686 }
6687 }
6688 #else
6689 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6690 unsigned long zone_start_pfn, unsigned long zonesize) {}
6691 #endif /* CONFIG_SPARSEMEM */
6692
6693 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6694
6695 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6696 void __init set_pageblock_order(void)
6697 {
6698 unsigned int order;
6699
6700 /* Check that pageblock_nr_pages has not already been setup */
6701 if (pageblock_order)
6702 return;
6703
6704 if (HPAGE_SHIFT > PAGE_SHIFT)
6705 order = HUGETLB_PAGE_ORDER;
6706 else
6707 order = MAX_ORDER - 1;
6708
6709 /*
6710 * Assume the largest contiguous order of interest is a huge page.
6711 * This value may be variable depending on boot parameters on IA64 and
6712 * powerpc.
6713 */
6714 pageblock_order = order;
6715 }
6716 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6717
6718 /*
6719 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6720 * is unused as pageblock_order is set at compile-time. See
6721 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6722 * the kernel config
6723 */
6724 void __init set_pageblock_order(void)
6725 {
6726 }
6727
6728 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6729
6730 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6731 unsigned long present_pages)
6732 {
6733 unsigned long pages = spanned_pages;
6734
6735 /*
6736 * Provide a more accurate estimation if there are holes within
6737 * the zone and SPARSEMEM is in use. If there are holes within the
6738 * zone, each populated memory region may cost us one or two extra
6739 * memmap pages due to alignment because memmap pages for each
6740 * populated regions may not be naturally aligned on page boundary.
6741 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6742 */
6743 if (spanned_pages > present_pages + (present_pages >> 4) &&
6744 IS_ENABLED(CONFIG_SPARSEMEM))
6745 pages = present_pages;
6746
6747 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6748 }
6749
6750 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6751 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6752 {
6753 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6754
6755 spin_lock_init(&ds_queue->split_queue_lock);
6756 INIT_LIST_HEAD(&ds_queue->split_queue);
6757 ds_queue->split_queue_len = 0;
6758 }
6759 #else
6760 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6761 #endif
6762
6763 #ifdef CONFIG_COMPACTION
6764 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6765 {
6766 init_waitqueue_head(&pgdat->kcompactd_wait);
6767 }
6768 #else
6769 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6770 #endif
6771
6772 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6773 {
6774 pgdat_resize_init(pgdat);
6775
6776 pgdat_init_split_queue(pgdat);
6777 pgdat_init_kcompactd(pgdat);
6778
6779 init_waitqueue_head(&pgdat->kswapd_wait);
6780 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6781
6782 pgdat_page_ext_init(pgdat);
6783 spin_lock_init(&pgdat->lru_lock);
6784 lruvec_init(&pgdat->__lruvec);
6785 }
6786
6787 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6788 unsigned long remaining_pages)
6789 {
6790 atomic_long_set(&zone->managed_pages, remaining_pages);
6791 zone_set_nid(zone, nid);
6792 zone->name = zone_names[idx];
6793 zone->zone_pgdat = NODE_DATA(nid);
6794 spin_lock_init(&zone->lock);
6795 zone_seqlock_init(zone);
6796 zone_pcp_init(zone);
6797 }
6798
6799 /*
6800 * Set up the zone data structures
6801 * - init pgdat internals
6802 * - init all zones belonging to this node
6803 *
6804 * NOTE: this function is only called during memory hotplug
6805 */
6806 #ifdef CONFIG_MEMORY_HOTPLUG
6807 void __ref free_area_init_core_hotplug(int nid)
6808 {
6809 enum zone_type z;
6810 pg_data_t *pgdat = NODE_DATA(nid);
6811
6812 pgdat_init_internals(pgdat);
6813 for (z = 0; z < MAX_NR_ZONES; z++)
6814 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6815 }
6816 #endif
6817
6818 /*
6819 * Set up the zone data structures:
6820 * - mark all pages reserved
6821 * - mark all memory queues empty
6822 * - clear the memory bitmaps
6823 *
6824 * NOTE: pgdat should get zeroed by caller.
6825 * NOTE: this function is only called during early init.
6826 */
6827 static void __init free_area_init_core(struct pglist_data *pgdat)
6828 {
6829 enum zone_type j;
6830 int nid = pgdat->node_id;
6831
6832 pgdat_init_internals(pgdat);
6833 pgdat->per_cpu_nodestats = &boot_nodestats;
6834
6835 for (j = 0; j < MAX_NR_ZONES; j++) {
6836 struct zone *zone = pgdat->node_zones + j;
6837 unsigned long size, freesize, memmap_pages;
6838 unsigned long zone_start_pfn = zone->zone_start_pfn;
6839
6840 size = zone->spanned_pages;
6841 freesize = zone->present_pages;
6842
6843 /*
6844 * Adjust freesize so that it accounts for how much memory
6845 * is used by this zone for memmap. This affects the watermark
6846 * and per-cpu initialisations
6847 */
6848 memmap_pages = calc_memmap_size(size, freesize);
6849 if (!is_highmem_idx(j)) {
6850 if (freesize >= memmap_pages) {
6851 freesize -= memmap_pages;
6852 if (memmap_pages)
6853 printk(KERN_DEBUG
6854 " %s zone: %lu pages used for memmap\n",
6855 zone_names[j], memmap_pages);
6856 } else
6857 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6858 zone_names[j], memmap_pages, freesize);
6859 }
6860
6861 /* Account for reserved pages */
6862 if (j == 0 && freesize > dma_reserve) {
6863 freesize -= dma_reserve;
6864 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6865 zone_names[0], dma_reserve);
6866 }
6867
6868 if (!is_highmem_idx(j))
6869 nr_kernel_pages += freesize;
6870 /* Charge for highmem memmap if there are enough kernel pages */
6871 else if (nr_kernel_pages > memmap_pages * 2)
6872 nr_kernel_pages -= memmap_pages;
6873 nr_all_pages += freesize;
6874
6875 /*
6876 * Set an approximate value for lowmem here, it will be adjusted
6877 * when the bootmem allocator frees pages into the buddy system.
6878 * And all highmem pages will be managed by the buddy system.
6879 */
6880 zone_init_internals(zone, j, nid, freesize);
6881
6882 if (!size)
6883 continue;
6884
6885 set_pageblock_order();
6886 setup_usemap(pgdat, zone, zone_start_pfn, size);
6887 init_currently_empty_zone(zone, zone_start_pfn, size);
6888 memmap_init(size, nid, j, zone_start_pfn);
6889 }
6890 }
6891
6892 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6893 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6894 {
6895 unsigned long __maybe_unused start = 0;
6896 unsigned long __maybe_unused offset = 0;
6897
6898 /* Skip empty nodes */
6899 if (!pgdat->node_spanned_pages)
6900 return;
6901
6902 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6903 offset = pgdat->node_start_pfn - start;
6904 /* ia64 gets its own node_mem_map, before this, without bootmem */
6905 if (!pgdat->node_mem_map) {
6906 unsigned long size, end;
6907 struct page *map;
6908
6909 /*
6910 * The zone's endpoints aren't required to be MAX_ORDER
6911 * aligned but the node_mem_map endpoints must be in order
6912 * for the buddy allocator to function correctly.
6913 */
6914 end = pgdat_end_pfn(pgdat);
6915 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6916 size = (end - start) * sizeof(struct page);
6917 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6918 pgdat->node_id);
6919 if (!map)
6920 panic("Failed to allocate %ld bytes for node %d memory map\n",
6921 size, pgdat->node_id);
6922 pgdat->node_mem_map = map + offset;
6923 }
6924 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6925 __func__, pgdat->node_id, (unsigned long)pgdat,
6926 (unsigned long)pgdat->node_mem_map);
6927 #ifndef CONFIG_NEED_MULTIPLE_NODES
6928 /*
6929 * With no DISCONTIG, the global mem_map is just set as node 0's
6930 */
6931 if (pgdat == NODE_DATA(0)) {
6932 mem_map = NODE_DATA(0)->node_mem_map;
6933 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6934 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6935 mem_map -= offset;
6936 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6937 }
6938 #endif
6939 }
6940 #else
6941 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6942 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6943
6944 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6945 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6946 {
6947 pgdat->first_deferred_pfn = ULONG_MAX;
6948 }
6949 #else
6950 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6951 #endif
6952
6953 void __init free_area_init_node(int nid, unsigned long *zones_size,
6954 unsigned long node_start_pfn,
6955 unsigned long *zholes_size)
6956 {
6957 pg_data_t *pgdat = NODE_DATA(nid);
6958 unsigned long start_pfn = 0;
6959 unsigned long end_pfn = 0;
6960
6961 /* pg_data_t should be reset to zero when it's allocated */
6962 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6963
6964 pgdat->node_id = nid;
6965 pgdat->node_start_pfn = node_start_pfn;
6966 pgdat->per_cpu_nodestats = NULL;
6967 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6968 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6969 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6970 (u64)start_pfn << PAGE_SHIFT,
6971 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6972 #else
6973 start_pfn = node_start_pfn;
6974 #endif
6975 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6976 zones_size, zholes_size);
6977
6978 alloc_node_mem_map(pgdat);
6979 pgdat_set_deferred_range(pgdat);
6980
6981 free_area_init_core(pgdat);
6982 }
6983
6984 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6985 /*
6986 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6987 * PageReserved(). Return the number of struct pages that were initialized.
6988 */
6989 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6990 {
6991 unsigned long pfn;
6992 u64 pgcnt = 0;
6993
6994 for (pfn = spfn; pfn < epfn; pfn++) {
6995 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6996 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6997 + pageblock_nr_pages - 1;
6998 continue;
6999 }
7000 /*
7001 * Use a fake node/zone (0) for now. Some of these pages
7002 * (in memblock.reserved but not in memblock.memory) will
7003 * get re-initialized via reserve_bootmem_region() later.
7004 */
7005 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7006 __SetPageReserved(pfn_to_page(pfn));
7007 pgcnt++;
7008 }
7009
7010 return pgcnt;
7011 }
7012
7013 /*
7014 * Only struct pages that are backed by physical memory are zeroed and
7015 * initialized by going through __init_single_page(). But, there are some
7016 * struct pages which are reserved in memblock allocator and their fields
7017 * may be accessed (for example page_to_pfn() on some configuration accesses
7018 * flags). We must explicitly initialize those struct pages.
7019 *
7020 * This function also addresses a similar issue where struct pages are left
7021 * uninitialized because the physical address range is not covered by
7022 * memblock.memory or memblock.reserved. That could happen when memblock
7023 * layout is manually configured via memmap=, or when the highest physical
7024 * address (max_pfn) does not end on a section boundary.
7025 */
7026 static void __init init_unavailable_mem(void)
7027 {
7028 phys_addr_t start, end;
7029 u64 i, pgcnt;
7030 phys_addr_t next = 0;
7031
7032 /*
7033 * Loop through unavailable ranges not covered by memblock.memory.
7034 */
7035 pgcnt = 0;
7036 for_each_mem_range(i, &memblock.memory, NULL,
7037 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
7038 if (next < start)
7039 pgcnt += init_unavailable_range(PFN_DOWN(next),
7040 PFN_UP(start));
7041 next = end;
7042 }
7043
7044 /*
7045 * Early sections always have a fully populated memmap for the whole
7046 * section - see pfn_valid(). If the last section has holes at the
7047 * end and that section is marked "online", the memmap will be
7048 * considered initialized. Make sure that memmap has a well defined
7049 * state.
7050 */
7051 pgcnt += init_unavailable_range(PFN_DOWN(next),
7052 round_up(max_pfn, PAGES_PER_SECTION));
7053
7054 /*
7055 * Struct pages that do not have backing memory. This could be because
7056 * firmware is using some of this memory, or for some other reasons.
7057 */
7058 if (pgcnt)
7059 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7060 }
7061 #else
7062 static inline void __init init_unavailable_mem(void)
7063 {
7064 }
7065 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7066
7067 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7068
7069 #if MAX_NUMNODES > 1
7070 /*
7071 * Figure out the number of possible node ids.
7072 */
7073 void __init setup_nr_node_ids(void)
7074 {
7075 unsigned int highest;
7076
7077 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7078 nr_node_ids = highest + 1;
7079 }
7080 #endif
7081
7082 /**
7083 * node_map_pfn_alignment - determine the maximum internode alignment
7084 *
7085 * This function should be called after node map is populated and sorted.
7086 * It calculates the maximum power of two alignment which can distinguish
7087 * all the nodes.
7088 *
7089 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7090 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7091 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7092 * shifted, 1GiB is enough and this function will indicate so.
7093 *
7094 * This is used to test whether pfn -> nid mapping of the chosen memory
7095 * model has fine enough granularity to avoid incorrect mapping for the
7096 * populated node map.
7097 *
7098 * Return: the determined alignment in pfn's. 0 if there is no alignment
7099 * requirement (single node).
7100 */
7101 unsigned long __init node_map_pfn_alignment(void)
7102 {
7103 unsigned long accl_mask = 0, last_end = 0;
7104 unsigned long start, end, mask;
7105 int last_nid = NUMA_NO_NODE;
7106 int i, nid;
7107
7108 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7109 if (!start || last_nid < 0 || last_nid == nid) {
7110 last_nid = nid;
7111 last_end = end;
7112 continue;
7113 }
7114
7115 /*
7116 * Start with a mask granular enough to pin-point to the
7117 * start pfn and tick off bits one-by-one until it becomes
7118 * too coarse to separate the current node from the last.
7119 */
7120 mask = ~((1 << __ffs(start)) - 1);
7121 while (mask && last_end <= (start & (mask << 1)))
7122 mask <<= 1;
7123
7124 /* accumulate all internode masks */
7125 accl_mask |= mask;
7126 }
7127
7128 /* convert mask to number of pages */
7129 return ~accl_mask + 1;
7130 }
7131
7132 /* Find the lowest pfn for a node */
7133 static unsigned long __init find_min_pfn_for_node(int nid)
7134 {
7135 unsigned long min_pfn = ULONG_MAX;
7136 unsigned long start_pfn;
7137 int i;
7138
7139 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7140 min_pfn = min(min_pfn, start_pfn);
7141
7142 if (min_pfn == ULONG_MAX) {
7143 pr_warn("Could not find start_pfn for node %d\n", nid);
7144 return 0;
7145 }
7146
7147 return min_pfn;
7148 }
7149
7150 /**
7151 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7152 *
7153 * Return: the minimum PFN based on information provided via
7154 * memblock_set_node().
7155 */
7156 unsigned long __init find_min_pfn_with_active_regions(void)
7157 {
7158 return find_min_pfn_for_node(MAX_NUMNODES);
7159 }
7160
7161 /*
7162 * early_calculate_totalpages()
7163 * Sum pages in active regions for movable zone.
7164 * Populate N_MEMORY for calculating usable_nodes.
7165 */
7166 static unsigned long __init early_calculate_totalpages(void)
7167 {
7168 unsigned long totalpages = 0;
7169 unsigned long start_pfn, end_pfn;
7170 int i, nid;
7171
7172 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7173 unsigned long pages = end_pfn - start_pfn;
7174
7175 totalpages += pages;
7176 if (pages)
7177 node_set_state(nid, N_MEMORY);
7178 }
7179 return totalpages;
7180 }
7181
7182 /*
7183 * Find the PFN the Movable zone begins in each node. Kernel memory
7184 * is spread evenly between nodes as long as the nodes have enough
7185 * memory. When they don't, some nodes will have more kernelcore than
7186 * others
7187 */
7188 static void __init find_zone_movable_pfns_for_nodes(void)
7189 {
7190 int i, nid;
7191 unsigned long usable_startpfn;
7192 unsigned long kernelcore_node, kernelcore_remaining;
7193 /* save the state before borrow the nodemask */
7194 nodemask_t saved_node_state = node_states[N_MEMORY];
7195 unsigned long totalpages = early_calculate_totalpages();
7196 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7197 struct memblock_region *r;
7198
7199 /* Need to find movable_zone earlier when movable_node is specified. */
7200 find_usable_zone_for_movable();
7201
7202 /*
7203 * If movable_node is specified, ignore kernelcore and movablecore
7204 * options.
7205 */
7206 if (movable_node_is_enabled()) {
7207 for_each_memblock(memory, r) {
7208 if (!memblock_is_hotpluggable(r))
7209 continue;
7210
7211 nid = r->nid;
7212
7213 usable_startpfn = PFN_DOWN(r->base);
7214 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7215 min(usable_startpfn, zone_movable_pfn[nid]) :
7216 usable_startpfn;
7217 }
7218
7219 goto out2;
7220 }
7221
7222 /*
7223 * If kernelcore=mirror is specified, ignore movablecore option
7224 */
7225 if (mirrored_kernelcore) {
7226 bool mem_below_4gb_not_mirrored = false;
7227
7228 for_each_memblock(memory, r) {
7229 if (memblock_is_mirror(r))
7230 continue;
7231
7232 nid = r->nid;
7233
7234 usable_startpfn = memblock_region_memory_base_pfn(r);
7235
7236 if (usable_startpfn < 0x100000) {
7237 mem_below_4gb_not_mirrored = true;
7238 continue;
7239 }
7240
7241 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7242 min(usable_startpfn, zone_movable_pfn[nid]) :
7243 usable_startpfn;
7244 }
7245
7246 if (mem_below_4gb_not_mirrored)
7247 pr_warn("This configuration results in unmirrored kernel memory.");
7248
7249 goto out2;
7250 }
7251
7252 /*
7253 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7254 * amount of necessary memory.
7255 */
7256 if (required_kernelcore_percent)
7257 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7258 10000UL;
7259 if (required_movablecore_percent)
7260 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7261 10000UL;
7262
7263 /*
7264 * If movablecore= was specified, calculate what size of
7265 * kernelcore that corresponds so that memory usable for
7266 * any allocation type is evenly spread. If both kernelcore
7267 * and movablecore are specified, then the value of kernelcore
7268 * will be used for required_kernelcore if it's greater than
7269 * what movablecore would have allowed.
7270 */
7271 if (required_movablecore) {
7272 unsigned long corepages;
7273
7274 /*
7275 * Round-up so that ZONE_MOVABLE is at least as large as what
7276 * was requested by the user
7277 */
7278 required_movablecore =
7279 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7280 required_movablecore = min(totalpages, required_movablecore);
7281 corepages = totalpages - required_movablecore;
7282
7283 required_kernelcore = max(required_kernelcore, corepages);
7284 }
7285
7286 /*
7287 * If kernelcore was not specified or kernelcore size is larger
7288 * than totalpages, there is no ZONE_MOVABLE.
7289 */
7290 if (!required_kernelcore || required_kernelcore >= totalpages)
7291 goto out;
7292
7293 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7294 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7295
7296 restart:
7297 /* Spread kernelcore memory as evenly as possible throughout nodes */
7298 kernelcore_node = required_kernelcore / usable_nodes;
7299 for_each_node_state(nid, N_MEMORY) {
7300 unsigned long start_pfn, end_pfn;
7301
7302 /*
7303 * Recalculate kernelcore_node if the division per node
7304 * now exceeds what is necessary to satisfy the requested
7305 * amount of memory for the kernel
7306 */
7307 if (required_kernelcore < kernelcore_node)
7308 kernelcore_node = required_kernelcore / usable_nodes;
7309
7310 /*
7311 * As the map is walked, we track how much memory is usable
7312 * by the kernel using kernelcore_remaining. When it is
7313 * 0, the rest of the node is usable by ZONE_MOVABLE
7314 */
7315 kernelcore_remaining = kernelcore_node;
7316
7317 /* Go through each range of PFNs within this node */
7318 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7319 unsigned long size_pages;
7320
7321 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7322 if (start_pfn >= end_pfn)
7323 continue;
7324
7325 /* Account for what is only usable for kernelcore */
7326 if (start_pfn < usable_startpfn) {
7327 unsigned long kernel_pages;
7328 kernel_pages = min(end_pfn, usable_startpfn)
7329 - start_pfn;
7330
7331 kernelcore_remaining -= min(kernel_pages,
7332 kernelcore_remaining);
7333 required_kernelcore -= min(kernel_pages,
7334 required_kernelcore);
7335
7336 /* Continue if range is now fully accounted */
7337 if (end_pfn <= usable_startpfn) {
7338
7339 /*
7340 * Push zone_movable_pfn to the end so
7341 * that if we have to rebalance
7342 * kernelcore across nodes, we will
7343 * not double account here
7344 */
7345 zone_movable_pfn[nid] = end_pfn;
7346 continue;
7347 }
7348 start_pfn = usable_startpfn;
7349 }
7350
7351 /*
7352 * The usable PFN range for ZONE_MOVABLE is from
7353 * start_pfn->end_pfn. Calculate size_pages as the
7354 * number of pages used as kernelcore
7355 */
7356 size_pages = end_pfn - start_pfn;
7357 if (size_pages > kernelcore_remaining)
7358 size_pages = kernelcore_remaining;
7359 zone_movable_pfn[nid] = start_pfn + size_pages;
7360
7361 /*
7362 * Some kernelcore has been met, update counts and
7363 * break if the kernelcore for this node has been
7364 * satisfied
7365 */
7366 required_kernelcore -= min(required_kernelcore,
7367 size_pages);
7368 kernelcore_remaining -= size_pages;
7369 if (!kernelcore_remaining)
7370 break;
7371 }
7372 }
7373
7374 /*
7375 * If there is still required_kernelcore, we do another pass with one
7376 * less node in the count. This will push zone_movable_pfn[nid] further
7377 * along on the nodes that still have memory until kernelcore is
7378 * satisfied
7379 */
7380 usable_nodes--;
7381 if (usable_nodes && required_kernelcore > usable_nodes)
7382 goto restart;
7383
7384 out2:
7385 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7386 for (nid = 0; nid < MAX_NUMNODES; nid++)
7387 zone_movable_pfn[nid] =
7388 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7389
7390 out:
7391 /* restore the node_state */
7392 node_states[N_MEMORY] = saved_node_state;
7393 }
7394
7395 /* Any regular or high memory on that node ? */
7396 static void check_for_memory(pg_data_t *pgdat, int nid)
7397 {
7398 enum zone_type zone_type;
7399
7400 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7401 struct zone *zone = &pgdat->node_zones[zone_type];
7402 if (populated_zone(zone)) {
7403 if (IS_ENABLED(CONFIG_HIGHMEM))
7404 node_set_state(nid, N_HIGH_MEMORY);
7405 if (zone_type <= ZONE_NORMAL)
7406 node_set_state(nid, N_NORMAL_MEMORY);
7407 break;
7408 }
7409 }
7410 }
7411
7412 /**
7413 * free_area_init_nodes - Initialise all pg_data_t and zone data
7414 * @max_zone_pfn: an array of max PFNs for each zone
7415 *
7416 * This will call free_area_init_node() for each active node in the system.
7417 * Using the page ranges provided by memblock_set_node(), the size of each
7418 * zone in each node and their holes is calculated. If the maximum PFN
7419 * between two adjacent zones match, it is assumed that the zone is empty.
7420 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7421 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7422 * starts where the previous one ended. For example, ZONE_DMA32 starts
7423 * at arch_max_dma_pfn.
7424 */
7425 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7426 {
7427 unsigned long start_pfn, end_pfn;
7428 int i, nid;
7429
7430 /* Record where the zone boundaries are */
7431 memset(arch_zone_lowest_possible_pfn, 0,
7432 sizeof(arch_zone_lowest_possible_pfn));
7433 memset(arch_zone_highest_possible_pfn, 0,
7434 sizeof(arch_zone_highest_possible_pfn));
7435
7436 start_pfn = find_min_pfn_with_active_regions();
7437
7438 for (i = 0; i < MAX_NR_ZONES; i++) {
7439 if (i == ZONE_MOVABLE)
7440 continue;
7441
7442 end_pfn = max(max_zone_pfn[i], start_pfn);
7443 arch_zone_lowest_possible_pfn[i] = start_pfn;
7444 arch_zone_highest_possible_pfn[i] = end_pfn;
7445
7446 start_pfn = end_pfn;
7447 }
7448
7449 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7450 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7451 find_zone_movable_pfns_for_nodes();
7452
7453 /* Print out the zone ranges */
7454 pr_info("Zone ranges:\n");
7455 for (i = 0; i < MAX_NR_ZONES; i++) {
7456 if (i == ZONE_MOVABLE)
7457 continue;
7458 pr_info(" %-8s ", zone_names[i]);
7459 if (arch_zone_lowest_possible_pfn[i] ==
7460 arch_zone_highest_possible_pfn[i])
7461 pr_cont("empty\n");
7462 else
7463 pr_cont("[mem %#018Lx-%#018Lx]\n",
7464 (u64)arch_zone_lowest_possible_pfn[i]
7465 << PAGE_SHIFT,
7466 ((u64)arch_zone_highest_possible_pfn[i]
7467 << PAGE_SHIFT) - 1);
7468 }
7469
7470 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7471 pr_info("Movable zone start for each node\n");
7472 for (i = 0; i < MAX_NUMNODES; i++) {
7473 if (zone_movable_pfn[i])
7474 pr_info(" Node %d: %#018Lx\n", i,
7475 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7476 }
7477
7478 /*
7479 * Print out the early node map, and initialize the
7480 * subsection-map relative to active online memory ranges to
7481 * enable future "sub-section" extensions of the memory map.
7482 */
7483 pr_info("Early memory node ranges\n");
7484 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7485 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7486 (u64)start_pfn << PAGE_SHIFT,
7487 ((u64)end_pfn << PAGE_SHIFT) - 1);
7488 subsection_map_init(start_pfn, end_pfn - start_pfn);
7489 }
7490
7491 /* Initialise every node */
7492 mminit_verify_pageflags_layout();
7493 setup_nr_node_ids();
7494 init_unavailable_mem();
7495 for_each_online_node(nid) {
7496 pg_data_t *pgdat = NODE_DATA(nid);
7497 free_area_init_node(nid, NULL,
7498 find_min_pfn_for_node(nid), NULL);
7499
7500 /* Any memory on that node */
7501 if (pgdat->node_present_pages)
7502 node_set_state(nid, N_MEMORY);
7503 check_for_memory(pgdat, nid);
7504 }
7505 }
7506
7507 static int __init cmdline_parse_core(char *p, unsigned long *core,
7508 unsigned long *percent)
7509 {
7510 unsigned long long coremem;
7511 char *endptr;
7512
7513 if (!p)
7514 return -EINVAL;
7515
7516 /* Value may be a percentage of total memory, otherwise bytes */
7517 coremem = simple_strtoull(p, &endptr, 0);
7518 if (*endptr == '%') {
7519 /* Paranoid check for percent values greater than 100 */
7520 WARN_ON(coremem > 100);
7521
7522 *percent = coremem;
7523 } else {
7524 coremem = memparse(p, &p);
7525 /* Paranoid check that UL is enough for the coremem value */
7526 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7527
7528 *core = coremem >> PAGE_SHIFT;
7529 *percent = 0UL;
7530 }
7531 return 0;
7532 }
7533
7534 /*
7535 * kernelcore=size sets the amount of memory for use for allocations that
7536 * cannot be reclaimed or migrated.
7537 */
7538 static int __init cmdline_parse_kernelcore(char *p)
7539 {
7540 /* parse kernelcore=mirror */
7541 if (parse_option_str(p, "mirror")) {
7542 mirrored_kernelcore = true;
7543 return 0;
7544 }
7545
7546 return cmdline_parse_core(p, &required_kernelcore,
7547 &required_kernelcore_percent);
7548 }
7549
7550 /*
7551 * movablecore=size sets the amount of memory for use for allocations that
7552 * can be reclaimed or migrated.
7553 */
7554 static int __init cmdline_parse_movablecore(char *p)
7555 {
7556 return cmdline_parse_core(p, &required_movablecore,
7557 &required_movablecore_percent);
7558 }
7559
7560 early_param("kernelcore", cmdline_parse_kernelcore);
7561 early_param("movablecore", cmdline_parse_movablecore);
7562
7563 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7564
7565 void adjust_managed_page_count(struct page *page, long count)
7566 {
7567 atomic_long_add(count, &page_zone(page)->managed_pages);
7568 totalram_pages_add(count);
7569 #ifdef CONFIG_HIGHMEM
7570 if (PageHighMem(page))
7571 totalhigh_pages_add(count);
7572 #endif
7573 }
7574 EXPORT_SYMBOL(adjust_managed_page_count);
7575
7576 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7577 {
7578 void *pos;
7579 unsigned long pages = 0;
7580
7581 start = (void *)PAGE_ALIGN((unsigned long)start);
7582 end = (void *)((unsigned long)end & PAGE_MASK);
7583 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7584 struct page *page = virt_to_page(pos);
7585 void *direct_map_addr;
7586
7587 /*
7588 * 'direct_map_addr' might be different from 'pos'
7589 * because some architectures' virt_to_page()
7590 * work with aliases. Getting the direct map
7591 * address ensures that we get a _writeable_
7592 * alias for the memset().
7593 */
7594 direct_map_addr = page_address(page);
7595 if ((unsigned int)poison <= 0xFF)
7596 memset(direct_map_addr, poison, PAGE_SIZE);
7597
7598 free_reserved_page(page);
7599 }
7600
7601 if (pages && s)
7602 pr_info("Freeing %s memory: %ldK\n",
7603 s, pages << (PAGE_SHIFT - 10));
7604
7605 return pages;
7606 }
7607
7608 #ifdef CONFIG_HIGHMEM
7609 void free_highmem_page(struct page *page)
7610 {
7611 __free_reserved_page(page);
7612 totalram_pages_inc();
7613 atomic_long_inc(&page_zone(page)->managed_pages);
7614 totalhigh_pages_inc();
7615 }
7616 #endif
7617
7618
7619 void __init mem_init_print_info(const char *str)
7620 {
7621 unsigned long physpages, codesize, datasize, rosize, bss_size;
7622 unsigned long init_code_size, init_data_size;
7623
7624 physpages = get_num_physpages();
7625 codesize = _etext - _stext;
7626 datasize = _edata - _sdata;
7627 rosize = __end_rodata - __start_rodata;
7628 bss_size = __bss_stop - __bss_start;
7629 init_data_size = __init_end - __init_begin;
7630 init_code_size = _einittext - _sinittext;
7631
7632 /*
7633 * Detect special cases and adjust section sizes accordingly:
7634 * 1) .init.* may be embedded into .data sections
7635 * 2) .init.text.* may be out of [__init_begin, __init_end],
7636 * please refer to arch/tile/kernel/vmlinux.lds.S.
7637 * 3) .rodata.* may be embedded into .text or .data sections.
7638 */
7639 #define adj_init_size(start, end, size, pos, adj) \
7640 do { \
7641 if (start <= pos && pos < end && size > adj) \
7642 size -= adj; \
7643 } while (0)
7644
7645 adj_init_size(__init_begin, __init_end, init_data_size,
7646 _sinittext, init_code_size);
7647 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7648 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7649 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7650 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7651
7652 #undef adj_init_size
7653
7654 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7655 #ifdef CONFIG_HIGHMEM
7656 ", %luK highmem"
7657 #endif
7658 "%s%s)\n",
7659 nr_free_pages() << (PAGE_SHIFT - 10),
7660 physpages << (PAGE_SHIFT - 10),
7661 codesize >> 10, datasize >> 10, rosize >> 10,
7662 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7663 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7664 totalcma_pages << (PAGE_SHIFT - 10),
7665 #ifdef CONFIG_HIGHMEM
7666 totalhigh_pages() << (PAGE_SHIFT - 10),
7667 #endif
7668 str ? ", " : "", str ? str : "");
7669 }
7670
7671 /**
7672 * set_dma_reserve - set the specified number of pages reserved in the first zone
7673 * @new_dma_reserve: The number of pages to mark reserved
7674 *
7675 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7676 * In the DMA zone, a significant percentage may be consumed by kernel image
7677 * and other unfreeable allocations which can skew the watermarks badly. This
7678 * function may optionally be used to account for unfreeable pages in the
7679 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7680 * smaller per-cpu batchsize.
7681 */
7682 void __init set_dma_reserve(unsigned long new_dma_reserve)
7683 {
7684 dma_reserve = new_dma_reserve;
7685 }
7686
7687 void __init free_area_init(unsigned long *zones_size)
7688 {
7689 init_unavailable_mem();
7690 free_area_init_node(0, zones_size,
7691 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7692 }
7693
7694 static int page_alloc_cpu_dead(unsigned int cpu)
7695 {
7696
7697 lru_add_drain_cpu(cpu);
7698 drain_pages(cpu);
7699
7700 /*
7701 * Spill the event counters of the dead processor
7702 * into the current processors event counters.
7703 * This artificially elevates the count of the current
7704 * processor.
7705 */
7706 vm_events_fold_cpu(cpu);
7707
7708 /*
7709 * Zero the differential counters of the dead processor
7710 * so that the vm statistics are consistent.
7711 *
7712 * This is only okay since the processor is dead and cannot
7713 * race with what we are doing.
7714 */
7715 cpu_vm_stats_fold(cpu);
7716 return 0;
7717 }
7718
7719 #ifdef CONFIG_NUMA
7720 int hashdist = HASHDIST_DEFAULT;
7721
7722 static int __init set_hashdist(char *str)
7723 {
7724 if (!str)
7725 return 0;
7726 hashdist = simple_strtoul(str, &str, 0);
7727 return 1;
7728 }
7729 __setup("hashdist=", set_hashdist);
7730 #endif
7731
7732 void __init page_alloc_init(void)
7733 {
7734 int ret;
7735
7736 #ifdef CONFIG_NUMA
7737 if (num_node_state(N_MEMORY) == 1)
7738 hashdist = 0;
7739 #endif
7740
7741 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7742 "mm/page_alloc:dead", NULL,
7743 page_alloc_cpu_dead);
7744 WARN_ON(ret < 0);
7745 }
7746
7747 /*
7748 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7749 * or min_free_kbytes changes.
7750 */
7751 static void calculate_totalreserve_pages(void)
7752 {
7753 struct pglist_data *pgdat;
7754 unsigned long reserve_pages = 0;
7755 enum zone_type i, j;
7756
7757 for_each_online_pgdat(pgdat) {
7758
7759 pgdat->totalreserve_pages = 0;
7760
7761 for (i = 0; i < MAX_NR_ZONES; i++) {
7762 struct zone *zone = pgdat->node_zones + i;
7763 long max = 0;
7764 unsigned long managed_pages = zone_managed_pages(zone);
7765
7766 /* Find valid and maximum lowmem_reserve in the zone */
7767 for (j = i; j < MAX_NR_ZONES; j++) {
7768 if (zone->lowmem_reserve[j] > max)
7769 max = zone->lowmem_reserve[j];
7770 }
7771
7772 /* we treat the high watermark as reserved pages. */
7773 max += high_wmark_pages(zone);
7774
7775 if (max > managed_pages)
7776 max = managed_pages;
7777
7778 pgdat->totalreserve_pages += max;
7779
7780 reserve_pages += max;
7781 }
7782 }
7783 totalreserve_pages = reserve_pages;
7784 }
7785
7786 /*
7787 * setup_per_zone_lowmem_reserve - called whenever
7788 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7789 * has a correct pages reserved value, so an adequate number of
7790 * pages are left in the zone after a successful __alloc_pages().
7791 */
7792 static void setup_per_zone_lowmem_reserve(void)
7793 {
7794 struct pglist_data *pgdat;
7795 enum zone_type j, idx;
7796
7797 for_each_online_pgdat(pgdat) {
7798 for (j = 0; j < MAX_NR_ZONES; j++) {
7799 struct zone *zone = pgdat->node_zones + j;
7800 unsigned long managed_pages = zone_managed_pages(zone);
7801
7802 zone->lowmem_reserve[j] = 0;
7803
7804 idx = j;
7805 while (idx) {
7806 struct zone *lower_zone;
7807
7808 idx--;
7809 lower_zone = pgdat->node_zones + idx;
7810
7811 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7812 sysctl_lowmem_reserve_ratio[idx] = 0;
7813 lower_zone->lowmem_reserve[j] = 0;
7814 } else {
7815 lower_zone->lowmem_reserve[j] =
7816 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7817 }
7818 managed_pages += zone_managed_pages(lower_zone);
7819 }
7820 }
7821 }
7822
7823 /* update totalreserve_pages */
7824 calculate_totalreserve_pages();
7825 }
7826
7827 static void __setup_per_zone_wmarks(void)
7828 {
7829 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7830 unsigned long lowmem_pages = 0;
7831 struct zone *zone;
7832 unsigned long flags;
7833
7834 /* Calculate total number of !ZONE_HIGHMEM pages */
7835 for_each_zone(zone) {
7836 if (!is_highmem(zone))
7837 lowmem_pages += zone_managed_pages(zone);
7838 }
7839
7840 for_each_zone(zone) {
7841 u64 tmp;
7842
7843 spin_lock_irqsave(&zone->lock, flags);
7844 tmp = (u64)pages_min * zone_managed_pages(zone);
7845 do_div(tmp, lowmem_pages);
7846 if (is_highmem(zone)) {
7847 /*
7848 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7849 * need highmem pages, so cap pages_min to a small
7850 * value here.
7851 *
7852 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7853 * deltas control async page reclaim, and so should
7854 * not be capped for highmem.
7855 */
7856 unsigned long min_pages;
7857
7858 min_pages = zone_managed_pages(zone) / 1024;
7859 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7860 zone->_watermark[WMARK_MIN] = min_pages;
7861 } else {
7862 /*
7863 * If it's a lowmem zone, reserve a number of pages
7864 * proportionate to the zone's size.
7865 */
7866 zone->_watermark[WMARK_MIN] = tmp;
7867 }
7868
7869 /*
7870 * Set the kswapd watermarks distance according to the
7871 * scale factor in proportion to available memory, but
7872 * ensure a minimum size on small systems.
7873 */
7874 tmp = max_t(u64, tmp >> 2,
7875 mult_frac(zone_managed_pages(zone),
7876 watermark_scale_factor, 10000));
7877
7878 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7879 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7880 zone->watermark_boost = 0;
7881
7882 spin_unlock_irqrestore(&zone->lock, flags);
7883 }
7884
7885 /* update totalreserve_pages */
7886 calculate_totalreserve_pages();
7887 }
7888
7889 /**
7890 * setup_per_zone_wmarks - called when min_free_kbytes changes
7891 * or when memory is hot-{added|removed}
7892 *
7893 * Ensures that the watermark[min,low,high] values for each zone are set
7894 * correctly with respect to min_free_kbytes.
7895 */
7896 void setup_per_zone_wmarks(void)
7897 {
7898 static DEFINE_SPINLOCK(lock);
7899
7900 spin_lock(&lock);
7901 __setup_per_zone_wmarks();
7902 spin_unlock(&lock);
7903 }
7904
7905 /*
7906 * Initialise min_free_kbytes.
7907 *
7908 * For small machines we want it small (128k min). For large machines
7909 * we want it large (64MB max). But it is not linear, because network
7910 * bandwidth does not increase linearly with machine size. We use
7911 *
7912 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7913 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7914 *
7915 * which yields
7916 *
7917 * 16MB: 512k
7918 * 32MB: 724k
7919 * 64MB: 1024k
7920 * 128MB: 1448k
7921 * 256MB: 2048k
7922 * 512MB: 2896k
7923 * 1024MB: 4096k
7924 * 2048MB: 5792k
7925 * 4096MB: 8192k
7926 * 8192MB: 11584k
7927 * 16384MB: 16384k
7928 */
7929 int __meminit init_per_zone_wmark_min(void)
7930 {
7931 unsigned long lowmem_kbytes;
7932 int new_min_free_kbytes;
7933
7934 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7935 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7936
7937 if (new_min_free_kbytes > user_min_free_kbytes) {
7938 min_free_kbytes = new_min_free_kbytes;
7939 if (min_free_kbytes < 128)
7940 min_free_kbytes = 128;
7941 if (min_free_kbytes > 262144)
7942 min_free_kbytes = 262144;
7943 } else {
7944 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7945 new_min_free_kbytes, user_min_free_kbytes);
7946 }
7947 setup_per_zone_wmarks();
7948 refresh_zone_stat_thresholds();
7949 setup_per_zone_lowmem_reserve();
7950
7951 #ifdef CONFIG_NUMA
7952 setup_min_unmapped_ratio();
7953 setup_min_slab_ratio();
7954 #endif
7955
7956 return 0;
7957 }
7958 core_initcall(init_per_zone_wmark_min)
7959
7960 /*
7961 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7962 * that we can call two helper functions whenever min_free_kbytes
7963 * changes.
7964 */
7965 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7966 void __user *buffer, size_t *length, loff_t *ppos)
7967 {
7968 int rc;
7969
7970 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7971 if (rc)
7972 return rc;
7973
7974 if (write) {
7975 user_min_free_kbytes = min_free_kbytes;
7976 setup_per_zone_wmarks();
7977 }
7978 return 0;
7979 }
7980
7981 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7982 void __user *buffer, size_t *length, loff_t *ppos)
7983 {
7984 int rc;
7985
7986 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7987 if (rc)
7988 return rc;
7989
7990 return 0;
7991 }
7992
7993 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7994 void __user *buffer, size_t *length, loff_t *ppos)
7995 {
7996 int rc;
7997
7998 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7999 if (rc)
8000 return rc;
8001
8002 if (write)
8003 setup_per_zone_wmarks();
8004
8005 return 0;
8006 }
8007
8008 #ifdef CONFIG_NUMA
8009 static void setup_min_unmapped_ratio(void)
8010 {
8011 pg_data_t *pgdat;
8012 struct zone *zone;
8013
8014 for_each_online_pgdat(pgdat)
8015 pgdat->min_unmapped_pages = 0;
8016
8017 for_each_zone(zone)
8018 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8019 sysctl_min_unmapped_ratio) / 100;
8020 }
8021
8022
8023 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8024 void __user *buffer, size_t *length, loff_t *ppos)
8025 {
8026 int rc;
8027
8028 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8029 if (rc)
8030 return rc;
8031
8032 setup_min_unmapped_ratio();
8033
8034 return 0;
8035 }
8036
8037 static void setup_min_slab_ratio(void)
8038 {
8039 pg_data_t *pgdat;
8040 struct zone *zone;
8041
8042 for_each_online_pgdat(pgdat)
8043 pgdat->min_slab_pages = 0;
8044
8045 for_each_zone(zone)
8046 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8047 sysctl_min_slab_ratio) / 100;
8048 }
8049
8050 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8051 void __user *buffer, size_t *length, loff_t *ppos)
8052 {
8053 int rc;
8054
8055 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8056 if (rc)
8057 return rc;
8058
8059 setup_min_slab_ratio();
8060
8061 return 0;
8062 }
8063 #endif
8064
8065 /*
8066 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8067 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8068 * whenever sysctl_lowmem_reserve_ratio changes.
8069 *
8070 * The reserve ratio obviously has absolutely no relation with the
8071 * minimum watermarks. The lowmem reserve ratio can only make sense
8072 * if in function of the boot time zone sizes.
8073 */
8074 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8075 void __user *buffer, size_t *length, loff_t *ppos)
8076 {
8077 proc_dointvec_minmax(table, write, buffer, length, ppos);
8078 setup_per_zone_lowmem_reserve();
8079 return 0;
8080 }
8081
8082 static void __zone_pcp_update(struct zone *zone)
8083 {
8084 unsigned int cpu;
8085
8086 for_each_possible_cpu(cpu)
8087 pageset_set_high_and_batch(zone,
8088 per_cpu_ptr(zone->pageset, cpu));
8089 }
8090
8091 /*
8092 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8093 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8094 * pagelist can have before it gets flushed back to buddy allocator.
8095 */
8096 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8097 void __user *buffer, size_t *length, loff_t *ppos)
8098 {
8099 struct zone *zone;
8100 int old_percpu_pagelist_fraction;
8101 int ret;
8102
8103 mutex_lock(&pcp_batch_high_lock);
8104 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8105
8106 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8107 if (!write || ret < 0)
8108 goto out;
8109
8110 /* Sanity checking to avoid pcp imbalance */
8111 if (percpu_pagelist_fraction &&
8112 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8113 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8114 ret = -EINVAL;
8115 goto out;
8116 }
8117
8118 /* No change? */
8119 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8120 goto out;
8121
8122 for_each_populated_zone(zone)
8123 __zone_pcp_update(zone);
8124 out:
8125 mutex_unlock(&pcp_batch_high_lock);
8126 return ret;
8127 }
8128
8129 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8130 /*
8131 * Returns the number of pages that arch has reserved but
8132 * is not known to alloc_large_system_hash().
8133 */
8134 static unsigned long __init arch_reserved_kernel_pages(void)
8135 {
8136 return 0;
8137 }
8138 #endif
8139
8140 /*
8141 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8142 * machines. As memory size is increased the scale is also increased but at
8143 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8144 * quadruples the scale is increased by one, which means the size of hash table
8145 * only doubles, instead of quadrupling as well.
8146 * Because 32-bit systems cannot have large physical memory, where this scaling
8147 * makes sense, it is disabled on such platforms.
8148 */
8149 #if __BITS_PER_LONG > 32
8150 #define ADAPT_SCALE_BASE (64ul << 30)
8151 #define ADAPT_SCALE_SHIFT 2
8152 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8153 #endif
8154
8155 /*
8156 * allocate a large system hash table from bootmem
8157 * - it is assumed that the hash table must contain an exact power-of-2
8158 * quantity of entries
8159 * - limit is the number of hash buckets, not the total allocation size
8160 */
8161 void *__init alloc_large_system_hash(const char *tablename,
8162 unsigned long bucketsize,
8163 unsigned long numentries,
8164 int scale,
8165 int flags,
8166 unsigned int *_hash_shift,
8167 unsigned int *_hash_mask,
8168 unsigned long low_limit,
8169 unsigned long high_limit)
8170 {
8171 unsigned long long max = high_limit;
8172 unsigned long log2qty, size;
8173 void *table = NULL;
8174 gfp_t gfp_flags;
8175 bool virt;
8176
8177 /* allow the kernel cmdline to have a say */
8178 if (!numentries) {
8179 /* round applicable memory size up to nearest megabyte */
8180 numentries = nr_kernel_pages;
8181 numentries -= arch_reserved_kernel_pages();
8182
8183 /* It isn't necessary when PAGE_SIZE >= 1MB */
8184 if (PAGE_SHIFT < 20)
8185 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8186
8187 #if __BITS_PER_LONG > 32
8188 if (!high_limit) {
8189 unsigned long adapt;
8190
8191 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8192 adapt <<= ADAPT_SCALE_SHIFT)
8193 scale++;
8194 }
8195 #endif
8196
8197 /* limit to 1 bucket per 2^scale bytes of low memory */
8198 if (scale > PAGE_SHIFT)
8199 numentries >>= (scale - PAGE_SHIFT);
8200 else
8201 numentries <<= (PAGE_SHIFT - scale);
8202
8203 /* Make sure we've got at least a 0-order allocation.. */
8204 if (unlikely(flags & HASH_SMALL)) {
8205 /* Makes no sense without HASH_EARLY */
8206 WARN_ON(!(flags & HASH_EARLY));
8207 if (!(numentries >> *_hash_shift)) {
8208 numentries = 1UL << *_hash_shift;
8209 BUG_ON(!numentries);
8210 }
8211 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8212 numentries = PAGE_SIZE / bucketsize;
8213 }
8214 numentries = roundup_pow_of_two(numentries);
8215
8216 /* limit allocation size to 1/16 total memory by default */
8217 if (max == 0) {
8218 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8219 do_div(max, bucketsize);
8220 }
8221 max = min(max, 0x80000000ULL);
8222
8223 if (numentries < low_limit)
8224 numentries = low_limit;
8225 if (numentries > max)
8226 numentries = max;
8227
8228 log2qty = ilog2(numentries);
8229
8230 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8231 do {
8232 virt = false;
8233 size = bucketsize << log2qty;
8234 if (flags & HASH_EARLY) {
8235 if (flags & HASH_ZERO)
8236 table = memblock_alloc(size, SMP_CACHE_BYTES);
8237 else
8238 table = memblock_alloc_raw(size,
8239 SMP_CACHE_BYTES);
8240 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8241 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8242 virt = true;
8243 } else {
8244 /*
8245 * If bucketsize is not a power-of-two, we may free
8246 * some pages at the end of hash table which
8247 * alloc_pages_exact() automatically does
8248 */
8249 table = alloc_pages_exact(size, gfp_flags);
8250 kmemleak_alloc(table, size, 1, gfp_flags);
8251 }
8252 } while (!table && size > PAGE_SIZE && --log2qty);
8253
8254 if (!table)
8255 panic("Failed to allocate %s hash table\n", tablename);
8256
8257 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8258 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8259 virt ? "vmalloc" : "linear");
8260
8261 if (_hash_shift)
8262 *_hash_shift = log2qty;
8263 if (_hash_mask)
8264 *_hash_mask = (1 << log2qty) - 1;
8265
8266 return table;
8267 }
8268
8269 /*
8270 * This function checks whether pageblock includes unmovable pages or not.
8271 *
8272 * PageLRU check without isolation or lru_lock could race so that
8273 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8274 * check without lock_page also may miss some movable non-lru pages at
8275 * race condition. So you can't expect this function should be exact.
8276 *
8277 * Returns a page without holding a reference. If the caller wants to
8278 * dereference that page (e.g., dumping), it has to make sure that that it
8279 * cannot get removed (e.g., via memory unplug) concurrently.
8280 *
8281 */
8282 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8283 int migratetype, int flags)
8284 {
8285 unsigned long iter = 0;
8286 unsigned long pfn = page_to_pfn(page);
8287
8288 /*
8289 * TODO we could make this much more efficient by not checking every
8290 * page in the range if we know all of them are in MOVABLE_ZONE and
8291 * that the movable zone guarantees that pages are migratable but
8292 * the later is not the case right now unfortunatelly. E.g. movablecore
8293 * can still lead to having bootmem allocations in zone_movable.
8294 */
8295
8296 if (is_migrate_cma_page(page)) {
8297 /*
8298 * CMA allocations (alloc_contig_range) really need to mark
8299 * isolate CMA pageblocks even when they are not movable in fact
8300 * so consider them movable here.
8301 */
8302 if (is_migrate_cma(migratetype))
8303 return NULL;
8304
8305 return page;
8306 }
8307
8308 for (; iter < pageblock_nr_pages; iter++) {
8309 if (!pfn_valid_within(pfn + iter))
8310 continue;
8311
8312 page = pfn_to_page(pfn + iter);
8313
8314 if (PageReserved(page))
8315 return page;
8316
8317 /*
8318 * If the zone is movable and we have ruled out all reserved
8319 * pages then it should be reasonably safe to assume the rest
8320 * is movable.
8321 */
8322 if (zone_idx(zone) == ZONE_MOVABLE)
8323 continue;
8324
8325 /*
8326 * Hugepages are not in LRU lists, but they're movable.
8327 * THPs are on the LRU, but need to be counted as #small pages.
8328 * We need not scan over tail pages because we don't
8329 * handle each tail page individually in migration.
8330 */
8331 if (PageHuge(page) || PageTransCompound(page)) {
8332 struct page *head = compound_head(page);
8333 unsigned int skip_pages;
8334
8335 if (PageHuge(page)) {
8336 if (!hugepage_migration_supported(page_hstate(head)))
8337 return page;
8338 } else if (!PageLRU(head) && !__PageMovable(head)) {
8339 return page;
8340 }
8341
8342 skip_pages = compound_nr(head) - (page - head);
8343 iter += skip_pages - 1;
8344 continue;
8345 }
8346
8347 /*
8348 * We can't use page_count without pin a page
8349 * because another CPU can free compound page.
8350 * This check already skips compound tails of THP
8351 * because their page->_refcount is zero at all time.
8352 */
8353 if (!page_ref_count(page)) {
8354 if (PageBuddy(page))
8355 iter += (1 << page_order(page)) - 1;
8356 continue;
8357 }
8358
8359 /*
8360 * The HWPoisoned page may be not in buddy system, and
8361 * page_count() is not 0.
8362 */
8363 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8364 continue;
8365
8366 if (__PageMovable(page) || PageLRU(page))
8367 continue;
8368
8369 /*
8370 * If there are RECLAIMABLE pages, we need to check
8371 * it. But now, memory offline itself doesn't call
8372 * shrink_node_slabs() and it still to be fixed.
8373 */
8374 /*
8375 * If the page is not RAM, page_count()should be 0.
8376 * we don't need more check. This is an _used_ not-movable page.
8377 *
8378 * The problematic thing here is PG_reserved pages. PG_reserved
8379 * is set to both of a memory hole page and a _used_ kernel
8380 * page at boot.
8381 */
8382 return page;
8383 }
8384 return NULL;
8385 }
8386
8387 #ifdef CONFIG_CONTIG_ALLOC
8388 static unsigned long pfn_max_align_down(unsigned long pfn)
8389 {
8390 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8391 pageblock_nr_pages) - 1);
8392 }
8393
8394 static unsigned long pfn_max_align_up(unsigned long pfn)
8395 {
8396 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8397 pageblock_nr_pages));
8398 }
8399
8400 /* [start, end) must belong to a single zone. */
8401 static int __alloc_contig_migrate_range(struct compact_control *cc,
8402 unsigned long start, unsigned long end)
8403 {
8404 /* This function is based on compact_zone() from compaction.c. */
8405 unsigned long nr_reclaimed;
8406 unsigned long pfn = start;
8407 unsigned int tries = 0;
8408 int ret = 0;
8409
8410 migrate_prep();
8411
8412 while (pfn < end || !list_empty(&cc->migratepages)) {
8413 if (fatal_signal_pending(current)) {
8414 ret = -EINTR;
8415 break;
8416 }
8417
8418 if (list_empty(&cc->migratepages)) {
8419 cc->nr_migratepages = 0;
8420 pfn = isolate_migratepages_range(cc, pfn, end);
8421 if (!pfn) {
8422 ret = -EINTR;
8423 break;
8424 }
8425 tries = 0;
8426 } else if (++tries == 5) {
8427 ret = ret < 0 ? ret : -EBUSY;
8428 break;
8429 }
8430
8431 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8432 &cc->migratepages);
8433 cc->nr_migratepages -= nr_reclaimed;
8434
8435 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8436 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8437 }
8438 if (ret < 0) {
8439 putback_movable_pages(&cc->migratepages);
8440 return ret;
8441 }
8442 return 0;
8443 }
8444
8445 /**
8446 * alloc_contig_range() -- tries to allocate given range of pages
8447 * @start: start PFN to allocate
8448 * @end: one-past-the-last PFN to allocate
8449 * @migratetype: migratetype of the underlaying pageblocks (either
8450 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8451 * in range must have the same migratetype and it must
8452 * be either of the two.
8453 * @gfp_mask: GFP mask to use during compaction
8454 *
8455 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8456 * aligned. The PFN range must belong to a single zone.
8457 *
8458 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8459 * pageblocks in the range. Once isolated, the pageblocks should not
8460 * be modified by others.
8461 *
8462 * Return: zero on success or negative error code. On success all
8463 * pages which PFN is in [start, end) are allocated for the caller and
8464 * need to be freed with free_contig_range().
8465 */
8466 int alloc_contig_range(unsigned long start, unsigned long end,
8467 unsigned migratetype, gfp_t gfp_mask)
8468 {
8469 unsigned long outer_start, outer_end;
8470 unsigned int order;
8471 int ret = 0;
8472
8473 struct compact_control cc = {
8474 .nr_migratepages = 0,
8475 .order = -1,
8476 .zone = page_zone(pfn_to_page(start)),
8477 .mode = MIGRATE_SYNC,
8478 .ignore_skip_hint = true,
8479 .no_set_skip_hint = true,
8480 .gfp_mask = current_gfp_context(gfp_mask),
8481 .alloc_contig = true,
8482 };
8483 INIT_LIST_HEAD(&cc.migratepages);
8484
8485 /*
8486 * What we do here is we mark all pageblocks in range as
8487 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8488 * have different sizes, and due to the way page allocator
8489 * work, we align the range to biggest of the two pages so
8490 * that page allocator won't try to merge buddies from
8491 * different pageblocks and change MIGRATE_ISOLATE to some
8492 * other migration type.
8493 *
8494 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8495 * migrate the pages from an unaligned range (ie. pages that
8496 * we are interested in). This will put all the pages in
8497 * range back to page allocator as MIGRATE_ISOLATE.
8498 *
8499 * When this is done, we take the pages in range from page
8500 * allocator removing them from the buddy system. This way
8501 * page allocator will never consider using them.
8502 *
8503 * This lets us mark the pageblocks back as
8504 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8505 * aligned range but not in the unaligned, original range are
8506 * put back to page allocator so that buddy can use them.
8507 */
8508
8509 ret = start_isolate_page_range(pfn_max_align_down(start),
8510 pfn_max_align_up(end), migratetype, 0);
8511 if (ret < 0)
8512 return ret;
8513
8514 /*
8515 * In case of -EBUSY, we'd like to know which page causes problem.
8516 * So, just fall through. test_pages_isolated() has a tracepoint
8517 * which will report the busy page.
8518 *
8519 * It is possible that busy pages could become available before
8520 * the call to test_pages_isolated, and the range will actually be
8521 * allocated. So, if we fall through be sure to clear ret so that
8522 * -EBUSY is not accidentally used or returned to caller.
8523 */
8524 ret = __alloc_contig_migrate_range(&cc, start, end);
8525 if (ret && ret != -EBUSY)
8526 goto done;
8527 ret =0;
8528
8529 /*
8530 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8531 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8532 * more, all pages in [start, end) are free in page allocator.
8533 * What we are going to do is to allocate all pages from
8534 * [start, end) (that is remove them from page allocator).
8535 *
8536 * The only problem is that pages at the beginning and at the
8537 * end of interesting range may be not aligned with pages that
8538 * page allocator holds, ie. they can be part of higher order
8539 * pages. Because of this, we reserve the bigger range and
8540 * once this is done free the pages we are not interested in.
8541 *
8542 * We don't have to hold zone->lock here because the pages are
8543 * isolated thus they won't get removed from buddy.
8544 */
8545
8546 lru_add_drain_all();
8547
8548 order = 0;
8549 outer_start = start;
8550 while (!PageBuddy(pfn_to_page(outer_start))) {
8551 if (++order >= MAX_ORDER) {
8552 outer_start = start;
8553 break;
8554 }
8555 outer_start &= ~0UL << order;
8556 }
8557
8558 if (outer_start != start) {
8559 order = page_order(pfn_to_page(outer_start));
8560
8561 /*
8562 * outer_start page could be small order buddy page and
8563 * it doesn't include start page. Adjust outer_start
8564 * in this case to report failed page properly
8565 * on tracepoint in test_pages_isolated()
8566 */
8567 if (outer_start + (1UL << order) <= start)
8568 outer_start = start;
8569 }
8570
8571 /* Make sure the range is really isolated. */
8572 if (test_pages_isolated(outer_start, end, 0)) {
8573 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8574 __func__, outer_start, end);
8575 ret = -EBUSY;
8576 goto done;
8577 }
8578
8579 /* Grab isolated pages from freelists. */
8580 outer_end = isolate_freepages_range(&cc, outer_start, end);
8581 if (!outer_end) {
8582 ret = -EBUSY;
8583 goto done;
8584 }
8585
8586 /* Free head and tail (if any) */
8587 if (start != outer_start)
8588 free_contig_range(outer_start, start - outer_start);
8589 if (end != outer_end)
8590 free_contig_range(end, outer_end - end);
8591
8592 done:
8593 undo_isolate_page_range(pfn_max_align_down(start),
8594 pfn_max_align_up(end), migratetype);
8595 return ret;
8596 }
8597
8598 static int __alloc_contig_pages(unsigned long start_pfn,
8599 unsigned long nr_pages, gfp_t gfp_mask)
8600 {
8601 unsigned long end_pfn = start_pfn + nr_pages;
8602
8603 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8604 gfp_mask);
8605 }
8606
8607 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8608 unsigned long nr_pages)
8609 {
8610 unsigned long i, end_pfn = start_pfn + nr_pages;
8611 struct page *page;
8612
8613 for (i = start_pfn; i < end_pfn; i++) {
8614 page = pfn_to_online_page(i);
8615 if (!page)
8616 return false;
8617
8618 if (page_zone(page) != z)
8619 return false;
8620
8621 if (PageReserved(page))
8622 return false;
8623
8624 if (page_count(page) > 0)
8625 return false;
8626
8627 if (PageHuge(page))
8628 return false;
8629 }
8630 return true;
8631 }
8632
8633 static bool zone_spans_last_pfn(const struct zone *zone,
8634 unsigned long start_pfn, unsigned long nr_pages)
8635 {
8636 unsigned long last_pfn = start_pfn + nr_pages - 1;
8637
8638 return zone_spans_pfn(zone, last_pfn);
8639 }
8640
8641 /**
8642 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8643 * @nr_pages: Number of contiguous pages to allocate
8644 * @gfp_mask: GFP mask to limit search and used during compaction
8645 * @nid: Target node
8646 * @nodemask: Mask for other possible nodes
8647 *
8648 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8649 * on an applicable zonelist to find a contiguous pfn range which can then be
8650 * tried for allocation with alloc_contig_range(). This routine is intended
8651 * for allocation requests which can not be fulfilled with the buddy allocator.
8652 *
8653 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8654 * power of two then the alignment is guaranteed to be to the given nr_pages
8655 * (e.g. 1GB request would be aligned to 1GB).
8656 *
8657 * Allocated pages can be freed with free_contig_range() or by manually calling
8658 * __free_page() on each allocated page.
8659 *
8660 * Return: pointer to contiguous pages on success, or NULL if not successful.
8661 */
8662 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8663 int nid, nodemask_t *nodemask)
8664 {
8665 unsigned long ret, pfn, flags;
8666 struct zonelist *zonelist;
8667 struct zone *zone;
8668 struct zoneref *z;
8669
8670 zonelist = node_zonelist(nid, gfp_mask);
8671 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8672 gfp_zone(gfp_mask), nodemask) {
8673 spin_lock_irqsave(&zone->lock, flags);
8674
8675 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8676 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8677 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8678 /*
8679 * We release the zone lock here because
8680 * alloc_contig_range() will also lock the zone
8681 * at some point. If there's an allocation
8682 * spinning on this lock, it may win the race
8683 * and cause alloc_contig_range() to fail...
8684 */
8685 spin_unlock_irqrestore(&zone->lock, flags);
8686 ret = __alloc_contig_pages(pfn, nr_pages,
8687 gfp_mask);
8688 if (!ret)
8689 return pfn_to_page(pfn);
8690 spin_lock_irqsave(&zone->lock, flags);
8691 }
8692 pfn += nr_pages;
8693 }
8694 spin_unlock_irqrestore(&zone->lock, flags);
8695 }
8696 return NULL;
8697 }
8698 #endif /* CONFIG_CONTIG_ALLOC */
8699
8700 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8701 {
8702 unsigned int count = 0;
8703
8704 for (; nr_pages--; pfn++) {
8705 struct page *page = pfn_to_page(pfn);
8706
8707 count += page_count(page) != 1;
8708 __free_page(page);
8709 }
8710 WARN(count != 0, "%d pages are still in use!\n", count);
8711 }
8712
8713 /*
8714 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8715 * page high values need to be recalulated.
8716 */
8717 void __meminit zone_pcp_update(struct zone *zone)
8718 {
8719 mutex_lock(&pcp_batch_high_lock);
8720 __zone_pcp_update(zone);
8721 mutex_unlock(&pcp_batch_high_lock);
8722 }
8723
8724 void zone_pcp_reset(struct zone *zone)
8725 {
8726 unsigned long flags;
8727 int cpu;
8728 struct per_cpu_pageset *pset;
8729
8730 /* avoid races with drain_pages() */
8731 local_irq_save(flags);
8732 if (zone->pageset != &boot_pageset) {
8733 for_each_online_cpu(cpu) {
8734 pset = per_cpu_ptr(zone->pageset, cpu);
8735 drain_zonestat(zone, pset);
8736 }
8737 free_percpu(zone->pageset);
8738 zone->pageset = &boot_pageset;
8739 }
8740 local_irq_restore(flags);
8741 }
8742
8743 #ifdef CONFIG_MEMORY_HOTREMOVE
8744 /*
8745 * All pages in the range must be in a single zone and isolated
8746 * before calling this.
8747 */
8748 unsigned long
8749 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8750 {
8751 struct page *page;
8752 struct zone *zone;
8753 unsigned int order;
8754 unsigned long pfn;
8755 unsigned long flags;
8756 unsigned long offlined_pages = 0;
8757
8758 /* find the first valid pfn */
8759 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8760 if (pfn_valid(pfn))
8761 break;
8762 if (pfn == end_pfn)
8763 return offlined_pages;
8764
8765 offline_mem_sections(pfn, end_pfn);
8766 zone = page_zone(pfn_to_page(pfn));
8767 spin_lock_irqsave(&zone->lock, flags);
8768 pfn = start_pfn;
8769 while (pfn < end_pfn) {
8770 if (!pfn_valid(pfn)) {
8771 pfn++;
8772 continue;
8773 }
8774 page = pfn_to_page(pfn);
8775 /*
8776 * The HWPoisoned page may be not in buddy system, and
8777 * page_count() is not 0.
8778 */
8779 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8780 pfn++;
8781 offlined_pages++;
8782 continue;
8783 }
8784
8785 BUG_ON(page_count(page));
8786 BUG_ON(!PageBuddy(page));
8787 order = page_order(page);
8788 offlined_pages += 1 << order;
8789 del_page_from_free_list(page, zone, order);
8790 pfn += (1 << order);
8791 }
8792 spin_unlock_irqrestore(&zone->lock, flags);
8793
8794 return offlined_pages;
8795 }
8796 #endif
8797
8798 bool is_free_buddy_page(struct page *page)
8799 {
8800 struct zone *zone = page_zone(page);
8801 unsigned long pfn = page_to_pfn(page);
8802 unsigned long flags;
8803 unsigned int order;
8804
8805 spin_lock_irqsave(&zone->lock, flags);
8806 for (order = 0; order < MAX_ORDER; order++) {
8807 struct page *page_head = page - (pfn & ((1 << order) - 1));
8808
8809 if (PageBuddy(page_head) && page_order(page_head) >= order)
8810 break;
8811 }
8812 spin_unlock_irqrestore(&zone->lock, flags);
8813
8814 return order < MAX_ORDER;
8815 }
8816
8817 #ifdef CONFIG_MEMORY_FAILURE
8818 /*
8819 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8820 * test is performed under the zone lock to prevent a race against page
8821 * allocation.
8822 */
8823 bool set_hwpoison_free_buddy_page(struct page *page)
8824 {
8825 struct zone *zone = page_zone(page);
8826 unsigned long pfn = page_to_pfn(page);
8827 unsigned long flags;
8828 unsigned int order;
8829 bool hwpoisoned = false;
8830
8831 spin_lock_irqsave(&zone->lock, flags);
8832 for (order = 0; order < MAX_ORDER; order++) {
8833 struct page *page_head = page - (pfn & ((1 << order) - 1));
8834
8835 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8836 if (!TestSetPageHWPoison(page))
8837 hwpoisoned = true;
8838 break;
8839 }
8840 }
8841 spin_unlock_irqrestore(&zone->lock, flags);
8842
8843 return hwpoisoned;
8844 }
8845 #endif