]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/page_alloc.c
net: handle the return value of pskb_carve_frag_list() correctly
[people/arne_f/kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84
85 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
86 /*
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
91 */
92 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
93 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
94 int _node_numa_mem_[MAX_NUMNODES];
95 #endif
96
97 /* work_structs for global per-cpu drains */
98 DEFINE_MUTEX(pcpu_drain_mutex);
99 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100
101 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
102 volatile unsigned long latent_entropy __latent_entropy;
103 EXPORT_SYMBOL(latent_entropy);
104 #endif
105
106 /*
107 * Array of node states.
108 */
109 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
110 [N_POSSIBLE] = NODE_MASK_ALL,
111 [N_ONLINE] = { { [0] = 1UL } },
112 #ifndef CONFIG_NUMA
113 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
114 #ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY] = { { [0] = 1UL } },
116 #endif
117 [N_MEMORY] = { { [0] = 1UL } },
118 [N_CPU] = { { [0] = 1UL } },
119 #endif /* NUMA */
120 };
121 EXPORT_SYMBOL(node_states);
122
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
125
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132
133 /*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141 static inline int get_pcppage_migratetype(struct page *page)
142 {
143 return page->index;
144 }
145
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147 {
148 page->index = migratetype;
149 }
150
151 #ifdef CONFIG_PM_SLEEP
152 /*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
160
161 static gfp_t saved_gfp_mask;
162
163 void pm_restore_gfp_mask(void)
164 {
165 WARN_ON(!mutex_is_locked(&pm_mutex));
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
170 }
171
172 void pm_restrict_gfp_mask(void)
173 {
174 WARN_ON(!mutex_is_locked(&pm_mutex));
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178 }
179
180 bool pm_suspended_storage(void)
181 {
182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 return false;
184 return true;
185 }
186 #endif /* CONFIG_PM_SLEEP */
187
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
191
192 static void __free_pages_ok(struct page *page, unsigned int order);
193
194 /*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
204 */
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
213 32,
214 #endif
215 32,
216 };
217
218 EXPORT_SYMBOL(totalram_pages);
219
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 "DMA32",
226 #endif
227 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 "HighMem",
230 #endif
231 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 "Device",
234 #endif
235 };
236
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242 #ifdef CONFIG_CMA
243 "CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247 #endif
248 };
249
250 compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258 #endif
259 };
260
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
264
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
268
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
276
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
288
289 int page_group_by_mobility_disabled __read_mostly;
290
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292
293 /*
294 * Determine how many pages need to be initialized durig early boot
295 * (non-deferred initialization).
296 * The value of first_deferred_pfn will be set later, once non-deferred pages
297 * are initialized, but for now set it ULONG_MAX.
298 */
299 static inline void reset_deferred_meminit(pg_data_t *pgdat)
300 {
301 phys_addr_t start_addr, end_addr;
302 unsigned long max_pgcnt;
303 unsigned long reserved;
304
305 /*
306 * Initialise at least 2G of a node but also take into account that
307 * two large system hashes that can take up 1GB for 0.25TB/node.
308 */
309 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
310 (pgdat->node_spanned_pages >> 8));
311
312 /*
313 * Compensate the all the memblock reservations (e.g. crash kernel)
314 * from the initial estimation to make sure we will initialize enough
315 * memory to boot.
316 */
317 start_addr = PFN_PHYS(pgdat->node_start_pfn);
318 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
319 reserved = memblock_reserved_memory_within(start_addr, end_addr);
320 max_pgcnt += PHYS_PFN(reserved);
321
322 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
323 pgdat->first_deferred_pfn = ULONG_MAX;
324 }
325
326 /* Returns true if the struct page for the pfn is uninitialised */
327 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
328 {
329 int nid = early_pfn_to_nid(pfn);
330
331 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
332 return true;
333
334 return false;
335 }
336
337 /*
338 * Returns false when the remaining initialisation should be deferred until
339 * later in the boot cycle when it can be parallelised.
340 */
341 static inline bool update_defer_init(pg_data_t *pgdat,
342 unsigned long pfn, unsigned long zone_end,
343 unsigned long *nr_initialised)
344 {
345 /* Always populate low zones for address-contrained allocations */
346 if (zone_end < pgdat_end_pfn(pgdat))
347 return true;
348 (*nr_initialised)++;
349 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
350 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
351 pgdat->first_deferred_pfn = pfn;
352 return false;
353 }
354
355 return true;
356 }
357 #else
358 static inline void reset_deferred_meminit(pg_data_t *pgdat)
359 {
360 }
361
362 static inline bool early_page_uninitialised(unsigned long pfn)
363 {
364 return false;
365 }
366
367 static inline bool update_defer_init(pg_data_t *pgdat,
368 unsigned long pfn, unsigned long zone_end,
369 unsigned long *nr_initialised)
370 {
371 return true;
372 }
373 #endif
374
375 /* Return a pointer to the bitmap storing bits affecting a block of pages */
376 static inline unsigned long *get_pageblock_bitmap(struct page *page,
377 unsigned long pfn)
378 {
379 #ifdef CONFIG_SPARSEMEM
380 return __pfn_to_section(pfn)->pageblock_flags;
381 #else
382 return page_zone(page)->pageblock_flags;
383 #endif /* CONFIG_SPARSEMEM */
384 }
385
386 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
387 {
388 #ifdef CONFIG_SPARSEMEM
389 pfn &= (PAGES_PER_SECTION-1);
390 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
391 #else
392 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
393 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
394 #endif /* CONFIG_SPARSEMEM */
395 }
396
397 /**
398 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
399 * @page: The page within the block of interest
400 * @pfn: The target page frame number
401 * @end_bitidx: The last bit of interest to retrieve
402 * @mask: mask of bits that the caller is interested in
403 *
404 * Return: pageblock_bits flags
405 */
406 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
407 unsigned long pfn,
408 unsigned long end_bitidx,
409 unsigned long mask)
410 {
411 unsigned long *bitmap;
412 unsigned long bitidx, word_bitidx;
413 unsigned long word;
414
415 bitmap = get_pageblock_bitmap(page, pfn);
416 bitidx = pfn_to_bitidx(page, pfn);
417 word_bitidx = bitidx / BITS_PER_LONG;
418 bitidx &= (BITS_PER_LONG-1);
419
420 word = bitmap[word_bitidx];
421 bitidx += end_bitidx;
422 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
423 }
424
425 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
426 unsigned long end_bitidx,
427 unsigned long mask)
428 {
429 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
430 }
431
432 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
433 {
434 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
435 }
436
437 /**
438 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
439 * @page: The page within the block of interest
440 * @flags: The flags to set
441 * @pfn: The target page frame number
442 * @end_bitidx: The last bit of interest
443 * @mask: mask of bits that the caller is interested in
444 */
445 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
446 unsigned long pfn,
447 unsigned long end_bitidx,
448 unsigned long mask)
449 {
450 unsigned long *bitmap;
451 unsigned long bitidx, word_bitidx;
452 unsigned long old_word, word;
453
454 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
455
456 bitmap = get_pageblock_bitmap(page, pfn);
457 bitidx = pfn_to_bitidx(page, pfn);
458 word_bitidx = bitidx / BITS_PER_LONG;
459 bitidx &= (BITS_PER_LONG-1);
460
461 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
462
463 bitidx += end_bitidx;
464 mask <<= (BITS_PER_LONG - bitidx - 1);
465 flags <<= (BITS_PER_LONG - bitidx - 1);
466
467 word = READ_ONCE(bitmap[word_bitidx]);
468 for (;;) {
469 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
470 if (word == old_word)
471 break;
472 word = old_word;
473 }
474 }
475
476 void set_pageblock_migratetype(struct page *page, int migratetype)
477 {
478 if (unlikely(page_group_by_mobility_disabled &&
479 migratetype < MIGRATE_PCPTYPES))
480 migratetype = MIGRATE_UNMOVABLE;
481
482 set_pageblock_flags_group(page, (unsigned long)migratetype,
483 PB_migrate, PB_migrate_end);
484 }
485
486 #ifdef CONFIG_DEBUG_VM
487 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
488 {
489 int ret = 0;
490 unsigned seq;
491 unsigned long pfn = page_to_pfn(page);
492 unsigned long sp, start_pfn;
493
494 do {
495 seq = zone_span_seqbegin(zone);
496 start_pfn = zone->zone_start_pfn;
497 sp = zone->spanned_pages;
498 if (!zone_spans_pfn(zone, pfn))
499 ret = 1;
500 } while (zone_span_seqretry(zone, seq));
501
502 if (ret)
503 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
504 pfn, zone_to_nid(zone), zone->name,
505 start_pfn, start_pfn + sp);
506
507 return ret;
508 }
509
510 static int page_is_consistent(struct zone *zone, struct page *page)
511 {
512 if (!pfn_valid_within(page_to_pfn(page)))
513 return 0;
514 if (zone != page_zone(page))
515 return 0;
516
517 return 1;
518 }
519 /*
520 * Temporary debugging check for pages not lying within a given zone.
521 */
522 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
523 {
524 if (page_outside_zone_boundaries(zone, page))
525 return 1;
526 if (!page_is_consistent(zone, page))
527 return 1;
528
529 return 0;
530 }
531 #else
532 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
533 {
534 return 0;
535 }
536 #endif
537
538 static void bad_page(struct page *page, const char *reason,
539 unsigned long bad_flags)
540 {
541 static unsigned long resume;
542 static unsigned long nr_shown;
543 static unsigned long nr_unshown;
544
545 /*
546 * Allow a burst of 60 reports, then keep quiet for that minute;
547 * or allow a steady drip of one report per second.
548 */
549 if (nr_shown == 60) {
550 if (time_before(jiffies, resume)) {
551 nr_unshown++;
552 goto out;
553 }
554 if (nr_unshown) {
555 pr_alert(
556 "BUG: Bad page state: %lu messages suppressed\n",
557 nr_unshown);
558 nr_unshown = 0;
559 }
560 nr_shown = 0;
561 }
562 if (nr_shown++ == 0)
563 resume = jiffies + 60 * HZ;
564
565 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
566 current->comm, page_to_pfn(page));
567 __dump_page(page, reason);
568 bad_flags &= page->flags;
569 if (bad_flags)
570 pr_alert("bad because of flags: %#lx(%pGp)\n",
571 bad_flags, &bad_flags);
572 dump_page_owner(page);
573
574 print_modules();
575 dump_stack();
576 out:
577 /* Leave bad fields for debug, except PageBuddy could make trouble */
578 page_mapcount_reset(page); /* remove PageBuddy */
579 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
580 }
581
582 /*
583 * Higher-order pages are called "compound pages". They are structured thusly:
584 *
585 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
586 *
587 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
588 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
589 *
590 * The first tail page's ->compound_dtor holds the offset in array of compound
591 * page destructors. See compound_page_dtors.
592 *
593 * The first tail page's ->compound_order holds the order of allocation.
594 * This usage means that zero-order pages may not be compound.
595 */
596
597 void free_compound_page(struct page *page)
598 {
599 __free_pages_ok(page, compound_order(page));
600 }
601
602 void prep_compound_page(struct page *page, unsigned int order)
603 {
604 int i;
605 int nr_pages = 1 << order;
606
607 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
608 set_compound_order(page, order);
609 __SetPageHead(page);
610 for (i = 1; i < nr_pages; i++) {
611 struct page *p = page + i;
612 set_page_count(p, 0);
613 p->mapping = TAIL_MAPPING;
614 set_compound_head(p, page);
615 }
616 atomic_set(compound_mapcount_ptr(page), -1);
617 }
618
619 #ifdef CONFIG_DEBUG_PAGEALLOC
620 unsigned int _debug_guardpage_minorder;
621 bool _debug_pagealloc_enabled __read_mostly
622 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
623 EXPORT_SYMBOL(_debug_pagealloc_enabled);
624 bool _debug_guardpage_enabled __read_mostly;
625
626 static int __init early_debug_pagealloc(char *buf)
627 {
628 if (!buf)
629 return -EINVAL;
630 return kstrtobool(buf, &_debug_pagealloc_enabled);
631 }
632 early_param("debug_pagealloc", early_debug_pagealloc);
633
634 static bool need_debug_guardpage(void)
635 {
636 /* If we don't use debug_pagealloc, we don't need guard page */
637 if (!debug_pagealloc_enabled())
638 return false;
639
640 if (!debug_guardpage_minorder())
641 return false;
642
643 return true;
644 }
645
646 static void init_debug_guardpage(void)
647 {
648 if (!debug_pagealloc_enabled())
649 return;
650
651 if (!debug_guardpage_minorder())
652 return;
653
654 _debug_guardpage_enabled = true;
655 }
656
657 struct page_ext_operations debug_guardpage_ops = {
658 .need = need_debug_guardpage,
659 .init = init_debug_guardpage,
660 };
661
662 static int __init debug_guardpage_minorder_setup(char *buf)
663 {
664 unsigned long res;
665
666 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
667 pr_err("Bad debug_guardpage_minorder value\n");
668 return 0;
669 }
670 _debug_guardpage_minorder = res;
671 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
672 return 0;
673 }
674 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
675
676 static inline bool set_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
678 {
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
682 return false;
683
684 if (order >= debug_guardpage_minorder())
685 return false;
686
687 page_ext = lookup_page_ext(page);
688 if (unlikely(!page_ext))
689 return false;
690
691 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
692
693 INIT_LIST_HEAD(&page->lru);
694 set_page_private(page, order);
695 /* Guard pages are not available for any usage */
696 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
697
698 return true;
699 }
700
701 static inline void clear_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype)
703 {
704 struct page_ext *page_ext;
705
706 if (!debug_guardpage_enabled())
707 return;
708
709 page_ext = lookup_page_ext(page);
710 if (unlikely(!page_ext))
711 return;
712
713 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
714
715 set_page_private(page, 0);
716 if (!is_migrate_isolate(migratetype))
717 __mod_zone_freepage_state(zone, (1 << order), migratetype);
718 }
719 #else
720 struct page_ext_operations debug_guardpage_ops;
721 static inline bool set_page_guard(struct zone *zone, struct page *page,
722 unsigned int order, int migratetype) { return false; }
723 static inline void clear_page_guard(struct zone *zone, struct page *page,
724 unsigned int order, int migratetype) {}
725 #endif
726
727 static inline void set_page_order(struct page *page, unsigned int order)
728 {
729 set_page_private(page, order);
730 __SetPageBuddy(page);
731 }
732
733 static inline void rmv_page_order(struct page *page)
734 {
735 __ClearPageBuddy(page);
736 set_page_private(page, 0);
737 }
738
739 /*
740 * This function checks whether a page is free && is the buddy
741 * we can do coalesce a page and its buddy if
742 * (a) the buddy is not in a hole (check before calling!) &&
743 * (b) the buddy is in the buddy system &&
744 * (c) a page and its buddy have the same order &&
745 * (d) a page and its buddy are in the same zone.
746 *
747 * For recording whether a page is in the buddy system, we set ->_mapcount
748 * PAGE_BUDDY_MAPCOUNT_VALUE.
749 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
750 * serialized by zone->lock.
751 *
752 * For recording page's order, we use page_private(page).
753 */
754 static inline int page_is_buddy(struct page *page, struct page *buddy,
755 unsigned int order)
756 {
757 if (page_is_guard(buddy) && page_order(buddy) == order) {
758 if (page_zone_id(page) != page_zone_id(buddy))
759 return 0;
760
761 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
762
763 return 1;
764 }
765
766 if (PageBuddy(buddy) && page_order(buddy) == order) {
767 /*
768 * zone check is done late to avoid uselessly
769 * calculating zone/node ids for pages that could
770 * never merge.
771 */
772 if (page_zone_id(page) != page_zone_id(buddy))
773 return 0;
774
775 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
776
777 return 1;
778 }
779 return 0;
780 }
781
782 /*
783 * Freeing function for a buddy system allocator.
784 *
785 * The concept of a buddy system is to maintain direct-mapped table
786 * (containing bit values) for memory blocks of various "orders".
787 * The bottom level table contains the map for the smallest allocatable
788 * units of memory (here, pages), and each level above it describes
789 * pairs of units from the levels below, hence, "buddies".
790 * At a high level, all that happens here is marking the table entry
791 * at the bottom level available, and propagating the changes upward
792 * as necessary, plus some accounting needed to play nicely with other
793 * parts of the VM system.
794 * At each level, we keep a list of pages, which are heads of continuous
795 * free pages of length of (1 << order) and marked with _mapcount
796 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
797 * field.
798 * So when we are allocating or freeing one, we can derive the state of the
799 * other. That is, if we allocate a small block, and both were
800 * free, the remainder of the region must be split into blocks.
801 * If a block is freed, and its buddy is also free, then this
802 * triggers coalescing into a block of larger size.
803 *
804 * -- nyc
805 */
806
807 static inline void __free_one_page(struct page *page,
808 unsigned long pfn,
809 struct zone *zone, unsigned int order,
810 int migratetype)
811 {
812 unsigned long combined_pfn;
813 unsigned long uninitialized_var(buddy_pfn);
814 struct page *buddy;
815 unsigned int max_order;
816
817 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
818
819 VM_BUG_ON(!zone_is_initialized(zone));
820 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
821
822 VM_BUG_ON(migratetype == -1);
823 if (likely(!is_migrate_isolate(migratetype)))
824 __mod_zone_freepage_state(zone, 1 << order, migratetype);
825
826 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
827 VM_BUG_ON_PAGE(bad_range(zone, page), page);
828
829 continue_merging:
830 while (order < max_order - 1) {
831 buddy_pfn = __find_buddy_pfn(pfn, order);
832 buddy = page + (buddy_pfn - pfn);
833
834 if (!pfn_valid_within(buddy_pfn))
835 goto done_merging;
836 if (!page_is_buddy(page, buddy, order))
837 goto done_merging;
838 /*
839 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
840 * merge with it and move up one order.
841 */
842 if (page_is_guard(buddy)) {
843 clear_page_guard(zone, buddy, order, migratetype);
844 } else {
845 list_del(&buddy->lru);
846 zone->free_area[order].nr_free--;
847 rmv_page_order(buddy);
848 }
849 combined_pfn = buddy_pfn & pfn;
850 page = page + (combined_pfn - pfn);
851 pfn = combined_pfn;
852 order++;
853 }
854 if (max_order < MAX_ORDER) {
855 /* If we are here, it means order is >= pageblock_order.
856 * We want to prevent merge between freepages on isolate
857 * pageblock and normal pageblock. Without this, pageblock
858 * isolation could cause incorrect freepage or CMA accounting.
859 *
860 * We don't want to hit this code for the more frequent
861 * low-order merging.
862 */
863 if (unlikely(has_isolate_pageblock(zone))) {
864 int buddy_mt;
865
866 buddy_pfn = __find_buddy_pfn(pfn, order);
867 buddy = page + (buddy_pfn - pfn);
868 buddy_mt = get_pageblock_migratetype(buddy);
869
870 if (migratetype != buddy_mt
871 && (is_migrate_isolate(migratetype) ||
872 is_migrate_isolate(buddy_mt)))
873 goto done_merging;
874 }
875 max_order++;
876 goto continue_merging;
877 }
878
879 done_merging:
880 set_page_order(page, order);
881
882 /*
883 * If this is not the largest possible page, check if the buddy
884 * of the next-highest order is free. If it is, it's possible
885 * that pages are being freed that will coalesce soon. In case,
886 * that is happening, add the free page to the tail of the list
887 * so it's less likely to be used soon and more likely to be merged
888 * as a higher order page
889 */
890 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
891 struct page *higher_page, *higher_buddy;
892 combined_pfn = buddy_pfn & pfn;
893 higher_page = page + (combined_pfn - pfn);
894 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
895 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
896 if (pfn_valid_within(buddy_pfn) &&
897 page_is_buddy(higher_page, higher_buddy, order + 1)) {
898 list_add_tail(&page->lru,
899 &zone->free_area[order].free_list[migratetype]);
900 goto out;
901 }
902 }
903
904 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
905 out:
906 zone->free_area[order].nr_free++;
907 }
908
909 /*
910 * A bad page could be due to a number of fields. Instead of multiple branches,
911 * try and check multiple fields with one check. The caller must do a detailed
912 * check if necessary.
913 */
914 static inline bool page_expected_state(struct page *page,
915 unsigned long check_flags)
916 {
917 if (unlikely(atomic_read(&page->_mapcount) != -1))
918 return false;
919
920 if (unlikely((unsigned long)page->mapping |
921 page_ref_count(page) |
922 #ifdef CONFIG_MEMCG
923 (unsigned long)page->mem_cgroup |
924 #endif
925 (page->flags & check_flags)))
926 return false;
927
928 return true;
929 }
930
931 static void free_pages_check_bad(struct page *page)
932 {
933 const char *bad_reason;
934 unsigned long bad_flags;
935
936 bad_reason = NULL;
937 bad_flags = 0;
938
939 if (unlikely(atomic_read(&page->_mapcount) != -1))
940 bad_reason = "nonzero mapcount";
941 if (unlikely(page->mapping != NULL))
942 bad_reason = "non-NULL mapping";
943 if (unlikely(page_ref_count(page) != 0))
944 bad_reason = "nonzero _refcount";
945 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
946 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
947 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
948 }
949 #ifdef CONFIG_MEMCG
950 if (unlikely(page->mem_cgroup))
951 bad_reason = "page still charged to cgroup";
952 #endif
953 bad_page(page, bad_reason, bad_flags);
954 }
955
956 static inline int free_pages_check(struct page *page)
957 {
958 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
959 return 0;
960
961 /* Something has gone sideways, find it */
962 free_pages_check_bad(page);
963 return 1;
964 }
965
966 static int free_tail_pages_check(struct page *head_page, struct page *page)
967 {
968 int ret = 1;
969
970 /*
971 * We rely page->lru.next never has bit 0 set, unless the page
972 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
973 */
974 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
975
976 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
977 ret = 0;
978 goto out;
979 }
980 switch (page - head_page) {
981 case 1:
982 /* the first tail page: ->mapping is compound_mapcount() */
983 if (unlikely(compound_mapcount(page))) {
984 bad_page(page, "nonzero compound_mapcount", 0);
985 goto out;
986 }
987 break;
988 case 2:
989 /*
990 * the second tail page: ->mapping is
991 * page_deferred_list().next -- ignore value.
992 */
993 break;
994 default:
995 if (page->mapping != TAIL_MAPPING) {
996 bad_page(page, "corrupted mapping in tail page", 0);
997 goto out;
998 }
999 break;
1000 }
1001 if (unlikely(!PageTail(page))) {
1002 bad_page(page, "PageTail not set", 0);
1003 goto out;
1004 }
1005 if (unlikely(compound_head(page) != head_page)) {
1006 bad_page(page, "compound_head not consistent", 0);
1007 goto out;
1008 }
1009 ret = 0;
1010 out:
1011 page->mapping = NULL;
1012 clear_compound_head(page);
1013 return ret;
1014 }
1015
1016 static __always_inline bool free_pages_prepare(struct page *page,
1017 unsigned int order, bool check_free)
1018 {
1019 int bad = 0;
1020
1021 VM_BUG_ON_PAGE(PageTail(page), page);
1022
1023 trace_mm_page_free(page, order);
1024
1025 /*
1026 * Check tail pages before head page information is cleared to
1027 * avoid checking PageCompound for order-0 pages.
1028 */
1029 if (unlikely(order)) {
1030 bool compound = PageCompound(page);
1031 int i;
1032
1033 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1034
1035 if (compound)
1036 ClearPageDoubleMap(page);
1037 for (i = 1; i < (1 << order); i++) {
1038 if (compound)
1039 bad += free_tail_pages_check(page, page + i);
1040 if (unlikely(free_pages_check(page + i))) {
1041 bad++;
1042 continue;
1043 }
1044 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1045 }
1046 }
1047 if (PageMappingFlags(page))
1048 page->mapping = NULL;
1049 if (memcg_kmem_enabled() && PageKmemcg(page))
1050 memcg_kmem_uncharge(page, order);
1051 if (check_free)
1052 bad += free_pages_check(page);
1053 if (bad)
1054 return false;
1055
1056 page_cpupid_reset_last(page);
1057 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1058 reset_page_owner(page, order);
1059
1060 if (!PageHighMem(page)) {
1061 debug_check_no_locks_freed(page_address(page),
1062 PAGE_SIZE << order);
1063 debug_check_no_obj_freed(page_address(page),
1064 PAGE_SIZE << order);
1065 }
1066 arch_free_page(page, order);
1067 kernel_poison_pages(page, 1 << order, 0);
1068 kernel_map_pages(page, 1 << order, 0);
1069 kasan_free_pages(page, order);
1070
1071 return true;
1072 }
1073
1074 #ifdef CONFIG_DEBUG_VM
1075 static inline bool free_pcp_prepare(struct page *page)
1076 {
1077 return free_pages_prepare(page, 0, true);
1078 }
1079
1080 static inline bool bulkfree_pcp_prepare(struct page *page)
1081 {
1082 return false;
1083 }
1084 #else
1085 static bool free_pcp_prepare(struct page *page)
1086 {
1087 return free_pages_prepare(page, 0, false);
1088 }
1089
1090 static bool bulkfree_pcp_prepare(struct page *page)
1091 {
1092 return free_pages_check(page);
1093 }
1094 #endif /* CONFIG_DEBUG_VM */
1095
1096 /*
1097 * Frees a number of pages from the PCP lists
1098 * Assumes all pages on list are in same zone, and of same order.
1099 * count is the number of pages to free.
1100 *
1101 * If the zone was previously in an "all pages pinned" state then look to
1102 * see if this freeing clears that state.
1103 *
1104 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1105 * pinned" detection logic.
1106 */
1107 static void free_pcppages_bulk(struct zone *zone, int count,
1108 struct per_cpu_pages *pcp)
1109 {
1110 int migratetype = 0;
1111 int batch_free = 0;
1112 bool isolated_pageblocks;
1113
1114 spin_lock(&zone->lock);
1115 isolated_pageblocks = has_isolate_pageblock(zone);
1116
1117 /*
1118 * Ensure proper count is passed which otherwise would stuck in the
1119 * below while (list_empty(list)) loop.
1120 */
1121 count = min(pcp->count, count);
1122 while (count) {
1123 struct page *page;
1124 struct list_head *list;
1125
1126 /*
1127 * Remove pages from lists in a round-robin fashion. A
1128 * batch_free count is maintained that is incremented when an
1129 * empty list is encountered. This is so more pages are freed
1130 * off fuller lists instead of spinning excessively around empty
1131 * lists
1132 */
1133 do {
1134 batch_free++;
1135 if (++migratetype == MIGRATE_PCPTYPES)
1136 migratetype = 0;
1137 list = &pcp->lists[migratetype];
1138 } while (list_empty(list));
1139
1140 /* This is the only non-empty list. Free them all. */
1141 if (batch_free == MIGRATE_PCPTYPES)
1142 batch_free = count;
1143
1144 do {
1145 int mt; /* migratetype of the to-be-freed page */
1146
1147 page = list_last_entry(list, struct page, lru);
1148 /* must delete as __free_one_page list manipulates */
1149 list_del(&page->lru);
1150
1151 mt = get_pcppage_migratetype(page);
1152 /* MIGRATE_ISOLATE page should not go to pcplists */
1153 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1154 /* Pageblock could have been isolated meanwhile */
1155 if (unlikely(isolated_pageblocks))
1156 mt = get_pageblock_migratetype(page);
1157
1158 if (bulkfree_pcp_prepare(page))
1159 continue;
1160
1161 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1162 trace_mm_page_pcpu_drain(page, 0, mt);
1163 } while (--count && --batch_free && !list_empty(list));
1164 }
1165 spin_unlock(&zone->lock);
1166 }
1167
1168 static void free_one_page(struct zone *zone,
1169 struct page *page, unsigned long pfn,
1170 unsigned int order,
1171 int migratetype)
1172 {
1173 spin_lock(&zone->lock);
1174 if (unlikely(has_isolate_pageblock(zone) ||
1175 is_migrate_isolate(migratetype))) {
1176 migratetype = get_pfnblock_migratetype(page, pfn);
1177 }
1178 __free_one_page(page, pfn, zone, order, migratetype);
1179 spin_unlock(&zone->lock);
1180 }
1181
1182 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1183 unsigned long zone, int nid)
1184 {
1185 set_page_links(page, zone, nid, pfn);
1186 init_page_count(page);
1187 page_mapcount_reset(page);
1188 page_cpupid_reset_last(page);
1189
1190 INIT_LIST_HEAD(&page->lru);
1191 #ifdef WANT_PAGE_VIRTUAL
1192 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1193 if (!is_highmem_idx(zone))
1194 set_page_address(page, __va(pfn << PAGE_SHIFT));
1195 #endif
1196 }
1197
1198 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1199 int nid)
1200 {
1201 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1202 }
1203
1204 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1205 static void __meminit init_reserved_page(unsigned long pfn)
1206 {
1207 pg_data_t *pgdat;
1208 int nid, zid;
1209
1210 if (!early_page_uninitialised(pfn))
1211 return;
1212
1213 nid = early_pfn_to_nid(pfn);
1214 pgdat = NODE_DATA(nid);
1215
1216 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1217 struct zone *zone = &pgdat->node_zones[zid];
1218
1219 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1220 break;
1221 }
1222 __init_single_pfn(pfn, zid, nid);
1223 }
1224 #else
1225 static inline void init_reserved_page(unsigned long pfn)
1226 {
1227 }
1228 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1229
1230 /*
1231 * Initialised pages do not have PageReserved set. This function is
1232 * called for each range allocated by the bootmem allocator and
1233 * marks the pages PageReserved. The remaining valid pages are later
1234 * sent to the buddy page allocator.
1235 */
1236 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1237 {
1238 unsigned long start_pfn = PFN_DOWN(start);
1239 unsigned long end_pfn = PFN_UP(end);
1240
1241 for (; start_pfn < end_pfn; start_pfn++) {
1242 if (pfn_valid(start_pfn)) {
1243 struct page *page = pfn_to_page(start_pfn);
1244
1245 init_reserved_page(start_pfn);
1246
1247 /* Avoid false-positive PageTail() */
1248 INIT_LIST_HEAD(&page->lru);
1249
1250 SetPageReserved(page);
1251 }
1252 }
1253 }
1254
1255 static void __free_pages_ok(struct page *page, unsigned int order)
1256 {
1257 unsigned long flags;
1258 int migratetype;
1259 unsigned long pfn = page_to_pfn(page);
1260
1261 if (!free_pages_prepare(page, order, true))
1262 return;
1263
1264 migratetype = get_pfnblock_migratetype(page, pfn);
1265 local_irq_save(flags);
1266 __count_vm_events(PGFREE, 1 << order);
1267 free_one_page(page_zone(page), page, pfn, order, migratetype);
1268 local_irq_restore(flags);
1269 }
1270
1271 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1272 {
1273 unsigned int nr_pages = 1 << order;
1274 struct page *p = page;
1275 unsigned int loop;
1276
1277 prefetchw(p);
1278 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1279 prefetchw(p + 1);
1280 __ClearPageReserved(p);
1281 set_page_count(p, 0);
1282 }
1283 __ClearPageReserved(p);
1284 set_page_count(p, 0);
1285
1286 page_zone(page)->managed_pages += nr_pages;
1287 set_page_refcounted(page);
1288 __free_pages(page, order);
1289 }
1290
1291 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1292 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1293
1294 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1295
1296 int __meminit early_pfn_to_nid(unsigned long pfn)
1297 {
1298 static DEFINE_SPINLOCK(early_pfn_lock);
1299 int nid;
1300
1301 spin_lock(&early_pfn_lock);
1302 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1303 if (nid < 0)
1304 nid = first_online_node;
1305 spin_unlock(&early_pfn_lock);
1306
1307 return nid;
1308 }
1309 #endif
1310
1311 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1312 static inline bool __meminit __maybe_unused
1313 meminit_pfn_in_nid(unsigned long pfn, int node,
1314 struct mminit_pfnnid_cache *state)
1315 {
1316 int nid;
1317
1318 nid = __early_pfn_to_nid(pfn, state);
1319 if (nid >= 0 && nid != node)
1320 return false;
1321 return true;
1322 }
1323
1324 /* Only safe to use early in boot when initialisation is single-threaded */
1325 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1326 {
1327 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1328 }
1329
1330 #else
1331
1332 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1333 {
1334 return true;
1335 }
1336 static inline bool __meminit __maybe_unused
1337 meminit_pfn_in_nid(unsigned long pfn, int node,
1338 struct mminit_pfnnid_cache *state)
1339 {
1340 return true;
1341 }
1342 #endif
1343
1344
1345 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1346 unsigned int order)
1347 {
1348 if (early_page_uninitialised(pfn))
1349 return;
1350 return __free_pages_boot_core(page, order);
1351 }
1352
1353 /*
1354 * Check that the whole (or subset of) a pageblock given by the interval of
1355 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1356 * with the migration of free compaction scanner. The scanners then need to
1357 * use only pfn_valid_within() check for arches that allow holes within
1358 * pageblocks.
1359 *
1360 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1361 *
1362 * It's possible on some configurations to have a setup like node0 node1 node0
1363 * i.e. it's possible that all pages within a zones range of pages do not
1364 * belong to a single zone. We assume that a border between node0 and node1
1365 * can occur within a single pageblock, but not a node0 node1 node0
1366 * interleaving within a single pageblock. It is therefore sufficient to check
1367 * the first and last page of a pageblock and avoid checking each individual
1368 * page in a pageblock.
1369 */
1370 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1371 unsigned long end_pfn, struct zone *zone)
1372 {
1373 struct page *start_page;
1374 struct page *end_page;
1375
1376 /* end_pfn is one past the range we are checking */
1377 end_pfn--;
1378
1379 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1380 return NULL;
1381
1382 start_page = pfn_to_online_page(start_pfn);
1383 if (!start_page)
1384 return NULL;
1385
1386 if (page_zone(start_page) != zone)
1387 return NULL;
1388
1389 end_page = pfn_to_page(end_pfn);
1390
1391 /* This gives a shorter code than deriving page_zone(end_page) */
1392 if (page_zone_id(start_page) != page_zone_id(end_page))
1393 return NULL;
1394
1395 return start_page;
1396 }
1397
1398 void set_zone_contiguous(struct zone *zone)
1399 {
1400 unsigned long block_start_pfn = zone->zone_start_pfn;
1401 unsigned long block_end_pfn;
1402
1403 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1404 for (; block_start_pfn < zone_end_pfn(zone);
1405 block_start_pfn = block_end_pfn,
1406 block_end_pfn += pageblock_nr_pages) {
1407
1408 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1409
1410 if (!__pageblock_pfn_to_page(block_start_pfn,
1411 block_end_pfn, zone))
1412 return;
1413 cond_resched();
1414 }
1415
1416 /* We confirm that there is no hole */
1417 zone->contiguous = true;
1418 }
1419
1420 void clear_zone_contiguous(struct zone *zone)
1421 {
1422 zone->contiguous = false;
1423 }
1424
1425 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1426 static void __init deferred_free_range(struct page *page,
1427 unsigned long pfn, int nr_pages)
1428 {
1429 int i;
1430
1431 if (!page)
1432 return;
1433
1434 /* Free a large naturally-aligned chunk if possible */
1435 if (nr_pages == pageblock_nr_pages &&
1436 (pfn & (pageblock_nr_pages - 1)) == 0) {
1437 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1438 __free_pages_boot_core(page, pageblock_order);
1439 return;
1440 }
1441
1442 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1443 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1444 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1445 __free_pages_boot_core(page, 0);
1446 }
1447 }
1448
1449 /* Completion tracking for deferred_init_memmap() threads */
1450 static atomic_t pgdat_init_n_undone __initdata;
1451 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1452
1453 static inline void __init pgdat_init_report_one_done(void)
1454 {
1455 if (atomic_dec_and_test(&pgdat_init_n_undone))
1456 complete(&pgdat_init_all_done_comp);
1457 }
1458
1459 /* Initialise remaining memory on a node */
1460 static int __init deferred_init_memmap(void *data)
1461 {
1462 pg_data_t *pgdat = data;
1463 int nid = pgdat->node_id;
1464 struct mminit_pfnnid_cache nid_init_state = { };
1465 unsigned long start = jiffies;
1466 unsigned long nr_pages = 0;
1467 unsigned long walk_start, walk_end;
1468 int i, zid;
1469 struct zone *zone;
1470 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1471 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1472
1473 if (first_init_pfn == ULONG_MAX) {
1474 pgdat_init_report_one_done();
1475 return 0;
1476 }
1477
1478 /* Bind memory initialisation thread to a local node if possible */
1479 if (!cpumask_empty(cpumask))
1480 set_cpus_allowed_ptr(current, cpumask);
1481
1482 /* Sanity check boundaries */
1483 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1484 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1485 pgdat->first_deferred_pfn = ULONG_MAX;
1486
1487 /* Only the highest zone is deferred so find it */
1488 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1489 zone = pgdat->node_zones + zid;
1490 if (first_init_pfn < zone_end_pfn(zone))
1491 break;
1492 }
1493
1494 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1495 unsigned long pfn, end_pfn;
1496 struct page *page = NULL;
1497 struct page *free_base_page = NULL;
1498 unsigned long free_base_pfn = 0;
1499 int nr_to_free = 0;
1500
1501 end_pfn = min(walk_end, zone_end_pfn(zone));
1502 pfn = first_init_pfn;
1503 if (pfn < walk_start)
1504 pfn = walk_start;
1505 if (pfn < zone->zone_start_pfn)
1506 pfn = zone->zone_start_pfn;
1507
1508 for (; pfn < end_pfn; pfn++) {
1509 if (!pfn_valid_within(pfn))
1510 goto free_range;
1511
1512 /*
1513 * Ensure pfn_valid is checked every
1514 * pageblock_nr_pages for memory holes
1515 */
1516 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1517 if (!pfn_valid(pfn)) {
1518 page = NULL;
1519 goto free_range;
1520 }
1521 }
1522
1523 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1524 page = NULL;
1525 goto free_range;
1526 }
1527
1528 /* Minimise pfn page lookups and scheduler checks */
1529 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1530 page++;
1531 } else {
1532 nr_pages += nr_to_free;
1533 deferred_free_range(free_base_page,
1534 free_base_pfn, nr_to_free);
1535 free_base_page = NULL;
1536 free_base_pfn = nr_to_free = 0;
1537
1538 page = pfn_to_page(pfn);
1539 cond_resched();
1540 }
1541
1542 if (page->flags) {
1543 VM_BUG_ON(page_zone(page) != zone);
1544 goto free_range;
1545 }
1546
1547 __init_single_page(page, pfn, zid, nid);
1548 if (!free_base_page) {
1549 free_base_page = page;
1550 free_base_pfn = pfn;
1551 nr_to_free = 0;
1552 }
1553 nr_to_free++;
1554
1555 /* Where possible, batch up pages for a single free */
1556 continue;
1557 free_range:
1558 /* Free the current block of pages to allocator */
1559 nr_pages += nr_to_free;
1560 deferred_free_range(free_base_page, free_base_pfn,
1561 nr_to_free);
1562 free_base_page = NULL;
1563 free_base_pfn = nr_to_free = 0;
1564 }
1565 /* Free the last block of pages to allocator */
1566 nr_pages += nr_to_free;
1567 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1568
1569 first_init_pfn = max(end_pfn, first_init_pfn);
1570 }
1571
1572 /* Sanity check that the next zone really is unpopulated */
1573 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1574
1575 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1576 jiffies_to_msecs(jiffies - start));
1577
1578 pgdat_init_report_one_done();
1579 return 0;
1580 }
1581 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1582
1583 void __init page_alloc_init_late(void)
1584 {
1585 struct zone *zone;
1586
1587 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1588 int nid;
1589
1590 /* There will be num_node_state(N_MEMORY) threads */
1591 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1592 for_each_node_state(nid, N_MEMORY) {
1593 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1594 }
1595
1596 /* Block until all are initialised */
1597 wait_for_completion(&pgdat_init_all_done_comp);
1598
1599 /* Reinit limits that are based on free pages after the kernel is up */
1600 files_maxfiles_init();
1601 #endif
1602 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1603 /* Discard memblock private memory */
1604 memblock_discard();
1605 #endif
1606
1607 for_each_populated_zone(zone)
1608 set_zone_contiguous(zone);
1609 }
1610
1611 #ifdef CONFIG_CMA
1612 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1613 void __init init_cma_reserved_pageblock(struct page *page)
1614 {
1615 unsigned i = pageblock_nr_pages;
1616 struct page *p = page;
1617
1618 do {
1619 __ClearPageReserved(p);
1620 set_page_count(p, 0);
1621 } while (++p, --i);
1622
1623 set_pageblock_migratetype(page, MIGRATE_CMA);
1624
1625 if (pageblock_order >= MAX_ORDER) {
1626 i = pageblock_nr_pages;
1627 p = page;
1628 do {
1629 set_page_refcounted(p);
1630 __free_pages(p, MAX_ORDER - 1);
1631 p += MAX_ORDER_NR_PAGES;
1632 } while (i -= MAX_ORDER_NR_PAGES);
1633 } else {
1634 set_page_refcounted(page);
1635 __free_pages(page, pageblock_order);
1636 }
1637
1638 adjust_managed_page_count(page, pageblock_nr_pages);
1639 }
1640 #endif
1641
1642 /*
1643 * The order of subdivision here is critical for the IO subsystem.
1644 * Please do not alter this order without good reasons and regression
1645 * testing. Specifically, as large blocks of memory are subdivided,
1646 * the order in which smaller blocks are delivered depends on the order
1647 * they're subdivided in this function. This is the primary factor
1648 * influencing the order in which pages are delivered to the IO
1649 * subsystem according to empirical testing, and this is also justified
1650 * by considering the behavior of a buddy system containing a single
1651 * large block of memory acted on by a series of small allocations.
1652 * This behavior is a critical factor in sglist merging's success.
1653 *
1654 * -- nyc
1655 */
1656 static inline void expand(struct zone *zone, struct page *page,
1657 int low, int high, struct free_area *area,
1658 int migratetype)
1659 {
1660 unsigned long size = 1 << high;
1661
1662 while (high > low) {
1663 area--;
1664 high--;
1665 size >>= 1;
1666 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1667
1668 /*
1669 * Mark as guard pages (or page), that will allow to
1670 * merge back to allocator when buddy will be freed.
1671 * Corresponding page table entries will not be touched,
1672 * pages will stay not present in virtual address space
1673 */
1674 if (set_page_guard(zone, &page[size], high, migratetype))
1675 continue;
1676
1677 list_add(&page[size].lru, &area->free_list[migratetype]);
1678 area->nr_free++;
1679 set_page_order(&page[size], high);
1680 }
1681 }
1682
1683 static void check_new_page_bad(struct page *page)
1684 {
1685 const char *bad_reason = NULL;
1686 unsigned long bad_flags = 0;
1687
1688 if (unlikely(atomic_read(&page->_mapcount) != -1))
1689 bad_reason = "nonzero mapcount";
1690 if (unlikely(page->mapping != NULL))
1691 bad_reason = "non-NULL mapping";
1692 if (unlikely(page_ref_count(page) != 0))
1693 bad_reason = "nonzero _count";
1694 if (unlikely(page->flags & __PG_HWPOISON)) {
1695 bad_reason = "HWPoisoned (hardware-corrupted)";
1696 bad_flags = __PG_HWPOISON;
1697 /* Don't complain about hwpoisoned pages */
1698 page_mapcount_reset(page); /* remove PageBuddy */
1699 return;
1700 }
1701 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1702 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1703 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1704 }
1705 #ifdef CONFIG_MEMCG
1706 if (unlikely(page->mem_cgroup))
1707 bad_reason = "page still charged to cgroup";
1708 #endif
1709 bad_page(page, bad_reason, bad_flags);
1710 }
1711
1712 /*
1713 * This page is about to be returned from the page allocator
1714 */
1715 static inline int check_new_page(struct page *page)
1716 {
1717 if (likely(page_expected_state(page,
1718 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1719 return 0;
1720
1721 check_new_page_bad(page);
1722 return 1;
1723 }
1724
1725 static inline bool free_pages_prezeroed(void)
1726 {
1727 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1728 page_poisoning_enabled();
1729 }
1730
1731 #ifdef CONFIG_DEBUG_VM
1732 static bool check_pcp_refill(struct page *page)
1733 {
1734 return false;
1735 }
1736
1737 static bool check_new_pcp(struct page *page)
1738 {
1739 return check_new_page(page);
1740 }
1741 #else
1742 static bool check_pcp_refill(struct page *page)
1743 {
1744 return check_new_page(page);
1745 }
1746 static bool check_new_pcp(struct page *page)
1747 {
1748 return false;
1749 }
1750 #endif /* CONFIG_DEBUG_VM */
1751
1752 static bool check_new_pages(struct page *page, unsigned int order)
1753 {
1754 int i;
1755 for (i = 0; i < (1 << order); i++) {
1756 struct page *p = page + i;
1757
1758 if (unlikely(check_new_page(p)))
1759 return true;
1760 }
1761
1762 return false;
1763 }
1764
1765 inline void post_alloc_hook(struct page *page, unsigned int order,
1766 gfp_t gfp_flags)
1767 {
1768 set_page_private(page, 0);
1769 set_page_refcounted(page);
1770
1771 arch_alloc_page(page, order);
1772 kernel_map_pages(page, 1 << order, 1);
1773 kasan_alloc_pages(page, order);
1774 kernel_poison_pages(page, 1 << order, 1);
1775 set_page_owner(page, order, gfp_flags);
1776 }
1777
1778 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1779 unsigned int alloc_flags)
1780 {
1781 int i;
1782
1783 post_alloc_hook(page, order, gfp_flags);
1784
1785 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1786 for (i = 0; i < (1 << order); i++)
1787 clear_highpage(page + i);
1788
1789 if (order && (gfp_flags & __GFP_COMP))
1790 prep_compound_page(page, order);
1791
1792 /*
1793 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1794 * allocate the page. The expectation is that the caller is taking
1795 * steps that will free more memory. The caller should avoid the page
1796 * being used for !PFMEMALLOC purposes.
1797 */
1798 if (alloc_flags & ALLOC_NO_WATERMARKS)
1799 set_page_pfmemalloc(page);
1800 else
1801 clear_page_pfmemalloc(page);
1802 }
1803
1804 /*
1805 * Go through the free lists for the given migratetype and remove
1806 * the smallest available page from the freelists
1807 */
1808 static inline
1809 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1810 int migratetype)
1811 {
1812 unsigned int current_order;
1813 struct free_area *area;
1814 struct page *page;
1815
1816 /* Find a page of the appropriate size in the preferred list */
1817 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1818 area = &(zone->free_area[current_order]);
1819 page = list_first_entry_or_null(&area->free_list[migratetype],
1820 struct page, lru);
1821 if (!page)
1822 continue;
1823 list_del(&page->lru);
1824 rmv_page_order(page);
1825 area->nr_free--;
1826 expand(zone, page, order, current_order, area, migratetype);
1827 set_pcppage_migratetype(page, migratetype);
1828 return page;
1829 }
1830
1831 return NULL;
1832 }
1833
1834
1835 /*
1836 * This array describes the order lists are fallen back to when
1837 * the free lists for the desirable migrate type are depleted
1838 */
1839 static int fallbacks[MIGRATE_TYPES][4] = {
1840 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1841 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1842 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1843 #ifdef CONFIG_CMA
1844 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1845 #endif
1846 #ifdef CONFIG_MEMORY_ISOLATION
1847 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1848 #endif
1849 };
1850
1851 #ifdef CONFIG_CMA
1852 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1853 unsigned int order)
1854 {
1855 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1856 }
1857 #else
1858 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1859 unsigned int order) { return NULL; }
1860 #endif
1861
1862 /*
1863 * Move the free pages in a range to the free lists of the requested type.
1864 * Note that start_page and end_pages are not aligned on a pageblock
1865 * boundary. If alignment is required, use move_freepages_block()
1866 */
1867 static int move_freepages(struct zone *zone,
1868 struct page *start_page, struct page *end_page,
1869 int migratetype, int *num_movable)
1870 {
1871 struct page *page;
1872 unsigned int order;
1873 int pages_moved = 0;
1874
1875 #ifndef CONFIG_HOLES_IN_ZONE
1876 /*
1877 * page_zone is not safe to call in this context when
1878 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1879 * anyway as we check zone boundaries in move_freepages_block().
1880 * Remove at a later date when no bug reports exist related to
1881 * grouping pages by mobility
1882 */
1883 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1884 #endif
1885
1886 if (num_movable)
1887 *num_movable = 0;
1888
1889 for (page = start_page; page <= end_page;) {
1890 if (!pfn_valid_within(page_to_pfn(page))) {
1891 page++;
1892 continue;
1893 }
1894
1895 /* Make sure we are not inadvertently changing nodes */
1896 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1897
1898 if (!PageBuddy(page)) {
1899 /*
1900 * We assume that pages that could be isolated for
1901 * migration are movable. But we don't actually try
1902 * isolating, as that would be expensive.
1903 */
1904 if (num_movable &&
1905 (PageLRU(page) || __PageMovable(page)))
1906 (*num_movable)++;
1907
1908 page++;
1909 continue;
1910 }
1911
1912 order = page_order(page);
1913 list_move(&page->lru,
1914 &zone->free_area[order].free_list[migratetype]);
1915 page += 1 << order;
1916 pages_moved += 1 << order;
1917 }
1918
1919 return pages_moved;
1920 }
1921
1922 int move_freepages_block(struct zone *zone, struct page *page,
1923 int migratetype, int *num_movable)
1924 {
1925 unsigned long start_pfn, end_pfn;
1926 struct page *start_page, *end_page;
1927
1928 start_pfn = page_to_pfn(page);
1929 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1930 start_page = pfn_to_page(start_pfn);
1931 end_page = start_page + pageblock_nr_pages - 1;
1932 end_pfn = start_pfn + pageblock_nr_pages - 1;
1933
1934 /* Do not cross zone boundaries */
1935 if (!zone_spans_pfn(zone, start_pfn))
1936 start_page = page;
1937 if (!zone_spans_pfn(zone, end_pfn))
1938 return 0;
1939
1940 return move_freepages(zone, start_page, end_page, migratetype,
1941 num_movable);
1942 }
1943
1944 static void change_pageblock_range(struct page *pageblock_page,
1945 int start_order, int migratetype)
1946 {
1947 int nr_pageblocks = 1 << (start_order - pageblock_order);
1948
1949 while (nr_pageblocks--) {
1950 set_pageblock_migratetype(pageblock_page, migratetype);
1951 pageblock_page += pageblock_nr_pages;
1952 }
1953 }
1954
1955 /*
1956 * When we are falling back to another migratetype during allocation, try to
1957 * steal extra free pages from the same pageblocks to satisfy further
1958 * allocations, instead of polluting multiple pageblocks.
1959 *
1960 * If we are stealing a relatively large buddy page, it is likely there will
1961 * be more free pages in the pageblock, so try to steal them all. For
1962 * reclaimable and unmovable allocations, we steal regardless of page size,
1963 * as fragmentation caused by those allocations polluting movable pageblocks
1964 * is worse than movable allocations stealing from unmovable and reclaimable
1965 * pageblocks.
1966 */
1967 static bool can_steal_fallback(unsigned int order, int start_mt)
1968 {
1969 /*
1970 * Leaving this order check is intended, although there is
1971 * relaxed order check in next check. The reason is that
1972 * we can actually steal whole pageblock if this condition met,
1973 * but, below check doesn't guarantee it and that is just heuristic
1974 * so could be changed anytime.
1975 */
1976 if (order >= pageblock_order)
1977 return true;
1978
1979 if (order >= pageblock_order / 2 ||
1980 start_mt == MIGRATE_RECLAIMABLE ||
1981 start_mt == MIGRATE_UNMOVABLE ||
1982 page_group_by_mobility_disabled)
1983 return true;
1984
1985 return false;
1986 }
1987
1988 /*
1989 * This function implements actual steal behaviour. If order is large enough,
1990 * we can steal whole pageblock. If not, we first move freepages in this
1991 * pageblock to our migratetype and determine how many already-allocated pages
1992 * are there in the pageblock with a compatible migratetype. If at least half
1993 * of pages are free or compatible, we can change migratetype of the pageblock
1994 * itself, so pages freed in the future will be put on the correct free list.
1995 */
1996 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1997 int start_type, bool whole_block)
1998 {
1999 unsigned int current_order = page_order(page);
2000 struct free_area *area;
2001 int free_pages, movable_pages, alike_pages;
2002 int old_block_type;
2003
2004 old_block_type = get_pageblock_migratetype(page);
2005
2006 /*
2007 * This can happen due to races and we want to prevent broken
2008 * highatomic accounting.
2009 */
2010 if (is_migrate_highatomic(old_block_type))
2011 goto single_page;
2012
2013 /* Take ownership for orders >= pageblock_order */
2014 if (current_order >= pageblock_order) {
2015 change_pageblock_range(page, current_order, start_type);
2016 goto single_page;
2017 }
2018
2019 /* We are not allowed to try stealing from the whole block */
2020 if (!whole_block)
2021 goto single_page;
2022
2023 free_pages = move_freepages_block(zone, page, start_type,
2024 &movable_pages);
2025 /*
2026 * Determine how many pages are compatible with our allocation.
2027 * For movable allocation, it's the number of movable pages which
2028 * we just obtained. For other types it's a bit more tricky.
2029 */
2030 if (start_type == MIGRATE_MOVABLE) {
2031 alike_pages = movable_pages;
2032 } else {
2033 /*
2034 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2035 * to MOVABLE pageblock, consider all non-movable pages as
2036 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2037 * vice versa, be conservative since we can't distinguish the
2038 * exact migratetype of non-movable pages.
2039 */
2040 if (old_block_type == MIGRATE_MOVABLE)
2041 alike_pages = pageblock_nr_pages
2042 - (free_pages + movable_pages);
2043 else
2044 alike_pages = 0;
2045 }
2046
2047 /* moving whole block can fail due to zone boundary conditions */
2048 if (!free_pages)
2049 goto single_page;
2050
2051 /*
2052 * If a sufficient number of pages in the block are either free or of
2053 * comparable migratability as our allocation, claim the whole block.
2054 */
2055 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2056 page_group_by_mobility_disabled)
2057 set_pageblock_migratetype(page, start_type);
2058
2059 return;
2060
2061 single_page:
2062 area = &zone->free_area[current_order];
2063 list_move(&page->lru, &area->free_list[start_type]);
2064 }
2065
2066 /*
2067 * Check whether there is a suitable fallback freepage with requested order.
2068 * If only_stealable is true, this function returns fallback_mt only if
2069 * we can steal other freepages all together. This would help to reduce
2070 * fragmentation due to mixed migratetype pages in one pageblock.
2071 */
2072 int find_suitable_fallback(struct free_area *area, unsigned int order,
2073 int migratetype, bool only_stealable, bool *can_steal)
2074 {
2075 int i;
2076 int fallback_mt;
2077
2078 if (area->nr_free == 0)
2079 return -1;
2080
2081 *can_steal = false;
2082 for (i = 0;; i++) {
2083 fallback_mt = fallbacks[migratetype][i];
2084 if (fallback_mt == MIGRATE_TYPES)
2085 break;
2086
2087 if (list_empty(&area->free_list[fallback_mt]))
2088 continue;
2089
2090 if (can_steal_fallback(order, migratetype))
2091 *can_steal = true;
2092
2093 if (!only_stealable)
2094 return fallback_mt;
2095
2096 if (*can_steal)
2097 return fallback_mt;
2098 }
2099
2100 return -1;
2101 }
2102
2103 /*
2104 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2105 * there are no empty page blocks that contain a page with a suitable order
2106 */
2107 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2108 unsigned int alloc_order)
2109 {
2110 int mt;
2111 unsigned long max_managed, flags;
2112
2113 /*
2114 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2115 * Check is race-prone but harmless.
2116 */
2117 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2118 if (zone->nr_reserved_highatomic >= max_managed)
2119 return;
2120
2121 spin_lock_irqsave(&zone->lock, flags);
2122
2123 /* Recheck the nr_reserved_highatomic limit under the lock */
2124 if (zone->nr_reserved_highatomic >= max_managed)
2125 goto out_unlock;
2126
2127 /* Yoink! */
2128 mt = get_pageblock_migratetype(page);
2129 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2130 && !is_migrate_cma(mt)) {
2131 zone->nr_reserved_highatomic += pageblock_nr_pages;
2132 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2133 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2134 }
2135
2136 out_unlock:
2137 spin_unlock_irqrestore(&zone->lock, flags);
2138 }
2139
2140 /*
2141 * Used when an allocation is about to fail under memory pressure. This
2142 * potentially hurts the reliability of high-order allocations when under
2143 * intense memory pressure but failed atomic allocations should be easier
2144 * to recover from than an OOM.
2145 *
2146 * If @force is true, try to unreserve a pageblock even though highatomic
2147 * pageblock is exhausted.
2148 */
2149 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2150 bool force)
2151 {
2152 struct zonelist *zonelist = ac->zonelist;
2153 unsigned long flags;
2154 struct zoneref *z;
2155 struct zone *zone;
2156 struct page *page;
2157 int order;
2158 bool ret;
2159
2160 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2161 ac->nodemask) {
2162 /*
2163 * Preserve at least one pageblock unless memory pressure
2164 * is really high.
2165 */
2166 if (!force && zone->nr_reserved_highatomic <=
2167 pageblock_nr_pages)
2168 continue;
2169
2170 spin_lock_irqsave(&zone->lock, flags);
2171 for (order = 0; order < MAX_ORDER; order++) {
2172 struct free_area *area = &(zone->free_area[order]);
2173
2174 page = list_first_entry_or_null(
2175 &area->free_list[MIGRATE_HIGHATOMIC],
2176 struct page, lru);
2177 if (!page)
2178 continue;
2179
2180 /*
2181 * In page freeing path, migratetype change is racy so
2182 * we can counter several free pages in a pageblock
2183 * in this loop althoug we changed the pageblock type
2184 * from highatomic to ac->migratetype. So we should
2185 * adjust the count once.
2186 */
2187 if (is_migrate_highatomic_page(page)) {
2188 /*
2189 * It should never happen but changes to
2190 * locking could inadvertently allow a per-cpu
2191 * drain to add pages to MIGRATE_HIGHATOMIC
2192 * while unreserving so be safe and watch for
2193 * underflows.
2194 */
2195 zone->nr_reserved_highatomic -= min(
2196 pageblock_nr_pages,
2197 zone->nr_reserved_highatomic);
2198 }
2199
2200 /*
2201 * Convert to ac->migratetype and avoid the normal
2202 * pageblock stealing heuristics. Minimally, the caller
2203 * is doing the work and needs the pages. More
2204 * importantly, if the block was always converted to
2205 * MIGRATE_UNMOVABLE or another type then the number
2206 * of pageblocks that cannot be completely freed
2207 * may increase.
2208 */
2209 set_pageblock_migratetype(page, ac->migratetype);
2210 ret = move_freepages_block(zone, page, ac->migratetype,
2211 NULL);
2212 if (ret) {
2213 spin_unlock_irqrestore(&zone->lock, flags);
2214 return ret;
2215 }
2216 }
2217 spin_unlock_irqrestore(&zone->lock, flags);
2218 }
2219
2220 return false;
2221 }
2222
2223 /*
2224 * Try finding a free buddy page on the fallback list and put it on the free
2225 * list of requested migratetype, possibly along with other pages from the same
2226 * block, depending on fragmentation avoidance heuristics. Returns true if
2227 * fallback was found so that __rmqueue_smallest() can grab it.
2228 *
2229 * The use of signed ints for order and current_order is a deliberate
2230 * deviation from the rest of this file, to make the for loop
2231 * condition simpler.
2232 */
2233 static inline bool
2234 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2235 {
2236 struct free_area *area;
2237 int current_order;
2238 struct page *page;
2239 int fallback_mt;
2240 bool can_steal;
2241
2242 /*
2243 * Find the largest available free page in the other list. This roughly
2244 * approximates finding the pageblock with the most free pages, which
2245 * would be too costly to do exactly.
2246 */
2247 for (current_order = MAX_ORDER - 1; current_order >= order;
2248 --current_order) {
2249 area = &(zone->free_area[current_order]);
2250 fallback_mt = find_suitable_fallback(area, current_order,
2251 start_migratetype, false, &can_steal);
2252 if (fallback_mt == -1)
2253 continue;
2254
2255 /*
2256 * We cannot steal all free pages from the pageblock and the
2257 * requested migratetype is movable. In that case it's better to
2258 * steal and split the smallest available page instead of the
2259 * largest available page, because even if the next movable
2260 * allocation falls back into a different pageblock than this
2261 * one, it won't cause permanent fragmentation.
2262 */
2263 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2264 && current_order > order)
2265 goto find_smallest;
2266
2267 goto do_steal;
2268 }
2269
2270 return false;
2271
2272 find_smallest:
2273 for (current_order = order; current_order < MAX_ORDER;
2274 current_order++) {
2275 area = &(zone->free_area[current_order]);
2276 fallback_mt = find_suitable_fallback(area, current_order,
2277 start_migratetype, false, &can_steal);
2278 if (fallback_mt != -1)
2279 break;
2280 }
2281
2282 /*
2283 * This should not happen - we already found a suitable fallback
2284 * when looking for the largest page.
2285 */
2286 VM_BUG_ON(current_order == MAX_ORDER);
2287
2288 do_steal:
2289 page = list_first_entry(&area->free_list[fallback_mt],
2290 struct page, lru);
2291
2292 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2293
2294 trace_mm_page_alloc_extfrag(page, order, current_order,
2295 start_migratetype, fallback_mt);
2296
2297 return true;
2298
2299 }
2300
2301 /*
2302 * Do the hard work of removing an element from the buddy allocator.
2303 * Call me with the zone->lock already held.
2304 */
2305 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2306 int migratetype)
2307 {
2308 struct page *page;
2309
2310 retry:
2311 page = __rmqueue_smallest(zone, order, migratetype);
2312 if (unlikely(!page)) {
2313 if (migratetype == MIGRATE_MOVABLE)
2314 page = __rmqueue_cma_fallback(zone, order);
2315
2316 if (!page && __rmqueue_fallback(zone, order, migratetype))
2317 goto retry;
2318 }
2319
2320 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2321 return page;
2322 }
2323
2324 /*
2325 * Obtain a specified number of elements from the buddy allocator, all under
2326 * a single hold of the lock, for efficiency. Add them to the supplied list.
2327 * Returns the number of new pages which were placed at *list.
2328 */
2329 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2330 unsigned long count, struct list_head *list,
2331 int migratetype, bool cold)
2332 {
2333 int i, alloced = 0;
2334
2335 spin_lock(&zone->lock);
2336 for (i = 0; i < count; ++i) {
2337 struct page *page = __rmqueue(zone, order, migratetype);
2338 if (unlikely(page == NULL))
2339 break;
2340
2341 if (unlikely(check_pcp_refill(page)))
2342 continue;
2343
2344 /*
2345 * Split buddy pages returned by expand() are received here
2346 * in physical page order. The page is added to the callers and
2347 * list and the list head then moves forward. From the callers
2348 * perspective, the linked list is ordered by page number in
2349 * some conditions. This is useful for IO devices that can
2350 * merge IO requests if the physical pages are ordered
2351 * properly.
2352 */
2353 if (likely(!cold))
2354 list_add(&page->lru, list);
2355 else
2356 list_add_tail(&page->lru, list);
2357 list = &page->lru;
2358 alloced++;
2359 if (is_migrate_cma(get_pcppage_migratetype(page)))
2360 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2361 -(1 << order));
2362 }
2363
2364 /*
2365 * i pages were removed from the buddy list even if some leak due
2366 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2367 * on i. Do not confuse with 'alloced' which is the number of
2368 * pages added to the pcp list.
2369 */
2370 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2371 spin_unlock(&zone->lock);
2372 return alloced;
2373 }
2374
2375 #ifdef CONFIG_NUMA
2376 /*
2377 * Called from the vmstat counter updater to drain pagesets of this
2378 * currently executing processor on remote nodes after they have
2379 * expired.
2380 *
2381 * Note that this function must be called with the thread pinned to
2382 * a single processor.
2383 */
2384 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2385 {
2386 unsigned long flags;
2387 int to_drain, batch;
2388
2389 local_irq_save(flags);
2390 batch = READ_ONCE(pcp->batch);
2391 to_drain = min(pcp->count, batch);
2392 if (to_drain > 0) {
2393 free_pcppages_bulk(zone, to_drain, pcp);
2394 pcp->count -= to_drain;
2395 }
2396 local_irq_restore(flags);
2397 }
2398 #endif
2399
2400 /*
2401 * Drain pcplists of the indicated processor and zone.
2402 *
2403 * The processor must either be the current processor and the
2404 * thread pinned to the current processor or a processor that
2405 * is not online.
2406 */
2407 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2408 {
2409 unsigned long flags;
2410 struct per_cpu_pageset *pset;
2411 struct per_cpu_pages *pcp;
2412
2413 local_irq_save(flags);
2414 pset = per_cpu_ptr(zone->pageset, cpu);
2415
2416 pcp = &pset->pcp;
2417 if (pcp->count) {
2418 free_pcppages_bulk(zone, pcp->count, pcp);
2419 pcp->count = 0;
2420 }
2421 local_irq_restore(flags);
2422 }
2423
2424 /*
2425 * Drain pcplists of all zones on the indicated processor.
2426 *
2427 * The processor must either be the current processor and the
2428 * thread pinned to the current processor or a processor that
2429 * is not online.
2430 */
2431 static void drain_pages(unsigned int cpu)
2432 {
2433 struct zone *zone;
2434
2435 for_each_populated_zone(zone) {
2436 drain_pages_zone(cpu, zone);
2437 }
2438 }
2439
2440 /*
2441 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2442 *
2443 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2444 * the single zone's pages.
2445 */
2446 void drain_local_pages(struct zone *zone)
2447 {
2448 int cpu = smp_processor_id();
2449
2450 if (zone)
2451 drain_pages_zone(cpu, zone);
2452 else
2453 drain_pages(cpu);
2454 }
2455
2456 static void drain_local_pages_wq(struct work_struct *work)
2457 {
2458 /*
2459 * drain_all_pages doesn't use proper cpu hotplug protection so
2460 * we can race with cpu offline when the WQ can move this from
2461 * a cpu pinned worker to an unbound one. We can operate on a different
2462 * cpu which is allright but we also have to make sure to not move to
2463 * a different one.
2464 */
2465 preempt_disable();
2466 drain_local_pages(NULL);
2467 preempt_enable();
2468 }
2469
2470 /*
2471 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2472 *
2473 * When zone parameter is non-NULL, spill just the single zone's pages.
2474 *
2475 * Note that this can be extremely slow as the draining happens in a workqueue.
2476 */
2477 void drain_all_pages(struct zone *zone)
2478 {
2479 int cpu;
2480
2481 /*
2482 * Allocate in the BSS so we wont require allocation in
2483 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2484 */
2485 static cpumask_t cpus_with_pcps;
2486
2487 /*
2488 * Make sure nobody triggers this path before mm_percpu_wq is fully
2489 * initialized.
2490 */
2491 if (WARN_ON_ONCE(!mm_percpu_wq))
2492 return;
2493
2494 /*
2495 * Do not drain if one is already in progress unless it's specific to
2496 * a zone. Such callers are primarily CMA and memory hotplug and need
2497 * the drain to be complete when the call returns.
2498 */
2499 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2500 if (!zone)
2501 return;
2502 mutex_lock(&pcpu_drain_mutex);
2503 }
2504
2505 /*
2506 * We don't care about racing with CPU hotplug event
2507 * as offline notification will cause the notified
2508 * cpu to drain that CPU pcps and on_each_cpu_mask
2509 * disables preemption as part of its processing
2510 */
2511 for_each_online_cpu(cpu) {
2512 struct per_cpu_pageset *pcp;
2513 struct zone *z;
2514 bool has_pcps = false;
2515
2516 if (zone) {
2517 pcp = per_cpu_ptr(zone->pageset, cpu);
2518 if (pcp->pcp.count)
2519 has_pcps = true;
2520 } else {
2521 for_each_populated_zone(z) {
2522 pcp = per_cpu_ptr(z->pageset, cpu);
2523 if (pcp->pcp.count) {
2524 has_pcps = true;
2525 break;
2526 }
2527 }
2528 }
2529
2530 if (has_pcps)
2531 cpumask_set_cpu(cpu, &cpus_with_pcps);
2532 else
2533 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2534 }
2535
2536 for_each_cpu(cpu, &cpus_with_pcps) {
2537 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2538 INIT_WORK(work, drain_local_pages_wq);
2539 queue_work_on(cpu, mm_percpu_wq, work);
2540 }
2541 for_each_cpu(cpu, &cpus_with_pcps)
2542 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2543
2544 mutex_unlock(&pcpu_drain_mutex);
2545 }
2546
2547 #ifdef CONFIG_HIBERNATION
2548
2549 /*
2550 * Touch the watchdog for every WD_PAGE_COUNT pages.
2551 */
2552 #define WD_PAGE_COUNT (128*1024)
2553
2554 void mark_free_pages(struct zone *zone)
2555 {
2556 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2557 unsigned long flags;
2558 unsigned int order, t;
2559 struct page *page;
2560
2561 if (zone_is_empty(zone))
2562 return;
2563
2564 spin_lock_irqsave(&zone->lock, flags);
2565
2566 max_zone_pfn = zone_end_pfn(zone);
2567 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2568 if (pfn_valid(pfn)) {
2569 page = pfn_to_page(pfn);
2570
2571 if (!--page_count) {
2572 touch_nmi_watchdog();
2573 page_count = WD_PAGE_COUNT;
2574 }
2575
2576 if (page_zone(page) != zone)
2577 continue;
2578
2579 if (!swsusp_page_is_forbidden(page))
2580 swsusp_unset_page_free(page);
2581 }
2582
2583 for_each_migratetype_order(order, t) {
2584 list_for_each_entry(page,
2585 &zone->free_area[order].free_list[t], lru) {
2586 unsigned long i;
2587
2588 pfn = page_to_pfn(page);
2589 for (i = 0; i < (1UL << order); i++) {
2590 if (!--page_count) {
2591 touch_nmi_watchdog();
2592 page_count = WD_PAGE_COUNT;
2593 }
2594 swsusp_set_page_free(pfn_to_page(pfn + i));
2595 }
2596 }
2597 }
2598 spin_unlock_irqrestore(&zone->lock, flags);
2599 }
2600 #endif /* CONFIG_PM */
2601
2602 /*
2603 * Free a 0-order page
2604 * cold == true ? free a cold page : free a hot page
2605 */
2606 void free_hot_cold_page(struct page *page, bool cold)
2607 {
2608 struct zone *zone = page_zone(page);
2609 struct per_cpu_pages *pcp;
2610 unsigned long flags;
2611 unsigned long pfn = page_to_pfn(page);
2612 int migratetype;
2613
2614 if (!free_pcp_prepare(page))
2615 return;
2616
2617 migratetype = get_pfnblock_migratetype(page, pfn);
2618 set_pcppage_migratetype(page, migratetype);
2619 local_irq_save(flags);
2620 __count_vm_event(PGFREE);
2621
2622 /*
2623 * We only track unmovable, reclaimable and movable on pcp lists.
2624 * Free ISOLATE pages back to the allocator because they are being
2625 * offlined but treat HIGHATOMIC as movable pages so we can get those
2626 * areas back if necessary. Otherwise, we may have to free
2627 * excessively into the page allocator
2628 */
2629 if (migratetype >= MIGRATE_PCPTYPES) {
2630 if (unlikely(is_migrate_isolate(migratetype))) {
2631 free_one_page(zone, page, pfn, 0, migratetype);
2632 goto out;
2633 }
2634 migratetype = MIGRATE_MOVABLE;
2635 }
2636
2637 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2638 if (!cold)
2639 list_add(&page->lru, &pcp->lists[migratetype]);
2640 else
2641 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2642 pcp->count++;
2643 if (pcp->count >= pcp->high) {
2644 unsigned long batch = READ_ONCE(pcp->batch);
2645 free_pcppages_bulk(zone, batch, pcp);
2646 pcp->count -= batch;
2647 }
2648
2649 out:
2650 local_irq_restore(flags);
2651 }
2652
2653 /*
2654 * Free a list of 0-order pages
2655 */
2656 void free_hot_cold_page_list(struct list_head *list, bool cold)
2657 {
2658 struct page *page, *next;
2659
2660 list_for_each_entry_safe(page, next, list, lru) {
2661 trace_mm_page_free_batched(page, cold);
2662 free_hot_cold_page(page, cold);
2663 }
2664 }
2665
2666 /*
2667 * split_page takes a non-compound higher-order page, and splits it into
2668 * n (1<<order) sub-pages: page[0..n]
2669 * Each sub-page must be freed individually.
2670 *
2671 * Note: this is probably too low level an operation for use in drivers.
2672 * Please consult with lkml before using this in your driver.
2673 */
2674 void split_page(struct page *page, unsigned int order)
2675 {
2676 int i;
2677
2678 VM_BUG_ON_PAGE(PageCompound(page), page);
2679 VM_BUG_ON_PAGE(!page_count(page), page);
2680
2681 for (i = 1; i < (1 << order); i++)
2682 set_page_refcounted(page + i);
2683 split_page_owner(page, order);
2684 }
2685 EXPORT_SYMBOL_GPL(split_page);
2686
2687 int __isolate_free_page(struct page *page, unsigned int order)
2688 {
2689 unsigned long watermark;
2690 struct zone *zone;
2691 int mt;
2692
2693 BUG_ON(!PageBuddy(page));
2694
2695 zone = page_zone(page);
2696 mt = get_pageblock_migratetype(page);
2697
2698 if (!is_migrate_isolate(mt)) {
2699 /*
2700 * Obey watermarks as if the page was being allocated. We can
2701 * emulate a high-order watermark check with a raised order-0
2702 * watermark, because we already know our high-order page
2703 * exists.
2704 */
2705 watermark = min_wmark_pages(zone) + (1UL << order);
2706 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2707 return 0;
2708
2709 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2710 }
2711
2712 /* Remove page from free list */
2713 list_del(&page->lru);
2714 zone->free_area[order].nr_free--;
2715 rmv_page_order(page);
2716
2717 /*
2718 * Set the pageblock if the isolated page is at least half of a
2719 * pageblock
2720 */
2721 if (order >= pageblock_order - 1) {
2722 struct page *endpage = page + (1 << order) - 1;
2723 for (; page < endpage; page += pageblock_nr_pages) {
2724 int mt = get_pageblock_migratetype(page);
2725 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2726 && !is_migrate_highatomic(mt))
2727 set_pageblock_migratetype(page,
2728 MIGRATE_MOVABLE);
2729 }
2730 }
2731
2732
2733 return 1UL << order;
2734 }
2735
2736 /*
2737 * Update NUMA hit/miss statistics
2738 *
2739 * Must be called with interrupts disabled.
2740 */
2741 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2742 {
2743 #ifdef CONFIG_NUMA
2744 enum numa_stat_item local_stat = NUMA_LOCAL;
2745
2746 if (z->node != numa_node_id())
2747 local_stat = NUMA_OTHER;
2748
2749 if (z->node == preferred_zone->node)
2750 __inc_numa_state(z, NUMA_HIT);
2751 else {
2752 __inc_numa_state(z, NUMA_MISS);
2753 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2754 }
2755 __inc_numa_state(z, local_stat);
2756 #endif
2757 }
2758
2759 /* Remove page from the per-cpu list, caller must protect the list */
2760 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2761 bool cold, struct per_cpu_pages *pcp,
2762 struct list_head *list)
2763 {
2764 struct page *page;
2765
2766 do {
2767 if (list_empty(list)) {
2768 pcp->count += rmqueue_bulk(zone, 0,
2769 pcp->batch, list,
2770 migratetype, cold);
2771 if (unlikely(list_empty(list)))
2772 return NULL;
2773 }
2774
2775 if (cold)
2776 page = list_last_entry(list, struct page, lru);
2777 else
2778 page = list_first_entry(list, struct page, lru);
2779
2780 list_del(&page->lru);
2781 pcp->count--;
2782 } while (check_new_pcp(page));
2783
2784 return page;
2785 }
2786
2787 /* Lock and remove page from the per-cpu list */
2788 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2789 struct zone *zone, unsigned int order,
2790 gfp_t gfp_flags, int migratetype)
2791 {
2792 struct per_cpu_pages *pcp;
2793 struct list_head *list;
2794 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2795 struct page *page;
2796 unsigned long flags;
2797
2798 local_irq_save(flags);
2799 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2800 list = &pcp->lists[migratetype];
2801 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2802 if (page) {
2803 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2804 zone_statistics(preferred_zone, zone);
2805 }
2806 local_irq_restore(flags);
2807 return page;
2808 }
2809
2810 /*
2811 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2812 */
2813 static inline
2814 struct page *rmqueue(struct zone *preferred_zone,
2815 struct zone *zone, unsigned int order,
2816 gfp_t gfp_flags, unsigned int alloc_flags,
2817 int migratetype)
2818 {
2819 unsigned long flags;
2820 struct page *page;
2821
2822 if (likely(order == 0)) {
2823 page = rmqueue_pcplist(preferred_zone, zone, order,
2824 gfp_flags, migratetype);
2825 goto out;
2826 }
2827
2828 /*
2829 * We most definitely don't want callers attempting to
2830 * allocate greater than order-1 page units with __GFP_NOFAIL.
2831 */
2832 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2833 spin_lock_irqsave(&zone->lock, flags);
2834
2835 do {
2836 page = NULL;
2837 if (alloc_flags & ALLOC_HARDER) {
2838 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2839 if (page)
2840 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2841 }
2842 if (!page)
2843 page = __rmqueue(zone, order, migratetype);
2844 } while (page && check_new_pages(page, order));
2845 spin_unlock(&zone->lock);
2846 if (!page)
2847 goto failed;
2848 __mod_zone_freepage_state(zone, -(1 << order),
2849 get_pcppage_migratetype(page));
2850
2851 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2852 zone_statistics(preferred_zone, zone);
2853 local_irq_restore(flags);
2854
2855 out:
2856 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2857 return page;
2858
2859 failed:
2860 local_irq_restore(flags);
2861 return NULL;
2862 }
2863
2864 #ifdef CONFIG_FAIL_PAGE_ALLOC
2865
2866 static struct {
2867 struct fault_attr attr;
2868
2869 bool ignore_gfp_highmem;
2870 bool ignore_gfp_reclaim;
2871 u32 min_order;
2872 } fail_page_alloc = {
2873 .attr = FAULT_ATTR_INITIALIZER,
2874 .ignore_gfp_reclaim = true,
2875 .ignore_gfp_highmem = true,
2876 .min_order = 1,
2877 };
2878
2879 static int __init setup_fail_page_alloc(char *str)
2880 {
2881 return setup_fault_attr(&fail_page_alloc.attr, str);
2882 }
2883 __setup("fail_page_alloc=", setup_fail_page_alloc);
2884
2885 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2886 {
2887 if (order < fail_page_alloc.min_order)
2888 return false;
2889 if (gfp_mask & __GFP_NOFAIL)
2890 return false;
2891 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2892 return false;
2893 if (fail_page_alloc.ignore_gfp_reclaim &&
2894 (gfp_mask & __GFP_DIRECT_RECLAIM))
2895 return false;
2896
2897 return should_fail(&fail_page_alloc.attr, 1 << order);
2898 }
2899
2900 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2901
2902 static int __init fail_page_alloc_debugfs(void)
2903 {
2904 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2905 struct dentry *dir;
2906
2907 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2908 &fail_page_alloc.attr);
2909 if (IS_ERR(dir))
2910 return PTR_ERR(dir);
2911
2912 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2913 &fail_page_alloc.ignore_gfp_reclaim))
2914 goto fail;
2915 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2916 &fail_page_alloc.ignore_gfp_highmem))
2917 goto fail;
2918 if (!debugfs_create_u32("min-order", mode, dir,
2919 &fail_page_alloc.min_order))
2920 goto fail;
2921
2922 return 0;
2923 fail:
2924 debugfs_remove_recursive(dir);
2925
2926 return -ENOMEM;
2927 }
2928
2929 late_initcall(fail_page_alloc_debugfs);
2930
2931 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2932
2933 #else /* CONFIG_FAIL_PAGE_ALLOC */
2934
2935 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2936 {
2937 return false;
2938 }
2939
2940 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2941
2942 /*
2943 * Return true if free base pages are above 'mark'. For high-order checks it
2944 * will return true of the order-0 watermark is reached and there is at least
2945 * one free page of a suitable size. Checking now avoids taking the zone lock
2946 * to check in the allocation paths if no pages are free.
2947 */
2948 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2949 int classzone_idx, unsigned int alloc_flags,
2950 long free_pages)
2951 {
2952 long min = mark;
2953 int o;
2954 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
2955
2956 /* free_pages may go negative - that's OK */
2957 free_pages -= (1 << order) - 1;
2958
2959 if (alloc_flags & ALLOC_HIGH)
2960 min -= min / 2;
2961
2962 /*
2963 * If the caller does not have rights to ALLOC_HARDER then subtract
2964 * the high-atomic reserves. This will over-estimate the size of the
2965 * atomic reserve but it avoids a search.
2966 */
2967 if (likely(!alloc_harder)) {
2968 free_pages -= z->nr_reserved_highatomic;
2969 } else {
2970 /*
2971 * OOM victims can try even harder than normal ALLOC_HARDER
2972 * users on the grounds that it's definitely going to be in
2973 * the exit path shortly and free memory. Any allocation it
2974 * makes during the free path will be small and short-lived.
2975 */
2976 if (alloc_flags & ALLOC_OOM)
2977 min -= min / 2;
2978 else
2979 min -= min / 4;
2980 }
2981
2982
2983 #ifdef CONFIG_CMA
2984 /* If allocation can't use CMA areas don't use free CMA pages */
2985 if (!(alloc_flags & ALLOC_CMA))
2986 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2987 #endif
2988
2989 /*
2990 * Check watermarks for an order-0 allocation request. If these
2991 * are not met, then a high-order request also cannot go ahead
2992 * even if a suitable page happened to be free.
2993 */
2994 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2995 return false;
2996
2997 /* If this is an order-0 request then the watermark is fine */
2998 if (!order)
2999 return true;
3000
3001 /* For a high-order request, check at least one suitable page is free */
3002 for (o = order; o < MAX_ORDER; o++) {
3003 struct free_area *area = &z->free_area[o];
3004 int mt;
3005
3006 if (!area->nr_free)
3007 continue;
3008
3009 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3010 if (!list_empty(&area->free_list[mt]))
3011 return true;
3012 }
3013
3014 #ifdef CONFIG_CMA
3015 if ((alloc_flags & ALLOC_CMA) &&
3016 !list_empty(&area->free_list[MIGRATE_CMA])) {
3017 return true;
3018 }
3019 #endif
3020 if (alloc_harder &&
3021 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3022 return true;
3023 }
3024 return false;
3025 }
3026
3027 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3028 int classzone_idx, unsigned int alloc_flags)
3029 {
3030 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3031 zone_page_state(z, NR_FREE_PAGES));
3032 }
3033
3034 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3035 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3036 {
3037 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3038 long cma_pages = 0;
3039
3040 #ifdef CONFIG_CMA
3041 /* If allocation can't use CMA areas don't use free CMA pages */
3042 if (!(alloc_flags & ALLOC_CMA))
3043 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3044 #endif
3045
3046 /*
3047 * Fast check for order-0 only. If this fails then the reserves
3048 * need to be calculated. There is a corner case where the check
3049 * passes but only the high-order atomic reserve are free. If
3050 * the caller is !atomic then it'll uselessly search the free
3051 * list. That corner case is then slower but it is harmless.
3052 */
3053 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3054 return true;
3055
3056 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3057 free_pages);
3058 }
3059
3060 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3061 unsigned long mark, int classzone_idx)
3062 {
3063 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3064
3065 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3066 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3067
3068 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3069 free_pages);
3070 }
3071
3072 #ifdef CONFIG_NUMA
3073 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3074 {
3075 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3076 RECLAIM_DISTANCE;
3077 }
3078 #else /* CONFIG_NUMA */
3079 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3080 {
3081 return true;
3082 }
3083 #endif /* CONFIG_NUMA */
3084
3085 /*
3086 * get_page_from_freelist goes through the zonelist trying to allocate
3087 * a page.
3088 */
3089 static struct page *
3090 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3091 const struct alloc_context *ac)
3092 {
3093 struct zoneref *z = ac->preferred_zoneref;
3094 struct zone *zone;
3095 struct pglist_data *last_pgdat_dirty_limit = NULL;
3096
3097 /*
3098 * Scan zonelist, looking for a zone with enough free.
3099 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3100 */
3101 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3102 ac->nodemask) {
3103 struct page *page;
3104 unsigned long mark;
3105
3106 if (cpusets_enabled() &&
3107 (alloc_flags & ALLOC_CPUSET) &&
3108 !__cpuset_zone_allowed(zone, gfp_mask))
3109 continue;
3110 /*
3111 * When allocating a page cache page for writing, we
3112 * want to get it from a node that is within its dirty
3113 * limit, such that no single node holds more than its
3114 * proportional share of globally allowed dirty pages.
3115 * The dirty limits take into account the node's
3116 * lowmem reserves and high watermark so that kswapd
3117 * should be able to balance it without having to
3118 * write pages from its LRU list.
3119 *
3120 * XXX: For now, allow allocations to potentially
3121 * exceed the per-node dirty limit in the slowpath
3122 * (spread_dirty_pages unset) before going into reclaim,
3123 * which is important when on a NUMA setup the allowed
3124 * nodes are together not big enough to reach the
3125 * global limit. The proper fix for these situations
3126 * will require awareness of nodes in the
3127 * dirty-throttling and the flusher threads.
3128 */
3129 if (ac->spread_dirty_pages) {
3130 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3131 continue;
3132
3133 if (!node_dirty_ok(zone->zone_pgdat)) {
3134 last_pgdat_dirty_limit = zone->zone_pgdat;
3135 continue;
3136 }
3137 }
3138
3139 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3140 if (!zone_watermark_fast(zone, order, mark,
3141 ac_classzone_idx(ac), alloc_flags)) {
3142 int ret;
3143
3144 /* Checked here to keep the fast path fast */
3145 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3146 if (alloc_flags & ALLOC_NO_WATERMARKS)
3147 goto try_this_zone;
3148
3149 if (node_reclaim_mode == 0 ||
3150 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3151 continue;
3152
3153 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3154 switch (ret) {
3155 case NODE_RECLAIM_NOSCAN:
3156 /* did not scan */
3157 continue;
3158 case NODE_RECLAIM_FULL:
3159 /* scanned but unreclaimable */
3160 continue;
3161 default:
3162 /* did we reclaim enough */
3163 if (zone_watermark_ok(zone, order, mark,
3164 ac_classzone_idx(ac), alloc_flags))
3165 goto try_this_zone;
3166
3167 continue;
3168 }
3169 }
3170
3171 try_this_zone:
3172 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3173 gfp_mask, alloc_flags, ac->migratetype);
3174 if (page) {
3175 prep_new_page(page, order, gfp_mask, alloc_flags);
3176
3177 /*
3178 * If this is a high-order atomic allocation then check
3179 * if the pageblock should be reserved for the future
3180 */
3181 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3182 reserve_highatomic_pageblock(page, zone, order);
3183
3184 return page;
3185 }
3186 }
3187
3188 return NULL;
3189 }
3190
3191 /*
3192 * Large machines with many possible nodes should not always dump per-node
3193 * meminfo in irq context.
3194 */
3195 static inline bool should_suppress_show_mem(void)
3196 {
3197 bool ret = false;
3198
3199 #if NODES_SHIFT > 8
3200 ret = in_interrupt();
3201 #endif
3202 return ret;
3203 }
3204
3205 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3206 {
3207 unsigned int filter = SHOW_MEM_FILTER_NODES;
3208 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3209
3210 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3211 return;
3212
3213 /*
3214 * This documents exceptions given to allocations in certain
3215 * contexts that are allowed to allocate outside current's set
3216 * of allowed nodes.
3217 */
3218 if (!(gfp_mask & __GFP_NOMEMALLOC))
3219 if (tsk_is_oom_victim(current) ||
3220 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3221 filter &= ~SHOW_MEM_FILTER_NODES;
3222 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3223 filter &= ~SHOW_MEM_FILTER_NODES;
3224
3225 show_mem(filter, nodemask);
3226 }
3227
3228 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3229 {
3230 struct va_format vaf;
3231 va_list args;
3232 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3233 DEFAULT_RATELIMIT_BURST);
3234
3235 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3236 return;
3237
3238 pr_warn("%s: ", current->comm);
3239
3240 va_start(args, fmt);
3241 vaf.fmt = fmt;
3242 vaf.va = &args;
3243 pr_cont("%pV", &vaf);
3244 va_end(args);
3245
3246 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3247 if (nodemask)
3248 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3249 else
3250 pr_cont("(null)\n");
3251
3252 cpuset_print_current_mems_allowed();
3253
3254 dump_stack();
3255 warn_alloc_show_mem(gfp_mask, nodemask);
3256 }
3257
3258 static inline struct page *
3259 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3260 unsigned int alloc_flags,
3261 const struct alloc_context *ac)
3262 {
3263 struct page *page;
3264
3265 page = get_page_from_freelist(gfp_mask, order,
3266 alloc_flags|ALLOC_CPUSET, ac);
3267 /*
3268 * fallback to ignore cpuset restriction if our nodes
3269 * are depleted
3270 */
3271 if (!page)
3272 page = get_page_from_freelist(gfp_mask, order,
3273 alloc_flags, ac);
3274
3275 return page;
3276 }
3277
3278 static inline struct page *
3279 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3280 const struct alloc_context *ac, unsigned long *did_some_progress)
3281 {
3282 struct oom_control oc = {
3283 .zonelist = ac->zonelist,
3284 .nodemask = ac->nodemask,
3285 .memcg = NULL,
3286 .gfp_mask = gfp_mask,
3287 .order = order,
3288 };
3289 struct page *page;
3290
3291 *did_some_progress = 0;
3292
3293 /*
3294 * Acquire the oom lock. If that fails, somebody else is
3295 * making progress for us.
3296 */
3297 if (!mutex_trylock(&oom_lock)) {
3298 *did_some_progress = 1;
3299 schedule_timeout_uninterruptible(1);
3300 return NULL;
3301 }
3302
3303 /*
3304 * Go through the zonelist yet one more time, keep very high watermark
3305 * here, this is only to catch a parallel oom killing, we must fail if
3306 * we're still under heavy pressure. But make sure that this reclaim
3307 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3308 * allocation which will never fail due to oom_lock already held.
3309 */
3310 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3311 ~__GFP_DIRECT_RECLAIM, order,
3312 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3313 if (page)
3314 goto out;
3315
3316 /* Coredumps can quickly deplete all memory reserves */
3317 if (current->flags & PF_DUMPCORE)
3318 goto out;
3319 /* The OOM killer will not help higher order allocs */
3320 if (order > PAGE_ALLOC_COSTLY_ORDER)
3321 goto out;
3322 /*
3323 * We have already exhausted all our reclaim opportunities without any
3324 * success so it is time to admit defeat. We will skip the OOM killer
3325 * because it is very likely that the caller has a more reasonable
3326 * fallback than shooting a random task.
3327 */
3328 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3329 goto out;
3330 /* The OOM killer does not needlessly kill tasks for lowmem */
3331 if (ac->high_zoneidx < ZONE_NORMAL)
3332 goto out;
3333 if (pm_suspended_storage())
3334 goto out;
3335 /*
3336 * XXX: GFP_NOFS allocations should rather fail than rely on
3337 * other request to make a forward progress.
3338 * We are in an unfortunate situation where out_of_memory cannot
3339 * do much for this context but let's try it to at least get
3340 * access to memory reserved if the current task is killed (see
3341 * out_of_memory). Once filesystems are ready to handle allocation
3342 * failures more gracefully we should just bail out here.
3343 */
3344
3345 /* The OOM killer may not free memory on a specific node */
3346 if (gfp_mask & __GFP_THISNODE)
3347 goto out;
3348
3349 /* Exhausted what can be done so it's blamo time */
3350 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3351 *did_some_progress = 1;
3352
3353 /*
3354 * Help non-failing allocations by giving them access to memory
3355 * reserves
3356 */
3357 if (gfp_mask & __GFP_NOFAIL)
3358 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3359 ALLOC_NO_WATERMARKS, ac);
3360 }
3361 out:
3362 mutex_unlock(&oom_lock);
3363 return page;
3364 }
3365
3366 /*
3367 * Maximum number of compaction retries wit a progress before OOM
3368 * killer is consider as the only way to move forward.
3369 */
3370 #define MAX_COMPACT_RETRIES 16
3371
3372 #ifdef CONFIG_COMPACTION
3373 /* Try memory compaction for high-order allocations before reclaim */
3374 static struct page *
3375 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3376 unsigned int alloc_flags, const struct alloc_context *ac,
3377 enum compact_priority prio, enum compact_result *compact_result)
3378 {
3379 struct page *page;
3380 unsigned int noreclaim_flag;
3381
3382 if (!order)
3383 return NULL;
3384
3385 noreclaim_flag = memalloc_noreclaim_save();
3386 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3387 prio);
3388 memalloc_noreclaim_restore(noreclaim_flag);
3389
3390 if (*compact_result <= COMPACT_INACTIVE)
3391 return NULL;
3392
3393 /*
3394 * At least in one zone compaction wasn't deferred or skipped, so let's
3395 * count a compaction stall
3396 */
3397 count_vm_event(COMPACTSTALL);
3398
3399 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3400
3401 if (page) {
3402 struct zone *zone = page_zone(page);
3403
3404 zone->compact_blockskip_flush = false;
3405 compaction_defer_reset(zone, order, true);
3406 count_vm_event(COMPACTSUCCESS);
3407 return page;
3408 }
3409
3410 /*
3411 * It's bad if compaction run occurs and fails. The most likely reason
3412 * is that pages exist, but not enough to satisfy watermarks.
3413 */
3414 count_vm_event(COMPACTFAIL);
3415
3416 cond_resched();
3417
3418 return NULL;
3419 }
3420
3421 static inline bool
3422 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3423 enum compact_result compact_result,
3424 enum compact_priority *compact_priority,
3425 int *compaction_retries)
3426 {
3427 int max_retries = MAX_COMPACT_RETRIES;
3428 int min_priority;
3429 bool ret = false;
3430 int retries = *compaction_retries;
3431 enum compact_priority priority = *compact_priority;
3432
3433 if (!order)
3434 return false;
3435
3436 if (compaction_made_progress(compact_result))
3437 (*compaction_retries)++;
3438
3439 /*
3440 * compaction considers all the zone as desperately out of memory
3441 * so it doesn't really make much sense to retry except when the
3442 * failure could be caused by insufficient priority
3443 */
3444 if (compaction_failed(compact_result))
3445 goto check_priority;
3446
3447 /*
3448 * make sure the compaction wasn't deferred or didn't bail out early
3449 * due to locks contention before we declare that we should give up.
3450 * But do not retry if the given zonelist is not suitable for
3451 * compaction.
3452 */
3453 if (compaction_withdrawn(compact_result)) {
3454 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3455 goto out;
3456 }
3457
3458 /*
3459 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3460 * costly ones because they are de facto nofail and invoke OOM
3461 * killer to move on while costly can fail and users are ready
3462 * to cope with that. 1/4 retries is rather arbitrary but we
3463 * would need much more detailed feedback from compaction to
3464 * make a better decision.
3465 */
3466 if (order > PAGE_ALLOC_COSTLY_ORDER)
3467 max_retries /= 4;
3468 if (*compaction_retries <= max_retries) {
3469 ret = true;
3470 goto out;
3471 }
3472
3473 /*
3474 * Make sure there are attempts at the highest priority if we exhausted
3475 * all retries or failed at the lower priorities.
3476 */
3477 check_priority:
3478 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3479 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3480
3481 if (*compact_priority > min_priority) {
3482 (*compact_priority)--;
3483 *compaction_retries = 0;
3484 ret = true;
3485 }
3486 out:
3487 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3488 return ret;
3489 }
3490 #else
3491 static inline struct page *
3492 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3493 unsigned int alloc_flags, const struct alloc_context *ac,
3494 enum compact_priority prio, enum compact_result *compact_result)
3495 {
3496 *compact_result = COMPACT_SKIPPED;
3497 return NULL;
3498 }
3499
3500 static inline bool
3501 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3502 enum compact_result compact_result,
3503 enum compact_priority *compact_priority,
3504 int *compaction_retries)
3505 {
3506 struct zone *zone;
3507 struct zoneref *z;
3508
3509 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3510 return false;
3511
3512 /*
3513 * There are setups with compaction disabled which would prefer to loop
3514 * inside the allocator rather than hit the oom killer prematurely.
3515 * Let's give them a good hope and keep retrying while the order-0
3516 * watermarks are OK.
3517 */
3518 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3519 ac->nodemask) {
3520 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3521 ac_classzone_idx(ac), alloc_flags))
3522 return true;
3523 }
3524 return false;
3525 }
3526 #endif /* CONFIG_COMPACTION */
3527
3528 #ifdef CONFIG_LOCKDEP
3529 struct lockdep_map __fs_reclaim_map =
3530 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3531
3532 static bool __need_fs_reclaim(gfp_t gfp_mask)
3533 {
3534 gfp_mask = current_gfp_context(gfp_mask);
3535
3536 /* no reclaim without waiting on it */
3537 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3538 return false;
3539
3540 /* this guy won't enter reclaim */
3541 if (current->flags & PF_MEMALLOC)
3542 return false;
3543
3544 /* We're only interested __GFP_FS allocations for now */
3545 if (!(gfp_mask & __GFP_FS))
3546 return false;
3547
3548 if (gfp_mask & __GFP_NOLOCKDEP)
3549 return false;
3550
3551 return true;
3552 }
3553
3554 void fs_reclaim_acquire(gfp_t gfp_mask)
3555 {
3556 if (__need_fs_reclaim(gfp_mask))
3557 lock_map_acquire(&__fs_reclaim_map);
3558 }
3559 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3560
3561 void fs_reclaim_release(gfp_t gfp_mask)
3562 {
3563 if (__need_fs_reclaim(gfp_mask))
3564 lock_map_release(&__fs_reclaim_map);
3565 }
3566 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3567 #endif
3568
3569 /* Perform direct synchronous page reclaim */
3570 static int
3571 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3572 const struct alloc_context *ac)
3573 {
3574 struct reclaim_state reclaim_state;
3575 int progress;
3576 unsigned int noreclaim_flag;
3577
3578 cond_resched();
3579
3580 /* We now go into synchronous reclaim */
3581 cpuset_memory_pressure_bump();
3582 noreclaim_flag = memalloc_noreclaim_save();
3583 fs_reclaim_acquire(gfp_mask);
3584 reclaim_state.reclaimed_slab = 0;
3585 current->reclaim_state = &reclaim_state;
3586
3587 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3588 ac->nodemask);
3589
3590 current->reclaim_state = NULL;
3591 fs_reclaim_release(gfp_mask);
3592 memalloc_noreclaim_restore(noreclaim_flag);
3593
3594 cond_resched();
3595
3596 return progress;
3597 }
3598
3599 /* The really slow allocator path where we enter direct reclaim */
3600 static inline struct page *
3601 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3602 unsigned int alloc_flags, const struct alloc_context *ac,
3603 unsigned long *did_some_progress)
3604 {
3605 struct page *page = NULL;
3606 bool drained = false;
3607
3608 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3609 if (unlikely(!(*did_some_progress)))
3610 return NULL;
3611
3612 retry:
3613 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3614
3615 /*
3616 * If an allocation failed after direct reclaim, it could be because
3617 * pages are pinned on the per-cpu lists or in high alloc reserves.
3618 * Shrink them them and try again
3619 */
3620 if (!page && !drained) {
3621 unreserve_highatomic_pageblock(ac, false);
3622 drain_all_pages(NULL);
3623 drained = true;
3624 goto retry;
3625 }
3626
3627 return page;
3628 }
3629
3630 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3631 {
3632 struct zoneref *z;
3633 struct zone *zone;
3634 pg_data_t *last_pgdat = NULL;
3635
3636 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3637 ac->high_zoneidx, ac->nodemask) {
3638 if (last_pgdat != zone->zone_pgdat)
3639 wakeup_kswapd(zone, order, ac->high_zoneidx);
3640 last_pgdat = zone->zone_pgdat;
3641 }
3642 }
3643
3644 static inline unsigned int
3645 gfp_to_alloc_flags(gfp_t gfp_mask)
3646 {
3647 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3648
3649 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3650 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3651
3652 /*
3653 * The caller may dip into page reserves a bit more if the caller
3654 * cannot run direct reclaim, or if the caller has realtime scheduling
3655 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3656 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3657 */
3658 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3659
3660 if (gfp_mask & __GFP_ATOMIC) {
3661 /*
3662 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3663 * if it can't schedule.
3664 */
3665 if (!(gfp_mask & __GFP_NOMEMALLOC))
3666 alloc_flags |= ALLOC_HARDER;
3667 /*
3668 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3669 * comment for __cpuset_node_allowed().
3670 */
3671 alloc_flags &= ~ALLOC_CPUSET;
3672 } else if (unlikely(rt_task(current)) && !in_interrupt())
3673 alloc_flags |= ALLOC_HARDER;
3674
3675 #ifdef CONFIG_CMA
3676 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3677 alloc_flags |= ALLOC_CMA;
3678 #endif
3679 return alloc_flags;
3680 }
3681
3682 static bool oom_reserves_allowed(struct task_struct *tsk)
3683 {
3684 if (!tsk_is_oom_victim(tsk))
3685 return false;
3686
3687 /*
3688 * !MMU doesn't have oom reaper so give access to memory reserves
3689 * only to the thread with TIF_MEMDIE set
3690 */
3691 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3692 return false;
3693
3694 return true;
3695 }
3696
3697 /*
3698 * Distinguish requests which really need access to full memory
3699 * reserves from oom victims which can live with a portion of it
3700 */
3701 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3702 {
3703 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3704 return 0;
3705 if (gfp_mask & __GFP_MEMALLOC)
3706 return ALLOC_NO_WATERMARKS;
3707 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3708 return ALLOC_NO_WATERMARKS;
3709 if (!in_interrupt()) {
3710 if (current->flags & PF_MEMALLOC)
3711 return ALLOC_NO_WATERMARKS;
3712 else if (oom_reserves_allowed(current))
3713 return ALLOC_OOM;
3714 }
3715
3716 return 0;
3717 }
3718
3719 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3720 {
3721 return !!__gfp_pfmemalloc_flags(gfp_mask);
3722 }
3723
3724 /*
3725 * Checks whether it makes sense to retry the reclaim to make a forward progress
3726 * for the given allocation request.
3727 *
3728 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3729 * without success, or when we couldn't even meet the watermark if we
3730 * reclaimed all remaining pages on the LRU lists.
3731 *
3732 * Returns true if a retry is viable or false to enter the oom path.
3733 */
3734 static inline bool
3735 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3736 struct alloc_context *ac, int alloc_flags,
3737 bool did_some_progress, int *no_progress_loops)
3738 {
3739 struct zone *zone;
3740 struct zoneref *z;
3741
3742 /*
3743 * Costly allocations might have made a progress but this doesn't mean
3744 * their order will become available due to high fragmentation so
3745 * always increment the no progress counter for them
3746 */
3747 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3748 *no_progress_loops = 0;
3749 else
3750 (*no_progress_loops)++;
3751
3752 /*
3753 * Make sure we converge to OOM if we cannot make any progress
3754 * several times in the row.
3755 */
3756 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3757 /* Before OOM, exhaust highatomic_reserve */
3758 return unreserve_highatomic_pageblock(ac, true);
3759 }
3760
3761 /*
3762 * Keep reclaiming pages while there is a chance this will lead
3763 * somewhere. If none of the target zones can satisfy our allocation
3764 * request even if all reclaimable pages are considered then we are
3765 * screwed and have to go OOM.
3766 */
3767 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3768 ac->nodemask) {
3769 unsigned long available;
3770 unsigned long reclaimable;
3771 unsigned long min_wmark = min_wmark_pages(zone);
3772 bool wmark;
3773
3774 available = reclaimable = zone_reclaimable_pages(zone);
3775 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3776
3777 /*
3778 * Would the allocation succeed if we reclaimed all
3779 * reclaimable pages?
3780 */
3781 wmark = __zone_watermark_ok(zone, order, min_wmark,
3782 ac_classzone_idx(ac), alloc_flags, available);
3783 trace_reclaim_retry_zone(z, order, reclaimable,
3784 available, min_wmark, *no_progress_loops, wmark);
3785 if (wmark) {
3786 /*
3787 * If we didn't make any progress and have a lot of
3788 * dirty + writeback pages then we should wait for
3789 * an IO to complete to slow down the reclaim and
3790 * prevent from pre mature OOM
3791 */
3792 if (!did_some_progress) {
3793 unsigned long write_pending;
3794
3795 write_pending = zone_page_state_snapshot(zone,
3796 NR_ZONE_WRITE_PENDING);
3797
3798 if (2 * write_pending > reclaimable) {
3799 congestion_wait(BLK_RW_ASYNC, HZ/10);
3800 return true;
3801 }
3802 }
3803
3804 /*
3805 * Memory allocation/reclaim might be called from a WQ
3806 * context and the current implementation of the WQ
3807 * concurrency control doesn't recognize that
3808 * a particular WQ is congested if the worker thread is
3809 * looping without ever sleeping. Therefore we have to
3810 * do a short sleep here rather than calling
3811 * cond_resched().
3812 */
3813 if (current->flags & PF_WQ_WORKER)
3814 schedule_timeout_uninterruptible(1);
3815 else
3816 cond_resched();
3817
3818 return true;
3819 }
3820 }
3821
3822 return false;
3823 }
3824
3825 static inline bool
3826 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3827 {
3828 /*
3829 * It's possible that cpuset's mems_allowed and the nodemask from
3830 * mempolicy don't intersect. This should be normally dealt with by
3831 * policy_nodemask(), but it's possible to race with cpuset update in
3832 * such a way the check therein was true, and then it became false
3833 * before we got our cpuset_mems_cookie here.
3834 * This assumes that for all allocations, ac->nodemask can come only
3835 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3836 * when it does not intersect with the cpuset restrictions) or the
3837 * caller can deal with a violated nodemask.
3838 */
3839 if (cpusets_enabled() && ac->nodemask &&
3840 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3841 ac->nodemask = NULL;
3842 return true;
3843 }
3844
3845 /*
3846 * When updating a task's mems_allowed or mempolicy nodemask, it is
3847 * possible to race with parallel threads in such a way that our
3848 * allocation can fail while the mask is being updated. If we are about
3849 * to fail, check if the cpuset changed during allocation and if so,
3850 * retry.
3851 */
3852 if (read_mems_allowed_retry(cpuset_mems_cookie))
3853 return true;
3854
3855 return false;
3856 }
3857
3858 static inline struct page *
3859 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3860 struct alloc_context *ac)
3861 {
3862 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3863 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3864 struct page *page = NULL;
3865 unsigned int alloc_flags;
3866 unsigned long did_some_progress;
3867 enum compact_priority compact_priority;
3868 enum compact_result compact_result;
3869 int compaction_retries;
3870 int no_progress_loops;
3871 unsigned int cpuset_mems_cookie;
3872 int reserve_flags;
3873
3874 /*
3875 * We also sanity check to catch abuse of atomic reserves being used by
3876 * callers that are not in atomic context.
3877 */
3878 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3879 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3880 gfp_mask &= ~__GFP_ATOMIC;
3881
3882 retry_cpuset:
3883 compaction_retries = 0;
3884 no_progress_loops = 0;
3885 compact_priority = DEF_COMPACT_PRIORITY;
3886 cpuset_mems_cookie = read_mems_allowed_begin();
3887
3888 /*
3889 * The fast path uses conservative alloc_flags to succeed only until
3890 * kswapd needs to be woken up, and to avoid the cost of setting up
3891 * alloc_flags precisely. So we do that now.
3892 */
3893 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3894
3895 /*
3896 * We need to recalculate the starting point for the zonelist iterator
3897 * because we might have used different nodemask in the fast path, or
3898 * there was a cpuset modification and we are retrying - otherwise we
3899 * could end up iterating over non-eligible zones endlessly.
3900 */
3901 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3902 ac->high_zoneidx, ac->nodemask);
3903 if (!ac->preferred_zoneref->zone)
3904 goto nopage;
3905
3906 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3907 wake_all_kswapds(order, ac);
3908
3909 /*
3910 * The adjusted alloc_flags might result in immediate success, so try
3911 * that first
3912 */
3913 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3914 if (page)
3915 goto got_pg;
3916
3917 /*
3918 * For costly allocations, try direct compaction first, as it's likely
3919 * that we have enough base pages and don't need to reclaim. For non-
3920 * movable high-order allocations, do that as well, as compaction will
3921 * try prevent permanent fragmentation by migrating from blocks of the
3922 * same migratetype.
3923 * Don't try this for allocations that are allowed to ignore
3924 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3925 */
3926 if (can_direct_reclaim &&
3927 (costly_order ||
3928 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3929 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3930 page = __alloc_pages_direct_compact(gfp_mask, order,
3931 alloc_flags, ac,
3932 INIT_COMPACT_PRIORITY,
3933 &compact_result);
3934 if (page)
3935 goto got_pg;
3936
3937 /*
3938 * Checks for costly allocations with __GFP_NORETRY, which
3939 * includes THP page fault allocations
3940 */
3941 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3942 /*
3943 * If compaction is deferred for high-order allocations,
3944 * it is because sync compaction recently failed. If
3945 * this is the case and the caller requested a THP
3946 * allocation, we do not want to heavily disrupt the
3947 * system, so we fail the allocation instead of entering
3948 * direct reclaim.
3949 */
3950 if (compact_result == COMPACT_DEFERRED)
3951 goto nopage;
3952
3953 /*
3954 * Looks like reclaim/compaction is worth trying, but
3955 * sync compaction could be very expensive, so keep
3956 * using async compaction.
3957 */
3958 compact_priority = INIT_COMPACT_PRIORITY;
3959 }
3960 }
3961
3962 retry:
3963 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3964 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3965 wake_all_kswapds(order, ac);
3966
3967 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
3968 if (reserve_flags)
3969 alloc_flags = reserve_flags;
3970
3971 /*
3972 * Reset the zonelist iterators if memory policies can be ignored.
3973 * These allocations are high priority and system rather than user
3974 * orientated.
3975 */
3976 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
3977 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3978 ac->high_zoneidx, ac->nodemask);
3979 }
3980
3981 /* Attempt with potentially adjusted zonelist and alloc_flags */
3982 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3983 if (page)
3984 goto got_pg;
3985
3986 /* Caller is not willing to reclaim, we can't balance anything */
3987 if (!can_direct_reclaim)
3988 goto nopage;
3989
3990 /* Avoid recursion of direct reclaim */
3991 if (current->flags & PF_MEMALLOC)
3992 goto nopage;
3993
3994 /* Try direct reclaim and then allocating */
3995 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3996 &did_some_progress);
3997 if (page)
3998 goto got_pg;
3999
4000 /* Try direct compaction and then allocating */
4001 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4002 compact_priority, &compact_result);
4003 if (page)
4004 goto got_pg;
4005
4006 /* Do not loop if specifically requested */
4007 if (gfp_mask & __GFP_NORETRY)
4008 goto nopage;
4009
4010 /*
4011 * Do not retry costly high order allocations unless they are
4012 * __GFP_RETRY_MAYFAIL
4013 */
4014 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4015 goto nopage;
4016
4017 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4018 did_some_progress > 0, &no_progress_loops))
4019 goto retry;
4020
4021 /*
4022 * It doesn't make any sense to retry for the compaction if the order-0
4023 * reclaim is not able to make any progress because the current
4024 * implementation of the compaction depends on the sufficient amount
4025 * of free memory (see __compaction_suitable)
4026 */
4027 if (did_some_progress > 0 &&
4028 should_compact_retry(ac, order, alloc_flags,
4029 compact_result, &compact_priority,
4030 &compaction_retries))
4031 goto retry;
4032
4033
4034 /* Deal with possible cpuset update races before we start OOM killing */
4035 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4036 goto retry_cpuset;
4037
4038 /* Reclaim has failed us, start killing things */
4039 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4040 if (page)
4041 goto got_pg;
4042
4043 /* Avoid allocations with no watermarks from looping endlessly */
4044 if (tsk_is_oom_victim(current) &&
4045 (alloc_flags == ALLOC_OOM ||
4046 (gfp_mask & __GFP_NOMEMALLOC)))
4047 goto nopage;
4048
4049 /* Retry as long as the OOM killer is making progress */
4050 if (did_some_progress) {
4051 no_progress_loops = 0;
4052 goto retry;
4053 }
4054
4055 nopage:
4056 /* Deal with possible cpuset update races before we fail */
4057 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4058 goto retry_cpuset;
4059
4060 /*
4061 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4062 * we always retry
4063 */
4064 if (gfp_mask & __GFP_NOFAIL) {
4065 /*
4066 * All existing users of the __GFP_NOFAIL are blockable, so warn
4067 * of any new users that actually require GFP_NOWAIT
4068 */
4069 if (WARN_ON_ONCE(!can_direct_reclaim))
4070 goto fail;
4071
4072 /*
4073 * PF_MEMALLOC request from this context is rather bizarre
4074 * because we cannot reclaim anything and only can loop waiting
4075 * for somebody to do a work for us
4076 */
4077 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4078
4079 /*
4080 * non failing costly orders are a hard requirement which we
4081 * are not prepared for much so let's warn about these users
4082 * so that we can identify them and convert them to something
4083 * else.
4084 */
4085 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4086
4087 /*
4088 * Help non-failing allocations by giving them access to memory
4089 * reserves but do not use ALLOC_NO_WATERMARKS because this
4090 * could deplete whole memory reserves which would just make
4091 * the situation worse
4092 */
4093 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4094 if (page)
4095 goto got_pg;
4096
4097 cond_resched();
4098 goto retry;
4099 }
4100 fail:
4101 warn_alloc(gfp_mask, ac->nodemask,
4102 "page allocation failure: order:%u", order);
4103 got_pg:
4104 return page;
4105 }
4106
4107 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4108 int preferred_nid, nodemask_t *nodemask,
4109 struct alloc_context *ac, gfp_t *alloc_mask,
4110 unsigned int *alloc_flags)
4111 {
4112 ac->high_zoneidx = gfp_zone(gfp_mask);
4113 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4114 ac->nodemask = nodemask;
4115 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4116
4117 if (cpusets_enabled()) {
4118 *alloc_mask |= __GFP_HARDWALL;
4119 if (!ac->nodemask)
4120 ac->nodemask = &cpuset_current_mems_allowed;
4121 else
4122 *alloc_flags |= ALLOC_CPUSET;
4123 }
4124
4125 fs_reclaim_acquire(gfp_mask);
4126 fs_reclaim_release(gfp_mask);
4127
4128 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4129
4130 if (should_fail_alloc_page(gfp_mask, order))
4131 return false;
4132
4133 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4134 *alloc_flags |= ALLOC_CMA;
4135
4136 return true;
4137 }
4138
4139 /* Determine whether to spread dirty pages and what the first usable zone */
4140 static inline void finalise_ac(gfp_t gfp_mask,
4141 unsigned int order, struct alloc_context *ac)
4142 {
4143 /* Dirty zone balancing only done in the fast path */
4144 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4145
4146 /*
4147 * The preferred zone is used for statistics but crucially it is
4148 * also used as the starting point for the zonelist iterator. It
4149 * may get reset for allocations that ignore memory policies.
4150 */
4151 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4152 ac->high_zoneidx, ac->nodemask);
4153 }
4154
4155 /*
4156 * This is the 'heart' of the zoned buddy allocator.
4157 */
4158 struct page *
4159 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4160 nodemask_t *nodemask)
4161 {
4162 struct page *page;
4163 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4164 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4165 struct alloc_context ac = { };
4166
4167 /*
4168 * There are several places where we assume that the order value is sane
4169 * so bail out early if the request is out of bound.
4170 */
4171 if (unlikely(order >= MAX_ORDER)) {
4172 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4173 return NULL;
4174 }
4175
4176 gfp_mask &= gfp_allowed_mask;
4177 alloc_mask = gfp_mask;
4178 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4179 return NULL;
4180
4181 finalise_ac(gfp_mask, order, &ac);
4182
4183 /* First allocation attempt */
4184 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4185 if (likely(page))
4186 goto out;
4187
4188 /*
4189 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4190 * resp. GFP_NOIO which has to be inherited for all allocation requests
4191 * from a particular context which has been marked by
4192 * memalloc_no{fs,io}_{save,restore}.
4193 */
4194 alloc_mask = current_gfp_context(gfp_mask);
4195 ac.spread_dirty_pages = false;
4196
4197 /*
4198 * Restore the original nodemask if it was potentially replaced with
4199 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4200 */
4201 if (unlikely(ac.nodemask != nodemask))
4202 ac.nodemask = nodemask;
4203
4204 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4205
4206 out:
4207 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4208 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4209 __free_pages(page, order);
4210 page = NULL;
4211 }
4212
4213 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4214
4215 return page;
4216 }
4217 EXPORT_SYMBOL(__alloc_pages_nodemask);
4218
4219 /*
4220 * Common helper functions.
4221 */
4222 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4223 {
4224 struct page *page;
4225
4226 /*
4227 * __get_free_pages() returns a 32-bit address, which cannot represent
4228 * a highmem page
4229 */
4230 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4231
4232 page = alloc_pages(gfp_mask, order);
4233 if (!page)
4234 return 0;
4235 return (unsigned long) page_address(page);
4236 }
4237 EXPORT_SYMBOL(__get_free_pages);
4238
4239 unsigned long get_zeroed_page(gfp_t gfp_mask)
4240 {
4241 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4242 }
4243 EXPORT_SYMBOL(get_zeroed_page);
4244
4245 void __free_pages(struct page *page, unsigned int order)
4246 {
4247 if (put_page_testzero(page)) {
4248 if (order == 0)
4249 free_hot_cold_page(page, false);
4250 else
4251 __free_pages_ok(page, order);
4252 }
4253 }
4254
4255 EXPORT_SYMBOL(__free_pages);
4256
4257 void free_pages(unsigned long addr, unsigned int order)
4258 {
4259 if (addr != 0) {
4260 VM_BUG_ON(!virt_addr_valid((void *)addr));
4261 __free_pages(virt_to_page((void *)addr), order);
4262 }
4263 }
4264
4265 EXPORT_SYMBOL(free_pages);
4266
4267 /*
4268 * Page Fragment:
4269 * An arbitrary-length arbitrary-offset area of memory which resides
4270 * within a 0 or higher order page. Multiple fragments within that page
4271 * are individually refcounted, in the page's reference counter.
4272 *
4273 * The page_frag functions below provide a simple allocation framework for
4274 * page fragments. This is used by the network stack and network device
4275 * drivers to provide a backing region of memory for use as either an
4276 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4277 */
4278 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4279 gfp_t gfp_mask)
4280 {
4281 struct page *page = NULL;
4282 gfp_t gfp = gfp_mask;
4283
4284 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4285 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4286 __GFP_NOMEMALLOC;
4287 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4288 PAGE_FRAG_CACHE_MAX_ORDER);
4289 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4290 #endif
4291 if (unlikely(!page))
4292 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4293
4294 nc->va = page ? page_address(page) : NULL;
4295
4296 return page;
4297 }
4298
4299 void __page_frag_cache_drain(struct page *page, unsigned int count)
4300 {
4301 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4302
4303 if (page_ref_sub_and_test(page, count)) {
4304 unsigned int order = compound_order(page);
4305
4306 if (order == 0)
4307 free_hot_cold_page(page, false);
4308 else
4309 __free_pages_ok(page, order);
4310 }
4311 }
4312 EXPORT_SYMBOL(__page_frag_cache_drain);
4313
4314 void *page_frag_alloc(struct page_frag_cache *nc,
4315 unsigned int fragsz, gfp_t gfp_mask)
4316 {
4317 unsigned int size = PAGE_SIZE;
4318 struct page *page;
4319 int offset;
4320
4321 if (unlikely(!nc->va)) {
4322 refill:
4323 page = __page_frag_cache_refill(nc, gfp_mask);
4324 if (!page)
4325 return NULL;
4326
4327 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4328 /* if size can vary use size else just use PAGE_SIZE */
4329 size = nc->size;
4330 #endif
4331 /* Even if we own the page, we do not use atomic_set().
4332 * This would break get_page_unless_zero() users.
4333 */
4334 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4335
4336 /* reset page count bias and offset to start of new frag */
4337 nc->pfmemalloc = page_is_pfmemalloc(page);
4338 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4339 nc->offset = size;
4340 }
4341
4342 offset = nc->offset - fragsz;
4343 if (unlikely(offset < 0)) {
4344 page = virt_to_page(nc->va);
4345
4346 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4347 goto refill;
4348
4349 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4350 /* if size can vary use size else just use PAGE_SIZE */
4351 size = nc->size;
4352 #endif
4353 /* OK, page count is 0, we can safely set it */
4354 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4355
4356 /* reset page count bias and offset to start of new frag */
4357 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4358 offset = size - fragsz;
4359 }
4360
4361 nc->pagecnt_bias--;
4362 nc->offset = offset;
4363
4364 return nc->va + offset;
4365 }
4366 EXPORT_SYMBOL(page_frag_alloc);
4367
4368 /*
4369 * Frees a page fragment allocated out of either a compound or order 0 page.
4370 */
4371 void page_frag_free(void *addr)
4372 {
4373 struct page *page = virt_to_head_page(addr);
4374
4375 if (unlikely(put_page_testzero(page)))
4376 __free_pages_ok(page, compound_order(page));
4377 }
4378 EXPORT_SYMBOL(page_frag_free);
4379
4380 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4381 size_t size)
4382 {
4383 if (addr) {
4384 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4385 unsigned long used = addr + PAGE_ALIGN(size);
4386
4387 split_page(virt_to_page((void *)addr), order);
4388 while (used < alloc_end) {
4389 free_page(used);
4390 used += PAGE_SIZE;
4391 }
4392 }
4393 return (void *)addr;
4394 }
4395
4396 /**
4397 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4398 * @size: the number of bytes to allocate
4399 * @gfp_mask: GFP flags for the allocation
4400 *
4401 * This function is similar to alloc_pages(), except that it allocates the
4402 * minimum number of pages to satisfy the request. alloc_pages() can only
4403 * allocate memory in power-of-two pages.
4404 *
4405 * This function is also limited by MAX_ORDER.
4406 *
4407 * Memory allocated by this function must be released by free_pages_exact().
4408 */
4409 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4410 {
4411 unsigned int order = get_order(size);
4412 unsigned long addr;
4413
4414 addr = __get_free_pages(gfp_mask, order);
4415 return make_alloc_exact(addr, order, size);
4416 }
4417 EXPORT_SYMBOL(alloc_pages_exact);
4418
4419 /**
4420 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4421 * pages on a node.
4422 * @nid: the preferred node ID where memory should be allocated
4423 * @size: the number of bytes to allocate
4424 * @gfp_mask: GFP flags for the allocation
4425 *
4426 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4427 * back.
4428 */
4429 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4430 {
4431 unsigned int order = get_order(size);
4432 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4433 if (!p)
4434 return NULL;
4435 return make_alloc_exact((unsigned long)page_address(p), order, size);
4436 }
4437
4438 /**
4439 * free_pages_exact - release memory allocated via alloc_pages_exact()
4440 * @virt: the value returned by alloc_pages_exact.
4441 * @size: size of allocation, same value as passed to alloc_pages_exact().
4442 *
4443 * Release the memory allocated by a previous call to alloc_pages_exact.
4444 */
4445 void free_pages_exact(void *virt, size_t size)
4446 {
4447 unsigned long addr = (unsigned long)virt;
4448 unsigned long end = addr + PAGE_ALIGN(size);
4449
4450 while (addr < end) {
4451 free_page(addr);
4452 addr += PAGE_SIZE;
4453 }
4454 }
4455 EXPORT_SYMBOL(free_pages_exact);
4456
4457 /**
4458 * nr_free_zone_pages - count number of pages beyond high watermark
4459 * @offset: The zone index of the highest zone
4460 *
4461 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4462 * high watermark within all zones at or below a given zone index. For each
4463 * zone, the number of pages is calculated as:
4464 *
4465 * nr_free_zone_pages = managed_pages - high_pages
4466 */
4467 static unsigned long nr_free_zone_pages(int offset)
4468 {
4469 struct zoneref *z;
4470 struct zone *zone;
4471
4472 /* Just pick one node, since fallback list is circular */
4473 unsigned long sum = 0;
4474
4475 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4476
4477 for_each_zone_zonelist(zone, z, zonelist, offset) {
4478 unsigned long size = zone->managed_pages;
4479 unsigned long high = high_wmark_pages(zone);
4480 if (size > high)
4481 sum += size - high;
4482 }
4483
4484 return sum;
4485 }
4486
4487 /**
4488 * nr_free_buffer_pages - count number of pages beyond high watermark
4489 *
4490 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4491 * watermark within ZONE_DMA and ZONE_NORMAL.
4492 */
4493 unsigned long nr_free_buffer_pages(void)
4494 {
4495 return nr_free_zone_pages(gfp_zone(GFP_USER));
4496 }
4497 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4498
4499 /**
4500 * nr_free_pagecache_pages - count number of pages beyond high watermark
4501 *
4502 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4503 * high watermark within all zones.
4504 */
4505 unsigned long nr_free_pagecache_pages(void)
4506 {
4507 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4508 }
4509
4510 static inline void show_node(struct zone *zone)
4511 {
4512 if (IS_ENABLED(CONFIG_NUMA))
4513 printk("Node %d ", zone_to_nid(zone));
4514 }
4515
4516 long si_mem_available(void)
4517 {
4518 long available;
4519 unsigned long pagecache;
4520 unsigned long wmark_low = 0;
4521 unsigned long pages[NR_LRU_LISTS];
4522 struct zone *zone;
4523 int lru;
4524
4525 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4526 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4527
4528 for_each_zone(zone)
4529 wmark_low += zone->watermark[WMARK_LOW];
4530
4531 /*
4532 * Estimate the amount of memory available for userspace allocations,
4533 * without causing swapping.
4534 */
4535 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4536
4537 /*
4538 * Not all the page cache can be freed, otherwise the system will
4539 * start swapping. Assume at least half of the page cache, or the
4540 * low watermark worth of cache, needs to stay.
4541 */
4542 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4543 pagecache -= min(pagecache / 2, wmark_low);
4544 available += pagecache;
4545
4546 /*
4547 * Part of the reclaimable slab consists of items that are in use,
4548 * and cannot be freed. Cap this estimate at the low watermark.
4549 */
4550 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4551 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4552 wmark_low);
4553
4554 /*
4555 * Part of the kernel memory, which can be released under memory
4556 * pressure.
4557 */
4558 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4559 PAGE_SHIFT;
4560
4561 if (available < 0)
4562 available = 0;
4563 return available;
4564 }
4565 EXPORT_SYMBOL_GPL(si_mem_available);
4566
4567 void si_meminfo(struct sysinfo *val)
4568 {
4569 val->totalram = totalram_pages;
4570 val->sharedram = global_node_page_state(NR_SHMEM);
4571 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4572 val->bufferram = nr_blockdev_pages();
4573 val->totalhigh = totalhigh_pages;
4574 val->freehigh = nr_free_highpages();
4575 val->mem_unit = PAGE_SIZE;
4576 }
4577
4578 EXPORT_SYMBOL(si_meminfo);
4579
4580 #ifdef CONFIG_NUMA
4581 void si_meminfo_node(struct sysinfo *val, int nid)
4582 {
4583 int zone_type; /* needs to be signed */
4584 unsigned long managed_pages = 0;
4585 unsigned long managed_highpages = 0;
4586 unsigned long free_highpages = 0;
4587 pg_data_t *pgdat = NODE_DATA(nid);
4588
4589 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4590 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4591 val->totalram = managed_pages;
4592 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4593 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4594 #ifdef CONFIG_HIGHMEM
4595 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4596 struct zone *zone = &pgdat->node_zones[zone_type];
4597
4598 if (is_highmem(zone)) {
4599 managed_highpages += zone->managed_pages;
4600 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4601 }
4602 }
4603 val->totalhigh = managed_highpages;
4604 val->freehigh = free_highpages;
4605 #else
4606 val->totalhigh = managed_highpages;
4607 val->freehigh = free_highpages;
4608 #endif
4609 val->mem_unit = PAGE_SIZE;
4610 }
4611 #endif
4612
4613 /*
4614 * Determine whether the node should be displayed or not, depending on whether
4615 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4616 */
4617 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4618 {
4619 if (!(flags & SHOW_MEM_FILTER_NODES))
4620 return false;
4621
4622 /*
4623 * no node mask - aka implicit memory numa policy. Do not bother with
4624 * the synchronization - read_mems_allowed_begin - because we do not
4625 * have to be precise here.
4626 */
4627 if (!nodemask)
4628 nodemask = &cpuset_current_mems_allowed;
4629
4630 return !node_isset(nid, *nodemask);
4631 }
4632
4633 #define K(x) ((x) << (PAGE_SHIFT-10))
4634
4635 static void show_migration_types(unsigned char type)
4636 {
4637 static const char types[MIGRATE_TYPES] = {
4638 [MIGRATE_UNMOVABLE] = 'U',
4639 [MIGRATE_MOVABLE] = 'M',
4640 [MIGRATE_RECLAIMABLE] = 'E',
4641 [MIGRATE_HIGHATOMIC] = 'H',
4642 #ifdef CONFIG_CMA
4643 [MIGRATE_CMA] = 'C',
4644 #endif
4645 #ifdef CONFIG_MEMORY_ISOLATION
4646 [MIGRATE_ISOLATE] = 'I',
4647 #endif
4648 };
4649 char tmp[MIGRATE_TYPES + 1];
4650 char *p = tmp;
4651 int i;
4652
4653 for (i = 0; i < MIGRATE_TYPES; i++) {
4654 if (type & (1 << i))
4655 *p++ = types[i];
4656 }
4657
4658 *p = '\0';
4659 printk(KERN_CONT "(%s) ", tmp);
4660 }
4661
4662 /*
4663 * Show free area list (used inside shift_scroll-lock stuff)
4664 * We also calculate the percentage fragmentation. We do this by counting the
4665 * memory on each free list with the exception of the first item on the list.
4666 *
4667 * Bits in @filter:
4668 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4669 * cpuset.
4670 */
4671 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4672 {
4673 unsigned long free_pcp = 0;
4674 int cpu;
4675 struct zone *zone;
4676 pg_data_t *pgdat;
4677
4678 for_each_populated_zone(zone) {
4679 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4680 continue;
4681
4682 for_each_online_cpu(cpu)
4683 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4684 }
4685
4686 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4687 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4688 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4689 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4690 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4691 " free:%lu free_pcp:%lu free_cma:%lu\n",
4692 global_node_page_state(NR_ACTIVE_ANON),
4693 global_node_page_state(NR_INACTIVE_ANON),
4694 global_node_page_state(NR_ISOLATED_ANON),
4695 global_node_page_state(NR_ACTIVE_FILE),
4696 global_node_page_state(NR_INACTIVE_FILE),
4697 global_node_page_state(NR_ISOLATED_FILE),
4698 global_node_page_state(NR_UNEVICTABLE),
4699 global_node_page_state(NR_FILE_DIRTY),
4700 global_node_page_state(NR_WRITEBACK),
4701 global_node_page_state(NR_UNSTABLE_NFS),
4702 global_node_page_state(NR_SLAB_RECLAIMABLE),
4703 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4704 global_node_page_state(NR_FILE_MAPPED),
4705 global_node_page_state(NR_SHMEM),
4706 global_zone_page_state(NR_PAGETABLE),
4707 global_zone_page_state(NR_BOUNCE),
4708 global_zone_page_state(NR_FREE_PAGES),
4709 free_pcp,
4710 global_zone_page_state(NR_FREE_CMA_PAGES));
4711
4712 for_each_online_pgdat(pgdat) {
4713 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4714 continue;
4715
4716 printk("Node %d"
4717 " active_anon:%lukB"
4718 " inactive_anon:%lukB"
4719 " active_file:%lukB"
4720 " inactive_file:%lukB"
4721 " unevictable:%lukB"
4722 " isolated(anon):%lukB"
4723 " isolated(file):%lukB"
4724 " mapped:%lukB"
4725 " dirty:%lukB"
4726 " writeback:%lukB"
4727 " shmem:%lukB"
4728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4729 " shmem_thp: %lukB"
4730 " shmem_pmdmapped: %lukB"
4731 " anon_thp: %lukB"
4732 #endif
4733 " writeback_tmp:%lukB"
4734 " unstable:%lukB"
4735 " all_unreclaimable? %s"
4736 "\n",
4737 pgdat->node_id,
4738 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4739 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4740 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4741 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4742 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4743 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4744 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4745 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4746 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4747 K(node_page_state(pgdat, NR_WRITEBACK)),
4748 K(node_page_state(pgdat, NR_SHMEM)),
4749 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4750 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4751 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4752 * HPAGE_PMD_NR),
4753 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4754 #endif
4755 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4756 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4757 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4758 "yes" : "no");
4759 }
4760
4761 for_each_populated_zone(zone) {
4762 int i;
4763
4764 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4765 continue;
4766
4767 free_pcp = 0;
4768 for_each_online_cpu(cpu)
4769 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4770
4771 show_node(zone);
4772 printk(KERN_CONT
4773 "%s"
4774 " free:%lukB"
4775 " min:%lukB"
4776 " low:%lukB"
4777 " high:%lukB"
4778 " active_anon:%lukB"
4779 " inactive_anon:%lukB"
4780 " active_file:%lukB"
4781 " inactive_file:%lukB"
4782 " unevictable:%lukB"
4783 " writepending:%lukB"
4784 " present:%lukB"
4785 " managed:%lukB"
4786 " mlocked:%lukB"
4787 " kernel_stack:%lukB"
4788 " pagetables:%lukB"
4789 " bounce:%lukB"
4790 " free_pcp:%lukB"
4791 " local_pcp:%ukB"
4792 " free_cma:%lukB"
4793 "\n",
4794 zone->name,
4795 K(zone_page_state(zone, NR_FREE_PAGES)),
4796 K(min_wmark_pages(zone)),
4797 K(low_wmark_pages(zone)),
4798 K(high_wmark_pages(zone)),
4799 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4800 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4801 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4802 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4803 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4804 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4805 K(zone->present_pages),
4806 K(zone->managed_pages),
4807 K(zone_page_state(zone, NR_MLOCK)),
4808 zone_page_state(zone, NR_KERNEL_STACK_KB),
4809 K(zone_page_state(zone, NR_PAGETABLE)),
4810 K(zone_page_state(zone, NR_BOUNCE)),
4811 K(free_pcp),
4812 K(this_cpu_read(zone->pageset->pcp.count)),
4813 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4814 printk("lowmem_reserve[]:");
4815 for (i = 0; i < MAX_NR_ZONES; i++)
4816 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4817 printk(KERN_CONT "\n");
4818 }
4819
4820 for_each_populated_zone(zone) {
4821 unsigned int order;
4822 unsigned long nr[MAX_ORDER], flags, total = 0;
4823 unsigned char types[MAX_ORDER];
4824
4825 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4826 continue;
4827 show_node(zone);
4828 printk(KERN_CONT "%s: ", zone->name);
4829
4830 spin_lock_irqsave(&zone->lock, flags);
4831 for (order = 0; order < MAX_ORDER; order++) {
4832 struct free_area *area = &zone->free_area[order];
4833 int type;
4834
4835 nr[order] = area->nr_free;
4836 total += nr[order] << order;
4837
4838 types[order] = 0;
4839 for (type = 0; type < MIGRATE_TYPES; type++) {
4840 if (!list_empty(&area->free_list[type]))
4841 types[order] |= 1 << type;
4842 }
4843 }
4844 spin_unlock_irqrestore(&zone->lock, flags);
4845 for (order = 0; order < MAX_ORDER; order++) {
4846 printk(KERN_CONT "%lu*%lukB ",
4847 nr[order], K(1UL) << order);
4848 if (nr[order])
4849 show_migration_types(types[order]);
4850 }
4851 printk(KERN_CONT "= %lukB\n", K(total));
4852 }
4853
4854 hugetlb_show_meminfo();
4855
4856 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4857
4858 show_swap_cache_info();
4859 }
4860
4861 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4862 {
4863 zoneref->zone = zone;
4864 zoneref->zone_idx = zone_idx(zone);
4865 }
4866
4867 /*
4868 * Builds allocation fallback zone lists.
4869 *
4870 * Add all populated zones of a node to the zonelist.
4871 */
4872 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4873 {
4874 struct zone *zone;
4875 enum zone_type zone_type = MAX_NR_ZONES;
4876 int nr_zones = 0;
4877
4878 do {
4879 zone_type--;
4880 zone = pgdat->node_zones + zone_type;
4881 if (managed_zone(zone)) {
4882 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4883 check_highest_zone(zone_type);
4884 }
4885 } while (zone_type);
4886
4887 return nr_zones;
4888 }
4889
4890 #ifdef CONFIG_NUMA
4891
4892 static int __parse_numa_zonelist_order(char *s)
4893 {
4894 /*
4895 * We used to support different zonlists modes but they turned
4896 * out to be just not useful. Let's keep the warning in place
4897 * if somebody still use the cmd line parameter so that we do
4898 * not fail it silently
4899 */
4900 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4901 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4902 return -EINVAL;
4903 }
4904 return 0;
4905 }
4906
4907 static __init int setup_numa_zonelist_order(char *s)
4908 {
4909 if (!s)
4910 return 0;
4911
4912 return __parse_numa_zonelist_order(s);
4913 }
4914 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4915
4916 char numa_zonelist_order[] = "Node";
4917
4918 /*
4919 * sysctl handler for numa_zonelist_order
4920 */
4921 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4922 void __user *buffer, size_t *length,
4923 loff_t *ppos)
4924 {
4925 char *str;
4926 int ret;
4927
4928 if (!write)
4929 return proc_dostring(table, write, buffer, length, ppos);
4930 str = memdup_user_nul(buffer, 16);
4931 if (IS_ERR(str))
4932 return PTR_ERR(str);
4933
4934 ret = __parse_numa_zonelist_order(str);
4935 kfree(str);
4936 return ret;
4937 }
4938
4939
4940 #define MAX_NODE_LOAD (nr_online_nodes)
4941 static int node_load[MAX_NUMNODES];
4942
4943 /**
4944 * find_next_best_node - find the next node that should appear in a given node's fallback list
4945 * @node: node whose fallback list we're appending
4946 * @used_node_mask: nodemask_t of already used nodes
4947 *
4948 * We use a number of factors to determine which is the next node that should
4949 * appear on a given node's fallback list. The node should not have appeared
4950 * already in @node's fallback list, and it should be the next closest node
4951 * according to the distance array (which contains arbitrary distance values
4952 * from each node to each node in the system), and should also prefer nodes
4953 * with no CPUs, since presumably they'll have very little allocation pressure
4954 * on them otherwise.
4955 * It returns -1 if no node is found.
4956 */
4957 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4958 {
4959 int n, val;
4960 int min_val = INT_MAX;
4961 int best_node = NUMA_NO_NODE;
4962 const struct cpumask *tmp = cpumask_of_node(0);
4963
4964 /* Use the local node if we haven't already */
4965 if (!node_isset(node, *used_node_mask)) {
4966 node_set(node, *used_node_mask);
4967 return node;
4968 }
4969
4970 for_each_node_state(n, N_MEMORY) {
4971
4972 /* Don't want a node to appear more than once */
4973 if (node_isset(n, *used_node_mask))
4974 continue;
4975
4976 /* Use the distance array to find the distance */
4977 val = node_distance(node, n);
4978
4979 /* Penalize nodes under us ("prefer the next node") */
4980 val += (n < node);
4981
4982 /* Give preference to headless and unused nodes */
4983 tmp = cpumask_of_node(n);
4984 if (!cpumask_empty(tmp))
4985 val += PENALTY_FOR_NODE_WITH_CPUS;
4986
4987 /* Slight preference for less loaded node */
4988 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4989 val += node_load[n];
4990
4991 if (val < min_val) {
4992 min_val = val;
4993 best_node = n;
4994 }
4995 }
4996
4997 if (best_node >= 0)
4998 node_set(best_node, *used_node_mask);
4999
5000 return best_node;
5001 }
5002
5003
5004 /*
5005 * Build zonelists ordered by node and zones within node.
5006 * This results in maximum locality--normal zone overflows into local
5007 * DMA zone, if any--but risks exhausting DMA zone.
5008 */
5009 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5010 unsigned nr_nodes)
5011 {
5012 struct zoneref *zonerefs;
5013 int i;
5014
5015 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5016
5017 for (i = 0; i < nr_nodes; i++) {
5018 int nr_zones;
5019
5020 pg_data_t *node = NODE_DATA(node_order[i]);
5021
5022 nr_zones = build_zonerefs_node(node, zonerefs);
5023 zonerefs += nr_zones;
5024 }
5025 zonerefs->zone = NULL;
5026 zonerefs->zone_idx = 0;
5027 }
5028
5029 /*
5030 * Build gfp_thisnode zonelists
5031 */
5032 static void build_thisnode_zonelists(pg_data_t *pgdat)
5033 {
5034 struct zoneref *zonerefs;
5035 int nr_zones;
5036
5037 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5038 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5039 zonerefs += nr_zones;
5040 zonerefs->zone = NULL;
5041 zonerefs->zone_idx = 0;
5042 }
5043
5044 /*
5045 * Build zonelists ordered by zone and nodes within zones.
5046 * This results in conserving DMA zone[s] until all Normal memory is
5047 * exhausted, but results in overflowing to remote node while memory
5048 * may still exist in local DMA zone.
5049 */
5050
5051 static void build_zonelists(pg_data_t *pgdat)
5052 {
5053 static int node_order[MAX_NUMNODES];
5054 int node, load, nr_nodes = 0;
5055 nodemask_t used_mask;
5056 int local_node, prev_node;
5057
5058 /* NUMA-aware ordering of nodes */
5059 local_node = pgdat->node_id;
5060 load = nr_online_nodes;
5061 prev_node = local_node;
5062 nodes_clear(used_mask);
5063
5064 memset(node_order, 0, sizeof(node_order));
5065 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5066 /*
5067 * We don't want to pressure a particular node.
5068 * So adding penalty to the first node in same
5069 * distance group to make it round-robin.
5070 */
5071 if (node_distance(local_node, node) !=
5072 node_distance(local_node, prev_node))
5073 node_load[node] = load;
5074
5075 node_order[nr_nodes++] = node;
5076 prev_node = node;
5077 load--;
5078 }
5079
5080 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5081 build_thisnode_zonelists(pgdat);
5082 }
5083
5084 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5085 /*
5086 * Return node id of node used for "local" allocations.
5087 * I.e., first node id of first zone in arg node's generic zonelist.
5088 * Used for initializing percpu 'numa_mem', which is used primarily
5089 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5090 */
5091 int local_memory_node(int node)
5092 {
5093 struct zoneref *z;
5094
5095 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5096 gfp_zone(GFP_KERNEL),
5097 NULL);
5098 return z->zone->node;
5099 }
5100 #endif
5101
5102 static void setup_min_unmapped_ratio(void);
5103 static void setup_min_slab_ratio(void);
5104 #else /* CONFIG_NUMA */
5105
5106 static void build_zonelists(pg_data_t *pgdat)
5107 {
5108 int node, local_node;
5109 struct zoneref *zonerefs;
5110 int nr_zones;
5111
5112 local_node = pgdat->node_id;
5113
5114 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5115 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5116 zonerefs += nr_zones;
5117
5118 /*
5119 * Now we build the zonelist so that it contains the zones
5120 * of all the other nodes.
5121 * We don't want to pressure a particular node, so when
5122 * building the zones for node N, we make sure that the
5123 * zones coming right after the local ones are those from
5124 * node N+1 (modulo N)
5125 */
5126 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5127 if (!node_online(node))
5128 continue;
5129 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5130 zonerefs += nr_zones;
5131 }
5132 for (node = 0; node < local_node; node++) {
5133 if (!node_online(node))
5134 continue;
5135 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5136 zonerefs += nr_zones;
5137 }
5138
5139 zonerefs->zone = NULL;
5140 zonerefs->zone_idx = 0;
5141 }
5142
5143 #endif /* CONFIG_NUMA */
5144
5145 /*
5146 * Boot pageset table. One per cpu which is going to be used for all
5147 * zones and all nodes. The parameters will be set in such a way
5148 * that an item put on a list will immediately be handed over to
5149 * the buddy list. This is safe since pageset manipulation is done
5150 * with interrupts disabled.
5151 *
5152 * The boot_pagesets must be kept even after bootup is complete for
5153 * unused processors and/or zones. They do play a role for bootstrapping
5154 * hotplugged processors.
5155 *
5156 * zoneinfo_show() and maybe other functions do
5157 * not check if the processor is online before following the pageset pointer.
5158 * Other parts of the kernel may not check if the zone is available.
5159 */
5160 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5161 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5162 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5163
5164 static void __build_all_zonelists(void *data)
5165 {
5166 int nid;
5167 int __maybe_unused cpu;
5168 pg_data_t *self = data;
5169 static DEFINE_SPINLOCK(lock);
5170
5171 spin_lock(&lock);
5172
5173 #ifdef CONFIG_NUMA
5174 memset(node_load, 0, sizeof(node_load));
5175 #endif
5176
5177 /*
5178 * This node is hotadded and no memory is yet present. So just
5179 * building zonelists is fine - no need to touch other nodes.
5180 */
5181 if (self && !node_online(self->node_id)) {
5182 build_zonelists(self);
5183 } else {
5184 for_each_online_node(nid) {
5185 pg_data_t *pgdat = NODE_DATA(nid);
5186
5187 build_zonelists(pgdat);
5188 }
5189
5190 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5191 /*
5192 * We now know the "local memory node" for each node--
5193 * i.e., the node of the first zone in the generic zonelist.
5194 * Set up numa_mem percpu variable for on-line cpus. During
5195 * boot, only the boot cpu should be on-line; we'll init the
5196 * secondary cpus' numa_mem as they come on-line. During
5197 * node/memory hotplug, we'll fixup all on-line cpus.
5198 */
5199 for_each_online_cpu(cpu)
5200 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5201 #endif
5202 }
5203
5204 spin_unlock(&lock);
5205 }
5206
5207 static noinline void __init
5208 build_all_zonelists_init(void)
5209 {
5210 int cpu;
5211
5212 __build_all_zonelists(NULL);
5213
5214 /*
5215 * Initialize the boot_pagesets that are going to be used
5216 * for bootstrapping processors. The real pagesets for
5217 * each zone will be allocated later when the per cpu
5218 * allocator is available.
5219 *
5220 * boot_pagesets are used also for bootstrapping offline
5221 * cpus if the system is already booted because the pagesets
5222 * are needed to initialize allocators on a specific cpu too.
5223 * F.e. the percpu allocator needs the page allocator which
5224 * needs the percpu allocator in order to allocate its pagesets
5225 * (a chicken-egg dilemma).
5226 */
5227 for_each_possible_cpu(cpu)
5228 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5229
5230 mminit_verify_zonelist();
5231 cpuset_init_current_mems_allowed();
5232 }
5233
5234 /*
5235 * unless system_state == SYSTEM_BOOTING.
5236 *
5237 * __ref due to call of __init annotated helper build_all_zonelists_init
5238 * [protected by SYSTEM_BOOTING].
5239 */
5240 void __ref build_all_zonelists(pg_data_t *pgdat)
5241 {
5242 if (system_state == SYSTEM_BOOTING) {
5243 build_all_zonelists_init();
5244 } else {
5245 __build_all_zonelists(pgdat);
5246 /* cpuset refresh routine should be here */
5247 }
5248 vm_total_pages = nr_free_pagecache_pages();
5249 /*
5250 * Disable grouping by mobility if the number of pages in the
5251 * system is too low to allow the mechanism to work. It would be
5252 * more accurate, but expensive to check per-zone. This check is
5253 * made on memory-hotadd so a system can start with mobility
5254 * disabled and enable it later
5255 */
5256 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5257 page_group_by_mobility_disabled = 1;
5258 else
5259 page_group_by_mobility_disabled = 0;
5260
5261 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5262 nr_online_nodes,
5263 page_group_by_mobility_disabled ? "off" : "on",
5264 vm_total_pages);
5265 #ifdef CONFIG_NUMA
5266 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5267 #endif
5268 }
5269
5270 /*
5271 * Initially all pages are reserved - free ones are freed
5272 * up by free_all_bootmem() once the early boot process is
5273 * done. Non-atomic initialization, single-pass.
5274 */
5275 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5276 unsigned long start_pfn, enum memmap_context context)
5277 {
5278 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5279 unsigned long end_pfn = start_pfn + size;
5280 pg_data_t *pgdat = NODE_DATA(nid);
5281 unsigned long pfn;
5282 unsigned long nr_initialised = 0;
5283 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5284 struct memblock_region *r = NULL, *tmp;
5285 #endif
5286
5287 if (highest_memmap_pfn < end_pfn - 1)
5288 highest_memmap_pfn = end_pfn - 1;
5289
5290 /*
5291 * Honor reservation requested by the driver for this ZONE_DEVICE
5292 * memory
5293 */
5294 if (altmap && start_pfn == altmap->base_pfn)
5295 start_pfn += altmap->reserve;
5296
5297 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5298 /*
5299 * There can be holes in boot-time mem_map[]s handed to this
5300 * function. They do not exist on hotplugged memory.
5301 */
5302 if (context != MEMMAP_EARLY)
5303 goto not_early;
5304
5305 if (!early_pfn_valid(pfn))
5306 continue;
5307 if (!early_pfn_in_nid(pfn, nid))
5308 continue;
5309 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5310 break;
5311
5312 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5313 /*
5314 * Check given memblock attribute by firmware which can affect
5315 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5316 * mirrored, it's an overlapped memmap init. skip it.
5317 */
5318 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5319 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5320 for_each_memblock(memory, tmp)
5321 if (pfn < memblock_region_memory_end_pfn(tmp))
5322 break;
5323 r = tmp;
5324 }
5325 if (pfn >= memblock_region_memory_base_pfn(r) &&
5326 memblock_is_mirror(r)) {
5327 /* already initialized as NORMAL */
5328 pfn = memblock_region_memory_end_pfn(r);
5329 continue;
5330 }
5331 }
5332 #endif
5333
5334 not_early:
5335 /*
5336 * Mark the block movable so that blocks are reserved for
5337 * movable at startup. This will force kernel allocations
5338 * to reserve their blocks rather than leaking throughout
5339 * the address space during boot when many long-lived
5340 * kernel allocations are made.
5341 *
5342 * bitmap is created for zone's valid pfn range. but memmap
5343 * can be created for invalid pages (for alignment)
5344 * check here not to call set_pageblock_migratetype() against
5345 * pfn out of zone.
5346 */
5347 if (!(pfn & (pageblock_nr_pages - 1))) {
5348 struct page *page = pfn_to_page(pfn);
5349
5350 __init_single_page(page, pfn, zone, nid);
5351 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5352 cond_resched();
5353 } else {
5354 __init_single_pfn(pfn, zone, nid);
5355 }
5356 }
5357 }
5358
5359 static void __meminit zone_init_free_lists(struct zone *zone)
5360 {
5361 unsigned int order, t;
5362 for_each_migratetype_order(order, t) {
5363 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5364 zone->free_area[order].nr_free = 0;
5365 }
5366 }
5367
5368 #ifndef __HAVE_ARCH_MEMMAP_INIT
5369 #define memmap_init(size, nid, zone, start_pfn) \
5370 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5371 #endif
5372
5373 static int zone_batchsize(struct zone *zone)
5374 {
5375 #ifdef CONFIG_MMU
5376 int batch;
5377
5378 /*
5379 * The per-cpu-pages pools are set to around 1000th of the
5380 * size of the zone. But no more than 1/2 of a meg.
5381 *
5382 * OK, so we don't know how big the cache is. So guess.
5383 */
5384 batch = zone->managed_pages / 1024;
5385 if (batch * PAGE_SIZE > 512 * 1024)
5386 batch = (512 * 1024) / PAGE_SIZE;
5387 batch /= 4; /* We effectively *= 4 below */
5388 if (batch < 1)
5389 batch = 1;
5390
5391 /*
5392 * Clamp the batch to a 2^n - 1 value. Having a power
5393 * of 2 value was found to be more likely to have
5394 * suboptimal cache aliasing properties in some cases.
5395 *
5396 * For example if 2 tasks are alternately allocating
5397 * batches of pages, one task can end up with a lot
5398 * of pages of one half of the possible page colors
5399 * and the other with pages of the other colors.
5400 */
5401 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5402
5403 return batch;
5404
5405 #else
5406 /* The deferral and batching of frees should be suppressed under NOMMU
5407 * conditions.
5408 *
5409 * The problem is that NOMMU needs to be able to allocate large chunks
5410 * of contiguous memory as there's no hardware page translation to
5411 * assemble apparent contiguous memory from discontiguous pages.
5412 *
5413 * Queueing large contiguous runs of pages for batching, however,
5414 * causes the pages to actually be freed in smaller chunks. As there
5415 * can be a significant delay between the individual batches being
5416 * recycled, this leads to the once large chunks of space being
5417 * fragmented and becoming unavailable for high-order allocations.
5418 */
5419 return 0;
5420 #endif
5421 }
5422
5423 /*
5424 * pcp->high and pcp->batch values are related and dependent on one another:
5425 * ->batch must never be higher then ->high.
5426 * The following function updates them in a safe manner without read side
5427 * locking.
5428 *
5429 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5430 * those fields changing asynchronously (acording the the above rule).
5431 *
5432 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5433 * outside of boot time (or some other assurance that no concurrent updaters
5434 * exist).
5435 */
5436 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5437 unsigned long batch)
5438 {
5439 /* start with a fail safe value for batch */
5440 pcp->batch = 1;
5441 smp_wmb();
5442
5443 /* Update high, then batch, in order */
5444 pcp->high = high;
5445 smp_wmb();
5446
5447 pcp->batch = batch;
5448 }
5449
5450 /* a companion to pageset_set_high() */
5451 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5452 {
5453 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5454 }
5455
5456 static void pageset_init(struct per_cpu_pageset *p)
5457 {
5458 struct per_cpu_pages *pcp;
5459 int migratetype;
5460
5461 memset(p, 0, sizeof(*p));
5462
5463 pcp = &p->pcp;
5464 pcp->count = 0;
5465 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5466 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5467 }
5468
5469 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5470 {
5471 pageset_init(p);
5472 pageset_set_batch(p, batch);
5473 }
5474
5475 /*
5476 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5477 * to the value high for the pageset p.
5478 */
5479 static void pageset_set_high(struct per_cpu_pageset *p,
5480 unsigned long high)
5481 {
5482 unsigned long batch = max(1UL, high / 4);
5483 if ((high / 4) > (PAGE_SHIFT * 8))
5484 batch = PAGE_SHIFT * 8;
5485
5486 pageset_update(&p->pcp, high, batch);
5487 }
5488
5489 static void pageset_set_high_and_batch(struct zone *zone,
5490 struct per_cpu_pageset *pcp)
5491 {
5492 if (percpu_pagelist_fraction)
5493 pageset_set_high(pcp,
5494 (zone->managed_pages /
5495 percpu_pagelist_fraction));
5496 else
5497 pageset_set_batch(pcp, zone_batchsize(zone));
5498 }
5499
5500 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5501 {
5502 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5503
5504 pageset_init(pcp);
5505 pageset_set_high_and_batch(zone, pcp);
5506 }
5507
5508 void __meminit setup_zone_pageset(struct zone *zone)
5509 {
5510 int cpu;
5511 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5512 for_each_possible_cpu(cpu)
5513 zone_pageset_init(zone, cpu);
5514 }
5515
5516 /*
5517 * Allocate per cpu pagesets and initialize them.
5518 * Before this call only boot pagesets were available.
5519 */
5520 void __init setup_per_cpu_pageset(void)
5521 {
5522 struct pglist_data *pgdat;
5523 struct zone *zone;
5524
5525 for_each_populated_zone(zone)
5526 setup_zone_pageset(zone);
5527
5528 for_each_online_pgdat(pgdat)
5529 pgdat->per_cpu_nodestats =
5530 alloc_percpu(struct per_cpu_nodestat);
5531 }
5532
5533 static __meminit void zone_pcp_init(struct zone *zone)
5534 {
5535 /*
5536 * per cpu subsystem is not up at this point. The following code
5537 * relies on the ability of the linker to provide the
5538 * offset of a (static) per cpu variable into the per cpu area.
5539 */
5540 zone->pageset = &boot_pageset;
5541
5542 if (populated_zone(zone))
5543 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5544 zone->name, zone->present_pages,
5545 zone_batchsize(zone));
5546 }
5547
5548 void __meminit init_currently_empty_zone(struct zone *zone,
5549 unsigned long zone_start_pfn,
5550 unsigned long size)
5551 {
5552 struct pglist_data *pgdat = zone->zone_pgdat;
5553 int zone_idx = zone_idx(zone) + 1;
5554
5555 if (zone_idx > pgdat->nr_zones)
5556 pgdat->nr_zones = zone_idx;
5557
5558 zone->zone_start_pfn = zone_start_pfn;
5559
5560 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5561 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5562 pgdat->node_id,
5563 (unsigned long)zone_idx(zone),
5564 zone_start_pfn, (zone_start_pfn + size));
5565
5566 zone_init_free_lists(zone);
5567 zone->initialized = 1;
5568 }
5569
5570 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5571 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5572
5573 /*
5574 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5575 */
5576 int __meminit __early_pfn_to_nid(unsigned long pfn,
5577 struct mminit_pfnnid_cache *state)
5578 {
5579 unsigned long start_pfn, end_pfn;
5580 int nid;
5581
5582 if (state->last_start <= pfn && pfn < state->last_end)
5583 return state->last_nid;
5584
5585 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5586 if (nid != -1) {
5587 state->last_start = start_pfn;
5588 state->last_end = end_pfn;
5589 state->last_nid = nid;
5590 }
5591
5592 return nid;
5593 }
5594 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5595
5596 /**
5597 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5598 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5599 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5600 *
5601 * If an architecture guarantees that all ranges registered contain no holes
5602 * and may be freed, this this function may be used instead of calling
5603 * memblock_free_early_nid() manually.
5604 */
5605 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5606 {
5607 unsigned long start_pfn, end_pfn;
5608 int i, this_nid;
5609
5610 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5611 start_pfn = min(start_pfn, max_low_pfn);
5612 end_pfn = min(end_pfn, max_low_pfn);
5613
5614 if (start_pfn < end_pfn)
5615 memblock_free_early_nid(PFN_PHYS(start_pfn),
5616 (end_pfn - start_pfn) << PAGE_SHIFT,
5617 this_nid);
5618 }
5619 }
5620
5621 /**
5622 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5623 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5624 *
5625 * If an architecture guarantees that all ranges registered contain no holes and may
5626 * be freed, this function may be used instead of calling memory_present() manually.
5627 */
5628 void __init sparse_memory_present_with_active_regions(int nid)
5629 {
5630 unsigned long start_pfn, end_pfn;
5631 int i, this_nid;
5632
5633 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5634 memory_present(this_nid, start_pfn, end_pfn);
5635 }
5636
5637 /**
5638 * get_pfn_range_for_nid - Return the start and end page frames for a node
5639 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5640 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5641 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5642 *
5643 * It returns the start and end page frame of a node based on information
5644 * provided by memblock_set_node(). If called for a node
5645 * with no available memory, a warning is printed and the start and end
5646 * PFNs will be 0.
5647 */
5648 void __meminit get_pfn_range_for_nid(unsigned int nid,
5649 unsigned long *start_pfn, unsigned long *end_pfn)
5650 {
5651 unsigned long this_start_pfn, this_end_pfn;
5652 int i;
5653
5654 *start_pfn = -1UL;
5655 *end_pfn = 0;
5656
5657 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5658 *start_pfn = min(*start_pfn, this_start_pfn);
5659 *end_pfn = max(*end_pfn, this_end_pfn);
5660 }
5661
5662 if (*start_pfn == -1UL)
5663 *start_pfn = 0;
5664 }
5665
5666 /*
5667 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5668 * assumption is made that zones within a node are ordered in monotonic
5669 * increasing memory addresses so that the "highest" populated zone is used
5670 */
5671 static void __init find_usable_zone_for_movable(void)
5672 {
5673 int zone_index;
5674 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5675 if (zone_index == ZONE_MOVABLE)
5676 continue;
5677
5678 if (arch_zone_highest_possible_pfn[zone_index] >
5679 arch_zone_lowest_possible_pfn[zone_index])
5680 break;
5681 }
5682
5683 VM_BUG_ON(zone_index == -1);
5684 movable_zone = zone_index;
5685 }
5686
5687 /*
5688 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5689 * because it is sized independent of architecture. Unlike the other zones,
5690 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5691 * in each node depending on the size of each node and how evenly kernelcore
5692 * is distributed. This helper function adjusts the zone ranges
5693 * provided by the architecture for a given node by using the end of the
5694 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5695 * zones within a node are in order of monotonic increases memory addresses
5696 */
5697 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5698 unsigned long zone_type,
5699 unsigned long node_start_pfn,
5700 unsigned long node_end_pfn,
5701 unsigned long *zone_start_pfn,
5702 unsigned long *zone_end_pfn)
5703 {
5704 /* Only adjust if ZONE_MOVABLE is on this node */
5705 if (zone_movable_pfn[nid]) {
5706 /* Size ZONE_MOVABLE */
5707 if (zone_type == ZONE_MOVABLE) {
5708 *zone_start_pfn = zone_movable_pfn[nid];
5709 *zone_end_pfn = min(node_end_pfn,
5710 arch_zone_highest_possible_pfn[movable_zone]);
5711
5712 /* Adjust for ZONE_MOVABLE starting within this range */
5713 } else if (!mirrored_kernelcore &&
5714 *zone_start_pfn < zone_movable_pfn[nid] &&
5715 *zone_end_pfn > zone_movable_pfn[nid]) {
5716 *zone_end_pfn = zone_movable_pfn[nid];
5717
5718 /* Check if this whole range is within ZONE_MOVABLE */
5719 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5720 *zone_start_pfn = *zone_end_pfn;
5721 }
5722 }
5723
5724 /*
5725 * Return the number of pages a zone spans in a node, including holes
5726 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5727 */
5728 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5729 unsigned long zone_type,
5730 unsigned long node_start_pfn,
5731 unsigned long node_end_pfn,
5732 unsigned long *zone_start_pfn,
5733 unsigned long *zone_end_pfn,
5734 unsigned long *ignored)
5735 {
5736 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5737 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5738 /* When hotadd a new node from cpu_up(), the node should be empty */
5739 if (!node_start_pfn && !node_end_pfn)
5740 return 0;
5741
5742 /* Get the start and end of the zone */
5743 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5744 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5745 adjust_zone_range_for_zone_movable(nid, zone_type,
5746 node_start_pfn, node_end_pfn,
5747 zone_start_pfn, zone_end_pfn);
5748
5749 /* Check that this node has pages within the zone's required range */
5750 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5751 return 0;
5752
5753 /* Move the zone boundaries inside the node if necessary */
5754 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5755 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5756
5757 /* Return the spanned pages */
5758 return *zone_end_pfn - *zone_start_pfn;
5759 }
5760
5761 /*
5762 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5763 * then all holes in the requested range will be accounted for.
5764 */
5765 unsigned long __meminit __absent_pages_in_range(int nid,
5766 unsigned long range_start_pfn,
5767 unsigned long range_end_pfn)
5768 {
5769 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5770 unsigned long start_pfn, end_pfn;
5771 int i;
5772
5773 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5774 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5775 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5776 nr_absent -= end_pfn - start_pfn;
5777 }
5778 return nr_absent;
5779 }
5780
5781 /**
5782 * absent_pages_in_range - Return number of page frames in holes within a range
5783 * @start_pfn: The start PFN to start searching for holes
5784 * @end_pfn: The end PFN to stop searching for holes
5785 *
5786 * It returns the number of pages frames in memory holes within a range.
5787 */
5788 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5789 unsigned long end_pfn)
5790 {
5791 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5792 }
5793
5794 /* Return the number of page frames in holes in a zone on a node */
5795 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5796 unsigned long zone_type,
5797 unsigned long node_start_pfn,
5798 unsigned long node_end_pfn,
5799 unsigned long *ignored)
5800 {
5801 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5802 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5803 unsigned long zone_start_pfn, zone_end_pfn;
5804 unsigned long nr_absent;
5805
5806 /* When hotadd a new node from cpu_up(), the node should be empty */
5807 if (!node_start_pfn && !node_end_pfn)
5808 return 0;
5809
5810 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5811 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5812
5813 adjust_zone_range_for_zone_movable(nid, zone_type,
5814 node_start_pfn, node_end_pfn,
5815 &zone_start_pfn, &zone_end_pfn);
5816 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5817
5818 /*
5819 * ZONE_MOVABLE handling.
5820 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5821 * and vice versa.
5822 */
5823 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5824 unsigned long start_pfn, end_pfn;
5825 struct memblock_region *r;
5826
5827 for_each_memblock(memory, r) {
5828 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5829 zone_start_pfn, zone_end_pfn);
5830 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5831 zone_start_pfn, zone_end_pfn);
5832
5833 if (zone_type == ZONE_MOVABLE &&
5834 memblock_is_mirror(r))
5835 nr_absent += end_pfn - start_pfn;
5836
5837 if (zone_type == ZONE_NORMAL &&
5838 !memblock_is_mirror(r))
5839 nr_absent += end_pfn - start_pfn;
5840 }
5841 }
5842
5843 return nr_absent;
5844 }
5845
5846 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5847 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5848 unsigned long zone_type,
5849 unsigned long node_start_pfn,
5850 unsigned long node_end_pfn,
5851 unsigned long *zone_start_pfn,
5852 unsigned long *zone_end_pfn,
5853 unsigned long *zones_size)
5854 {
5855 unsigned int zone;
5856
5857 *zone_start_pfn = node_start_pfn;
5858 for (zone = 0; zone < zone_type; zone++)
5859 *zone_start_pfn += zones_size[zone];
5860
5861 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5862
5863 return zones_size[zone_type];
5864 }
5865
5866 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5867 unsigned long zone_type,
5868 unsigned long node_start_pfn,
5869 unsigned long node_end_pfn,
5870 unsigned long *zholes_size)
5871 {
5872 if (!zholes_size)
5873 return 0;
5874
5875 return zholes_size[zone_type];
5876 }
5877
5878 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5879
5880 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5881 unsigned long node_start_pfn,
5882 unsigned long node_end_pfn,
5883 unsigned long *zones_size,
5884 unsigned long *zholes_size)
5885 {
5886 unsigned long realtotalpages = 0, totalpages = 0;
5887 enum zone_type i;
5888
5889 for (i = 0; i < MAX_NR_ZONES; i++) {
5890 struct zone *zone = pgdat->node_zones + i;
5891 unsigned long zone_start_pfn, zone_end_pfn;
5892 unsigned long size, real_size;
5893
5894 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5895 node_start_pfn,
5896 node_end_pfn,
5897 &zone_start_pfn,
5898 &zone_end_pfn,
5899 zones_size);
5900 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5901 node_start_pfn, node_end_pfn,
5902 zholes_size);
5903 if (size)
5904 zone->zone_start_pfn = zone_start_pfn;
5905 else
5906 zone->zone_start_pfn = 0;
5907 zone->spanned_pages = size;
5908 zone->present_pages = real_size;
5909
5910 totalpages += size;
5911 realtotalpages += real_size;
5912 }
5913
5914 pgdat->node_spanned_pages = totalpages;
5915 pgdat->node_present_pages = realtotalpages;
5916 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5917 realtotalpages);
5918 }
5919
5920 #ifndef CONFIG_SPARSEMEM
5921 /*
5922 * Calculate the size of the zone->blockflags rounded to an unsigned long
5923 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5924 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5925 * round what is now in bits to nearest long in bits, then return it in
5926 * bytes.
5927 */
5928 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5929 {
5930 unsigned long usemapsize;
5931
5932 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5933 usemapsize = roundup(zonesize, pageblock_nr_pages);
5934 usemapsize = usemapsize >> pageblock_order;
5935 usemapsize *= NR_PAGEBLOCK_BITS;
5936 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5937
5938 return usemapsize / 8;
5939 }
5940
5941 static void __init setup_usemap(struct pglist_data *pgdat,
5942 struct zone *zone,
5943 unsigned long zone_start_pfn,
5944 unsigned long zonesize)
5945 {
5946 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5947 zone->pageblock_flags = NULL;
5948 if (usemapsize)
5949 zone->pageblock_flags =
5950 memblock_virt_alloc_node_nopanic(usemapsize,
5951 pgdat->node_id);
5952 }
5953 #else
5954 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5955 unsigned long zone_start_pfn, unsigned long zonesize) {}
5956 #endif /* CONFIG_SPARSEMEM */
5957
5958 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5959
5960 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5961 void __paginginit set_pageblock_order(void)
5962 {
5963 unsigned int order;
5964
5965 /* Check that pageblock_nr_pages has not already been setup */
5966 if (pageblock_order)
5967 return;
5968
5969 if (HPAGE_SHIFT > PAGE_SHIFT)
5970 order = HUGETLB_PAGE_ORDER;
5971 else
5972 order = MAX_ORDER - 1;
5973
5974 /*
5975 * Assume the largest contiguous order of interest is a huge page.
5976 * This value may be variable depending on boot parameters on IA64 and
5977 * powerpc.
5978 */
5979 pageblock_order = order;
5980 }
5981 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5982
5983 /*
5984 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5985 * is unused as pageblock_order is set at compile-time. See
5986 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5987 * the kernel config
5988 */
5989 void __paginginit set_pageblock_order(void)
5990 {
5991 }
5992
5993 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5994
5995 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5996 unsigned long present_pages)
5997 {
5998 unsigned long pages = spanned_pages;
5999
6000 /*
6001 * Provide a more accurate estimation if there are holes within
6002 * the zone and SPARSEMEM is in use. If there are holes within the
6003 * zone, each populated memory region may cost us one or two extra
6004 * memmap pages due to alignment because memmap pages for each
6005 * populated regions may not be naturally aligned on page boundary.
6006 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6007 */
6008 if (spanned_pages > present_pages + (present_pages >> 4) &&
6009 IS_ENABLED(CONFIG_SPARSEMEM))
6010 pages = present_pages;
6011
6012 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6013 }
6014
6015 /*
6016 * Set up the zone data structures:
6017 * - mark all pages reserved
6018 * - mark all memory queues empty
6019 * - clear the memory bitmaps
6020 *
6021 * NOTE: pgdat should get zeroed by caller.
6022 */
6023 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6024 {
6025 enum zone_type j;
6026 int nid = pgdat->node_id;
6027
6028 pgdat_resize_init(pgdat);
6029 #ifdef CONFIG_NUMA_BALANCING
6030 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6031 pgdat->numabalancing_migrate_nr_pages = 0;
6032 pgdat->numabalancing_migrate_next_window = jiffies;
6033 #endif
6034 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6035 spin_lock_init(&pgdat->split_queue_lock);
6036 INIT_LIST_HEAD(&pgdat->split_queue);
6037 pgdat->split_queue_len = 0;
6038 #endif
6039 init_waitqueue_head(&pgdat->kswapd_wait);
6040 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6041 #ifdef CONFIG_COMPACTION
6042 init_waitqueue_head(&pgdat->kcompactd_wait);
6043 #endif
6044 pgdat_page_ext_init(pgdat);
6045 spin_lock_init(&pgdat->lru_lock);
6046 lruvec_init(node_lruvec(pgdat));
6047
6048 pgdat->per_cpu_nodestats = &boot_nodestats;
6049
6050 for (j = 0; j < MAX_NR_ZONES; j++) {
6051 struct zone *zone = pgdat->node_zones + j;
6052 unsigned long size, realsize, freesize, memmap_pages;
6053 unsigned long zone_start_pfn = zone->zone_start_pfn;
6054
6055 size = zone->spanned_pages;
6056 realsize = freesize = zone->present_pages;
6057
6058 /*
6059 * Adjust freesize so that it accounts for how much memory
6060 * is used by this zone for memmap. This affects the watermark
6061 * and per-cpu initialisations
6062 */
6063 memmap_pages = calc_memmap_size(size, realsize);
6064 if (!is_highmem_idx(j)) {
6065 if (freesize >= memmap_pages) {
6066 freesize -= memmap_pages;
6067 if (memmap_pages)
6068 printk(KERN_DEBUG
6069 " %s zone: %lu pages used for memmap\n",
6070 zone_names[j], memmap_pages);
6071 } else
6072 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6073 zone_names[j], memmap_pages, freesize);
6074 }
6075
6076 /* Account for reserved pages */
6077 if (j == 0 && freesize > dma_reserve) {
6078 freesize -= dma_reserve;
6079 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6080 zone_names[0], dma_reserve);
6081 }
6082
6083 if (!is_highmem_idx(j))
6084 nr_kernel_pages += freesize;
6085 /* Charge for highmem memmap if there are enough kernel pages */
6086 else if (nr_kernel_pages > memmap_pages * 2)
6087 nr_kernel_pages -= memmap_pages;
6088 nr_all_pages += freesize;
6089
6090 /*
6091 * Set an approximate value for lowmem here, it will be adjusted
6092 * when the bootmem allocator frees pages into the buddy system.
6093 * And all highmem pages will be managed by the buddy system.
6094 */
6095 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6096 #ifdef CONFIG_NUMA
6097 zone->node = nid;
6098 #endif
6099 zone->name = zone_names[j];
6100 zone->zone_pgdat = pgdat;
6101 spin_lock_init(&zone->lock);
6102 zone_seqlock_init(zone);
6103 zone_pcp_init(zone);
6104
6105 if (!size)
6106 continue;
6107
6108 set_pageblock_order();
6109 setup_usemap(pgdat, zone, zone_start_pfn, size);
6110 init_currently_empty_zone(zone, zone_start_pfn, size);
6111 memmap_init(size, nid, j, zone_start_pfn);
6112 }
6113 }
6114
6115 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6116 {
6117 unsigned long __maybe_unused start = 0;
6118 unsigned long __maybe_unused offset = 0;
6119
6120 /* Skip empty nodes */
6121 if (!pgdat->node_spanned_pages)
6122 return;
6123
6124 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6125 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6126 offset = pgdat->node_start_pfn - start;
6127 /* ia64 gets its own node_mem_map, before this, without bootmem */
6128 if (!pgdat->node_mem_map) {
6129 unsigned long size, end;
6130 struct page *map;
6131
6132 /*
6133 * The zone's endpoints aren't required to be MAX_ORDER
6134 * aligned but the node_mem_map endpoints must be in order
6135 * for the buddy allocator to function correctly.
6136 */
6137 end = pgdat_end_pfn(pgdat);
6138 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6139 size = (end - start) * sizeof(struct page);
6140 map = alloc_remap(pgdat->node_id, size);
6141 if (!map)
6142 map = memblock_virt_alloc_node_nopanic(size,
6143 pgdat->node_id);
6144 pgdat->node_mem_map = map + offset;
6145 }
6146 #ifndef CONFIG_NEED_MULTIPLE_NODES
6147 /*
6148 * With no DISCONTIG, the global mem_map is just set as node 0's
6149 */
6150 if (pgdat == NODE_DATA(0)) {
6151 mem_map = NODE_DATA(0)->node_mem_map;
6152 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6153 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6154 mem_map -= offset;
6155 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6156 }
6157 #endif
6158 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6159 }
6160
6161 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6162 unsigned long node_start_pfn, unsigned long *zholes_size)
6163 {
6164 pg_data_t *pgdat = NODE_DATA(nid);
6165 unsigned long start_pfn = 0;
6166 unsigned long end_pfn = 0;
6167
6168 /* pg_data_t should be reset to zero when it's allocated */
6169 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6170
6171 pgdat->node_id = nid;
6172 pgdat->node_start_pfn = node_start_pfn;
6173 pgdat->per_cpu_nodestats = NULL;
6174 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6175 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6176 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6177 (u64)start_pfn << PAGE_SHIFT,
6178 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6179 #else
6180 start_pfn = node_start_pfn;
6181 #endif
6182 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6183 zones_size, zholes_size);
6184
6185 alloc_node_mem_map(pgdat);
6186 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6187 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6188 nid, (unsigned long)pgdat,
6189 (unsigned long)pgdat->node_mem_map);
6190 #endif
6191
6192 reset_deferred_meminit(pgdat);
6193 free_area_init_core(pgdat);
6194 }
6195
6196 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6197
6198 #if MAX_NUMNODES > 1
6199 /*
6200 * Figure out the number of possible node ids.
6201 */
6202 void __init setup_nr_node_ids(void)
6203 {
6204 unsigned int highest;
6205
6206 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6207 nr_node_ids = highest + 1;
6208 }
6209 #endif
6210
6211 /**
6212 * node_map_pfn_alignment - determine the maximum internode alignment
6213 *
6214 * This function should be called after node map is populated and sorted.
6215 * It calculates the maximum power of two alignment which can distinguish
6216 * all the nodes.
6217 *
6218 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6219 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6220 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6221 * shifted, 1GiB is enough and this function will indicate so.
6222 *
6223 * This is used to test whether pfn -> nid mapping of the chosen memory
6224 * model has fine enough granularity to avoid incorrect mapping for the
6225 * populated node map.
6226 *
6227 * Returns the determined alignment in pfn's. 0 if there is no alignment
6228 * requirement (single node).
6229 */
6230 unsigned long __init node_map_pfn_alignment(void)
6231 {
6232 unsigned long accl_mask = 0, last_end = 0;
6233 unsigned long start, end, mask;
6234 int last_nid = -1;
6235 int i, nid;
6236
6237 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6238 if (!start || last_nid < 0 || last_nid == nid) {
6239 last_nid = nid;
6240 last_end = end;
6241 continue;
6242 }
6243
6244 /*
6245 * Start with a mask granular enough to pin-point to the
6246 * start pfn and tick off bits one-by-one until it becomes
6247 * too coarse to separate the current node from the last.
6248 */
6249 mask = ~((1 << __ffs(start)) - 1);
6250 while (mask && last_end <= (start & (mask << 1)))
6251 mask <<= 1;
6252
6253 /* accumulate all internode masks */
6254 accl_mask |= mask;
6255 }
6256
6257 /* convert mask to number of pages */
6258 return ~accl_mask + 1;
6259 }
6260
6261 /* Find the lowest pfn for a node */
6262 static unsigned long __init find_min_pfn_for_node(int nid)
6263 {
6264 unsigned long min_pfn = ULONG_MAX;
6265 unsigned long start_pfn;
6266 int i;
6267
6268 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6269 min_pfn = min(min_pfn, start_pfn);
6270
6271 if (min_pfn == ULONG_MAX) {
6272 pr_warn("Could not find start_pfn for node %d\n", nid);
6273 return 0;
6274 }
6275
6276 return min_pfn;
6277 }
6278
6279 /**
6280 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6281 *
6282 * It returns the minimum PFN based on information provided via
6283 * memblock_set_node().
6284 */
6285 unsigned long __init find_min_pfn_with_active_regions(void)
6286 {
6287 return find_min_pfn_for_node(MAX_NUMNODES);
6288 }
6289
6290 /*
6291 * early_calculate_totalpages()
6292 * Sum pages in active regions for movable zone.
6293 * Populate N_MEMORY for calculating usable_nodes.
6294 */
6295 static unsigned long __init early_calculate_totalpages(void)
6296 {
6297 unsigned long totalpages = 0;
6298 unsigned long start_pfn, end_pfn;
6299 int i, nid;
6300
6301 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6302 unsigned long pages = end_pfn - start_pfn;
6303
6304 totalpages += pages;
6305 if (pages)
6306 node_set_state(nid, N_MEMORY);
6307 }
6308 return totalpages;
6309 }
6310
6311 /*
6312 * Find the PFN the Movable zone begins in each node. Kernel memory
6313 * is spread evenly between nodes as long as the nodes have enough
6314 * memory. When they don't, some nodes will have more kernelcore than
6315 * others
6316 */
6317 static void __init find_zone_movable_pfns_for_nodes(void)
6318 {
6319 int i, nid;
6320 unsigned long usable_startpfn;
6321 unsigned long kernelcore_node, kernelcore_remaining;
6322 /* save the state before borrow the nodemask */
6323 nodemask_t saved_node_state = node_states[N_MEMORY];
6324 unsigned long totalpages = early_calculate_totalpages();
6325 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6326 struct memblock_region *r;
6327
6328 /* Need to find movable_zone earlier when movable_node is specified. */
6329 find_usable_zone_for_movable();
6330
6331 /*
6332 * If movable_node is specified, ignore kernelcore and movablecore
6333 * options.
6334 */
6335 if (movable_node_is_enabled()) {
6336 for_each_memblock(memory, r) {
6337 if (!memblock_is_hotpluggable(r))
6338 continue;
6339
6340 nid = r->nid;
6341
6342 usable_startpfn = PFN_DOWN(r->base);
6343 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6344 min(usable_startpfn, zone_movable_pfn[nid]) :
6345 usable_startpfn;
6346 }
6347
6348 goto out2;
6349 }
6350
6351 /*
6352 * If kernelcore=mirror is specified, ignore movablecore option
6353 */
6354 if (mirrored_kernelcore) {
6355 bool mem_below_4gb_not_mirrored = false;
6356
6357 for_each_memblock(memory, r) {
6358 if (memblock_is_mirror(r))
6359 continue;
6360
6361 nid = r->nid;
6362
6363 usable_startpfn = memblock_region_memory_base_pfn(r);
6364
6365 if (usable_startpfn < 0x100000) {
6366 mem_below_4gb_not_mirrored = true;
6367 continue;
6368 }
6369
6370 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6371 min(usable_startpfn, zone_movable_pfn[nid]) :
6372 usable_startpfn;
6373 }
6374
6375 if (mem_below_4gb_not_mirrored)
6376 pr_warn("This configuration results in unmirrored kernel memory.");
6377
6378 goto out2;
6379 }
6380
6381 /*
6382 * If movablecore=nn[KMG] was specified, calculate what size of
6383 * kernelcore that corresponds so that memory usable for
6384 * any allocation type is evenly spread. If both kernelcore
6385 * and movablecore are specified, then the value of kernelcore
6386 * will be used for required_kernelcore if it's greater than
6387 * what movablecore would have allowed.
6388 */
6389 if (required_movablecore) {
6390 unsigned long corepages;
6391
6392 /*
6393 * Round-up so that ZONE_MOVABLE is at least as large as what
6394 * was requested by the user
6395 */
6396 required_movablecore =
6397 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6398 required_movablecore = min(totalpages, required_movablecore);
6399 corepages = totalpages - required_movablecore;
6400
6401 required_kernelcore = max(required_kernelcore, corepages);
6402 }
6403
6404 /*
6405 * If kernelcore was not specified or kernelcore size is larger
6406 * than totalpages, there is no ZONE_MOVABLE.
6407 */
6408 if (!required_kernelcore || required_kernelcore >= totalpages)
6409 goto out;
6410
6411 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6412 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6413
6414 restart:
6415 /* Spread kernelcore memory as evenly as possible throughout nodes */
6416 kernelcore_node = required_kernelcore / usable_nodes;
6417 for_each_node_state(nid, N_MEMORY) {
6418 unsigned long start_pfn, end_pfn;
6419
6420 /*
6421 * Recalculate kernelcore_node if the division per node
6422 * now exceeds what is necessary to satisfy the requested
6423 * amount of memory for the kernel
6424 */
6425 if (required_kernelcore < kernelcore_node)
6426 kernelcore_node = required_kernelcore / usable_nodes;
6427
6428 /*
6429 * As the map is walked, we track how much memory is usable
6430 * by the kernel using kernelcore_remaining. When it is
6431 * 0, the rest of the node is usable by ZONE_MOVABLE
6432 */
6433 kernelcore_remaining = kernelcore_node;
6434
6435 /* Go through each range of PFNs within this node */
6436 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6437 unsigned long size_pages;
6438
6439 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6440 if (start_pfn >= end_pfn)
6441 continue;
6442
6443 /* Account for what is only usable for kernelcore */
6444 if (start_pfn < usable_startpfn) {
6445 unsigned long kernel_pages;
6446 kernel_pages = min(end_pfn, usable_startpfn)
6447 - start_pfn;
6448
6449 kernelcore_remaining -= min(kernel_pages,
6450 kernelcore_remaining);
6451 required_kernelcore -= min(kernel_pages,
6452 required_kernelcore);
6453
6454 /* Continue if range is now fully accounted */
6455 if (end_pfn <= usable_startpfn) {
6456
6457 /*
6458 * Push zone_movable_pfn to the end so
6459 * that if we have to rebalance
6460 * kernelcore across nodes, we will
6461 * not double account here
6462 */
6463 zone_movable_pfn[nid] = end_pfn;
6464 continue;
6465 }
6466 start_pfn = usable_startpfn;
6467 }
6468
6469 /*
6470 * The usable PFN range for ZONE_MOVABLE is from
6471 * start_pfn->end_pfn. Calculate size_pages as the
6472 * number of pages used as kernelcore
6473 */
6474 size_pages = end_pfn - start_pfn;
6475 if (size_pages > kernelcore_remaining)
6476 size_pages = kernelcore_remaining;
6477 zone_movable_pfn[nid] = start_pfn + size_pages;
6478
6479 /*
6480 * Some kernelcore has been met, update counts and
6481 * break if the kernelcore for this node has been
6482 * satisfied
6483 */
6484 required_kernelcore -= min(required_kernelcore,
6485 size_pages);
6486 kernelcore_remaining -= size_pages;
6487 if (!kernelcore_remaining)
6488 break;
6489 }
6490 }
6491
6492 /*
6493 * If there is still required_kernelcore, we do another pass with one
6494 * less node in the count. This will push zone_movable_pfn[nid] further
6495 * along on the nodes that still have memory until kernelcore is
6496 * satisfied
6497 */
6498 usable_nodes--;
6499 if (usable_nodes && required_kernelcore > usable_nodes)
6500 goto restart;
6501
6502 out2:
6503 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6504 for (nid = 0; nid < MAX_NUMNODES; nid++)
6505 zone_movable_pfn[nid] =
6506 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6507
6508 out:
6509 /* restore the node_state */
6510 node_states[N_MEMORY] = saved_node_state;
6511 }
6512
6513 /* Any regular or high memory on that node ? */
6514 static void check_for_memory(pg_data_t *pgdat, int nid)
6515 {
6516 enum zone_type zone_type;
6517
6518 if (N_MEMORY == N_NORMAL_MEMORY)
6519 return;
6520
6521 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6522 struct zone *zone = &pgdat->node_zones[zone_type];
6523 if (populated_zone(zone)) {
6524 node_set_state(nid, N_HIGH_MEMORY);
6525 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6526 zone_type <= ZONE_NORMAL)
6527 node_set_state(nid, N_NORMAL_MEMORY);
6528 break;
6529 }
6530 }
6531 }
6532
6533 /**
6534 * free_area_init_nodes - Initialise all pg_data_t and zone data
6535 * @max_zone_pfn: an array of max PFNs for each zone
6536 *
6537 * This will call free_area_init_node() for each active node in the system.
6538 * Using the page ranges provided by memblock_set_node(), the size of each
6539 * zone in each node and their holes is calculated. If the maximum PFN
6540 * between two adjacent zones match, it is assumed that the zone is empty.
6541 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6542 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6543 * starts where the previous one ended. For example, ZONE_DMA32 starts
6544 * at arch_max_dma_pfn.
6545 */
6546 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6547 {
6548 unsigned long start_pfn, end_pfn;
6549 int i, nid;
6550
6551 /* Record where the zone boundaries are */
6552 memset(arch_zone_lowest_possible_pfn, 0,
6553 sizeof(arch_zone_lowest_possible_pfn));
6554 memset(arch_zone_highest_possible_pfn, 0,
6555 sizeof(arch_zone_highest_possible_pfn));
6556
6557 start_pfn = find_min_pfn_with_active_regions();
6558
6559 for (i = 0; i < MAX_NR_ZONES; i++) {
6560 if (i == ZONE_MOVABLE)
6561 continue;
6562
6563 end_pfn = max(max_zone_pfn[i], start_pfn);
6564 arch_zone_lowest_possible_pfn[i] = start_pfn;
6565 arch_zone_highest_possible_pfn[i] = end_pfn;
6566
6567 start_pfn = end_pfn;
6568 }
6569
6570 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6571 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6572 find_zone_movable_pfns_for_nodes();
6573
6574 /* Print out the zone ranges */
6575 pr_info("Zone ranges:\n");
6576 for (i = 0; i < MAX_NR_ZONES; i++) {
6577 if (i == ZONE_MOVABLE)
6578 continue;
6579 pr_info(" %-8s ", zone_names[i]);
6580 if (arch_zone_lowest_possible_pfn[i] ==
6581 arch_zone_highest_possible_pfn[i])
6582 pr_cont("empty\n");
6583 else
6584 pr_cont("[mem %#018Lx-%#018Lx]\n",
6585 (u64)arch_zone_lowest_possible_pfn[i]
6586 << PAGE_SHIFT,
6587 ((u64)arch_zone_highest_possible_pfn[i]
6588 << PAGE_SHIFT) - 1);
6589 }
6590
6591 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6592 pr_info("Movable zone start for each node\n");
6593 for (i = 0; i < MAX_NUMNODES; i++) {
6594 if (zone_movable_pfn[i])
6595 pr_info(" Node %d: %#018Lx\n", i,
6596 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6597 }
6598
6599 /* Print out the early node map */
6600 pr_info("Early memory node ranges\n");
6601 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6602 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6603 (u64)start_pfn << PAGE_SHIFT,
6604 ((u64)end_pfn << PAGE_SHIFT) - 1);
6605
6606 /* Initialise every node */
6607 mminit_verify_pageflags_layout();
6608 setup_nr_node_ids();
6609 for_each_online_node(nid) {
6610 pg_data_t *pgdat = NODE_DATA(nid);
6611 free_area_init_node(nid, NULL,
6612 find_min_pfn_for_node(nid), NULL);
6613
6614 /* Any memory on that node */
6615 if (pgdat->node_present_pages)
6616 node_set_state(nid, N_MEMORY);
6617 check_for_memory(pgdat, nid);
6618 }
6619 }
6620
6621 static int __init cmdline_parse_core(char *p, unsigned long *core)
6622 {
6623 unsigned long long coremem;
6624 if (!p)
6625 return -EINVAL;
6626
6627 coremem = memparse(p, &p);
6628 *core = coremem >> PAGE_SHIFT;
6629
6630 /* Paranoid check that UL is enough for the coremem value */
6631 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6632
6633 return 0;
6634 }
6635
6636 /*
6637 * kernelcore=size sets the amount of memory for use for allocations that
6638 * cannot be reclaimed or migrated.
6639 */
6640 static int __init cmdline_parse_kernelcore(char *p)
6641 {
6642 /* parse kernelcore=mirror */
6643 if (parse_option_str(p, "mirror")) {
6644 mirrored_kernelcore = true;
6645 return 0;
6646 }
6647
6648 return cmdline_parse_core(p, &required_kernelcore);
6649 }
6650
6651 /*
6652 * movablecore=size sets the amount of memory for use for allocations that
6653 * can be reclaimed or migrated.
6654 */
6655 static int __init cmdline_parse_movablecore(char *p)
6656 {
6657 return cmdline_parse_core(p, &required_movablecore);
6658 }
6659
6660 early_param("kernelcore", cmdline_parse_kernelcore);
6661 early_param("movablecore", cmdline_parse_movablecore);
6662
6663 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6664
6665 void adjust_managed_page_count(struct page *page, long count)
6666 {
6667 spin_lock(&managed_page_count_lock);
6668 page_zone(page)->managed_pages += count;
6669 totalram_pages += count;
6670 #ifdef CONFIG_HIGHMEM
6671 if (PageHighMem(page))
6672 totalhigh_pages += count;
6673 #endif
6674 spin_unlock(&managed_page_count_lock);
6675 }
6676 EXPORT_SYMBOL(adjust_managed_page_count);
6677
6678 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6679 {
6680 void *pos;
6681 unsigned long pages = 0;
6682
6683 start = (void *)PAGE_ALIGN((unsigned long)start);
6684 end = (void *)((unsigned long)end & PAGE_MASK);
6685 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6686 if ((unsigned int)poison <= 0xFF)
6687 memset(pos, poison, PAGE_SIZE);
6688 free_reserved_page(virt_to_page(pos));
6689 }
6690
6691 if (pages && s)
6692 pr_info("Freeing %s memory: %ldK\n",
6693 s, pages << (PAGE_SHIFT - 10));
6694
6695 return pages;
6696 }
6697 EXPORT_SYMBOL(free_reserved_area);
6698
6699 #ifdef CONFIG_HIGHMEM
6700 void free_highmem_page(struct page *page)
6701 {
6702 __free_reserved_page(page);
6703 totalram_pages++;
6704 page_zone(page)->managed_pages++;
6705 totalhigh_pages++;
6706 }
6707 #endif
6708
6709
6710 void __init mem_init_print_info(const char *str)
6711 {
6712 unsigned long physpages, codesize, datasize, rosize, bss_size;
6713 unsigned long init_code_size, init_data_size;
6714
6715 physpages = get_num_physpages();
6716 codesize = _etext - _stext;
6717 datasize = _edata - _sdata;
6718 rosize = __end_rodata - __start_rodata;
6719 bss_size = __bss_stop - __bss_start;
6720 init_data_size = __init_end - __init_begin;
6721 init_code_size = _einittext - _sinittext;
6722
6723 /*
6724 * Detect special cases and adjust section sizes accordingly:
6725 * 1) .init.* may be embedded into .data sections
6726 * 2) .init.text.* may be out of [__init_begin, __init_end],
6727 * please refer to arch/tile/kernel/vmlinux.lds.S.
6728 * 3) .rodata.* may be embedded into .text or .data sections.
6729 */
6730 #define adj_init_size(start, end, size, pos, adj) \
6731 do { \
6732 if (start <= pos && pos < end && size > adj) \
6733 size -= adj; \
6734 } while (0)
6735
6736 adj_init_size(__init_begin, __init_end, init_data_size,
6737 _sinittext, init_code_size);
6738 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6739 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6740 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6741 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6742
6743 #undef adj_init_size
6744
6745 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6746 #ifdef CONFIG_HIGHMEM
6747 ", %luK highmem"
6748 #endif
6749 "%s%s)\n",
6750 nr_free_pages() << (PAGE_SHIFT - 10),
6751 physpages << (PAGE_SHIFT - 10),
6752 codesize >> 10, datasize >> 10, rosize >> 10,
6753 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6754 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6755 totalcma_pages << (PAGE_SHIFT - 10),
6756 #ifdef CONFIG_HIGHMEM
6757 totalhigh_pages << (PAGE_SHIFT - 10),
6758 #endif
6759 str ? ", " : "", str ? str : "");
6760 }
6761
6762 /**
6763 * set_dma_reserve - set the specified number of pages reserved in the first zone
6764 * @new_dma_reserve: The number of pages to mark reserved
6765 *
6766 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6767 * In the DMA zone, a significant percentage may be consumed by kernel image
6768 * and other unfreeable allocations which can skew the watermarks badly. This
6769 * function may optionally be used to account for unfreeable pages in the
6770 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6771 * smaller per-cpu batchsize.
6772 */
6773 void __init set_dma_reserve(unsigned long new_dma_reserve)
6774 {
6775 dma_reserve = new_dma_reserve;
6776 }
6777
6778 void __init free_area_init(unsigned long *zones_size)
6779 {
6780 free_area_init_node(0, zones_size,
6781 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6782 }
6783
6784 static int page_alloc_cpu_dead(unsigned int cpu)
6785 {
6786
6787 lru_add_drain_cpu(cpu);
6788 drain_pages(cpu);
6789
6790 /*
6791 * Spill the event counters of the dead processor
6792 * into the current processors event counters.
6793 * This artificially elevates the count of the current
6794 * processor.
6795 */
6796 vm_events_fold_cpu(cpu);
6797
6798 /*
6799 * Zero the differential counters of the dead processor
6800 * so that the vm statistics are consistent.
6801 *
6802 * This is only okay since the processor is dead and cannot
6803 * race with what we are doing.
6804 */
6805 cpu_vm_stats_fold(cpu);
6806 return 0;
6807 }
6808
6809 void __init page_alloc_init(void)
6810 {
6811 int ret;
6812
6813 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6814 "mm/page_alloc:dead", NULL,
6815 page_alloc_cpu_dead);
6816 WARN_ON(ret < 0);
6817 }
6818
6819 /*
6820 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6821 * or min_free_kbytes changes.
6822 */
6823 static void calculate_totalreserve_pages(void)
6824 {
6825 struct pglist_data *pgdat;
6826 unsigned long reserve_pages = 0;
6827 enum zone_type i, j;
6828
6829 for_each_online_pgdat(pgdat) {
6830
6831 pgdat->totalreserve_pages = 0;
6832
6833 for (i = 0; i < MAX_NR_ZONES; i++) {
6834 struct zone *zone = pgdat->node_zones + i;
6835 long max = 0;
6836
6837 /* Find valid and maximum lowmem_reserve in the zone */
6838 for (j = i; j < MAX_NR_ZONES; j++) {
6839 if (zone->lowmem_reserve[j] > max)
6840 max = zone->lowmem_reserve[j];
6841 }
6842
6843 /* we treat the high watermark as reserved pages. */
6844 max += high_wmark_pages(zone);
6845
6846 if (max > zone->managed_pages)
6847 max = zone->managed_pages;
6848
6849 pgdat->totalreserve_pages += max;
6850
6851 reserve_pages += max;
6852 }
6853 }
6854 totalreserve_pages = reserve_pages;
6855 }
6856
6857 /*
6858 * setup_per_zone_lowmem_reserve - called whenever
6859 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6860 * has a correct pages reserved value, so an adequate number of
6861 * pages are left in the zone after a successful __alloc_pages().
6862 */
6863 static void setup_per_zone_lowmem_reserve(void)
6864 {
6865 struct pglist_data *pgdat;
6866 enum zone_type j, idx;
6867
6868 for_each_online_pgdat(pgdat) {
6869 for (j = 0; j < MAX_NR_ZONES; j++) {
6870 struct zone *zone = pgdat->node_zones + j;
6871 unsigned long managed_pages = zone->managed_pages;
6872
6873 zone->lowmem_reserve[j] = 0;
6874
6875 idx = j;
6876 while (idx) {
6877 struct zone *lower_zone;
6878
6879 idx--;
6880
6881 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6882 sysctl_lowmem_reserve_ratio[idx] = 1;
6883
6884 lower_zone = pgdat->node_zones + idx;
6885 lower_zone->lowmem_reserve[j] = managed_pages /
6886 sysctl_lowmem_reserve_ratio[idx];
6887 managed_pages += lower_zone->managed_pages;
6888 }
6889 }
6890 }
6891
6892 /* update totalreserve_pages */
6893 calculate_totalreserve_pages();
6894 }
6895
6896 static void __setup_per_zone_wmarks(void)
6897 {
6898 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6899 unsigned long lowmem_pages = 0;
6900 struct zone *zone;
6901 unsigned long flags;
6902
6903 /* Calculate total number of !ZONE_HIGHMEM pages */
6904 for_each_zone(zone) {
6905 if (!is_highmem(zone))
6906 lowmem_pages += zone->managed_pages;
6907 }
6908
6909 for_each_zone(zone) {
6910 u64 tmp;
6911
6912 spin_lock_irqsave(&zone->lock, flags);
6913 tmp = (u64)pages_min * zone->managed_pages;
6914 do_div(tmp, lowmem_pages);
6915 if (is_highmem(zone)) {
6916 /*
6917 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6918 * need highmem pages, so cap pages_min to a small
6919 * value here.
6920 *
6921 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6922 * deltas control asynch page reclaim, and so should
6923 * not be capped for highmem.
6924 */
6925 unsigned long min_pages;
6926
6927 min_pages = zone->managed_pages / 1024;
6928 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6929 zone->watermark[WMARK_MIN] = min_pages;
6930 } else {
6931 /*
6932 * If it's a lowmem zone, reserve a number of pages
6933 * proportionate to the zone's size.
6934 */
6935 zone->watermark[WMARK_MIN] = tmp;
6936 }
6937
6938 /*
6939 * Set the kswapd watermarks distance according to the
6940 * scale factor in proportion to available memory, but
6941 * ensure a minimum size on small systems.
6942 */
6943 tmp = max_t(u64, tmp >> 2,
6944 mult_frac(zone->managed_pages,
6945 watermark_scale_factor, 10000));
6946
6947 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6948 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6949
6950 spin_unlock_irqrestore(&zone->lock, flags);
6951 }
6952
6953 /* update totalreserve_pages */
6954 calculate_totalreserve_pages();
6955 }
6956
6957 /**
6958 * setup_per_zone_wmarks - called when min_free_kbytes changes
6959 * or when memory is hot-{added|removed}
6960 *
6961 * Ensures that the watermark[min,low,high] values for each zone are set
6962 * correctly with respect to min_free_kbytes.
6963 */
6964 void setup_per_zone_wmarks(void)
6965 {
6966 static DEFINE_SPINLOCK(lock);
6967
6968 spin_lock(&lock);
6969 __setup_per_zone_wmarks();
6970 spin_unlock(&lock);
6971 }
6972
6973 /*
6974 * Initialise min_free_kbytes.
6975 *
6976 * For small machines we want it small (128k min). For large machines
6977 * we want it large (64MB max). But it is not linear, because network
6978 * bandwidth does not increase linearly with machine size. We use
6979 *
6980 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6981 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6982 *
6983 * which yields
6984 *
6985 * 16MB: 512k
6986 * 32MB: 724k
6987 * 64MB: 1024k
6988 * 128MB: 1448k
6989 * 256MB: 2048k
6990 * 512MB: 2896k
6991 * 1024MB: 4096k
6992 * 2048MB: 5792k
6993 * 4096MB: 8192k
6994 * 8192MB: 11584k
6995 * 16384MB: 16384k
6996 */
6997 int __meminit init_per_zone_wmark_min(void)
6998 {
6999 unsigned long lowmem_kbytes;
7000 int new_min_free_kbytes;
7001
7002 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7003 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7004
7005 if (new_min_free_kbytes > user_min_free_kbytes) {
7006 min_free_kbytes = new_min_free_kbytes;
7007 if (min_free_kbytes < 128)
7008 min_free_kbytes = 128;
7009 if (min_free_kbytes > 65536)
7010 min_free_kbytes = 65536;
7011 } else {
7012 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7013 new_min_free_kbytes, user_min_free_kbytes);
7014 }
7015 setup_per_zone_wmarks();
7016 refresh_zone_stat_thresholds();
7017 setup_per_zone_lowmem_reserve();
7018
7019 #ifdef CONFIG_NUMA
7020 setup_min_unmapped_ratio();
7021 setup_min_slab_ratio();
7022 #endif
7023
7024 return 0;
7025 }
7026 postcore_initcall(init_per_zone_wmark_min)
7027
7028 /*
7029 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7030 * that we can call two helper functions whenever min_free_kbytes
7031 * changes.
7032 */
7033 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7034 void __user *buffer, size_t *length, loff_t *ppos)
7035 {
7036 int rc;
7037
7038 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7039 if (rc)
7040 return rc;
7041
7042 if (write) {
7043 user_min_free_kbytes = min_free_kbytes;
7044 setup_per_zone_wmarks();
7045 }
7046 return 0;
7047 }
7048
7049 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7050 void __user *buffer, size_t *length, loff_t *ppos)
7051 {
7052 int rc;
7053
7054 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7055 if (rc)
7056 return rc;
7057
7058 if (write)
7059 setup_per_zone_wmarks();
7060
7061 return 0;
7062 }
7063
7064 #ifdef CONFIG_NUMA
7065 static void setup_min_unmapped_ratio(void)
7066 {
7067 pg_data_t *pgdat;
7068 struct zone *zone;
7069
7070 for_each_online_pgdat(pgdat)
7071 pgdat->min_unmapped_pages = 0;
7072
7073 for_each_zone(zone)
7074 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7075 sysctl_min_unmapped_ratio) / 100;
7076 }
7077
7078
7079 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7080 void __user *buffer, size_t *length, loff_t *ppos)
7081 {
7082 int rc;
7083
7084 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7085 if (rc)
7086 return rc;
7087
7088 setup_min_unmapped_ratio();
7089
7090 return 0;
7091 }
7092
7093 static void setup_min_slab_ratio(void)
7094 {
7095 pg_data_t *pgdat;
7096 struct zone *zone;
7097
7098 for_each_online_pgdat(pgdat)
7099 pgdat->min_slab_pages = 0;
7100
7101 for_each_zone(zone)
7102 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7103 sysctl_min_slab_ratio) / 100;
7104 }
7105
7106 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7107 void __user *buffer, size_t *length, loff_t *ppos)
7108 {
7109 int rc;
7110
7111 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7112 if (rc)
7113 return rc;
7114
7115 setup_min_slab_ratio();
7116
7117 return 0;
7118 }
7119 #endif
7120
7121 /*
7122 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7123 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7124 * whenever sysctl_lowmem_reserve_ratio changes.
7125 *
7126 * The reserve ratio obviously has absolutely no relation with the
7127 * minimum watermarks. The lowmem reserve ratio can only make sense
7128 * if in function of the boot time zone sizes.
7129 */
7130 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7131 void __user *buffer, size_t *length, loff_t *ppos)
7132 {
7133 proc_dointvec_minmax(table, write, buffer, length, ppos);
7134 setup_per_zone_lowmem_reserve();
7135 return 0;
7136 }
7137
7138 /*
7139 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7140 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7141 * pagelist can have before it gets flushed back to buddy allocator.
7142 */
7143 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7144 void __user *buffer, size_t *length, loff_t *ppos)
7145 {
7146 struct zone *zone;
7147 int old_percpu_pagelist_fraction;
7148 int ret;
7149
7150 mutex_lock(&pcp_batch_high_lock);
7151 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7152
7153 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7154 if (!write || ret < 0)
7155 goto out;
7156
7157 /* Sanity checking to avoid pcp imbalance */
7158 if (percpu_pagelist_fraction &&
7159 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7160 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7161 ret = -EINVAL;
7162 goto out;
7163 }
7164
7165 /* No change? */
7166 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7167 goto out;
7168
7169 for_each_populated_zone(zone) {
7170 unsigned int cpu;
7171
7172 for_each_possible_cpu(cpu)
7173 pageset_set_high_and_batch(zone,
7174 per_cpu_ptr(zone->pageset, cpu));
7175 }
7176 out:
7177 mutex_unlock(&pcp_batch_high_lock);
7178 return ret;
7179 }
7180
7181 #ifdef CONFIG_NUMA
7182 int hashdist = HASHDIST_DEFAULT;
7183
7184 static int __init set_hashdist(char *str)
7185 {
7186 if (!str)
7187 return 0;
7188 hashdist = simple_strtoul(str, &str, 0);
7189 return 1;
7190 }
7191 __setup("hashdist=", set_hashdist);
7192 #endif
7193
7194 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7195 /*
7196 * Returns the number of pages that arch has reserved but
7197 * is not known to alloc_large_system_hash().
7198 */
7199 static unsigned long __init arch_reserved_kernel_pages(void)
7200 {
7201 return 0;
7202 }
7203 #endif
7204
7205 /*
7206 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7207 * machines. As memory size is increased the scale is also increased but at
7208 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7209 * quadruples the scale is increased by one, which means the size of hash table
7210 * only doubles, instead of quadrupling as well.
7211 * Because 32-bit systems cannot have large physical memory, where this scaling
7212 * makes sense, it is disabled on such platforms.
7213 */
7214 #if __BITS_PER_LONG > 32
7215 #define ADAPT_SCALE_BASE (64ul << 30)
7216 #define ADAPT_SCALE_SHIFT 2
7217 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7218 #endif
7219
7220 /*
7221 * allocate a large system hash table from bootmem
7222 * - it is assumed that the hash table must contain an exact power-of-2
7223 * quantity of entries
7224 * - limit is the number of hash buckets, not the total allocation size
7225 */
7226 void *__init alloc_large_system_hash(const char *tablename,
7227 unsigned long bucketsize,
7228 unsigned long numentries,
7229 int scale,
7230 int flags,
7231 unsigned int *_hash_shift,
7232 unsigned int *_hash_mask,
7233 unsigned long low_limit,
7234 unsigned long high_limit)
7235 {
7236 unsigned long long max = high_limit;
7237 unsigned long log2qty, size;
7238 void *table = NULL;
7239 gfp_t gfp_flags;
7240
7241 /* allow the kernel cmdline to have a say */
7242 if (!numentries) {
7243 /* round applicable memory size up to nearest megabyte */
7244 numentries = nr_kernel_pages;
7245 numentries -= arch_reserved_kernel_pages();
7246
7247 /* It isn't necessary when PAGE_SIZE >= 1MB */
7248 if (PAGE_SHIFT < 20)
7249 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7250
7251 #if __BITS_PER_LONG > 32
7252 if (!high_limit) {
7253 unsigned long adapt;
7254
7255 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7256 adapt <<= ADAPT_SCALE_SHIFT)
7257 scale++;
7258 }
7259 #endif
7260
7261 /* limit to 1 bucket per 2^scale bytes of low memory */
7262 if (scale > PAGE_SHIFT)
7263 numentries >>= (scale - PAGE_SHIFT);
7264 else
7265 numentries <<= (PAGE_SHIFT - scale);
7266
7267 /* Make sure we've got at least a 0-order allocation.. */
7268 if (unlikely(flags & HASH_SMALL)) {
7269 /* Makes no sense without HASH_EARLY */
7270 WARN_ON(!(flags & HASH_EARLY));
7271 if (!(numentries >> *_hash_shift)) {
7272 numentries = 1UL << *_hash_shift;
7273 BUG_ON(!numentries);
7274 }
7275 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7276 numentries = PAGE_SIZE / bucketsize;
7277 }
7278 numentries = roundup_pow_of_two(numentries);
7279
7280 /* limit allocation size to 1/16 total memory by default */
7281 if (max == 0) {
7282 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7283 do_div(max, bucketsize);
7284 }
7285 max = min(max, 0x80000000ULL);
7286
7287 if (numentries < low_limit)
7288 numentries = low_limit;
7289 if (numentries > max)
7290 numentries = max;
7291
7292 log2qty = ilog2(numentries);
7293
7294 /*
7295 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7296 * currently not used when HASH_EARLY is specified.
7297 */
7298 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7299 do {
7300 size = bucketsize << log2qty;
7301 if (flags & HASH_EARLY)
7302 table = memblock_virt_alloc_nopanic(size, 0);
7303 else if (hashdist)
7304 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7305 else {
7306 /*
7307 * If bucketsize is not a power-of-two, we may free
7308 * some pages at the end of hash table which
7309 * alloc_pages_exact() automatically does
7310 */
7311 if (get_order(size) < MAX_ORDER) {
7312 table = alloc_pages_exact(size, gfp_flags);
7313 kmemleak_alloc(table, size, 1, gfp_flags);
7314 }
7315 }
7316 } while (!table && size > PAGE_SIZE && --log2qty);
7317
7318 if (!table)
7319 panic("Failed to allocate %s hash table\n", tablename);
7320
7321 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7322 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7323
7324 if (_hash_shift)
7325 *_hash_shift = log2qty;
7326 if (_hash_mask)
7327 *_hash_mask = (1 << log2qty) - 1;
7328
7329 return table;
7330 }
7331
7332 /*
7333 * This function checks whether pageblock includes unmovable pages or not.
7334 * If @count is not zero, it is okay to include less @count unmovable pages
7335 *
7336 * PageLRU check without isolation or lru_lock could race so that
7337 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7338 * check without lock_page also may miss some movable non-lru pages at
7339 * race condition. So you can't expect this function should be exact.
7340 */
7341 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7342 bool skip_hwpoisoned_pages)
7343 {
7344 unsigned long pfn, iter, found;
7345 int mt;
7346
7347 /*
7348 * For avoiding noise data, lru_add_drain_all() should be called
7349 * If ZONE_MOVABLE, the zone never contains unmovable pages
7350 */
7351 if (zone_idx(zone) == ZONE_MOVABLE)
7352 return false;
7353 mt = get_pageblock_migratetype(page);
7354 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7355 return false;
7356
7357 pfn = page_to_pfn(page);
7358 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7359 unsigned long check = pfn + iter;
7360
7361 if (!pfn_valid_within(check))
7362 continue;
7363
7364 page = pfn_to_page(check);
7365
7366 /*
7367 * Hugepages are not in LRU lists, but they're movable.
7368 * We need not scan over tail pages bacause we don't
7369 * handle each tail page individually in migration.
7370 */
7371 if (PageHuge(page)) {
7372 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7373 continue;
7374 }
7375
7376 /*
7377 * We can't use page_count without pin a page
7378 * because another CPU can free compound page.
7379 * This check already skips compound tails of THP
7380 * because their page->_refcount is zero at all time.
7381 */
7382 if (!page_ref_count(page)) {
7383 if (PageBuddy(page))
7384 iter += (1 << page_order(page)) - 1;
7385 continue;
7386 }
7387
7388 /*
7389 * The HWPoisoned page may be not in buddy system, and
7390 * page_count() is not 0.
7391 */
7392 if (skip_hwpoisoned_pages && PageHWPoison(page))
7393 continue;
7394
7395 if (__PageMovable(page))
7396 continue;
7397
7398 if (!PageLRU(page))
7399 found++;
7400 /*
7401 * If there are RECLAIMABLE pages, we need to check
7402 * it. But now, memory offline itself doesn't call
7403 * shrink_node_slabs() and it still to be fixed.
7404 */
7405 /*
7406 * If the page is not RAM, page_count()should be 0.
7407 * we don't need more check. This is an _used_ not-movable page.
7408 *
7409 * The problematic thing here is PG_reserved pages. PG_reserved
7410 * is set to both of a memory hole page and a _used_ kernel
7411 * page at boot.
7412 */
7413 if (found > count)
7414 return true;
7415 }
7416 return false;
7417 }
7418
7419 bool is_pageblock_removable_nolock(struct page *page)
7420 {
7421 struct zone *zone;
7422 unsigned long pfn;
7423
7424 /*
7425 * We have to be careful here because we are iterating over memory
7426 * sections which are not zone aware so we might end up outside of
7427 * the zone but still within the section.
7428 * We have to take care about the node as well. If the node is offline
7429 * its NODE_DATA will be NULL - see page_zone.
7430 */
7431 if (!node_online(page_to_nid(page)))
7432 return false;
7433
7434 zone = page_zone(page);
7435 pfn = page_to_pfn(page);
7436 if (!zone_spans_pfn(zone, pfn))
7437 return false;
7438
7439 return !has_unmovable_pages(zone, page, 0, true);
7440 }
7441
7442 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7443
7444 static unsigned long pfn_max_align_down(unsigned long pfn)
7445 {
7446 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7447 pageblock_nr_pages) - 1);
7448 }
7449
7450 static unsigned long pfn_max_align_up(unsigned long pfn)
7451 {
7452 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7453 pageblock_nr_pages));
7454 }
7455
7456 /* [start, end) must belong to a single zone. */
7457 static int __alloc_contig_migrate_range(struct compact_control *cc,
7458 unsigned long start, unsigned long end)
7459 {
7460 /* This function is based on compact_zone() from compaction.c. */
7461 unsigned long nr_reclaimed;
7462 unsigned long pfn = start;
7463 unsigned int tries = 0;
7464 int ret = 0;
7465
7466 migrate_prep();
7467
7468 while (pfn < end || !list_empty(&cc->migratepages)) {
7469 if (fatal_signal_pending(current)) {
7470 ret = -EINTR;
7471 break;
7472 }
7473
7474 if (list_empty(&cc->migratepages)) {
7475 cc->nr_migratepages = 0;
7476 pfn = isolate_migratepages_range(cc, pfn, end);
7477 if (!pfn) {
7478 ret = -EINTR;
7479 break;
7480 }
7481 tries = 0;
7482 } else if (++tries == 5) {
7483 ret = ret < 0 ? ret : -EBUSY;
7484 break;
7485 }
7486
7487 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7488 &cc->migratepages);
7489 cc->nr_migratepages -= nr_reclaimed;
7490
7491 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7492 NULL, 0, cc->mode, MR_CMA);
7493 }
7494 if (ret < 0) {
7495 putback_movable_pages(&cc->migratepages);
7496 return ret;
7497 }
7498 return 0;
7499 }
7500
7501 /**
7502 * alloc_contig_range() -- tries to allocate given range of pages
7503 * @start: start PFN to allocate
7504 * @end: one-past-the-last PFN to allocate
7505 * @migratetype: migratetype of the underlaying pageblocks (either
7506 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7507 * in range must have the same migratetype and it must
7508 * be either of the two.
7509 * @gfp_mask: GFP mask to use during compaction
7510 *
7511 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7512 * aligned, however it's the caller's responsibility to guarantee that
7513 * we are the only thread that changes migrate type of pageblocks the
7514 * pages fall in.
7515 *
7516 * The PFN range must belong to a single zone.
7517 *
7518 * Returns zero on success or negative error code. On success all
7519 * pages which PFN is in [start, end) are allocated for the caller and
7520 * need to be freed with free_contig_range().
7521 */
7522 int alloc_contig_range(unsigned long start, unsigned long end,
7523 unsigned migratetype, gfp_t gfp_mask)
7524 {
7525 unsigned long outer_start, outer_end;
7526 unsigned int order;
7527 int ret = 0;
7528
7529 struct compact_control cc = {
7530 .nr_migratepages = 0,
7531 .order = -1,
7532 .zone = page_zone(pfn_to_page(start)),
7533 .mode = MIGRATE_SYNC,
7534 .ignore_skip_hint = true,
7535 .gfp_mask = current_gfp_context(gfp_mask),
7536 };
7537 INIT_LIST_HEAD(&cc.migratepages);
7538
7539 /*
7540 * What we do here is we mark all pageblocks in range as
7541 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7542 * have different sizes, and due to the way page allocator
7543 * work, we align the range to biggest of the two pages so
7544 * that page allocator won't try to merge buddies from
7545 * different pageblocks and change MIGRATE_ISOLATE to some
7546 * other migration type.
7547 *
7548 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7549 * migrate the pages from an unaligned range (ie. pages that
7550 * we are interested in). This will put all the pages in
7551 * range back to page allocator as MIGRATE_ISOLATE.
7552 *
7553 * When this is done, we take the pages in range from page
7554 * allocator removing them from the buddy system. This way
7555 * page allocator will never consider using them.
7556 *
7557 * This lets us mark the pageblocks back as
7558 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7559 * aligned range but not in the unaligned, original range are
7560 * put back to page allocator so that buddy can use them.
7561 */
7562
7563 ret = start_isolate_page_range(pfn_max_align_down(start),
7564 pfn_max_align_up(end), migratetype,
7565 false);
7566 if (ret)
7567 return ret;
7568
7569 /*
7570 * In case of -EBUSY, we'd like to know which page causes problem.
7571 * So, just fall through. test_pages_isolated() has a tracepoint
7572 * which will report the busy page.
7573 *
7574 * It is possible that busy pages could become available before
7575 * the call to test_pages_isolated, and the range will actually be
7576 * allocated. So, if we fall through be sure to clear ret so that
7577 * -EBUSY is not accidentally used or returned to caller.
7578 */
7579 ret = __alloc_contig_migrate_range(&cc, start, end);
7580 if (ret && ret != -EBUSY)
7581 goto done;
7582 ret =0;
7583
7584 /*
7585 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7586 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7587 * more, all pages in [start, end) are free in page allocator.
7588 * What we are going to do is to allocate all pages from
7589 * [start, end) (that is remove them from page allocator).
7590 *
7591 * The only problem is that pages at the beginning and at the
7592 * end of interesting range may be not aligned with pages that
7593 * page allocator holds, ie. they can be part of higher order
7594 * pages. Because of this, we reserve the bigger range and
7595 * once this is done free the pages we are not interested in.
7596 *
7597 * We don't have to hold zone->lock here because the pages are
7598 * isolated thus they won't get removed from buddy.
7599 */
7600
7601 lru_add_drain_all();
7602 drain_all_pages(cc.zone);
7603
7604 order = 0;
7605 outer_start = start;
7606 while (!PageBuddy(pfn_to_page(outer_start))) {
7607 if (++order >= MAX_ORDER) {
7608 outer_start = start;
7609 break;
7610 }
7611 outer_start &= ~0UL << order;
7612 }
7613
7614 if (outer_start != start) {
7615 order = page_order(pfn_to_page(outer_start));
7616
7617 /*
7618 * outer_start page could be small order buddy page and
7619 * it doesn't include start page. Adjust outer_start
7620 * in this case to report failed page properly
7621 * on tracepoint in test_pages_isolated()
7622 */
7623 if (outer_start + (1UL << order) <= start)
7624 outer_start = start;
7625 }
7626
7627 /* Make sure the range is really isolated. */
7628 if (test_pages_isolated(outer_start, end, false)) {
7629 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7630 __func__, outer_start, end);
7631 ret = -EBUSY;
7632 goto done;
7633 }
7634
7635 /* Grab isolated pages from freelists. */
7636 outer_end = isolate_freepages_range(&cc, outer_start, end);
7637 if (!outer_end) {
7638 ret = -EBUSY;
7639 goto done;
7640 }
7641
7642 /* Free head and tail (if any) */
7643 if (start != outer_start)
7644 free_contig_range(outer_start, start - outer_start);
7645 if (end != outer_end)
7646 free_contig_range(end, outer_end - end);
7647
7648 done:
7649 undo_isolate_page_range(pfn_max_align_down(start),
7650 pfn_max_align_up(end), migratetype);
7651 return ret;
7652 }
7653
7654 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7655 {
7656 unsigned int count = 0;
7657
7658 for (; nr_pages--; pfn++) {
7659 struct page *page = pfn_to_page(pfn);
7660
7661 count += page_count(page) != 1;
7662 __free_page(page);
7663 }
7664 WARN(count != 0, "%d pages are still in use!\n", count);
7665 }
7666 #endif
7667
7668 #ifdef CONFIG_MEMORY_HOTPLUG
7669 /*
7670 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7671 * page high values need to be recalulated.
7672 */
7673 void __meminit zone_pcp_update(struct zone *zone)
7674 {
7675 unsigned cpu;
7676 mutex_lock(&pcp_batch_high_lock);
7677 for_each_possible_cpu(cpu)
7678 pageset_set_high_and_batch(zone,
7679 per_cpu_ptr(zone->pageset, cpu));
7680 mutex_unlock(&pcp_batch_high_lock);
7681 }
7682 #endif
7683
7684 void zone_pcp_reset(struct zone *zone)
7685 {
7686 unsigned long flags;
7687 int cpu;
7688 struct per_cpu_pageset *pset;
7689
7690 /* avoid races with drain_pages() */
7691 local_irq_save(flags);
7692 if (zone->pageset != &boot_pageset) {
7693 for_each_online_cpu(cpu) {
7694 pset = per_cpu_ptr(zone->pageset, cpu);
7695 drain_zonestat(zone, pset);
7696 }
7697 free_percpu(zone->pageset);
7698 zone->pageset = &boot_pageset;
7699 }
7700 local_irq_restore(flags);
7701 }
7702
7703 #ifdef CONFIG_MEMORY_HOTREMOVE
7704 /*
7705 * All pages in the range must be in a single zone and isolated
7706 * before calling this.
7707 */
7708 void
7709 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7710 {
7711 struct page *page;
7712 struct zone *zone;
7713 unsigned int order, i;
7714 unsigned long pfn;
7715 unsigned long flags;
7716 /* find the first valid pfn */
7717 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7718 if (pfn_valid(pfn))
7719 break;
7720 if (pfn == end_pfn)
7721 return;
7722 offline_mem_sections(pfn, end_pfn);
7723 zone = page_zone(pfn_to_page(pfn));
7724 spin_lock_irqsave(&zone->lock, flags);
7725 pfn = start_pfn;
7726 while (pfn < end_pfn) {
7727 if (!pfn_valid(pfn)) {
7728 pfn++;
7729 continue;
7730 }
7731 page = pfn_to_page(pfn);
7732 /*
7733 * The HWPoisoned page may be not in buddy system, and
7734 * page_count() is not 0.
7735 */
7736 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7737 pfn++;
7738 SetPageReserved(page);
7739 continue;
7740 }
7741
7742 BUG_ON(page_count(page));
7743 BUG_ON(!PageBuddy(page));
7744 order = page_order(page);
7745 #ifdef CONFIG_DEBUG_VM
7746 pr_info("remove from free list %lx %d %lx\n",
7747 pfn, 1 << order, end_pfn);
7748 #endif
7749 list_del(&page->lru);
7750 rmv_page_order(page);
7751 zone->free_area[order].nr_free--;
7752 for (i = 0; i < (1 << order); i++)
7753 SetPageReserved((page+i));
7754 pfn += (1 << order);
7755 }
7756 spin_unlock_irqrestore(&zone->lock, flags);
7757 }
7758 #endif
7759
7760 bool is_free_buddy_page(struct page *page)
7761 {
7762 struct zone *zone = page_zone(page);
7763 unsigned long pfn = page_to_pfn(page);
7764 unsigned long flags;
7765 unsigned int order;
7766
7767 spin_lock_irqsave(&zone->lock, flags);
7768 for (order = 0; order < MAX_ORDER; order++) {
7769 struct page *page_head = page - (pfn & ((1 << order) - 1));
7770
7771 if (PageBuddy(page_head) && page_order(page_head) >= order)
7772 break;
7773 }
7774 spin_unlock_irqrestore(&zone->lock, flags);
7775
7776 return order < MAX_ORDER;
7777 }