]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/page_alloc.c
mm/page_alloc: convert zone_pcp_update() to rely on memory barriers instead of stop_m...
[thirdparty/kernel/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock);
70
71 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
72 DEFINE_PER_CPU(int, numa_node);
73 EXPORT_PER_CPU_SYMBOL(numa_node);
74 #endif
75
76 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
77 /*
78 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
79 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
80 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
81 * defined in <linux/topology.h>.
82 */
83 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
84 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
85 #endif
86
87 /*
88 * Array of node states.
89 */
90 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
91 [N_POSSIBLE] = NODE_MASK_ALL,
92 [N_ONLINE] = { { [0] = 1UL } },
93 #ifndef CONFIG_NUMA
94 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
95 #ifdef CONFIG_HIGHMEM
96 [N_HIGH_MEMORY] = { { [0] = 1UL } },
97 #endif
98 #ifdef CONFIG_MOVABLE_NODE
99 [N_MEMORY] = { { [0] = 1UL } },
100 #endif
101 [N_CPU] = { { [0] = 1UL } },
102 #endif /* NUMA */
103 };
104 EXPORT_SYMBOL(node_states);
105
106 unsigned long totalram_pages __read_mostly;
107 unsigned long totalreserve_pages __read_mostly;
108 /*
109 * When calculating the number of globally allowed dirty pages, there
110 * is a certain number of per-zone reserves that should not be
111 * considered dirtyable memory. This is the sum of those reserves
112 * over all existing zones that contribute dirtyable memory.
113 */
114 unsigned long dirty_balance_reserve __read_mostly;
115
116 int percpu_pagelist_fraction;
117 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
118
119 #ifdef CONFIG_PM_SLEEP
120 /*
121 * The following functions are used by the suspend/hibernate code to temporarily
122 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
123 * while devices are suspended. To avoid races with the suspend/hibernate code,
124 * they should always be called with pm_mutex held (gfp_allowed_mask also should
125 * only be modified with pm_mutex held, unless the suspend/hibernate code is
126 * guaranteed not to run in parallel with that modification).
127 */
128
129 static gfp_t saved_gfp_mask;
130
131 void pm_restore_gfp_mask(void)
132 {
133 WARN_ON(!mutex_is_locked(&pm_mutex));
134 if (saved_gfp_mask) {
135 gfp_allowed_mask = saved_gfp_mask;
136 saved_gfp_mask = 0;
137 }
138 }
139
140 void pm_restrict_gfp_mask(void)
141 {
142 WARN_ON(!mutex_is_locked(&pm_mutex));
143 WARN_ON(saved_gfp_mask);
144 saved_gfp_mask = gfp_allowed_mask;
145 gfp_allowed_mask &= ~GFP_IOFS;
146 }
147
148 bool pm_suspended_storage(void)
149 {
150 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
151 return false;
152 return true;
153 }
154 #endif /* CONFIG_PM_SLEEP */
155
156 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
157 int pageblock_order __read_mostly;
158 #endif
159
160 static void __free_pages_ok(struct page *page, unsigned int order);
161
162 /*
163 * results with 256, 32 in the lowmem_reserve sysctl:
164 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
165 * 1G machine -> (16M dma, 784M normal, 224M high)
166 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
167 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
168 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
169 *
170 * TBD: should special case ZONE_DMA32 machines here - in those we normally
171 * don't need any ZONE_NORMAL reservation
172 */
173 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
174 #ifdef CONFIG_ZONE_DMA
175 256,
176 #endif
177 #ifdef CONFIG_ZONE_DMA32
178 256,
179 #endif
180 #ifdef CONFIG_HIGHMEM
181 32,
182 #endif
183 32,
184 };
185
186 EXPORT_SYMBOL(totalram_pages);
187
188 static char * const zone_names[MAX_NR_ZONES] = {
189 #ifdef CONFIG_ZONE_DMA
190 "DMA",
191 #endif
192 #ifdef CONFIG_ZONE_DMA32
193 "DMA32",
194 #endif
195 "Normal",
196 #ifdef CONFIG_HIGHMEM
197 "HighMem",
198 #endif
199 "Movable",
200 };
201
202 int min_free_kbytes = 1024;
203
204 static unsigned long __meminitdata nr_kernel_pages;
205 static unsigned long __meminitdata nr_all_pages;
206 static unsigned long __meminitdata dma_reserve;
207
208 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
209 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
210 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
211 static unsigned long __initdata required_kernelcore;
212 static unsigned long __initdata required_movablecore;
213 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
214
215 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
216 int movable_zone;
217 EXPORT_SYMBOL(movable_zone);
218 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
219
220 #if MAX_NUMNODES > 1
221 int nr_node_ids __read_mostly = MAX_NUMNODES;
222 int nr_online_nodes __read_mostly = 1;
223 EXPORT_SYMBOL(nr_node_ids);
224 EXPORT_SYMBOL(nr_online_nodes);
225 #endif
226
227 int page_group_by_mobility_disabled __read_mostly;
228
229 void set_pageblock_migratetype(struct page *page, int migratetype)
230 {
231
232 if (unlikely(page_group_by_mobility_disabled))
233 migratetype = MIGRATE_UNMOVABLE;
234
235 set_pageblock_flags_group(page, (unsigned long)migratetype,
236 PB_migrate, PB_migrate_end);
237 }
238
239 bool oom_killer_disabled __read_mostly;
240
241 #ifdef CONFIG_DEBUG_VM
242 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
243 {
244 int ret = 0;
245 unsigned seq;
246 unsigned long pfn = page_to_pfn(page);
247 unsigned long sp, start_pfn;
248
249 do {
250 seq = zone_span_seqbegin(zone);
251 start_pfn = zone->zone_start_pfn;
252 sp = zone->spanned_pages;
253 if (!zone_spans_pfn(zone, pfn))
254 ret = 1;
255 } while (zone_span_seqretry(zone, seq));
256
257 if (ret)
258 pr_err("page %lu outside zone [ %lu - %lu ]\n",
259 pfn, start_pfn, start_pfn + sp);
260
261 return ret;
262 }
263
264 static int page_is_consistent(struct zone *zone, struct page *page)
265 {
266 if (!pfn_valid_within(page_to_pfn(page)))
267 return 0;
268 if (zone != page_zone(page))
269 return 0;
270
271 return 1;
272 }
273 /*
274 * Temporary debugging check for pages not lying within a given zone.
275 */
276 static int bad_range(struct zone *zone, struct page *page)
277 {
278 if (page_outside_zone_boundaries(zone, page))
279 return 1;
280 if (!page_is_consistent(zone, page))
281 return 1;
282
283 return 0;
284 }
285 #else
286 static inline int bad_range(struct zone *zone, struct page *page)
287 {
288 return 0;
289 }
290 #endif
291
292 static void bad_page(struct page *page)
293 {
294 static unsigned long resume;
295 static unsigned long nr_shown;
296 static unsigned long nr_unshown;
297
298 /* Don't complain about poisoned pages */
299 if (PageHWPoison(page)) {
300 page_mapcount_reset(page); /* remove PageBuddy */
301 return;
302 }
303
304 /*
305 * Allow a burst of 60 reports, then keep quiet for that minute;
306 * or allow a steady drip of one report per second.
307 */
308 if (nr_shown == 60) {
309 if (time_before(jiffies, resume)) {
310 nr_unshown++;
311 goto out;
312 }
313 if (nr_unshown) {
314 printk(KERN_ALERT
315 "BUG: Bad page state: %lu messages suppressed\n",
316 nr_unshown);
317 nr_unshown = 0;
318 }
319 nr_shown = 0;
320 }
321 if (nr_shown++ == 0)
322 resume = jiffies + 60 * HZ;
323
324 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
325 current->comm, page_to_pfn(page));
326 dump_page(page);
327
328 print_modules();
329 dump_stack();
330 out:
331 /* Leave bad fields for debug, except PageBuddy could make trouble */
332 page_mapcount_reset(page); /* remove PageBuddy */
333 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
334 }
335
336 /*
337 * Higher-order pages are called "compound pages". They are structured thusly:
338 *
339 * The first PAGE_SIZE page is called the "head page".
340 *
341 * The remaining PAGE_SIZE pages are called "tail pages".
342 *
343 * All pages have PG_compound set. All tail pages have their ->first_page
344 * pointing at the head page.
345 *
346 * The first tail page's ->lru.next holds the address of the compound page's
347 * put_page() function. Its ->lru.prev holds the order of allocation.
348 * This usage means that zero-order pages may not be compound.
349 */
350
351 static void free_compound_page(struct page *page)
352 {
353 __free_pages_ok(page, compound_order(page));
354 }
355
356 void prep_compound_page(struct page *page, unsigned long order)
357 {
358 int i;
359 int nr_pages = 1 << order;
360
361 set_compound_page_dtor(page, free_compound_page);
362 set_compound_order(page, order);
363 __SetPageHead(page);
364 for (i = 1; i < nr_pages; i++) {
365 struct page *p = page + i;
366 __SetPageTail(p);
367 set_page_count(p, 0);
368 p->first_page = page;
369 }
370 }
371
372 /* update __split_huge_page_refcount if you change this function */
373 static int destroy_compound_page(struct page *page, unsigned long order)
374 {
375 int i;
376 int nr_pages = 1 << order;
377 int bad = 0;
378
379 if (unlikely(compound_order(page) != order)) {
380 bad_page(page);
381 bad++;
382 }
383
384 __ClearPageHead(page);
385
386 for (i = 1; i < nr_pages; i++) {
387 struct page *p = page + i;
388
389 if (unlikely(!PageTail(p) || (p->first_page != page))) {
390 bad_page(page);
391 bad++;
392 }
393 __ClearPageTail(p);
394 }
395
396 return bad;
397 }
398
399 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
400 {
401 int i;
402
403 /*
404 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
405 * and __GFP_HIGHMEM from hard or soft interrupt context.
406 */
407 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
408 for (i = 0; i < (1 << order); i++)
409 clear_highpage(page + i);
410 }
411
412 #ifdef CONFIG_DEBUG_PAGEALLOC
413 unsigned int _debug_guardpage_minorder;
414
415 static int __init debug_guardpage_minorder_setup(char *buf)
416 {
417 unsigned long res;
418
419 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
420 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
421 return 0;
422 }
423 _debug_guardpage_minorder = res;
424 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
425 return 0;
426 }
427 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
428
429 static inline void set_page_guard_flag(struct page *page)
430 {
431 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
432 }
433
434 static inline void clear_page_guard_flag(struct page *page)
435 {
436 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
437 }
438 #else
439 static inline void set_page_guard_flag(struct page *page) { }
440 static inline void clear_page_guard_flag(struct page *page) { }
441 #endif
442
443 static inline void set_page_order(struct page *page, int order)
444 {
445 set_page_private(page, order);
446 __SetPageBuddy(page);
447 }
448
449 static inline void rmv_page_order(struct page *page)
450 {
451 __ClearPageBuddy(page);
452 set_page_private(page, 0);
453 }
454
455 /*
456 * Locate the struct page for both the matching buddy in our
457 * pair (buddy1) and the combined O(n+1) page they form (page).
458 *
459 * 1) Any buddy B1 will have an order O twin B2 which satisfies
460 * the following equation:
461 * B2 = B1 ^ (1 << O)
462 * For example, if the starting buddy (buddy2) is #8 its order
463 * 1 buddy is #10:
464 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
465 *
466 * 2) Any buddy B will have an order O+1 parent P which
467 * satisfies the following equation:
468 * P = B & ~(1 << O)
469 *
470 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
471 */
472 static inline unsigned long
473 __find_buddy_index(unsigned long page_idx, unsigned int order)
474 {
475 return page_idx ^ (1 << order);
476 }
477
478 /*
479 * This function checks whether a page is free && is the buddy
480 * we can do coalesce a page and its buddy if
481 * (a) the buddy is not in a hole &&
482 * (b) the buddy is in the buddy system &&
483 * (c) a page and its buddy have the same order &&
484 * (d) a page and its buddy are in the same zone.
485 *
486 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
487 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
488 *
489 * For recording page's order, we use page_private(page).
490 */
491 static inline int page_is_buddy(struct page *page, struct page *buddy,
492 int order)
493 {
494 if (!pfn_valid_within(page_to_pfn(buddy)))
495 return 0;
496
497 if (page_zone_id(page) != page_zone_id(buddy))
498 return 0;
499
500 if (page_is_guard(buddy) && page_order(buddy) == order) {
501 VM_BUG_ON(page_count(buddy) != 0);
502 return 1;
503 }
504
505 if (PageBuddy(buddy) && page_order(buddy) == order) {
506 VM_BUG_ON(page_count(buddy) != 0);
507 return 1;
508 }
509 return 0;
510 }
511
512 /*
513 * Freeing function for a buddy system allocator.
514 *
515 * The concept of a buddy system is to maintain direct-mapped table
516 * (containing bit values) for memory blocks of various "orders".
517 * The bottom level table contains the map for the smallest allocatable
518 * units of memory (here, pages), and each level above it describes
519 * pairs of units from the levels below, hence, "buddies".
520 * At a high level, all that happens here is marking the table entry
521 * at the bottom level available, and propagating the changes upward
522 * as necessary, plus some accounting needed to play nicely with other
523 * parts of the VM system.
524 * At each level, we keep a list of pages, which are heads of continuous
525 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
526 * order is recorded in page_private(page) field.
527 * So when we are allocating or freeing one, we can derive the state of the
528 * other. That is, if we allocate a small block, and both were
529 * free, the remainder of the region must be split into blocks.
530 * If a block is freed, and its buddy is also free, then this
531 * triggers coalescing into a block of larger size.
532 *
533 * -- nyc
534 */
535
536 static inline void __free_one_page(struct page *page,
537 struct zone *zone, unsigned int order,
538 int migratetype)
539 {
540 unsigned long page_idx;
541 unsigned long combined_idx;
542 unsigned long uninitialized_var(buddy_idx);
543 struct page *buddy;
544
545 VM_BUG_ON(!zone_is_initialized(zone));
546
547 if (unlikely(PageCompound(page)))
548 if (unlikely(destroy_compound_page(page, order)))
549 return;
550
551 VM_BUG_ON(migratetype == -1);
552
553 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
554
555 VM_BUG_ON(page_idx & ((1 << order) - 1));
556 VM_BUG_ON(bad_range(zone, page));
557
558 while (order < MAX_ORDER-1) {
559 buddy_idx = __find_buddy_index(page_idx, order);
560 buddy = page + (buddy_idx - page_idx);
561 if (!page_is_buddy(page, buddy, order))
562 break;
563 /*
564 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
565 * merge with it and move up one order.
566 */
567 if (page_is_guard(buddy)) {
568 clear_page_guard_flag(buddy);
569 set_page_private(page, 0);
570 __mod_zone_freepage_state(zone, 1 << order,
571 migratetype);
572 } else {
573 list_del(&buddy->lru);
574 zone->free_area[order].nr_free--;
575 rmv_page_order(buddy);
576 }
577 combined_idx = buddy_idx & page_idx;
578 page = page + (combined_idx - page_idx);
579 page_idx = combined_idx;
580 order++;
581 }
582 set_page_order(page, order);
583
584 /*
585 * If this is not the largest possible page, check if the buddy
586 * of the next-highest order is free. If it is, it's possible
587 * that pages are being freed that will coalesce soon. In case,
588 * that is happening, add the free page to the tail of the list
589 * so it's less likely to be used soon and more likely to be merged
590 * as a higher order page
591 */
592 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
593 struct page *higher_page, *higher_buddy;
594 combined_idx = buddy_idx & page_idx;
595 higher_page = page + (combined_idx - page_idx);
596 buddy_idx = __find_buddy_index(combined_idx, order + 1);
597 higher_buddy = higher_page + (buddy_idx - combined_idx);
598 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
599 list_add_tail(&page->lru,
600 &zone->free_area[order].free_list[migratetype]);
601 goto out;
602 }
603 }
604
605 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
606 out:
607 zone->free_area[order].nr_free++;
608 }
609
610 static inline int free_pages_check(struct page *page)
611 {
612 if (unlikely(page_mapcount(page) |
613 (page->mapping != NULL) |
614 (atomic_read(&page->_count) != 0) |
615 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
616 (mem_cgroup_bad_page_check(page)))) {
617 bad_page(page);
618 return 1;
619 }
620 page_nid_reset_last(page);
621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 return 0;
624 }
625
626 /*
627 * Frees a number of pages from the PCP lists
628 * Assumes all pages on list are in same zone, and of same order.
629 * count is the number of pages to free.
630 *
631 * If the zone was previously in an "all pages pinned" state then look to
632 * see if this freeing clears that state.
633 *
634 * And clear the zone's pages_scanned counter, to hold off the "all pages are
635 * pinned" detection logic.
636 */
637 static void free_pcppages_bulk(struct zone *zone, int count,
638 struct per_cpu_pages *pcp)
639 {
640 int migratetype = 0;
641 int batch_free = 0;
642 int to_free = count;
643
644 spin_lock(&zone->lock);
645 zone->all_unreclaimable = 0;
646 zone->pages_scanned = 0;
647
648 while (to_free) {
649 struct page *page;
650 struct list_head *list;
651
652 /*
653 * Remove pages from lists in a round-robin fashion. A
654 * batch_free count is maintained that is incremented when an
655 * empty list is encountered. This is so more pages are freed
656 * off fuller lists instead of spinning excessively around empty
657 * lists
658 */
659 do {
660 batch_free++;
661 if (++migratetype == MIGRATE_PCPTYPES)
662 migratetype = 0;
663 list = &pcp->lists[migratetype];
664 } while (list_empty(list));
665
666 /* This is the only non-empty list. Free them all. */
667 if (batch_free == MIGRATE_PCPTYPES)
668 batch_free = to_free;
669
670 do {
671 int mt; /* migratetype of the to-be-freed page */
672
673 page = list_entry(list->prev, struct page, lru);
674 /* must delete as __free_one_page list manipulates */
675 list_del(&page->lru);
676 mt = get_freepage_migratetype(page);
677 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
678 __free_one_page(page, zone, 0, mt);
679 trace_mm_page_pcpu_drain(page, 0, mt);
680 if (likely(!is_migrate_isolate_page(page))) {
681 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
682 if (is_migrate_cma(mt))
683 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
684 }
685 } while (--to_free && --batch_free && !list_empty(list));
686 }
687 spin_unlock(&zone->lock);
688 }
689
690 static void free_one_page(struct zone *zone, struct page *page, int order,
691 int migratetype)
692 {
693 spin_lock(&zone->lock);
694 zone->all_unreclaimable = 0;
695 zone->pages_scanned = 0;
696
697 __free_one_page(page, zone, order, migratetype);
698 if (unlikely(!is_migrate_isolate(migratetype)))
699 __mod_zone_freepage_state(zone, 1 << order, migratetype);
700 spin_unlock(&zone->lock);
701 }
702
703 static bool free_pages_prepare(struct page *page, unsigned int order)
704 {
705 int i;
706 int bad = 0;
707
708 trace_mm_page_free(page, order);
709 kmemcheck_free_shadow(page, order);
710
711 if (PageAnon(page))
712 page->mapping = NULL;
713 for (i = 0; i < (1 << order); i++)
714 bad += free_pages_check(page + i);
715 if (bad)
716 return false;
717
718 if (!PageHighMem(page)) {
719 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
720 debug_check_no_obj_freed(page_address(page),
721 PAGE_SIZE << order);
722 }
723 arch_free_page(page, order);
724 kernel_map_pages(page, 1 << order, 0);
725
726 return true;
727 }
728
729 static void __free_pages_ok(struct page *page, unsigned int order)
730 {
731 unsigned long flags;
732 int migratetype;
733
734 if (!free_pages_prepare(page, order))
735 return;
736
737 local_irq_save(flags);
738 __count_vm_events(PGFREE, 1 << order);
739 migratetype = get_pageblock_migratetype(page);
740 set_freepage_migratetype(page, migratetype);
741 free_one_page(page_zone(page), page, order, migratetype);
742 local_irq_restore(flags);
743 }
744
745 /*
746 * Read access to zone->managed_pages is safe because it's unsigned long,
747 * but we still need to serialize writers. Currently all callers of
748 * __free_pages_bootmem() except put_page_bootmem() should only be used
749 * at boot time. So for shorter boot time, we shift the burden to
750 * put_page_bootmem() to serialize writers.
751 */
752 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
753 {
754 unsigned int nr_pages = 1 << order;
755 unsigned int loop;
756
757 prefetchw(page);
758 for (loop = 0; loop < nr_pages; loop++) {
759 struct page *p = &page[loop];
760
761 if (loop + 1 < nr_pages)
762 prefetchw(p + 1);
763 __ClearPageReserved(p);
764 set_page_count(p, 0);
765 }
766
767 page_zone(page)->managed_pages += 1 << order;
768 set_page_refcounted(page);
769 __free_pages(page, order);
770 }
771
772 #ifdef CONFIG_CMA
773 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
774 void __init init_cma_reserved_pageblock(struct page *page)
775 {
776 unsigned i = pageblock_nr_pages;
777 struct page *p = page;
778
779 do {
780 __ClearPageReserved(p);
781 set_page_count(p, 0);
782 } while (++p, --i);
783
784 set_page_refcounted(page);
785 set_pageblock_migratetype(page, MIGRATE_CMA);
786 __free_pages(page, pageblock_order);
787 totalram_pages += pageblock_nr_pages;
788 #ifdef CONFIG_HIGHMEM
789 if (PageHighMem(page))
790 totalhigh_pages += pageblock_nr_pages;
791 #endif
792 }
793 #endif
794
795 /*
796 * The order of subdivision here is critical for the IO subsystem.
797 * Please do not alter this order without good reasons and regression
798 * testing. Specifically, as large blocks of memory are subdivided,
799 * the order in which smaller blocks are delivered depends on the order
800 * they're subdivided in this function. This is the primary factor
801 * influencing the order in which pages are delivered to the IO
802 * subsystem according to empirical testing, and this is also justified
803 * by considering the behavior of a buddy system containing a single
804 * large block of memory acted on by a series of small allocations.
805 * This behavior is a critical factor in sglist merging's success.
806 *
807 * -- nyc
808 */
809 static inline void expand(struct zone *zone, struct page *page,
810 int low, int high, struct free_area *area,
811 int migratetype)
812 {
813 unsigned long size = 1 << high;
814
815 while (high > low) {
816 area--;
817 high--;
818 size >>= 1;
819 VM_BUG_ON(bad_range(zone, &page[size]));
820
821 #ifdef CONFIG_DEBUG_PAGEALLOC
822 if (high < debug_guardpage_minorder()) {
823 /*
824 * Mark as guard pages (or page), that will allow to
825 * merge back to allocator when buddy will be freed.
826 * Corresponding page table entries will not be touched,
827 * pages will stay not present in virtual address space
828 */
829 INIT_LIST_HEAD(&page[size].lru);
830 set_page_guard_flag(&page[size]);
831 set_page_private(&page[size], high);
832 /* Guard pages are not available for any usage */
833 __mod_zone_freepage_state(zone, -(1 << high),
834 migratetype);
835 continue;
836 }
837 #endif
838 list_add(&page[size].lru, &area->free_list[migratetype]);
839 area->nr_free++;
840 set_page_order(&page[size], high);
841 }
842 }
843
844 /*
845 * This page is about to be returned from the page allocator
846 */
847 static inline int check_new_page(struct page *page)
848 {
849 if (unlikely(page_mapcount(page) |
850 (page->mapping != NULL) |
851 (atomic_read(&page->_count) != 0) |
852 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
853 (mem_cgroup_bad_page_check(page)))) {
854 bad_page(page);
855 return 1;
856 }
857 return 0;
858 }
859
860 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
861 {
862 int i;
863
864 for (i = 0; i < (1 << order); i++) {
865 struct page *p = page + i;
866 if (unlikely(check_new_page(p)))
867 return 1;
868 }
869
870 set_page_private(page, 0);
871 set_page_refcounted(page);
872
873 arch_alloc_page(page, order);
874 kernel_map_pages(page, 1 << order, 1);
875
876 if (gfp_flags & __GFP_ZERO)
877 prep_zero_page(page, order, gfp_flags);
878
879 if (order && (gfp_flags & __GFP_COMP))
880 prep_compound_page(page, order);
881
882 return 0;
883 }
884
885 /*
886 * Go through the free lists for the given migratetype and remove
887 * the smallest available page from the freelists
888 */
889 static inline
890 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
891 int migratetype)
892 {
893 unsigned int current_order;
894 struct free_area * area;
895 struct page *page;
896
897 /* Find a page of the appropriate size in the preferred list */
898 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
899 area = &(zone->free_area[current_order]);
900 if (list_empty(&area->free_list[migratetype]))
901 continue;
902
903 page = list_entry(area->free_list[migratetype].next,
904 struct page, lru);
905 list_del(&page->lru);
906 rmv_page_order(page);
907 area->nr_free--;
908 expand(zone, page, order, current_order, area, migratetype);
909 return page;
910 }
911
912 return NULL;
913 }
914
915
916 /*
917 * This array describes the order lists are fallen back to when
918 * the free lists for the desirable migrate type are depleted
919 */
920 static int fallbacks[MIGRATE_TYPES][4] = {
921 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
923 #ifdef CONFIG_CMA
924 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
925 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
926 #else
927 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
928 #endif
929 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
930 #ifdef CONFIG_MEMORY_ISOLATION
931 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
932 #endif
933 };
934
935 /*
936 * Move the free pages in a range to the free lists of the requested type.
937 * Note that start_page and end_pages are not aligned on a pageblock
938 * boundary. If alignment is required, use move_freepages_block()
939 */
940 int move_freepages(struct zone *zone,
941 struct page *start_page, struct page *end_page,
942 int migratetype)
943 {
944 struct page *page;
945 unsigned long order;
946 int pages_moved = 0;
947
948 #ifndef CONFIG_HOLES_IN_ZONE
949 /*
950 * page_zone is not safe to call in this context when
951 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
952 * anyway as we check zone boundaries in move_freepages_block().
953 * Remove at a later date when no bug reports exist related to
954 * grouping pages by mobility
955 */
956 BUG_ON(page_zone(start_page) != page_zone(end_page));
957 #endif
958
959 for (page = start_page; page <= end_page;) {
960 /* Make sure we are not inadvertently changing nodes */
961 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
962
963 if (!pfn_valid_within(page_to_pfn(page))) {
964 page++;
965 continue;
966 }
967
968 if (!PageBuddy(page)) {
969 page++;
970 continue;
971 }
972
973 order = page_order(page);
974 list_move(&page->lru,
975 &zone->free_area[order].free_list[migratetype]);
976 set_freepage_migratetype(page, migratetype);
977 page += 1 << order;
978 pages_moved += 1 << order;
979 }
980
981 return pages_moved;
982 }
983
984 int move_freepages_block(struct zone *zone, struct page *page,
985 int migratetype)
986 {
987 unsigned long start_pfn, end_pfn;
988 struct page *start_page, *end_page;
989
990 start_pfn = page_to_pfn(page);
991 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
992 start_page = pfn_to_page(start_pfn);
993 end_page = start_page + pageblock_nr_pages - 1;
994 end_pfn = start_pfn + pageblock_nr_pages - 1;
995
996 /* Do not cross zone boundaries */
997 if (!zone_spans_pfn(zone, start_pfn))
998 start_page = page;
999 if (!zone_spans_pfn(zone, end_pfn))
1000 return 0;
1001
1002 return move_freepages(zone, start_page, end_page, migratetype);
1003 }
1004
1005 static void change_pageblock_range(struct page *pageblock_page,
1006 int start_order, int migratetype)
1007 {
1008 int nr_pageblocks = 1 << (start_order - pageblock_order);
1009
1010 while (nr_pageblocks--) {
1011 set_pageblock_migratetype(pageblock_page, migratetype);
1012 pageblock_page += pageblock_nr_pages;
1013 }
1014 }
1015
1016 /* Remove an element from the buddy allocator from the fallback list */
1017 static inline struct page *
1018 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1019 {
1020 struct free_area * area;
1021 int current_order;
1022 struct page *page;
1023 int migratetype, i;
1024
1025 /* Find the largest possible block of pages in the other list */
1026 for (current_order = MAX_ORDER-1; current_order >= order;
1027 --current_order) {
1028 for (i = 0;; i++) {
1029 migratetype = fallbacks[start_migratetype][i];
1030
1031 /* MIGRATE_RESERVE handled later if necessary */
1032 if (migratetype == MIGRATE_RESERVE)
1033 break;
1034
1035 area = &(zone->free_area[current_order]);
1036 if (list_empty(&area->free_list[migratetype]))
1037 continue;
1038
1039 page = list_entry(area->free_list[migratetype].next,
1040 struct page, lru);
1041 area->nr_free--;
1042
1043 /*
1044 * If breaking a large block of pages, move all free
1045 * pages to the preferred allocation list. If falling
1046 * back for a reclaimable kernel allocation, be more
1047 * aggressive about taking ownership of free pages
1048 *
1049 * On the other hand, never change migration
1050 * type of MIGRATE_CMA pageblocks nor move CMA
1051 * pages on different free lists. We don't
1052 * want unmovable pages to be allocated from
1053 * MIGRATE_CMA areas.
1054 */
1055 if (!is_migrate_cma(migratetype) &&
1056 (unlikely(current_order >= pageblock_order / 2) ||
1057 start_migratetype == MIGRATE_RECLAIMABLE ||
1058 page_group_by_mobility_disabled)) {
1059 int pages;
1060 pages = move_freepages_block(zone, page,
1061 start_migratetype);
1062
1063 /* Claim the whole block if over half of it is free */
1064 if (pages >= (1 << (pageblock_order-1)) ||
1065 page_group_by_mobility_disabled)
1066 set_pageblock_migratetype(page,
1067 start_migratetype);
1068
1069 migratetype = start_migratetype;
1070 }
1071
1072 /* Remove the page from the freelists */
1073 list_del(&page->lru);
1074 rmv_page_order(page);
1075
1076 /* Take ownership for orders >= pageblock_order */
1077 if (current_order >= pageblock_order &&
1078 !is_migrate_cma(migratetype))
1079 change_pageblock_range(page, current_order,
1080 start_migratetype);
1081
1082 expand(zone, page, order, current_order, area,
1083 is_migrate_cma(migratetype)
1084 ? migratetype : start_migratetype);
1085
1086 trace_mm_page_alloc_extfrag(page, order, current_order,
1087 start_migratetype, migratetype);
1088
1089 return page;
1090 }
1091 }
1092
1093 return NULL;
1094 }
1095
1096 /*
1097 * Do the hard work of removing an element from the buddy allocator.
1098 * Call me with the zone->lock already held.
1099 */
1100 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1101 int migratetype)
1102 {
1103 struct page *page;
1104
1105 retry_reserve:
1106 page = __rmqueue_smallest(zone, order, migratetype);
1107
1108 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1109 page = __rmqueue_fallback(zone, order, migratetype);
1110
1111 /*
1112 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1113 * is used because __rmqueue_smallest is an inline function
1114 * and we want just one call site
1115 */
1116 if (!page) {
1117 migratetype = MIGRATE_RESERVE;
1118 goto retry_reserve;
1119 }
1120 }
1121
1122 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1123 return page;
1124 }
1125
1126 /*
1127 * Obtain a specified number of elements from the buddy allocator, all under
1128 * a single hold of the lock, for efficiency. Add them to the supplied list.
1129 * Returns the number of new pages which were placed at *list.
1130 */
1131 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1132 unsigned long count, struct list_head *list,
1133 int migratetype, int cold)
1134 {
1135 int mt = migratetype, i;
1136
1137 spin_lock(&zone->lock);
1138 for (i = 0; i < count; ++i) {
1139 struct page *page = __rmqueue(zone, order, migratetype);
1140 if (unlikely(page == NULL))
1141 break;
1142
1143 /*
1144 * Split buddy pages returned by expand() are received here
1145 * in physical page order. The page is added to the callers and
1146 * list and the list head then moves forward. From the callers
1147 * perspective, the linked list is ordered by page number in
1148 * some conditions. This is useful for IO devices that can
1149 * merge IO requests if the physical pages are ordered
1150 * properly.
1151 */
1152 if (likely(cold == 0))
1153 list_add(&page->lru, list);
1154 else
1155 list_add_tail(&page->lru, list);
1156 if (IS_ENABLED(CONFIG_CMA)) {
1157 mt = get_pageblock_migratetype(page);
1158 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1159 mt = migratetype;
1160 }
1161 set_freepage_migratetype(page, mt);
1162 list = &page->lru;
1163 if (is_migrate_cma(mt))
1164 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1165 -(1 << order));
1166 }
1167 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1168 spin_unlock(&zone->lock);
1169 return i;
1170 }
1171
1172 #ifdef CONFIG_NUMA
1173 /*
1174 * Called from the vmstat counter updater to drain pagesets of this
1175 * currently executing processor on remote nodes after they have
1176 * expired.
1177 *
1178 * Note that this function must be called with the thread pinned to
1179 * a single processor.
1180 */
1181 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1182 {
1183 unsigned long flags;
1184 int to_drain;
1185 unsigned long batch;
1186
1187 local_irq_save(flags);
1188 batch = ACCESS_ONCE(pcp->batch);
1189 if (pcp->count >= batch)
1190 to_drain = batch;
1191 else
1192 to_drain = pcp->count;
1193 if (to_drain > 0) {
1194 free_pcppages_bulk(zone, to_drain, pcp);
1195 pcp->count -= to_drain;
1196 }
1197 local_irq_restore(flags);
1198 }
1199 #endif
1200
1201 /*
1202 * Drain pages of the indicated processor.
1203 *
1204 * The processor must either be the current processor and the
1205 * thread pinned to the current processor or a processor that
1206 * is not online.
1207 */
1208 static void drain_pages(unsigned int cpu)
1209 {
1210 unsigned long flags;
1211 struct zone *zone;
1212
1213 for_each_populated_zone(zone) {
1214 struct per_cpu_pageset *pset;
1215 struct per_cpu_pages *pcp;
1216
1217 local_irq_save(flags);
1218 pset = per_cpu_ptr(zone->pageset, cpu);
1219
1220 pcp = &pset->pcp;
1221 if (pcp->count) {
1222 free_pcppages_bulk(zone, pcp->count, pcp);
1223 pcp->count = 0;
1224 }
1225 local_irq_restore(flags);
1226 }
1227 }
1228
1229 /*
1230 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1231 */
1232 void drain_local_pages(void *arg)
1233 {
1234 drain_pages(smp_processor_id());
1235 }
1236
1237 /*
1238 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1239 *
1240 * Note that this code is protected against sending an IPI to an offline
1241 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1242 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1243 * nothing keeps CPUs from showing up after we populated the cpumask and
1244 * before the call to on_each_cpu_mask().
1245 */
1246 void drain_all_pages(void)
1247 {
1248 int cpu;
1249 struct per_cpu_pageset *pcp;
1250 struct zone *zone;
1251
1252 /*
1253 * Allocate in the BSS so we wont require allocation in
1254 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1255 */
1256 static cpumask_t cpus_with_pcps;
1257
1258 /*
1259 * We don't care about racing with CPU hotplug event
1260 * as offline notification will cause the notified
1261 * cpu to drain that CPU pcps and on_each_cpu_mask
1262 * disables preemption as part of its processing
1263 */
1264 for_each_online_cpu(cpu) {
1265 bool has_pcps = false;
1266 for_each_populated_zone(zone) {
1267 pcp = per_cpu_ptr(zone->pageset, cpu);
1268 if (pcp->pcp.count) {
1269 has_pcps = true;
1270 break;
1271 }
1272 }
1273 if (has_pcps)
1274 cpumask_set_cpu(cpu, &cpus_with_pcps);
1275 else
1276 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1277 }
1278 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1279 }
1280
1281 #ifdef CONFIG_HIBERNATION
1282
1283 void mark_free_pages(struct zone *zone)
1284 {
1285 unsigned long pfn, max_zone_pfn;
1286 unsigned long flags;
1287 int order, t;
1288 struct list_head *curr;
1289
1290 if (!zone->spanned_pages)
1291 return;
1292
1293 spin_lock_irqsave(&zone->lock, flags);
1294
1295 max_zone_pfn = zone_end_pfn(zone);
1296 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1297 if (pfn_valid(pfn)) {
1298 struct page *page = pfn_to_page(pfn);
1299
1300 if (!swsusp_page_is_forbidden(page))
1301 swsusp_unset_page_free(page);
1302 }
1303
1304 for_each_migratetype_order(order, t) {
1305 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1306 unsigned long i;
1307
1308 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1309 for (i = 0; i < (1UL << order); i++)
1310 swsusp_set_page_free(pfn_to_page(pfn + i));
1311 }
1312 }
1313 spin_unlock_irqrestore(&zone->lock, flags);
1314 }
1315 #endif /* CONFIG_PM */
1316
1317 /*
1318 * Free a 0-order page
1319 * cold == 1 ? free a cold page : free a hot page
1320 */
1321 void free_hot_cold_page(struct page *page, int cold)
1322 {
1323 struct zone *zone = page_zone(page);
1324 struct per_cpu_pages *pcp;
1325 unsigned long flags;
1326 int migratetype;
1327
1328 if (!free_pages_prepare(page, 0))
1329 return;
1330
1331 migratetype = get_pageblock_migratetype(page);
1332 set_freepage_migratetype(page, migratetype);
1333 local_irq_save(flags);
1334 __count_vm_event(PGFREE);
1335
1336 /*
1337 * We only track unmovable, reclaimable and movable on pcp lists.
1338 * Free ISOLATE pages back to the allocator because they are being
1339 * offlined but treat RESERVE as movable pages so we can get those
1340 * areas back if necessary. Otherwise, we may have to free
1341 * excessively into the page allocator
1342 */
1343 if (migratetype >= MIGRATE_PCPTYPES) {
1344 if (unlikely(is_migrate_isolate(migratetype))) {
1345 free_one_page(zone, page, 0, migratetype);
1346 goto out;
1347 }
1348 migratetype = MIGRATE_MOVABLE;
1349 }
1350
1351 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1352 if (cold)
1353 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1354 else
1355 list_add(&page->lru, &pcp->lists[migratetype]);
1356 pcp->count++;
1357 if (pcp->count >= pcp->high) {
1358 unsigned long batch = ACCESS_ONCE(pcp->batch);
1359 free_pcppages_bulk(zone, batch, pcp);
1360 pcp->count -= batch;
1361 }
1362
1363 out:
1364 local_irq_restore(flags);
1365 }
1366
1367 /*
1368 * Free a list of 0-order pages
1369 */
1370 void free_hot_cold_page_list(struct list_head *list, int cold)
1371 {
1372 struct page *page, *next;
1373
1374 list_for_each_entry_safe(page, next, list, lru) {
1375 trace_mm_page_free_batched(page, cold);
1376 free_hot_cold_page(page, cold);
1377 }
1378 }
1379
1380 /*
1381 * split_page takes a non-compound higher-order page, and splits it into
1382 * n (1<<order) sub-pages: page[0..n]
1383 * Each sub-page must be freed individually.
1384 *
1385 * Note: this is probably too low level an operation for use in drivers.
1386 * Please consult with lkml before using this in your driver.
1387 */
1388 void split_page(struct page *page, unsigned int order)
1389 {
1390 int i;
1391
1392 VM_BUG_ON(PageCompound(page));
1393 VM_BUG_ON(!page_count(page));
1394
1395 #ifdef CONFIG_KMEMCHECK
1396 /*
1397 * Split shadow pages too, because free(page[0]) would
1398 * otherwise free the whole shadow.
1399 */
1400 if (kmemcheck_page_is_tracked(page))
1401 split_page(virt_to_page(page[0].shadow), order);
1402 #endif
1403
1404 for (i = 1; i < (1 << order); i++)
1405 set_page_refcounted(page + i);
1406 }
1407 EXPORT_SYMBOL_GPL(split_page);
1408
1409 static int __isolate_free_page(struct page *page, unsigned int order)
1410 {
1411 unsigned long watermark;
1412 struct zone *zone;
1413 int mt;
1414
1415 BUG_ON(!PageBuddy(page));
1416
1417 zone = page_zone(page);
1418 mt = get_pageblock_migratetype(page);
1419
1420 if (!is_migrate_isolate(mt)) {
1421 /* Obey watermarks as if the page was being allocated */
1422 watermark = low_wmark_pages(zone) + (1 << order);
1423 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1424 return 0;
1425
1426 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1427 }
1428
1429 /* Remove page from free list */
1430 list_del(&page->lru);
1431 zone->free_area[order].nr_free--;
1432 rmv_page_order(page);
1433
1434 /* Set the pageblock if the isolated page is at least a pageblock */
1435 if (order >= pageblock_order - 1) {
1436 struct page *endpage = page + (1 << order) - 1;
1437 for (; page < endpage; page += pageblock_nr_pages) {
1438 int mt = get_pageblock_migratetype(page);
1439 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1440 set_pageblock_migratetype(page,
1441 MIGRATE_MOVABLE);
1442 }
1443 }
1444
1445 return 1UL << order;
1446 }
1447
1448 /*
1449 * Similar to split_page except the page is already free. As this is only
1450 * being used for migration, the migratetype of the block also changes.
1451 * As this is called with interrupts disabled, the caller is responsible
1452 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1453 * are enabled.
1454 *
1455 * Note: this is probably too low level an operation for use in drivers.
1456 * Please consult with lkml before using this in your driver.
1457 */
1458 int split_free_page(struct page *page)
1459 {
1460 unsigned int order;
1461 int nr_pages;
1462
1463 order = page_order(page);
1464
1465 nr_pages = __isolate_free_page(page, order);
1466 if (!nr_pages)
1467 return 0;
1468
1469 /* Split into individual pages */
1470 set_page_refcounted(page);
1471 split_page(page, order);
1472 return nr_pages;
1473 }
1474
1475 /*
1476 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1477 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1478 * or two.
1479 */
1480 static inline
1481 struct page *buffered_rmqueue(struct zone *preferred_zone,
1482 struct zone *zone, int order, gfp_t gfp_flags,
1483 int migratetype)
1484 {
1485 unsigned long flags;
1486 struct page *page;
1487 int cold = !!(gfp_flags & __GFP_COLD);
1488
1489 again:
1490 if (likely(order == 0)) {
1491 struct per_cpu_pages *pcp;
1492 struct list_head *list;
1493
1494 local_irq_save(flags);
1495 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1496 list = &pcp->lists[migratetype];
1497 if (list_empty(list)) {
1498 pcp->count += rmqueue_bulk(zone, 0,
1499 pcp->batch, list,
1500 migratetype, cold);
1501 if (unlikely(list_empty(list)))
1502 goto failed;
1503 }
1504
1505 if (cold)
1506 page = list_entry(list->prev, struct page, lru);
1507 else
1508 page = list_entry(list->next, struct page, lru);
1509
1510 list_del(&page->lru);
1511 pcp->count--;
1512 } else {
1513 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1514 /*
1515 * __GFP_NOFAIL is not to be used in new code.
1516 *
1517 * All __GFP_NOFAIL callers should be fixed so that they
1518 * properly detect and handle allocation failures.
1519 *
1520 * We most definitely don't want callers attempting to
1521 * allocate greater than order-1 page units with
1522 * __GFP_NOFAIL.
1523 */
1524 WARN_ON_ONCE(order > 1);
1525 }
1526 spin_lock_irqsave(&zone->lock, flags);
1527 page = __rmqueue(zone, order, migratetype);
1528 spin_unlock(&zone->lock);
1529 if (!page)
1530 goto failed;
1531 __mod_zone_freepage_state(zone, -(1 << order),
1532 get_pageblock_migratetype(page));
1533 }
1534
1535 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1536 zone_statistics(preferred_zone, zone, gfp_flags);
1537 local_irq_restore(flags);
1538
1539 VM_BUG_ON(bad_range(zone, page));
1540 if (prep_new_page(page, order, gfp_flags))
1541 goto again;
1542 return page;
1543
1544 failed:
1545 local_irq_restore(flags);
1546 return NULL;
1547 }
1548
1549 #ifdef CONFIG_FAIL_PAGE_ALLOC
1550
1551 static struct {
1552 struct fault_attr attr;
1553
1554 u32 ignore_gfp_highmem;
1555 u32 ignore_gfp_wait;
1556 u32 min_order;
1557 } fail_page_alloc = {
1558 .attr = FAULT_ATTR_INITIALIZER,
1559 .ignore_gfp_wait = 1,
1560 .ignore_gfp_highmem = 1,
1561 .min_order = 1,
1562 };
1563
1564 static int __init setup_fail_page_alloc(char *str)
1565 {
1566 return setup_fault_attr(&fail_page_alloc.attr, str);
1567 }
1568 __setup("fail_page_alloc=", setup_fail_page_alloc);
1569
1570 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1571 {
1572 if (order < fail_page_alloc.min_order)
1573 return false;
1574 if (gfp_mask & __GFP_NOFAIL)
1575 return false;
1576 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1577 return false;
1578 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1579 return false;
1580
1581 return should_fail(&fail_page_alloc.attr, 1 << order);
1582 }
1583
1584 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1585
1586 static int __init fail_page_alloc_debugfs(void)
1587 {
1588 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1589 struct dentry *dir;
1590
1591 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1592 &fail_page_alloc.attr);
1593 if (IS_ERR(dir))
1594 return PTR_ERR(dir);
1595
1596 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1597 &fail_page_alloc.ignore_gfp_wait))
1598 goto fail;
1599 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1600 &fail_page_alloc.ignore_gfp_highmem))
1601 goto fail;
1602 if (!debugfs_create_u32("min-order", mode, dir,
1603 &fail_page_alloc.min_order))
1604 goto fail;
1605
1606 return 0;
1607 fail:
1608 debugfs_remove_recursive(dir);
1609
1610 return -ENOMEM;
1611 }
1612
1613 late_initcall(fail_page_alloc_debugfs);
1614
1615 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1616
1617 #else /* CONFIG_FAIL_PAGE_ALLOC */
1618
1619 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1620 {
1621 return false;
1622 }
1623
1624 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1625
1626 /*
1627 * Return true if free pages are above 'mark'. This takes into account the order
1628 * of the allocation.
1629 */
1630 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1631 int classzone_idx, int alloc_flags, long free_pages)
1632 {
1633 /* free_pages my go negative - that's OK */
1634 long min = mark;
1635 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1636 int o;
1637 long free_cma = 0;
1638
1639 free_pages -= (1 << order) - 1;
1640 if (alloc_flags & ALLOC_HIGH)
1641 min -= min / 2;
1642 if (alloc_flags & ALLOC_HARDER)
1643 min -= min / 4;
1644 #ifdef CONFIG_CMA
1645 /* If allocation can't use CMA areas don't use free CMA pages */
1646 if (!(alloc_flags & ALLOC_CMA))
1647 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1648 #endif
1649
1650 if (free_pages - free_cma <= min + lowmem_reserve)
1651 return false;
1652 for (o = 0; o < order; o++) {
1653 /* At the next order, this order's pages become unavailable */
1654 free_pages -= z->free_area[o].nr_free << o;
1655
1656 /* Require fewer higher order pages to be free */
1657 min >>= 1;
1658
1659 if (free_pages <= min)
1660 return false;
1661 }
1662 return true;
1663 }
1664
1665 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1666 int classzone_idx, int alloc_flags)
1667 {
1668 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1669 zone_page_state(z, NR_FREE_PAGES));
1670 }
1671
1672 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1673 int classzone_idx, int alloc_flags)
1674 {
1675 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1676
1677 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1678 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1679
1680 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1681 free_pages);
1682 }
1683
1684 #ifdef CONFIG_NUMA
1685 /*
1686 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1687 * skip over zones that are not allowed by the cpuset, or that have
1688 * been recently (in last second) found to be nearly full. See further
1689 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1690 * that have to skip over a lot of full or unallowed zones.
1691 *
1692 * If the zonelist cache is present in the passed in zonelist, then
1693 * returns a pointer to the allowed node mask (either the current
1694 * tasks mems_allowed, or node_states[N_MEMORY].)
1695 *
1696 * If the zonelist cache is not available for this zonelist, does
1697 * nothing and returns NULL.
1698 *
1699 * If the fullzones BITMAP in the zonelist cache is stale (more than
1700 * a second since last zap'd) then we zap it out (clear its bits.)
1701 *
1702 * We hold off even calling zlc_setup, until after we've checked the
1703 * first zone in the zonelist, on the theory that most allocations will
1704 * be satisfied from that first zone, so best to examine that zone as
1705 * quickly as we can.
1706 */
1707 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1708 {
1709 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1710 nodemask_t *allowednodes; /* zonelist_cache approximation */
1711
1712 zlc = zonelist->zlcache_ptr;
1713 if (!zlc)
1714 return NULL;
1715
1716 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1717 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1718 zlc->last_full_zap = jiffies;
1719 }
1720
1721 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1722 &cpuset_current_mems_allowed :
1723 &node_states[N_MEMORY];
1724 return allowednodes;
1725 }
1726
1727 /*
1728 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1729 * if it is worth looking at further for free memory:
1730 * 1) Check that the zone isn't thought to be full (doesn't have its
1731 * bit set in the zonelist_cache fullzones BITMAP).
1732 * 2) Check that the zones node (obtained from the zonelist_cache
1733 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1734 * Return true (non-zero) if zone is worth looking at further, or
1735 * else return false (zero) if it is not.
1736 *
1737 * This check -ignores- the distinction between various watermarks,
1738 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1739 * found to be full for any variation of these watermarks, it will
1740 * be considered full for up to one second by all requests, unless
1741 * we are so low on memory on all allowed nodes that we are forced
1742 * into the second scan of the zonelist.
1743 *
1744 * In the second scan we ignore this zonelist cache and exactly
1745 * apply the watermarks to all zones, even it is slower to do so.
1746 * We are low on memory in the second scan, and should leave no stone
1747 * unturned looking for a free page.
1748 */
1749 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1750 nodemask_t *allowednodes)
1751 {
1752 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1753 int i; /* index of *z in zonelist zones */
1754 int n; /* node that zone *z is on */
1755
1756 zlc = zonelist->zlcache_ptr;
1757 if (!zlc)
1758 return 1;
1759
1760 i = z - zonelist->_zonerefs;
1761 n = zlc->z_to_n[i];
1762
1763 /* This zone is worth trying if it is allowed but not full */
1764 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1765 }
1766
1767 /*
1768 * Given 'z' scanning a zonelist, set the corresponding bit in
1769 * zlc->fullzones, so that subsequent attempts to allocate a page
1770 * from that zone don't waste time re-examining it.
1771 */
1772 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1773 {
1774 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1775 int i; /* index of *z in zonelist zones */
1776
1777 zlc = zonelist->zlcache_ptr;
1778 if (!zlc)
1779 return;
1780
1781 i = z - zonelist->_zonerefs;
1782
1783 set_bit(i, zlc->fullzones);
1784 }
1785
1786 /*
1787 * clear all zones full, called after direct reclaim makes progress so that
1788 * a zone that was recently full is not skipped over for up to a second
1789 */
1790 static void zlc_clear_zones_full(struct zonelist *zonelist)
1791 {
1792 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1793
1794 zlc = zonelist->zlcache_ptr;
1795 if (!zlc)
1796 return;
1797
1798 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1799 }
1800
1801 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1802 {
1803 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1804 }
1805
1806 static void __paginginit init_zone_allows_reclaim(int nid)
1807 {
1808 int i;
1809
1810 for_each_online_node(i)
1811 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1812 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1813 else
1814 zone_reclaim_mode = 1;
1815 }
1816
1817 #else /* CONFIG_NUMA */
1818
1819 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1820 {
1821 return NULL;
1822 }
1823
1824 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1825 nodemask_t *allowednodes)
1826 {
1827 return 1;
1828 }
1829
1830 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1831 {
1832 }
1833
1834 static void zlc_clear_zones_full(struct zonelist *zonelist)
1835 {
1836 }
1837
1838 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1839 {
1840 return true;
1841 }
1842
1843 static inline void init_zone_allows_reclaim(int nid)
1844 {
1845 }
1846 #endif /* CONFIG_NUMA */
1847
1848 /*
1849 * get_page_from_freelist goes through the zonelist trying to allocate
1850 * a page.
1851 */
1852 static struct page *
1853 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1854 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1855 struct zone *preferred_zone, int migratetype)
1856 {
1857 struct zoneref *z;
1858 struct page *page = NULL;
1859 int classzone_idx;
1860 struct zone *zone;
1861 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1862 int zlc_active = 0; /* set if using zonelist_cache */
1863 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1864
1865 classzone_idx = zone_idx(preferred_zone);
1866 zonelist_scan:
1867 /*
1868 * Scan zonelist, looking for a zone with enough free.
1869 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1870 */
1871 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1872 high_zoneidx, nodemask) {
1873 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1874 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1875 continue;
1876 if ((alloc_flags & ALLOC_CPUSET) &&
1877 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1878 continue;
1879 /*
1880 * When allocating a page cache page for writing, we
1881 * want to get it from a zone that is within its dirty
1882 * limit, such that no single zone holds more than its
1883 * proportional share of globally allowed dirty pages.
1884 * The dirty limits take into account the zone's
1885 * lowmem reserves and high watermark so that kswapd
1886 * should be able to balance it without having to
1887 * write pages from its LRU list.
1888 *
1889 * This may look like it could increase pressure on
1890 * lower zones by failing allocations in higher zones
1891 * before they are full. But the pages that do spill
1892 * over are limited as the lower zones are protected
1893 * by this very same mechanism. It should not become
1894 * a practical burden to them.
1895 *
1896 * XXX: For now, allow allocations to potentially
1897 * exceed the per-zone dirty limit in the slowpath
1898 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1899 * which is important when on a NUMA setup the allowed
1900 * zones are together not big enough to reach the
1901 * global limit. The proper fix for these situations
1902 * will require awareness of zones in the
1903 * dirty-throttling and the flusher threads.
1904 */
1905 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1906 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1907 goto this_zone_full;
1908
1909 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1910 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1911 unsigned long mark;
1912 int ret;
1913
1914 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1915 if (zone_watermark_ok(zone, order, mark,
1916 classzone_idx, alloc_flags))
1917 goto try_this_zone;
1918
1919 if (IS_ENABLED(CONFIG_NUMA) &&
1920 !did_zlc_setup && nr_online_nodes > 1) {
1921 /*
1922 * we do zlc_setup if there are multiple nodes
1923 * and before considering the first zone allowed
1924 * by the cpuset.
1925 */
1926 allowednodes = zlc_setup(zonelist, alloc_flags);
1927 zlc_active = 1;
1928 did_zlc_setup = 1;
1929 }
1930
1931 if (zone_reclaim_mode == 0 ||
1932 !zone_allows_reclaim(preferred_zone, zone))
1933 goto this_zone_full;
1934
1935 /*
1936 * As we may have just activated ZLC, check if the first
1937 * eligible zone has failed zone_reclaim recently.
1938 */
1939 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1940 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1941 continue;
1942
1943 ret = zone_reclaim(zone, gfp_mask, order);
1944 switch (ret) {
1945 case ZONE_RECLAIM_NOSCAN:
1946 /* did not scan */
1947 continue;
1948 case ZONE_RECLAIM_FULL:
1949 /* scanned but unreclaimable */
1950 continue;
1951 default:
1952 /* did we reclaim enough */
1953 if (zone_watermark_ok(zone, order, mark,
1954 classzone_idx, alloc_flags))
1955 goto try_this_zone;
1956
1957 /*
1958 * Failed to reclaim enough to meet watermark.
1959 * Only mark the zone full if checking the min
1960 * watermark or if we failed to reclaim just
1961 * 1<<order pages or else the page allocator
1962 * fastpath will prematurely mark zones full
1963 * when the watermark is between the low and
1964 * min watermarks.
1965 */
1966 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1967 ret == ZONE_RECLAIM_SOME)
1968 goto this_zone_full;
1969
1970 continue;
1971 }
1972 }
1973
1974 try_this_zone:
1975 page = buffered_rmqueue(preferred_zone, zone, order,
1976 gfp_mask, migratetype);
1977 if (page)
1978 break;
1979 this_zone_full:
1980 if (IS_ENABLED(CONFIG_NUMA))
1981 zlc_mark_zone_full(zonelist, z);
1982 }
1983
1984 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1985 /* Disable zlc cache for second zonelist scan */
1986 zlc_active = 0;
1987 goto zonelist_scan;
1988 }
1989
1990 if (page)
1991 /*
1992 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1993 * necessary to allocate the page. The expectation is
1994 * that the caller is taking steps that will free more
1995 * memory. The caller should avoid the page being used
1996 * for !PFMEMALLOC purposes.
1997 */
1998 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1999
2000 return page;
2001 }
2002
2003 /*
2004 * Large machines with many possible nodes should not always dump per-node
2005 * meminfo in irq context.
2006 */
2007 static inline bool should_suppress_show_mem(void)
2008 {
2009 bool ret = false;
2010
2011 #if NODES_SHIFT > 8
2012 ret = in_interrupt();
2013 #endif
2014 return ret;
2015 }
2016
2017 static DEFINE_RATELIMIT_STATE(nopage_rs,
2018 DEFAULT_RATELIMIT_INTERVAL,
2019 DEFAULT_RATELIMIT_BURST);
2020
2021 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2022 {
2023 unsigned int filter = SHOW_MEM_FILTER_NODES;
2024
2025 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2026 debug_guardpage_minorder() > 0)
2027 return;
2028
2029 /*
2030 * Walking all memory to count page types is very expensive and should
2031 * be inhibited in non-blockable contexts.
2032 */
2033 if (!(gfp_mask & __GFP_WAIT))
2034 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2035
2036 /*
2037 * This documents exceptions given to allocations in certain
2038 * contexts that are allowed to allocate outside current's set
2039 * of allowed nodes.
2040 */
2041 if (!(gfp_mask & __GFP_NOMEMALLOC))
2042 if (test_thread_flag(TIF_MEMDIE) ||
2043 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2044 filter &= ~SHOW_MEM_FILTER_NODES;
2045 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2046 filter &= ~SHOW_MEM_FILTER_NODES;
2047
2048 if (fmt) {
2049 struct va_format vaf;
2050 va_list args;
2051
2052 va_start(args, fmt);
2053
2054 vaf.fmt = fmt;
2055 vaf.va = &args;
2056
2057 pr_warn("%pV", &vaf);
2058
2059 va_end(args);
2060 }
2061
2062 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2063 current->comm, order, gfp_mask);
2064
2065 dump_stack();
2066 if (!should_suppress_show_mem())
2067 show_mem(filter);
2068 }
2069
2070 static inline int
2071 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2072 unsigned long did_some_progress,
2073 unsigned long pages_reclaimed)
2074 {
2075 /* Do not loop if specifically requested */
2076 if (gfp_mask & __GFP_NORETRY)
2077 return 0;
2078
2079 /* Always retry if specifically requested */
2080 if (gfp_mask & __GFP_NOFAIL)
2081 return 1;
2082
2083 /*
2084 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2085 * making forward progress without invoking OOM. Suspend also disables
2086 * storage devices so kswapd will not help. Bail if we are suspending.
2087 */
2088 if (!did_some_progress && pm_suspended_storage())
2089 return 0;
2090
2091 /*
2092 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2093 * means __GFP_NOFAIL, but that may not be true in other
2094 * implementations.
2095 */
2096 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2097 return 1;
2098
2099 /*
2100 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2101 * specified, then we retry until we no longer reclaim any pages
2102 * (above), or we've reclaimed an order of pages at least as
2103 * large as the allocation's order. In both cases, if the
2104 * allocation still fails, we stop retrying.
2105 */
2106 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2107 return 1;
2108
2109 return 0;
2110 }
2111
2112 static inline struct page *
2113 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2114 struct zonelist *zonelist, enum zone_type high_zoneidx,
2115 nodemask_t *nodemask, struct zone *preferred_zone,
2116 int migratetype)
2117 {
2118 struct page *page;
2119
2120 /* Acquire the OOM killer lock for the zones in zonelist */
2121 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2122 schedule_timeout_uninterruptible(1);
2123 return NULL;
2124 }
2125
2126 /*
2127 * Go through the zonelist yet one more time, keep very high watermark
2128 * here, this is only to catch a parallel oom killing, we must fail if
2129 * we're still under heavy pressure.
2130 */
2131 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2132 order, zonelist, high_zoneidx,
2133 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2134 preferred_zone, migratetype);
2135 if (page)
2136 goto out;
2137
2138 if (!(gfp_mask & __GFP_NOFAIL)) {
2139 /* The OOM killer will not help higher order allocs */
2140 if (order > PAGE_ALLOC_COSTLY_ORDER)
2141 goto out;
2142 /* The OOM killer does not needlessly kill tasks for lowmem */
2143 if (high_zoneidx < ZONE_NORMAL)
2144 goto out;
2145 /*
2146 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2147 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2148 * The caller should handle page allocation failure by itself if
2149 * it specifies __GFP_THISNODE.
2150 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2151 */
2152 if (gfp_mask & __GFP_THISNODE)
2153 goto out;
2154 }
2155 /* Exhausted what can be done so it's blamo time */
2156 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2157
2158 out:
2159 clear_zonelist_oom(zonelist, gfp_mask);
2160 return page;
2161 }
2162
2163 #ifdef CONFIG_COMPACTION
2164 /* Try memory compaction for high-order allocations before reclaim */
2165 static struct page *
2166 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2167 struct zonelist *zonelist, enum zone_type high_zoneidx,
2168 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2169 int migratetype, bool sync_migration,
2170 bool *contended_compaction, bool *deferred_compaction,
2171 unsigned long *did_some_progress)
2172 {
2173 if (!order)
2174 return NULL;
2175
2176 if (compaction_deferred(preferred_zone, order)) {
2177 *deferred_compaction = true;
2178 return NULL;
2179 }
2180
2181 current->flags |= PF_MEMALLOC;
2182 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2183 nodemask, sync_migration,
2184 contended_compaction);
2185 current->flags &= ~PF_MEMALLOC;
2186
2187 if (*did_some_progress != COMPACT_SKIPPED) {
2188 struct page *page;
2189
2190 /* Page migration frees to the PCP lists but we want merging */
2191 drain_pages(get_cpu());
2192 put_cpu();
2193
2194 page = get_page_from_freelist(gfp_mask, nodemask,
2195 order, zonelist, high_zoneidx,
2196 alloc_flags & ~ALLOC_NO_WATERMARKS,
2197 preferred_zone, migratetype);
2198 if (page) {
2199 preferred_zone->compact_blockskip_flush = false;
2200 preferred_zone->compact_considered = 0;
2201 preferred_zone->compact_defer_shift = 0;
2202 if (order >= preferred_zone->compact_order_failed)
2203 preferred_zone->compact_order_failed = order + 1;
2204 count_vm_event(COMPACTSUCCESS);
2205 return page;
2206 }
2207
2208 /*
2209 * It's bad if compaction run occurs and fails.
2210 * The most likely reason is that pages exist,
2211 * but not enough to satisfy watermarks.
2212 */
2213 count_vm_event(COMPACTFAIL);
2214
2215 /*
2216 * As async compaction considers a subset of pageblocks, only
2217 * defer if the failure was a sync compaction failure.
2218 */
2219 if (sync_migration)
2220 defer_compaction(preferred_zone, order);
2221
2222 cond_resched();
2223 }
2224
2225 return NULL;
2226 }
2227 #else
2228 static inline struct page *
2229 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2230 struct zonelist *zonelist, enum zone_type high_zoneidx,
2231 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2232 int migratetype, bool sync_migration,
2233 bool *contended_compaction, bool *deferred_compaction,
2234 unsigned long *did_some_progress)
2235 {
2236 return NULL;
2237 }
2238 #endif /* CONFIG_COMPACTION */
2239
2240 /* Perform direct synchronous page reclaim */
2241 static int
2242 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2243 nodemask_t *nodemask)
2244 {
2245 struct reclaim_state reclaim_state;
2246 int progress;
2247
2248 cond_resched();
2249
2250 /* We now go into synchronous reclaim */
2251 cpuset_memory_pressure_bump();
2252 current->flags |= PF_MEMALLOC;
2253 lockdep_set_current_reclaim_state(gfp_mask);
2254 reclaim_state.reclaimed_slab = 0;
2255 current->reclaim_state = &reclaim_state;
2256
2257 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2258
2259 current->reclaim_state = NULL;
2260 lockdep_clear_current_reclaim_state();
2261 current->flags &= ~PF_MEMALLOC;
2262
2263 cond_resched();
2264
2265 return progress;
2266 }
2267
2268 /* The really slow allocator path where we enter direct reclaim */
2269 static inline struct page *
2270 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2271 struct zonelist *zonelist, enum zone_type high_zoneidx,
2272 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2273 int migratetype, unsigned long *did_some_progress)
2274 {
2275 struct page *page = NULL;
2276 bool drained = false;
2277
2278 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2279 nodemask);
2280 if (unlikely(!(*did_some_progress)))
2281 return NULL;
2282
2283 /* After successful reclaim, reconsider all zones for allocation */
2284 if (IS_ENABLED(CONFIG_NUMA))
2285 zlc_clear_zones_full(zonelist);
2286
2287 retry:
2288 page = get_page_from_freelist(gfp_mask, nodemask, order,
2289 zonelist, high_zoneidx,
2290 alloc_flags & ~ALLOC_NO_WATERMARKS,
2291 preferred_zone, migratetype);
2292
2293 /*
2294 * If an allocation failed after direct reclaim, it could be because
2295 * pages are pinned on the per-cpu lists. Drain them and try again
2296 */
2297 if (!page && !drained) {
2298 drain_all_pages();
2299 drained = true;
2300 goto retry;
2301 }
2302
2303 return page;
2304 }
2305
2306 /*
2307 * This is called in the allocator slow-path if the allocation request is of
2308 * sufficient urgency to ignore watermarks and take other desperate measures
2309 */
2310 static inline struct page *
2311 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2312 struct zonelist *zonelist, enum zone_type high_zoneidx,
2313 nodemask_t *nodemask, struct zone *preferred_zone,
2314 int migratetype)
2315 {
2316 struct page *page;
2317
2318 do {
2319 page = get_page_from_freelist(gfp_mask, nodemask, order,
2320 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2321 preferred_zone, migratetype);
2322
2323 if (!page && gfp_mask & __GFP_NOFAIL)
2324 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2325 } while (!page && (gfp_mask & __GFP_NOFAIL));
2326
2327 return page;
2328 }
2329
2330 static inline
2331 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2332 enum zone_type high_zoneidx,
2333 enum zone_type classzone_idx)
2334 {
2335 struct zoneref *z;
2336 struct zone *zone;
2337
2338 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2339 wakeup_kswapd(zone, order, classzone_idx);
2340 }
2341
2342 static inline int
2343 gfp_to_alloc_flags(gfp_t gfp_mask)
2344 {
2345 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2346 const gfp_t wait = gfp_mask & __GFP_WAIT;
2347
2348 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2349 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2350
2351 /*
2352 * The caller may dip into page reserves a bit more if the caller
2353 * cannot run direct reclaim, or if the caller has realtime scheduling
2354 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2355 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2356 */
2357 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2358
2359 if (!wait) {
2360 /*
2361 * Not worth trying to allocate harder for
2362 * __GFP_NOMEMALLOC even if it can't schedule.
2363 */
2364 if (!(gfp_mask & __GFP_NOMEMALLOC))
2365 alloc_flags |= ALLOC_HARDER;
2366 /*
2367 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2368 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2369 */
2370 alloc_flags &= ~ALLOC_CPUSET;
2371 } else if (unlikely(rt_task(current)) && !in_interrupt())
2372 alloc_flags |= ALLOC_HARDER;
2373
2374 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2375 if (gfp_mask & __GFP_MEMALLOC)
2376 alloc_flags |= ALLOC_NO_WATERMARKS;
2377 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2378 alloc_flags |= ALLOC_NO_WATERMARKS;
2379 else if (!in_interrupt() &&
2380 ((current->flags & PF_MEMALLOC) ||
2381 unlikely(test_thread_flag(TIF_MEMDIE))))
2382 alloc_flags |= ALLOC_NO_WATERMARKS;
2383 }
2384 #ifdef CONFIG_CMA
2385 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2386 alloc_flags |= ALLOC_CMA;
2387 #endif
2388 return alloc_flags;
2389 }
2390
2391 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2392 {
2393 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2394 }
2395
2396 static inline struct page *
2397 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2398 struct zonelist *zonelist, enum zone_type high_zoneidx,
2399 nodemask_t *nodemask, struct zone *preferred_zone,
2400 int migratetype)
2401 {
2402 const gfp_t wait = gfp_mask & __GFP_WAIT;
2403 struct page *page = NULL;
2404 int alloc_flags;
2405 unsigned long pages_reclaimed = 0;
2406 unsigned long did_some_progress;
2407 bool sync_migration = false;
2408 bool deferred_compaction = false;
2409 bool contended_compaction = false;
2410
2411 /*
2412 * In the slowpath, we sanity check order to avoid ever trying to
2413 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2414 * be using allocators in order of preference for an area that is
2415 * too large.
2416 */
2417 if (order >= MAX_ORDER) {
2418 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2419 return NULL;
2420 }
2421
2422 /*
2423 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2424 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2425 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2426 * using a larger set of nodes after it has established that the
2427 * allowed per node queues are empty and that nodes are
2428 * over allocated.
2429 */
2430 if (IS_ENABLED(CONFIG_NUMA) &&
2431 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2432 goto nopage;
2433
2434 restart:
2435 if (!(gfp_mask & __GFP_NO_KSWAPD))
2436 wake_all_kswapd(order, zonelist, high_zoneidx,
2437 zone_idx(preferred_zone));
2438
2439 /*
2440 * OK, we're below the kswapd watermark and have kicked background
2441 * reclaim. Now things get more complex, so set up alloc_flags according
2442 * to how we want to proceed.
2443 */
2444 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2445
2446 /*
2447 * Find the true preferred zone if the allocation is unconstrained by
2448 * cpusets.
2449 */
2450 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2451 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2452 &preferred_zone);
2453
2454 rebalance:
2455 /* This is the last chance, in general, before the goto nopage. */
2456 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2457 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2458 preferred_zone, migratetype);
2459 if (page)
2460 goto got_pg;
2461
2462 /* Allocate without watermarks if the context allows */
2463 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2464 /*
2465 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2466 * the allocation is high priority and these type of
2467 * allocations are system rather than user orientated
2468 */
2469 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2470
2471 page = __alloc_pages_high_priority(gfp_mask, order,
2472 zonelist, high_zoneidx, nodemask,
2473 preferred_zone, migratetype);
2474 if (page) {
2475 goto got_pg;
2476 }
2477 }
2478
2479 /* Atomic allocations - we can't balance anything */
2480 if (!wait)
2481 goto nopage;
2482
2483 /* Avoid recursion of direct reclaim */
2484 if (current->flags & PF_MEMALLOC)
2485 goto nopage;
2486
2487 /* Avoid allocations with no watermarks from looping endlessly */
2488 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2489 goto nopage;
2490
2491 /*
2492 * Try direct compaction. The first pass is asynchronous. Subsequent
2493 * attempts after direct reclaim are synchronous
2494 */
2495 page = __alloc_pages_direct_compact(gfp_mask, order,
2496 zonelist, high_zoneidx,
2497 nodemask,
2498 alloc_flags, preferred_zone,
2499 migratetype, sync_migration,
2500 &contended_compaction,
2501 &deferred_compaction,
2502 &did_some_progress);
2503 if (page)
2504 goto got_pg;
2505 sync_migration = true;
2506
2507 /*
2508 * If compaction is deferred for high-order allocations, it is because
2509 * sync compaction recently failed. In this is the case and the caller
2510 * requested a movable allocation that does not heavily disrupt the
2511 * system then fail the allocation instead of entering direct reclaim.
2512 */
2513 if ((deferred_compaction || contended_compaction) &&
2514 (gfp_mask & __GFP_NO_KSWAPD))
2515 goto nopage;
2516
2517 /* Try direct reclaim and then allocating */
2518 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2519 zonelist, high_zoneidx,
2520 nodemask,
2521 alloc_flags, preferred_zone,
2522 migratetype, &did_some_progress);
2523 if (page)
2524 goto got_pg;
2525
2526 /*
2527 * If we failed to make any progress reclaiming, then we are
2528 * running out of options and have to consider going OOM
2529 */
2530 if (!did_some_progress) {
2531 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2532 if (oom_killer_disabled)
2533 goto nopage;
2534 /* Coredumps can quickly deplete all memory reserves */
2535 if ((current->flags & PF_DUMPCORE) &&
2536 !(gfp_mask & __GFP_NOFAIL))
2537 goto nopage;
2538 page = __alloc_pages_may_oom(gfp_mask, order,
2539 zonelist, high_zoneidx,
2540 nodemask, preferred_zone,
2541 migratetype);
2542 if (page)
2543 goto got_pg;
2544
2545 if (!(gfp_mask & __GFP_NOFAIL)) {
2546 /*
2547 * The oom killer is not called for high-order
2548 * allocations that may fail, so if no progress
2549 * is being made, there are no other options and
2550 * retrying is unlikely to help.
2551 */
2552 if (order > PAGE_ALLOC_COSTLY_ORDER)
2553 goto nopage;
2554 /*
2555 * The oom killer is not called for lowmem
2556 * allocations to prevent needlessly killing
2557 * innocent tasks.
2558 */
2559 if (high_zoneidx < ZONE_NORMAL)
2560 goto nopage;
2561 }
2562
2563 goto restart;
2564 }
2565 }
2566
2567 /* Check if we should retry the allocation */
2568 pages_reclaimed += did_some_progress;
2569 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2570 pages_reclaimed)) {
2571 /* Wait for some write requests to complete then retry */
2572 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2573 goto rebalance;
2574 } else {
2575 /*
2576 * High-order allocations do not necessarily loop after
2577 * direct reclaim and reclaim/compaction depends on compaction
2578 * being called after reclaim so call directly if necessary
2579 */
2580 page = __alloc_pages_direct_compact(gfp_mask, order,
2581 zonelist, high_zoneidx,
2582 nodemask,
2583 alloc_flags, preferred_zone,
2584 migratetype, sync_migration,
2585 &contended_compaction,
2586 &deferred_compaction,
2587 &did_some_progress);
2588 if (page)
2589 goto got_pg;
2590 }
2591
2592 nopage:
2593 warn_alloc_failed(gfp_mask, order, NULL);
2594 return page;
2595 got_pg:
2596 if (kmemcheck_enabled)
2597 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2598
2599 return page;
2600 }
2601
2602 /*
2603 * This is the 'heart' of the zoned buddy allocator.
2604 */
2605 struct page *
2606 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2607 struct zonelist *zonelist, nodemask_t *nodemask)
2608 {
2609 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2610 struct zone *preferred_zone;
2611 struct page *page = NULL;
2612 int migratetype = allocflags_to_migratetype(gfp_mask);
2613 unsigned int cpuset_mems_cookie;
2614 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2615 struct mem_cgroup *memcg = NULL;
2616
2617 gfp_mask &= gfp_allowed_mask;
2618
2619 lockdep_trace_alloc(gfp_mask);
2620
2621 might_sleep_if(gfp_mask & __GFP_WAIT);
2622
2623 if (should_fail_alloc_page(gfp_mask, order))
2624 return NULL;
2625
2626 /*
2627 * Check the zones suitable for the gfp_mask contain at least one
2628 * valid zone. It's possible to have an empty zonelist as a result
2629 * of GFP_THISNODE and a memoryless node
2630 */
2631 if (unlikely(!zonelist->_zonerefs->zone))
2632 return NULL;
2633
2634 /*
2635 * Will only have any effect when __GFP_KMEMCG is set. This is
2636 * verified in the (always inline) callee
2637 */
2638 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2639 return NULL;
2640
2641 retry_cpuset:
2642 cpuset_mems_cookie = get_mems_allowed();
2643
2644 /* The preferred zone is used for statistics later */
2645 first_zones_zonelist(zonelist, high_zoneidx,
2646 nodemask ? : &cpuset_current_mems_allowed,
2647 &preferred_zone);
2648 if (!preferred_zone)
2649 goto out;
2650
2651 #ifdef CONFIG_CMA
2652 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2653 alloc_flags |= ALLOC_CMA;
2654 #endif
2655 /* First allocation attempt */
2656 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2657 zonelist, high_zoneidx, alloc_flags,
2658 preferred_zone, migratetype);
2659 if (unlikely(!page)) {
2660 /*
2661 * Runtime PM, block IO and its error handling path
2662 * can deadlock because I/O on the device might not
2663 * complete.
2664 */
2665 gfp_mask = memalloc_noio_flags(gfp_mask);
2666 page = __alloc_pages_slowpath(gfp_mask, order,
2667 zonelist, high_zoneidx, nodemask,
2668 preferred_zone, migratetype);
2669 }
2670
2671 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2672
2673 out:
2674 /*
2675 * When updating a task's mems_allowed, it is possible to race with
2676 * parallel threads in such a way that an allocation can fail while
2677 * the mask is being updated. If a page allocation is about to fail,
2678 * check if the cpuset changed during allocation and if so, retry.
2679 */
2680 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2681 goto retry_cpuset;
2682
2683 memcg_kmem_commit_charge(page, memcg, order);
2684
2685 return page;
2686 }
2687 EXPORT_SYMBOL(__alloc_pages_nodemask);
2688
2689 /*
2690 * Common helper functions.
2691 */
2692 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2693 {
2694 struct page *page;
2695
2696 /*
2697 * __get_free_pages() returns a 32-bit address, which cannot represent
2698 * a highmem page
2699 */
2700 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2701
2702 page = alloc_pages(gfp_mask, order);
2703 if (!page)
2704 return 0;
2705 return (unsigned long) page_address(page);
2706 }
2707 EXPORT_SYMBOL(__get_free_pages);
2708
2709 unsigned long get_zeroed_page(gfp_t gfp_mask)
2710 {
2711 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2712 }
2713 EXPORT_SYMBOL(get_zeroed_page);
2714
2715 void __free_pages(struct page *page, unsigned int order)
2716 {
2717 if (put_page_testzero(page)) {
2718 if (order == 0)
2719 free_hot_cold_page(page, 0);
2720 else
2721 __free_pages_ok(page, order);
2722 }
2723 }
2724
2725 EXPORT_SYMBOL(__free_pages);
2726
2727 void free_pages(unsigned long addr, unsigned int order)
2728 {
2729 if (addr != 0) {
2730 VM_BUG_ON(!virt_addr_valid((void *)addr));
2731 __free_pages(virt_to_page((void *)addr), order);
2732 }
2733 }
2734
2735 EXPORT_SYMBOL(free_pages);
2736
2737 /*
2738 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2739 * pages allocated with __GFP_KMEMCG.
2740 *
2741 * Those pages are accounted to a particular memcg, embedded in the
2742 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2743 * for that information only to find out that it is NULL for users who have no
2744 * interest in that whatsoever, we provide these functions.
2745 *
2746 * The caller knows better which flags it relies on.
2747 */
2748 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2749 {
2750 memcg_kmem_uncharge_pages(page, order);
2751 __free_pages(page, order);
2752 }
2753
2754 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2755 {
2756 if (addr != 0) {
2757 VM_BUG_ON(!virt_addr_valid((void *)addr));
2758 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2759 }
2760 }
2761
2762 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2763 {
2764 if (addr) {
2765 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2766 unsigned long used = addr + PAGE_ALIGN(size);
2767
2768 split_page(virt_to_page((void *)addr), order);
2769 while (used < alloc_end) {
2770 free_page(used);
2771 used += PAGE_SIZE;
2772 }
2773 }
2774 return (void *)addr;
2775 }
2776
2777 /**
2778 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2779 * @size: the number of bytes to allocate
2780 * @gfp_mask: GFP flags for the allocation
2781 *
2782 * This function is similar to alloc_pages(), except that it allocates the
2783 * minimum number of pages to satisfy the request. alloc_pages() can only
2784 * allocate memory in power-of-two pages.
2785 *
2786 * This function is also limited by MAX_ORDER.
2787 *
2788 * Memory allocated by this function must be released by free_pages_exact().
2789 */
2790 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2791 {
2792 unsigned int order = get_order(size);
2793 unsigned long addr;
2794
2795 addr = __get_free_pages(gfp_mask, order);
2796 return make_alloc_exact(addr, order, size);
2797 }
2798 EXPORT_SYMBOL(alloc_pages_exact);
2799
2800 /**
2801 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2802 * pages on a node.
2803 * @nid: the preferred node ID where memory should be allocated
2804 * @size: the number of bytes to allocate
2805 * @gfp_mask: GFP flags for the allocation
2806 *
2807 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2808 * back.
2809 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2810 * but is not exact.
2811 */
2812 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2813 {
2814 unsigned order = get_order(size);
2815 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2816 if (!p)
2817 return NULL;
2818 return make_alloc_exact((unsigned long)page_address(p), order, size);
2819 }
2820 EXPORT_SYMBOL(alloc_pages_exact_nid);
2821
2822 /**
2823 * free_pages_exact - release memory allocated via alloc_pages_exact()
2824 * @virt: the value returned by alloc_pages_exact.
2825 * @size: size of allocation, same value as passed to alloc_pages_exact().
2826 *
2827 * Release the memory allocated by a previous call to alloc_pages_exact.
2828 */
2829 void free_pages_exact(void *virt, size_t size)
2830 {
2831 unsigned long addr = (unsigned long)virt;
2832 unsigned long end = addr + PAGE_ALIGN(size);
2833
2834 while (addr < end) {
2835 free_page(addr);
2836 addr += PAGE_SIZE;
2837 }
2838 }
2839 EXPORT_SYMBOL(free_pages_exact);
2840
2841 /**
2842 * nr_free_zone_pages - count number of pages beyond high watermark
2843 * @offset: The zone index of the highest zone
2844 *
2845 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2846 * high watermark within all zones at or below a given zone index. For each
2847 * zone, the number of pages is calculated as:
2848 * present_pages - high_pages
2849 */
2850 static unsigned long nr_free_zone_pages(int offset)
2851 {
2852 struct zoneref *z;
2853 struct zone *zone;
2854
2855 /* Just pick one node, since fallback list is circular */
2856 unsigned long sum = 0;
2857
2858 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2859
2860 for_each_zone_zonelist(zone, z, zonelist, offset) {
2861 unsigned long size = zone->managed_pages;
2862 unsigned long high = high_wmark_pages(zone);
2863 if (size > high)
2864 sum += size - high;
2865 }
2866
2867 return sum;
2868 }
2869
2870 /**
2871 * nr_free_buffer_pages - count number of pages beyond high watermark
2872 *
2873 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2874 * watermark within ZONE_DMA and ZONE_NORMAL.
2875 */
2876 unsigned long nr_free_buffer_pages(void)
2877 {
2878 return nr_free_zone_pages(gfp_zone(GFP_USER));
2879 }
2880 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2881
2882 /**
2883 * nr_free_pagecache_pages - count number of pages beyond high watermark
2884 *
2885 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2886 * high watermark within all zones.
2887 */
2888 unsigned long nr_free_pagecache_pages(void)
2889 {
2890 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2891 }
2892
2893 static inline void show_node(struct zone *zone)
2894 {
2895 if (IS_ENABLED(CONFIG_NUMA))
2896 printk("Node %d ", zone_to_nid(zone));
2897 }
2898
2899 void si_meminfo(struct sysinfo *val)
2900 {
2901 val->totalram = totalram_pages;
2902 val->sharedram = 0;
2903 val->freeram = global_page_state(NR_FREE_PAGES);
2904 val->bufferram = nr_blockdev_pages();
2905 val->totalhigh = totalhigh_pages;
2906 val->freehigh = nr_free_highpages();
2907 val->mem_unit = PAGE_SIZE;
2908 }
2909
2910 EXPORT_SYMBOL(si_meminfo);
2911
2912 #ifdef CONFIG_NUMA
2913 void si_meminfo_node(struct sysinfo *val, int nid)
2914 {
2915 pg_data_t *pgdat = NODE_DATA(nid);
2916
2917 val->totalram = pgdat->node_present_pages;
2918 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2919 #ifdef CONFIG_HIGHMEM
2920 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2921 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2922 NR_FREE_PAGES);
2923 #else
2924 val->totalhigh = 0;
2925 val->freehigh = 0;
2926 #endif
2927 val->mem_unit = PAGE_SIZE;
2928 }
2929 #endif
2930
2931 /*
2932 * Determine whether the node should be displayed or not, depending on whether
2933 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2934 */
2935 bool skip_free_areas_node(unsigned int flags, int nid)
2936 {
2937 bool ret = false;
2938 unsigned int cpuset_mems_cookie;
2939
2940 if (!(flags & SHOW_MEM_FILTER_NODES))
2941 goto out;
2942
2943 do {
2944 cpuset_mems_cookie = get_mems_allowed();
2945 ret = !node_isset(nid, cpuset_current_mems_allowed);
2946 } while (!put_mems_allowed(cpuset_mems_cookie));
2947 out:
2948 return ret;
2949 }
2950
2951 #define K(x) ((x) << (PAGE_SHIFT-10))
2952
2953 static void show_migration_types(unsigned char type)
2954 {
2955 static const char types[MIGRATE_TYPES] = {
2956 [MIGRATE_UNMOVABLE] = 'U',
2957 [MIGRATE_RECLAIMABLE] = 'E',
2958 [MIGRATE_MOVABLE] = 'M',
2959 [MIGRATE_RESERVE] = 'R',
2960 #ifdef CONFIG_CMA
2961 [MIGRATE_CMA] = 'C',
2962 #endif
2963 #ifdef CONFIG_MEMORY_ISOLATION
2964 [MIGRATE_ISOLATE] = 'I',
2965 #endif
2966 };
2967 char tmp[MIGRATE_TYPES + 1];
2968 char *p = tmp;
2969 int i;
2970
2971 for (i = 0; i < MIGRATE_TYPES; i++) {
2972 if (type & (1 << i))
2973 *p++ = types[i];
2974 }
2975
2976 *p = '\0';
2977 printk("(%s) ", tmp);
2978 }
2979
2980 /*
2981 * Show free area list (used inside shift_scroll-lock stuff)
2982 * We also calculate the percentage fragmentation. We do this by counting the
2983 * memory on each free list with the exception of the first item on the list.
2984 * Suppresses nodes that are not allowed by current's cpuset if
2985 * SHOW_MEM_FILTER_NODES is passed.
2986 */
2987 void show_free_areas(unsigned int filter)
2988 {
2989 int cpu;
2990 struct zone *zone;
2991
2992 for_each_populated_zone(zone) {
2993 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2994 continue;
2995 show_node(zone);
2996 printk("%s per-cpu:\n", zone->name);
2997
2998 for_each_online_cpu(cpu) {
2999 struct per_cpu_pageset *pageset;
3000
3001 pageset = per_cpu_ptr(zone->pageset, cpu);
3002
3003 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3004 cpu, pageset->pcp.high,
3005 pageset->pcp.batch, pageset->pcp.count);
3006 }
3007 }
3008
3009 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3010 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3011 " unevictable:%lu"
3012 " dirty:%lu writeback:%lu unstable:%lu\n"
3013 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3014 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3015 " free_cma:%lu\n",
3016 global_page_state(NR_ACTIVE_ANON),
3017 global_page_state(NR_INACTIVE_ANON),
3018 global_page_state(NR_ISOLATED_ANON),
3019 global_page_state(NR_ACTIVE_FILE),
3020 global_page_state(NR_INACTIVE_FILE),
3021 global_page_state(NR_ISOLATED_FILE),
3022 global_page_state(NR_UNEVICTABLE),
3023 global_page_state(NR_FILE_DIRTY),
3024 global_page_state(NR_WRITEBACK),
3025 global_page_state(NR_UNSTABLE_NFS),
3026 global_page_state(NR_FREE_PAGES),
3027 global_page_state(NR_SLAB_RECLAIMABLE),
3028 global_page_state(NR_SLAB_UNRECLAIMABLE),
3029 global_page_state(NR_FILE_MAPPED),
3030 global_page_state(NR_SHMEM),
3031 global_page_state(NR_PAGETABLE),
3032 global_page_state(NR_BOUNCE),
3033 global_page_state(NR_FREE_CMA_PAGES));
3034
3035 for_each_populated_zone(zone) {
3036 int i;
3037
3038 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3039 continue;
3040 show_node(zone);
3041 printk("%s"
3042 " free:%lukB"
3043 " min:%lukB"
3044 " low:%lukB"
3045 " high:%lukB"
3046 " active_anon:%lukB"
3047 " inactive_anon:%lukB"
3048 " active_file:%lukB"
3049 " inactive_file:%lukB"
3050 " unevictable:%lukB"
3051 " isolated(anon):%lukB"
3052 " isolated(file):%lukB"
3053 " present:%lukB"
3054 " managed:%lukB"
3055 " mlocked:%lukB"
3056 " dirty:%lukB"
3057 " writeback:%lukB"
3058 " mapped:%lukB"
3059 " shmem:%lukB"
3060 " slab_reclaimable:%lukB"
3061 " slab_unreclaimable:%lukB"
3062 " kernel_stack:%lukB"
3063 " pagetables:%lukB"
3064 " unstable:%lukB"
3065 " bounce:%lukB"
3066 " free_cma:%lukB"
3067 " writeback_tmp:%lukB"
3068 " pages_scanned:%lu"
3069 " all_unreclaimable? %s"
3070 "\n",
3071 zone->name,
3072 K(zone_page_state(zone, NR_FREE_PAGES)),
3073 K(min_wmark_pages(zone)),
3074 K(low_wmark_pages(zone)),
3075 K(high_wmark_pages(zone)),
3076 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3077 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3078 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3079 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3080 K(zone_page_state(zone, NR_UNEVICTABLE)),
3081 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3082 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3083 K(zone->present_pages),
3084 K(zone->managed_pages),
3085 K(zone_page_state(zone, NR_MLOCK)),
3086 K(zone_page_state(zone, NR_FILE_DIRTY)),
3087 K(zone_page_state(zone, NR_WRITEBACK)),
3088 K(zone_page_state(zone, NR_FILE_MAPPED)),
3089 K(zone_page_state(zone, NR_SHMEM)),
3090 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3091 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3092 zone_page_state(zone, NR_KERNEL_STACK) *
3093 THREAD_SIZE / 1024,
3094 K(zone_page_state(zone, NR_PAGETABLE)),
3095 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3096 K(zone_page_state(zone, NR_BOUNCE)),
3097 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3098 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3099 zone->pages_scanned,
3100 (zone->all_unreclaimable ? "yes" : "no")
3101 );
3102 printk("lowmem_reserve[]:");
3103 for (i = 0; i < MAX_NR_ZONES; i++)
3104 printk(" %lu", zone->lowmem_reserve[i]);
3105 printk("\n");
3106 }
3107
3108 for_each_populated_zone(zone) {
3109 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3110 unsigned char types[MAX_ORDER];
3111
3112 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3113 continue;
3114 show_node(zone);
3115 printk("%s: ", zone->name);
3116
3117 spin_lock_irqsave(&zone->lock, flags);
3118 for (order = 0; order < MAX_ORDER; order++) {
3119 struct free_area *area = &zone->free_area[order];
3120 int type;
3121
3122 nr[order] = area->nr_free;
3123 total += nr[order] << order;
3124
3125 types[order] = 0;
3126 for (type = 0; type < MIGRATE_TYPES; type++) {
3127 if (!list_empty(&area->free_list[type]))
3128 types[order] |= 1 << type;
3129 }
3130 }
3131 spin_unlock_irqrestore(&zone->lock, flags);
3132 for (order = 0; order < MAX_ORDER; order++) {
3133 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3134 if (nr[order])
3135 show_migration_types(types[order]);
3136 }
3137 printk("= %lukB\n", K(total));
3138 }
3139
3140 hugetlb_show_meminfo();
3141
3142 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3143
3144 show_swap_cache_info();
3145 }
3146
3147 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3148 {
3149 zoneref->zone = zone;
3150 zoneref->zone_idx = zone_idx(zone);
3151 }
3152
3153 /*
3154 * Builds allocation fallback zone lists.
3155 *
3156 * Add all populated zones of a node to the zonelist.
3157 */
3158 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3159 int nr_zones, enum zone_type zone_type)
3160 {
3161 struct zone *zone;
3162
3163 BUG_ON(zone_type >= MAX_NR_ZONES);
3164 zone_type++;
3165
3166 do {
3167 zone_type--;
3168 zone = pgdat->node_zones + zone_type;
3169 if (populated_zone(zone)) {
3170 zoneref_set_zone(zone,
3171 &zonelist->_zonerefs[nr_zones++]);
3172 check_highest_zone(zone_type);
3173 }
3174
3175 } while (zone_type);
3176 return nr_zones;
3177 }
3178
3179
3180 /*
3181 * zonelist_order:
3182 * 0 = automatic detection of better ordering.
3183 * 1 = order by ([node] distance, -zonetype)
3184 * 2 = order by (-zonetype, [node] distance)
3185 *
3186 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3187 * the same zonelist. So only NUMA can configure this param.
3188 */
3189 #define ZONELIST_ORDER_DEFAULT 0
3190 #define ZONELIST_ORDER_NODE 1
3191 #define ZONELIST_ORDER_ZONE 2
3192
3193 /* zonelist order in the kernel.
3194 * set_zonelist_order() will set this to NODE or ZONE.
3195 */
3196 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3197 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3198
3199
3200 #ifdef CONFIG_NUMA
3201 /* The value user specified ....changed by config */
3202 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3203 /* string for sysctl */
3204 #define NUMA_ZONELIST_ORDER_LEN 16
3205 char numa_zonelist_order[16] = "default";
3206
3207 /*
3208 * interface for configure zonelist ordering.
3209 * command line option "numa_zonelist_order"
3210 * = "[dD]efault - default, automatic configuration.
3211 * = "[nN]ode - order by node locality, then by zone within node
3212 * = "[zZ]one - order by zone, then by locality within zone
3213 */
3214
3215 static int __parse_numa_zonelist_order(char *s)
3216 {
3217 if (*s == 'd' || *s == 'D') {
3218 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3219 } else if (*s == 'n' || *s == 'N') {
3220 user_zonelist_order = ZONELIST_ORDER_NODE;
3221 } else if (*s == 'z' || *s == 'Z') {
3222 user_zonelist_order = ZONELIST_ORDER_ZONE;
3223 } else {
3224 printk(KERN_WARNING
3225 "Ignoring invalid numa_zonelist_order value: "
3226 "%s\n", s);
3227 return -EINVAL;
3228 }
3229 return 0;
3230 }
3231
3232 static __init int setup_numa_zonelist_order(char *s)
3233 {
3234 int ret;
3235
3236 if (!s)
3237 return 0;
3238
3239 ret = __parse_numa_zonelist_order(s);
3240 if (ret == 0)
3241 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3242
3243 return ret;
3244 }
3245 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3246
3247 /*
3248 * sysctl handler for numa_zonelist_order
3249 */
3250 int numa_zonelist_order_handler(ctl_table *table, int write,
3251 void __user *buffer, size_t *length,
3252 loff_t *ppos)
3253 {
3254 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3255 int ret;
3256 static DEFINE_MUTEX(zl_order_mutex);
3257
3258 mutex_lock(&zl_order_mutex);
3259 if (write)
3260 strcpy(saved_string, (char*)table->data);
3261 ret = proc_dostring(table, write, buffer, length, ppos);
3262 if (ret)
3263 goto out;
3264 if (write) {
3265 int oldval = user_zonelist_order;
3266 if (__parse_numa_zonelist_order((char*)table->data)) {
3267 /*
3268 * bogus value. restore saved string
3269 */
3270 strncpy((char*)table->data, saved_string,
3271 NUMA_ZONELIST_ORDER_LEN);
3272 user_zonelist_order = oldval;
3273 } else if (oldval != user_zonelist_order) {
3274 mutex_lock(&zonelists_mutex);
3275 build_all_zonelists(NULL, NULL);
3276 mutex_unlock(&zonelists_mutex);
3277 }
3278 }
3279 out:
3280 mutex_unlock(&zl_order_mutex);
3281 return ret;
3282 }
3283
3284
3285 #define MAX_NODE_LOAD (nr_online_nodes)
3286 static int node_load[MAX_NUMNODES];
3287
3288 /**
3289 * find_next_best_node - find the next node that should appear in a given node's fallback list
3290 * @node: node whose fallback list we're appending
3291 * @used_node_mask: nodemask_t of already used nodes
3292 *
3293 * We use a number of factors to determine which is the next node that should
3294 * appear on a given node's fallback list. The node should not have appeared
3295 * already in @node's fallback list, and it should be the next closest node
3296 * according to the distance array (which contains arbitrary distance values
3297 * from each node to each node in the system), and should also prefer nodes
3298 * with no CPUs, since presumably they'll have very little allocation pressure
3299 * on them otherwise.
3300 * It returns -1 if no node is found.
3301 */
3302 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3303 {
3304 int n, val;
3305 int min_val = INT_MAX;
3306 int best_node = NUMA_NO_NODE;
3307 const struct cpumask *tmp = cpumask_of_node(0);
3308
3309 /* Use the local node if we haven't already */
3310 if (!node_isset(node, *used_node_mask)) {
3311 node_set(node, *used_node_mask);
3312 return node;
3313 }
3314
3315 for_each_node_state(n, N_MEMORY) {
3316
3317 /* Don't want a node to appear more than once */
3318 if (node_isset(n, *used_node_mask))
3319 continue;
3320
3321 /* Use the distance array to find the distance */
3322 val = node_distance(node, n);
3323
3324 /* Penalize nodes under us ("prefer the next node") */
3325 val += (n < node);
3326
3327 /* Give preference to headless and unused nodes */
3328 tmp = cpumask_of_node(n);
3329 if (!cpumask_empty(tmp))
3330 val += PENALTY_FOR_NODE_WITH_CPUS;
3331
3332 /* Slight preference for less loaded node */
3333 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3334 val += node_load[n];
3335
3336 if (val < min_val) {
3337 min_val = val;
3338 best_node = n;
3339 }
3340 }
3341
3342 if (best_node >= 0)
3343 node_set(best_node, *used_node_mask);
3344
3345 return best_node;
3346 }
3347
3348
3349 /*
3350 * Build zonelists ordered by node and zones within node.
3351 * This results in maximum locality--normal zone overflows into local
3352 * DMA zone, if any--but risks exhausting DMA zone.
3353 */
3354 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3355 {
3356 int j;
3357 struct zonelist *zonelist;
3358
3359 zonelist = &pgdat->node_zonelists[0];
3360 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3361 ;
3362 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3363 MAX_NR_ZONES - 1);
3364 zonelist->_zonerefs[j].zone = NULL;
3365 zonelist->_zonerefs[j].zone_idx = 0;
3366 }
3367
3368 /*
3369 * Build gfp_thisnode zonelists
3370 */
3371 static void build_thisnode_zonelists(pg_data_t *pgdat)
3372 {
3373 int j;
3374 struct zonelist *zonelist;
3375
3376 zonelist = &pgdat->node_zonelists[1];
3377 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3378 zonelist->_zonerefs[j].zone = NULL;
3379 zonelist->_zonerefs[j].zone_idx = 0;
3380 }
3381
3382 /*
3383 * Build zonelists ordered by zone and nodes within zones.
3384 * This results in conserving DMA zone[s] until all Normal memory is
3385 * exhausted, but results in overflowing to remote node while memory
3386 * may still exist in local DMA zone.
3387 */
3388 static int node_order[MAX_NUMNODES];
3389
3390 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3391 {
3392 int pos, j, node;
3393 int zone_type; /* needs to be signed */
3394 struct zone *z;
3395 struct zonelist *zonelist;
3396
3397 zonelist = &pgdat->node_zonelists[0];
3398 pos = 0;
3399 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3400 for (j = 0; j < nr_nodes; j++) {
3401 node = node_order[j];
3402 z = &NODE_DATA(node)->node_zones[zone_type];
3403 if (populated_zone(z)) {
3404 zoneref_set_zone(z,
3405 &zonelist->_zonerefs[pos++]);
3406 check_highest_zone(zone_type);
3407 }
3408 }
3409 }
3410 zonelist->_zonerefs[pos].zone = NULL;
3411 zonelist->_zonerefs[pos].zone_idx = 0;
3412 }
3413
3414 static int default_zonelist_order(void)
3415 {
3416 int nid, zone_type;
3417 unsigned long low_kmem_size,total_size;
3418 struct zone *z;
3419 int average_size;
3420 /*
3421 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3422 * If they are really small and used heavily, the system can fall
3423 * into OOM very easily.
3424 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3425 */
3426 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3427 low_kmem_size = 0;
3428 total_size = 0;
3429 for_each_online_node(nid) {
3430 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3431 z = &NODE_DATA(nid)->node_zones[zone_type];
3432 if (populated_zone(z)) {
3433 if (zone_type < ZONE_NORMAL)
3434 low_kmem_size += z->present_pages;
3435 total_size += z->present_pages;
3436 } else if (zone_type == ZONE_NORMAL) {
3437 /*
3438 * If any node has only lowmem, then node order
3439 * is preferred to allow kernel allocations
3440 * locally; otherwise, they can easily infringe
3441 * on other nodes when there is an abundance of
3442 * lowmem available to allocate from.
3443 */
3444 return ZONELIST_ORDER_NODE;
3445 }
3446 }
3447 }
3448 if (!low_kmem_size || /* there are no DMA area. */
3449 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3450 return ZONELIST_ORDER_NODE;
3451 /*
3452 * look into each node's config.
3453 * If there is a node whose DMA/DMA32 memory is very big area on
3454 * local memory, NODE_ORDER may be suitable.
3455 */
3456 average_size = total_size /
3457 (nodes_weight(node_states[N_MEMORY]) + 1);
3458 for_each_online_node(nid) {
3459 low_kmem_size = 0;
3460 total_size = 0;
3461 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3462 z = &NODE_DATA(nid)->node_zones[zone_type];
3463 if (populated_zone(z)) {
3464 if (zone_type < ZONE_NORMAL)
3465 low_kmem_size += z->present_pages;
3466 total_size += z->present_pages;
3467 }
3468 }
3469 if (low_kmem_size &&
3470 total_size > average_size && /* ignore small node */
3471 low_kmem_size > total_size * 70/100)
3472 return ZONELIST_ORDER_NODE;
3473 }
3474 return ZONELIST_ORDER_ZONE;
3475 }
3476
3477 static void set_zonelist_order(void)
3478 {
3479 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3480 current_zonelist_order = default_zonelist_order();
3481 else
3482 current_zonelist_order = user_zonelist_order;
3483 }
3484
3485 static void build_zonelists(pg_data_t *pgdat)
3486 {
3487 int j, node, load;
3488 enum zone_type i;
3489 nodemask_t used_mask;
3490 int local_node, prev_node;
3491 struct zonelist *zonelist;
3492 int order = current_zonelist_order;
3493
3494 /* initialize zonelists */
3495 for (i = 0; i < MAX_ZONELISTS; i++) {
3496 zonelist = pgdat->node_zonelists + i;
3497 zonelist->_zonerefs[0].zone = NULL;
3498 zonelist->_zonerefs[0].zone_idx = 0;
3499 }
3500
3501 /* NUMA-aware ordering of nodes */
3502 local_node = pgdat->node_id;
3503 load = nr_online_nodes;
3504 prev_node = local_node;
3505 nodes_clear(used_mask);
3506
3507 memset(node_order, 0, sizeof(node_order));
3508 j = 0;
3509
3510 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3511 /*
3512 * We don't want to pressure a particular node.
3513 * So adding penalty to the first node in same
3514 * distance group to make it round-robin.
3515 */
3516 if (node_distance(local_node, node) !=
3517 node_distance(local_node, prev_node))
3518 node_load[node] = load;
3519
3520 prev_node = node;
3521 load--;
3522 if (order == ZONELIST_ORDER_NODE)
3523 build_zonelists_in_node_order(pgdat, node);
3524 else
3525 node_order[j++] = node; /* remember order */
3526 }
3527
3528 if (order == ZONELIST_ORDER_ZONE) {
3529 /* calculate node order -- i.e., DMA last! */
3530 build_zonelists_in_zone_order(pgdat, j);
3531 }
3532
3533 build_thisnode_zonelists(pgdat);
3534 }
3535
3536 /* Construct the zonelist performance cache - see further mmzone.h */
3537 static void build_zonelist_cache(pg_data_t *pgdat)
3538 {
3539 struct zonelist *zonelist;
3540 struct zonelist_cache *zlc;
3541 struct zoneref *z;
3542
3543 zonelist = &pgdat->node_zonelists[0];
3544 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3545 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3546 for (z = zonelist->_zonerefs; z->zone; z++)
3547 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3548 }
3549
3550 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3551 /*
3552 * Return node id of node used for "local" allocations.
3553 * I.e., first node id of first zone in arg node's generic zonelist.
3554 * Used for initializing percpu 'numa_mem', which is used primarily
3555 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3556 */
3557 int local_memory_node(int node)
3558 {
3559 struct zone *zone;
3560
3561 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3562 gfp_zone(GFP_KERNEL),
3563 NULL,
3564 &zone);
3565 return zone->node;
3566 }
3567 #endif
3568
3569 #else /* CONFIG_NUMA */
3570
3571 static void set_zonelist_order(void)
3572 {
3573 current_zonelist_order = ZONELIST_ORDER_ZONE;
3574 }
3575
3576 static void build_zonelists(pg_data_t *pgdat)
3577 {
3578 int node, local_node;
3579 enum zone_type j;
3580 struct zonelist *zonelist;
3581
3582 local_node = pgdat->node_id;
3583
3584 zonelist = &pgdat->node_zonelists[0];
3585 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3586
3587 /*
3588 * Now we build the zonelist so that it contains the zones
3589 * of all the other nodes.
3590 * We don't want to pressure a particular node, so when
3591 * building the zones for node N, we make sure that the
3592 * zones coming right after the local ones are those from
3593 * node N+1 (modulo N)
3594 */
3595 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3596 if (!node_online(node))
3597 continue;
3598 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3599 MAX_NR_ZONES - 1);
3600 }
3601 for (node = 0; node < local_node; node++) {
3602 if (!node_online(node))
3603 continue;
3604 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3605 MAX_NR_ZONES - 1);
3606 }
3607
3608 zonelist->_zonerefs[j].zone = NULL;
3609 zonelist->_zonerefs[j].zone_idx = 0;
3610 }
3611
3612 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3613 static void build_zonelist_cache(pg_data_t *pgdat)
3614 {
3615 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3616 }
3617
3618 #endif /* CONFIG_NUMA */
3619
3620 /*
3621 * Boot pageset table. One per cpu which is going to be used for all
3622 * zones and all nodes. The parameters will be set in such a way
3623 * that an item put on a list will immediately be handed over to
3624 * the buddy list. This is safe since pageset manipulation is done
3625 * with interrupts disabled.
3626 *
3627 * The boot_pagesets must be kept even after bootup is complete for
3628 * unused processors and/or zones. They do play a role for bootstrapping
3629 * hotplugged processors.
3630 *
3631 * zoneinfo_show() and maybe other functions do
3632 * not check if the processor is online before following the pageset pointer.
3633 * Other parts of the kernel may not check if the zone is available.
3634 */
3635 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3636 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3637 static void setup_zone_pageset(struct zone *zone);
3638
3639 /*
3640 * Global mutex to protect against size modification of zonelists
3641 * as well as to serialize pageset setup for the new populated zone.
3642 */
3643 DEFINE_MUTEX(zonelists_mutex);
3644
3645 /* return values int ....just for stop_machine() */
3646 static int __build_all_zonelists(void *data)
3647 {
3648 int nid;
3649 int cpu;
3650 pg_data_t *self = data;
3651
3652 #ifdef CONFIG_NUMA
3653 memset(node_load, 0, sizeof(node_load));
3654 #endif
3655
3656 if (self && !node_online(self->node_id)) {
3657 build_zonelists(self);
3658 build_zonelist_cache(self);
3659 }
3660
3661 for_each_online_node(nid) {
3662 pg_data_t *pgdat = NODE_DATA(nid);
3663
3664 build_zonelists(pgdat);
3665 build_zonelist_cache(pgdat);
3666 }
3667
3668 /*
3669 * Initialize the boot_pagesets that are going to be used
3670 * for bootstrapping processors. The real pagesets for
3671 * each zone will be allocated later when the per cpu
3672 * allocator is available.
3673 *
3674 * boot_pagesets are used also for bootstrapping offline
3675 * cpus if the system is already booted because the pagesets
3676 * are needed to initialize allocators on a specific cpu too.
3677 * F.e. the percpu allocator needs the page allocator which
3678 * needs the percpu allocator in order to allocate its pagesets
3679 * (a chicken-egg dilemma).
3680 */
3681 for_each_possible_cpu(cpu) {
3682 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3683
3684 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3685 /*
3686 * We now know the "local memory node" for each node--
3687 * i.e., the node of the first zone in the generic zonelist.
3688 * Set up numa_mem percpu variable for on-line cpus. During
3689 * boot, only the boot cpu should be on-line; we'll init the
3690 * secondary cpus' numa_mem as they come on-line. During
3691 * node/memory hotplug, we'll fixup all on-line cpus.
3692 */
3693 if (cpu_online(cpu))
3694 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3695 #endif
3696 }
3697
3698 return 0;
3699 }
3700
3701 /*
3702 * Called with zonelists_mutex held always
3703 * unless system_state == SYSTEM_BOOTING.
3704 */
3705 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3706 {
3707 set_zonelist_order();
3708
3709 if (system_state == SYSTEM_BOOTING) {
3710 __build_all_zonelists(NULL);
3711 mminit_verify_zonelist();
3712 cpuset_init_current_mems_allowed();
3713 } else {
3714 /* we have to stop all cpus to guarantee there is no user
3715 of zonelist */
3716 #ifdef CONFIG_MEMORY_HOTPLUG
3717 if (zone)
3718 setup_zone_pageset(zone);
3719 #endif
3720 stop_machine(__build_all_zonelists, pgdat, NULL);
3721 /* cpuset refresh routine should be here */
3722 }
3723 vm_total_pages = nr_free_pagecache_pages();
3724 /*
3725 * Disable grouping by mobility if the number of pages in the
3726 * system is too low to allow the mechanism to work. It would be
3727 * more accurate, but expensive to check per-zone. This check is
3728 * made on memory-hotadd so a system can start with mobility
3729 * disabled and enable it later
3730 */
3731 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3732 page_group_by_mobility_disabled = 1;
3733 else
3734 page_group_by_mobility_disabled = 0;
3735
3736 printk("Built %i zonelists in %s order, mobility grouping %s. "
3737 "Total pages: %ld\n",
3738 nr_online_nodes,
3739 zonelist_order_name[current_zonelist_order],
3740 page_group_by_mobility_disabled ? "off" : "on",
3741 vm_total_pages);
3742 #ifdef CONFIG_NUMA
3743 printk("Policy zone: %s\n", zone_names[policy_zone]);
3744 #endif
3745 }
3746
3747 /*
3748 * Helper functions to size the waitqueue hash table.
3749 * Essentially these want to choose hash table sizes sufficiently
3750 * large so that collisions trying to wait on pages are rare.
3751 * But in fact, the number of active page waitqueues on typical
3752 * systems is ridiculously low, less than 200. So this is even
3753 * conservative, even though it seems large.
3754 *
3755 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3756 * waitqueues, i.e. the size of the waitq table given the number of pages.
3757 */
3758 #define PAGES_PER_WAITQUEUE 256
3759
3760 #ifndef CONFIG_MEMORY_HOTPLUG
3761 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3762 {
3763 unsigned long size = 1;
3764
3765 pages /= PAGES_PER_WAITQUEUE;
3766
3767 while (size < pages)
3768 size <<= 1;
3769
3770 /*
3771 * Once we have dozens or even hundreds of threads sleeping
3772 * on IO we've got bigger problems than wait queue collision.
3773 * Limit the size of the wait table to a reasonable size.
3774 */
3775 size = min(size, 4096UL);
3776
3777 return max(size, 4UL);
3778 }
3779 #else
3780 /*
3781 * A zone's size might be changed by hot-add, so it is not possible to determine
3782 * a suitable size for its wait_table. So we use the maximum size now.
3783 *
3784 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3785 *
3786 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3787 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3788 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3789 *
3790 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3791 * or more by the traditional way. (See above). It equals:
3792 *
3793 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3794 * ia64(16K page size) : = ( 8G + 4M)byte.
3795 * powerpc (64K page size) : = (32G +16M)byte.
3796 */
3797 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3798 {
3799 return 4096UL;
3800 }
3801 #endif
3802
3803 /*
3804 * This is an integer logarithm so that shifts can be used later
3805 * to extract the more random high bits from the multiplicative
3806 * hash function before the remainder is taken.
3807 */
3808 static inline unsigned long wait_table_bits(unsigned long size)
3809 {
3810 return ffz(~size);
3811 }
3812
3813 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3814
3815 /*
3816 * Check if a pageblock contains reserved pages
3817 */
3818 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3819 {
3820 unsigned long pfn;
3821
3822 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3823 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3824 return 1;
3825 }
3826 return 0;
3827 }
3828
3829 /*
3830 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3831 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3832 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3833 * higher will lead to a bigger reserve which will get freed as contiguous
3834 * blocks as reclaim kicks in
3835 */
3836 static void setup_zone_migrate_reserve(struct zone *zone)
3837 {
3838 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3839 struct page *page;
3840 unsigned long block_migratetype;
3841 int reserve;
3842
3843 /*
3844 * Get the start pfn, end pfn and the number of blocks to reserve
3845 * We have to be careful to be aligned to pageblock_nr_pages to
3846 * make sure that we always check pfn_valid for the first page in
3847 * the block.
3848 */
3849 start_pfn = zone->zone_start_pfn;
3850 end_pfn = zone_end_pfn(zone);
3851 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3852 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3853 pageblock_order;
3854
3855 /*
3856 * Reserve blocks are generally in place to help high-order atomic
3857 * allocations that are short-lived. A min_free_kbytes value that
3858 * would result in more than 2 reserve blocks for atomic allocations
3859 * is assumed to be in place to help anti-fragmentation for the
3860 * future allocation of hugepages at runtime.
3861 */
3862 reserve = min(2, reserve);
3863
3864 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3865 if (!pfn_valid(pfn))
3866 continue;
3867 page = pfn_to_page(pfn);
3868
3869 /* Watch out for overlapping nodes */
3870 if (page_to_nid(page) != zone_to_nid(zone))
3871 continue;
3872
3873 block_migratetype = get_pageblock_migratetype(page);
3874
3875 /* Only test what is necessary when the reserves are not met */
3876 if (reserve > 0) {
3877 /*
3878 * Blocks with reserved pages will never free, skip
3879 * them.
3880 */
3881 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3882 if (pageblock_is_reserved(pfn, block_end_pfn))
3883 continue;
3884
3885 /* If this block is reserved, account for it */
3886 if (block_migratetype == MIGRATE_RESERVE) {
3887 reserve--;
3888 continue;
3889 }
3890
3891 /* Suitable for reserving if this block is movable */
3892 if (block_migratetype == MIGRATE_MOVABLE) {
3893 set_pageblock_migratetype(page,
3894 MIGRATE_RESERVE);
3895 move_freepages_block(zone, page,
3896 MIGRATE_RESERVE);
3897 reserve--;
3898 continue;
3899 }
3900 }
3901
3902 /*
3903 * If the reserve is met and this is a previous reserved block,
3904 * take it back
3905 */
3906 if (block_migratetype == MIGRATE_RESERVE) {
3907 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3908 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3909 }
3910 }
3911 }
3912
3913 /*
3914 * Initially all pages are reserved - free ones are freed
3915 * up by free_all_bootmem() once the early boot process is
3916 * done. Non-atomic initialization, single-pass.
3917 */
3918 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3919 unsigned long start_pfn, enum memmap_context context)
3920 {
3921 struct page *page;
3922 unsigned long end_pfn = start_pfn + size;
3923 unsigned long pfn;
3924 struct zone *z;
3925
3926 if (highest_memmap_pfn < end_pfn - 1)
3927 highest_memmap_pfn = end_pfn - 1;
3928
3929 z = &NODE_DATA(nid)->node_zones[zone];
3930 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3931 /*
3932 * There can be holes in boot-time mem_map[]s
3933 * handed to this function. They do not
3934 * exist on hotplugged memory.
3935 */
3936 if (context == MEMMAP_EARLY) {
3937 if (!early_pfn_valid(pfn))
3938 continue;
3939 if (!early_pfn_in_nid(pfn, nid))
3940 continue;
3941 }
3942 page = pfn_to_page(pfn);
3943 set_page_links(page, zone, nid, pfn);
3944 mminit_verify_page_links(page, zone, nid, pfn);
3945 init_page_count(page);
3946 page_mapcount_reset(page);
3947 page_nid_reset_last(page);
3948 SetPageReserved(page);
3949 /*
3950 * Mark the block movable so that blocks are reserved for
3951 * movable at startup. This will force kernel allocations
3952 * to reserve their blocks rather than leaking throughout
3953 * the address space during boot when many long-lived
3954 * kernel allocations are made. Later some blocks near
3955 * the start are marked MIGRATE_RESERVE by
3956 * setup_zone_migrate_reserve()
3957 *
3958 * bitmap is created for zone's valid pfn range. but memmap
3959 * can be created for invalid pages (for alignment)
3960 * check here not to call set_pageblock_migratetype() against
3961 * pfn out of zone.
3962 */
3963 if ((z->zone_start_pfn <= pfn)
3964 && (pfn < zone_end_pfn(z))
3965 && !(pfn & (pageblock_nr_pages - 1)))
3966 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3967
3968 INIT_LIST_HEAD(&page->lru);
3969 #ifdef WANT_PAGE_VIRTUAL
3970 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3971 if (!is_highmem_idx(zone))
3972 set_page_address(page, __va(pfn << PAGE_SHIFT));
3973 #endif
3974 }
3975 }
3976
3977 static void __meminit zone_init_free_lists(struct zone *zone)
3978 {
3979 int order, t;
3980 for_each_migratetype_order(order, t) {
3981 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3982 zone->free_area[order].nr_free = 0;
3983 }
3984 }
3985
3986 #ifndef __HAVE_ARCH_MEMMAP_INIT
3987 #define memmap_init(size, nid, zone, start_pfn) \
3988 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3989 #endif
3990
3991 static int __meminit zone_batchsize(struct zone *zone)
3992 {
3993 #ifdef CONFIG_MMU
3994 int batch;
3995
3996 /*
3997 * The per-cpu-pages pools are set to around 1000th of the
3998 * size of the zone. But no more than 1/2 of a meg.
3999 *
4000 * OK, so we don't know how big the cache is. So guess.
4001 */
4002 batch = zone->managed_pages / 1024;
4003 if (batch * PAGE_SIZE > 512 * 1024)
4004 batch = (512 * 1024) / PAGE_SIZE;
4005 batch /= 4; /* We effectively *= 4 below */
4006 if (batch < 1)
4007 batch = 1;
4008
4009 /*
4010 * Clamp the batch to a 2^n - 1 value. Having a power
4011 * of 2 value was found to be more likely to have
4012 * suboptimal cache aliasing properties in some cases.
4013 *
4014 * For example if 2 tasks are alternately allocating
4015 * batches of pages, one task can end up with a lot
4016 * of pages of one half of the possible page colors
4017 * and the other with pages of the other colors.
4018 */
4019 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4020
4021 return batch;
4022
4023 #else
4024 /* The deferral and batching of frees should be suppressed under NOMMU
4025 * conditions.
4026 *
4027 * The problem is that NOMMU needs to be able to allocate large chunks
4028 * of contiguous memory as there's no hardware page translation to
4029 * assemble apparent contiguous memory from discontiguous pages.
4030 *
4031 * Queueing large contiguous runs of pages for batching, however,
4032 * causes the pages to actually be freed in smaller chunks. As there
4033 * can be a significant delay between the individual batches being
4034 * recycled, this leads to the once large chunks of space being
4035 * fragmented and becoming unavailable for high-order allocations.
4036 */
4037 return 0;
4038 #endif
4039 }
4040
4041 /*
4042 * pcp->high and pcp->batch values are related and dependent on one another:
4043 * ->batch must never be higher then ->high.
4044 * The following function updates them in a safe manner without read side
4045 * locking.
4046 *
4047 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4048 * those fields changing asynchronously (acording the the above rule).
4049 *
4050 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4051 * outside of boot time (or some other assurance that no concurrent updaters
4052 * exist).
4053 */
4054 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4055 unsigned long batch)
4056 {
4057 /* start with a fail safe value for batch */
4058 pcp->batch = 1;
4059 smp_wmb();
4060
4061 /* Update high, then batch, in order */
4062 pcp->high = high;
4063 smp_wmb();
4064
4065 pcp->batch = batch;
4066 }
4067
4068 /* a companion to setup_pagelist_highmark() */
4069 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4070 {
4071 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4072 }
4073
4074 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4075 {
4076 struct per_cpu_pages *pcp;
4077 int migratetype;
4078
4079 memset(p, 0, sizeof(*p));
4080
4081 pcp = &p->pcp;
4082 pcp->count = 0;
4083 pageset_set_batch(p, batch);
4084 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4085 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4086 }
4087
4088 /*
4089 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4090 * to the value high for the pageset p.
4091 */
4092 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4093 unsigned long high)
4094 {
4095 unsigned long batch = max(1UL, high / 4);
4096 if ((high / 4) > (PAGE_SHIFT * 8))
4097 batch = PAGE_SHIFT * 8;
4098
4099 pageset_update(&p->pcp, high, batch);
4100 }
4101
4102 static void __meminit setup_zone_pageset(struct zone *zone)
4103 {
4104 int cpu;
4105
4106 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4107
4108 for_each_possible_cpu(cpu) {
4109 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4110
4111 setup_pageset(pcp, zone_batchsize(zone));
4112
4113 if (percpu_pagelist_fraction)
4114 setup_pagelist_highmark(pcp,
4115 (zone->managed_pages /
4116 percpu_pagelist_fraction));
4117 }
4118 }
4119
4120 /*
4121 * Allocate per cpu pagesets and initialize them.
4122 * Before this call only boot pagesets were available.
4123 */
4124 void __init setup_per_cpu_pageset(void)
4125 {
4126 struct zone *zone;
4127
4128 for_each_populated_zone(zone)
4129 setup_zone_pageset(zone);
4130 }
4131
4132 static noinline __init_refok
4133 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4134 {
4135 int i;
4136 struct pglist_data *pgdat = zone->zone_pgdat;
4137 size_t alloc_size;
4138
4139 /*
4140 * The per-page waitqueue mechanism uses hashed waitqueues
4141 * per zone.
4142 */
4143 zone->wait_table_hash_nr_entries =
4144 wait_table_hash_nr_entries(zone_size_pages);
4145 zone->wait_table_bits =
4146 wait_table_bits(zone->wait_table_hash_nr_entries);
4147 alloc_size = zone->wait_table_hash_nr_entries
4148 * sizeof(wait_queue_head_t);
4149
4150 if (!slab_is_available()) {
4151 zone->wait_table = (wait_queue_head_t *)
4152 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4153 } else {
4154 /*
4155 * This case means that a zone whose size was 0 gets new memory
4156 * via memory hot-add.
4157 * But it may be the case that a new node was hot-added. In
4158 * this case vmalloc() will not be able to use this new node's
4159 * memory - this wait_table must be initialized to use this new
4160 * node itself as well.
4161 * To use this new node's memory, further consideration will be
4162 * necessary.
4163 */
4164 zone->wait_table = vmalloc(alloc_size);
4165 }
4166 if (!zone->wait_table)
4167 return -ENOMEM;
4168
4169 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4170 init_waitqueue_head(zone->wait_table + i);
4171
4172 return 0;
4173 }
4174
4175 static __meminit void zone_pcp_init(struct zone *zone)
4176 {
4177 /*
4178 * per cpu subsystem is not up at this point. The following code
4179 * relies on the ability of the linker to provide the
4180 * offset of a (static) per cpu variable into the per cpu area.
4181 */
4182 zone->pageset = &boot_pageset;
4183
4184 if (zone->present_pages)
4185 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4186 zone->name, zone->present_pages,
4187 zone_batchsize(zone));
4188 }
4189
4190 int __meminit init_currently_empty_zone(struct zone *zone,
4191 unsigned long zone_start_pfn,
4192 unsigned long size,
4193 enum memmap_context context)
4194 {
4195 struct pglist_data *pgdat = zone->zone_pgdat;
4196 int ret;
4197 ret = zone_wait_table_init(zone, size);
4198 if (ret)
4199 return ret;
4200 pgdat->nr_zones = zone_idx(zone) + 1;
4201
4202 zone->zone_start_pfn = zone_start_pfn;
4203
4204 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4205 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4206 pgdat->node_id,
4207 (unsigned long)zone_idx(zone),
4208 zone_start_pfn, (zone_start_pfn + size));
4209
4210 zone_init_free_lists(zone);
4211
4212 return 0;
4213 }
4214
4215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4216 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4217 /*
4218 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4219 * Architectures may implement their own version but if add_active_range()
4220 * was used and there are no special requirements, this is a convenient
4221 * alternative
4222 */
4223 int __meminit __early_pfn_to_nid(unsigned long pfn)
4224 {
4225 unsigned long start_pfn, end_pfn;
4226 int i, nid;
4227 /*
4228 * NOTE: The following SMP-unsafe globals are only used early in boot
4229 * when the kernel is running single-threaded.
4230 */
4231 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4232 static int __meminitdata last_nid;
4233
4234 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4235 return last_nid;
4236
4237 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4238 if (start_pfn <= pfn && pfn < end_pfn) {
4239 last_start_pfn = start_pfn;
4240 last_end_pfn = end_pfn;
4241 last_nid = nid;
4242 return nid;
4243 }
4244 /* This is a memory hole */
4245 return -1;
4246 }
4247 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4248
4249 int __meminit early_pfn_to_nid(unsigned long pfn)
4250 {
4251 int nid;
4252
4253 nid = __early_pfn_to_nid(pfn);
4254 if (nid >= 0)
4255 return nid;
4256 /* just returns 0 */
4257 return 0;
4258 }
4259
4260 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4261 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4262 {
4263 int nid;
4264
4265 nid = __early_pfn_to_nid(pfn);
4266 if (nid >= 0 && nid != node)
4267 return false;
4268 return true;
4269 }
4270 #endif
4271
4272 /**
4273 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4274 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4275 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4276 *
4277 * If an architecture guarantees that all ranges registered with
4278 * add_active_ranges() contain no holes and may be freed, this
4279 * this function may be used instead of calling free_bootmem() manually.
4280 */
4281 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4282 {
4283 unsigned long start_pfn, end_pfn;
4284 int i, this_nid;
4285
4286 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4287 start_pfn = min(start_pfn, max_low_pfn);
4288 end_pfn = min(end_pfn, max_low_pfn);
4289
4290 if (start_pfn < end_pfn)
4291 free_bootmem_node(NODE_DATA(this_nid),
4292 PFN_PHYS(start_pfn),
4293 (end_pfn - start_pfn) << PAGE_SHIFT);
4294 }
4295 }
4296
4297 /**
4298 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4299 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4300 *
4301 * If an architecture guarantees that all ranges registered with
4302 * add_active_ranges() contain no holes and may be freed, this
4303 * function may be used instead of calling memory_present() manually.
4304 */
4305 void __init sparse_memory_present_with_active_regions(int nid)
4306 {
4307 unsigned long start_pfn, end_pfn;
4308 int i, this_nid;
4309
4310 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4311 memory_present(this_nid, start_pfn, end_pfn);
4312 }
4313
4314 /**
4315 * get_pfn_range_for_nid - Return the start and end page frames for a node
4316 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4317 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4318 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4319 *
4320 * It returns the start and end page frame of a node based on information
4321 * provided by an arch calling add_active_range(). If called for a node
4322 * with no available memory, a warning is printed and the start and end
4323 * PFNs will be 0.
4324 */
4325 void __meminit get_pfn_range_for_nid(unsigned int nid,
4326 unsigned long *start_pfn, unsigned long *end_pfn)
4327 {
4328 unsigned long this_start_pfn, this_end_pfn;
4329 int i;
4330
4331 *start_pfn = -1UL;
4332 *end_pfn = 0;
4333
4334 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4335 *start_pfn = min(*start_pfn, this_start_pfn);
4336 *end_pfn = max(*end_pfn, this_end_pfn);
4337 }
4338
4339 if (*start_pfn == -1UL)
4340 *start_pfn = 0;
4341 }
4342
4343 /*
4344 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4345 * assumption is made that zones within a node are ordered in monotonic
4346 * increasing memory addresses so that the "highest" populated zone is used
4347 */
4348 static void __init find_usable_zone_for_movable(void)
4349 {
4350 int zone_index;
4351 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4352 if (zone_index == ZONE_MOVABLE)
4353 continue;
4354
4355 if (arch_zone_highest_possible_pfn[zone_index] >
4356 arch_zone_lowest_possible_pfn[zone_index])
4357 break;
4358 }
4359
4360 VM_BUG_ON(zone_index == -1);
4361 movable_zone = zone_index;
4362 }
4363
4364 /*
4365 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4366 * because it is sized independent of architecture. Unlike the other zones,
4367 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4368 * in each node depending on the size of each node and how evenly kernelcore
4369 * is distributed. This helper function adjusts the zone ranges
4370 * provided by the architecture for a given node by using the end of the
4371 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4372 * zones within a node are in order of monotonic increases memory addresses
4373 */
4374 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4375 unsigned long zone_type,
4376 unsigned long node_start_pfn,
4377 unsigned long node_end_pfn,
4378 unsigned long *zone_start_pfn,
4379 unsigned long *zone_end_pfn)
4380 {
4381 /* Only adjust if ZONE_MOVABLE is on this node */
4382 if (zone_movable_pfn[nid]) {
4383 /* Size ZONE_MOVABLE */
4384 if (zone_type == ZONE_MOVABLE) {
4385 *zone_start_pfn = zone_movable_pfn[nid];
4386 *zone_end_pfn = min(node_end_pfn,
4387 arch_zone_highest_possible_pfn[movable_zone]);
4388
4389 /* Adjust for ZONE_MOVABLE starting within this range */
4390 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4391 *zone_end_pfn > zone_movable_pfn[nid]) {
4392 *zone_end_pfn = zone_movable_pfn[nid];
4393
4394 /* Check if this whole range is within ZONE_MOVABLE */
4395 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4396 *zone_start_pfn = *zone_end_pfn;
4397 }
4398 }
4399
4400 /*
4401 * Return the number of pages a zone spans in a node, including holes
4402 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4403 */
4404 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4405 unsigned long zone_type,
4406 unsigned long *ignored)
4407 {
4408 unsigned long node_start_pfn, node_end_pfn;
4409 unsigned long zone_start_pfn, zone_end_pfn;
4410
4411 /* Get the start and end of the node and zone */
4412 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4413 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4414 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4415 adjust_zone_range_for_zone_movable(nid, zone_type,
4416 node_start_pfn, node_end_pfn,
4417 &zone_start_pfn, &zone_end_pfn);
4418
4419 /* Check that this node has pages within the zone's required range */
4420 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4421 return 0;
4422
4423 /* Move the zone boundaries inside the node if necessary */
4424 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4425 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4426
4427 /* Return the spanned pages */
4428 return zone_end_pfn - zone_start_pfn;
4429 }
4430
4431 /*
4432 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4433 * then all holes in the requested range will be accounted for.
4434 */
4435 unsigned long __meminit __absent_pages_in_range(int nid,
4436 unsigned long range_start_pfn,
4437 unsigned long range_end_pfn)
4438 {
4439 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4440 unsigned long start_pfn, end_pfn;
4441 int i;
4442
4443 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4444 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4445 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4446 nr_absent -= end_pfn - start_pfn;
4447 }
4448 return nr_absent;
4449 }
4450
4451 /**
4452 * absent_pages_in_range - Return number of page frames in holes within a range
4453 * @start_pfn: The start PFN to start searching for holes
4454 * @end_pfn: The end PFN to stop searching for holes
4455 *
4456 * It returns the number of pages frames in memory holes within a range.
4457 */
4458 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4459 unsigned long end_pfn)
4460 {
4461 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4462 }
4463
4464 /* Return the number of page frames in holes in a zone on a node */
4465 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4466 unsigned long zone_type,
4467 unsigned long *ignored)
4468 {
4469 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4470 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4471 unsigned long node_start_pfn, node_end_pfn;
4472 unsigned long zone_start_pfn, zone_end_pfn;
4473
4474 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4475 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4476 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4477
4478 adjust_zone_range_for_zone_movable(nid, zone_type,
4479 node_start_pfn, node_end_pfn,
4480 &zone_start_pfn, &zone_end_pfn);
4481 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4482 }
4483
4484 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4485 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4486 unsigned long zone_type,
4487 unsigned long *zones_size)
4488 {
4489 return zones_size[zone_type];
4490 }
4491
4492 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4493 unsigned long zone_type,
4494 unsigned long *zholes_size)
4495 {
4496 if (!zholes_size)
4497 return 0;
4498
4499 return zholes_size[zone_type];
4500 }
4501
4502 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4503
4504 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4505 unsigned long *zones_size, unsigned long *zholes_size)
4506 {
4507 unsigned long realtotalpages, totalpages = 0;
4508 enum zone_type i;
4509
4510 for (i = 0; i < MAX_NR_ZONES; i++)
4511 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4512 zones_size);
4513 pgdat->node_spanned_pages = totalpages;
4514
4515 realtotalpages = totalpages;
4516 for (i = 0; i < MAX_NR_ZONES; i++)
4517 realtotalpages -=
4518 zone_absent_pages_in_node(pgdat->node_id, i,
4519 zholes_size);
4520 pgdat->node_present_pages = realtotalpages;
4521 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4522 realtotalpages);
4523 }
4524
4525 #ifndef CONFIG_SPARSEMEM
4526 /*
4527 * Calculate the size of the zone->blockflags rounded to an unsigned long
4528 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4529 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4530 * round what is now in bits to nearest long in bits, then return it in
4531 * bytes.
4532 */
4533 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4534 {
4535 unsigned long usemapsize;
4536
4537 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4538 usemapsize = roundup(zonesize, pageblock_nr_pages);
4539 usemapsize = usemapsize >> pageblock_order;
4540 usemapsize *= NR_PAGEBLOCK_BITS;
4541 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4542
4543 return usemapsize / 8;
4544 }
4545
4546 static void __init setup_usemap(struct pglist_data *pgdat,
4547 struct zone *zone,
4548 unsigned long zone_start_pfn,
4549 unsigned long zonesize)
4550 {
4551 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4552 zone->pageblock_flags = NULL;
4553 if (usemapsize)
4554 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4555 usemapsize);
4556 }
4557 #else
4558 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4559 unsigned long zone_start_pfn, unsigned long zonesize) {}
4560 #endif /* CONFIG_SPARSEMEM */
4561
4562 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4563
4564 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4565 void __init set_pageblock_order(void)
4566 {
4567 unsigned int order;
4568
4569 /* Check that pageblock_nr_pages has not already been setup */
4570 if (pageblock_order)
4571 return;
4572
4573 if (HPAGE_SHIFT > PAGE_SHIFT)
4574 order = HUGETLB_PAGE_ORDER;
4575 else
4576 order = MAX_ORDER - 1;
4577
4578 /*
4579 * Assume the largest contiguous order of interest is a huge page.
4580 * This value may be variable depending on boot parameters on IA64 and
4581 * powerpc.
4582 */
4583 pageblock_order = order;
4584 }
4585 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4586
4587 /*
4588 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4589 * is unused as pageblock_order is set at compile-time. See
4590 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4591 * the kernel config
4592 */
4593 void __init set_pageblock_order(void)
4594 {
4595 }
4596
4597 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4598
4599 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4600 unsigned long present_pages)
4601 {
4602 unsigned long pages = spanned_pages;
4603
4604 /*
4605 * Provide a more accurate estimation if there are holes within
4606 * the zone and SPARSEMEM is in use. If there are holes within the
4607 * zone, each populated memory region may cost us one or two extra
4608 * memmap pages due to alignment because memmap pages for each
4609 * populated regions may not naturally algined on page boundary.
4610 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4611 */
4612 if (spanned_pages > present_pages + (present_pages >> 4) &&
4613 IS_ENABLED(CONFIG_SPARSEMEM))
4614 pages = present_pages;
4615
4616 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4617 }
4618
4619 /*
4620 * Set up the zone data structures:
4621 * - mark all pages reserved
4622 * - mark all memory queues empty
4623 * - clear the memory bitmaps
4624 *
4625 * NOTE: pgdat should get zeroed by caller.
4626 */
4627 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4628 unsigned long *zones_size, unsigned long *zholes_size)
4629 {
4630 enum zone_type j;
4631 int nid = pgdat->node_id;
4632 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4633 int ret;
4634
4635 pgdat_resize_init(pgdat);
4636 #ifdef CONFIG_NUMA_BALANCING
4637 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4638 pgdat->numabalancing_migrate_nr_pages = 0;
4639 pgdat->numabalancing_migrate_next_window = jiffies;
4640 #endif
4641 init_waitqueue_head(&pgdat->kswapd_wait);
4642 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4643 pgdat_page_cgroup_init(pgdat);
4644
4645 for (j = 0; j < MAX_NR_ZONES; j++) {
4646 struct zone *zone = pgdat->node_zones + j;
4647 unsigned long size, realsize, freesize, memmap_pages;
4648
4649 size = zone_spanned_pages_in_node(nid, j, zones_size);
4650 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4651 zholes_size);
4652
4653 /*
4654 * Adjust freesize so that it accounts for how much memory
4655 * is used by this zone for memmap. This affects the watermark
4656 * and per-cpu initialisations
4657 */
4658 memmap_pages = calc_memmap_size(size, realsize);
4659 if (freesize >= memmap_pages) {
4660 freesize -= memmap_pages;
4661 if (memmap_pages)
4662 printk(KERN_DEBUG
4663 " %s zone: %lu pages used for memmap\n",
4664 zone_names[j], memmap_pages);
4665 } else
4666 printk(KERN_WARNING
4667 " %s zone: %lu pages exceeds freesize %lu\n",
4668 zone_names[j], memmap_pages, freesize);
4669
4670 /* Account for reserved pages */
4671 if (j == 0 && freesize > dma_reserve) {
4672 freesize -= dma_reserve;
4673 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4674 zone_names[0], dma_reserve);
4675 }
4676
4677 if (!is_highmem_idx(j))
4678 nr_kernel_pages += freesize;
4679 /* Charge for highmem memmap if there are enough kernel pages */
4680 else if (nr_kernel_pages > memmap_pages * 2)
4681 nr_kernel_pages -= memmap_pages;
4682 nr_all_pages += freesize;
4683
4684 zone->spanned_pages = size;
4685 zone->present_pages = realsize;
4686 /*
4687 * Set an approximate value for lowmem here, it will be adjusted
4688 * when the bootmem allocator frees pages into the buddy system.
4689 * And all highmem pages will be managed by the buddy system.
4690 */
4691 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4692 #ifdef CONFIG_NUMA
4693 zone->node = nid;
4694 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4695 / 100;
4696 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4697 #endif
4698 zone->name = zone_names[j];
4699 spin_lock_init(&zone->lock);
4700 spin_lock_init(&zone->lru_lock);
4701 zone_seqlock_init(zone);
4702 zone->zone_pgdat = pgdat;
4703
4704 zone_pcp_init(zone);
4705 lruvec_init(&zone->lruvec);
4706 if (!size)
4707 continue;
4708
4709 set_pageblock_order();
4710 setup_usemap(pgdat, zone, zone_start_pfn, size);
4711 ret = init_currently_empty_zone(zone, zone_start_pfn,
4712 size, MEMMAP_EARLY);
4713 BUG_ON(ret);
4714 memmap_init(size, nid, j, zone_start_pfn);
4715 zone_start_pfn += size;
4716 }
4717 }
4718
4719 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4720 {
4721 /* Skip empty nodes */
4722 if (!pgdat->node_spanned_pages)
4723 return;
4724
4725 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4726 /* ia64 gets its own node_mem_map, before this, without bootmem */
4727 if (!pgdat->node_mem_map) {
4728 unsigned long size, start, end;
4729 struct page *map;
4730
4731 /*
4732 * The zone's endpoints aren't required to be MAX_ORDER
4733 * aligned but the node_mem_map endpoints must be in order
4734 * for the buddy allocator to function correctly.
4735 */
4736 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4737 end = pgdat_end_pfn(pgdat);
4738 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4739 size = (end - start) * sizeof(struct page);
4740 map = alloc_remap(pgdat->node_id, size);
4741 if (!map)
4742 map = alloc_bootmem_node_nopanic(pgdat, size);
4743 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4744 }
4745 #ifndef CONFIG_NEED_MULTIPLE_NODES
4746 /*
4747 * With no DISCONTIG, the global mem_map is just set as node 0's
4748 */
4749 if (pgdat == NODE_DATA(0)) {
4750 mem_map = NODE_DATA(0)->node_mem_map;
4751 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4752 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4753 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4754 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4755 }
4756 #endif
4757 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4758 }
4759
4760 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4761 unsigned long node_start_pfn, unsigned long *zholes_size)
4762 {
4763 pg_data_t *pgdat = NODE_DATA(nid);
4764
4765 /* pg_data_t should be reset to zero when it's allocated */
4766 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4767
4768 pgdat->node_id = nid;
4769 pgdat->node_start_pfn = node_start_pfn;
4770 init_zone_allows_reclaim(nid);
4771 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4772
4773 alloc_node_mem_map(pgdat);
4774 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4775 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4776 nid, (unsigned long)pgdat,
4777 (unsigned long)pgdat->node_mem_map);
4778 #endif
4779
4780 free_area_init_core(pgdat, zones_size, zholes_size);
4781 }
4782
4783 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4784
4785 #if MAX_NUMNODES > 1
4786 /*
4787 * Figure out the number of possible node ids.
4788 */
4789 void __init setup_nr_node_ids(void)
4790 {
4791 unsigned int node;
4792 unsigned int highest = 0;
4793
4794 for_each_node_mask(node, node_possible_map)
4795 highest = node;
4796 nr_node_ids = highest + 1;
4797 }
4798 #endif
4799
4800 /**
4801 * node_map_pfn_alignment - determine the maximum internode alignment
4802 *
4803 * This function should be called after node map is populated and sorted.
4804 * It calculates the maximum power of two alignment which can distinguish
4805 * all the nodes.
4806 *
4807 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4808 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4809 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4810 * shifted, 1GiB is enough and this function will indicate so.
4811 *
4812 * This is used to test whether pfn -> nid mapping of the chosen memory
4813 * model has fine enough granularity to avoid incorrect mapping for the
4814 * populated node map.
4815 *
4816 * Returns the determined alignment in pfn's. 0 if there is no alignment
4817 * requirement (single node).
4818 */
4819 unsigned long __init node_map_pfn_alignment(void)
4820 {
4821 unsigned long accl_mask = 0, last_end = 0;
4822 unsigned long start, end, mask;
4823 int last_nid = -1;
4824 int i, nid;
4825
4826 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4827 if (!start || last_nid < 0 || last_nid == nid) {
4828 last_nid = nid;
4829 last_end = end;
4830 continue;
4831 }
4832
4833 /*
4834 * Start with a mask granular enough to pin-point to the
4835 * start pfn and tick off bits one-by-one until it becomes
4836 * too coarse to separate the current node from the last.
4837 */
4838 mask = ~((1 << __ffs(start)) - 1);
4839 while (mask && last_end <= (start & (mask << 1)))
4840 mask <<= 1;
4841
4842 /* accumulate all internode masks */
4843 accl_mask |= mask;
4844 }
4845
4846 /* convert mask to number of pages */
4847 return ~accl_mask + 1;
4848 }
4849
4850 /* Find the lowest pfn for a node */
4851 static unsigned long __init find_min_pfn_for_node(int nid)
4852 {
4853 unsigned long min_pfn = ULONG_MAX;
4854 unsigned long start_pfn;
4855 int i;
4856
4857 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4858 min_pfn = min(min_pfn, start_pfn);
4859
4860 if (min_pfn == ULONG_MAX) {
4861 printk(KERN_WARNING
4862 "Could not find start_pfn for node %d\n", nid);
4863 return 0;
4864 }
4865
4866 return min_pfn;
4867 }
4868
4869 /**
4870 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4871 *
4872 * It returns the minimum PFN based on information provided via
4873 * add_active_range().
4874 */
4875 unsigned long __init find_min_pfn_with_active_regions(void)
4876 {
4877 return find_min_pfn_for_node(MAX_NUMNODES);
4878 }
4879
4880 /*
4881 * early_calculate_totalpages()
4882 * Sum pages in active regions for movable zone.
4883 * Populate N_MEMORY for calculating usable_nodes.
4884 */
4885 static unsigned long __init early_calculate_totalpages(void)
4886 {
4887 unsigned long totalpages = 0;
4888 unsigned long start_pfn, end_pfn;
4889 int i, nid;
4890
4891 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4892 unsigned long pages = end_pfn - start_pfn;
4893
4894 totalpages += pages;
4895 if (pages)
4896 node_set_state(nid, N_MEMORY);
4897 }
4898 return totalpages;
4899 }
4900
4901 /*
4902 * Find the PFN the Movable zone begins in each node. Kernel memory
4903 * is spread evenly between nodes as long as the nodes have enough
4904 * memory. When they don't, some nodes will have more kernelcore than
4905 * others
4906 */
4907 static void __init find_zone_movable_pfns_for_nodes(void)
4908 {
4909 int i, nid;
4910 unsigned long usable_startpfn;
4911 unsigned long kernelcore_node, kernelcore_remaining;
4912 /* save the state before borrow the nodemask */
4913 nodemask_t saved_node_state = node_states[N_MEMORY];
4914 unsigned long totalpages = early_calculate_totalpages();
4915 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4916
4917 /*
4918 * If movablecore was specified, calculate what size of
4919 * kernelcore that corresponds so that memory usable for
4920 * any allocation type is evenly spread. If both kernelcore
4921 * and movablecore are specified, then the value of kernelcore
4922 * will be used for required_kernelcore if it's greater than
4923 * what movablecore would have allowed.
4924 */
4925 if (required_movablecore) {
4926 unsigned long corepages;
4927
4928 /*
4929 * Round-up so that ZONE_MOVABLE is at least as large as what
4930 * was requested by the user
4931 */
4932 required_movablecore =
4933 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4934 corepages = totalpages - required_movablecore;
4935
4936 required_kernelcore = max(required_kernelcore, corepages);
4937 }
4938
4939 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4940 if (!required_kernelcore)
4941 goto out;
4942
4943 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4944 find_usable_zone_for_movable();
4945 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4946
4947 restart:
4948 /* Spread kernelcore memory as evenly as possible throughout nodes */
4949 kernelcore_node = required_kernelcore / usable_nodes;
4950 for_each_node_state(nid, N_MEMORY) {
4951 unsigned long start_pfn, end_pfn;
4952
4953 /*
4954 * Recalculate kernelcore_node if the division per node
4955 * now exceeds what is necessary to satisfy the requested
4956 * amount of memory for the kernel
4957 */
4958 if (required_kernelcore < kernelcore_node)
4959 kernelcore_node = required_kernelcore / usable_nodes;
4960
4961 /*
4962 * As the map is walked, we track how much memory is usable
4963 * by the kernel using kernelcore_remaining. When it is
4964 * 0, the rest of the node is usable by ZONE_MOVABLE
4965 */
4966 kernelcore_remaining = kernelcore_node;
4967
4968 /* Go through each range of PFNs within this node */
4969 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4970 unsigned long size_pages;
4971
4972 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4973 if (start_pfn >= end_pfn)
4974 continue;
4975
4976 /* Account for what is only usable for kernelcore */
4977 if (start_pfn < usable_startpfn) {
4978 unsigned long kernel_pages;
4979 kernel_pages = min(end_pfn, usable_startpfn)
4980 - start_pfn;
4981
4982 kernelcore_remaining -= min(kernel_pages,
4983 kernelcore_remaining);
4984 required_kernelcore -= min(kernel_pages,
4985 required_kernelcore);
4986
4987 /* Continue if range is now fully accounted */
4988 if (end_pfn <= usable_startpfn) {
4989
4990 /*
4991 * Push zone_movable_pfn to the end so
4992 * that if we have to rebalance
4993 * kernelcore across nodes, we will
4994 * not double account here
4995 */
4996 zone_movable_pfn[nid] = end_pfn;
4997 continue;
4998 }
4999 start_pfn = usable_startpfn;
5000 }
5001
5002 /*
5003 * The usable PFN range for ZONE_MOVABLE is from
5004 * start_pfn->end_pfn. Calculate size_pages as the
5005 * number of pages used as kernelcore
5006 */
5007 size_pages = end_pfn - start_pfn;
5008 if (size_pages > kernelcore_remaining)
5009 size_pages = kernelcore_remaining;
5010 zone_movable_pfn[nid] = start_pfn + size_pages;
5011
5012 /*
5013 * Some kernelcore has been met, update counts and
5014 * break if the kernelcore for this node has been
5015 * satisified
5016 */
5017 required_kernelcore -= min(required_kernelcore,
5018 size_pages);
5019 kernelcore_remaining -= size_pages;
5020 if (!kernelcore_remaining)
5021 break;
5022 }
5023 }
5024
5025 /*
5026 * If there is still required_kernelcore, we do another pass with one
5027 * less node in the count. This will push zone_movable_pfn[nid] further
5028 * along on the nodes that still have memory until kernelcore is
5029 * satisified
5030 */
5031 usable_nodes--;
5032 if (usable_nodes && required_kernelcore > usable_nodes)
5033 goto restart;
5034
5035 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5036 for (nid = 0; nid < MAX_NUMNODES; nid++)
5037 zone_movable_pfn[nid] =
5038 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5039
5040 out:
5041 /* restore the node_state */
5042 node_states[N_MEMORY] = saved_node_state;
5043 }
5044
5045 /* Any regular or high memory on that node ? */
5046 static void check_for_memory(pg_data_t *pgdat, int nid)
5047 {
5048 enum zone_type zone_type;
5049
5050 if (N_MEMORY == N_NORMAL_MEMORY)
5051 return;
5052
5053 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5054 struct zone *zone = &pgdat->node_zones[zone_type];
5055 if (zone->present_pages) {
5056 node_set_state(nid, N_HIGH_MEMORY);
5057 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5058 zone_type <= ZONE_NORMAL)
5059 node_set_state(nid, N_NORMAL_MEMORY);
5060 break;
5061 }
5062 }
5063 }
5064
5065 /**
5066 * free_area_init_nodes - Initialise all pg_data_t and zone data
5067 * @max_zone_pfn: an array of max PFNs for each zone
5068 *
5069 * This will call free_area_init_node() for each active node in the system.
5070 * Using the page ranges provided by add_active_range(), the size of each
5071 * zone in each node and their holes is calculated. If the maximum PFN
5072 * between two adjacent zones match, it is assumed that the zone is empty.
5073 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5074 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5075 * starts where the previous one ended. For example, ZONE_DMA32 starts
5076 * at arch_max_dma_pfn.
5077 */
5078 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5079 {
5080 unsigned long start_pfn, end_pfn;
5081 int i, nid;
5082
5083 /* Record where the zone boundaries are */
5084 memset(arch_zone_lowest_possible_pfn, 0,
5085 sizeof(arch_zone_lowest_possible_pfn));
5086 memset(arch_zone_highest_possible_pfn, 0,
5087 sizeof(arch_zone_highest_possible_pfn));
5088 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5089 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5090 for (i = 1; i < MAX_NR_ZONES; i++) {
5091 if (i == ZONE_MOVABLE)
5092 continue;
5093 arch_zone_lowest_possible_pfn[i] =
5094 arch_zone_highest_possible_pfn[i-1];
5095 arch_zone_highest_possible_pfn[i] =
5096 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5097 }
5098 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5099 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5100
5101 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5102 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5103 find_zone_movable_pfns_for_nodes();
5104
5105 /* Print out the zone ranges */
5106 printk("Zone ranges:\n");
5107 for (i = 0; i < MAX_NR_ZONES; i++) {
5108 if (i == ZONE_MOVABLE)
5109 continue;
5110 printk(KERN_CONT " %-8s ", zone_names[i]);
5111 if (arch_zone_lowest_possible_pfn[i] ==
5112 arch_zone_highest_possible_pfn[i])
5113 printk(KERN_CONT "empty\n");
5114 else
5115 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5116 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5117 (arch_zone_highest_possible_pfn[i]
5118 << PAGE_SHIFT) - 1);
5119 }
5120
5121 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5122 printk("Movable zone start for each node\n");
5123 for (i = 0; i < MAX_NUMNODES; i++) {
5124 if (zone_movable_pfn[i])
5125 printk(" Node %d: %#010lx\n", i,
5126 zone_movable_pfn[i] << PAGE_SHIFT);
5127 }
5128
5129 /* Print out the early node map */
5130 printk("Early memory node ranges\n");
5131 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5132 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5133 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5134
5135 /* Initialise every node */
5136 mminit_verify_pageflags_layout();
5137 setup_nr_node_ids();
5138 for_each_online_node(nid) {
5139 pg_data_t *pgdat = NODE_DATA(nid);
5140 free_area_init_node(nid, NULL,
5141 find_min_pfn_for_node(nid), NULL);
5142
5143 /* Any memory on that node */
5144 if (pgdat->node_present_pages)
5145 node_set_state(nid, N_MEMORY);
5146 check_for_memory(pgdat, nid);
5147 }
5148 }
5149
5150 static int __init cmdline_parse_core(char *p, unsigned long *core)
5151 {
5152 unsigned long long coremem;
5153 if (!p)
5154 return -EINVAL;
5155
5156 coremem = memparse(p, &p);
5157 *core = coremem >> PAGE_SHIFT;
5158
5159 /* Paranoid check that UL is enough for the coremem value */
5160 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5161
5162 return 0;
5163 }
5164
5165 /*
5166 * kernelcore=size sets the amount of memory for use for allocations that
5167 * cannot be reclaimed or migrated.
5168 */
5169 static int __init cmdline_parse_kernelcore(char *p)
5170 {
5171 return cmdline_parse_core(p, &required_kernelcore);
5172 }
5173
5174 /*
5175 * movablecore=size sets the amount of memory for use for allocations that
5176 * can be reclaimed or migrated.
5177 */
5178 static int __init cmdline_parse_movablecore(char *p)
5179 {
5180 return cmdline_parse_core(p, &required_movablecore);
5181 }
5182
5183 early_param("kernelcore", cmdline_parse_kernelcore);
5184 early_param("movablecore", cmdline_parse_movablecore);
5185
5186 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5187
5188 unsigned long free_reserved_area(unsigned long start, unsigned long end,
5189 int poison, char *s)
5190 {
5191 unsigned long pages, pos;
5192
5193 pos = start = PAGE_ALIGN(start);
5194 end &= PAGE_MASK;
5195 for (pages = 0; pos < end; pos += PAGE_SIZE, pages++) {
5196 if (poison)
5197 memset((void *)pos, poison, PAGE_SIZE);
5198 free_reserved_page(virt_to_page((void *)pos));
5199 }
5200
5201 if (pages && s)
5202 pr_info("Freeing %s memory: %ldK (%lx - %lx)\n",
5203 s, pages << (PAGE_SHIFT - 10), start, end);
5204
5205 return pages;
5206 }
5207
5208 #ifdef CONFIG_HIGHMEM
5209 void free_highmem_page(struct page *page)
5210 {
5211 __free_reserved_page(page);
5212 totalram_pages++;
5213 totalhigh_pages++;
5214 }
5215 #endif
5216
5217 /**
5218 * set_dma_reserve - set the specified number of pages reserved in the first zone
5219 * @new_dma_reserve: The number of pages to mark reserved
5220 *
5221 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5222 * In the DMA zone, a significant percentage may be consumed by kernel image
5223 * and other unfreeable allocations which can skew the watermarks badly. This
5224 * function may optionally be used to account for unfreeable pages in the
5225 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5226 * smaller per-cpu batchsize.
5227 */
5228 void __init set_dma_reserve(unsigned long new_dma_reserve)
5229 {
5230 dma_reserve = new_dma_reserve;
5231 }
5232
5233 void __init free_area_init(unsigned long *zones_size)
5234 {
5235 free_area_init_node(0, zones_size,
5236 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5237 }
5238
5239 static int page_alloc_cpu_notify(struct notifier_block *self,
5240 unsigned long action, void *hcpu)
5241 {
5242 int cpu = (unsigned long)hcpu;
5243
5244 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5245 lru_add_drain_cpu(cpu);
5246 drain_pages(cpu);
5247
5248 /*
5249 * Spill the event counters of the dead processor
5250 * into the current processors event counters.
5251 * This artificially elevates the count of the current
5252 * processor.
5253 */
5254 vm_events_fold_cpu(cpu);
5255
5256 /*
5257 * Zero the differential counters of the dead processor
5258 * so that the vm statistics are consistent.
5259 *
5260 * This is only okay since the processor is dead and cannot
5261 * race with what we are doing.
5262 */
5263 refresh_cpu_vm_stats(cpu);
5264 }
5265 return NOTIFY_OK;
5266 }
5267
5268 void __init page_alloc_init(void)
5269 {
5270 hotcpu_notifier(page_alloc_cpu_notify, 0);
5271 }
5272
5273 /*
5274 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5275 * or min_free_kbytes changes.
5276 */
5277 static void calculate_totalreserve_pages(void)
5278 {
5279 struct pglist_data *pgdat;
5280 unsigned long reserve_pages = 0;
5281 enum zone_type i, j;
5282
5283 for_each_online_pgdat(pgdat) {
5284 for (i = 0; i < MAX_NR_ZONES; i++) {
5285 struct zone *zone = pgdat->node_zones + i;
5286 unsigned long max = 0;
5287
5288 /* Find valid and maximum lowmem_reserve in the zone */
5289 for (j = i; j < MAX_NR_ZONES; j++) {
5290 if (zone->lowmem_reserve[j] > max)
5291 max = zone->lowmem_reserve[j];
5292 }
5293
5294 /* we treat the high watermark as reserved pages. */
5295 max += high_wmark_pages(zone);
5296
5297 if (max > zone->managed_pages)
5298 max = zone->managed_pages;
5299 reserve_pages += max;
5300 /*
5301 * Lowmem reserves are not available to
5302 * GFP_HIGHUSER page cache allocations and
5303 * kswapd tries to balance zones to their high
5304 * watermark. As a result, neither should be
5305 * regarded as dirtyable memory, to prevent a
5306 * situation where reclaim has to clean pages
5307 * in order to balance the zones.
5308 */
5309 zone->dirty_balance_reserve = max;
5310 }
5311 }
5312 dirty_balance_reserve = reserve_pages;
5313 totalreserve_pages = reserve_pages;
5314 }
5315
5316 /*
5317 * setup_per_zone_lowmem_reserve - called whenever
5318 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5319 * has a correct pages reserved value, so an adequate number of
5320 * pages are left in the zone after a successful __alloc_pages().
5321 */
5322 static void setup_per_zone_lowmem_reserve(void)
5323 {
5324 struct pglist_data *pgdat;
5325 enum zone_type j, idx;
5326
5327 for_each_online_pgdat(pgdat) {
5328 for (j = 0; j < MAX_NR_ZONES; j++) {
5329 struct zone *zone = pgdat->node_zones + j;
5330 unsigned long managed_pages = zone->managed_pages;
5331
5332 zone->lowmem_reserve[j] = 0;
5333
5334 idx = j;
5335 while (idx) {
5336 struct zone *lower_zone;
5337
5338 idx--;
5339
5340 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5341 sysctl_lowmem_reserve_ratio[idx] = 1;
5342
5343 lower_zone = pgdat->node_zones + idx;
5344 lower_zone->lowmem_reserve[j] = managed_pages /
5345 sysctl_lowmem_reserve_ratio[idx];
5346 managed_pages += lower_zone->managed_pages;
5347 }
5348 }
5349 }
5350
5351 /* update totalreserve_pages */
5352 calculate_totalreserve_pages();
5353 }
5354
5355 static void __setup_per_zone_wmarks(void)
5356 {
5357 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5358 unsigned long lowmem_pages = 0;
5359 struct zone *zone;
5360 unsigned long flags;
5361
5362 /* Calculate total number of !ZONE_HIGHMEM pages */
5363 for_each_zone(zone) {
5364 if (!is_highmem(zone))
5365 lowmem_pages += zone->managed_pages;
5366 }
5367
5368 for_each_zone(zone) {
5369 u64 tmp;
5370
5371 spin_lock_irqsave(&zone->lock, flags);
5372 tmp = (u64)pages_min * zone->managed_pages;
5373 do_div(tmp, lowmem_pages);
5374 if (is_highmem(zone)) {
5375 /*
5376 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5377 * need highmem pages, so cap pages_min to a small
5378 * value here.
5379 *
5380 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5381 * deltas controls asynch page reclaim, and so should
5382 * not be capped for highmem.
5383 */
5384 unsigned long min_pages;
5385
5386 min_pages = zone->managed_pages / 1024;
5387 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5388 zone->watermark[WMARK_MIN] = min_pages;
5389 } else {
5390 /*
5391 * If it's a lowmem zone, reserve a number of pages
5392 * proportionate to the zone's size.
5393 */
5394 zone->watermark[WMARK_MIN] = tmp;
5395 }
5396
5397 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5398 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5399
5400 setup_zone_migrate_reserve(zone);
5401 spin_unlock_irqrestore(&zone->lock, flags);
5402 }
5403
5404 /* update totalreserve_pages */
5405 calculate_totalreserve_pages();
5406 }
5407
5408 /**
5409 * setup_per_zone_wmarks - called when min_free_kbytes changes
5410 * or when memory is hot-{added|removed}
5411 *
5412 * Ensures that the watermark[min,low,high] values for each zone are set
5413 * correctly with respect to min_free_kbytes.
5414 */
5415 void setup_per_zone_wmarks(void)
5416 {
5417 mutex_lock(&zonelists_mutex);
5418 __setup_per_zone_wmarks();
5419 mutex_unlock(&zonelists_mutex);
5420 }
5421
5422 /*
5423 * The inactive anon list should be small enough that the VM never has to
5424 * do too much work, but large enough that each inactive page has a chance
5425 * to be referenced again before it is swapped out.
5426 *
5427 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5428 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5429 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5430 * the anonymous pages are kept on the inactive list.
5431 *
5432 * total target max
5433 * memory ratio inactive anon
5434 * -------------------------------------
5435 * 10MB 1 5MB
5436 * 100MB 1 50MB
5437 * 1GB 3 250MB
5438 * 10GB 10 0.9GB
5439 * 100GB 31 3GB
5440 * 1TB 101 10GB
5441 * 10TB 320 32GB
5442 */
5443 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5444 {
5445 unsigned int gb, ratio;
5446
5447 /* Zone size in gigabytes */
5448 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5449 if (gb)
5450 ratio = int_sqrt(10 * gb);
5451 else
5452 ratio = 1;
5453
5454 zone->inactive_ratio = ratio;
5455 }
5456
5457 static void __meminit setup_per_zone_inactive_ratio(void)
5458 {
5459 struct zone *zone;
5460
5461 for_each_zone(zone)
5462 calculate_zone_inactive_ratio(zone);
5463 }
5464
5465 /*
5466 * Initialise min_free_kbytes.
5467 *
5468 * For small machines we want it small (128k min). For large machines
5469 * we want it large (64MB max). But it is not linear, because network
5470 * bandwidth does not increase linearly with machine size. We use
5471 *
5472 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5473 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5474 *
5475 * which yields
5476 *
5477 * 16MB: 512k
5478 * 32MB: 724k
5479 * 64MB: 1024k
5480 * 128MB: 1448k
5481 * 256MB: 2048k
5482 * 512MB: 2896k
5483 * 1024MB: 4096k
5484 * 2048MB: 5792k
5485 * 4096MB: 8192k
5486 * 8192MB: 11584k
5487 * 16384MB: 16384k
5488 */
5489 int __meminit init_per_zone_wmark_min(void)
5490 {
5491 unsigned long lowmem_kbytes;
5492
5493 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5494
5495 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5496 if (min_free_kbytes < 128)
5497 min_free_kbytes = 128;
5498 if (min_free_kbytes > 65536)
5499 min_free_kbytes = 65536;
5500 setup_per_zone_wmarks();
5501 refresh_zone_stat_thresholds();
5502 setup_per_zone_lowmem_reserve();
5503 setup_per_zone_inactive_ratio();
5504 return 0;
5505 }
5506 module_init(init_per_zone_wmark_min)
5507
5508 /*
5509 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5510 * that we can call two helper functions whenever min_free_kbytes
5511 * changes.
5512 */
5513 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5514 void __user *buffer, size_t *length, loff_t *ppos)
5515 {
5516 proc_dointvec(table, write, buffer, length, ppos);
5517 if (write)
5518 setup_per_zone_wmarks();
5519 return 0;
5520 }
5521
5522 #ifdef CONFIG_NUMA
5523 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5524 void __user *buffer, size_t *length, loff_t *ppos)
5525 {
5526 struct zone *zone;
5527 int rc;
5528
5529 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5530 if (rc)
5531 return rc;
5532
5533 for_each_zone(zone)
5534 zone->min_unmapped_pages = (zone->managed_pages *
5535 sysctl_min_unmapped_ratio) / 100;
5536 return 0;
5537 }
5538
5539 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5540 void __user *buffer, size_t *length, loff_t *ppos)
5541 {
5542 struct zone *zone;
5543 int rc;
5544
5545 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5546 if (rc)
5547 return rc;
5548
5549 for_each_zone(zone)
5550 zone->min_slab_pages = (zone->managed_pages *
5551 sysctl_min_slab_ratio) / 100;
5552 return 0;
5553 }
5554 #endif
5555
5556 /*
5557 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5558 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5559 * whenever sysctl_lowmem_reserve_ratio changes.
5560 *
5561 * The reserve ratio obviously has absolutely no relation with the
5562 * minimum watermarks. The lowmem reserve ratio can only make sense
5563 * if in function of the boot time zone sizes.
5564 */
5565 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5566 void __user *buffer, size_t *length, loff_t *ppos)
5567 {
5568 proc_dointvec_minmax(table, write, buffer, length, ppos);
5569 setup_per_zone_lowmem_reserve();
5570 return 0;
5571 }
5572
5573 /*
5574 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5575 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5576 * can have before it gets flushed back to buddy allocator.
5577 */
5578
5579 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5580 void __user *buffer, size_t *length, loff_t *ppos)
5581 {
5582 struct zone *zone;
5583 unsigned int cpu;
5584 int ret;
5585
5586 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5587 if (!write || (ret < 0))
5588 return ret;
5589
5590 mutex_lock(&pcp_batch_high_lock);
5591 for_each_populated_zone(zone) {
5592 for_each_possible_cpu(cpu) {
5593 unsigned long high;
5594 high = zone->managed_pages / percpu_pagelist_fraction;
5595 setup_pagelist_highmark(
5596 per_cpu_ptr(zone->pageset, cpu), high);
5597 }
5598 }
5599 mutex_unlock(&pcp_batch_high_lock);
5600 return 0;
5601 }
5602
5603 int hashdist = HASHDIST_DEFAULT;
5604
5605 #ifdef CONFIG_NUMA
5606 static int __init set_hashdist(char *str)
5607 {
5608 if (!str)
5609 return 0;
5610 hashdist = simple_strtoul(str, &str, 0);
5611 return 1;
5612 }
5613 __setup("hashdist=", set_hashdist);
5614 #endif
5615
5616 /*
5617 * allocate a large system hash table from bootmem
5618 * - it is assumed that the hash table must contain an exact power-of-2
5619 * quantity of entries
5620 * - limit is the number of hash buckets, not the total allocation size
5621 */
5622 void *__init alloc_large_system_hash(const char *tablename,
5623 unsigned long bucketsize,
5624 unsigned long numentries,
5625 int scale,
5626 int flags,
5627 unsigned int *_hash_shift,
5628 unsigned int *_hash_mask,
5629 unsigned long low_limit,
5630 unsigned long high_limit)
5631 {
5632 unsigned long long max = high_limit;
5633 unsigned long log2qty, size;
5634 void *table = NULL;
5635
5636 /* allow the kernel cmdline to have a say */
5637 if (!numentries) {
5638 /* round applicable memory size up to nearest megabyte */
5639 numentries = nr_kernel_pages;
5640 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5641 numentries >>= 20 - PAGE_SHIFT;
5642 numentries <<= 20 - PAGE_SHIFT;
5643
5644 /* limit to 1 bucket per 2^scale bytes of low memory */
5645 if (scale > PAGE_SHIFT)
5646 numentries >>= (scale - PAGE_SHIFT);
5647 else
5648 numentries <<= (PAGE_SHIFT - scale);
5649
5650 /* Make sure we've got at least a 0-order allocation.. */
5651 if (unlikely(flags & HASH_SMALL)) {
5652 /* Makes no sense without HASH_EARLY */
5653 WARN_ON(!(flags & HASH_EARLY));
5654 if (!(numentries >> *_hash_shift)) {
5655 numentries = 1UL << *_hash_shift;
5656 BUG_ON(!numentries);
5657 }
5658 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5659 numentries = PAGE_SIZE / bucketsize;
5660 }
5661 numentries = roundup_pow_of_two(numentries);
5662
5663 /* limit allocation size to 1/16 total memory by default */
5664 if (max == 0) {
5665 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5666 do_div(max, bucketsize);
5667 }
5668 max = min(max, 0x80000000ULL);
5669
5670 if (numentries < low_limit)
5671 numentries = low_limit;
5672 if (numentries > max)
5673 numentries = max;
5674
5675 log2qty = ilog2(numentries);
5676
5677 do {
5678 size = bucketsize << log2qty;
5679 if (flags & HASH_EARLY)
5680 table = alloc_bootmem_nopanic(size);
5681 else if (hashdist)
5682 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5683 else {
5684 /*
5685 * If bucketsize is not a power-of-two, we may free
5686 * some pages at the end of hash table which
5687 * alloc_pages_exact() automatically does
5688 */
5689 if (get_order(size) < MAX_ORDER) {
5690 table = alloc_pages_exact(size, GFP_ATOMIC);
5691 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5692 }
5693 }
5694 } while (!table && size > PAGE_SIZE && --log2qty);
5695
5696 if (!table)
5697 panic("Failed to allocate %s hash table\n", tablename);
5698
5699 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5700 tablename,
5701 (1UL << log2qty),
5702 ilog2(size) - PAGE_SHIFT,
5703 size);
5704
5705 if (_hash_shift)
5706 *_hash_shift = log2qty;
5707 if (_hash_mask)
5708 *_hash_mask = (1 << log2qty) - 1;
5709
5710 return table;
5711 }
5712
5713 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5714 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5715 unsigned long pfn)
5716 {
5717 #ifdef CONFIG_SPARSEMEM
5718 return __pfn_to_section(pfn)->pageblock_flags;
5719 #else
5720 return zone->pageblock_flags;
5721 #endif /* CONFIG_SPARSEMEM */
5722 }
5723
5724 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5725 {
5726 #ifdef CONFIG_SPARSEMEM
5727 pfn &= (PAGES_PER_SECTION-1);
5728 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5729 #else
5730 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5731 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5732 #endif /* CONFIG_SPARSEMEM */
5733 }
5734
5735 /**
5736 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5737 * @page: The page within the block of interest
5738 * @start_bitidx: The first bit of interest to retrieve
5739 * @end_bitidx: The last bit of interest
5740 * returns pageblock_bits flags
5741 */
5742 unsigned long get_pageblock_flags_group(struct page *page,
5743 int start_bitidx, int end_bitidx)
5744 {
5745 struct zone *zone;
5746 unsigned long *bitmap;
5747 unsigned long pfn, bitidx;
5748 unsigned long flags = 0;
5749 unsigned long value = 1;
5750
5751 zone = page_zone(page);
5752 pfn = page_to_pfn(page);
5753 bitmap = get_pageblock_bitmap(zone, pfn);
5754 bitidx = pfn_to_bitidx(zone, pfn);
5755
5756 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5757 if (test_bit(bitidx + start_bitidx, bitmap))
5758 flags |= value;
5759
5760 return flags;
5761 }
5762
5763 /**
5764 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5765 * @page: The page within the block of interest
5766 * @start_bitidx: The first bit of interest
5767 * @end_bitidx: The last bit of interest
5768 * @flags: The flags to set
5769 */
5770 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5771 int start_bitidx, int end_bitidx)
5772 {
5773 struct zone *zone;
5774 unsigned long *bitmap;
5775 unsigned long pfn, bitidx;
5776 unsigned long value = 1;
5777
5778 zone = page_zone(page);
5779 pfn = page_to_pfn(page);
5780 bitmap = get_pageblock_bitmap(zone, pfn);
5781 bitidx = pfn_to_bitidx(zone, pfn);
5782 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5783
5784 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5785 if (flags & value)
5786 __set_bit(bitidx + start_bitidx, bitmap);
5787 else
5788 __clear_bit(bitidx + start_bitidx, bitmap);
5789 }
5790
5791 /*
5792 * This function checks whether pageblock includes unmovable pages or not.
5793 * If @count is not zero, it is okay to include less @count unmovable pages
5794 *
5795 * PageLRU check wihtout isolation or lru_lock could race so that
5796 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5797 * expect this function should be exact.
5798 */
5799 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5800 bool skip_hwpoisoned_pages)
5801 {
5802 unsigned long pfn, iter, found;
5803 int mt;
5804
5805 /*
5806 * For avoiding noise data, lru_add_drain_all() should be called
5807 * If ZONE_MOVABLE, the zone never contains unmovable pages
5808 */
5809 if (zone_idx(zone) == ZONE_MOVABLE)
5810 return false;
5811 mt = get_pageblock_migratetype(page);
5812 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5813 return false;
5814
5815 pfn = page_to_pfn(page);
5816 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5817 unsigned long check = pfn + iter;
5818
5819 if (!pfn_valid_within(check))
5820 continue;
5821
5822 page = pfn_to_page(check);
5823 /*
5824 * We can't use page_count without pin a page
5825 * because another CPU can free compound page.
5826 * This check already skips compound tails of THP
5827 * because their page->_count is zero at all time.
5828 */
5829 if (!atomic_read(&page->_count)) {
5830 if (PageBuddy(page))
5831 iter += (1 << page_order(page)) - 1;
5832 continue;
5833 }
5834
5835 /*
5836 * The HWPoisoned page may be not in buddy system, and
5837 * page_count() is not 0.
5838 */
5839 if (skip_hwpoisoned_pages && PageHWPoison(page))
5840 continue;
5841
5842 if (!PageLRU(page))
5843 found++;
5844 /*
5845 * If there are RECLAIMABLE pages, we need to check it.
5846 * But now, memory offline itself doesn't call shrink_slab()
5847 * and it still to be fixed.
5848 */
5849 /*
5850 * If the page is not RAM, page_count()should be 0.
5851 * we don't need more check. This is an _used_ not-movable page.
5852 *
5853 * The problematic thing here is PG_reserved pages. PG_reserved
5854 * is set to both of a memory hole page and a _used_ kernel
5855 * page at boot.
5856 */
5857 if (found > count)
5858 return true;
5859 }
5860 return false;
5861 }
5862
5863 bool is_pageblock_removable_nolock(struct page *page)
5864 {
5865 struct zone *zone;
5866 unsigned long pfn;
5867
5868 /*
5869 * We have to be careful here because we are iterating over memory
5870 * sections which are not zone aware so we might end up outside of
5871 * the zone but still within the section.
5872 * We have to take care about the node as well. If the node is offline
5873 * its NODE_DATA will be NULL - see page_zone.
5874 */
5875 if (!node_online(page_to_nid(page)))
5876 return false;
5877
5878 zone = page_zone(page);
5879 pfn = page_to_pfn(page);
5880 if (!zone_spans_pfn(zone, pfn))
5881 return false;
5882
5883 return !has_unmovable_pages(zone, page, 0, true);
5884 }
5885
5886 #ifdef CONFIG_CMA
5887
5888 static unsigned long pfn_max_align_down(unsigned long pfn)
5889 {
5890 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5891 pageblock_nr_pages) - 1);
5892 }
5893
5894 static unsigned long pfn_max_align_up(unsigned long pfn)
5895 {
5896 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5897 pageblock_nr_pages));
5898 }
5899
5900 /* [start, end) must belong to a single zone. */
5901 static int __alloc_contig_migrate_range(struct compact_control *cc,
5902 unsigned long start, unsigned long end)
5903 {
5904 /* This function is based on compact_zone() from compaction.c. */
5905 unsigned long nr_reclaimed;
5906 unsigned long pfn = start;
5907 unsigned int tries = 0;
5908 int ret = 0;
5909
5910 migrate_prep();
5911
5912 while (pfn < end || !list_empty(&cc->migratepages)) {
5913 if (fatal_signal_pending(current)) {
5914 ret = -EINTR;
5915 break;
5916 }
5917
5918 if (list_empty(&cc->migratepages)) {
5919 cc->nr_migratepages = 0;
5920 pfn = isolate_migratepages_range(cc->zone, cc,
5921 pfn, end, true);
5922 if (!pfn) {
5923 ret = -EINTR;
5924 break;
5925 }
5926 tries = 0;
5927 } else if (++tries == 5) {
5928 ret = ret < 0 ? ret : -EBUSY;
5929 break;
5930 }
5931
5932 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5933 &cc->migratepages);
5934 cc->nr_migratepages -= nr_reclaimed;
5935
5936 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5937 0, MIGRATE_SYNC, MR_CMA);
5938 }
5939 if (ret < 0) {
5940 putback_movable_pages(&cc->migratepages);
5941 return ret;
5942 }
5943 return 0;
5944 }
5945
5946 /**
5947 * alloc_contig_range() -- tries to allocate given range of pages
5948 * @start: start PFN to allocate
5949 * @end: one-past-the-last PFN to allocate
5950 * @migratetype: migratetype of the underlaying pageblocks (either
5951 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5952 * in range must have the same migratetype and it must
5953 * be either of the two.
5954 *
5955 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5956 * aligned, however it's the caller's responsibility to guarantee that
5957 * we are the only thread that changes migrate type of pageblocks the
5958 * pages fall in.
5959 *
5960 * The PFN range must belong to a single zone.
5961 *
5962 * Returns zero on success or negative error code. On success all
5963 * pages which PFN is in [start, end) are allocated for the caller and
5964 * need to be freed with free_contig_range().
5965 */
5966 int alloc_contig_range(unsigned long start, unsigned long end,
5967 unsigned migratetype)
5968 {
5969 unsigned long outer_start, outer_end;
5970 int ret = 0, order;
5971
5972 struct compact_control cc = {
5973 .nr_migratepages = 0,
5974 .order = -1,
5975 .zone = page_zone(pfn_to_page(start)),
5976 .sync = true,
5977 .ignore_skip_hint = true,
5978 };
5979 INIT_LIST_HEAD(&cc.migratepages);
5980
5981 /*
5982 * What we do here is we mark all pageblocks in range as
5983 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5984 * have different sizes, and due to the way page allocator
5985 * work, we align the range to biggest of the two pages so
5986 * that page allocator won't try to merge buddies from
5987 * different pageblocks and change MIGRATE_ISOLATE to some
5988 * other migration type.
5989 *
5990 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5991 * migrate the pages from an unaligned range (ie. pages that
5992 * we are interested in). This will put all the pages in
5993 * range back to page allocator as MIGRATE_ISOLATE.
5994 *
5995 * When this is done, we take the pages in range from page
5996 * allocator removing them from the buddy system. This way
5997 * page allocator will never consider using them.
5998 *
5999 * This lets us mark the pageblocks back as
6000 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6001 * aligned range but not in the unaligned, original range are
6002 * put back to page allocator so that buddy can use them.
6003 */
6004
6005 ret = start_isolate_page_range(pfn_max_align_down(start),
6006 pfn_max_align_up(end), migratetype,
6007 false);
6008 if (ret)
6009 return ret;
6010
6011 ret = __alloc_contig_migrate_range(&cc, start, end);
6012 if (ret)
6013 goto done;
6014
6015 /*
6016 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6017 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6018 * more, all pages in [start, end) are free in page allocator.
6019 * What we are going to do is to allocate all pages from
6020 * [start, end) (that is remove them from page allocator).
6021 *
6022 * The only problem is that pages at the beginning and at the
6023 * end of interesting range may be not aligned with pages that
6024 * page allocator holds, ie. they can be part of higher order
6025 * pages. Because of this, we reserve the bigger range and
6026 * once this is done free the pages we are not interested in.
6027 *
6028 * We don't have to hold zone->lock here because the pages are
6029 * isolated thus they won't get removed from buddy.
6030 */
6031
6032 lru_add_drain_all();
6033 drain_all_pages();
6034
6035 order = 0;
6036 outer_start = start;
6037 while (!PageBuddy(pfn_to_page(outer_start))) {
6038 if (++order >= MAX_ORDER) {
6039 ret = -EBUSY;
6040 goto done;
6041 }
6042 outer_start &= ~0UL << order;
6043 }
6044
6045 /* Make sure the range is really isolated. */
6046 if (test_pages_isolated(outer_start, end, false)) {
6047 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6048 outer_start, end);
6049 ret = -EBUSY;
6050 goto done;
6051 }
6052
6053
6054 /* Grab isolated pages from freelists. */
6055 outer_end = isolate_freepages_range(&cc, outer_start, end);
6056 if (!outer_end) {
6057 ret = -EBUSY;
6058 goto done;
6059 }
6060
6061 /* Free head and tail (if any) */
6062 if (start != outer_start)
6063 free_contig_range(outer_start, start - outer_start);
6064 if (end != outer_end)
6065 free_contig_range(end, outer_end - end);
6066
6067 done:
6068 undo_isolate_page_range(pfn_max_align_down(start),
6069 pfn_max_align_up(end), migratetype);
6070 return ret;
6071 }
6072
6073 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6074 {
6075 unsigned int count = 0;
6076
6077 for (; nr_pages--; pfn++) {
6078 struct page *page = pfn_to_page(pfn);
6079
6080 count += page_count(page) != 1;
6081 __free_page(page);
6082 }
6083 WARN(count != 0, "%d pages are still in use!\n", count);
6084 }
6085 #endif
6086
6087 #ifdef CONFIG_MEMORY_HOTPLUG
6088 /*
6089 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6090 * page high values need to be recalulated.
6091 */
6092 void __meminit zone_pcp_update(struct zone *zone)
6093 {
6094 unsigned cpu;
6095 unsigned long batch;
6096 mutex_lock(&pcp_batch_high_lock);
6097 batch = zone_batchsize(zone);
6098 for_each_possible_cpu(cpu)
6099 pageset_set_batch(per_cpu_ptr(zone->pageset, cpu), batch);
6100 mutex_unlock(&pcp_batch_high_lock);
6101 }
6102 #endif
6103
6104 void zone_pcp_reset(struct zone *zone)
6105 {
6106 unsigned long flags;
6107 int cpu;
6108 struct per_cpu_pageset *pset;
6109
6110 /* avoid races with drain_pages() */
6111 local_irq_save(flags);
6112 if (zone->pageset != &boot_pageset) {
6113 for_each_online_cpu(cpu) {
6114 pset = per_cpu_ptr(zone->pageset, cpu);
6115 drain_zonestat(zone, pset);
6116 }
6117 free_percpu(zone->pageset);
6118 zone->pageset = &boot_pageset;
6119 }
6120 local_irq_restore(flags);
6121 }
6122
6123 #ifdef CONFIG_MEMORY_HOTREMOVE
6124 /*
6125 * All pages in the range must be isolated before calling this.
6126 */
6127 void
6128 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6129 {
6130 struct page *page;
6131 struct zone *zone;
6132 int order, i;
6133 unsigned long pfn;
6134 unsigned long flags;
6135 /* find the first valid pfn */
6136 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6137 if (pfn_valid(pfn))
6138 break;
6139 if (pfn == end_pfn)
6140 return;
6141 zone = page_zone(pfn_to_page(pfn));
6142 spin_lock_irqsave(&zone->lock, flags);
6143 pfn = start_pfn;
6144 while (pfn < end_pfn) {
6145 if (!pfn_valid(pfn)) {
6146 pfn++;
6147 continue;
6148 }
6149 page = pfn_to_page(pfn);
6150 /*
6151 * The HWPoisoned page may be not in buddy system, and
6152 * page_count() is not 0.
6153 */
6154 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6155 pfn++;
6156 SetPageReserved(page);
6157 continue;
6158 }
6159
6160 BUG_ON(page_count(page));
6161 BUG_ON(!PageBuddy(page));
6162 order = page_order(page);
6163 #ifdef CONFIG_DEBUG_VM
6164 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6165 pfn, 1 << order, end_pfn);
6166 #endif
6167 list_del(&page->lru);
6168 rmv_page_order(page);
6169 zone->free_area[order].nr_free--;
6170 for (i = 0; i < (1 << order); i++)
6171 SetPageReserved((page+i));
6172 pfn += (1 << order);
6173 }
6174 spin_unlock_irqrestore(&zone->lock, flags);
6175 }
6176 #endif
6177
6178 #ifdef CONFIG_MEMORY_FAILURE
6179 bool is_free_buddy_page(struct page *page)
6180 {
6181 struct zone *zone = page_zone(page);
6182 unsigned long pfn = page_to_pfn(page);
6183 unsigned long flags;
6184 int order;
6185
6186 spin_lock_irqsave(&zone->lock, flags);
6187 for (order = 0; order < MAX_ORDER; order++) {
6188 struct page *page_head = page - (pfn & ((1 << order) - 1));
6189
6190 if (PageBuddy(page_head) && page_order(page_head) >= order)
6191 break;
6192 }
6193 spin_unlock_irqrestore(&zone->lock, flags);
6194
6195 return order < MAX_ORDER;
6196 }
6197 #endif
6198
6199 static const struct trace_print_flags pageflag_names[] = {
6200 {1UL << PG_locked, "locked" },
6201 {1UL << PG_error, "error" },
6202 {1UL << PG_referenced, "referenced" },
6203 {1UL << PG_uptodate, "uptodate" },
6204 {1UL << PG_dirty, "dirty" },
6205 {1UL << PG_lru, "lru" },
6206 {1UL << PG_active, "active" },
6207 {1UL << PG_slab, "slab" },
6208 {1UL << PG_owner_priv_1, "owner_priv_1" },
6209 {1UL << PG_arch_1, "arch_1" },
6210 {1UL << PG_reserved, "reserved" },
6211 {1UL << PG_private, "private" },
6212 {1UL << PG_private_2, "private_2" },
6213 {1UL << PG_writeback, "writeback" },
6214 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6215 {1UL << PG_head, "head" },
6216 {1UL << PG_tail, "tail" },
6217 #else
6218 {1UL << PG_compound, "compound" },
6219 #endif
6220 {1UL << PG_swapcache, "swapcache" },
6221 {1UL << PG_mappedtodisk, "mappedtodisk" },
6222 {1UL << PG_reclaim, "reclaim" },
6223 {1UL << PG_swapbacked, "swapbacked" },
6224 {1UL << PG_unevictable, "unevictable" },
6225 #ifdef CONFIG_MMU
6226 {1UL << PG_mlocked, "mlocked" },
6227 #endif
6228 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6229 {1UL << PG_uncached, "uncached" },
6230 #endif
6231 #ifdef CONFIG_MEMORY_FAILURE
6232 {1UL << PG_hwpoison, "hwpoison" },
6233 #endif
6234 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6235 {1UL << PG_compound_lock, "compound_lock" },
6236 #endif
6237 };
6238
6239 static void dump_page_flags(unsigned long flags)
6240 {
6241 const char *delim = "";
6242 unsigned long mask;
6243 int i;
6244
6245 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6246
6247 printk(KERN_ALERT "page flags: %#lx(", flags);
6248
6249 /* remove zone id */
6250 flags &= (1UL << NR_PAGEFLAGS) - 1;
6251
6252 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6253
6254 mask = pageflag_names[i].mask;
6255 if ((flags & mask) != mask)
6256 continue;
6257
6258 flags &= ~mask;
6259 printk("%s%s", delim, pageflag_names[i].name);
6260 delim = "|";
6261 }
6262
6263 /* check for left over flags */
6264 if (flags)
6265 printk("%s%#lx", delim, flags);
6266
6267 printk(")\n");
6268 }
6269
6270 void dump_page(struct page *page)
6271 {
6272 printk(KERN_ALERT
6273 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6274 page, atomic_read(&page->_count), page_mapcount(page),
6275 page->mapping, page->index);
6276 dump_page_flags(page->flags);
6277 mem_cgroup_print_bad_page(page);
6278 }