]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/page_alloc.c
page allocator: remove a branch by assuming __GFP_HIGH == ALLOC_HIGH
[thirdparty/kernel/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 #include <linux/kmemleak.h>
50
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 #include "internal.h"
54
55 /*
56 * Array of node states.
57 */
58 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61 #ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63 #ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65 #endif
66 [N_CPU] = { { [0] = 1UL } },
67 #endif /* NUMA */
68 };
69 EXPORT_SYMBOL(node_states);
70
71 unsigned long totalram_pages __read_mostly;
72 unsigned long totalreserve_pages __read_mostly;
73 unsigned long highest_memmap_pfn __read_mostly;
74 int percpu_pagelist_fraction;
75
76 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77 int pageblock_order __read_mostly;
78 #endif
79
80 static void __free_pages_ok(struct page *page, unsigned int order);
81
82 /*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
92 */
93 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
94 #ifdef CONFIG_ZONE_DMA
95 256,
96 #endif
97 #ifdef CONFIG_ZONE_DMA32
98 256,
99 #endif
100 #ifdef CONFIG_HIGHMEM
101 32,
102 #endif
103 32,
104 };
105
106 EXPORT_SYMBOL(totalram_pages);
107
108 static char * const zone_names[MAX_NR_ZONES] = {
109 #ifdef CONFIG_ZONE_DMA
110 "DMA",
111 #endif
112 #ifdef CONFIG_ZONE_DMA32
113 "DMA32",
114 #endif
115 "Normal",
116 #ifdef CONFIG_HIGHMEM
117 "HighMem",
118 #endif
119 "Movable",
120 };
121
122 int min_free_kbytes = 1024;
123
124 unsigned long __meminitdata nr_kernel_pages;
125 unsigned long __meminitdata nr_all_pages;
126 static unsigned long __meminitdata dma_reserve;
127
128 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 /*
130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
135 */
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
148
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 EXPORT_SYMBOL(nr_node_ids);
165 #endif
166
167 int page_group_by_mobility_disabled __read_mostly;
168
169 static void set_pageblock_migratetype(struct page *page, int migratetype)
170 {
171
172 if (unlikely(page_group_by_mobility_disabled))
173 migratetype = MIGRATE_UNMOVABLE;
174
175 set_pageblock_flags_group(page, (unsigned long)migratetype,
176 PB_migrate, PB_migrate_end);
177 }
178
179 #ifdef CONFIG_DEBUG_VM
180 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
181 {
182 int ret = 0;
183 unsigned seq;
184 unsigned long pfn = page_to_pfn(page);
185
186 do {
187 seq = zone_span_seqbegin(zone);
188 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 ret = 1;
190 else if (pfn < zone->zone_start_pfn)
191 ret = 1;
192 } while (zone_span_seqretry(zone, seq));
193
194 return ret;
195 }
196
197 static int page_is_consistent(struct zone *zone, struct page *page)
198 {
199 if (!pfn_valid_within(page_to_pfn(page)))
200 return 0;
201 if (zone != page_zone(page))
202 return 0;
203
204 return 1;
205 }
206 /*
207 * Temporary debugging check for pages not lying within a given zone.
208 */
209 static int bad_range(struct zone *zone, struct page *page)
210 {
211 if (page_outside_zone_boundaries(zone, page))
212 return 1;
213 if (!page_is_consistent(zone, page))
214 return 1;
215
216 return 0;
217 }
218 #else
219 static inline int bad_range(struct zone *zone, struct page *page)
220 {
221 return 0;
222 }
223 #endif
224
225 static void bad_page(struct page *page)
226 {
227 static unsigned long resume;
228 static unsigned long nr_shown;
229 static unsigned long nr_unshown;
230
231 /*
232 * Allow a burst of 60 reports, then keep quiet for that minute;
233 * or allow a steady drip of one report per second.
234 */
235 if (nr_shown == 60) {
236 if (time_before(jiffies, resume)) {
237 nr_unshown++;
238 goto out;
239 }
240 if (nr_unshown) {
241 printk(KERN_ALERT
242 "BUG: Bad page state: %lu messages suppressed\n",
243 nr_unshown);
244 nr_unshown = 0;
245 }
246 nr_shown = 0;
247 }
248 if (nr_shown++ == 0)
249 resume = jiffies + 60 * HZ;
250
251 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
252 current->comm, page_to_pfn(page));
253 printk(KERN_ALERT
254 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 page, (void *)page->flags, page_count(page),
256 page_mapcount(page), page->mapping, page->index);
257
258 dump_stack();
259 out:
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page);
262 add_taint(TAINT_BAD_PAGE);
263 }
264
265 /*
266 * Higher-order pages are called "compound pages". They are structured thusly:
267 *
268 * The first PAGE_SIZE page is called the "head page".
269 *
270 * The remaining PAGE_SIZE pages are called "tail pages".
271 *
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
274 *
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
278 */
279
280 static void free_compound_page(struct page *page)
281 {
282 __free_pages_ok(page, compound_order(page));
283 }
284
285 void prep_compound_page(struct page *page, unsigned long order)
286 {
287 int i;
288 int nr_pages = 1 << order;
289
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
295
296 __SetPageTail(p);
297 p->first_page = page;
298 }
299 }
300
301 #ifdef CONFIG_HUGETLBFS
302 void prep_compound_gigantic_page(struct page *page, unsigned long order)
303 {
304 int i;
305 int nr_pages = 1 << order;
306 struct page *p = page + 1;
307
308 set_compound_page_dtor(page, free_compound_page);
309 set_compound_order(page, order);
310 __SetPageHead(page);
311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
312 __SetPageTail(p);
313 p->first_page = page;
314 }
315 }
316 #endif
317
318 static int destroy_compound_page(struct page *page, unsigned long order)
319 {
320 int i;
321 int nr_pages = 1 << order;
322 int bad = 0;
323
324 if (unlikely(compound_order(page) != order) ||
325 unlikely(!PageHead(page))) {
326 bad_page(page);
327 bad++;
328 }
329
330 __ClearPageHead(page);
331
332 for (i = 1; i < nr_pages; i++) {
333 struct page *p = page + i;
334
335 if (unlikely(!PageTail(p) || (p->first_page != page))) {
336 bad_page(page);
337 bad++;
338 }
339 __ClearPageTail(p);
340 }
341
342 return bad;
343 }
344
345 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
346 {
347 int i;
348
349 /*
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
352 */
353 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
354 for (i = 0; i < (1 << order); i++)
355 clear_highpage(page + i);
356 }
357
358 static inline void set_page_order(struct page *page, int order)
359 {
360 set_page_private(page, order);
361 __SetPageBuddy(page);
362 }
363
364 static inline void rmv_page_order(struct page *page)
365 {
366 __ClearPageBuddy(page);
367 set_page_private(page, 0);
368 }
369
370 /*
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
373 *
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 * B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
380 *
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 * P = B & ~(1 << O)
384 *
385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
386 */
387 static inline struct page *
388 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
389 {
390 unsigned long buddy_idx = page_idx ^ (1 << order);
391
392 return page + (buddy_idx - page_idx);
393 }
394
395 static inline unsigned long
396 __find_combined_index(unsigned long page_idx, unsigned int order)
397 {
398 return (page_idx & ~(1 << order));
399 }
400
401 /*
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
404 * (a) the buddy is not in a hole &&
405 * (b) the buddy is in the buddy system &&
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
408 *
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
411 *
412 * For recording page's order, we use page_private(page).
413 */
414 static inline int page_is_buddy(struct page *page, struct page *buddy,
415 int order)
416 {
417 if (!pfn_valid_within(page_to_pfn(buddy)))
418 return 0;
419
420 if (page_zone_id(page) != page_zone_id(buddy))
421 return 0;
422
423 if (PageBuddy(buddy) && page_order(buddy) == order) {
424 BUG_ON(page_count(buddy) != 0);
425 return 1;
426 }
427 return 0;
428 }
429
430 /*
431 * Freeing function for a buddy system allocator.
432 *
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
444 * order is recorded in page_private(page) field.
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
450 *
451 * -- wli
452 */
453
454 static inline void __free_one_page(struct page *page,
455 struct zone *zone, unsigned int order)
456 {
457 unsigned long page_idx;
458 int order_size = 1 << order;
459 int migratetype = get_pageblock_migratetype(page);
460
461 if (unlikely(PageCompound(page)))
462 if (unlikely(destroy_compound_page(page, order)))
463 return;
464
465 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
466
467 VM_BUG_ON(page_idx & (order_size - 1));
468 VM_BUG_ON(bad_range(zone, page));
469
470 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
471 while (order < MAX_ORDER-1) {
472 unsigned long combined_idx;
473 struct page *buddy;
474
475 buddy = __page_find_buddy(page, page_idx, order);
476 if (!page_is_buddy(page, buddy, order))
477 break;
478
479 /* Our buddy is free, merge with it and move up one order. */
480 list_del(&buddy->lru);
481 zone->free_area[order].nr_free--;
482 rmv_page_order(buddy);
483 combined_idx = __find_combined_index(page_idx, order);
484 page = page + (combined_idx - page_idx);
485 page_idx = combined_idx;
486 order++;
487 }
488 set_page_order(page, order);
489 list_add(&page->lru,
490 &zone->free_area[order].free_list[migratetype]);
491 zone->free_area[order].nr_free++;
492 }
493
494 static inline int free_pages_check(struct page *page)
495 {
496 free_page_mlock(page);
497 if (unlikely(page_mapcount(page) |
498 (page->mapping != NULL) |
499 (page_count(page) != 0) |
500 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
501 bad_page(page);
502 return 1;
503 }
504 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506 return 0;
507 }
508
509 /*
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
512 * count is the number of pages to free.
513 *
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
516 *
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
519 */
520 static void free_pages_bulk(struct zone *zone, int count,
521 struct list_head *list, int order)
522 {
523 spin_lock(&zone->lock);
524 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
525 zone->pages_scanned = 0;
526 while (count--) {
527 struct page *page;
528
529 VM_BUG_ON(list_empty(list));
530 page = list_entry(list->prev, struct page, lru);
531 /* have to delete it as __free_one_page list manipulates */
532 list_del(&page->lru);
533 __free_one_page(page, zone, order);
534 }
535 spin_unlock(&zone->lock);
536 }
537
538 static void free_one_page(struct zone *zone, struct page *page, int order)
539 {
540 spin_lock(&zone->lock);
541 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
542 zone->pages_scanned = 0;
543 __free_one_page(page, zone, order);
544 spin_unlock(&zone->lock);
545 }
546
547 static void __free_pages_ok(struct page *page, unsigned int order)
548 {
549 unsigned long flags;
550 int i;
551 int bad = 0;
552
553 for (i = 0 ; i < (1 << order) ; ++i)
554 bad += free_pages_check(page + i);
555 if (bad)
556 return;
557
558 if (!PageHighMem(page)) {
559 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
560 debug_check_no_obj_freed(page_address(page),
561 PAGE_SIZE << order);
562 }
563 arch_free_page(page, order);
564 kernel_map_pages(page, 1 << order, 0);
565
566 local_irq_save(flags);
567 __count_vm_events(PGFREE, 1 << order);
568 free_one_page(page_zone(page), page, order);
569 local_irq_restore(flags);
570 }
571
572 /*
573 * permit the bootmem allocator to evade page validation on high-order frees
574 */
575 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
576 {
577 if (order == 0) {
578 __ClearPageReserved(page);
579 set_page_count(page, 0);
580 set_page_refcounted(page);
581 __free_page(page);
582 } else {
583 int loop;
584
585 prefetchw(page);
586 for (loop = 0; loop < BITS_PER_LONG; loop++) {
587 struct page *p = &page[loop];
588
589 if (loop + 1 < BITS_PER_LONG)
590 prefetchw(p + 1);
591 __ClearPageReserved(p);
592 set_page_count(p, 0);
593 }
594
595 set_page_refcounted(page);
596 __free_pages(page, order);
597 }
598 }
599
600
601 /*
602 * The order of subdivision here is critical for the IO subsystem.
603 * Please do not alter this order without good reasons and regression
604 * testing. Specifically, as large blocks of memory are subdivided,
605 * the order in which smaller blocks are delivered depends on the order
606 * they're subdivided in this function. This is the primary factor
607 * influencing the order in which pages are delivered to the IO
608 * subsystem according to empirical testing, and this is also justified
609 * by considering the behavior of a buddy system containing a single
610 * large block of memory acted on by a series of small allocations.
611 * This behavior is a critical factor in sglist merging's success.
612 *
613 * -- wli
614 */
615 static inline void expand(struct zone *zone, struct page *page,
616 int low, int high, struct free_area *area,
617 int migratetype)
618 {
619 unsigned long size = 1 << high;
620
621 while (high > low) {
622 area--;
623 high--;
624 size >>= 1;
625 VM_BUG_ON(bad_range(zone, &page[size]));
626 list_add(&page[size].lru, &area->free_list[migratetype]);
627 area->nr_free++;
628 set_page_order(&page[size], high);
629 }
630 }
631
632 /*
633 * This page is about to be returned from the page allocator
634 */
635 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
636 {
637 if (unlikely(page_mapcount(page) |
638 (page->mapping != NULL) |
639 (page_count(page) != 0) |
640 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
641 bad_page(page);
642 return 1;
643 }
644
645 set_page_private(page, 0);
646 set_page_refcounted(page);
647
648 arch_alloc_page(page, order);
649 kernel_map_pages(page, 1 << order, 1);
650
651 if (gfp_flags & __GFP_ZERO)
652 prep_zero_page(page, order, gfp_flags);
653
654 if (order && (gfp_flags & __GFP_COMP))
655 prep_compound_page(page, order);
656
657 return 0;
658 }
659
660 /*
661 * Go through the free lists for the given migratetype and remove
662 * the smallest available page from the freelists
663 */
664 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
665 int migratetype)
666 {
667 unsigned int current_order;
668 struct free_area * area;
669 struct page *page;
670
671 /* Find a page of the appropriate size in the preferred list */
672 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
673 area = &(zone->free_area[current_order]);
674 if (list_empty(&area->free_list[migratetype]))
675 continue;
676
677 page = list_entry(area->free_list[migratetype].next,
678 struct page, lru);
679 list_del(&page->lru);
680 rmv_page_order(page);
681 area->nr_free--;
682 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
683 expand(zone, page, order, current_order, area, migratetype);
684 return page;
685 }
686
687 return NULL;
688 }
689
690
691 /*
692 * This array describes the order lists are fallen back to when
693 * the free lists for the desirable migrate type are depleted
694 */
695 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
696 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
699 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
700 };
701
702 /*
703 * Move the free pages in a range to the free lists of the requested type.
704 * Note that start_page and end_pages are not aligned on a pageblock
705 * boundary. If alignment is required, use move_freepages_block()
706 */
707 static int move_freepages(struct zone *zone,
708 struct page *start_page, struct page *end_page,
709 int migratetype)
710 {
711 struct page *page;
712 unsigned long order;
713 int pages_moved = 0;
714
715 #ifndef CONFIG_HOLES_IN_ZONE
716 /*
717 * page_zone is not safe to call in this context when
718 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
719 * anyway as we check zone boundaries in move_freepages_block().
720 * Remove at a later date when no bug reports exist related to
721 * grouping pages by mobility
722 */
723 BUG_ON(page_zone(start_page) != page_zone(end_page));
724 #endif
725
726 for (page = start_page; page <= end_page;) {
727 /* Make sure we are not inadvertently changing nodes */
728 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
729
730 if (!pfn_valid_within(page_to_pfn(page))) {
731 page++;
732 continue;
733 }
734
735 if (!PageBuddy(page)) {
736 page++;
737 continue;
738 }
739
740 order = page_order(page);
741 list_del(&page->lru);
742 list_add(&page->lru,
743 &zone->free_area[order].free_list[migratetype]);
744 page += 1 << order;
745 pages_moved += 1 << order;
746 }
747
748 return pages_moved;
749 }
750
751 static int move_freepages_block(struct zone *zone, struct page *page,
752 int migratetype)
753 {
754 unsigned long start_pfn, end_pfn;
755 struct page *start_page, *end_page;
756
757 start_pfn = page_to_pfn(page);
758 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
759 start_page = pfn_to_page(start_pfn);
760 end_page = start_page + pageblock_nr_pages - 1;
761 end_pfn = start_pfn + pageblock_nr_pages - 1;
762
763 /* Do not cross zone boundaries */
764 if (start_pfn < zone->zone_start_pfn)
765 start_page = page;
766 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
767 return 0;
768
769 return move_freepages(zone, start_page, end_page, migratetype);
770 }
771
772 /* Remove an element from the buddy allocator from the fallback list */
773 static struct page *__rmqueue_fallback(struct zone *zone, int order,
774 int start_migratetype)
775 {
776 struct free_area * area;
777 int current_order;
778 struct page *page;
779 int migratetype, i;
780
781 /* Find the largest possible block of pages in the other list */
782 for (current_order = MAX_ORDER-1; current_order >= order;
783 --current_order) {
784 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
785 migratetype = fallbacks[start_migratetype][i];
786
787 /* MIGRATE_RESERVE handled later if necessary */
788 if (migratetype == MIGRATE_RESERVE)
789 continue;
790
791 area = &(zone->free_area[current_order]);
792 if (list_empty(&area->free_list[migratetype]))
793 continue;
794
795 page = list_entry(area->free_list[migratetype].next,
796 struct page, lru);
797 area->nr_free--;
798
799 /*
800 * If breaking a large block of pages, move all free
801 * pages to the preferred allocation list. If falling
802 * back for a reclaimable kernel allocation, be more
803 * agressive about taking ownership of free pages
804 */
805 if (unlikely(current_order >= (pageblock_order >> 1)) ||
806 start_migratetype == MIGRATE_RECLAIMABLE) {
807 unsigned long pages;
808 pages = move_freepages_block(zone, page,
809 start_migratetype);
810
811 /* Claim the whole block if over half of it is free */
812 if (pages >= (1 << (pageblock_order-1)))
813 set_pageblock_migratetype(page,
814 start_migratetype);
815
816 migratetype = start_migratetype;
817 }
818
819 /* Remove the page from the freelists */
820 list_del(&page->lru);
821 rmv_page_order(page);
822 __mod_zone_page_state(zone, NR_FREE_PAGES,
823 -(1UL << order));
824
825 if (current_order == pageblock_order)
826 set_pageblock_migratetype(page,
827 start_migratetype);
828
829 expand(zone, page, order, current_order, area, migratetype);
830 return page;
831 }
832 }
833
834 /* Use MIGRATE_RESERVE rather than fail an allocation */
835 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
836 }
837
838 /*
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
841 */
842 static struct page *__rmqueue(struct zone *zone, unsigned int order,
843 int migratetype)
844 {
845 struct page *page;
846
847 page = __rmqueue_smallest(zone, order, migratetype);
848
849 if (unlikely(!page))
850 page = __rmqueue_fallback(zone, order, migratetype);
851
852 return page;
853 }
854
855 /*
856 * Obtain a specified number of elements from the buddy allocator, all under
857 * a single hold of the lock, for efficiency. Add them to the supplied list.
858 * Returns the number of new pages which were placed at *list.
859 */
860 static int rmqueue_bulk(struct zone *zone, unsigned int order,
861 unsigned long count, struct list_head *list,
862 int migratetype)
863 {
864 int i;
865
866 spin_lock(&zone->lock);
867 for (i = 0; i < count; ++i) {
868 struct page *page = __rmqueue(zone, order, migratetype);
869 if (unlikely(page == NULL))
870 break;
871
872 /*
873 * Split buddy pages returned by expand() are received here
874 * in physical page order. The page is added to the callers and
875 * list and the list head then moves forward. From the callers
876 * perspective, the linked list is ordered by page number in
877 * some conditions. This is useful for IO devices that can
878 * merge IO requests if the physical pages are ordered
879 * properly.
880 */
881 list_add(&page->lru, list);
882 set_page_private(page, migratetype);
883 list = &page->lru;
884 }
885 spin_unlock(&zone->lock);
886 return i;
887 }
888
889 #ifdef CONFIG_NUMA
890 /*
891 * Called from the vmstat counter updater to drain pagesets of this
892 * currently executing processor on remote nodes after they have
893 * expired.
894 *
895 * Note that this function must be called with the thread pinned to
896 * a single processor.
897 */
898 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
899 {
900 unsigned long flags;
901 int to_drain;
902
903 local_irq_save(flags);
904 if (pcp->count >= pcp->batch)
905 to_drain = pcp->batch;
906 else
907 to_drain = pcp->count;
908 free_pages_bulk(zone, to_drain, &pcp->list, 0);
909 pcp->count -= to_drain;
910 local_irq_restore(flags);
911 }
912 #endif
913
914 /*
915 * Drain pages of the indicated processor.
916 *
917 * The processor must either be the current processor and the
918 * thread pinned to the current processor or a processor that
919 * is not online.
920 */
921 static void drain_pages(unsigned int cpu)
922 {
923 unsigned long flags;
924 struct zone *zone;
925
926 for_each_populated_zone(zone) {
927 struct per_cpu_pageset *pset;
928 struct per_cpu_pages *pcp;
929
930 pset = zone_pcp(zone, cpu);
931
932 pcp = &pset->pcp;
933 local_irq_save(flags);
934 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
935 pcp->count = 0;
936 local_irq_restore(flags);
937 }
938 }
939
940 /*
941 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
942 */
943 void drain_local_pages(void *arg)
944 {
945 drain_pages(smp_processor_id());
946 }
947
948 /*
949 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
950 */
951 void drain_all_pages(void)
952 {
953 on_each_cpu(drain_local_pages, NULL, 1);
954 }
955
956 #ifdef CONFIG_HIBERNATION
957
958 void mark_free_pages(struct zone *zone)
959 {
960 unsigned long pfn, max_zone_pfn;
961 unsigned long flags;
962 int order, t;
963 struct list_head *curr;
964
965 if (!zone->spanned_pages)
966 return;
967
968 spin_lock_irqsave(&zone->lock, flags);
969
970 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
971 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
972 if (pfn_valid(pfn)) {
973 struct page *page = pfn_to_page(pfn);
974
975 if (!swsusp_page_is_forbidden(page))
976 swsusp_unset_page_free(page);
977 }
978
979 for_each_migratetype_order(order, t) {
980 list_for_each(curr, &zone->free_area[order].free_list[t]) {
981 unsigned long i;
982
983 pfn = page_to_pfn(list_entry(curr, struct page, lru));
984 for (i = 0; i < (1UL << order); i++)
985 swsusp_set_page_free(pfn_to_page(pfn + i));
986 }
987 }
988 spin_unlock_irqrestore(&zone->lock, flags);
989 }
990 #endif /* CONFIG_PM */
991
992 /*
993 * Free a 0-order page
994 */
995 static void free_hot_cold_page(struct page *page, int cold)
996 {
997 struct zone *zone = page_zone(page);
998 struct per_cpu_pages *pcp;
999 unsigned long flags;
1000
1001 if (PageAnon(page))
1002 page->mapping = NULL;
1003 if (free_pages_check(page))
1004 return;
1005
1006 if (!PageHighMem(page)) {
1007 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1008 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1009 }
1010 arch_free_page(page, 0);
1011 kernel_map_pages(page, 1, 0);
1012
1013 pcp = &zone_pcp(zone, get_cpu())->pcp;
1014 local_irq_save(flags);
1015 __count_vm_event(PGFREE);
1016 if (cold)
1017 list_add_tail(&page->lru, &pcp->list);
1018 else
1019 list_add(&page->lru, &pcp->list);
1020 set_page_private(page, get_pageblock_migratetype(page));
1021 pcp->count++;
1022 if (pcp->count >= pcp->high) {
1023 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1024 pcp->count -= pcp->batch;
1025 }
1026 local_irq_restore(flags);
1027 put_cpu();
1028 }
1029
1030 void free_hot_page(struct page *page)
1031 {
1032 free_hot_cold_page(page, 0);
1033 }
1034
1035 void free_cold_page(struct page *page)
1036 {
1037 free_hot_cold_page(page, 1);
1038 }
1039
1040 /*
1041 * split_page takes a non-compound higher-order page, and splits it into
1042 * n (1<<order) sub-pages: page[0..n]
1043 * Each sub-page must be freed individually.
1044 *
1045 * Note: this is probably too low level an operation for use in drivers.
1046 * Please consult with lkml before using this in your driver.
1047 */
1048 void split_page(struct page *page, unsigned int order)
1049 {
1050 int i;
1051
1052 VM_BUG_ON(PageCompound(page));
1053 VM_BUG_ON(!page_count(page));
1054 for (i = 1; i < (1 << order); i++)
1055 set_page_refcounted(page + i);
1056 }
1057
1058 /*
1059 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1060 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1061 * or two.
1062 */
1063 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1064 struct zone *zone, int order, gfp_t gfp_flags,
1065 int migratetype)
1066 {
1067 unsigned long flags;
1068 struct page *page;
1069 int cold = !!(gfp_flags & __GFP_COLD);
1070 int cpu;
1071
1072 again:
1073 cpu = get_cpu();
1074 if (likely(order == 0)) {
1075 struct per_cpu_pages *pcp;
1076
1077 pcp = &zone_pcp(zone, cpu)->pcp;
1078 local_irq_save(flags);
1079 if (!pcp->count) {
1080 pcp->count = rmqueue_bulk(zone, 0,
1081 pcp->batch, &pcp->list, migratetype);
1082 if (unlikely(!pcp->count))
1083 goto failed;
1084 }
1085
1086 /* Find a page of the appropriate migrate type */
1087 if (cold) {
1088 list_for_each_entry_reverse(page, &pcp->list, lru)
1089 if (page_private(page) == migratetype)
1090 break;
1091 } else {
1092 list_for_each_entry(page, &pcp->list, lru)
1093 if (page_private(page) == migratetype)
1094 break;
1095 }
1096
1097 /* Allocate more to the pcp list if necessary */
1098 if (unlikely(&page->lru == &pcp->list)) {
1099 pcp->count += rmqueue_bulk(zone, 0,
1100 pcp->batch, &pcp->list, migratetype);
1101 page = list_entry(pcp->list.next, struct page, lru);
1102 }
1103
1104 list_del(&page->lru);
1105 pcp->count--;
1106 } else {
1107 spin_lock_irqsave(&zone->lock, flags);
1108 page = __rmqueue(zone, order, migratetype);
1109 spin_unlock(&zone->lock);
1110 if (!page)
1111 goto failed;
1112 }
1113
1114 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1115 zone_statistics(preferred_zone, zone);
1116 local_irq_restore(flags);
1117 put_cpu();
1118
1119 VM_BUG_ON(bad_range(zone, page));
1120 if (prep_new_page(page, order, gfp_flags))
1121 goto again;
1122 return page;
1123
1124 failed:
1125 local_irq_restore(flags);
1126 put_cpu();
1127 return NULL;
1128 }
1129
1130 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1131 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1132 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1133 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1134 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1135 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1136 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1137
1138 #ifdef CONFIG_FAIL_PAGE_ALLOC
1139
1140 static struct fail_page_alloc_attr {
1141 struct fault_attr attr;
1142
1143 u32 ignore_gfp_highmem;
1144 u32 ignore_gfp_wait;
1145 u32 min_order;
1146
1147 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1148
1149 struct dentry *ignore_gfp_highmem_file;
1150 struct dentry *ignore_gfp_wait_file;
1151 struct dentry *min_order_file;
1152
1153 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1154
1155 } fail_page_alloc = {
1156 .attr = FAULT_ATTR_INITIALIZER,
1157 .ignore_gfp_wait = 1,
1158 .ignore_gfp_highmem = 1,
1159 .min_order = 1,
1160 };
1161
1162 static int __init setup_fail_page_alloc(char *str)
1163 {
1164 return setup_fault_attr(&fail_page_alloc.attr, str);
1165 }
1166 __setup("fail_page_alloc=", setup_fail_page_alloc);
1167
1168 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1169 {
1170 if (order < fail_page_alloc.min_order)
1171 return 0;
1172 if (gfp_mask & __GFP_NOFAIL)
1173 return 0;
1174 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1175 return 0;
1176 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1177 return 0;
1178
1179 return should_fail(&fail_page_alloc.attr, 1 << order);
1180 }
1181
1182 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1183
1184 static int __init fail_page_alloc_debugfs(void)
1185 {
1186 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1187 struct dentry *dir;
1188 int err;
1189
1190 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1191 "fail_page_alloc");
1192 if (err)
1193 return err;
1194 dir = fail_page_alloc.attr.dentries.dir;
1195
1196 fail_page_alloc.ignore_gfp_wait_file =
1197 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1198 &fail_page_alloc.ignore_gfp_wait);
1199
1200 fail_page_alloc.ignore_gfp_highmem_file =
1201 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1202 &fail_page_alloc.ignore_gfp_highmem);
1203 fail_page_alloc.min_order_file =
1204 debugfs_create_u32("min-order", mode, dir,
1205 &fail_page_alloc.min_order);
1206
1207 if (!fail_page_alloc.ignore_gfp_wait_file ||
1208 !fail_page_alloc.ignore_gfp_highmem_file ||
1209 !fail_page_alloc.min_order_file) {
1210 err = -ENOMEM;
1211 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1212 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1213 debugfs_remove(fail_page_alloc.min_order_file);
1214 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1215 }
1216
1217 return err;
1218 }
1219
1220 late_initcall(fail_page_alloc_debugfs);
1221
1222 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1223
1224 #else /* CONFIG_FAIL_PAGE_ALLOC */
1225
1226 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1227 {
1228 return 0;
1229 }
1230
1231 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1232
1233 /*
1234 * Return 1 if free pages are above 'mark'. This takes into account the order
1235 * of the allocation.
1236 */
1237 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1238 int classzone_idx, int alloc_flags)
1239 {
1240 /* free_pages my go negative - that's OK */
1241 long min = mark;
1242 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1243 int o;
1244
1245 if (alloc_flags & ALLOC_HIGH)
1246 min -= min / 2;
1247 if (alloc_flags & ALLOC_HARDER)
1248 min -= min / 4;
1249
1250 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1251 return 0;
1252 for (o = 0; o < order; o++) {
1253 /* At the next order, this order's pages become unavailable */
1254 free_pages -= z->free_area[o].nr_free << o;
1255
1256 /* Require fewer higher order pages to be free */
1257 min >>= 1;
1258
1259 if (free_pages <= min)
1260 return 0;
1261 }
1262 return 1;
1263 }
1264
1265 #ifdef CONFIG_NUMA
1266 /*
1267 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1268 * skip over zones that are not allowed by the cpuset, or that have
1269 * been recently (in last second) found to be nearly full. See further
1270 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1271 * that have to skip over a lot of full or unallowed zones.
1272 *
1273 * If the zonelist cache is present in the passed in zonelist, then
1274 * returns a pointer to the allowed node mask (either the current
1275 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1276 *
1277 * If the zonelist cache is not available for this zonelist, does
1278 * nothing and returns NULL.
1279 *
1280 * If the fullzones BITMAP in the zonelist cache is stale (more than
1281 * a second since last zap'd) then we zap it out (clear its bits.)
1282 *
1283 * We hold off even calling zlc_setup, until after we've checked the
1284 * first zone in the zonelist, on the theory that most allocations will
1285 * be satisfied from that first zone, so best to examine that zone as
1286 * quickly as we can.
1287 */
1288 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1289 {
1290 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1291 nodemask_t *allowednodes; /* zonelist_cache approximation */
1292
1293 zlc = zonelist->zlcache_ptr;
1294 if (!zlc)
1295 return NULL;
1296
1297 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1298 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1299 zlc->last_full_zap = jiffies;
1300 }
1301
1302 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1303 &cpuset_current_mems_allowed :
1304 &node_states[N_HIGH_MEMORY];
1305 return allowednodes;
1306 }
1307
1308 /*
1309 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1310 * if it is worth looking at further for free memory:
1311 * 1) Check that the zone isn't thought to be full (doesn't have its
1312 * bit set in the zonelist_cache fullzones BITMAP).
1313 * 2) Check that the zones node (obtained from the zonelist_cache
1314 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1315 * Return true (non-zero) if zone is worth looking at further, or
1316 * else return false (zero) if it is not.
1317 *
1318 * This check -ignores- the distinction between various watermarks,
1319 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1320 * found to be full for any variation of these watermarks, it will
1321 * be considered full for up to one second by all requests, unless
1322 * we are so low on memory on all allowed nodes that we are forced
1323 * into the second scan of the zonelist.
1324 *
1325 * In the second scan we ignore this zonelist cache and exactly
1326 * apply the watermarks to all zones, even it is slower to do so.
1327 * We are low on memory in the second scan, and should leave no stone
1328 * unturned looking for a free page.
1329 */
1330 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1331 nodemask_t *allowednodes)
1332 {
1333 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1334 int i; /* index of *z in zonelist zones */
1335 int n; /* node that zone *z is on */
1336
1337 zlc = zonelist->zlcache_ptr;
1338 if (!zlc)
1339 return 1;
1340
1341 i = z - zonelist->_zonerefs;
1342 n = zlc->z_to_n[i];
1343
1344 /* This zone is worth trying if it is allowed but not full */
1345 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1346 }
1347
1348 /*
1349 * Given 'z' scanning a zonelist, set the corresponding bit in
1350 * zlc->fullzones, so that subsequent attempts to allocate a page
1351 * from that zone don't waste time re-examining it.
1352 */
1353 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1354 {
1355 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1356 int i; /* index of *z in zonelist zones */
1357
1358 zlc = zonelist->zlcache_ptr;
1359 if (!zlc)
1360 return;
1361
1362 i = z - zonelist->_zonerefs;
1363
1364 set_bit(i, zlc->fullzones);
1365 }
1366
1367 #else /* CONFIG_NUMA */
1368
1369 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1370 {
1371 return NULL;
1372 }
1373
1374 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1375 nodemask_t *allowednodes)
1376 {
1377 return 1;
1378 }
1379
1380 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1381 {
1382 }
1383 #endif /* CONFIG_NUMA */
1384
1385 /*
1386 * get_page_from_freelist goes through the zonelist trying to allocate
1387 * a page.
1388 */
1389 static struct page *
1390 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1391 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1392 struct zone *preferred_zone, int migratetype)
1393 {
1394 struct zoneref *z;
1395 struct page *page = NULL;
1396 int classzone_idx;
1397 struct zone *zone;
1398 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1399 int zlc_active = 0; /* set if using zonelist_cache */
1400 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1401
1402 if (WARN_ON_ONCE(order >= MAX_ORDER))
1403 return NULL;
1404
1405 classzone_idx = zone_idx(preferred_zone);
1406 zonelist_scan:
1407 /*
1408 * Scan zonelist, looking for a zone with enough free.
1409 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1410 */
1411 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1412 high_zoneidx, nodemask) {
1413 if (NUMA_BUILD && zlc_active &&
1414 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1415 continue;
1416 if ((alloc_flags & ALLOC_CPUSET) &&
1417 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1418 goto try_next_zone;
1419
1420 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1421 unsigned long mark;
1422 if (alloc_flags & ALLOC_WMARK_MIN)
1423 mark = zone->pages_min;
1424 else if (alloc_flags & ALLOC_WMARK_LOW)
1425 mark = zone->pages_low;
1426 else
1427 mark = zone->pages_high;
1428 if (!zone_watermark_ok(zone, order, mark,
1429 classzone_idx, alloc_flags)) {
1430 if (!zone_reclaim_mode ||
1431 !zone_reclaim(zone, gfp_mask, order))
1432 goto this_zone_full;
1433 }
1434 }
1435
1436 page = buffered_rmqueue(preferred_zone, zone, order,
1437 gfp_mask, migratetype);
1438 if (page)
1439 break;
1440 this_zone_full:
1441 if (NUMA_BUILD)
1442 zlc_mark_zone_full(zonelist, z);
1443 try_next_zone:
1444 if (NUMA_BUILD && !did_zlc_setup) {
1445 /* we do zlc_setup after the first zone is tried */
1446 allowednodes = zlc_setup(zonelist, alloc_flags);
1447 zlc_active = 1;
1448 did_zlc_setup = 1;
1449 }
1450 }
1451
1452 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453 /* Disable zlc cache for second zonelist scan */
1454 zlc_active = 0;
1455 goto zonelist_scan;
1456 }
1457 return page;
1458 }
1459
1460 static inline int
1461 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1462 unsigned long pages_reclaimed)
1463 {
1464 /* Do not loop if specifically requested */
1465 if (gfp_mask & __GFP_NORETRY)
1466 return 0;
1467
1468 /*
1469 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1470 * means __GFP_NOFAIL, but that may not be true in other
1471 * implementations.
1472 */
1473 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1474 return 1;
1475
1476 /*
1477 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1478 * specified, then we retry until we no longer reclaim any pages
1479 * (above), or we've reclaimed an order of pages at least as
1480 * large as the allocation's order. In both cases, if the
1481 * allocation still fails, we stop retrying.
1482 */
1483 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1484 return 1;
1485
1486 /*
1487 * Don't let big-order allocations loop unless the caller
1488 * explicitly requests that.
1489 */
1490 if (gfp_mask & __GFP_NOFAIL)
1491 return 1;
1492
1493 return 0;
1494 }
1495
1496 static inline struct page *
1497 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1498 struct zonelist *zonelist, enum zone_type high_zoneidx,
1499 nodemask_t *nodemask, struct zone *preferred_zone,
1500 int migratetype)
1501 {
1502 struct page *page;
1503
1504 /* Acquire the OOM killer lock for the zones in zonelist */
1505 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1506 schedule_timeout_uninterruptible(1);
1507 return NULL;
1508 }
1509
1510 /*
1511 * Go through the zonelist yet one more time, keep very high watermark
1512 * here, this is only to catch a parallel oom killing, we must fail if
1513 * we're still under heavy pressure.
1514 */
1515 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1516 order, zonelist, high_zoneidx,
1517 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1518 preferred_zone, migratetype);
1519 if (page)
1520 goto out;
1521
1522 /* The OOM killer will not help higher order allocs */
1523 if (order > PAGE_ALLOC_COSTLY_ORDER)
1524 goto out;
1525
1526 /* Exhausted what can be done so it's blamo time */
1527 out_of_memory(zonelist, gfp_mask, order);
1528
1529 out:
1530 clear_zonelist_oom(zonelist, gfp_mask);
1531 return page;
1532 }
1533
1534 /* The really slow allocator path where we enter direct reclaim */
1535 static inline struct page *
1536 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1537 struct zonelist *zonelist, enum zone_type high_zoneidx,
1538 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1539 int migratetype, unsigned long *did_some_progress)
1540 {
1541 struct page *page = NULL;
1542 struct reclaim_state reclaim_state;
1543 struct task_struct *p = current;
1544
1545 cond_resched();
1546
1547 /* We now go into synchronous reclaim */
1548 cpuset_memory_pressure_bump();
1549
1550 /*
1551 * The task's cpuset might have expanded its set of allowable nodes
1552 */
1553 p->flags |= PF_MEMALLOC;
1554 lockdep_set_current_reclaim_state(gfp_mask);
1555 reclaim_state.reclaimed_slab = 0;
1556 p->reclaim_state = &reclaim_state;
1557
1558 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1559
1560 p->reclaim_state = NULL;
1561 lockdep_clear_current_reclaim_state();
1562 p->flags &= ~PF_MEMALLOC;
1563
1564 cond_resched();
1565
1566 if (order != 0)
1567 drain_all_pages();
1568
1569 if (likely(*did_some_progress))
1570 page = get_page_from_freelist(gfp_mask, nodemask, order,
1571 zonelist, high_zoneidx,
1572 alloc_flags, preferred_zone,
1573 migratetype);
1574 return page;
1575 }
1576
1577 /*
1578 * This is called in the allocator slow-path if the allocation request is of
1579 * sufficient urgency to ignore watermarks and take other desperate measures
1580 */
1581 static inline struct page *
1582 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1583 struct zonelist *zonelist, enum zone_type high_zoneidx,
1584 nodemask_t *nodemask, struct zone *preferred_zone,
1585 int migratetype)
1586 {
1587 struct page *page;
1588
1589 do {
1590 page = get_page_from_freelist(gfp_mask, nodemask, order,
1591 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1592 preferred_zone, migratetype);
1593
1594 if (!page && gfp_mask & __GFP_NOFAIL)
1595 congestion_wait(WRITE, HZ/50);
1596 } while (!page && (gfp_mask & __GFP_NOFAIL));
1597
1598 return page;
1599 }
1600
1601 static inline
1602 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1603 enum zone_type high_zoneidx)
1604 {
1605 struct zoneref *z;
1606 struct zone *zone;
1607
1608 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1609 wakeup_kswapd(zone, order);
1610 }
1611
1612 static inline int
1613 gfp_to_alloc_flags(gfp_t gfp_mask)
1614 {
1615 struct task_struct *p = current;
1616 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1617 const gfp_t wait = gfp_mask & __GFP_WAIT;
1618
1619 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1620 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1621
1622 /*
1623 * The caller may dip into page reserves a bit more if the caller
1624 * cannot run direct reclaim, or if the caller has realtime scheduling
1625 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1626 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1627 */
1628 alloc_flags |= (gfp_mask & __GFP_HIGH);
1629
1630 if (!wait) {
1631 alloc_flags |= ALLOC_HARDER;
1632 /*
1633 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1634 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1635 */
1636 alloc_flags &= ~ALLOC_CPUSET;
1637 } else if (unlikely(rt_task(p)))
1638 alloc_flags |= ALLOC_HARDER;
1639
1640 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1641 if (!in_interrupt() &&
1642 ((p->flags & PF_MEMALLOC) ||
1643 unlikely(test_thread_flag(TIF_MEMDIE))))
1644 alloc_flags |= ALLOC_NO_WATERMARKS;
1645 }
1646
1647 return alloc_flags;
1648 }
1649
1650 static inline struct page *
1651 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1652 struct zonelist *zonelist, enum zone_type high_zoneidx,
1653 nodemask_t *nodemask, struct zone *preferred_zone,
1654 int migratetype)
1655 {
1656 const gfp_t wait = gfp_mask & __GFP_WAIT;
1657 struct page *page = NULL;
1658 int alloc_flags;
1659 unsigned long pages_reclaimed = 0;
1660 unsigned long did_some_progress;
1661 struct task_struct *p = current;
1662
1663 /*
1664 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1665 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1666 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1667 * using a larger set of nodes after it has established that the
1668 * allowed per node queues are empty and that nodes are
1669 * over allocated.
1670 */
1671 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1672 goto nopage;
1673
1674 wake_all_kswapd(order, zonelist, high_zoneidx);
1675
1676 /*
1677 * OK, we're below the kswapd watermark and have kicked background
1678 * reclaim. Now things get more complex, so set up alloc_flags according
1679 * to how we want to proceed.
1680 */
1681 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1682
1683 restart:
1684 /* This is the last chance, in general, before the goto nopage. */
1685 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1686 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1687 preferred_zone, migratetype);
1688 if (page)
1689 goto got_pg;
1690
1691 rebalance:
1692 /* Allocate without watermarks if the context allows */
1693 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1694 page = __alloc_pages_high_priority(gfp_mask, order,
1695 zonelist, high_zoneidx, nodemask,
1696 preferred_zone, migratetype);
1697 if (page)
1698 goto got_pg;
1699 }
1700
1701 /* Atomic allocations - we can't balance anything */
1702 if (!wait)
1703 goto nopage;
1704
1705 /* Avoid recursion of direct reclaim */
1706 if (p->flags & PF_MEMALLOC)
1707 goto nopage;
1708
1709 /* Try direct reclaim and then allocating */
1710 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1711 zonelist, high_zoneidx,
1712 nodemask,
1713 alloc_flags, preferred_zone,
1714 migratetype, &did_some_progress);
1715 if (page)
1716 goto got_pg;
1717
1718 /*
1719 * If we failed to make any progress reclaiming, then we are
1720 * running out of options and have to consider going OOM
1721 */
1722 if (!did_some_progress) {
1723 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1724 page = __alloc_pages_may_oom(gfp_mask, order,
1725 zonelist, high_zoneidx,
1726 nodemask, preferred_zone,
1727 migratetype);
1728 if (page)
1729 goto got_pg;
1730
1731 /*
1732 * The OOM killer does not trigger for high-order allocations
1733 * but if no progress is being made, there are no other
1734 * options and retrying is unlikely to help
1735 */
1736 if (order > PAGE_ALLOC_COSTLY_ORDER)
1737 goto nopage;
1738
1739 goto restart;
1740 }
1741 }
1742
1743 /* Check if we should retry the allocation */
1744 pages_reclaimed += did_some_progress;
1745 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1746 /* Wait for some write requests to complete then retry */
1747 congestion_wait(WRITE, HZ/50);
1748 goto rebalance;
1749 }
1750
1751 nopage:
1752 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1753 printk(KERN_WARNING "%s: page allocation failure."
1754 " order:%d, mode:0x%x\n",
1755 p->comm, order, gfp_mask);
1756 dump_stack();
1757 show_mem();
1758 }
1759 got_pg:
1760 return page;
1761
1762 }
1763
1764 /*
1765 * This is the 'heart' of the zoned buddy allocator.
1766 */
1767 struct page *
1768 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1769 struct zonelist *zonelist, nodemask_t *nodemask)
1770 {
1771 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1772 struct zone *preferred_zone;
1773 struct page *page;
1774 int migratetype = allocflags_to_migratetype(gfp_mask);
1775
1776 lockdep_trace_alloc(gfp_mask);
1777
1778 might_sleep_if(gfp_mask & __GFP_WAIT);
1779
1780 if (should_fail_alloc_page(gfp_mask, order))
1781 return NULL;
1782
1783 /*
1784 * Check the zones suitable for the gfp_mask contain at least one
1785 * valid zone. It's possible to have an empty zonelist as a result
1786 * of GFP_THISNODE and a memoryless node
1787 */
1788 if (unlikely(!zonelist->_zonerefs->zone))
1789 return NULL;
1790
1791 /* The preferred zone is used for statistics later */
1792 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1793 if (!preferred_zone)
1794 return NULL;
1795
1796 /* First allocation attempt */
1797 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1798 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1799 preferred_zone, migratetype);
1800 if (unlikely(!page))
1801 page = __alloc_pages_slowpath(gfp_mask, order,
1802 zonelist, high_zoneidx, nodemask,
1803 preferred_zone, migratetype);
1804
1805 return page;
1806 }
1807 EXPORT_SYMBOL(__alloc_pages_nodemask);
1808
1809 /*
1810 * Common helper functions.
1811 */
1812 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1813 {
1814 struct page * page;
1815 page = alloc_pages(gfp_mask, order);
1816 if (!page)
1817 return 0;
1818 return (unsigned long) page_address(page);
1819 }
1820
1821 EXPORT_SYMBOL(__get_free_pages);
1822
1823 unsigned long get_zeroed_page(gfp_t gfp_mask)
1824 {
1825 struct page * page;
1826
1827 /*
1828 * get_zeroed_page() returns a 32-bit address, which cannot represent
1829 * a highmem page
1830 */
1831 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1832
1833 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1834 if (page)
1835 return (unsigned long) page_address(page);
1836 return 0;
1837 }
1838
1839 EXPORT_SYMBOL(get_zeroed_page);
1840
1841 void __pagevec_free(struct pagevec *pvec)
1842 {
1843 int i = pagevec_count(pvec);
1844
1845 while (--i >= 0)
1846 free_hot_cold_page(pvec->pages[i], pvec->cold);
1847 }
1848
1849 void __free_pages(struct page *page, unsigned int order)
1850 {
1851 if (put_page_testzero(page)) {
1852 if (order == 0)
1853 free_hot_page(page);
1854 else
1855 __free_pages_ok(page, order);
1856 }
1857 }
1858
1859 EXPORT_SYMBOL(__free_pages);
1860
1861 void free_pages(unsigned long addr, unsigned int order)
1862 {
1863 if (addr != 0) {
1864 VM_BUG_ON(!virt_addr_valid((void *)addr));
1865 __free_pages(virt_to_page((void *)addr), order);
1866 }
1867 }
1868
1869 EXPORT_SYMBOL(free_pages);
1870
1871 /**
1872 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1873 * @size: the number of bytes to allocate
1874 * @gfp_mask: GFP flags for the allocation
1875 *
1876 * This function is similar to alloc_pages(), except that it allocates the
1877 * minimum number of pages to satisfy the request. alloc_pages() can only
1878 * allocate memory in power-of-two pages.
1879 *
1880 * This function is also limited by MAX_ORDER.
1881 *
1882 * Memory allocated by this function must be released by free_pages_exact().
1883 */
1884 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1885 {
1886 unsigned int order = get_order(size);
1887 unsigned long addr;
1888
1889 addr = __get_free_pages(gfp_mask, order);
1890 if (addr) {
1891 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1892 unsigned long used = addr + PAGE_ALIGN(size);
1893
1894 split_page(virt_to_page(addr), order);
1895 while (used < alloc_end) {
1896 free_page(used);
1897 used += PAGE_SIZE;
1898 }
1899 }
1900
1901 return (void *)addr;
1902 }
1903 EXPORT_SYMBOL(alloc_pages_exact);
1904
1905 /**
1906 * free_pages_exact - release memory allocated via alloc_pages_exact()
1907 * @virt: the value returned by alloc_pages_exact.
1908 * @size: size of allocation, same value as passed to alloc_pages_exact().
1909 *
1910 * Release the memory allocated by a previous call to alloc_pages_exact.
1911 */
1912 void free_pages_exact(void *virt, size_t size)
1913 {
1914 unsigned long addr = (unsigned long)virt;
1915 unsigned long end = addr + PAGE_ALIGN(size);
1916
1917 while (addr < end) {
1918 free_page(addr);
1919 addr += PAGE_SIZE;
1920 }
1921 }
1922 EXPORT_SYMBOL(free_pages_exact);
1923
1924 static unsigned int nr_free_zone_pages(int offset)
1925 {
1926 struct zoneref *z;
1927 struct zone *zone;
1928
1929 /* Just pick one node, since fallback list is circular */
1930 unsigned int sum = 0;
1931
1932 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1933
1934 for_each_zone_zonelist(zone, z, zonelist, offset) {
1935 unsigned long size = zone->present_pages;
1936 unsigned long high = zone->pages_high;
1937 if (size > high)
1938 sum += size - high;
1939 }
1940
1941 return sum;
1942 }
1943
1944 /*
1945 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1946 */
1947 unsigned int nr_free_buffer_pages(void)
1948 {
1949 return nr_free_zone_pages(gfp_zone(GFP_USER));
1950 }
1951 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1952
1953 /*
1954 * Amount of free RAM allocatable within all zones
1955 */
1956 unsigned int nr_free_pagecache_pages(void)
1957 {
1958 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1959 }
1960
1961 static inline void show_node(struct zone *zone)
1962 {
1963 if (NUMA_BUILD)
1964 printk("Node %d ", zone_to_nid(zone));
1965 }
1966
1967 void si_meminfo(struct sysinfo *val)
1968 {
1969 val->totalram = totalram_pages;
1970 val->sharedram = 0;
1971 val->freeram = global_page_state(NR_FREE_PAGES);
1972 val->bufferram = nr_blockdev_pages();
1973 val->totalhigh = totalhigh_pages;
1974 val->freehigh = nr_free_highpages();
1975 val->mem_unit = PAGE_SIZE;
1976 }
1977
1978 EXPORT_SYMBOL(si_meminfo);
1979
1980 #ifdef CONFIG_NUMA
1981 void si_meminfo_node(struct sysinfo *val, int nid)
1982 {
1983 pg_data_t *pgdat = NODE_DATA(nid);
1984
1985 val->totalram = pgdat->node_present_pages;
1986 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1987 #ifdef CONFIG_HIGHMEM
1988 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1989 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1990 NR_FREE_PAGES);
1991 #else
1992 val->totalhigh = 0;
1993 val->freehigh = 0;
1994 #endif
1995 val->mem_unit = PAGE_SIZE;
1996 }
1997 #endif
1998
1999 #define K(x) ((x) << (PAGE_SHIFT-10))
2000
2001 /*
2002 * Show free area list (used inside shift_scroll-lock stuff)
2003 * We also calculate the percentage fragmentation. We do this by counting the
2004 * memory on each free list with the exception of the first item on the list.
2005 */
2006 void show_free_areas(void)
2007 {
2008 int cpu;
2009 struct zone *zone;
2010
2011 for_each_populated_zone(zone) {
2012 show_node(zone);
2013 printk("%s per-cpu:\n", zone->name);
2014
2015 for_each_online_cpu(cpu) {
2016 struct per_cpu_pageset *pageset;
2017
2018 pageset = zone_pcp(zone, cpu);
2019
2020 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2021 cpu, pageset->pcp.high,
2022 pageset->pcp.batch, pageset->pcp.count);
2023 }
2024 }
2025
2026 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2027 " inactive_file:%lu"
2028 //TODO: check/adjust line lengths
2029 #ifdef CONFIG_UNEVICTABLE_LRU
2030 " unevictable:%lu"
2031 #endif
2032 " dirty:%lu writeback:%lu unstable:%lu\n"
2033 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2034 global_page_state(NR_ACTIVE_ANON),
2035 global_page_state(NR_ACTIVE_FILE),
2036 global_page_state(NR_INACTIVE_ANON),
2037 global_page_state(NR_INACTIVE_FILE),
2038 #ifdef CONFIG_UNEVICTABLE_LRU
2039 global_page_state(NR_UNEVICTABLE),
2040 #endif
2041 global_page_state(NR_FILE_DIRTY),
2042 global_page_state(NR_WRITEBACK),
2043 global_page_state(NR_UNSTABLE_NFS),
2044 global_page_state(NR_FREE_PAGES),
2045 global_page_state(NR_SLAB_RECLAIMABLE) +
2046 global_page_state(NR_SLAB_UNRECLAIMABLE),
2047 global_page_state(NR_FILE_MAPPED),
2048 global_page_state(NR_PAGETABLE),
2049 global_page_state(NR_BOUNCE));
2050
2051 for_each_populated_zone(zone) {
2052 int i;
2053
2054 show_node(zone);
2055 printk("%s"
2056 " free:%lukB"
2057 " min:%lukB"
2058 " low:%lukB"
2059 " high:%lukB"
2060 " active_anon:%lukB"
2061 " inactive_anon:%lukB"
2062 " active_file:%lukB"
2063 " inactive_file:%lukB"
2064 #ifdef CONFIG_UNEVICTABLE_LRU
2065 " unevictable:%lukB"
2066 #endif
2067 " present:%lukB"
2068 " pages_scanned:%lu"
2069 " all_unreclaimable? %s"
2070 "\n",
2071 zone->name,
2072 K(zone_page_state(zone, NR_FREE_PAGES)),
2073 K(zone->pages_min),
2074 K(zone->pages_low),
2075 K(zone->pages_high),
2076 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2077 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2078 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2079 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2080 #ifdef CONFIG_UNEVICTABLE_LRU
2081 K(zone_page_state(zone, NR_UNEVICTABLE)),
2082 #endif
2083 K(zone->present_pages),
2084 zone->pages_scanned,
2085 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2086 );
2087 printk("lowmem_reserve[]:");
2088 for (i = 0; i < MAX_NR_ZONES; i++)
2089 printk(" %lu", zone->lowmem_reserve[i]);
2090 printk("\n");
2091 }
2092
2093 for_each_populated_zone(zone) {
2094 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2095
2096 show_node(zone);
2097 printk("%s: ", zone->name);
2098
2099 spin_lock_irqsave(&zone->lock, flags);
2100 for (order = 0; order < MAX_ORDER; order++) {
2101 nr[order] = zone->free_area[order].nr_free;
2102 total += nr[order] << order;
2103 }
2104 spin_unlock_irqrestore(&zone->lock, flags);
2105 for (order = 0; order < MAX_ORDER; order++)
2106 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2107 printk("= %lukB\n", K(total));
2108 }
2109
2110 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2111
2112 show_swap_cache_info();
2113 }
2114
2115 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2116 {
2117 zoneref->zone = zone;
2118 zoneref->zone_idx = zone_idx(zone);
2119 }
2120
2121 /*
2122 * Builds allocation fallback zone lists.
2123 *
2124 * Add all populated zones of a node to the zonelist.
2125 */
2126 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2127 int nr_zones, enum zone_type zone_type)
2128 {
2129 struct zone *zone;
2130
2131 BUG_ON(zone_type >= MAX_NR_ZONES);
2132 zone_type++;
2133
2134 do {
2135 zone_type--;
2136 zone = pgdat->node_zones + zone_type;
2137 if (populated_zone(zone)) {
2138 zoneref_set_zone(zone,
2139 &zonelist->_zonerefs[nr_zones++]);
2140 check_highest_zone(zone_type);
2141 }
2142
2143 } while (zone_type);
2144 return nr_zones;
2145 }
2146
2147
2148 /*
2149 * zonelist_order:
2150 * 0 = automatic detection of better ordering.
2151 * 1 = order by ([node] distance, -zonetype)
2152 * 2 = order by (-zonetype, [node] distance)
2153 *
2154 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2155 * the same zonelist. So only NUMA can configure this param.
2156 */
2157 #define ZONELIST_ORDER_DEFAULT 0
2158 #define ZONELIST_ORDER_NODE 1
2159 #define ZONELIST_ORDER_ZONE 2
2160
2161 /* zonelist order in the kernel.
2162 * set_zonelist_order() will set this to NODE or ZONE.
2163 */
2164 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2165 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2166
2167
2168 #ifdef CONFIG_NUMA
2169 /* The value user specified ....changed by config */
2170 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2171 /* string for sysctl */
2172 #define NUMA_ZONELIST_ORDER_LEN 16
2173 char numa_zonelist_order[16] = "default";
2174
2175 /*
2176 * interface for configure zonelist ordering.
2177 * command line option "numa_zonelist_order"
2178 * = "[dD]efault - default, automatic configuration.
2179 * = "[nN]ode - order by node locality, then by zone within node
2180 * = "[zZ]one - order by zone, then by locality within zone
2181 */
2182
2183 static int __parse_numa_zonelist_order(char *s)
2184 {
2185 if (*s == 'd' || *s == 'D') {
2186 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2187 } else if (*s == 'n' || *s == 'N') {
2188 user_zonelist_order = ZONELIST_ORDER_NODE;
2189 } else if (*s == 'z' || *s == 'Z') {
2190 user_zonelist_order = ZONELIST_ORDER_ZONE;
2191 } else {
2192 printk(KERN_WARNING
2193 "Ignoring invalid numa_zonelist_order value: "
2194 "%s\n", s);
2195 return -EINVAL;
2196 }
2197 return 0;
2198 }
2199
2200 static __init int setup_numa_zonelist_order(char *s)
2201 {
2202 if (s)
2203 return __parse_numa_zonelist_order(s);
2204 return 0;
2205 }
2206 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2207
2208 /*
2209 * sysctl handler for numa_zonelist_order
2210 */
2211 int numa_zonelist_order_handler(ctl_table *table, int write,
2212 struct file *file, void __user *buffer, size_t *length,
2213 loff_t *ppos)
2214 {
2215 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2216 int ret;
2217
2218 if (write)
2219 strncpy(saved_string, (char*)table->data,
2220 NUMA_ZONELIST_ORDER_LEN);
2221 ret = proc_dostring(table, write, file, buffer, length, ppos);
2222 if (ret)
2223 return ret;
2224 if (write) {
2225 int oldval = user_zonelist_order;
2226 if (__parse_numa_zonelist_order((char*)table->data)) {
2227 /*
2228 * bogus value. restore saved string
2229 */
2230 strncpy((char*)table->data, saved_string,
2231 NUMA_ZONELIST_ORDER_LEN);
2232 user_zonelist_order = oldval;
2233 } else if (oldval != user_zonelist_order)
2234 build_all_zonelists();
2235 }
2236 return 0;
2237 }
2238
2239
2240 #define MAX_NODE_LOAD (num_online_nodes())
2241 static int node_load[MAX_NUMNODES];
2242
2243 /**
2244 * find_next_best_node - find the next node that should appear in a given node's fallback list
2245 * @node: node whose fallback list we're appending
2246 * @used_node_mask: nodemask_t of already used nodes
2247 *
2248 * We use a number of factors to determine which is the next node that should
2249 * appear on a given node's fallback list. The node should not have appeared
2250 * already in @node's fallback list, and it should be the next closest node
2251 * according to the distance array (which contains arbitrary distance values
2252 * from each node to each node in the system), and should also prefer nodes
2253 * with no CPUs, since presumably they'll have very little allocation pressure
2254 * on them otherwise.
2255 * It returns -1 if no node is found.
2256 */
2257 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2258 {
2259 int n, val;
2260 int min_val = INT_MAX;
2261 int best_node = -1;
2262 const struct cpumask *tmp = cpumask_of_node(0);
2263
2264 /* Use the local node if we haven't already */
2265 if (!node_isset(node, *used_node_mask)) {
2266 node_set(node, *used_node_mask);
2267 return node;
2268 }
2269
2270 for_each_node_state(n, N_HIGH_MEMORY) {
2271
2272 /* Don't want a node to appear more than once */
2273 if (node_isset(n, *used_node_mask))
2274 continue;
2275
2276 /* Use the distance array to find the distance */
2277 val = node_distance(node, n);
2278
2279 /* Penalize nodes under us ("prefer the next node") */
2280 val += (n < node);
2281
2282 /* Give preference to headless and unused nodes */
2283 tmp = cpumask_of_node(n);
2284 if (!cpumask_empty(tmp))
2285 val += PENALTY_FOR_NODE_WITH_CPUS;
2286
2287 /* Slight preference for less loaded node */
2288 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2289 val += node_load[n];
2290
2291 if (val < min_val) {
2292 min_val = val;
2293 best_node = n;
2294 }
2295 }
2296
2297 if (best_node >= 0)
2298 node_set(best_node, *used_node_mask);
2299
2300 return best_node;
2301 }
2302
2303
2304 /*
2305 * Build zonelists ordered by node and zones within node.
2306 * This results in maximum locality--normal zone overflows into local
2307 * DMA zone, if any--but risks exhausting DMA zone.
2308 */
2309 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2310 {
2311 int j;
2312 struct zonelist *zonelist;
2313
2314 zonelist = &pgdat->node_zonelists[0];
2315 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2316 ;
2317 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2318 MAX_NR_ZONES - 1);
2319 zonelist->_zonerefs[j].zone = NULL;
2320 zonelist->_zonerefs[j].zone_idx = 0;
2321 }
2322
2323 /*
2324 * Build gfp_thisnode zonelists
2325 */
2326 static void build_thisnode_zonelists(pg_data_t *pgdat)
2327 {
2328 int j;
2329 struct zonelist *zonelist;
2330
2331 zonelist = &pgdat->node_zonelists[1];
2332 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2333 zonelist->_zonerefs[j].zone = NULL;
2334 zonelist->_zonerefs[j].zone_idx = 0;
2335 }
2336
2337 /*
2338 * Build zonelists ordered by zone and nodes within zones.
2339 * This results in conserving DMA zone[s] until all Normal memory is
2340 * exhausted, but results in overflowing to remote node while memory
2341 * may still exist in local DMA zone.
2342 */
2343 static int node_order[MAX_NUMNODES];
2344
2345 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2346 {
2347 int pos, j, node;
2348 int zone_type; /* needs to be signed */
2349 struct zone *z;
2350 struct zonelist *zonelist;
2351
2352 zonelist = &pgdat->node_zonelists[0];
2353 pos = 0;
2354 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2355 for (j = 0; j < nr_nodes; j++) {
2356 node = node_order[j];
2357 z = &NODE_DATA(node)->node_zones[zone_type];
2358 if (populated_zone(z)) {
2359 zoneref_set_zone(z,
2360 &zonelist->_zonerefs[pos++]);
2361 check_highest_zone(zone_type);
2362 }
2363 }
2364 }
2365 zonelist->_zonerefs[pos].zone = NULL;
2366 zonelist->_zonerefs[pos].zone_idx = 0;
2367 }
2368
2369 static int default_zonelist_order(void)
2370 {
2371 int nid, zone_type;
2372 unsigned long low_kmem_size,total_size;
2373 struct zone *z;
2374 int average_size;
2375 /*
2376 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2377 * If they are really small and used heavily, the system can fall
2378 * into OOM very easily.
2379 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2380 */
2381 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2382 low_kmem_size = 0;
2383 total_size = 0;
2384 for_each_online_node(nid) {
2385 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2386 z = &NODE_DATA(nid)->node_zones[zone_type];
2387 if (populated_zone(z)) {
2388 if (zone_type < ZONE_NORMAL)
2389 low_kmem_size += z->present_pages;
2390 total_size += z->present_pages;
2391 }
2392 }
2393 }
2394 if (!low_kmem_size || /* there are no DMA area. */
2395 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2396 return ZONELIST_ORDER_NODE;
2397 /*
2398 * look into each node's config.
2399 * If there is a node whose DMA/DMA32 memory is very big area on
2400 * local memory, NODE_ORDER may be suitable.
2401 */
2402 average_size = total_size /
2403 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2404 for_each_online_node(nid) {
2405 low_kmem_size = 0;
2406 total_size = 0;
2407 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2408 z = &NODE_DATA(nid)->node_zones[zone_type];
2409 if (populated_zone(z)) {
2410 if (zone_type < ZONE_NORMAL)
2411 low_kmem_size += z->present_pages;
2412 total_size += z->present_pages;
2413 }
2414 }
2415 if (low_kmem_size &&
2416 total_size > average_size && /* ignore small node */
2417 low_kmem_size > total_size * 70/100)
2418 return ZONELIST_ORDER_NODE;
2419 }
2420 return ZONELIST_ORDER_ZONE;
2421 }
2422
2423 static void set_zonelist_order(void)
2424 {
2425 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2426 current_zonelist_order = default_zonelist_order();
2427 else
2428 current_zonelist_order = user_zonelist_order;
2429 }
2430
2431 static void build_zonelists(pg_data_t *pgdat)
2432 {
2433 int j, node, load;
2434 enum zone_type i;
2435 nodemask_t used_mask;
2436 int local_node, prev_node;
2437 struct zonelist *zonelist;
2438 int order = current_zonelist_order;
2439
2440 /* initialize zonelists */
2441 for (i = 0; i < MAX_ZONELISTS; i++) {
2442 zonelist = pgdat->node_zonelists + i;
2443 zonelist->_zonerefs[0].zone = NULL;
2444 zonelist->_zonerefs[0].zone_idx = 0;
2445 }
2446
2447 /* NUMA-aware ordering of nodes */
2448 local_node = pgdat->node_id;
2449 load = num_online_nodes();
2450 prev_node = local_node;
2451 nodes_clear(used_mask);
2452
2453 memset(node_load, 0, sizeof(node_load));
2454 memset(node_order, 0, sizeof(node_order));
2455 j = 0;
2456
2457 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2458 int distance = node_distance(local_node, node);
2459
2460 /*
2461 * If another node is sufficiently far away then it is better
2462 * to reclaim pages in a zone before going off node.
2463 */
2464 if (distance > RECLAIM_DISTANCE)
2465 zone_reclaim_mode = 1;
2466
2467 /*
2468 * We don't want to pressure a particular node.
2469 * So adding penalty to the first node in same
2470 * distance group to make it round-robin.
2471 */
2472 if (distance != node_distance(local_node, prev_node))
2473 node_load[node] = load;
2474
2475 prev_node = node;
2476 load--;
2477 if (order == ZONELIST_ORDER_NODE)
2478 build_zonelists_in_node_order(pgdat, node);
2479 else
2480 node_order[j++] = node; /* remember order */
2481 }
2482
2483 if (order == ZONELIST_ORDER_ZONE) {
2484 /* calculate node order -- i.e., DMA last! */
2485 build_zonelists_in_zone_order(pgdat, j);
2486 }
2487
2488 build_thisnode_zonelists(pgdat);
2489 }
2490
2491 /* Construct the zonelist performance cache - see further mmzone.h */
2492 static void build_zonelist_cache(pg_data_t *pgdat)
2493 {
2494 struct zonelist *zonelist;
2495 struct zonelist_cache *zlc;
2496 struct zoneref *z;
2497
2498 zonelist = &pgdat->node_zonelists[0];
2499 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2500 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2501 for (z = zonelist->_zonerefs; z->zone; z++)
2502 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2503 }
2504
2505
2506 #else /* CONFIG_NUMA */
2507
2508 static void set_zonelist_order(void)
2509 {
2510 current_zonelist_order = ZONELIST_ORDER_ZONE;
2511 }
2512
2513 static void build_zonelists(pg_data_t *pgdat)
2514 {
2515 int node, local_node;
2516 enum zone_type j;
2517 struct zonelist *zonelist;
2518
2519 local_node = pgdat->node_id;
2520
2521 zonelist = &pgdat->node_zonelists[0];
2522 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2523
2524 /*
2525 * Now we build the zonelist so that it contains the zones
2526 * of all the other nodes.
2527 * We don't want to pressure a particular node, so when
2528 * building the zones for node N, we make sure that the
2529 * zones coming right after the local ones are those from
2530 * node N+1 (modulo N)
2531 */
2532 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2533 if (!node_online(node))
2534 continue;
2535 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2536 MAX_NR_ZONES - 1);
2537 }
2538 for (node = 0; node < local_node; node++) {
2539 if (!node_online(node))
2540 continue;
2541 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2542 MAX_NR_ZONES - 1);
2543 }
2544
2545 zonelist->_zonerefs[j].zone = NULL;
2546 zonelist->_zonerefs[j].zone_idx = 0;
2547 }
2548
2549 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2550 static void build_zonelist_cache(pg_data_t *pgdat)
2551 {
2552 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2553 }
2554
2555 #endif /* CONFIG_NUMA */
2556
2557 /* return values int ....just for stop_machine() */
2558 static int __build_all_zonelists(void *dummy)
2559 {
2560 int nid;
2561
2562 for_each_online_node(nid) {
2563 pg_data_t *pgdat = NODE_DATA(nid);
2564
2565 build_zonelists(pgdat);
2566 build_zonelist_cache(pgdat);
2567 }
2568 return 0;
2569 }
2570
2571 void build_all_zonelists(void)
2572 {
2573 set_zonelist_order();
2574
2575 if (system_state == SYSTEM_BOOTING) {
2576 __build_all_zonelists(NULL);
2577 mminit_verify_zonelist();
2578 cpuset_init_current_mems_allowed();
2579 } else {
2580 /* we have to stop all cpus to guarantee there is no user
2581 of zonelist */
2582 stop_machine(__build_all_zonelists, NULL, NULL);
2583 /* cpuset refresh routine should be here */
2584 }
2585 vm_total_pages = nr_free_pagecache_pages();
2586 /*
2587 * Disable grouping by mobility if the number of pages in the
2588 * system is too low to allow the mechanism to work. It would be
2589 * more accurate, but expensive to check per-zone. This check is
2590 * made on memory-hotadd so a system can start with mobility
2591 * disabled and enable it later
2592 */
2593 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2594 page_group_by_mobility_disabled = 1;
2595 else
2596 page_group_by_mobility_disabled = 0;
2597
2598 printk("Built %i zonelists in %s order, mobility grouping %s. "
2599 "Total pages: %ld\n",
2600 num_online_nodes(),
2601 zonelist_order_name[current_zonelist_order],
2602 page_group_by_mobility_disabled ? "off" : "on",
2603 vm_total_pages);
2604 #ifdef CONFIG_NUMA
2605 printk("Policy zone: %s\n", zone_names[policy_zone]);
2606 #endif
2607 }
2608
2609 /*
2610 * Helper functions to size the waitqueue hash table.
2611 * Essentially these want to choose hash table sizes sufficiently
2612 * large so that collisions trying to wait on pages are rare.
2613 * But in fact, the number of active page waitqueues on typical
2614 * systems is ridiculously low, less than 200. So this is even
2615 * conservative, even though it seems large.
2616 *
2617 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2618 * waitqueues, i.e. the size of the waitq table given the number of pages.
2619 */
2620 #define PAGES_PER_WAITQUEUE 256
2621
2622 #ifndef CONFIG_MEMORY_HOTPLUG
2623 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2624 {
2625 unsigned long size = 1;
2626
2627 pages /= PAGES_PER_WAITQUEUE;
2628
2629 while (size < pages)
2630 size <<= 1;
2631
2632 /*
2633 * Once we have dozens or even hundreds of threads sleeping
2634 * on IO we've got bigger problems than wait queue collision.
2635 * Limit the size of the wait table to a reasonable size.
2636 */
2637 size = min(size, 4096UL);
2638
2639 return max(size, 4UL);
2640 }
2641 #else
2642 /*
2643 * A zone's size might be changed by hot-add, so it is not possible to determine
2644 * a suitable size for its wait_table. So we use the maximum size now.
2645 *
2646 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2647 *
2648 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2649 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2650 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2651 *
2652 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2653 * or more by the traditional way. (See above). It equals:
2654 *
2655 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2656 * ia64(16K page size) : = ( 8G + 4M)byte.
2657 * powerpc (64K page size) : = (32G +16M)byte.
2658 */
2659 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2660 {
2661 return 4096UL;
2662 }
2663 #endif
2664
2665 /*
2666 * This is an integer logarithm so that shifts can be used later
2667 * to extract the more random high bits from the multiplicative
2668 * hash function before the remainder is taken.
2669 */
2670 static inline unsigned long wait_table_bits(unsigned long size)
2671 {
2672 return ffz(~size);
2673 }
2674
2675 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2676
2677 /*
2678 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2679 * of blocks reserved is based on zone->pages_min. The memory within the
2680 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2681 * higher will lead to a bigger reserve which will get freed as contiguous
2682 * blocks as reclaim kicks in
2683 */
2684 static void setup_zone_migrate_reserve(struct zone *zone)
2685 {
2686 unsigned long start_pfn, pfn, end_pfn;
2687 struct page *page;
2688 unsigned long reserve, block_migratetype;
2689
2690 /* Get the start pfn, end pfn and the number of blocks to reserve */
2691 start_pfn = zone->zone_start_pfn;
2692 end_pfn = start_pfn + zone->spanned_pages;
2693 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2694 pageblock_order;
2695
2696 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2697 if (!pfn_valid(pfn))
2698 continue;
2699 page = pfn_to_page(pfn);
2700
2701 /* Watch out for overlapping nodes */
2702 if (page_to_nid(page) != zone_to_nid(zone))
2703 continue;
2704
2705 /* Blocks with reserved pages will never free, skip them. */
2706 if (PageReserved(page))
2707 continue;
2708
2709 block_migratetype = get_pageblock_migratetype(page);
2710
2711 /* If this block is reserved, account for it */
2712 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2713 reserve--;
2714 continue;
2715 }
2716
2717 /* Suitable for reserving if this block is movable */
2718 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2719 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2720 move_freepages_block(zone, page, MIGRATE_RESERVE);
2721 reserve--;
2722 continue;
2723 }
2724
2725 /*
2726 * If the reserve is met and this is a previous reserved block,
2727 * take it back
2728 */
2729 if (block_migratetype == MIGRATE_RESERVE) {
2730 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2731 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2732 }
2733 }
2734 }
2735
2736 /*
2737 * Initially all pages are reserved - free ones are freed
2738 * up by free_all_bootmem() once the early boot process is
2739 * done. Non-atomic initialization, single-pass.
2740 */
2741 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2742 unsigned long start_pfn, enum memmap_context context)
2743 {
2744 struct page *page;
2745 unsigned long end_pfn = start_pfn + size;
2746 unsigned long pfn;
2747 struct zone *z;
2748
2749 if (highest_memmap_pfn < end_pfn - 1)
2750 highest_memmap_pfn = end_pfn - 1;
2751
2752 z = &NODE_DATA(nid)->node_zones[zone];
2753 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2754 /*
2755 * There can be holes in boot-time mem_map[]s
2756 * handed to this function. They do not
2757 * exist on hotplugged memory.
2758 */
2759 if (context == MEMMAP_EARLY) {
2760 if (!early_pfn_valid(pfn))
2761 continue;
2762 if (!early_pfn_in_nid(pfn, nid))
2763 continue;
2764 }
2765 page = pfn_to_page(pfn);
2766 set_page_links(page, zone, nid, pfn);
2767 mminit_verify_page_links(page, zone, nid, pfn);
2768 init_page_count(page);
2769 reset_page_mapcount(page);
2770 SetPageReserved(page);
2771 /*
2772 * Mark the block movable so that blocks are reserved for
2773 * movable at startup. This will force kernel allocations
2774 * to reserve their blocks rather than leaking throughout
2775 * the address space during boot when many long-lived
2776 * kernel allocations are made. Later some blocks near
2777 * the start are marked MIGRATE_RESERVE by
2778 * setup_zone_migrate_reserve()
2779 *
2780 * bitmap is created for zone's valid pfn range. but memmap
2781 * can be created for invalid pages (for alignment)
2782 * check here not to call set_pageblock_migratetype() against
2783 * pfn out of zone.
2784 */
2785 if ((z->zone_start_pfn <= pfn)
2786 && (pfn < z->zone_start_pfn + z->spanned_pages)
2787 && !(pfn & (pageblock_nr_pages - 1)))
2788 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2789
2790 INIT_LIST_HEAD(&page->lru);
2791 #ifdef WANT_PAGE_VIRTUAL
2792 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2793 if (!is_highmem_idx(zone))
2794 set_page_address(page, __va(pfn << PAGE_SHIFT));
2795 #endif
2796 }
2797 }
2798
2799 static void __meminit zone_init_free_lists(struct zone *zone)
2800 {
2801 int order, t;
2802 for_each_migratetype_order(order, t) {
2803 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2804 zone->free_area[order].nr_free = 0;
2805 }
2806 }
2807
2808 #ifndef __HAVE_ARCH_MEMMAP_INIT
2809 #define memmap_init(size, nid, zone, start_pfn) \
2810 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2811 #endif
2812
2813 static int zone_batchsize(struct zone *zone)
2814 {
2815 #ifdef CONFIG_MMU
2816 int batch;
2817
2818 /*
2819 * The per-cpu-pages pools are set to around 1000th of the
2820 * size of the zone. But no more than 1/2 of a meg.
2821 *
2822 * OK, so we don't know how big the cache is. So guess.
2823 */
2824 batch = zone->present_pages / 1024;
2825 if (batch * PAGE_SIZE > 512 * 1024)
2826 batch = (512 * 1024) / PAGE_SIZE;
2827 batch /= 4; /* We effectively *= 4 below */
2828 if (batch < 1)
2829 batch = 1;
2830
2831 /*
2832 * Clamp the batch to a 2^n - 1 value. Having a power
2833 * of 2 value was found to be more likely to have
2834 * suboptimal cache aliasing properties in some cases.
2835 *
2836 * For example if 2 tasks are alternately allocating
2837 * batches of pages, one task can end up with a lot
2838 * of pages of one half of the possible page colors
2839 * and the other with pages of the other colors.
2840 */
2841 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2842
2843 return batch;
2844
2845 #else
2846 /* The deferral and batching of frees should be suppressed under NOMMU
2847 * conditions.
2848 *
2849 * The problem is that NOMMU needs to be able to allocate large chunks
2850 * of contiguous memory as there's no hardware page translation to
2851 * assemble apparent contiguous memory from discontiguous pages.
2852 *
2853 * Queueing large contiguous runs of pages for batching, however,
2854 * causes the pages to actually be freed in smaller chunks. As there
2855 * can be a significant delay between the individual batches being
2856 * recycled, this leads to the once large chunks of space being
2857 * fragmented and becoming unavailable for high-order allocations.
2858 */
2859 return 0;
2860 #endif
2861 }
2862
2863 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2864 {
2865 struct per_cpu_pages *pcp;
2866
2867 memset(p, 0, sizeof(*p));
2868
2869 pcp = &p->pcp;
2870 pcp->count = 0;
2871 pcp->high = 6 * batch;
2872 pcp->batch = max(1UL, 1 * batch);
2873 INIT_LIST_HEAD(&pcp->list);
2874 }
2875
2876 /*
2877 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2878 * to the value high for the pageset p.
2879 */
2880
2881 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2882 unsigned long high)
2883 {
2884 struct per_cpu_pages *pcp;
2885
2886 pcp = &p->pcp;
2887 pcp->high = high;
2888 pcp->batch = max(1UL, high/4);
2889 if ((high/4) > (PAGE_SHIFT * 8))
2890 pcp->batch = PAGE_SHIFT * 8;
2891 }
2892
2893
2894 #ifdef CONFIG_NUMA
2895 /*
2896 * Boot pageset table. One per cpu which is going to be used for all
2897 * zones and all nodes. The parameters will be set in such a way
2898 * that an item put on a list will immediately be handed over to
2899 * the buddy list. This is safe since pageset manipulation is done
2900 * with interrupts disabled.
2901 *
2902 * Some NUMA counter updates may also be caught by the boot pagesets.
2903 *
2904 * The boot_pagesets must be kept even after bootup is complete for
2905 * unused processors and/or zones. They do play a role for bootstrapping
2906 * hotplugged processors.
2907 *
2908 * zoneinfo_show() and maybe other functions do
2909 * not check if the processor is online before following the pageset pointer.
2910 * Other parts of the kernel may not check if the zone is available.
2911 */
2912 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2913
2914 /*
2915 * Dynamically allocate memory for the
2916 * per cpu pageset array in struct zone.
2917 */
2918 static int __cpuinit process_zones(int cpu)
2919 {
2920 struct zone *zone, *dzone;
2921 int node = cpu_to_node(cpu);
2922
2923 node_set_state(node, N_CPU); /* this node has a cpu */
2924
2925 for_each_populated_zone(zone) {
2926 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2927 GFP_KERNEL, node);
2928 if (!zone_pcp(zone, cpu))
2929 goto bad;
2930
2931 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2932
2933 if (percpu_pagelist_fraction)
2934 setup_pagelist_highmark(zone_pcp(zone, cpu),
2935 (zone->present_pages / percpu_pagelist_fraction));
2936 }
2937
2938 return 0;
2939 bad:
2940 for_each_zone(dzone) {
2941 if (!populated_zone(dzone))
2942 continue;
2943 if (dzone == zone)
2944 break;
2945 kfree(zone_pcp(dzone, cpu));
2946 zone_pcp(dzone, cpu) = NULL;
2947 }
2948 return -ENOMEM;
2949 }
2950
2951 static inline void free_zone_pagesets(int cpu)
2952 {
2953 struct zone *zone;
2954
2955 for_each_zone(zone) {
2956 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2957
2958 /* Free per_cpu_pageset if it is slab allocated */
2959 if (pset != &boot_pageset[cpu])
2960 kfree(pset);
2961 zone_pcp(zone, cpu) = NULL;
2962 }
2963 }
2964
2965 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2966 unsigned long action,
2967 void *hcpu)
2968 {
2969 int cpu = (long)hcpu;
2970 int ret = NOTIFY_OK;
2971
2972 switch (action) {
2973 case CPU_UP_PREPARE:
2974 case CPU_UP_PREPARE_FROZEN:
2975 if (process_zones(cpu))
2976 ret = NOTIFY_BAD;
2977 break;
2978 case CPU_UP_CANCELED:
2979 case CPU_UP_CANCELED_FROZEN:
2980 case CPU_DEAD:
2981 case CPU_DEAD_FROZEN:
2982 free_zone_pagesets(cpu);
2983 break;
2984 default:
2985 break;
2986 }
2987 return ret;
2988 }
2989
2990 static struct notifier_block __cpuinitdata pageset_notifier =
2991 { &pageset_cpuup_callback, NULL, 0 };
2992
2993 void __init setup_per_cpu_pageset(void)
2994 {
2995 int err;
2996
2997 /* Initialize per_cpu_pageset for cpu 0.
2998 * A cpuup callback will do this for every cpu
2999 * as it comes online
3000 */
3001 err = process_zones(smp_processor_id());
3002 BUG_ON(err);
3003 register_cpu_notifier(&pageset_notifier);
3004 }
3005
3006 #endif
3007
3008 static noinline __init_refok
3009 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3010 {
3011 int i;
3012 struct pglist_data *pgdat = zone->zone_pgdat;
3013 size_t alloc_size;
3014
3015 /*
3016 * The per-page waitqueue mechanism uses hashed waitqueues
3017 * per zone.
3018 */
3019 zone->wait_table_hash_nr_entries =
3020 wait_table_hash_nr_entries(zone_size_pages);
3021 zone->wait_table_bits =
3022 wait_table_bits(zone->wait_table_hash_nr_entries);
3023 alloc_size = zone->wait_table_hash_nr_entries
3024 * sizeof(wait_queue_head_t);
3025
3026 if (!slab_is_available()) {
3027 zone->wait_table = (wait_queue_head_t *)
3028 alloc_bootmem_node(pgdat, alloc_size);
3029 } else {
3030 /*
3031 * This case means that a zone whose size was 0 gets new memory
3032 * via memory hot-add.
3033 * But it may be the case that a new node was hot-added. In
3034 * this case vmalloc() will not be able to use this new node's
3035 * memory - this wait_table must be initialized to use this new
3036 * node itself as well.
3037 * To use this new node's memory, further consideration will be
3038 * necessary.
3039 */
3040 zone->wait_table = vmalloc(alloc_size);
3041 }
3042 if (!zone->wait_table)
3043 return -ENOMEM;
3044
3045 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3046 init_waitqueue_head(zone->wait_table + i);
3047
3048 return 0;
3049 }
3050
3051 static __meminit void zone_pcp_init(struct zone *zone)
3052 {
3053 int cpu;
3054 unsigned long batch = zone_batchsize(zone);
3055
3056 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3057 #ifdef CONFIG_NUMA
3058 /* Early boot. Slab allocator not functional yet */
3059 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3060 setup_pageset(&boot_pageset[cpu],0);
3061 #else
3062 setup_pageset(zone_pcp(zone,cpu), batch);
3063 #endif
3064 }
3065 if (zone->present_pages)
3066 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3067 zone->name, zone->present_pages, batch);
3068 }
3069
3070 __meminit int init_currently_empty_zone(struct zone *zone,
3071 unsigned long zone_start_pfn,
3072 unsigned long size,
3073 enum memmap_context context)
3074 {
3075 struct pglist_data *pgdat = zone->zone_pgdat;
3076 int ret;
3077 ret = zone_wait_table_init(zone, size);
3078 if (ret)
3079 return ret;
3080 pgdat->nr_zones = zone_idx(zone) + 1;
3081
3082 zone->zone_start_pfn = zone_start_pfn;
3083
3084 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3085 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3086 pgdat->node_id,
3087 (unsigned long)zone_idx(zone),
3088 zone_start_pfn, (zone_start_pfn + size));
3089
3090 zone_init_free_lists(zone);
3091
3092 return 0;
3093 }
3094
3095 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3096 /*
3097 * Basic iterator support. Return the first range of PFNs for a node
3098 * Note: nid == MAX_NUMNODES returns first region regardless of node
3099 */
3100 static int __meminit first_active_region_index_in_nid(int nid)
3101 {
3102 int i;
3103
3104 for (i = 0; i < nr_nodemap_entries; i++)
3105 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3106 return i;
3107
3108 return -1;
3109 }
3110
3111 /*
3112 * Basic iterator support. Return the next active range of PFNs for a node
3113 * Note: nid == MAX_NUMNODES returns next region regardless of node
3114 */
3115 static int __meminit next_active_region_index_in_nid(int index, int nid)
3116 {
3117 for (index = index + 1; index < nr_nodemap_entries; index++)
3118 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3119 return index;
3120
3121 return -1;
3122 }
3123
3124 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3125 /*
3126 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3127 * Architectures may implement their own version but if add_active_range()
3128 * was used and there are no special requirements, this is a convenient
3129 * alternative
3130 */
3131 int __meminit __early_pfn_to_nid(unsigned long pfn)
3132 {
3133 int i;
3134
3135 for (i = 0; i < nr_nodemap_entries; i++) {
3136 unsigned long start_pfn = early_node_map[i].start_pfn;
3137 unsigned long end_pfn = early_node_map[i].end_pfn;
3138
3139 if (start_pfn <= pfn && pfn < end_pfn)
3140 return early_node_map[i].nid;
3141 }
3142 /* This is a memory hole */
3143 return -1;
3144 }
3145 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3146
3147 int __meminit early_pfn_to_nid(unsigned long pfn)
3148 {
3149 int nid;
3150
3151 nid = __early_pfn_to_nid(pfn);
3152 if (nid >= 0)
3153 return nid;
3154 /* just returns 0 */
3155 return 0;
3156 }
3157
3158 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3159 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3160 {
3161 int nid;
3162
3163 nid = __early_pfn_to_nid(pfn);
3164 if (nid >= 0 && nid != node)
3165 return false;
3166 return true;
3167 }
3168 #endif
3169
3170 /* Basic iterator support to walk early_node_map[] */
3171 #define for_each_active_range_index_in_nid(i, nid) \
3172 for (i = first_active_region_index_in_nid(nid); i != -1; \
3173 i = next_active_region_index_in_nid(i, nid))
3174
3175 /**
3176 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3177 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3178 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3179 *
3180 * If an architecture guarantees that all ranges registered with
3181 * add_active_ranges() contain no holes and may be freed, this
3182 * this function may be used instead of calling free_bootmem() manually.
3183 */
3184 void __init free_bootmem_with_active_regions(int nid,
3185 unsigned long max_low_pfn)
3186 {
3187 int i;
3188
3189 for_each_active_range_index_in_nid(i, nid) {
3190 unsigned long size_pages = 0;
3191 unsigned long end_pfn = early_node_map[i].end_pfn;
3192
3193 if (early_node_map[i].start_pfn >= max_low_pfn)
3194 continue;
3195
3196 if (end_pfn > max_low_pfn)
3197 end_pfn = max_low_pfn;
3198
3199 size_pages = end_pfn - early_node_map[i].start_pfn;
3200 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3201 PFN_PHYS(early_node_map[i].start_pfn),
3202 size_pages << PAGE_SHIFT);
3203 }
3204 }
3205
3206 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3207 {
3208 int i;
3209 int ret;
3210
3211 for_each_active_range_index_in_nid(i, nid) {
3212 ret = work_fn(early_node_map[i].start_pfn,
3213 early_node_map[i].end_pfn, data);
3214 if (ret)
3215 break;
3216 }
3217 }
3218 /**
3219 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3220 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3221 *
3222 * If an architecture guarantees that all ranges registered with
3223 * add_active_ranges() contain no holes and may be freed, this
3224 * function may be used instead of calling memory_present() manually.
3225 */
3226 void __init sparse_memory_present_with_active_regions(int nid)
3227 {
3228 int i;
3229
3230 for_each_active_range_index_in_nid(i, nid)
3231 memory_present(early_node_map[i].nid,
3232 early_node_map[i].start_pfn,
3233 early_node_map[i].end_pfn);
3234 }
3235
3236 /**
3237 * get_pfn_range_for_nid - Return the start and end page frames for a node
3238 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3239 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3240 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3241 *
3242 * It returns the start and end page frame of a node based on information
3243 * provided by an arch calling add_active_range(). If called for a node
3244 * with no available memory, a warning is printed and the start and end
3245 * PFNs will be 0.
3246 */
3247 void __meminit get_pfn_range_for_nid(unsigned int nid,
3248 unsigned long *start_pfn, unsigned long *end_pfn)
3249 {
3250 int i;
3251 *start_pfn = -1UL;
3252 *end_pfn = 0;
3253
3254 for_each_active_range_index_in_nid(i, nid) {
3255 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3256 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3257 }
3258
3259 if (*start_pfn == -1UL)
3260 *start_pfn = 0;
3261 }
3262
3263 /*
3264 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3265 * assumption is made that zones within a node are ordered in monotonic
3266 * increasing memory addresses so that the "highest" populated zone is used
3267 */
3268 static void __init find_usable_zone_for_movable(void)
3269 {
3270 int zone_index;
3271 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3272 if (zone_index == ZONE_MOVABLE)
3273 continue;
3274
3275 if (arch_zone_highest_possible_pfn[zone_index] >
3276 arch_zone_lowest_possible_pfn[zone_index])
3277 break;
3278 }
3279
3280 VM_BUG_ON(zone_index == -1);
3281 movable_zone = zone_index;
3282 }
3283
3284 /*
3285 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3286 * because it is sized independant of architecture. Unlike the other zones,
3287 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3288 * in each node depending on the size of each node and how evenly kernelcore
3289 * is distributed. This helper function adjusts the zone ranges
3290 * provided by the architecture for a given node by using the end of the
3291 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3292 * zones within a node are in order of monotonic increases memory addresses
3293 */
3294 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3295 unsigned long zone_type,
3296 unsigned long node_start_pfn,
3297 unsigned long node_end_pfn,
3298 unsigned long *zone_start_pfn,
3299 unsigned long *zone_end_pfn)
3300 {
3301 /* Only adjust if ZONE_MOVABLE is on this node */
3302 if (zone_movable_pfn[nid]) {
3303 /* Size ZONE_MOVABLE */
3304 if (zone_type == ZONE_MOVABLE) {
3305 *zone_start_pfn = zone_movable_pfn[nid];
3306 *zone_end_pfn = min(node_end_pfn,
3307 arch_zone_highest_possible_pfn[movable_zone]);
3308
3309 /* Adjust for ZONE_MOVABLE starting within this range */
3310 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3311 *zone_end_pfn > zone_movable_pfn[nid]) {
3312 *zone_end_pfn = zone_movable_pfn[nid];
3313
3314 /* Check if this whole range is within ZONE_MOVABLE */
3315 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3316 *zone_start_pfn = *zone_end_pfn;
3317 }
3318 }
3319
3320 /*
3321 * Return the number of pages a zone spans in a node, including holes
3322 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3323 */
3324 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3325 unsigned long zone_type,
3326 unsigned long *ignored)
3327 {
3328 unsigned long node_start_pfn, node_end_pfn;
3329 unsigned long zone_start_pfn, zone_end_pfn;
3330
3331 /* Get the start and end of the node and zone */
3332 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3333 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3334 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3335 adjust_zone_range_for_zone_movable(nid, zone_type,
3336 node_start_pfn, node_end_pfn,
3337 &zone_start_pfn, &zone_end_pfn);
3338
3339 /* Check that this node has pages within the zone's required range */
3340 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3341 return 0;
3342
3343 /* Move the zone boundaries inside the node if necessary */
3344 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3345 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3346
3347 /* Return the spanned pages */
3348 return zone_end_pfn - zone_start_pfn;
3349 }
3350
3351 /*
3352 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3353 * then all holes in the requested range will be accounted for.
3354 */
3355 static unsigned long __meminit __absent_pages_in_range(int nid,
3356 unsigned long range_start_pfn,
3357 unsigned long range_end_pfn)
3358 {
3359 int i = 0;
3360 unsigned long prev_end_pfn = 0, hole_pages = 0;
3361 unsigned long start_pfn;
3362
3363 /* Find the end_pfn of the first active range of pfns in the node */
3364 i = first_active_region_index_in_nid(nid);
3365 if (i == -1)
3366 return 0;
3367
3368 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3369
3370 /* Account for ranges before physical memory on this node */
3371 if (early_node_map[i].start_pfn > range_start_pfn)
3372 hole_pages = prev_end_pfn - range_start_pfn;
3373
3374 /* Find all holes for the zone within the node */
3375 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3376
3377 /* No need to continue if prev_end_pfn is outside the zone */
3378 if (prev_end_pfn >= range_end_pfn)
3379 break;
3380
3381 /* Make sure the end of the zone is not within the hole */
3382 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3383 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3384
3385 /* Update the hole size cound and move on */
3386 if (start_pfn > range_start_pfn) {
3387 BUG_ON(prev_end_pfn > start_pfn);
3388 hole_pages += start_pfn - prev_end_pfn;
3389 }
3390 prev_end_pfn = early_node_map[i].end_pfn;
3391 }
3392
3393 /* Account for ranges past physical memory on this node */
3394 if (range_end_pfn > prev_end_pfn)
3395 hole_pages += range_end_pfn -
3396 max(range_start_pfn, prev_end_pfn);
3397
3398 return hole_pages;
3399 }
3400
3401 /**
3402 * absent_pages_in_range - Return number of page frames in holes within a range
3403 * @start_pfn: The start PFN to start searching for holes
3404 * @end_pfn: The end PFN to stop searching for holes
3405 *
3406 * It returns the number of pages frames in memory holes within a range.
3407 */
3408 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3409 unsigned long end_pfn)
3410 {
3411 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3412 }
3413
3414 /* Return the number of page frames in holes in a zone on a node */
3415 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3416 unsigned long zone_type,
3417 unsigned long *ignored)
3418 {
3419 unsigned long node_start_pfn, node_end_pfn;
3420 unsigned long zone_start_pfn, zone_end_pfn;
3421
3422 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3423 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3424 node_start_pfn);
3425 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3426 node_end_pfn);
3427
3428 adjust_zone_range_for_zone_movable(nid, zone_type,
3429 node_start_pfn, node_end_pfn,
3430 &zone_start_pfn, &zone_end_pfn);
3431 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3432 }
3433
3434 #else
3435 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3436 unsigned long zone_type,
3437 unsigned long *zones_size)
3438 {
3439 return zones_size[zone_type];
3440 }
3441
3442 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3443 unsigned long zone_type,
3444 unsigned long *zholes_size)
3445 {
3446 if (!zholes_size)
3447 return 0;
3448
3449 return zholes_size[zone_type];
3450 }
3451
3452 #endif
3453
3454 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3455 unsigned long *zones_size, unsigned long *zholes_size)
3456 {
3457 unsigned long realtotalpages, totalpages = 0;
3458 enum zone_type i;
3459
3460 for (i = 0; i < MAX_NR_ZONES; i++)
3461 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3462 zones_size);
3463 pgdat->node_spanned_pages = totalpages;
3464
3465 realtotalpages = totalpages;
3466 for (i = 0; i < MAX_NR_ZONES; i++)
3467 realtotalpages -=
3468 zone_absent_pages_in_node(pgdat->node_id, i,
3469 zholes_size);
3470 pgdat->node_present_pages = realtotalpages;
3471 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3472 realtotalpages);
3473 }
3474
3475 #ifndef CONFIG_SPARSEMEM
3476 /*
3477 * Calculate the size of the zone->blockflags rounded to an unsigned long
3478 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3479 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3480 * round what is now in bits to nearest long in bits, then return it in
3481 * bytes.
3482 */
3483 static unsigned long __init usemap_size(unsigned long zonesize)
3484 {
3485 unsigned long usemapsize;
3486
3487 usemapsize = roundup(zonesize, pageblock_nr_pages);
3488 usemapsize = usemapsize >> pageblock_order;
3489 usemapsize *= NR_PAGEBLOCK_BITS;
3490 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3491
3492 return usemapsize / 8;
3493 }
3494
3495 static void __init setup_usemap(struct pglist_data *pgdat,
3496 struct zone *zone, unsigned long zonesize)
3497 {
3498 unsigned long usemapsize = usemap_size(zonesize);
3499 zone->pageblock_flags = NULL;
3500 if (usemapsize)
3501 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3502 }
3503 #else
3504 static void inline setup_usemap(struct pglist_data *pgdat,
3505 struct zone *zone, unsigned long zonesize) {}
3506 #endif /* CONFIG_SPARSEMEM */
3507
3508 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3509
3510 /* Return a sensible default order for the pageblock size. */
3511 static inline int pageblock_default_order(void)
3512 {
3513 if (HPAGE_SHIFT > PAGE_SHIFT)
3514 return HUGETLB_PAGE_ORDER;
3515
3516 return MAX_ORDER-1;
3517 }
3518
3519 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3520 static inline void __init set_pageblock_order(unsigned int order)
3521 {
3522 /* Check that pageblock_nr_pages has not already been setup */
3523 if (pageblock_order)
3524 return;
3525
3526 /*
3527 * Assume the largest contiguous order of interest is a huge page.
3528 * This value may be variable depending on boot parameters on IA64
3529 */
3530 pageblock_order = order;
3531 }
3532 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3533
3534 /*
3535 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3536 * and pageblock_default_order() are unused as pageblock_order is set
3537 * at compile-time. See include/linux/pageblock-flags.h for the values of
3538 * pageblock_order based on the kernel config
3539 */
3540 static inline int pageblock_default_order(unsigned int order)
3541 {
3542 return MAX_ORDER-1;
3543 }
3544 #define set_pageblock_order(x) do {} while (0)
3545
3546 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3547
3548 /*
3549 * Set up the zone data structures:
3550 * - mark all pages reserved
3551 * - mark all memory queues empty
3552 * - clear the memory bitmaps
3553 */
3554 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3555 unsigned long *zones_size, unsigned long *zholes_size)
3556 {
3557 enum zone_type j;
3558 int nid = pgdat->node_id;
3559 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3560 int ret;
3561
3562 pgdat_resize_init(pgdat);
3563 pgdat->nr_zones = 0;
3564 init_waitqueue_head(&pgdat->kswapd_wait);
3565 pgdat->kswapd_max_order = 0;
3566 pgdat_page_cgroup_init(pgdat);
3567
3568 for (j = 0; j < MAX_NR_ZONES; j++) {
3569 struct zone *zone = pgdat->node_zones + j;
3570 unsigned long size, realsize, memmap_pages;
3571 enum lru_list l;
3572
3573 size = zone_spanned_pages_in_node(nid, j, zones_size);
3574 realsize = size - zone_absent_pages_in_node(nid, j,
3575 zholes_size);
3576
3577 /*
3578 * Adjust realsize so that it accounts for how much memory
3579 * is used by this zone for memmap. This affects the watermark
3580 * and per-cpu initialisations
3581 */
3582 memmap_pages =
3583 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3584 if (realsize >= memmap_pages) {
3585 realsize -= memmap_pages;
3586 if (memmap_pages)
3587 printk(KERN_DEBUG
3588 " %s zone: %lu pages used for memmap\n",
3589 zone_names[j], memmap_pages);
3590 } else
3591 printk(KERN_WARNING
3592 " %s zone: %lu pages exceeds realsize %lu\n",
3593 zone_names[j], memmap_pages, realsize);
3594
3595 /* Account for reserved pages */
3596 if (j == 0 && realsize > dma_reserve) {
3597 realsize -= dma_reserve;
3598 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3599 zone_names[0], dma_reserve);
3600 }
3601
3602 if (!is_highmem_idx(j))
3603 nr_kernel_pages += realsize;
3604 nr_all_pages += realsize;
3605
3606 zone->spanned_pages = size;
3607 zone->present_pages = realsize;
3608 #ifdef CONFIG_NUMA
3609 zone->node = nid;
3610 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3611 / 100;
3612 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3613 #endif
3614 zone->name = zone_names[j];
3615 spin_lock_init(&zone->lock);
3616 spin_lock_init(&zone->lru_lock);
3617 zone_seqlock_init(zone);
3618 zone->zone_pgdat = pgdat;
3619
3620 zone->prev_priority = DEF_PRIORITY;
3621
3622 zone_pcp_init(zone);
3623 for_each_lru(l) {
3624 INIT_LIST_HEAD(&zone->lru[l].list);
3625 zone->lru[l].nr_scan = 0;
3626 }
3627 zone->reclaim_stat.recent_rotated[0] = 0;
3628 zone->reclaim_stat.recent_rotated[1] = 0;
3629 zone->reclaim_stat.recent_scanned[0] = 0;
3630 zone->reclaim_stat.recent_scanned[1] = 0;
3631 zap_zone_vm_stats(zone);
3632 zone->flags = 0;
3633 if (!size)
3634 continue;
3635
3636 set_pageblock_order(pageblock_default_order());
3637 setup_usemap(pgdat, zone, size);
3638 ret = init_currently_empty_zone(zone, zone_start_pfn,
3639 size, MEMMAP_EARLY);
3640 BUG_ON(ret);
3641 memmap_init(size, nid, j, zone_start_pfn);
3642 zone_start_pfn += size;
3643 }
3644 }
3645
3646 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3647 {
3648 /* Skip empty nodes */
3649 if (!pgdat->node_spanned_pages)
3650 return;
3651
3652 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3653 /* ia64 gets its own node_mem_map, before this, without bootmem */
3654 if (!pgdat->node_mem_map) {
3655 unsigned long size, start, end;
3656 struct page *map;
3657
3658 /*
3659 * The zone's endpoints aren't required to be MAX_ORDER
3660 * aligned but the node_mem_map endpoints must be in order
3661 * for the buddy allocator to function correctly.
3662 */
3663 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3664 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3665 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3666 size = (end - start) * sizeof(struct page);
3667 map = alloc_remap(pgdat->node_id, size);
3668 if (!map)
3669 map = alloc_bootmem_node(pgdat, size);
3670 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3671 }
3672 #ifndef CONFIG_NEED_MULTIPLE_NODES
3673 /*
3674 * With no DISCONTIG, the global mem_map is just set as node 0's
3675 */
3676 if (pgdat == NODE_DATA(0)) {
3677 mem_map = NODE_DATA(0)->node_mem_map;
3678 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3679 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3680 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3681 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3682 }
3683 #endif
3684 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3685 }
3686
3687 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3688 unsigned long node_start_pfn, unsigned long *zholes_size)
3689 {
3690 pg_data_t *pgdat = NODE_DATA(nid);
3691
3692 pgdat->node_id = nid;
3693 pgdat->node_start_pfn = node_start_pfn;
3694 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3695
3696 alloc_node_mem_map(pgdat);
3697 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3698 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3699 nid, (unsigned long)pgdat,
3700 (unsigned long)pgdat->node_mem_map);
3701 #endif
3702
3703 free_area_init_core(pgdat, zones_size, zholes_size);
3704 }
3705
3706 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3707
3708 #if MAX_NUMNODES > 1
3709 /*
3710 * Figure out the number of possible node ids.
3711 */
3712 static void __init setup_nr_node_ids(void)
3713 {
3714 unsigned int node;
3715 unsigned int highest = 0;
3716
3717 for_each_node_mask(node, node_possible_map)
3718 highest = node;
3719 nr_node_ids = highest + 1;
3720 }
3721 #else
3722 static inline void setup_nr_node_ids(void)
3723 {
3724 }
3725 #endif
3726
3727 /**
3728 * add_active_range - Register a range of PFNs backed by physical memory
3729 * @nid: The node ID the range resides on
3730 * @start_pfn: The start PFN of the available physical memory
3731 * @end_pfn: The end PFN of the available physical memory
3732 *
3733 * These ranges are stored in an early_node_map[] and later used by
3734 * free_area_init_nodes() to calculate zone sizes and holes. If the
3735 * range spans a memory hole, it is up to the architecture to ensure
3736 * the memory is not freed by the bootmem allocator. If possible
3737 * the range being registered will be merged with existing ranges.
3738 */
3739 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3740 unsigned long end_pfn)
3741 {
3742 int i;
3743
3744 mminit_dprintk(MMINIT_TRACE, "memory_register",
3745 "Entering add_active_range(%d, %#lx, %#lx) "
3746 "%d entries of %d used\n",
3747 nid, start_pfn, end_pfn,
3748 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3749
3750 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3751
3752 /* Merge with existing active regions if possible */
3753 for (i = 0; i < nr_nodemap_entries; i++) {
3754 if (early_node_map[i].nid != nid)
3755 continue;
3756
3757 /* Skip if an existing region covers this new one */
3758 if (start_pfn >= early_node_map[i].start_pfn &&
3759 end_pfn <= early_node_map[i].end_pfn)
3760 return;
3761
3762 /* Merge forward if suitable */
3763 if (start_pfn <= early_node_map[i].end_pfn &&
3764 end_pfn > early_node_map[i].end_pfn) {
3765 early_node_map[i].end_pfn = end_pfn;
3766 return;
3767 }
3768
3769 /* Merge backward if suitable */
3770 if (start_pfn < early_node_map[i].end_pfn &&
3771 end_pfn >= early_node_map[i].start_pfn) {
3772 early_node_map[i].start_pfn = start_pfn;
3773 return;
3774 }
3775 }
3776
3777 /* Check that early_node_map is large enough */
3778 if (i >= MAX_ACTIVE_REGIONS) {
3779 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3780 MAX_ACTIVE_REGIONS);
3781 return;
3782 }
3783
3784 early_node_map[i].nid = nid;
3785 early_node_map[i].start_pfn = start_pfn;
3786 early_node_map[i].end_pfn = end_pfn;
3787 nr_nodemap_entries = i + 1;
3788 }
3789
3790 /**
3791 * remove_active_range - Shrink an existing registered range of PFNs
3792 * @nid: The node id the range is on that should be shrunk
3793 * @start_pfn: The new PFN of the range
3794 * @end_pfn: The new PFN of the range
3795 *
3796 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3797 * The map is kept near the end physical page range that has already been
3798 * registered. This function allows an arch to shrink an existing registered
3799 * range.
3800 */
3801 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3802 unsigned long end_pfn)
3803 {
3804 int i, j;
3805 int removed = 0;
3806
3807 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3808 nid, start_pfn, end_pfn);
3809
3810 /* Find the old active region end and shrink */
3811 for_each_active_range_index_in_nid(i, nid) {
3812 if (early_node_map[i].start_pfn >= start_pfn &&
3813 early_node_map[i].end_pfn <= end_pfn) {
3814 /* clear it */
3815 early_node_map[i].start_pfn = 0;
3816 early_node_map[i].end_pfn = 0;
3817 removed = 1;
3818 continue;
3819 }
3820 if (early_node_map[i].start_pfn < start_pfn &&
3821 early_node_map[i].end_pfn > start_pfn) {
3822 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3823 early_node_map[i].end_pfn = start_pfn;
3824 if (temp_end_pfn > end_pfn)
3825 add_active_range(nid, end_pfn, temp_end_pfn);
3826 continue;
3827 }
3828 if (early_node_map[i].start_pfn >= start_pfn &&
3829 early_node_map[i].end_pfn > end_pfn &&
3830 early_node_map[i].start_pfn < end_pfn) {
3831 early_node_map[i].start_pfn = end_pfn;
3832 continue;
3833 }
3834 }
3835
3836 if (!removed)
3837 return;
3838
3839 /* remove the blank ones */
3840 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3841 if (early_node_map[i].nid != nid)
3842 continue;
3843 if (early_node_map[i].end_pfn)
3844 continue;
3845 /* we found it, get rid of it */
3846 for (j = i; j < nr_nodemap_entries - 1; j++)
3847 memcpy(&early_node_map[j], &early_node_map[j+1],
3848 sizeof(early_node_map[j]));
3849 j = nr_nodemap_entries - 1;
3850 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3851 nr_nodemap_entries--;
3852 }
3853 }
3854
3855 /**
3856 * remove_all_active_ranges - Remove all currently registered regions
3857 *
3858 * During discovery, it may be found that a table like SRAT is invalid
3859 * and an alternative discovery method must be used. This function removes
3860 * all currently registered regions.
3861 */
3862 void __init remove_all_active_ranges(void)
3863 {
3864 memset(early_node_map, 0, sizeof(early_node_map));
3865 nr_nodemap_entries = 0;
3866 }
3867
3868 /* Compare two active node_active_regions */
3869 static int __init cmp_node_active_region(const void *a, const void *b)
3870 {
3871 struct node_active_region *arange = (struct node_active_region *)a;
3872 struct node_active_region *brange = (struct node_active_region *)b;
3873
3874 /* Done this way to avoid overflows */
3875 if (arange->start_pfn > brange->start_pfn)
3876 return 1;
3877 if (arange->start_pfn < brange->start_pfn)
3878 return -1;
3879
3880 return 0;
3881 }
3882
3883 /* sort the node_map by start_pfn */
3884 static void __init sort_node_map(void)
3885 {
3886 sort(early_node_map, (size_t)nr_nodemap_entries,
3887 sizeof(struct node_active_region),
3888 cmp_node_active_region, NULL);
3889 }
3890
3891 /* Find the lowest pfn for a node */
3892 static unsigned long __init find_min_pfn_for_node(int nid)
3893 {
3894 int i;
3895 unsigned long min_pfn = ULONG_MAX;
3896
3897 /* Assuming a sorted map, the first range found has the starting pfn */
3898 for_each_active_range_index_in_nid(i, nid)
3899 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3900
3901 if (min_pfn == ULONG_MAX) {
3902 printk(KERN_WARNING
3903 "Could not find start_pfn for node %d\n", nid);
3904 return 0;
3905 }
3906
3907 return min_pfn;
3908 }
3909
3910 /**
3911 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3912 *
3913 * It returns the minimum PFN based on information provided via
3914 * add_active_range().
3915 */
3916 unsigned long __init find_min_pfn_with_active_regions(void)
3917 {
3918 return find_min_pfn_for_node(MAX_NUMNODES);
3919 }
3920
3921 /*
3922 * early_calculate_totalpages()
3923 * Sum pages in active regions for movable zone.
3924 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3925 */
3926 static unsigned long __init early_calculate_totalpages(void)
3927 {
3928 int i;
3929 unsigned long totalpages = 0;
3930
3931 for (i = 0; i < nr_nodemap_entries; i++) {
3932 unsigned long pages = early_node_map[i].end_pfn -
3933 early_node_map[i].start_pfn;
3934 totalpages += pages;
3935 if (pages)
3936 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3937 }
3938 return totalpages;
3939 }
3940
3941 /*
3942 * Find the PFN the Movable zone begins in each node. Kernel memory
3943 * is spread evenly between nodes as long as the nodes have enough
3944 * memory. When they don't, some nodes will have more kernelcore than
3945 * others
3946 */
3947 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3948 {
3949 int i, nid;
3950 unsigned long usable_startpfn;
3951 unsigned long kernelcore_node, kernelcore_remaining;
3952 unsigned long totalpages = early_calculate_totalpages();
3953 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3954
3955 /*
3956 * If movablecore was specified, calculate what size of
3957 * kernelcore that corresponds so that memory usable for
3958 * any allocation type is evenly spread. If both kernelcore
3959 * and movablecore are specified, then the value of kernelcore
3960 * will be used for required_kernelcore if it's greater than
3961 * what movablecore would have allowed.
3962 */
3963 if (required_movablecore) {
3964 unsigned long corepages;
3965
3966 /*
3967 * Round-up so that ZONE_MOVABLE is at least as large as what
3968 * was requested by the user
3969 */
3970 required_movablecore =
3971 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3972 corepages = totalpages - required_movablecore;
3973
3974 required_kernelcore = max(required_kernelcore, corepages);
3975 }
3976
3977 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3978 if (!required_kernelcore)
3979 return;
3980
3981 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3982 find_usable_zone_for_movable();
3983 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3984
3985 restart:
3986 /* Spread kernelcore memory as evenly as possible throughout nodes */
3987 kernelcore_node = required_kernelcore / usable_nodes;
3988 for_each_node_state(nid, N_HIGH_MEMORY) {
3989 /*
3990 * Recalculate kernelcore_node if the division per node
3991 * now exceeds what is necessary to satisfy the requested
3992 * amount of memory for the kernel
3993 */
3994 if (required_kernelcore < kernelcore_node)
3995 kernelcore_node = required_kernelcore / usable_nodes;
3996
3997 /*
3998 * As the map is walked, we track how much memory is usable
3999 * by the kernel using kernelcore_remaining. When it is
4000 * 0, the rest of the node is usable by ZONE_MOVABLE
4001 */
4002 kernelcore_remaining = kernelcore_node;
4003
4004 /* Go through each range of PFNs within this node */
4005 for_each_active_range_index_in_nid(i, nid) {
4006 unsigned long start_pfn, end_pfn;
4007 unsigned long size_pages;
4008
4009 start_pfn = max(early_node_map[i].start_pfn,
4010 zone_movable_pfn[nid]);
4011 end_pfn = early_node_map[i].end_pfn;
4012 if (start_pfn >= end_pfn)
4013 continue;
4014
4015 /* Account for what is only usable for kernelcore */
4016 if (start_pfn < usable_startpfn) {
4017 unsigned long kernel_pages;
4018 kernel_pages = min(end_pfn, usable_startpfn)
4019 - start_pfn;
4020
4021 kernelcore_remaining -= min(kernel_pages,
4022 kernelcore_remaining);
4023 required_kernelcore -= min(kernel_pages,
4024 required_kernelcore);
4025
4026 /* Continue if range is now fully accounted */
4027 if (end_pfn <= usable_startpfn) {
4028
4029 /*
4030 * Push zone_movable_pfn to the end so
4031 * that if we have to rebalance
4032 * kernelcore across nodes, we will
4033 * not double account here
4034 */
4035 zone_movable_pfn[nid] = end_pfn;
4036 continue;
4037 }
4038 start_pfn = usable_startpfn;
4039 }
4040
4041 /*
4042 * The usable PFN range for ZONE_MOVABLE is from
4043 * start_pfn->end_pfn. Calculate size_pages as the
4044 * number of pages used as kernelcore
4045 */
4046 size_pages = end_pfn - start_pfn;
4047 if (size_pages > kernelcore_remaining)
4048 size_pages = kernelcore_remaining;
4049 zone_movable_pfn[nid] = start_pfn + size_pages;
4050
4051 /*
4052 * Some kernelcore has been met, update counts and
4053 * break if the kernelcore for this node has been
4054 * satisified
4055 */
4056 required_kernelcore -= min(required_kernelcore,
4057 size_pages);
4058 kernelcore_remaining -= size_pages;
4059 if (!kernelcore_remaining)
4060 break;
4061 }
4062 }
4063
4064 /*
4065 * If there is still required_kernelcore, we do another pass with one
4066 * less node in the count. This will push zone_movable_pfn[nid] further
4067 * along on the nodes that still have memory until kernelcore is
4068 * satisified
4069 */
4070 usable_nodes--;
4071 if (usable_nodes && required_kernelcore > usable_nodes)
4072 goto restart;
4073
4074 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4075 for (nid = 0; nid < MAX_NUMNODES; nid++)
4076 zone_movable_pfn[nid] =
4077 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4078 }
4079
4080 /* Any regular memory on that node ? */
4081 static void check_for_regular_memory(pg_data_t *pgdat)
4082 {
4083 #ifdef CONFIG_HIGHMEM
4084 enum zone_type zone_type;
4085
4086 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4087 struct zone *zone = &pgdat->node_zones[zone_type];
4088 if (zone->present_pages)
4089 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4090 }
4091 #endif
4092 }
4093
4094 /**
4095 * free_area_init_nodes - Initialise all pg_data_t and zone data
4096 * @max_zone_pfn: an array of max PFNs for each zone
4097 *
4098 * This will call free_area_init_node() for each active node in the system.
4099 * Using the page ranges provided by add_active_range(), the size of each
4100 * zone in each node and their holes is calculated. If the maximum PFN
4101 * between two adjacent zones match, it is assumed that the zone is empty.
4102 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4103 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4104 * starts where the previous one ended. For example, ZONE_DMA32 starts
4105 * at arch_max_dma_pfn.
4106 */
4107 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4108 {
4109 unsigned long nid;
4110 int i;
4111
4112 /* Sort early_node_map as initialisation assumes it is sorted */
4113 sort_node_map();
4114
4115 /* Record where the zone boundaries are */
4116 memset(arch_zone_lowest_possible_pfn, 0,
4117 sizeof(arch_zone_lowest_possible_pfn));
4118 memset(arch_zone_highest_possible_pfn, 0,
4119 sizeof(arch_zone_highest_possible_pfn));
4120 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4121 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4122 for (i = 1; i < MAX_NR_ZONES; i++) {
4123 if (i == ZONE_MOVABLE)
4124 continue;
4125 arch_zone_lowest_possible_pfn[i] =
4126 arch_zone_highest_possible_pfn[i-1];
4127 arch_zone_highest_possible_pfn[i] =
4128 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4129 }
4130 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4131 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4132
4133 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4134 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4135 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4136
4137 /* Print out the zone ranges */
4138 printk("Zone PFN ranges:\n");
4139 for (i = 0; i < MAX_NR_ZONES; i++) {
4140 if (i == ZONE_MOVABLE)
4141 continue;
4142 printk(" %-8s %0#10lx -> %0#10lx\n",
4143 zone_names[i],
4144 arch_zone_lowest_possible_pfn[i],
4145 arch_zone_highest_possible_pfn[i]);
4146 }
4147
4148 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4149 printk("Movable zone start PFN for each node\n");
4150 for (i = 0; i < MAX_NUMNODES; i++) {
4151 if (zone_movable_pfn[i])
4152 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4153 }
4154
4155 /* Print out the early_node_map[] */
4156 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4157 for (i = 0; i < nr_nodemap_entries; i++)
4158 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4159 early_node_map[i].start_pfn,
4160 early_node_map[i].end_pfn);
4161
4162 /* Initialise every node */
4163 mminit_verify_pageflags_layout();
4164 setup_nr_node_ids();
4165 for_each_online_node(nid) {
4166 pg_data_t *pgdat = NODE_DATA(nid);
4167 free_area_init_node(nid, NULL,
4168 find_min_pfn_for_node(nid), NULL);
4169
4170 /* Any memory on that node */
4171 if (pgdat->node_present_pages)
4172 node_set_state(nid, N_HIGH_MEMORY);
4173 check_for_regular_memory(pgdat);
4174 }
4175 }
4176
4177 static int __init cmdline_parse_core(char *p, unsigned long *core)
4178 {
4179 unsigned long long coremem;
4180 if (!p)
4181 return -EINVAL;
4182
4183 coremem = memparse(p, &p);
4184 *core = coremem >> PAGE_SHIFT;
4185
4186 /* Paranoid check that UL is enough for the coremem value */
4187 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4188
4189 return 0;
4190 }
4191
4192 /*
4193 * kernelcore=size sets the amount of memory for use for allocations that
4194 * cannot be reclaimed or migrated.
4195 */
4196 static int __init cmdline_parse_kernelcore(char *p)
4197 {
4198 return cmdline_parse_core(p, &required_kernelcore);
4199 }
4200
4201 /*
4202 * movablecore=size sets the amount of memory for use for allocations that
4203 * can be reclaimed or migrated.
4204 */
4205 static int __init cmdline_parse_movablecore(char *p)
4206 {
4207 return cmdline_parse_core(p, &required_movablecore);
4208 }
4209
4210 early_param("kernelcore", cmdline_parse_kernelcore);
4211 early_param("movablecore", cmdline_parse_movablecore);
4212
4213 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4214
4215 /**
4216 * set_dma_reserve - set the specified number of pages reserved in the first zone
4217 * @new_dma_reserve: The number of pages to mark reserved
4218 *
4219 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4220 * In the DMA zone, a significant percentage may be consumed by kernel image
4221 * and other unfreeable allocations which can skew the watermarks badly. This
4222 * function may optionally be used to account for unfreeable pages in the
4223 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4224 * smaller per-cpu batchsize.
4225 */
4226 void __init set_dma_reserve(unsigned long new_dma_reserve)
4227 {
4228 dma_reserve = new_dma_reserve;
4229 }
4230
4231 #ifndef CONFIG_NEED_MULTIPLE_NODES
4232 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4233 EXPORT_SYMBOL(contig_page_data);
4234 #endif
4235
4236 void __init free_area_init(unsigned long *zones_size)
4237 {
4238 free_area_init_node(0, zones_size,
4239 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4240 }
4241
4242 static int page_alloc_cpu_notify(struct notifier_block *self,
4243 unsigned long action, void *hcpu)
4244 {
4245 int cpu = (unsigned long)hcpu;
4246
4247 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4248 drain_pages(cpu);
4249
4250 /*
4251 * Spill the event counters of the dead processor
4252 * into the current processors event counters.
4253 * This artificially elevates the count of the current
4254 * processor.
4255 */
4256 vm_events_fold_cpu(cpu);
4257
4258 /*
4259 * Zero the differential counters of the dead processor
4260 * so that the vm statistics are consistent.
4261 *
4262 * This is only okay since the processor is dead and cannot
4263 * race with what we are doing.
4264 */
4265 refresh_cpu_vm_stats(cpu);
4266 }
4267 return NOTIFY_OK;
4268 }
4269
4270 void __init page_alloc_init(void)
4271 {
4272 hotcpu_notifier(page_alloc_cpu_notify, 0);
4273 }
4274
4275 /*
4276 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4277 * or min_free_kbytes changes.
4278 */
4279 static void calculate_totalreserve_pages(void)
4280 {
4281 struct pglist_data *pgdat;
4282 unsigned long reserve_pages = 0;
4283 enum zone_type i, j;
4284
4285 for_each_online_pgdat(pgdat) {
4286 for (i = 0; i < MAX_NR_ZONES; i++) {
4287 struct zone *zone = pgdat->node_zones + i;
4288 unsigned long max = 0;
4289
4290 /* Find valid and maximum lowmem_reserve in the zone */
4291 for (j = i; j < MAX_NR_ZONES; j++) {
4292 if (zone->lowmem_reserve[j] > max)
4293 max = zone->lowmem_reserve[j];
4294 }
4295
4296 /* we treat pages_high as reserved pages. */
4297 max += zone->pages_high;
4298
4299 if (max > zone->present_pages)
4300 max = zone->present_pages;
4301 reserve_pages += max;
4302 }
4303 }
4304 totalreserve_pages = reserve_pages;
4305 }
4306
4307 /*
4308 * setup_per_zone_lowmem_reserve - called whenever
4309 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4310 * has a correct pages reserved value, so an adequate number of
4311 * pages are left in the zone after a successful __alloc_pages().
4312 */
4313 static void setup_per_zone_lowmem_reserve(void)
4314 {
4315 struct pglist_data *pgdat;
4316 enum zone_type j, idx;
4317
4318 for_each_online_pgdat(pgdat) {
4319 for (j = 0; j < MAX_NR_ZONES; j++) {
4320 struct zone *zone = pgdat->node_zones + j;
4321 unsigned long present_pages = zone->present_pages;
4322
4323 zone->lowmem_reserve[j] = 0;
4324
4325 idx = j;
4326 while (idx) {
4327 struct zone *lower_zone;
4328
4329 idx--;
4330
4331 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4332 sysctl_lowmem_reserve_ratio[idx] = 1;
4333
4334 lower_zone = pgdat->node_zones + idx;
4335 lower_zone->lowmem_reserve[j] = present_pages /
4336 sysctl_lowmem_reserve_ratio[idx];
4337 present_pages += lower_zone->present_pages;
4338 }
4339 }
4340 }
4341
4342 /* update totalreserve_pages */
4343 calculate_totalreserve_pages();
4344 }
4345
4346 /**
4347 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4348 *
4349 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4350 * with respect to min_free_kbytes.
4351 */
4352 void setup_per_zone_pages_min(void)
4353 {
4354 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4355 unsigned long lowmem_pages = 0;
4356 struct zone *zone;
4357 unsigned long flags;
4358
4359 /* Calculate total number of !ZONE_HIGHMEM pages */
4360 for_each_zone(zone) {
4361 if (!is_highmem(zone))
4362 lowmem_pages += zone->present_pages;
4363 }
4364
4365 for_each_zone(zone) {
4366 u64 tmp;
4367
4368 spin_lock_irqsave(&zone->lock, flags);
4369 tmp = (u64)pages_min * zone->present_pages;
4370 do_div(tmp, lowmem_pages);
4371 if (is_highmem(zone)) {
4372 /*
4373 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4374 * need highmem pages, so cap pages_min to a small
4375 * value here.
4376 *
4377 * The (pages_high-pages_low) and (pages_low-pages_min)
4378 * deltas controls asynch page reclaim, and so should
4379 * not be capped for highmem.
4380 */
4381 int min_pages;
4382
4383 min_pages = zone->present_pages / 1024;
4384 if (min_pages < SWAP_CLUSTER_MAX)
4385 min_pages = SWAP_CLUSTER_MAX;
4386 if (min_pages > 128)
4387 min_pages = 128;
4388 zone->pages_min = min_pages;
4389 } else {
4390 /*
4391 * If it's a lowmem zone, reserve a number of pages
4392 * proportionate to the zone's size.
4393 */
4394 zone->pages_min = tmp;
4395 }
4396
4397 zone->pages_low = zone->pages_min + (tmp >> 2);
4398 zone->pages_high = zone->pages_min + (tmp >> 1);
4399 setup_zone_migrate_reserve(zone);
4400 spin_unlock_irqrestore(&zone->lock, flags);
4401 }
4402
4403 /* update totalreserve_pages */
4404 calculate_totalreserve_pages();
4405 }
4406
4407 /**
4408 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4409 *
4410 * The inactive anon list should be small enough that the VM never has to
4411 * do too much work, but large enough that each inactive page has a chance
4412 * to be referenced again before it is swapped out.
4413 *
4414 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4415 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4416 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4417 * the anonymous pages are kept on the inactive list.
4418 *
4419 * total target max
4420 * memory ratio inactive anon
4421 * -------------------------------------
4422 * 10MB 1 5MB
4423 * 100MB 1 50MB
4424 * 1GB 3 250MB
4425 * 10GB 10 0.9GB
4426 * 100GB 31 3GB
4427 * 1TB 101 10GB
4428 * 10TB 320 32GB
4429 */
4430 static void setup_per_zone_inactive_ratio(void)
4431 {
4432 struct zone *zone;
4433
4434 for_each_zone(zone) {
4435 unsigned int gb, ratio;
4436
4437 /* Zone size in gigabytes */
4438 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4439 ratio = int_sqrt(10 * gb);
4440 if (!ratio)
4441 ratio = 1;
4442
4443 zone->inactive_ratio = ratio;
4444 }
4445 }
4446
4447 /*
4448 * Initialise min_free_kbytes.
4449 *
4450 * For small machines we want it small (128k min). For large machines
4451 * we want it large (64MB max). But it is not linear, because network
4452 * bandwidth does not increase linearly with machine size. We use
4453 *
4454 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4455 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4456 *
4457 * which yields
4458 *
4459 * 16MB: 512k
4460 * 32MB: 724k
4461 * 64MB: 1024k
4462 * 128MB: 1448k
4463 * 256MB: 2048k
4464 * 512MB: 2896k
4465 * 1024MB: 4096k
4466 * 2048MB: 5792k
4467 * 4096MB: 8192k
4468 * 8192MB: 11584k
4469 * 16384MB: 16384k
4470 */
4471 static int __init init_per_zone_pages_min(void)
4472 {
4473 unsigned long lowmem_kbytes;
4474
4475 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4476
4477 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4478 if (min_free_kbytes < 128)
4479 min_free_kbytes = 128;
4480 if (min_free_kbytes > 65536)
4481 min_free_kbytes = 65536;
4482 setup_per_zone_pages_min();
4483 setup_per_zone_lowmem_reserve();
4484 setup_per_zone_inactive_ratio();
4485 return 0;
4486 }
4487 module_init(init_per_zone_pages_min)
4488
4489 /*
4490 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4491 * that we can call two helper functions whenever min_free_kbytes
4492 * changes.
4493 */
4494 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4495 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4496 {
4497 proc_dointvec(table, write, file, buffer, length, ppos);
4498 if (write)
4499 setup_per_zone_pages_min();
4500 return 0;
4501 }
4502
4503 #ifdef CONFIG_NUMA
4504 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4505 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4506 {
4507 struct zone *zone;
4508 int rc;
4509
4510 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4511 if (rc)
4512 return rc;
4513
4514 for_each_zone(zone)
4515 zone->min_unmapped_pages = (zone->present_pages *
4516 sysctl_min_unmapped_ratio) / 100;
4517 return 0;
4518 }
4519
4520 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4521 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4522 {
4523 struct zone *zone;
4524 int rc;
4525
4526 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4527 if (rc)
4528 return rc;
4529
4530 for_each_zone(zone)
4531 zone->min_slab_pages = (zone->present_pages *
4532 sysctl_min_slab_ratio) / 100;
4533 return 0;
4534 }
4535 #endif
4536
4537 /*
4538 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4539 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4540 * whenever sysctl_lowmem_reserve_ratio changes.
4541 *
4542 * The reserve ratio obviously has absolutely no relation with the
4543 * pages_min watermarks. The lowmem reserve ratio can only make sense
4544 * if in function of the boot time zone sizes.
4545 */
4546 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4547 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4548 {
4549 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4550 setup_per_zone_lowmem_reserve();
4551 return 0;
4552 }
4553
4554 /*
4555 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4556 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4557 * can have before it gets flushed back to buddy allocator.
4558 */
4559
4560 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4561 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4562 {
4563 struct zone *zone;
4564 unsigned int cpu;
4565 int ret;
4566
4567 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4568 if (!write || (ret == -EINVAL))
4569 return ret;
4570 for_each_zone(zone) {
4571 for_each_online_cpu(cpu) {
4572 unsigned long high;
4573 high = zone->present_pages / percpu_pagelist_fraction;
4574 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4575 }
4576 }
4577 return 0;
4578 }
4579
4580 int hashdist = HASHDIST_DEFAULT;
4581
4582 #ifdef CONFIG_NUMA
4583 static int __init set_hashdist(char *str)
4584 {
4585 if (!str)
4586 return 0;
4587 hashdist = simple_strtoul(str, &str, 0);
4588 return 1;
4589 }
4590 __setup("hashdist=", set_hashdist);
4591 #endif
4592
4593 /*
4594 * allocate a large system hash table from bootmem
4595 * - it is assumed that the hash table must contain an exact power-of-2
4596 * quantity of entries
4597 * - limit is the number of hash buckets, not the total allocation size
4598 */
4599 void *__init alloc_large_system_hash(const char *tablename,
4600 unsigned long bucketsize,
4601 unsigned long numentries,
4602 int scale,
4603 int flags,
4604 unsigned int *_hash_shift,
4605 unsigned int *_hash_mask,
4606 unsigned long limit)
4607 {
4608 unsigned long long max = limit;
4609 unsigned long log2qty, size;
4610 void *table = NULL;
4611
4612 /* allow the kernel cmdline to have a say */
4613 if (!numentries) {
4614 /* round applicable memory size up to nearest megabyte */
4615 numentries = nr_kernel_pages;
4616 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4617 numentries >>= 20 - PAGE_SHIFT;
4618 numentries <<= 20 - PAGE_SHIFT;
4619
4620 /* limit to 1 bucket per 2^scale bytes of low memory */
4621 if (scale > PAGE_SHIFT)
4622 numentries >>= (scale - PAGE_SHIFT);
4623 else
4624 numentries <<= (PAGE_SHIFT - scale);
4625
4626 /* Make sure we've got at least a 0-order allocation.. */
4627 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4628 numentries = PAGE_SIZE / bucketsize;
4629 }
4630 numentries = roundup_pow_of_two(numentries);
4631
4632 /* limit allocation size to 1/16 total memory by default */
4633 if (max == 0) {
4634 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4635 do_div(max, bucketsize);
4636 }
4637
4638 if (numentries > max)
4639 numentries = max;
4640
4641 log2qty = ilog2(numentries);
4642
4643 do {
4644 size = bucketsize << log2qty;
4645 if (flags & HASH_EARLY)
4646 table = alloc_bootmem_nopanic(size);
4647 else if (hashdist)
4648 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4649 else {
4650 unsigned long order = get_order(size);
4651
4652 if (order < MAX_ORDER)
4653 table = (void *)__get_free_pages(GFP_ATOMIC,
4654 order);
4655 /*
4656 * If bucketsize is not a power-of-two, we may free
4657 * some pages at the end of hash table.
4658 */
4659 if (table) {
4660 unsigned long alloc_end = (unsigned long)table +
4661 (PAGE_SIZE << order);
4662 unsigned long used = (unsigned long)table +
4663 PAGE_ALIGN(size);
4664 split_page(virt_to_page(table), order);
4665 while (used < alloc_end) {
4666 free_page(used);
4667 used += PAGE_SIZE;
4668 }
4669 }
4670 }
4671 } while (!table && size > PAGE_SIZE && --log2qty);
4672
4673 if (!table)
4674 panic("Failed to allocate %s hash table\n", tablename);
4675
4676 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4677 tablename,
4678 (1U << log2qty),
4679 ilog2(size) - PAGE_SHIFT,
4680 size);
4681
4682 if (_hash_shift)
4683 *_hash_shift = log2qty;
4684 if (_hash_mask)
4685 *_hash_mask = (1 << log2qty) - 1;
4686
4687 /*
4688 * If hashdist is set, the table allocation is done with __vmalloc()
4689 * which invokes the kmemleak_alloc() callback. This function may also
4690 * be called before the slab and kmemleak are initialised when
4691 * kmemleak simply buffers the request to be executed later
4692 * (GFP_ATOMIC flag ignored in this case).
4693 */
4694 if (!hashdist)
4695 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4696
4697 return table;
4698 }
4699
4700 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4701 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4702 unsigned long pfn)
4703 {
4704 #ifdef CONFIG_SPARSEMEM
4705 return __pfn_to_section(pfn)->pageblock_flags;
4706 #else
4707 return zone->pageblock_flags;
4708 #endif /* CONFIG_SPARSEMEM */
4709 }
4710
4711 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4712 {
4713 #ifdef CONFIG_SPARSEMEM
4714 pfn &= (PAGES_PER_SECTION-1);
4715 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4716 #else
4717 pfn = pfn - zone->zone_start_pfn;
4718 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4719 #endif /* CONFIG_SPARSEMEM */
4720 }
4721
4722 /**
4723 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4724 * @page: The page within the block of interest
4725 * @start_bitidx: The first bit of interest to retrieve
4726 * @end_bitidx: The last bit of interest
4727 * returns pageblock_bits flags
4728 */
4729 unsigned long get_pageblock_flags_group(struct page *page,
4730 int start_bitidx, int end_bitidx)
4731 {
4732 struct zone *zone;
4733 unsigned long *bitmap;
4734 unsigned long pfn, bitidx;
4735 unsigned long flags = 0;
4736 unsigned long value = 1;
4737
4738 zone = page_zone(page);
4739 pfn = page_to_pfn(page);
4740 bitmap = get_pageblock_bitmap(zone, pfn);
4741 bitidx = pfn_to_bitidx(zone, pfn);
4742
4743 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4744 if (test_bit(bitidx + start_bitidx, bitmap))
4745 flags |= value;
4746
4747 return flags;
4748 }
4749
4750 /**
4751 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4752 * @page: The page within the block of interest
4753 * @start_bitidx: The first bit of interest
4754 * @end_bitidx: The last bit of interest
4755 * @flags: The flags to set
4756 */
4757 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4758 int start_bitidx, int end_bitidx)
4759 {
4760 struct zone *zone;
4761 unsigned long *bitmap;
4762 unsigned long pfn, bitidx;
4763 unsigned long value = 1;
4764
4765 zone = page_zone(page);
4766 pfn = page_to_pfn(page);
4767 bitmap = get_pageblock_bitmap(zone, pfn);
4768 bitidx = pfn_to_bitidx(zone, pfn);
4769 VM_BUG_ON(pfn < zone->zone_start_pfn);
4770 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4771
4772 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4773 if (flags & value)
4774 __set_bit(bitidx + start_bitidx, bitmap);
4775 else
4776 __clear_bit(bitidx + start_bitidx, bitmap);
4777 }
4778
4779 /*
4780 * This is designed as sub function...plz see page_isolation.c also.
4781 * set/clear page block's type to be ISOLATE.
4782 * page allocater never alloc memory from ISOLATE block.
4783 */
4784
4785 int set_migratetype_isolate(struct page *page)
4786 {
4787 struct zone *zone;
4788 unsigned long flags;
4789 int ret = -EBUSY;
4790
4791 zone = page_zone(page);
4792 spin_lock_irqsave(&zone->lock, flags);
4793 /*
4794 * In future, more migrate types will be able to be isolation target.
4795 */
4796 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4797 goto out;
4798 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4799 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4800 ret = 0;
4801 out:
4802 spin_unlock_irqrestore(&zone->lock, flags);
4803 if (!ret)
4804 drain_all_pages();
4805 return ret;
4806 }
4807
4808 void unset_migratetype_isolate(struct page *page)
4809 {
4810 struct zone *zone;
4811 unsigned long flags;
4812 zone = page_zone(page);
4813 spin_lock_irqsave(&zone->lock, flags);
4814 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4815 goto out;
4816 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4817 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4818 out:
4819 spin_unlock_irqrestore(&zone->lock, flags);
4820 }
4821
4822 #ifdef CONFIG_MEMORY_HOTREMOVE
4823 /*
4824 * All pages in the range must be isolated before calling this.
4825 */
4826 void
4827 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4828 {
4829 struct page *page;
4830 struct zone *zone;
4831 int order, i;
4832 unsigned long pfn;
4833 unsigned long flags;
4834 /* find the first valid pfn */
4835 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4836 if (pfn_valid(pfn))
4837 break;
4838 if (pfn == end_pfn)
4839 return;
4840 zone = page_zone(pfn_to_page(pfn));
4841 spin_lock_irqsave(&zone->lock, flags);
4842 pfn = start_pfn;
4843 while (pfn < end_pfn) {
4844 if (!pfn_valid(pfn)) {
4845 pfn++;
4846 continue;
4847 }
4848 page = pfn_to_page(pfn);
4849 BUG_ON(page_count(page));
4850 BUG_ON(!PageBuddy(page));
4851 order = page_order(page);
4852 #ifdef CONFIG_DEBUG_VM
4853 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4854 pfn, 1 << order, end_pfn);
4855 #endif
4856 list_del(&page->lru);
4857 rmv_page_order(page);
4858 zone->free_area[order].nr_free--;
4859 __mod_zone_page_state(zone, NR_FREE_PAGES,
4860 - (1UL << order));
4861 for (i = 0; i < (1 << order); i++)
4862 SetPageReserved((page+i));
4863 pfn += (1 << order);
4864 }
4865 spin_unlock_irqrestore(&zone->lock, flags);
4866 }
4867 #endif