]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/page_alloc.c
mm: treat indirectly reclaimable memory as free in overcommit logic
[thirdparty/kernel/stable.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84
85 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
86 /*
87 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
88 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
89 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
90 * defined in <linux/topology.h>.
91 */
92 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
93 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
94 int _node_numa_mem_[MAX_NUMNODES];
95 #endif
96
97 /* work_structs for global per-cpu drains */
98 DEFINE_MUTEX(pcpu_drain_mutex);
99 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100
101 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
102 volatile unsigned long latent_entropy __latent_entropy;
103 EXPORT_SYMBOL(latent_entropy);
104 #endif
105
106 /*
107 * Array of node states.
108 */
109 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
110 [N_POSSIBLE] = NODE_MASK_ALL,
111 [N_ONLINE] = { { [0] = 1UL } },
112 #ifndef CONFIG_NUMA
113 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
114 #ifdef CONFIG_HIGHMEM
115 [N_HIGH_MEMORY] = { { [0] = 1UL } },
116 #endif
117 [N_MEMORY] = { { [0] = 1UL } },
118 [N_CPU] = { { [0] = 1UL } },
119 #endif /* NUMA */
120 };
121 EXPORT_SYMBOL(node_states);
122
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
125
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132
133 /*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141 static inline int get_pcppage_migratetype(struct page *page)
142 {
143 return page->index;
144 }
145
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147 {
148 page->index = migratetype;
149 }
150
151 #ifdef CONFIG_PM_SLEEP
152 /*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
160
161 static gfp_t saved_gfp_mask;
162
163 void pm_restore_gfp_mask(void)
164 {
165 WARN_ON(!mutex_is_locked(&pm_mutex));
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
170 }
171
172 void pm_restrict_gfp_mask(void)
173 {
174 WARN_ON(!mutex_is_locked(&pm_mutex));
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178 }
179
180 bool pm_suspended_storage(void)
181 {
182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 return false;
184 return true;
185 }
186 #endif /* CONFIG_PM_SLEEP */
187
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
191
192 static void __free_pages_ok(struct page *page, unsigned int order);
193
194 /*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
204 */
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
213 32,
214 #endif
215 32,
216 };
217
218 EXPORT_SYMBOL(totalram_pages);
219
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 "DMA32",
226 #endif
227 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 "HighMem",
230 #endif
231 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 "Device",
234 #endif
235 };
236
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242 #ifdef CONFIG_CMA
243 "CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247 #endif
248 };
249
250 compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258 #endif
259 };
260
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
264
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
268
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
276
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
288
289 int page_group_by_mobility_disabled __read_mostly;
290
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292
293 /*
294 * Determine how many pages need to be initialized durig early boot
295 * (non-deferred initialization).
296 * The value of first_deferred_pfn will be set later, once non-deferred pages
297 * are initialized, but for now set it ULONG_MAX.
298 */
299 static inline void reset_deferred_meminit(pg_data_t *pgdat)
300 {
301 phys_addr_t start_addr, end_addr;
302 unsigned long max_pgcnt;
303 unsigned long reserved;
304
305 /*
306 * Initialise at least 2G of a node but also take into account that
307 * two large system hashes that can take up 1GB for 0.25TB/node.
308 */
309 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
310 (pgdat->node_spanned_pages >> 8));
311
312 /*
313 * Compensate the all the memblock reservations (e.g. crash kernel)
314 * from the initial estimation to make sure we will initialize enough
315 * memory to boot.
316 */
317 start_addr = PFN_PHYS(pgdat->node_start_pfn);
318 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
319 reserved = memblock_reserved_memory_within(start_addr, end_addr);
320 max_pgcnt += PHYS_PFN(reserved);
321
322 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
323 pgdat->first_deferred_pfn = ULONG_MAX;
324 }
325
326 /* Returns true if the struct page for the pfn is uninitialised */
327 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
328 {
329 int nid = early_pfn_to_nid(pfn);
330
331 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
332 return true;
333
334 return false;
335 }
336
337 /*
338 * Returns false when the remaining initialisation should be deferred until
339 * later in the boot cycle when it can be parallelised.
340 */
341 static inline bool update_defer_init(pg_data_t *pgdat,
342 unsigned long pfn, unsigned long zone_end,
343 unsigned long *nr_initialised)
344 {
345 /* Always populate low zones for address-contrained allocations */
346 if (zone_end < pgdat_end_pfn(pgdat))
347 return true;
348 (*nr_initialised)++;
349 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
350 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
351 pgdat->first_deferred_pfn = pfn;
352 return false;
353 }
354
355 return true;
356 }
357 #else
358 static inline void reset_deferred_meminit(pg_data_t *pgdat)
359 {
360 }
361
362 static inline bool early_page_uninitialised(unsigned long pfn)
363 {
364 return false;
365 }
366
367 static inline bool update_defer_init(pg_data_t *pgdat,
368 unsigned long pfn, unsigned long zone_end,
369 unsigned long *nr_initialised)
370 {
371 return true;
372 }
373 #endif
374
375 /* Return a pointer to the bitmap storing bits affecting a block of pages */
376 static inline unsigned long *get_pageblock_bitmap(struct page *page,
377 unsigned long pfn)
378 {
379 #ifdef CONFIG_SPARSEMEM
380 return __pfn_to_section(pfn)->pageblock_flags;
381 #else
382 return page_zone(page)->pageblock_flags;
383 #endif /* CONFIG_SPARSEMEM */
384 }
385
386 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
387 {
388 #ifdef CONFIG_SPARSEMEM
389 pfn &= (PAGES_PER_SECTION-1);
390 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
391 #else
392 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
393 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
394 #endif /* CONFIG_SPARSEMEM */
395 }
396
397 /**
398 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
399 * @page: The page within the block of interest
400 * @pfn: The target page frame number
401 * @end_bitidx: The last bit of interest to retrieve
402 * @mask: mask of bits that the caller is interested in
403 *
404 * Return: pageblock_bits flags
405 */
406 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
407 unsigned long pfn,
408 unsigned long end_bitidx,
409 unsigned long mask)
410 {
411 unsigned long *bitmap;
412 unsigned long bitidx, word_bitidx;
413 unsigned long word;
414
415 bitmap = get_pageblock_bitmap(page, pfn);
416 bitidx = pfn_to_bitidx(page, pfn);
417 word_bitidx = bitidx / BITS_PER_LONG;
418 bitidx &= (BITS_PER_LONG-1);
419
420 word = bitmap[word_bitidx];
421 bitidx += end_bitidx;
422 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
423 }
424
425 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
426 unsigned long end_bitidx,
427 unsigned long mask)
428 {
429 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
430 }
431
432 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
433 {
434 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
435 }
436
437 /**
438 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
439 * @page: The page within the block of interest
440 * @flags: The flags to set
441 * @pfn: The target page frame number
442 * @end_bitidx: The last bit of interest
443 * @mask: mask of bits that the caller is interested in
444 */
445 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
446 unsigned long pfn,
447 unsigned long end_bitidx,
448 unsigned long mask)
449 {
450 unsigned long *bitmap;
451 unsigned long bitidx, word_bitidx;
452 unsigned long old_word, word;
453
454 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
455
456 bitmap = get_pageblock_bitmap(page, pfn);
457 bitidx = pfn_to_bitidx(page, pfn);
458 word_bitidx = bitidx / BITS_PER_LONG;
459 bitidx &= (BITS_PER_LONG-1);
460
461 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
462
463 bitidx += end_bitidx;
464 mask <<= (BITS_PER_LONG - bitidx - 1);
465 flags <<= (BITS_PER_LONG - bitidx - 1);
466
467 word = READ_ONCE(bitmap[word_bitidx]);
468 for (;;) {
469 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
470 if (word == old_word)
471 break;
472 word = old_word;
473 }
474 }
475
476 void set_pageblock_migratetype(struct page *page, int migratetype)
477 {
478 if (unlikely(page_group_by_mobility_disabled &&
479 migratetype < MIGRATE_PCPTYPES))
480 migratetype = MIGRATE_UNMOVABLE;
481
482 set_pageblock_flags_group(page, (unsigned long)migratetype,
483 PB_migrate, PB_migrate_end);
484 }
485
486 #ifdef CONFIG_DEBUG_VM
487 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
488 {
489 int ret = 0;
490 unsigned seq;
491 unsigned long pfn = page_to_pfn(page);
492 unsigned long sp, start_pfn;
493
494 do {
495 seq = zone_span_seqbegin(zone);
496 start_pfn = zone->zone_start_pfn;
497 sp = zone->spanned_pages;
498 if (!zone_spans_pfn(zone, pfn))
499 ret = 1;
500 } while (zone_span_seqretry(zone, seq));
501
502 if (ret)
503 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
504 pfn, zone_to_nid(zone), zone->name,
505 start_pfn, start_pfn + sp);
506
507 return ret;
508 }
509
510 static int page_is_consistent(struct zone *zone, struct page *page)
511 {
512 if (!pfn_valid_within(page_to_pfn(page)))
513 return 0;
514 if (zone != page_zone(page))
515 return 0;
516
517 return 1;
518 }
519 /*
520 * Temporary debugging check for pages not lying within a given zone.
521 */
522 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
523 {
524 if (page_outside_zone_boundaries(zone, page))
525 return 1;
526 if (!page_is_consistent(zone, page))
527 return 1;
528
529 return 0;
530 }
531 #else
532 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
533 {
534 return 0;
535 }
536 #endif
537
538 static void bad_page(struct page *page, const char *reason,
539 unsigned long bad_flags)
540 {
541 static unsigned long resume;
542 static unsigned long nr_shown;
543 static unsigned long nr_unshown;
544
545 /*
546 * Allow a burst of 60 reports, then keep quiet for that minute;
547 * or allow a steady drip of one report per second.
548 */
549 if (nr_shown == 60) {
550 if (time_before(jiffies, resume)) {
551 nr_unshown++;
552 goto out;
553 }
554 if (nr_unshown) {
555 pr_alert(
556 "BUG: Bad page state: %lu messages suppressed\n",
557 nr_unshown);
558 nr_unshown = 0;
559 }
560 nr_shown = 0;
561 }
562 if (nr_shown++ == 0)
563 resume = jiffies + 60 * HZ;
564
565 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
566 current->comm, page_to_pfn(page));
567 __dump_page(page, reason);
568 bad_flags &= page->flags;
569 if (bad_flags)
570 pr_alert("bad because of flags: %#lx(%pGp)\n",
571 bad_flags, &bad_flags);
572 dump_page_owner(page);
573
574 print_modules();
575 dump_stack();
576 out:
577 /* Leave bad fields for debug, except PageBuddy could make trouble */
578 page_mapcount_reset(page); /* remove PageBuddy */
579 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
580 }
581
582 /*
583 * Higher-order pages are called "compound pages". They are structured thusly:
584 *
585 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
586 *
587 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
588 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
589 *
590 * The first tail page's ->compound_dtor holds the offset in array of compound
591 * page destructors. See compound_page_dtors.
592 *
593 * The first tail page's ->compound_order holds the order of allocation.
594 * This usage means that zero-order pages may not be compound.
595 */
596
597 void free_compound_page(struct page *page)
598 {
599 __free_pages_ok(page, compound_order(page));
600 }
601
602 void prep_compound_page(struct page *page, unsigned int order)
603 {
604 int i;
605 int nr_pages = 1 << order;
606
607 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
608 set_compound_order(page, order);
609 __SetPageHead(page);
610 for (i = 1; i < nr_pages; i++) {
611 struct page *p = page + i;
612 set_page_count(p, 0);
613 p->mapping = TAIL_MAPPING;
614 set_compound_head(p, page);
615 }
616 atomic_set(compound_mapcount_ptr(page), -1);
617 }
618
619 #ifdef CONFIG_DEBUG_PAGEALLOC
620 unsigned int _debug_guardpage_minorder;
621 bool _debug_pagealloc_enabled __read_mostly
622 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
623 EXPORT_SYMBOL(_debug_pagealloc_enabled);
624 bool _debug_guardpage_enabled __read_mostly;
625
626 static int __init early_debug_pagealloc(char *buf)
627 {
628 if (!buf)
629 return -EINVAL;
630 return kstrtobool(buf, &_debug_pagealloc_enabled);
631 }
632 early_param("debug_pagealloc", early_debug_pagealloc);
633
634 static bool need_debug_guardpage(void)
635 {
636 /* If we don't use debug_pagealloc, we don't need guard page */
637 if (!debug_pagealloc_enabled())
638 return false;
639
640 if (!debug_guardpage_minorder())
641 return false;
642
643 return true;
644 }
645
646 static void init_debug_guardpage(void)
647 {
648 if (!debug_pagealloc_enabled())
649 return;
650
651 if (!debug_guardpage_minorder())
652 return;
653
654 _debug_guardpage_enabled = true;
655 }
656
657 struct page_ext_operations debug_guardpage_ops = {
658 .need = need_debug_guardpage,
659 .init = init_debug_guardpage,
660 };
661
662 static int __init debug_guardpage_minorder_setup(char *buf)
663 {
664 unsigned long res;
665
666 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
667 pr_err("Bad debug_guardpage_minorder value\n");
668 return 0;
669 }
670 _debug_guardpage_minorder = res;
671 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
672 return 0;
673 }
674 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
675
676 static inline bool set_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
678 {
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
682 return false;
683
684 if (order >= debug_guardpage_minorder())
685 return false;
686
687 page_ext = lookup_page_ext(page);
688 if (unlikely(!page_ext))
689 return false;
690
691 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
692
693 INIT_LIST_HEAD(&page->lru);
694 set_page_private(page, order);
695 /* Guard pages are not available for any usage */
696 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
697
698 return true;
699 }
700
701 static inline void clear_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype)
703 {
704 struct page_ext *page_ext;
705
706 if (!debug_guardpage_enabled())
707 return;
708
709 page_ext = lookup_page_ext(page);
710 if (unlikely(!page_ext))
711 return;
712
713 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
714
715 set_page_private(page, 0);
716 if (!is_migrate_isolate(migratetype))
717 __mod_zone_freepage_state(zone, (1 << order), migratetype);
718 }
719 #else
720 struct page_ext_operations debug_guardpage_ops;
721 static inline bool set_page_guard(struct zone *zone, struct page *page,
722 unsigned int order, int migratetype) { return false; }
723 static inline void clear_page_guard(struct zone *zone, struct page *page,
724 unsigned int order, int migratetype) {}
725 #endif
726
727 static inline void set_page_order(struct page *page, unsigned int order)
728 {
729 set_page_private(page, order);
730 __SetPageBuddy(page);
731 }
732
733 static inline void rmv_page_order(struct page *page)
734 {
735 __ClearPageBuddy(page);
736 set_page_private(page, 0);
737 }
738
739 /*
740 * This function checks whether a page is free && is the buddy
741 * we can do coalesce a page and its buddy if
742 * (a) the buddy is not in a hole (check before calling!) &&
743 * (b) the buddy is in the buddy system &&
744 * (c) a page and its buddy have the same order &&
745 * (d) a page and its buddy are in the same zone.
746 *
747 * For recording whether a page is in the buddy system, we set ->_mapcount
748 * PAGE_BUDDY_MAPCOUNT_VALUE.
749 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
750 * serialized by zone->lock.
751 *
752 * For recording page's order, we use page_private(page).
753 */
754 static inline int page_is_buddy(struct page *page, struct page *buddy,
755 unsigned int order)
756 {
757 if (page_is_guard(buddy) && page_order(buddy) == order) {
758 if (page_zone_id(page) != page_zone_id(buddy))
759 return 0;
760
761 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
762
763 return 1;
764 }
765
766 if (PageBuddy(buddy) && page_order(buddy) == order) {
767 /*
768 * zone check is done late to avoid uselessly
769 * calculating zone/node ids for pages that could
770 * never merge.
771 */
772 if (page_zone_id(page) != page_zone_id(buddy))
773 return 0;
774
775 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
776
777 return 1;
778 }
779 return 0;
780 }
781
782 /*
783 * Freeing function for a buddy system allocator.
784 *
785 * The concept of a buddy system is to maintain direct-mapped table
786 * (containing bit values) for memory blocks of various "orders".
787 * The bottom level table contains the map for the smallest allocatable
788 * units of memory (here, pages), and each level above it describes
789 * pairs of units from the levels below, hence, "buddies".
790 * At a high level, all that happens here is marking the table entry
791 * at the bottom level available, and propagating the changes upward
792 * as necessary, plus some accounting needed to play nicely with other
793 * parts of the VM system.
794 * At each level, we keep a list of pages, which are heads of continuous
795 * free pages of length of (1 << order) and marked with _mapcount
796 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
797 * field.
798 * So when we are allocating or freeing one, we can derive the state of the
799 * other. That is, if we allocate a small block, and both were
800 * free, the remainder of the region must be split into blocks.
801 * If a block is freed, and its buddy is also free, then this
802 * triggers coalescing into a block of larger size.
803 *
804 * -- nyc
805 */
806
807 static inline void __free_one_page(struct page *page,
808 unsigned long pfn,
809 struct zone *zone, unsigned int order,
810 int migratetype)
811 {
812 unsigned long combined_pfn;
813 unsigned long uninitialized_var(buddy_pfn);
814 struct page *buddy;
815 unsigned int max_order;
816
817 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
818
819 VM_BUG_ON(!zone_is_initialized(zone));
820 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
821
822 VM_BUG_ON(migratetype == -1);
823 if (likely(!is_migrate_isolate(migratetype)))
824 __mod_zone_freepage_state(zone, 1 << order, migratetype);
825
826 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
827 VM_BUG_ON_PAGE(bad_range(zone, page), page);
828
829 continue_merging:
830 while (order < max_order - 1) {
831 buddy_pfn = __find_buddy_pfn(pfn, order);
832 buddy = page + (buddy_pfn - pfn);
833
834 if (!pfn_valid_within(buddy_pfn))
835 goto done_merging;
836 if (!page_is_buddy(page, buddy, order))
837 goto done_merging;
838 /*
839 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
840 * merge with it and move up one order.
841 */
842 if (page_is_guard(buddy)) {
843 clear_page_guard(zone, buddy, order, migratetype);
844 } else {
845 list_del(&buddy->lru);
846 zone->free_area[order].nr_free--;
847 rmv_page_order(buddy);
848 }
849 combined_pfn = buddy_pfn & pfn;
850 page = page + (combined_pfn - pfn);
851 pfn = combined_pfn;
852 order++;
853 }
854 if (max_order < MAX_ORDER) {
855 /* If we are here, it means order is >= pageblock_order.
856 * We want to prevent merge between freepages on isolate
857 * pageblock and normal pageblock. Without this, pageblock
858 * isolation could cause incorrect freepage or CMA accounting.
859 *
860 * We don't want to hit this code for the more frequent
861 * low-order merging.
862 */
863 if (unlikely(has_isolate_pageblock(zone))) {
864 int buddy_mt;
865
866 buddy_pfn = __find_buddy_pfn(pfn, order);
867 buddy = page + (buddy_pfn - pfn);
868 buddy_mt = get_pageblock_migratetype(buddy);
869
870 if (migratetype != buddy_mt
871 && (is_migrate_isolate(migratetype) ||
872 is_migrate_isolate(buddy_mt)))
873 goto done_merging;
874 }
875 max_order++;
876 goto continue_merging;
877 }
878
879 done_merging:
880 set_page_order(page, order);
881
882 /*
883 * If this is not the largest possible page, check if the buddy
884 * of the next-highest order is free. If it is, it's possible
885 * that pages are being freed that will coalesce soon. In case,
886 * that is happening, add the free page to the tail of the list
887 * so it's less likely to be used soon and more likely to be merged
888 * as a higher order page
889 */
890 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
891 struct page *higher_page, *higher_buddy;
892 combined_pfn = buddy_pfn & pfn;
893 higher_page = page + (combined_pfn - pfn);
894 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
895 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
896 if (pfn_valid_within(buddy_pfn) &&
897 page_is_buddy(higher_page, higher_buddy, order + 1)) {
898 list_add_tail(&page->lru,
899 &zone->free_area[order].free_list[migratetype]);
900 goto out;
901 }
902 }
903
904 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
905 out:
906 zone->free_area[order].nr_free++;
907 }
908
909 /*
910 * A bad page could be due to a number of fields. Instead of multiple branches,
911 * try and check multiple fields with one check. The caller must do a detailed
912 * check if necessary.
913 */
914 static inline bool page_expected_state(struct page *page,
915 unsigned long check_flags)
916 {
917 if (unlikely(atomic_read(&page->_mapcount) != -1))
918 return false;
919
920 if (unlikely((unsigned long)page->mapping |
921 page_ref_count(page) |
922 #ifdef CONFIG_MEMCG
923 (unsigned long)page->mem_cgroup |
924 #endif
925 (page->flags & check_flags)))
926 return false;
927
928 return true;
929 }
930
931 static void free_pages_check_bad(struct page *page)
932 {
933 const char *bad_reason;
934 unsigned long bad_flags;
935
936 bad_reason = NULL;
937 bad_flags = 0;
938
939 if (unlikely(atomic_read(&page->_mapcount) != -1))
940 bad_reason = "nonzero mapcount";
941 if (unlikely(page->mapping != NULL))
942 bad_reason = "non-NULL mapping";
943 if (unlikely(page_ref_count(page) != 0))
944 bad_reason = "nonzero _refcount";
945 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
946 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
947 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
948 }
949 #ifdef CONFIG_MEMCG
950 if (unlikely(page->mem_cgroup))
951 bad_reason = "page still charged to cgroup";
952 #endif
953 bad_page(page, bad_reason, bad_flags);
954 }
955
956 static inline int free_pages_check(struct page *page)
957 {
958 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
959 return 0;
960
961 /* Something has gone sideways, find it */
962 free_pages_check_bad(page);
963 return 1;
964 }
965
966 static int free_tail_pages_check(struct page *head_page, struct page *page)
967 {
968 int ret = 1;
969
970 /*
971 * We rely page->lru.next never has bit 0 set, unless the page
972 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
973 */
974 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
975
976 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
977 ret = 0;
978 goto out;
979 }
980 switch (page - head_page) {
981 case 1:
982 /* the first tail page: ->mapping is compound_mapcount() */
983 if (unlikely(compound_mapcount(page))) {
984 bad_page(page, "nonzero compound_mapcount", 0);
985 goto out;
986 }
987 break;
988 case 2:
989 /*
990 * the second tail page: ->mapping is
991 * page_deferred_list().next -- ignore value.
992 */
993 break;
994 default:
995 if (page->mapping != TAIL_MAPPING) {
996 bad_page(page, "corrupted mapping in tail page", 0);
997 goto out;
998 }
999 break;
1000 }
1001 if (unlikely(!PageTail(page))) {
1002 bad_page(page, "PageTail not set", 0);
1003 goto out;
1004 }
1005 if (unlikely(compound_head(page) != head_page)) {
1006 bad_page(page, "compound_head not consistent", 0);
1007 goto out;
1008 }
1009 ret = 0;
1010 out:
1011 page->mapping = NULL;
1012 clear_compound_head(page);
1013 return ret;
1014 }
1015
1016 static __always_inline bool free_pages_prepare(struct page *page,
1017 unsigned int order, bool check_free)
1018 {
1019 int bad = 0;
1020
1021 VM_BUG_ON_PAGE(PageTail(page), page);
1022
1023 trace_mm_page_free(page, order);
1024
1025 /*
1026 * Check tail pages before head page information is cleared to
1027 * avoid checking PageCompound for order-0 pages.
1028 */
1029 if (unlikely(order)) {
1030 bool compound = PageCompound(page);
1031 int i;
1032
1033 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1034
1035 if (compound)
1036 ClearPageDoubleMap(page);
1037 for (i = 1; i < (1 << order); i++) {
1038 if (compound)
1039 bad += free_tail_pages_check(page, page + i);
1040 if (unlikely(free_pages_check(page + i))) {
1041 bad++;
1042 continue;
1043 }
1044 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1045 }
1046 }
1047 if (PageMappingFlags(page))
1048 page->mapping = NULL;
1049 if (memcg_kmem_enabled() && PageKmemcg(page))
1050 memcg_kmem_uncharge(page, order);
1051 if (check_free)
1052 bad += free_pages_check(page);
1053 if (bad)
1054 return false;
1055
1056 page_cpupid_reset_last(page);
1057 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1058 reset_page_owner(page, order);
1059
1060 if (!PageHighMem(page)) {
1061 debug_check_no_locks_freed(page_address(page),
1062 PAGE_SIZE << order);
1063 debug_check_no_obj_freed(page_address(page),
1064 PAGE_SIZE << order);
1065 }
1066 arch_free_page(page, order);
1067 kernel_poison_pages(page, 1 << order, 0);
1068 kernel_map_pages(page, 1 << order, 0);
1069 kasan_free_pages(page, order);
1070
1071 return true;
1072 }
1073
1074 #ifdef CONFIG_DEBUG_VM
1075 static inline bool free_pcp_prepare(struct page *page)
1076 {
1077 return free_pages_prepare(page, 0, true);
1078 }
1079
1080 static inline bool bulkfree_pcp_prepare(struct page *page)
1081 {
1082 return false;
1083 }
1084 #else
1085 static bool free_pcp_prepare(struct page *page)
1086 {
1087 return free_pages_prepare(page, 0, false);
1088 }
1089
1090 static bool bulkfree_pcp_prepare(struct page *page)
1091 {
1092 return free_pages_check(page);
1093 }
1094 #endif /* CONFIG_DEBUG_VM */
1095
1096 /*
1097 * Frees a number of pages from the PCP lists
1098 * Assumes all pages on list are in same zone, and of same order.
1099 * count is the number of pages to free.
1100 *
1101 * If the zone was previously in an "all pages pinned" state then look to
1102 * see if this freeing clears that state.
1103 *
1104 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1105 * pinned" detection logic.
1106 */
1107 static void free_pcppages_bulk(struct zone *zone, int count,
1108 struct per_cpu_pages *pcp)
1109 {
1110 int migratetype = 0;
1111 int batch_free = 0;
1112 bool isolated_pageblocks;
1113
1114 spin_lock(&zone->lock);
1115 isolated_pageblocks = has_isolate_pageblock(zone);
1116
1117 while (count) {
1118 struct page *page;
1119 struct list_head *list;
1120
1121 /*
1122 * Remove pages from lists in a round-robin fashion. A
1123 * batch_free count is maintained that is incremented when an
1124 * empty list is encountered. This is so more pages are freed
1125 * off fuller lists instead of spinning excessively around empty
1126 * lists
1127 */
1128 do {
1129 batch_free++;
1130 if (++migratetype == MIGRATE_PCPTYPES)
1131 migratetype = 0;
1132 list = &pcp->lists[migratetype];
1133 } while (list_empty(list));
1134
1135 /* This is the only non-empty list. Free them all. */
1136 if (batch_free == MIGRATE_PCPTYPES)
1137 batch_free = count;
1138
1139 do {
1140 int mt; /* migratetype of the to-be-freed page */
1141
1142 page = list_last_entry(list, struct page, lru);
1143 /* must delete as __free_one_page list manipulates */
1144 list_del(&page->lru);
1145
1146 mt = get_pcppage_migratetype(page);
1147 /* MIGRATE_ISOLATE page should not go to pcplists */
1148 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1149 /* Pageblock could have been isolated meanwhile */
1150 if (unlikely(isolated_pageblocks))
1151 mt = get_pageblock_migratetype(page);
1152
1153 if (bulkfree_pcp_prepare(page))
1154 continue;
1155
1156 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1157 trace_mm_page_pcpu_drain(page, 0, mt);
1158 } while (--count && --batch_free && !list_empty(list));
1159 }
1160 spin_unlock(&zone->lock);
1161 }
1162
1163 static void free_one_page(struct zone *zone,
1164 struct page *page, unsigned long pfn,
1165 unsigned int order,
1166 int migratetype)
1167 {
1168 spin_lock(&zone->lock);
1169 if (unlikely(has_isolate_pageblock(zone) ||
1170 is_migrate_isolate(migratetype))) {
1171 migratetype = get_pfnblock_migratetype(page, pfn);
1172 }
1173 __free_one_page(page, pfn, zone, order, migratetype);
1174 spin_unlock(&zone->lock);
1175 }
1176
1177 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1178 unsigned long zone, int nid)
1179 {
1180 set_page_links(page, zone, nid, pfn);
1181 init_page_count(page);
1182 page_mapcount_reset(page);
1183 page_cpupid_reset_last(page);
1184
1185 INIT_LIST_HEAD(&page->lru);
1186 #ifdef WANT_PAGE_VIRTUAL
1187 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1188 if (!is_highmem_idx(zone))
1189 set_page_address(page, __va(pfn << PAGE_SHIFT));
1190 #endif
1191 }
1192
1193 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1194 int nid)
1195 {
1196 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1197 }
1198
1199 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1200 static void __meminit init_reserved_page(unsigned long pfn)
1201 {
1202 pg_data_t *pgdat;
1203 int nid, zid;
1204
1205 if (!early_page_uninitialised(pfn))
1206 return;
1207
1208 nid = early_pfn_to_nid(pfn);
1209 pgdat = NODE_DATA(nid);
1210
1211 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1212 struct zone *zone = &pgdat->node_zones[zid];
1213
1214 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1215 break;
1216 }
1217 __init_single_pfn(pfn, zid, nid);
1218 }
1219 #else
1220 static inline void init_reserved_page(unsigned long pfn)
1221 {
1222 }
1223 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1224
1225 /*
1226 * Initialised pages do not have PageReserved set. This function is
1227 * called for each range allocated by the bootmem allocator and
1228 * marks the pages PageReserved. The remaining valid pages are later
1229 * sent to the buddy page allocator.
1230 */
1231 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1232 {
1233 unsigned long start_pfn = PFN_DOWN(start);
1234 unsigned long end_pfn = PFN_UP(end);
1235
1236 for (; start_pfn < end_pfn; start_pfn++) {
1237 if (pfn_valid(start_pfn)) {
1238 struct page *page = pfn_to_page(start_pfn);
1239
1240 init_reserved_page(start_pfn);
1241
1242 /* Avoid false-positive PageTail() */
1243 INIT_LIST_HEAD(&page->lru);
1244
1245 SetPageReserved(page);
1246 }
1247 }
1248 }
1249
1250 static void __free_pages_ok(struct page *page, unsigned int order)
1251 {
1252 unsigned long flags;
1253 int migratetype;
1254 unsigned long pfn = page_to_pfn(page);
1255
1256 if (!free_pages_prepare(page, order, true))
1257 return;
1258
1259 migratetype = get_pfnblock_migratetype(page, pfn);
1260 local_irq_save(flags);
1261 __count_vm_events(PGFREE, 1 << order);
1262 free_one_page(page_zone(page), page, pfn, order, migratetype);
1263 local_irq_restore(flags);
1264 }
1265
1266 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1267 {
1268 unsigned int nr_pages = 1 << order;
1269 struct page *p = page;
1270 unsigned int loop;
1271
1272 prefetchw(p);
1273 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1274 prefetchw(p + 1);
1275 __ClearPageReserved(p);
1276 set_page_count(p, 0);
1277 }
1278 __ClearPageReserved(p);
1279 set_page_count(p, 0);
1280
1281 page_zone(page)->managed_pages += nr_pages;
1282 set_page_refcounted(page);
1283 __free_pages(page, order);
1284 }
1285
1286 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1287 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1288
1289 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1290
1291 int __meminit early_pfn_to_nid(unsigned long pfn)
1292 {
1293 static DEFINE_SPINLOCK(early_pfn_lock);
1294 int nid;
1295
1296 spin_lock(&early_pfn_lock);
1297 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1298 if (nid < 0)
1299 nid = first_online_node;
1300 spin_unlock(&early_pfn_lock);
1301
1302 return nid;
1303 }
1304 #endif
1305
1306 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1307 static inline bool __meminit __maybe_unused
1308 meminit_pfn_in_nid(unsigned long pfn, int node,
1309 struct mminit_pfnnid_cache *state)
1310 {
1311 int nid;
1312
1313 nid = __early_pfn_to_nid(pfn, state);
1314 if (nid >= 0 && nid != node)
1315 return false;
1316 return true;
1317 }
1318
1319 /* Only safe to use early in boot when initialisation is single-threaded */
1320 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1321 {
1322 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1323 }
1324
1325 #else
1326
1327 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1328 {
1329 return true;
1330 }
1331 static inline bool __meminit __maybe_unused
1332 meminit_pfn_in_nid(unsigned long pfn, int node,
1333 struct mminit_pfnnid_cache *state)
1334 {
1335 return true;
1336 }
1337 #endif
1338
1339
1340 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1341 unsigned int order)
1342 {
1343 if (early_page_uninitialised(pfn))
1344 return;
1345 return __free_pages_boot_core(page, order);
1346 }
1347
1348 /*
1349 * Check that the whole (or subset of) a pageblock given by the interval of
1350 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1351 * with the migration of free compaction scanner. The scanners then need to
1352 * use only pfn_valid_within() check for arches that allow holes within
1353 * pageblocks.
1354 *
1355 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1356 *
1357 * It's possible on some configurations to have a setup like node0 node1 node0
1358 * i.e. it's possible that all pages within a zones range of pages do not
1359 * belong to a single zone. We assume that a border between node0 and node1
1360 * can occur within a single pageblock, but not a node0 node1 node0
1361 * interleaving within a single pageblock. It is therefore sufficient to check
1362 * the first and last page of a pageblock and avoid checking each individual
1363 * page in a pageblock.
1364 */
1365 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1366 unsigned long end_pfn, struct zone *zone)
1367 {
1368 struct page *start_page;
1369 struct page *end_page;
1370
1371 /* end_pfn is one past the range we are checking */
1372 end_pfn--;
1373
1374 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1375 return NULL;
1376
1377 start_page = pfn_to_online_page(start_pfn);
1378 if (!start_page)
1379 return NULL;
1380
1381 if (page_zone(start_page) != zone)
1382 return NULL;
1383
1384 end_page = pfn_to_page(end_pfn);
1385
1386 /* This gives a shorter code than deriving page_zone(end_page) */
1387 if (page_zone_id(start_page) != page_zone_id(end_page))
1388 return NULL;
1389
1390 return start_page;
1391 }
1392
1393 void set_zone_contiguous(struct zone *zone)
1394 {
1395 unsigned long block_start_pfn = zone->zone_start_pfn;
1396 unsigned long block_end_pfn;
1397
1398 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1399 for (; block_start_pfn < zone_end_pfn(zone);
1400 block_start_pfn = block_end_pfn,
1401 block_end_pfn += pageblock_nr_pages) {
1402
1403 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1404
1405 if (!__pageblock_pfn_to_page(block_start_pfn,
1406 block_end_pfn, zone))
1407 return;
1408 }
1409
1410 /* We confirm that there is no hole */
1411 zone->contiguous = true;
1412 }
1413
1414 void clear_zone_contiguous(struct zone *zone)
1415 {
1416 zone->contiguous = false;
1417 }
1418
1419 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1420 static void __init deferred_free_range(struct page *page,
1421 unsigned long pfn, int nr_pages)
1422 {
1423 int i;
1424
1425 if (!page)
1426 return;
1427
1428 /* Free a large naturally-aligned chunk if possible */
1429 if (nr_pages == pageblock_nr_pages &&
1430 (pfn & (pageblock_nr_pages - 1)) == 0) {
1431 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1432 __free_pages_boot_core(page, pageblock_order);
1433 return;
1434 }
1435
1436 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1437 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1438 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1439 __free_pages_boot_core(page, 0);
1440 }
1441 }
1442
1443 /* Completion tracking for deferred_init_memmap() threads */
1444 static atomic_t pgdat_init_n_undone __initdata;
1445 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1446
1447 static inline void __init pgdat_init_report_one_done(void)
1448 {
1449 if (atomic_dec_and_test(&pgdat_init_n_undone))
1450 complete(&pgdat_init_all_done_comp);
1451 }
1452
1453 /* Initialise remaining memory on a node */
1454 static int __init deferred_init_memmap(void *data)
1455 {
1456 pg_data_t *pgdat = data;
1457 int nid = pgdat->node_id;
1458 struct mminit_pfnnid_cache nid_init_state = { };
1459 unsigned long start = jiffies;
1460 unsigned long nr_pages = 0;
1461 unsigned long walk_start, walk_end;
1462 int i, zid;
1463 struct zone *zone;
1464 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1465 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1466
1467 if (first_init_pfn == ULONG_MAX) {
1468 pgdat_init_report_one_done();
1469 return 0;
1470 }
1471
1472 /* Bind memory initialisation thread to a local node if possible */
1473 if (!cpumask_empty(cpumask))
1474 set_cpus_allowed_ptr(current, cpumask);
1475
1476 /* Sanity check boundaries */
1477 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1478 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1479 pgdat->first_deferred_pfn = ULONG_MAX;
1480
1481 /* Only the highest zone is deferred so find it */
1482 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1483 zone = pgdat->node_zones + zid;
1484 if (first_init_pfn < zone_end_pfn(zone))
1485 break;
1486 }
1487
1488 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1489 unsigned long pfn, end_pfn;
1490 struct page *page = NULL;
1491 struct page *free_base_page = NULL;
1492 unsigned long free_base_pfn = 0;
1493 int nr_to_free = 0;
1494
1495 end_pfn = min(walk_end, zone_end_pfn(zone));
1496 pfn = first_init_pfn;
1497 if (pfn < walk_start)
1498 pfn = walk_start;
1499 if (pfn < zone->zone_start_pfn)
1500 pfn = zone->zone_start_pfn;
1501
1502 for (; pfn < end_pfn; pfn++) {
1503 if (!pfn_valid_within(pfn))
1504 goto free_range;
1505
1506 /*
1507 * Ensure pfn_valid is checked every
1508 * pageblock_nr_pages for memory holes
1509 */
1510 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1511 if (!pfn_valid(pfn)) {
1512 page = NULL;
1513 goto free_range;
1514 }
1515 }
1516
1517 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1518 page = NULL;
1519 goto free_range;
1520 }
1521
1522 /* Minimise pfn page lookups and scheduler checks */
1523 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1524 page++;
1525 } else {
1526 nr_pages += nr_to_free;
1527 deferred_free_range(free_base_page,
1528 free_base_pfn, nr_to_free);
1529 free_base_page = NULL;
1530 free_base_pfn = nr_to_free = 0;
1531
1532 page = pfn_to_page(pfn);
1533 cond_resched();
1534 }
1535
1536 if (page->flags) {
1537 VM_BUG_ON(page_zone(page) != zone);
1538 goto free_range;
1539 }
1540
1541 __init_single_page(page, pfn, zid, nid);
1542 if (!free_base_page) {
1543 free_base_page = page;
1544 free_base_pfn = pfn;
1545 nr_to_free = 0;
1546 }
1547 nr_to_free++;
1548
1549 /* Where possible, batch up pages for a single free */
1550 continue;
1551 free_range:
1552 /* Free the current block of pages to allocator */
1553 nr_pages += nr_to_free;
1554 deferred_free_range(free_base_page, free_base_pfn,
1555 nr_to_free);
1556 free_base_page = NULL;
1557 free_base_pfn = nr_to_free = 0;
1558 }
1559 /* Free the last block of pages to allocator */
1560 nr_pages += nr_to_free;
1561 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1562
1563 first_init_pfn = max(end_pfn, first_init_pfn);
1564 }
1565
1566 /* Sanity check that the next zone really is unpopulated */
1567 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1568
1569 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1570 jiffies_to_msecs(jiffies - start));
1571
1572 pgdat_init_report_one_done();
1573 return 0;
1574 }
1575 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1576
1577 void __init page_alloc_init_late(void)
1578 {
1579 struct zone *zone;
1580
1581 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1582 int nid;
1583
1584 /* There will be num_node_state(N_MEMORY) threads */
1585 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1586 for_each_node_state(nid, N_MEMORY) {
1587 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1588 }
1589
1590 /* Block until all are initialised */
1591 wait_for_completion(&pgdat_init_all_done_comp);
1592
1593 /* Reinit limits that are based on free pages after the kernel is up */
1594 files_maxfiles_init();
1595 #endif
1596 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1597 /* Discard memblock private memory */
1598 memblock_discard();
1599 #endif
1600
1601 for_each_populated_zone(zone)
1602 set_zone_contiguous(zone);
1603 }
1604
1605 #ifdef CONFIG_CMA
1606 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1607 void __init init_cma_reserved_pageblock(struct page *page)
1608 {
1609 unsigned i = pageblock_nr_pages;
1610 struct page *p = page;
1611
1612 do {
1613 __ClearPageReserved(p);
1614 set_page_count(p, 0);
1615 } while (++p, --i);
1616
1617 set_pageblock_migratetype(page, MIGRATE_CMA);
1618
1619 if (pageblock_order >= MAX_ORDER) {
1620 i = pageblock_nr_pages;
1621 p = page;
1622 do {
1623 set_page_refcounted(p);
1624 __free_pages(p, MAX_ORDER - 1);
1625 p += MAX_ORDER_NR_PAGES;
1626 } while (i -= MAX_ORDER_NR_PAGES);
1627 } else {
1628 set_page_refcounted(page);
1629 __free_pages(page, pageblock_order);
1630 }
1631
1632 adjust_managed_page_count(page, pageblock_nr_pages);
1633 }
1634 #endif
1635
1636 /*
1637 * The order of subdivision here is critical for the IO subsystem.
1638 * Please do not alter this order without good reasons and regression
1639 * testing. Specifically, as large blocks of memory are subdivided,
1640 * the order in which smaller blocks are delivered depends on the order
1641 * they're subdivided in this function. This is the primary factor
1642 * influencing the order in which pages are delivered to the IO
1643 * subsystem according to empirical testing, and this is also justified
1644 * by considering the behavior of a buddy system containing a single
1645 * large block of memory acted on by a series of small allocations.
1646 * This behavior is a critical factor in sglist merging's success.
1647 *
1648 * -- nyc
1649 */
1650 static inline void expand(struct zone *zone, struct page *page,
1651 int low, int high, struct free_area *area,
1652 int migratetype)
1653 {
1654 unsigned long size = 1 << high;
1655
1656 while (high > low) {
1657 area--;
1658 high--;
1659 size >>= 1;
1660 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1661
1662 /*
1663 * Mark as guard pages (or page), that will allow to
1664 * merge back to allocator when buddy will be freed.
1665 * Corresponding page table entries will not be touched,
1666 * pages will stay not present in virtual address space
1667 */
1668 if (set_page_guard(zone, &page[size], high, migratetype))
1669 continue;
1670
1671 list_add(&page[size].lru, &area->free_list[migratetype]);
1672 area->nr_free++;
1673 set_page_order(&page[size], high);
1674 }
1675 }
1676
1677 static void check_new_page_bad(struct page *page)
1678 {
1679 const char *bad_reason = NULL;
1680 unsigned long bad_flags = 0;
1681
1682 if (unlikely(atomic_read(&page->_mapcount) != -1))
1683 bad_reason = "nonzero mapcount";
1684 if (unlikely(page->mapping != NULL))
1685 bad_reason = "non-NULL mapping";
1686 if (unlikely(page_ref_count(page) != 0))
1687 bad_reason = "nonzero _count";
1688 if (unlikely(page->flags & __PG_HWPOISON)) {
1689 bad_reason = "HWPoisoned (hardware-corrupted)";
1690 bad_flags = __PG_HWPOISON;
1691 /* Don't complain about hwpoisoned pages */
1692 page_mapcount_reset(page); /* remove PageBuddy */
1693 return;
1694 }
1695 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1696 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1697 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1698 }
1699 #ifdef CONFIG_MEMCG
1700 if (unlikely(page->mem_cgroup))
1701 bad_reason = "page still charged to cgroup";
1702 #endif
1703 bad_page(page, bad_reason, bad_flags);
1704 }
1705
1706 /*
1707 * This page is about to be returned from the page allocator
1708 */
1709 static inline int check_new_page(struct page *page)
1710 {
1711 if (likely(page_expected_state(page,
1712 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1713 return 0;
1714
1715 check_new_page_bad(page);
1716 return 1;
1717 }
1718
1719 static inline bool free_pages_prezeroed(void)
1720 {
1721 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1722 page_poisoning_enabled();
1723 }
1724
1725 #ifdef CONFIG_DEBUG_VM
1726 static bool check_pcp_refill(struct page *page)
1727 {
1728 return false;
1729 }
1730
1731 static bool check_new_pcp(struct page *page)
1732 {
1733 return check_new_page(page);
1734 }
1735 #else
1736 static bool check_pcp_refill(struct page *page)
1737 {
1738 return check_new_page(page);
1739 }
1740 static bool check_new_pcp(struct page *page)
1741 {
1742 return false;
1743 }
1744 #endif /* CONFIG_DEBUG_VM */
1745
1746 static bool check_new_pages(struct page *page, unsigned int order)
1747 {
1748 int i;
1749 for (i = 0; i < (1 << order); i++) {
1750 struct page *p = page + i;
1751
1752 if (unlikely(check_new_page(p)))
1753 return true;
1754 }
1755
1756 return false;
1757 }
1758
1759 inline void post_alloc_hook(struct page *page, unsigned int order,
1760 gfp_t gfp_flags)
1761 {
1762 set_page_private(page, 0);
1763 set_page_refcounted(page);
1764
1765 arch_alloc_page(page, order);
1766 kernel_map_pages(page, 1 << order, 1);
1767 kernel_poison_pages(page, 1 << order, 1);
1768 kasan_alloc_pages(page, order);
1769 set_page_owner(page, order, gfp_flags);
1770 }
1771
1772 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1773 unsigned int alloc_flags)
1774 {
1775 int i;
1776
1777 post_alloc_hook(page, order, gfp_flags);
1778
1779 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1780 for (i = 0; i < (1 << order); i++)
1781 clear_highpage(page + i);
1782
1783 if (order && (gfp_flags & __GFP_COMP))
1784 prep_compound_page(page, order);
1785
1786 /*
1787 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1788 * allocate the page. The expectation is that the caller is taking
1789 * steps that will free more memory. The caller should avoid the page
1790 * being used for !PFMEMALLOC purposes.
1791 */
1792 if (alloc_flags & ALLOC_NO_WATERMARKS)
1793 set_page_pfmemalloc(page);
1794 else
1795 clear_page_pfmemalloc(page);
1796 }
1797
1798 /*
1799 * Go through the free lists for the given migratetype and remove
1800 * the smallest available page from the freelists
1801 */
1802 static inline
1803 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1804 int migratetype)
1805 {
1806 unsigned int current_order;
1807 struct free_area *area;
1808 struct page *page;
1809
1810 /* Find a page of the appropriate size in the preferred list */
1811 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1812 area = &(zone->free_area[current_order]);
1813 page = list_first_entry_or_null(&area->free_list[migratetype],
1814 struct page, lru);
1815 if (!page)
1816 continue;
1817 list_del(&page->lru);
1818 rmv_page_order(page);
1819 area->nr_free--;
1820 expand(zone, page, order, current_order, area, migratetype);
1821 set_pcppage_migratetype(page, migratetype);
1822 return page;
1823 }
1824
1825 return NULL;
1826 }
1827
1828
1829 /*
1830 * This array describes the order lists are fallen back to when
1831 * the free lists for the desirable migrate type are depleted
1832 */
1833 static int fallbacks[MIGRATE_TYPES][4] = {
1834 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1835 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1836 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1837 #ifdef CONFIG_CMA
1838 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1839 #endif
1840 #ifdef CONFIG_MEMORY_ISOLATION
1841 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1842 #endif
1843 };
1844
1845 #ifdef CONFIG_CMA
1846 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1847 unsigned int order)
1848 {
1849 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1850 }
1851 #else
1852 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1853 unsigned int order) { return NULL; }
1854 #endif
1855
1856 /*
1857 * Move the free pages in a range to the free lists of the requested type.
1858 * Note that start_page and end_pages are not aligned on a pageblock
1859 * boundary. If alignment is required, use move_freepages_block()
1860 */
1861 static int move_freepages(struct zone *zone,
1862 struct page *start_page, struct page *end_page,
1863 int migratetype, int *num_movable)
1864 {
1865 struct page *page;
1866 unsigned int order;
1867 int pages_moved = 0;
1868
1869 #ifndef CONFIG_HOLES_IN_ZONE
1870 /*
1871 * page_zone is not safe to call in this context when
1872 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1873 * anyway as we check zone boundaries in move_freepages_block().
1874 * Remove at a later date when no bug reports exist related to
1875 * grouping pages by mobility
1876 */
1877 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1878 #endif
1879
1880 if (num_movable)
1881 *num_movable = 0;
1882
1883 for (page = start_page; page <= end_page;) {
1884 if (!pfn_valid_within(page_to_pfn(page))) {
1885 page++;
1886 continue;
1887 }
1888
1889 /* Make sure we are not inadvertently changing nodes */
1890 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1891
1892 if (!PageBuddy(page)) {
1893 /*
1894 * We assume that pages that could be isolated for
1895 * migration are movable. But we don't actually try
1896 * isolating, as that would be expensive.
1897 */
1898 if (num_movable &&
1899 (PageLRU(page) || __PageMovable(page)))
1900 (*num_movable)++;
1901
1902 page++;
1903 continue;
1904 }
1905
1906 order = page_order(page);
1907 list_move(&page->lru,
1908 &zone->free_area[order].free_list[migratetype]);
1909 page += 1 << order;
1910 pages_moved += 1 << order;
1911 }
1912
1913 return pages_moved;
1914 }
1915
1916 int move_freepages_block(struct zone *zone, struct page *page,
1917 int migratetype, int *num_movable)
1918 {
1919 unsigned long start_pfn, end_pfn;
1920 struct page *start_page, *end_page;
1921
1922 start_pfn = page_to_pfn(page);
1923 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1924 start_page = pfn_to_page(start_pfn);
1925 end_page = start_page + pageblock_nr_pages - 1;
1926 end_pfn = start_pfn + pageblock_nr_pages - 1;
1927
1928 /* Do not cross zone boundaries */
1929 if (!zone_spans_pfn(zone, start_pfn))
1930 start_page = page;
1931 if (!zone_spans_pfn(zone, end_pfn))
1932 return 0;
1933
1934 return move_freepages(zone, start_page, end_page, migratetype,
1935 num_movable);
1936 }
1937
1938 static void change_pageblock_range(struct page *pageblock_page,
1939 int start_order, int migratetype)
1940 {
1941 int nr_pageblocks = 1 << (start_order - pageblock_order);
1942
1943 while (nr_pageblocks--) {
1944 set_pageblock_migratetype(pageblock_page, migratetype);
1945 pageblock_page += pageblock_nr_pages;
1946 }
1947 }
1948
1949 /*
1950 * When we are falling back to another migratetype during allocation, try to
1951 * steal extra free pages from the same pageblocks to satisfy further
1952 * allocations, instead of polluting multiple pageblocks.
1953 *
1954 * If we are stealing a relatively large buddy page, it is likely there will
1955 * be more free pages in the pageblock, so try to steal them all. For
1956 * reclaimable and unmovable allocations, we steal regardless of page size,
1957 * as fragmentation caused by those allocations polluting movable pageblocks
1958 * is worse than movable allocations stealing from unmovable and reclaimable
1959 * pageblocks.
1960 */
1961 static bool can_steal_fallback(unsigned int order, int start_mt)
1962 {
1963 /*
1964 * Leaving this order check is intended, although there is
1965 * relaxed order check in next check. The reason is that
1966 * we can actually steal whole pageblock if this condition met,
1967 * but, below check doesn't guarantee it and that is just heuristic
1968 * so could be changed anytime.
1969 */
1970 if (order >= pageblock_order)
1971 return true;
1972
1973 if (order >= pageblock_order / 2 ||
1974 start_mt == MIGRATE_RECLAIMABLE ||
1975 start_mt == MIGRATE_UNMOVABLE ||
1976 page_group_by_mobility_disabled)
1977 return true;
1978
1979 return false;
1980 }
1981
1982 /*
1983 * This function implements actual steal behaviour. If order is large enough,
1984 * we can steal whole pageblock. If not, we first move freepages in this
1985 * pageblock to our migratetype and determine how many already-allocated pages
1986 * are there in the pageblock with a compatible migratetype. If at least half
1987 * of pages are free or compatible, we can change migratetype of the pageblock
1988 * itself, so pages freed in the future will be put on the correct free list.
1989 */
1990 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1991 int start_type, bool whole_block)
1992 {
1993 unsigned int current_order = page_order(page);
1994 struct free_area *area;
1995 int free_pages, movable_pages, alike_pages;
1996 int old_block_type;
1997
1998 old_block_type = get_pageblock_migratetype(page);
1999
2000 /*
2001 * This can happen due to races and we want to prevent broken
2002 * highatomic accounting.
2003 */
2004 if (is_migrate_highatomic(old_block_type))
2005 goto single_page;
2006
2007 /* Take ownership for orders >= pageblock_order */
2008 if (current_order >= pageblock_order) {
2009 change_pageblock_range(page, current_order, start_type);
2010 goto single_page;
2011 }
2012
2013 /* We are not allowed to try stealing from the whole block */
2014 if (!whole_block)
2015 goto single_page;
2016
2017 free_pages = move_freepages_block(zone, page, start_type,
2018 &movable_pages);
2019 /*
2020 * Determine how many pages are compatible with our allocation.
2021 * For movable allocation, it's the number of movable pages which
2022 * we just obtained. For other types it's a bit more tricky.
2023 */
2024 if (start_type == MIGRATE_MOVABLE) {
2025 alike_pages = movable_pages;
2026 } else {
2027 /*
2028 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2029 * to MOVABLE pageblock, consider all non-movable pages as
2030 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2031 * vice versa, be conservative since we can't distinguish the
2032 * exact migratetype of non-movable pages.
2033 */
2034 if (old_block_type == MIGRATE_MOVABLE)
2035 alike_pages = pageblock_nr_pages
2036 - (free_pages + movable_pages);
2037 else
2038 alike_pages = 0;
2039 }
2040
2041 /* moving whole block can fail due to zone boundary conditions */
2042 if (!free_pages)
2043 goto single_page;
2044
2045 /*
2046 * If a sufficient number of pages in the block are either free or of
2047 * comparable migratability as our allocation, claim the whole block.
2048 */
2049 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2050 page_group_by_mobility_disabled)
2051 set_pageblock_migratetype(page, start_type);
2052
2053 return;
2054
2055 single_page:
2056 area = &zone->free_area[current_order];
2057 list_move(&page->lru, &area->free_list[start_type]);
2058 }
2059
2060 /*
2061 * Check whether there is a suitable fallback freepage with requested order.
2062 * If only_stealable is true, this function returns fallback_mt only if
2063 * we can steal other freepages all together. This would help to reduce
2064 * fragmentation due to mixed migratetype pages in one pageblock.
2065 */
2066 int find_suitable_fallback(struct free_area *area, unsigned int order,
2067 int migratetype, bool only_stealable, bool *can_steal)
2068 {
2069 int i;
2070 int fallback_mt;
2071
2072 if (area->nr_free == 0)
2073 return -1;
2074
2075 *can_steal = false;
2076 for (i = 0;; i++) {
2077 fallback_mt = fallbacks[migratetype][i];
2078 if (fallback_mt == MIGRATE_TYPES)
2079 break;
2080
2081 if (list_empty(&area->free_list[fallback_mt]))
2082 continue;
2083
2084 if (can_steal_fallback(order, migratetype))
2085 *can_steal = true;
2086
2087 if (!only_stealable)
2088 return fallback_mt;
2089
2090 if (*can_steal)
2091 return fallback_mt;
2092 }
2093
2094 return -1;
2095 }
2096
2097 /*
2098 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2099 * there are no empty page blocks that contain a page with a suitable order
2100 */
2101 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2102 unsigned int alloc_order)
2103 {
2104 int mt;
2105 unsigned long max_managed, flags;
2106
2107 /*
2108 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2109 * Check is race-prone but harmless.
2110 */
2111 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2112 if (zone->nr_reserved_highatomic >= max_managed)
2113 return;
2114
2115 spin_lock_irqsave(&zone->lock, flags);
2116
2117 /* Recheck the nr_reserved_highatomic limit under the lock */
2118 if (zone->nr_reserved_highatomic >= max_managed)
2119 goto out_unlock;
2120
2121 /* Yoink! */
2122 mt = get_pageblock_migratetype(page);
2123 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2124 && !is_migrate_cma(mt)) {
2125 zone->nr_reserved_highatomic += pageblock_nr_pages;
2126 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2127 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2128 }
2129
2130 out_unlock:
2131 spin_unlock_irqrestore(&zone->lock, flags);
2132 }
2133
2134 /*
2135 * Used when an allocation is about to fail under memory pressure. This
2136 * potentially hurts the reliability of high-order allocations when under
2137 * intense memory pressure but failed atomic allocations should be easier
2138 * to recover from than an OOM.
2139 *
2140 * If @force is true, try to unreserve a pageblock even though highatomic
2141 * pageblock is exhausted.
2142 */
2143 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2144 bool force)
2145 {
2146 struct zonelist *zonelist = ac->zonelist;
2147 unsigned long flags;
2148 struct zoneref *z;
2149 struct zone *zone;
2150 struct page *page;
2151 int order;
2152 bool ret;
2153
2154 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2155 ac->nodemask) {
2156 /*
2157 * Preserve at least one pageblock unless memory pressure
2158 * is really high.
2159 */
2160 if (!force && zone->nr_reserved_highatomic <=
2161 pageblock_nr_pages)
2162 continue;
2163
2164 spin_lock_irqsave(&zone->lock, flags);
2165 for (order = 0; order < MAX_ORDER; order++) {
2166 struct free_area *area = &(zone->free_area[order]);
2167
2168 page = list_first_entry_or_null(
2169 &area->free_list[MIGRATE_HIGHATOMIC],
2170 struct page, lru);
2171 if (!page)
2172 continue;
2173
2174 /*
2175 * In page freeing path, migratetype change is racy so
2176 * we can counter several free pages in a pageblock
2177 * in this loop althoug we changed the pageblock type
2178 * from highatomic to ac->migratetype. So we should
2179 * adjust the count once.
2180 */
2181 if (is_migrate_highatomic_page(page)) {
2182 /*
2183 * It should never happen but changes to
2184 * locking could inadvertently allow a per-cpu
2185 * drain to add pages to MIGRATE_HIGHATOMIC
2186 * while unreserving so be safe and watch for
2187 * underflows.
2188 */
2189 zone->nr_reserved_highatomic -= min(
2190 pageblock_nr_pages,
2191 zone->nr_reserved_highatomic);
2192 }
2193
2194 /*
2195 * Convert to ac->migratetype and avoid the normal
2196 * pageblock stealing heuristics. Minimally, the caller
2197 * is doing the work and needs the pages. More
2198 * importantly, if the block was always converted to
2199 * MIGRATE_UNMOVABLE or another type then the number
2200 * of pageblocks that cannot be completely freed
2201 * may increase.
2202 */
2203 set_pageblock_migratetype(page, ac->migratetype);
2204 ret = move_freepages_block(zone, page, ac->migratetype,
2205 NULL);
2206 if (ret) {
2207 spin_unlock_irqrestore(&zone->lock, flags);
2208 return ret;
2209 }
2210 }
2211 spin_unlock_irqrestore(&zone->lock, flags);
2212 }
2213
2214 return false;
2215 }
2216
2217 /*
2218 * Try finding a free buddy page on the fallback list and put it on the free
2219 * list of requested migratetype, possibly along with other pages from the same
2220 * block, depending on fragmentation avoidance heuristics. Returns true if
2221 * fallback was found so that __rmqueue_smallest() can grab it.
2222 *
2223 * The use of signed ints for order and current_order is a deliberate
2224 * deviation from the rest of this file, to make the for loop
2225 * condition simpler.
2226 */
2227 static inline bool
2228 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2229 {
2230 struct free_area *area;
2231 int current_order;
2232 struct page *page;
2233 int fallback_mt;
2234 bool can_steal;
2235
2236 /*
2237 * Find the largest available free page in the other list. This roughly
2238 * approximates finding the pageblock with the most free pages, which
2239 * would be too costly to do exactly.
2240 */
2241 for (current_order = MAX_ORDER - 1; current_order >= order;
2242 --current_order) {
2243 area = &(zone->free_area[current_order]);
2244 fallback_mt = find_suitable_fallback(area, current_order,
2245 start_migratetype, false, &can_steal);
2246 if (fallback_mt == -1)
2247 continue;
2248
2249 /*
2250 * We cannot steal all free pages from the pageblock and the
2251 * requested migratetype is movable. In that case it's better to
2252 * steal and split the smallest available page instead of the
2253 * largest available page, because even if the next movable
2254 * allocation falls back into a different pageblock than this
2255 * one, it won't cause permanent fragmentation.
2256 */
2257 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2258 && current_order > order)
2259 goto find_smallest;
2260
2261 goto do_steal;
2262 }
2263
2264 return false;
2265
2266 find_smallest:
2267 for (current_order = order; current_order < MAX_ORDER;
2268 current_order++) {
2269 area = &(zone->free_area[current_order]);
2270 fallback_mt = find_suitable_fallback(area, current_order,
2271 start_migratetype, false, &can_steal);
2272 if (fallback_mt != -1)
2273 break;
2274 }
2275
2276 /*
2277 * This should not happen - we already found a suitable fallback
2278 * when looking for the largest page.
2279 */
2280 VM_BUG_ON(current_order == MAX_ORDER);
2281
2282 do_steal:
2283 page = list_first_entry(&area->free_list[fallback_mt],
2284 struct page, lru);
2285
2286 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2287
2288 trace_mm_page_alloc_extfrag(page, order, current_order,
2289 start_migratetype, fallback_mt);
2290
2291 return true;
2292
2293 }
2294
2295 /*
2296 * Do the hard work of removing an element from the buddy allocator.
2297 * Call me with the zone->lock already held.
2298 */
2299 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2300 int migratetype)
2301 {
2302 struct page *page;
2303
2304 retry:
2305 page = __rmqueue_smallest(zone, order, migratetype);
2306 if (unlikely(!page)) {
2307 if (migratetype == MIGRATE_MOVABLE)
2308 page = __rmqueue_cma_fallback(zone, order);
2309
2310 if (!page && __rmqueue_fallback(zone, order, migratetype))
2311 goto retry;
2312 }
2313
2314 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2315 return page;
2316 }
2317
2318 /*
2319 * Obtain a specified number of elements from the buddy allocator, all under
2320 * a single hold of the lock, for efficiency. Add them to the supplied list.
2321 * Returns the number of new pages which were placed at *list.
2322 */
2323 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2324 unsigned long count, struct list_head *list,
2325 int migratetype, bool cold)
2326 {
2327 int i, alloced = 0;
2328
2329 spin_lock(&zone->lock);
2330 for (i = 0; i < count; ++i) {
2331 struct page *page = __rmqueue(zone, order, migratetype);
2332 if (unlikely(page == NULL))
2333 break;
2334
2335 if (unlikely(check_pcp_refill(page)))
2336 continue;
2337
2338 /*
2339 * Split buddy pages returned by expand() are received here
2340 * in physical page order. The page is added to the callers and
2341 * list and the list head then moves forward. From the callers
2342 * perspective, the linked list is ordered by page number in
2343 * some conditions. This is useful for IO devices that can
2344 * merge IO requests if the physical pages are ordered
2345 * properly.
2346 */
2347 if (likely(!cold))
2348 list_add(&page->lru, list);
2349 else
2350 list_add_tail(&page->lru, list);
2351 list = &page->lru;
2352 alloced++;
2353 if (is_migrate_cma(get_pcppage_migratetype(page)))
2354 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2355 -(1 << order));
2356 }
2357
2358 /*
2359 * i pages were removed from the buddy list even if some leak due
2360 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2361 * on i. Do not confuse with 'alloced' which is the number of
2362 * pages added to the pcp list.
2363 */
2364 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2365 spin_unlock(&zone->lock);
2366 return alloced;
2367 }
2368
2369 #ifdef CONFIG_NUMA
2370 /*
2371 * Called from the vmstat counter updater to drain pagesets of this
2372 * currently executing processor on remote nodes after they have
2373 * expired.
2374 *
2375 * Note that this function must be called with the thread pinned to
2376 * a single processor.
2377 */
2378 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2379 {
2380 unsigned long flags;
2381 int to_drain, batch;
2382
2383 local_irq_save(flags);
2384 batch = READ_ONCE(pcp->batch);
2385 to_drain = min(pcp->count, batch);
2386 if (to_drain > 0) {
2387 free_pcppages_bulk(zone, to_drain, pcp);
2388 pcp->count -= to_drain;
2389 }
2390 local_irq_restore(flags);
2391 }
2392 #endif
2393
2394 /*
2395 * Drain pcplists of the indicated processor and zone.
2396 *
2397 * The processor must either be the current processor and the
2398 * thread pinned to the current processor or a processor that
2399 * is not online.
2400 */
2401 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2402 {
2403 unsigned long flags;
2404 struct per_cpu_pageset *pset;
2405 struct per_cpu_pages *pcp;
2406
2407 local_irq_save(flags);
2408 pset = per_cpu_ptr(zone->pageset, cpu);
2409
2410 pcp = &pset->pcp;
2411 if (pcp->count) {
2412 free_pcppages_bulk(zone, pcp->count, pcp);
2413 pcp->count = 0;
2414 }
2415 local_irq_restore(flags);
2416 }
2417
2418 /*
2419 * Drain pcplists of all zones on the indicated processor.
2420 *
2421 * The processor must either be the current processor and the
2422 * thread pinned to the current processor or a processor that
2423 * is not online.
2424 */
2425 static void drain_pages(unsigned int cpu)
2426 {
2427 struct zone *zone;
2428
2429 for_each_populated_zone(zone) {
2430 drain_pages_zone(cpu, zone);
2431 }
2432 }
2433
2434 /*
2435 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2436 *
2437 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2438 * the single zone's pages.
2439 */
2440 void drain_local_pages(struct zone *zone)
2441 {
2442 int cpu = smp_processor_id();
2443
2444 if (zone)
2445 drain_pages_zone(cpu, zone);
2446 else
2447 drain_pages(cpu);
2448 }
2449
2450 static void drain_local_pages_wq(struct work_struct *work)
2451 {
2452 /*
2453 * drain_all_pages doesn't use proper cpu hotplug protection so
2454 * we can race with cpu offline when the WQ can move this from
2455 * a cpu pinned worker to an unbound one. We can operate on a different
2456 * cpu which is allright but we also have to make sure to not move to
2457 * a different one.
2458 */
2459 preempt_disable();
2460 drain_local_pages(NULL);
2461 preempt_enable();
2462 }
2463
2464 /*
2465 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2466 *
2467 * When zone parameter is non-NULL, spill just the single zone's pages.
2468 *
2469 * Note that this can be extremely slow as the draining happens in a workqueue.
2470 */
2471 void drain_all_pages(struct zone *zone)
2472 {
2473 int cpu;
2474
2475 /*
2476 * Allocate in the BSS so we wont require allocation in
2477 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2478 */
2479 static cpumask_t cpus_with_pcps;
2480
2481 /*
2482 * Make sure nobody triggers this path before mm_percpu_wq is fully
2483 * initialized.
2484 */
2485 if (WARN_ON_ONCE(!mm_percpu_wq))
2486 return;
2487
2488 /*
2489 * Do not drain if one is already in progress unless it's specific to
2490 * a zone. Such callers are primarily CMA and memory hotplug and need
2491 * the drain to be complete when the call returns.
2492 */
2493 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2494 if (!zone)
2495 return;
2496 mutex_lock(&pcpu_drain_mutex);
2497 }
2498
2499 /*
2500 * We don't care about racing with CPU hotplug event
2501 * as offline notification will cause the notified
2502 * cpu to drain that CPU pcps and on_each_cpu_mask
2503 * disables preemption as part of its processing
2504 */
2505 for_each_online_cpu(cpu) {
2506 struct per_cpu_pageset *pcp;
2507 struct zone *z;
2508 bool has_pcps = false;
2509
2510 if (zone) {
2511 pcp = per_cpu_ptr(zone->pageset, cpu);
2512 if (pcp->pcp.count)
2513 has_pcps = true;
2514 } else {
2515 for_each_populated_zone(z) {
2516 pcp = per_cpu_ptr(z->pageset, cpu);
2517 if (pcp->pcp.count) {
2518 has_pcps = true;
2519 break;
2520 }
2521 }
2522 }
2523
2524 if (has_pcps)
2525 cpumask_set_cpu(cpu, &cpus_with_pcps);
2526 else
2527 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2528 }
2529
2530 for_each_cpu(cpu, &cpus_with_pcps) {
2531 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2532 INIT_WORK(work, drain_local_pages_wq);
2533 queue_work_on(cpu, mm_percpu_wq, work);
2534 }
2535 for_each_cpu(cpu, &cpus_with_pcps)
2536 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2537
2538 mutex_unlock(&pcpu_drain_mutex);
2539 }
2540
2541 #ifdef CONFIG_HIBERNATION
2542
2543 /*
2544 * Touch the watchdog for every WD_PAGE_COUNT pages.
2545 */
2546 #define WD_PAGE_COUNT (128*1024)
2547
2548 void mark_free_pages(struct zone *zone)
2549 {
2550 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2551 unsigned long flags;
2552 unsigned int order, t;
2553 struct page *page;
2554
2555 if (zone_is_empty(zone))
2556 return;
2557
2558 spin_lock_irqsave(&zone->lock, flags);
2559
2560 max_zone_pfn = zone_end_pfn(zone);
2561 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2562 if (pfn_valid(pfn)) {
2563 page = pfn_to_page(pfn);
2564
2565 if (!--page_count) {
2566 touch_nmi_watchdog();
2567 page_count = WD_PAGE_COUNT;
2568 }
2569
2570 if (page_zone(page) != zone)
2571 continue;
2572
2573 if (!swsusp_page_is_forbidden(page))
2574 swsusp_unset_page_free(page);
2575 }
2576
2577 for_each_migratetype_order(order, t) {
2578 list_for_each_entry(page,
2579 &zone->free_area[order].free_list[t], lru) {
2580 unsigned long i;
2581
2582 pfn = page_to_pfn(page);
2583 for (i = 0; i < (1UL << order); i++) {
2584 if (!--page_count) {
2585 touch_nmi_watchdog();
2586 page_count = WD_PAGE_COUNT;
2587 }
2588 swsusp_set_page_free(pfn_to_page(pfn + i));
2589 }
2590 }
2591 }
2592 spin_unlock_irqrestore(&zone->lock, flags);
2593 }
2594 #endif /* CONFIG_PM */
2595
2596 /*
2597 * Free a 0-order page
2598 * cold == true ? free a cold page : free a hot page
2599 */
2600 void free_hot_cold_page(struct page *page, bool cold)
2601 {
2602 struct zone *zone = page_zone(page);
2603 struct per_cpu_pages *pcp;
2604 unsigned long flags;
2605 unsigned long pfn = page_to_pfn(page);
2606 int migratetype;
2607
2608 if (!free_pcp_prepare(page))
2609 return;
2610
2611 migratetype = get_pfnblock_migratetype(page, pfn);
2612 set_pcppage_migratetype(page, migratetype);
2613 local_irq_save(flags);
2614 __count_vm_event(PGFREE);
2615
2616 /*
2617 * We only track unmovable, reclaimable and movable on pcp lists.
2618 * Free ISOLATE pages back to the allocator because they are being
2619 * offlined but treat HIGHATOMIC as movable pages so we can get those
2620 * areas back if necessary. Otherwise, we may have to free
2621 * excessively into the page allocator
2622 */
2623 if (migratetype >= MIGRATE_PCPTYPES) {
2624 if (unlikely(is_migrate_isolate(migratetype))) {
2625 free_one_page(zone, page, pfn, 0, migratetype);
2626 goto out;
2627 }
2628 migratetype = MIGRATE_MOVABLE;
2629 }
2630
2631 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2632 if (!cold)
2633 list_add(&page->lru, &pcp->lists[migratetype]);
2634 else
2635 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2636 pcp->count++;
2637 if (pcp->count >= pcp->high) {
2638 unsigned long batch = READ_ONCE(pcp->batch);
2639 free_pcppages_bulk(zone, batch, pcp);
2640 pcp->count -= batch;
2641 }
2642
2643 out:
2644 local_irq_restore(flags);
2645 }
2646
2647 /*
2648 * Free a list of 0-order pages
2649 */
2650 void free_hot_cold_page_list(struct list_head *list, bool cold)
2651 {
2652 struct page *page, *next;
2653
2654 list_for_each_entry_safe(page, next, list, lru) {
2655 trace_mm_page_free_batched(page, cold);
2656 free_hot_cold_page(page, cold);
2657 }
2658 }
2659
2660 /*
2661 * split_page takes a non-compound higher-order page, and splits it into
2662 * n (1<<order) sub-pages: page[0..n]
2663 * Each sub-page must be freed individually.
2664 *
2665 * Note: this is probably too low level an operation for use in drivers.
2666 * Please consult with lkml before using this in your driver.
2667 */
2668 void split_page(struct page *page, unsigned int order)
2669 {
2670 int i;
2671
2672 VM_BUG_ON_PAGE(PageCompound(page), page);
2673 VM_BUG_ON_PAGE(!page_count(page), page);
2674
2675 for (i = 1; i < (1 << order); i++)
2676 set_page_refcounted(page + i);
2677 split_page_owner(page, order);
2678 }
2679 EXPORT_SYMBOL_GPL(split_page);
2680
2681 int __isolate_free_page(struct page *page, unsigned int order)
2682 {
2683 unsigned long watermark;
2684 struct zone *zone;
2685 int mt;
2686
2687 BUG_ON(!PageBuddy(page));
2688
2689 zone = page_zone(page);
2690 mt = get_pageblock_migratetype(page);
2691
2692 if (!is_migrate_isolate(mt)) {
2693 /*
2694 * Obey watermarks as if the page was being allocated. We can
2695 * emulate a high-order watermark check with a raised order-0
2696 * watermark, because we already know our high-order page
2697 * exists.
2698 */
2699 watermark = min_wmark_pages(zone) + (1UL << order);
2700 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2701 return 0;
2702
2703 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2704 }
2705
2706 /* Remove page from free list */
2707 list_del(&page->lru);
2708 zone->free_area[order].nr_free--;
2709 rmv_page_order(page);
2710
2711 /*
2712 * Set the pageblock if the isolated page is at least half of a
2713 * pageblock
2714 */
2715 if (order >= pageblock_order - 1) {
2716 struct page *endpage = page + (1 << order) - 1;
2717 for (; page < endpage; page += pageblock_nr_pages) {
2718 int mt = get_pageblock_migratetype(page);
2719 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2720 && !is_migrate_highatomic(mt))
2721 set_pageblock_migratetype(page,
2722 MIGRATE_MOVABLE);
2723 }
2724 }
2725
2726
2727 return 1UL << order;
2728 }
2729
2730 /*
2731 * Update NUMA hit/miss statistics
2732 *
2733 * Must be called with interrupts disabled.
2734 */
2735 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2736 {
2737 #ifdef CONFIG_NUMA
2738 enum numa_stat_item local_stat = NUMA_LOCAL;
2739
2740 if (z->node != numa_node_id())
2741 local_stat = NUMA_OTHER;
2742
2743 if (z->node == preferred_zone->node)
2744 __inc_numa_state(z, NUMA_HIT);
2745 else {
2746 __inc_numa_state(z, NUMA_MISS);
2747 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2748 }
2749 __inc_numa_state(z, local_stat);
2750 #endif
2751 }
2752
2753 /* Remove page from the per-cpu list, caller must protect the list */
2754 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2755 bool cold, struct per_cpu_pages *pcp,
2756 struct list_head *list)
2757 {
2758 struct page *page;
2759
2760 do {
2761 if (list_empty(list)) {
2762 pcp->count += rmqueue_bulk(zone, 0,
2763 pcp->batch, list,
2764 migratetype, cold);
2765 if (unlikely(list_empty(list)))
2766 return NULL;
2767 }
2768
2769 if (cold)
2770 page = list_last_entry(list, struct page, lru);
2771 else
2772 page = list_first_entry(list, struct page, lru);
2773
2774 list_del(&page->lru);
2775 pcp->count--;
2776 } while (check_new_pcp(page));
2777
2778 return page;
2779 }
2780
2781 /* Lock and remove page from the per-cpu list */
2782 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2783 struct zone *zone, unsigned int order,
2784 gfp_t gfp_flags, int migratetype)
2785 {
2786 struct per_cpu_pages *pcp;
2787 struct list_head *list;
2788 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2789 struct page *page;
2790 unsigned long flags;
2791
2792 local_irq_save(flags);
2793 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2794 list = &pcp->lists[migratetype];
2795 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2796 if (page) {
2797 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2798 zone_statistics(preferred_zone, zone);
2799 }
2800 local_irq_restore(flags);
2801 return page;
2802 }
2803
2804 /*
2805 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2806 */
2807 static inline
2808 struct page *rmqueue(struct zone *preferred_zone,
2809 struct zone *zone, unsigned int order,
2810 gfp_t gfp_flags, unsigned int alloc_flags,
2811 int migratetype)
2812 {
2813 unsigned long flags;
2814 struct page *page;
2815
2816 if (likely(order == 0)) {
2817 page = rmqueue_pcplist(preferred_zone, zone, order,
2818 gfp_flags, migratetype);
2819 goto out;
2820 }
2821
2822 /*
2823 * We most definitely don't want callers attempting to
2824 * allocate greater than order-1 page units with __GFP_NOFAIL.
2825 */
2826 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2827 spin_lock_irqsave(&zone->lock, flags);
2828
2829 do {
2830 page = NULL;
2831 if (alloc_flags & ALLOC_HARDER) {
2832 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2833 if (page)
2834 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2835 }
2836 if (!page)
2837 page = __rmqueue(zone, order, migratetype);
2838 } while (page && check_new_pages(page, order));
2839 spin_unlock(&zone->lock);
2840 if (!page)
2841 goto failed;
2842 __mod_zone_freepage_state(zone, -(1 << order),
2843 get_pcppage_migratetype(page));
2844
2845 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2846 zone_statistics(preferred_zone, zone);
2847 local_irq_restore(flags);
2848
2849 out:
2850 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2851 return page;
2852
2853 failed:
2854 local_irq_restore(flags);
2855 return NULL;
2856 }
2857
2858 #ifdef CONFIG_FAIL_PAGE_ALLOC
2859
2860 static struct {
2861 struct fault_attr attr;
2862
2863 bool ignore_gfp_highmem;
2864 bool ignore_gfp_reclaim;
2865 u32 min_order;
2866 } fail_page_alloc = {
2867 .attr = FAULT_ATTR_INITIALIZER,
2868 .ignore_gfp_reclaim = true,
2869 .ignore_gfp_highmem = true,
2870 .min_order = 1,
2871 };
2872
2873 static int __init setup_fail_page_alloc(char *str)
2874 {
2875 return setup_fault_attr(&fail_page_alloc.attr, str);
2876 }
2877 __setup("fail_page_alloc=", setup_fail_page_alloc);
2878
2879 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2880 {
2881 if (order < fail_page_alloc.min_order)
2882 return false;
2883 if (gfp_mask & __GFP_NOFAIL)
2884 return false;
2885 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2886 return false;
2887 if (fail_page_alloc.ignore_gfp_reclaim &&
2888 (gfp_mask & __GFP_DIRECT_RECLAIM))
2889 return false;
2890
2891 return should_fail(&fail_page_alloc.attr, 1 << order);
2892 }
2893
2894 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2895
2896 static int __init fail_page_alloc_debugfs(void)
2897 {
2898 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2899 struct dentry *dir;
2900
2901 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2902 &fail_page_alloc.attr);
2903 if (IS_ERR(dir))
2904 return PTR_ERR(dir);
2905
2906 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2907 &fail_page_alloc.ignore_gfp_reclaim))
2908 goto fail;
2909 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2910 &fail_page_alloc.ignore_gfp_highmem))
2911 goto fail;
2912 if (!debugfs_create_u32("min-order", mode, dir,
2913 &fail_page_alloc.min_order))
2914 goto fail;
2915
2916 return 0;
2917 fail:
2918 debugfs_remove_recursive(dir);
2919
2920 return -ENOMEM;
2921 }
2922
2923 late_initcall(fail_page_alloc_debugfs);
2924
2925 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2926
2927 #else /* CONFIG_FAIL_PAGE_ALLOC */
2928
2929 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2930 {
2931 return false;
2932 }
2933
2934 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2935
2936 /*
2937 * Return true if free base pages are above 'mark'. For high-order checks it
2938 * will return true of the order-0 watermark is reached and there is at least
2939 * one free page of a suitable size. Checking now avoids taking the zone lock
2940 * to check in the allocation paths if no pages are free.
2941 */
2942 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2943 int classzone_idx, unsigned int alloc_flags,
2944 long free_pages)
2945 {
2946 long min = mark;
2947 int o;
2948 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
2949
2950 /* free_pages may go negative - that's OK */
2951 free_pages -= (1 << order) - 1;
2952
2953 if (alloc_flags & ALLOC_HIGH)
2954 min -= min / 2;
2955
2956 /*
2957 * If the caller does not have rights to ALLOC_HARDER then subtract
2958 * the high-atomic reserves. This will over-estimate the size of the
2959 * atomic reserve but it avoids a search.
2960 */
2961 if (likely(!alloc_harder)) {
2962 free_pages -= z->nr_reserved_highatomic;
2963 } else {
2964 /*
2965 * OOM victims can try even harder than normal ALLOC_HARDER
2966 * users on the grounds that it's definitely going to be in
2967 * the exit path shortly and free memory. Any allocation it
2968 * makes during the free path will be small and short-lived.
2969 */
2970 if (alloc_flags & ALLOC_OOM)
2971 min -= min / 2;
2972 else
2973 min -= min / 4;
2974 }
2975
2976
2977 #ifdef CONFIG_CMA
2978 /* If allocation can't use CMA areas don't use free CMA pages */
2979 if (!(alloc_flags & ALLOC_CMA))
2980 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2981 #endif
2982
2983 /*
2984 * Check watermarks for an order-0 allocation request. If these
2985 * are not met, then a high-order request also cannot go ahead
2986 * even if a suitable page happened to be free.
2987 */
2988 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2989 return false;
2990
2991 /* If this is an order-0 request then the watermark is fine */
2992 if (!order)
2993 return true;
2994
2995 /* For a high-order request, check at least one suitable page is free */
2996 for (o = order; o < MAX_ORDER; o++) {
2997 struct free_area *area = &z->free_area[o];
2998 int mt;
2999
3000 if (!area->nr_free)
3001 continue;
3002
3003 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3004 if (!list_empty(&area->free_list[mt]))
3005 return true;
3006 }
3007
3008 #ifdef CONFIG_CMA
3009 if ((alloc_flags & ALLOC_CMA) &&
3010 !list_empty(&area->free_list[MIGRATE_CMA])) {
3011 return true;
3012 }
3013 #endif
3014 if (alloc_harder &&
3015 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3016 return true;
3017 }
3018 return false;
3019 }
3020
3021 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3022 int classzone_idx, unsigned int alloc_flags)
3023 {
3024 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3025 zone_page_state(z, NR_FREE_PAGES));
3026 }
3027
3028 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3029 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3030 {
3031 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3032 long cma_pages = 0;
3033
3034 #ifdef CONFIG_CMA
3035 /* If allocation can't use CMA areas don't use free CMA pages */
3036 if (!(alloc_flags & ALLOC_CMA))
3037 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3038 #endif
3039
3040 /*
3041 * Fast check for order-0 only. If this fails then the reserves
3042 * need to be calculated. There is a corner case where the check
3043 * passes but only the high-order atomic reserve are free. If
3044 * the caller is !atomic then it'll uselessly search the free
3045 * list. That corner case is then slower but it is harmless.
3046 */
3047 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3048 return true;
3049
3050 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3051 free_pages);
3052 }
3053
3054 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3055 unsigned long mark, int classzone_idx)
3056 {
3057 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3058
3059 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3060 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3061
3062 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3063 free_pages);
3064 }
3065
3066 #ifdef CONFIG_NUMA
3067 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3068 {
3069 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3070 RECLAIM_DISTANCE;
3071 }
3072 #else /* CONFIG_NUMA */
3073 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3074 {
3075 return true;
3076 }
3077 #endif /* CONFIG_NUMA */
3078
3079 /*
3080 * get_page_from_freelist goes through the zonelist trying to allocate
3081 * a page.
3082 */
3083 static struct page *
3084 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3085 const struct alloc_context *ac)
3086 {
3087 struct zoneref *z = ac->preferred_zoneref;
3088 struct zone *zone;
3089 struct pglist_data *last_pgdat_dirty_limit = NULL;
3090
3091 /*
3092 * Scan zonelist, looking for a zone with enough free.
3093 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3094 */
3095 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3096 ac->nodemask) {
3097 struct page *page;
3098 unsigned long mark;
3099
3100 if (cpusets_enabled() &&
3101 (alloc_flags & ALLOC_CPUSET) &&
3102 !__cpuset_zone_allowed(zone, gfp_mask))
3103 continue;
3104 /*
3105 * When allocating a page cache page for writing, we
3106 * want to get it from a node that is within its dirty
3107 * limit, such that no single node holds more than its
3108 * proportional share of globally allowed dirty pages.
3109 * The dirty limits take into account the node's
3110 * lowmem reserves and high watermark so that kswapd
3111 * should be able to balance it without having to
3112 * write pages from its LRU list.
3113 *
3114 * XXX: For now, allow allocations to potentially
3115 * exceed the per-node dirty limit in the slowpath
3116 * (spread_dirty_pages unset) before going into reclaim,
3117 * which is important when on a NUMA setup the allowed
3118 * nodes are together not big enough to reach the
3119 * global limit. The proper fix for these situations
3120 * will require awareness of nodes in the
3121 * dirty-throttling and the flusher threads.
3122 */
3123 if (ac->spread_dirty_pages) {
3124 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3125 continue;
3126
3127 if (!node_dirty_ok(zone->zone_pgdat)) {
3128 last_pgdat_dirty_limit = zone->zone_pgdat;
3129 continue;
3130 }
3131 }
3132
3133 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3134 if (!zone_watermark_fast(zone, order, mark,
3135 ac_classzone_idx(ac), alloc_flags)) {
3136 int ret;
3137
3138 /* Checked here to keep the fast path fast */
3139 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3140 if (alloc_flags & ALLOC_NO_WATERMARKS)
3141 goto try_this_zone;
3142
3143 if (node_reclaim_mode == 0 ||
3144 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3145 continue;
3146
3147 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3148 switch (ret) {
3149 case NODE_RECLAIM_NOSCAN:
3150 /* did not scan */
3151 continue;
3152 case NODE_RECLAIM_FULL:
3153 /* scanned but unreclaimable */
3154 continue;
3155 default:
3156 /* did we reclaim enough */
3157 if (zone_watermark_ok(zone, order, mark,
3158 ac_classzone_idx(ac), alloc_flags))
3159 goto try_this_zone;
3160
3161 continue;
3162 }
3163 }
3164
3165 try_this_zone:
3166 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3167 gfp_mask, alloc_flags, ac->migratetype);
3168 if (page) {
3169 prep_new_page(page, order, gfp_mask, alloc_flags);
3170
3171 /*
3172 * If this is a high-order atomic allocation then check
3173 * if the pageblock should be reserved for the future
3174 */
3175 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3176 reserve_highatomic_pageblock(page, zone, order);
3177
3178 return page;
3179 }
3180 }
3181
3182 return NULL;
3183 }
3184
3185 /*
3186 * Large machines with many possible nodes should not always dump per-node
3187 * meminfo in irq context.
3188 */
3189 static inline bool should_suppress_show_mem(void)
3190 {
3191 bool ret = false;
3192
3193 #if NODES_SHIFT > 8
3194 ret = in_interrupt();
3195 #endif
3196 return ret;
3197 }
3198
3199 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3200 {
3201 unsigned int filter = SHOW_MEM_FILTER_NODES;
3202 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3203
3204 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3205 return;
3206
3207 /*
3208 * This documents exceptions given to allocations in certain
3209 * contexts that are allowed to allocate outside current's set
3210 * of allowed nodes.
3211 */
3212 if (!(gfp_mask & __GFP_NOMEMALLOC))
3213 if (tsk_is_oom_victim(current) ||
3214 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3215 filter &= ~SHOW_MEM_FILTER_NODES;
3216 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3217 filter &= ~SHOW_MEM_FILTER_NODES;
3218
3219 show_mem(filter, nodemask);
3220 }
3221
3222 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3223 {
3224 struct va_format vaf;
3225 va_list args;
3226 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3227 DEFAULT_RATELIMIT_BURST);
3228
3229 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3230 return;
3231
3232 pr_warn("%s: ", current->comm);
3233
3234 va_start(args, fmt);
3235 vaf.fmt = fmt;
3236 vaf.va = &args;
3237 pr_cont("%pV", &vaf);
3238 va_end(args);
3239
3240 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3241 if (nodemask)
3242 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3243 else
3244 pr_cont("(null)\n");
3245
3246 cpuset_print_current_mems_allowed();
3247
3248 dump_stack();
3249 warn_alloc_show_mem(gfp_mask, nodemask);
3250 }
3251
3252 static inline struct page *
3253 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3254 unsigned int alloc_flags,
3255 const struct alloc_context *ac)
3256 {
3257 struct page *page;
3258
3259 page = get_page_from_freelist(gfp_mask, order,
3260 alloc_flags|ALLOC_CPUSET, ac);
3261 /*
3262 * fallback to ignore cpuset restriction if our nodes
3263 * are depleted
3264 */
3265 if (!page)
3266 page = get_page_from_freelist(gfp_mask, order,
3267 alloc_flags, ac);
3268
3269 return page;
3270 }
3271
3272 static inline struct page *
3273 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3274 const struct alloc_context *ac, unsigned long *did_some_progress)
3275 {
3276 struct oom_control oc = {
3277 .zonelist = ac->zonelist,
3278 .nodemask = ac->nodemask,
3279 .memcg = NULL,
3280 .gfp_mask = gfp_mask,
3281 .order = order,
3282 };
3283 struct page *page;
3284
3285 *did_some_progress = 0;
3286
3287 /*
3288 * Acquire the oom lock. If that fails, somebody else is
3289 * making progress for us.
3290 */
3291 if (!mutex_trylock(&oom_lock)) {
3292 *did_some_progress = 1;
3293 schedule_timeout_uninterruptible(1);
3294 return NULL;
3295 }
3296
3297 /*
3298 * Go through the zonelist yet one more time, keep very high watermark
3299 * here, this is only to catch a parallel oom killing, we must fail if
3300 * we're still under heavy pressure. But make sure that this reclaim
3301 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3302 * allocation which will never fail due to oom_lock already held.
3303 */
3304 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3305 ~__GFP_DIRECT_RECLAIM, order,
3306 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3307 if (page)
3308 goto out;
3309
3310 /* Coredumps can quickly deplete all memory reserves */
3311 if (current->flags & PF_DUMPCORE)
3312 goto out;
3313 /* The OOM killer will not help higher order allocs */
3314 if (order > PAGE_ALLOC_COSTLY_ORDER)
3315 goto out;
3316 /*
3317 * We have already exhausted all our reclaim opportunities without any
3318 * success so it is time to admit defeat. We will skip the OOM killer
3319 * because it is very likely that the caller has a more reasonable
3320 * fallback than shooting a random task.
3321 */
3322 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3323 goto out;
3324 /* The OOM killer does not needlessly kill tasks for lowmem */
3325 if (ac->high_zoneidx < ZONE_NORMAL)
3326 goto out;
3327 if (pm_suspended_storage())
3328 goto out;
3329 /*
3330 * XXX: GFP_NOFS allocations should rather fail than rely on
3331 * other request to make a forward progress.
3332 * We are in an unfortunate situation where out_of_memory cannot
3333 * do much for this context but let's try it to at least get
3334 * access to memory reserved if the current task is killed (see
3335 * out_of_memory). Once filesystems are ready to handle allocation
3336 * failures more gracefully we should just bail out here.
3337 */
3338
3339 /* The OOM killer may not free memory on a specific node */
3340 if (gfp_mask & __GFP_THISNODE)
3341 goto out;
3342
3343 /* Exhausted what can be done so it's blamo time */
3344 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3345 *did_some_progress = 1;
3346
3347 /*
3348 * Help non-failing allocations by giving them access to memory
3349 * reserves
3350 */
3351 if (gfp_mask & __GFP_NOFAIL)
3352 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3353 ALLOC_NO_WATERMARKS, ac);
3354 }
3355 out:
3356 mutex_unlock(&oom_lock);
3357 return page;
3358 }
3359
3360 /*
3361 * Maximum number of compaction retries wit a progress before OOM
3362 * killer is consider as the only way to move forward.
3363 */
3364 #define MAX_COMPACT_RETRIES 16
3365
3366 #ifdef CONFIG_COMPACTION
3367 /* Try memory compaction for high-order allocations before reclaim */
3368 static struct page *
3369 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3370 unsigned int alloc_flags, const struct alloc_context *ac,
3371 enum compact_priority prio, enum compact_result *compact_result)
3372 {
3373 struct page *page;
3374 unsigned int noreclaim_flag;
3375
3376 if (!order)
3377 return NULL;
3378
3379 noreclaim_flag = memalloc_noreclaim_save();
3380 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3381 prio);
3382 memalloc_noreclaim_restore(noreclaim_flag);
3383
3384 if (*compact_result <= COMPACT_INACTIVE)
3385 return NULL;
3386
3387 /*
3388 * At least in one zone compaction wasn't deferred or skipped, so let's
3389 * count a compaction stall
3390 */
3391 count_vm_event(COMPACTSTALL);
3392
3393 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3394
3395 if (page) {
3396 struct zone *zone = page_zone(page);
3397
3398 zone->compact_blockskip_flush = false;
3399 compaction_defer_reset(zone, order, true);
3400 count_vm_event(COMPACTSUCCESS);
3401 return page;
3402 }
3403
3404 /*
3405 * It's bad if compaction run occurs and fails. The most likely reason
3406 * is that pages exist, but not enough to satisfy watermarks.
3407 */
3408 count_vm_event(COMPACTFAIL);
3409
3410 cond_resched();
3411
3412 return NULL;
3413 }
3414
3415 static inline bool
3416 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3417 enum compact_result compact_result,
3418 enum compact_priority *compact_priority,
3419 int *compaction_retries)
3420 {
3421 int max_retries = MAX_COMPACT_RETRIES;
3422 int min_priority;
3423 bool ret = false;
3424 int retries = *compaction_retries;
3425 enum compact_priority priority = *compact_priority;
3426
3427 if (!order)
3428 return false;
3429
3430 if (compaction_made_progress(compact_result))
3431 (*compaction_retries)++;
3432
3433 /*
3434 * compaction considers all the zone as desperately out of memory
3435 * so it doesn't really make much sense to retry except when the
3436 * failure could be caused by insufficient priority
3437 */
3438 if (compaction_failed(compact_result))
3439 goto check_priority;
3440
3441 /*
3442 * make sure the compaction wasn't deferred or didn't bail out early
3443 * due to locks contention before we declare that we should give up.
3444 * But do not retry if the given zonelist is not suitable for
3445 * compaction.
3446 */
3447 if (compaction_withdrawn(compact_result)) {
3448 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3449 goto out;
3450 }
3451
3452 /*
3453 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3454 * costly ones because they are de facto nofail and invoke OOM
3455 * killer to move on while costly can fail and users are ready
3456 * to cope with that. 1/4 retries is rather arbitrary but we
3457 * would need much more detailed feedback from compaction to
3458 * make a better decision.
3459 */
3460 if (order > PAGE_ALLOC_COSTLY_ORDER)
3461 max_retries /= 4;
3462 if (*compaction_retries <= max_retries) {
3463 ret = true;
3464 goto out;
3465 }
3466
3467 /*
3468 * Make sure there are attempts at the highest priority if we exhausted
3469 * all retries or failed at the lower priorities.
3470 */
3471 check_priority:
3472 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3473 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3474
3475 if (*compact_priority > min_priority) {
3476 (*compact_priority)--;
3477 *compaction_retries = 0;
3478 ret = true;
3479 }
3480 out:
3481 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3482 return ret;
3483 }
3484 #else
3485 static inline struct page *
3486 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3487 unsigned int alloc_flags, const struct alloc_context *ac,
3488 enum compact_priority prio, enum compact_result *compact_result)
3489 {
3490 *compact_result = COMPACT_SKIPPED;
3491 return NULL;
3492 }
3493
3494 static inline bool
3495 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3496 enum compact_result compact_result,
3497 enum compact_priority *compact_priority,
3498 int *compaction_retries)
3499 {
3500 struct zone *zone;
3501 struct zoneref *z;
3502
3503 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3504 return false;
3505
3506 /*
3507 * There are setups with compaction disabled which would prefer to loop
3508 * inside the allocator rather than hit the oom killer prematurely.
3509 * Let's give them a good hope and keep retrying while the order-0
3510 * watermarks are OK.
3511 */
3512 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3513 ac->nodemask) {
3514 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3515 ac_classzone_idx(ac), alloc_flags))
3516 return true;
3517 }
3518 return false;
3519 }
3520 #endif /* CONFIG_COMPACTION */
3521
3522 #ifdef CONFIG_LOCKDEP
3523 struct lockdep_map __fs_reclaim_map =
3524 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3525
3526 static bool __need_fs_reclaim(gfp_t gfp_mask)
3527 {
3528 gfp_mask = current_gfp_context(gfp_mask);
3529
3530 /* no reclaim without waiting on it */
3531 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3532 return false;
3533
3534 /* this guy won't enter reclaim */
3535 if (current->flags & PF_MEMALLOC)
3536 return false;
3537
3538 /* We're only interested __GFP_FS allocations for now */
3539 if (!(gfp_mask & __GFP_FS))
3540 return false;
3541
3542 if (gfp_mask & __GFP_NOLOCKDEP)
3543 return false;
3544
3545 return true;
3546 }
3547
3548 void fs_reclaim_acquire(gfp_t gfp_mask)
3549 {
3550 if (__need_fs_reclaim(gfp_mask))
3551 lock_map_acquire(&__fs_reclaim_map);
3552 }
3553 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3554
3555 void fs_reclaim_release(gfp_t gfp_mask)
3556 {
3557 if (__need_fs_reclaim(gfp_mask))
3558 lock_map_release(&__fs_reclaim_map);
3559 }
3560 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3561 #endif
3562
3563 /* Perform direct synchronous page reclaim */
3564 static int
3565 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3566 const struct alloc_context *ac)
3567 {
3568 struct reclaim_state reclaim_state;
3569 int progress;
3570 unsigned int noreclaim_flag;
3571
3572 cond_resched();
3573
3574 /* We now go into synchronous reclaim */
3575 cpuset_memory_pressure_bump();
3576 noreclaim_flag = memalloc_noreclaim_save();
3577 fs_reclaim_acquire(gfp_mask);
3578 reclaim_state.reclaimed_slab = 0;
3579 current->reclaim_state = &reclaim_state;
3580
3581 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3582 ac->nodemask);
3583
3584 current->reclaim_state = NULL;
3585 fs_reclaim_release(gfp_mask);
3586 memalloc_noreclaim_restore(noreclaim_flag);
3587
3588 cond_resched();
3589
3590 return progress;
3591 }
3592
3593 /* The really slow allocator path where we enter direct reclaim */
3594 static inline struct page *
3595 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3596 unsigned int alloc_flags, const struct alloc_context *ac,
3597 unsigned long *did_some_progress)
3598 {
3599 struct page *page = NULL;
3600 bool drained = false;
3601
3602 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3603 if (unlikely(!(*did_some_progress)))
3604 return NULL;
3605
3606 retry:
3607 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3608
3609 /*
3610 * If an allocation failed after direct reclaim, it could be because
3611 * pages are pinned on the per-cpu lists or in high alloc reserves.
3612 * Shrink them them and try again
3613 */
3614 if (!page && !drained) {
3615 unreserve_highatomic_pageblock(ac, false);
3616 drain_all_pages(NULL);
3617 drained = true;
3618 goto retry;
3619 }
3620
3621 return page;
3622 }
3623
3624 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3625 {
3626 struct zoneref *z;
3627 struct zone *zone;
3628 pg_data_t *last_pgdat = NULL;
3629
3630 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3631 ac->high_zoneidx, ac->nodemask) {
3632 if (last_pgdat != zone->zone_pgdat)
3633 wakeup_kswapd(zone, order, ac->high_zoneidx);
3634 last_pgdat = zone->zone_pgdat;
3635 }
3636 }
3637
3638 static inline unsigned int
3639 gfp_to_alloc_flags(gfp_t gfp_mask)
3640 {
3641 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3642
3643 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3644 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3645
3646 /*
3647 * The caller may dip into page reserves a bit more if the caller
3648 * cannot run direct reclaim, or if the caller has realtime scheduling
3649 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3650 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3651 */
3652 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3653
3654 if (gfp_mask & __GFP_ATOMIC) {
3655 /*
3656 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3657 * if it can't schedule.
3658 */
3659 if (!(gfp_mask & __GFP_NOMEMALLOC))
3660 alloc_flags |= ALLOC_HARDER;
3661 /*
3662 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3663 * comment for __cpuset_node_allowed().
3664 */
3665 alloc_flags &= ~ALLOC_CPUSET;
3666 } else if (unlikely(rt_task(current)) && !in_interrupt())
3667 alloc_flags |= ALLOC_HARDER;
3668
3669 #ifdef CONFIG_CMA
3670 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3671 alloc_flags |= ALLOC_CMA;
3672 #endif
3673 return alloc_flags;
3674 }
3675
3676 static bool oom_reserves_allowed(struct task_struct *tsk)
3677 {
3678 if (!tsk_is_oom_victim(tsk))
3679 return false;
3680
3681 /*
3682 * !MMU doesn't have oom reaper so give access to memory reserves
3683 * only to the thread with TIF_MEMDIE set
3684 */
3685 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3686 return false;
3687
3688 return true;
3689 }
3690
3691 /*
3692 * Distinguish requests which really need access to full memory
3693 * reserves from oom victims which can live with a portion of it
3694 */
3695 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3696 {
3697 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3698 return 0;
3699 if (gfp_mask & __GFP_MEMALLOC)
3700 return ALLOC_NO_WATERMARKS;
3701 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3702 return ALLOC_NO_WATERMARKS;
3703 if (!in_interrupt()) {
3704 if (current->flags & PF_MEMALLOC)
3705 return ALLOC_NO_WATERMARKS;
3706 else if (oom_reserves_allowed(current))
3707 return ALLOC_OOM;
3708 }
3709
3710 return 0;
3711 }
3712
3713 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3714 {
3715 return !!__gfp_pfmemalloc_flags(gfp_mask);
3716 }
3717
3718 /*
3719 * Checks whether it makes sense to retry the reclaim to make a forward progress
3720 * for the given allocation request.
3721 *
3722 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3723 * without success, or when we couldn't even meet the watermark if we
3724 * reclaimed all remaining pages on the LRU lists.
3725 *
3726 * Returns true if a retry is viable or false to enter the oom path.
3727 */
3728 static inline bool
3729 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3730 struct alloc_context *ac, int alloc_flags,
3731 bool did_some_progress, int *no_progress_loops)
3732 {
3733 struct zone *zone;
3734 struct zoneref *z;
3735
3736 /*
3737 * Costly allocations might have made a progress but this doesn't mean
3738 * their order will become available due to high fragmentation so
3739 * always increment the no progress counter for them
3740 */
3741 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3742 *no_progress_loops = 0;
3743 else
3744 (*no_progress_loops)++;
3745
3746 /*
3747 * Make sure we converge to OOM if we cannot make any progress
3748 * several times in the row.
3749 */
3750 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3751 /* Before OOM, exhaust highatomic_reserve */
3752 return unreserve_highatomic_pageblock(ac, true);
3753 }
3754
3755 /*
3756 * Keep reclaiming pages while there is a chance this will lead
3757 * somewhere. If none of the target zones can satisfy our allocation
3758 * request even if all reclaimable pages are considered then we are
3759 * screwed and have to go OOM.
3760 */
3761 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3762 ac->nodemask) {
3763 unsigned long available;
3764 unsigned long reclaimable;
3765 unsigned long min_wmark = min_wmark_pages(zone);
3766 bool wmark;
3767
3768 available = reclaimable = zone_reclaimable_pages(zone);
3769 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3770
3771 /*
3772 * Would the allocation succeed if we reclaimed all
3773 * reclaimable pages?
3774 */
3775 wmark = __zone_watermark_ok(zone, order, min_wmark,
3776 ac_classzone_idx(ac), alloc_flags, available);
3777 trace_reclaim_retry_zone(z, order, reclaimable,
3778 available, min_wmark, *no_progress_loops, wmark);
3779 if (wmark) {
3780 /*
3781 * If we didn't make any progress and have a lot of
3782 * dirty + writeback pages then we should wait for
3783 * an IO to complete to slow down the reclaim and
3784 * prevent from pre mature OOM
3785 */
3786 if (!did_some_progress) {
3787 unsigned long write_pending;
3788
3789 write_pending = zone_page_state_snapshot(zone,
3790 NR_ZONE_WRITE_PENDING);
3791
3792 if (2 * write_pending > reclaimable) {
3793 congestion_wait(BLK_RW_ASYNC, HZ/10);
3794 return true;
3795 }
3796 }
3797
3798 /*
3799 * Memory allocation/reclaim might be called from a WQ
3800 * context and the current implementation of the WQ
3801 * concurrency control doesn't recognize that
3802 * a particular WQ is congested if the worker thread is
3803 * looping without ever sleeping. Therefore we have to
3804 * do a short sleep here rather than calling
3805 * cond_resched().
3806 */
3807 if (current->flags & PF_WQ_WORKER)
3808 schedule_timeout_uninterruptible(1);
3809 else
3810 cond_resched();
3811
3812 return true;
3813 }
3814 }
3815
3816 return false;
3817 }
3818
3819 static inline bool
3820 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3821 {
3822 /*
3823 * It's possible that cpuset's mems_allowed and the nodemask from
3824 * mempolicy don't intersect. This should be normally dealt with by
3825 * policy_nodemask(), but it's possible to race with cpuset update in
3826 * such a way the check therein was true, and then it became false
3827 * before we got our cpuset_mems_cookie here.
3828 * This assumes that for all allocations, ac->nodemask can come only
3829 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3830 * when it does not intersect with the cpuset restrictions) or the
3831 * caller can deal with a violated nodemask.
3832 */
3833 if (cpusets_enabled() && ac->nodemask &&
3834 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3835 ac->nodemask = NULL;
3836 return true;
3837 }
3838
3839 /*
3840 * When updating a task's mems_allowed or mempolicy nodemask, it is
3841 * possible to race with parallel threads in such a way that our
3842 * allocation can fail while the mask is being updated. If we are about
3843 * to fail, check if the cpuset changed during allocation and if so,
3844 * retry.
3845 */
3846 if (read_mems_allowed_retry(cpuset_mems_cookie))
3847 return true;
3848
3849 return false;
3850 }
3851
3852 static inline struct page *
3853 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3854 struct alloc_context *ac)
3855 {
3856 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3857 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3858 struct page *page = NULL;
3859 unsigned int alloc_flags;
3860 unsigned long did_some_progress;
3861 enum compact_priority compact_priority;
3862 enum compact_result compact_result;
3863 int compaction_retries;
3864 int no_progress_loops;
3865 unsigned long alloc_start = jiffies;
3866 unsigned int stall_timeout = 10 * HZ;
3867 unsigned int cpuset_mems_cookie;
3868 int reserve_flags;
3869
3870 /*
3871 * In the slowpath, we sanity check order to avoid ever trying to
3872 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3873 * be using allocators in order of preference for an area that is
3874 * too large.
3875 */
3876 if (order >= MAX_ORDER) {
3877 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3878 return NULL;
3879 }
3880
3881 /*
3882 * We also sanity check to catch abuse of atomic reserves being used by
3883 * callers that are not in atomic context.
3884 */
3885 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3886 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3887 gfp_mask &= ~__GFP_ATOMIC;
3888
3889 retry_cpuset:
3890 compaction_retries = 0;
3891 no_progress_loops = 0;
3892 compact_priority = DEF_COMPACT_PRIORITY;
3893 cpuset_mems_cookie = read_mems_allowed_begin();
3894
3895 /*
3896 * The fast path uses conservative alloc_flags to succeed only until
3897 * kswapd needs to be woken up, and to avoid the cost of setting up
3898 * alloc_flags precisely. So we do that now.
3899 */
3900 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3901
3902 /*
3903 * We need to recalculate the starting point for the zonelist iterator
3904 * because we might have used different nodemask in the fast path, or
3905 * there was a cpuset modification and we are retrying - otherwise we
3906 * could end up iterating over non-eligible zones endlessly.
3907 */
3908 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3909 ac->high_zoneidx, ac->nodemask);
3910 if (!ac->preferred_zoneref->zone)
3911 goto nopage;
3912
3913 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3914 wake_all_kswapds(order, ac);
3915
3916 /*
3917 * The adjusted alloc_flags might result in immediate success, so try
3918 * that first
3919 */
3920 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3921 if (page)
3922 goto got_pg;
3923
3924 /*
3925 * For costly allocations, try direct compaction first, as it's likely
3926 * that we have enough base pages and don't need to reclaim. For non-
3927 * movable high-order allocations, do that as well, as compaction will
3928 * try prevent permanent fragmentation by migrating from blocks of the
3929 * same migratetype.
3930 * Don't try this for allocations that are allowed to ignore
3931 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3932 */
3933 if (can_direct_reclaim &&
3934 (costly_order ||
3935 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3936 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3937 page = __alloc_pages_direct_compact(gfp_mask, order,
3938 alloc_flags, ac,
3939 INIT_COMPACT_PRIORITY,
3940 &compact_result);
3941 if (page)
3942 goto got_pg;
3943
3944 /*
3945 * Checks for costly allocations with __GFP_NORETRY, which
3946 * includes THP page fault allocations
3947 */
3948 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3949 /*
3950 * If compaction is deferred for high-order allocations,
3951 * it is because sync compaction recently failed. If
3952 * this is the case and the caller requested a THP
3953 * allocation, we do not want to heavily disrupt the
3954 * system, so we fail the allocation instead of entering
3955 * direct reclaim.
3956 */
3957 if (compact_result == COMPACT_DEFERRED)
3958 goto nopage;
3959
3960 /*
3961 * Looks like reclaim/compaction is worth trying, but
3962 * sync compaction could be very expensive, so keep
3963 * using async compaction.
3964 */
3965 compact_priority = INIT_COMPACT_PRIORITY;
3966 }
3967 }
3968
3969 retry:
3970 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3971 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3972 wake_all_kswapds(order, ac);
3973
3974 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
3975 if (reserve_flags)
3976 alloc_flags = reserve_flags;
3977
3978 /*
3979 * Reset the zonelist iterators if memory policies can be ignored.
3980 * These allocations are high priority and system rather than user
3981 * orientated.
3982 */
3983 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
3984 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3985 ac->high_zoneidx, ac->nodemask);
3986 }
3987
3988 /* Attempt with potentially adjusted zonelist and alloc_flags */
3989 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3990 if (page)
3991 goto got_pg;
3992
3993 /* Caller is not willing to reclaim, we can't balance anything */
3994 if (!can_direct_reclaim)
3995 goto nopage;
3996
3997 /* Make sure we know about allocations which stall for too long */
3998 if (time_after(jiffies, alloc_start + stall_timeout)) {
3999 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
4000 "page allocation stalls for %ums, order:%u",
4001 jiffies_to_msecs(jiffies-alloc_start), order);
4002 stall_timeout += 10 * HZ;
4003 }
4004
4005 /* Avoid recursion of direct reclaim */
4006 if (current->flags & PF_MEMALLOC)
4007 goto nopage;
4008
4009 /* Try direct reclaim and then allocating */
4010 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4011 &did_some_progress);
4012 if (page)
4013 goto got_pg;
4014
4015 /* Try direct compaction and then allocating */
4016 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4017 compact_priority, &compact_result);
4018 if (page)
4019 goto got_pg;
4020
4021 /* Do not loop if specifically requested */
4022 if (gfp_mask & __GFP_NORETRY)
4023 goto nopage;
4024
4025 /*
4026 * Do not retry costly high order allocations unless they are
4027 * __GFP_RETRY_MAYFAIL
4028 */
4029 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4030 goto nopage;
4031
4032 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4033 did_some_progress > 0, &no_progress_loops))
4034 goto retry;
4035
4036 /*
4037 * It doesn't make any sense to retry for the compaction if the order-0
4038 * reclaim is not able to make any progress because the current
4039 * implementation of the compaction depends on the sufficient amount
4040 * of free memory (see __compaction_suitable)
4041 */
4042 if (did_some_progress > 0 &&
4043 should_compact_retry(ac, order, alloc_flags,
4044 compact_result, &compact_priority,
4045 &compaction_retries))
4046 goto retry;
4047
4048
4049 /* Deal with possible cpuset update races before we start OOM killing */
4050 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4051 goto retry_cpuset;
4052
4053 /* Reclaim has failed us, start killing things */
4054 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4055 if (page)
4056 goto got_pg;
4057
4058 /* Avoid allocations with no watermarks from looping endlessly */
4059 if (tsk_is_oom_victim(current) &&
4060 (alloc_flags == ALLOC_OOM ||
4061 (gfp_mask & __GFP_NOMEMALLOC)))
4062 goto nopage;
4063
4064 /* Retry as long as the OOM killer is making progress */
4065 if (did_some_progress) {
4066 no_progress_loops = 0;
4067 goto retry;
4068 }
4069
4070 nopage:
4071 /* Deal with possible cpuset update races before we fail */
4072 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4073 goto retry_cpuset;
4074
4075 /*
4076 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4077 * we always retry
4078 */
4079 if (gfp_mask & __GFP_NOFAIL) {
4080 /*
4081 * All existing users of the __GFP_NOFAIL are blockable, so warn
4082 * of any new users that actually require GFP_NOWAIT
4083 */
4084 if (WARN_ON_ONCE(!can_direct_reclaim))
4085 goto fail;
4086
4087 /*
4088 * PF_MEMALLOC request from this context is rather bizarre
4089 * because we cannot reclaim anything and only can loop waiting
4090 * for somebody to do a work for us
4091 */
4092 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4093
4094 /*
4095 * non failing costly orders are a hard requirement which we
4096 * are not prepared for much so let's warn about these users
4097 * so that we can identify them and convert them to something
4098 * else.
4099 */
4100 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4101
4102 /*
4103 * Help non-failing allocations by giving them access to memory
4104 * reserves but do not use ALLOC_NO_WATERMARKS because this
4105 * could deplete whole memory reserves which would just make
4106 * the situation worse
4107 */
4108 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4109 if (page)
4110 goto got_pg;
4111
4112 cond_resched();
4113 goto retry;
4114 }
4115 fail:
4116 warn_alloc(gfp_mask, ac->nodemask,
4117 "page allocation failure: order:%u", order);
4118 got_pg:
4119 return page;
4120 }
4121
4122 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4123 int preferred_nid, nodemask_t *nodemask,
4124 struct alloc_context *ac, gfp_t *alloc_mask,
4125 unsigned int *alloc_flags)
4126 {
4127 ac->high_zoneidx = gfp_zone(gfp_mask);
4128 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4129 ac->nodemask = nodemask;
4130 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4131
4132 if (cpusets_enabled()) {
4133 *alloc_mask |= __GFP_HARDWALL;
4134 if (!ac->nodemask)
4135 ac->nodemask = &cpuset_current_mems_allowed;
4136 else
4137 *alloc_flags |= ALLOC_CPUSET;
4138 }
4139
4140 fs_reclaim_acquire(gfp_mask);
4141 fs_reclaim_release(gfp_mask);
4142
4143 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4144
4145 if (should_fail_alloc_page(gfp_mask, order))
4146 return false;
4147
4148 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4149 *alloc_flags |= ALLOC_CMA;
4150
4151 return true;
4152 }
4153
4154 /* Determine whether to spread dirty pages and what the first usable zone */
4155 static inline void finalise_ac(gfp_t gfp_mask,
4156 unsigned int order, struct alloc_context *ac)
4157 {
4158 /* Dirty zone balancing only done in the fast path */
4159 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4160
4161 /*
4162 * The preferred zone is used for statistics but crucially it is
4163 * also used as the starting point for the zonelist iterator. It
4164 * may get reset for allocations that ignore memory policies.
4165 */
4166 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4167 ac->high_zoneidx, ac->nodemask);
4168 }
4169
4170 /*
4171 * This is the 'heart' of the zoned buddy allocator.
4172 */
4173 struct page *
4174 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4175 nodemask_t *nodemask)
4176 {
4177 struct page *page;
4178 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4179 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4180 struct alloc_context ac = { };
4181
4182 gfp_mask &= gfp_allowed_mask;
4183 alloc_mask = gfp_mask;
4184 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4185 return NULL;
4186
4187 finalise_ac(gfp_mask, order, &ac);
4188
4189 /* First allocation attempt */
4190 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4191 if (likely(page))
4192 goto out;
4193
4194 /*
4195 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4196 * resp. GFP_NOIO which has to be inherited for all allocation requests
4197 * from a particular context which has been marked by
4198 * memalloc_no{fs,io}_{save,restore}.
4199 */
4200 alloc_mask = current_gfp_context(gfp_mask);
4201 ac.spread_dirty_pages = false;
4202
4203 /*
4204 * Restore the original nodemask if it was potentially replaced with
4205 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4206 */
4207 if (unlikely(ac.nodemask != nodemask))
4208 ac.nodemask = nodemask;
4209
4210 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4211
4212 out:
4213 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4214 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4215 __free_pages(page, order);
4216 page = NULL;
4217 }
4218
4219 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4220
4221 return page;
4222 }
4223 EXPORT_SYMBOL(__alloc_pages_nodemask);
4224
4225 /*
4226 * Common helper functions.
4227 */
4228 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4229 {
4230 struct page *page;
4231
4232 /*
4233 * __get_free_pages() returns a 32-bit address, which cannot represent
4234 * a highmem page
4235 */
4236 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4237
4238 page = alloc_pages(gfp_mask, order);
4239 if (!page)
4240 return 0;
4241 return (unsigned long) page_address(page);
4242 }
4243 EXPORT_SYMBOL(__get_free_pages);
4244
4245 unsigned long get_zeroed_page(gfp_t gfp_mask)
4246 {
4247 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4248 }
4249 EXPORT_SYMBOL(get_zeroed_page);
4250
4251 void __free_pages(struct page *page, unsigned int order)
4252 {
4253 if (put_page_testzero(page)) {
4254 if (order == 0)
4255 free_hot_cold_page(page, false);
4256 else
4257 __free_pages_ok(page, order);
4258 }
4259 }
4260
4261 EXPORT_SYMBOL(__free_pages);
4262
4263 void free_pages(unsigned long addr, unsigned int order)
4264 {
4265 if (addr != 0) {
4266 VM_BUG_ON(!virt_addr_valid((void *)addr));
4267 __free_pages(virt_to_page((void *)addr), order);
4268 }
4269 }
4270
4271 EXPORT_SYMBOL(free_pages);
4272
4273 /*
4274 * Page Fragment:
4275 * An arbitrary-length arbitrary-offset area of memory which resides
4276 * within a 0 or higher order page. Multiple fragments within that page
4277 * are individually refcounted, in the page's reference counter.
4278 *
4279 * The page_frag functions below provide a simple allocation framework for
4280 * page fragments. This is used by the network stack and network device
4281 * drivers to provide a backing region of memory for use as either an
4282 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4283 */
4284 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4285 gfp_t gfp_mask)
4286 {
4287 struct page *page = NULL;
4288 gfp_t gfp = gfp_mask;
4289
4290 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4291 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4292 __GFP_NOMEMALLOC;
4293 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4294 PAGE_FRAG_CACHE_MAX_ORDER);
4295 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4296 #endif
4297 if (unlikely(!page))
4298 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4299
4300 nc->va = page ? page_address(page) : NULL;
4301
4302 return page;
4303 }
4304
4305 void __page_frag_cache_drain(struct page *page, unsigned int count)
4306 {
4307 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4308
4309 if (page_ref_sub_and_test(page, count)) {
4310 unsigned int order = compound_order(page);
4311
4312 if (order == 0)
4313 free_hot_cold_page(page, false);
4314 else
4315 __free_pages_ok(page, order);
4316 }
4317 }
4318 EXPORT_SYMBOL(__page_frag_cache_drain);
4319
4320 void *page_frag_alloc(struct page_frag_cache *nc,
4321 unsigned int fragsz, gfp_t gfp_mask)
4322 {
4323 unsigned int size = PAGE_SIZE;
4324 struct page *page;
4325 int offset;
4326
4327 if (unlikely(!nc->va)) {
4328 refill:
4329 page = __page_frag_cache_refill(nc, gfp_mask);
4330 if (!page)
4331 return NULL;
4332
4333 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4334 /* if size can vary use size else just use PAGE_SIZE */
4335 size = nc->size;
4336 #endif
4337 /* Even if we own the page, we do not use atomic_set().
4338 * This would break get_page_unless_zero() users.
4339 */
4340 page_ref_add(page, size - 1);
4341
4342 /* reset page count bias and offset to start of new frag */
4343 nc->pfmemalloc = page_is_pfmemalloc(page);
4344 nc->pagecnt_bias = size;
4345 nc->offset = size;
4346 }
4347
4348 offset = nc->offset - fragsz;
4349 if (unlikely(offset < 0)) {
4350 page = virt_to_page(nc->va);
4351
4352 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4353 goto refill;
4354
4355 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4356 /* if size can vary use size else just use PAGE_SIZE */
4357 size = nc->size;
4358 #endif
4359 /* OK, page count is 0, we can safely set it */
4360 set_page_count(page, size);
4361
4362 /* reset page count bias and offset to start of new frag */
4363 nc->pagecnt_bias = size;
4364 offset = size - fragsz;
4365 }
4366
4367 nc->pagecnt_bias--;
4368 nc->offset = offset;
4369
4370 return nc->va + offset;
4371 }
4372 EXPORT_SYMBOL(page_frag_alloc);
4373
4374 /*
4375 * Frees a page fragment allocated out of either a compound or order 0 page.
4376 */
4377 void page_frag_free(void *addr)
4378 {
4379 struct page *page = virt_to_head_page(addr);
4380
4381 if (unlikely(put_page_testzero(page)))
4382 __free_pages_ok(page, compound_order(page));
4383 }
4384 EXPORT_SYMBOL(page_frag_free);
4385
4386 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4387 size_t size)
4388 {
4389 if (addr) {
4390 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4391 unsigned long used = addr + PAGE_ALIGN(size);
4392
4393 split_page(virt_to_page((void *)addr), order);
4394 while (used < alloc_end) {
4395 free_page(used);
4396 used += PAGE_SIZE;
4397 }
4398 }
4399 return (void *)addr;
4400 }
4401
4402 /**
4403 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4404 * @size: the number of bytes to allocate
4405 * @gfp_mask: GFP flags for the allocation
4406 *
4407 * This function is similar to alloc_pages(), except that it allocates the
4408 * minimum number of pages to satisfy the request. alloc_pages() can only
4409 * allocate memory in power-of-two pages.
4410 *
4411 * This function is also limited by MAX_ORDER.
4412 *
4413 * Memory allocated by this function must be released by free_pages_exact().
4414 */
4415 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4416 {
4417 unsigned int order = get_order(size);
4418 unsigned long addr;
4419
4420 addr = __get_free_pages(gfp_mask, order);
4421 return make_alloc_exact(addr, order, size);
4422 }
4423 EXPORT_SYMBOL(alloc_pages_exact);
4424
4425 /**
4426 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4427 * pages on a node.
4428 * @nid: the preferred node ID where memory should be allocated
4429 * @size: the number of bytes to allocate
4430 * @gfp_mask: GFP flags for the allocation
4431 *
4432 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4433 * back.
4434 */
4435 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4436 {
4437 unsigned int order = get_order(size);
4438 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4439 if (!p)
4440 return NULL;
4441 return make_alloc_exact((unsigned long)page_address(p), order, size);
4442 }
4443
4444 /**
4445 * free_pages_exact - release memory allocated via alloc_pages_exact()
4446 * @virt: the value returned by alloc_pages_exact.
4447 * @size: size of allocation, same value as passed to alloc_pages_exact().
4448 *
4449 * Release the memory allocated by a previous call to alloc_pages_exact.
4450 */
4451 void free_pages_exact(void *virt, size_t size)
4452 {
4453 unsigned long addr = (unsigned long)virt;
4454 unsigned long end = addr + PAGE_ALIGN(size);
4455
4456 while (addr < end) {
4457 free_page(addr);
4458 addr += PAGE_SIZE;
4459 }
4460 }
4461 EXPORT_SYMBOL(free_pages_exact);
4462
4463 /**
4464 * nr_free_zone_pages - count number of pages beyond high watermark
4465 * @offset: The zone index of the highest zone
4466 *
4467 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4468 * high watermark within all zones at or below a given zone index. For each
4469 * zone, the number of pages is calculated as:
4470 *
4471 * nr_free_zone_pages = managed_pages - high_pages
4472 */
4473 static unsigned long nr_free_zone_pages(int offset)
4474 {
4475 struct zoneref *z;
4476 struct zone *zone;
4477
4478 /* Just pick one node, since fallback list is circular */
4479 unsigned long sum = 0;
4480
4481 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4482
4483 for_each_zone_zonelist(zone, z, zonelist, offset) {
4484 unsigned long size = zone->managed_pages;
4485 unsigned long high = high_wmark_pages(zone);
4486 if (size > high)
4487 sum += size - high;
4488 }
4489
4490 return sum;
4491 }
4492
4493 /**
4494 * nr_free_buffer_pages - count number of pages beyond high watermark
4495 *
4496 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4497 * watermark within ZONE_DMA and ZONE_NORMAL.
4498 */
4499 unsigned long nr_free_buffer_pages(void)
4500 {
4501 return nr_free_zone_pages(gfp_zone(GFP_USER));
4502 }
4503 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4504
4505 /**
4506 * nr_free_pagecache_pages - count number of pages beyond high watermark
4507 *
4508 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4509 * high watermark within all zones.
4510 */
4511 unsigned long nr_free_pagecache_pages(void)
4512 {
4513 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4514 }
4515
4516 static inline void show_node(struct zone *zone)
4517 {
4518 if (IS_ENABLED(CONFIG_NUMA))
4519 printk("Node %d ", zone_to_nid(zone));
4520 }
4521
4522 long si_mem_available(void)
4523 {
4524 long available;
4525 unsigned long pagecache;
4526 unsigned long wmark_low = 0;
4527 unsigned long pages[NR_LRU_LISTS];
4528 struct zone *zone;
4529 int lru;
4530
4531 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4532 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4533
4534 for_each_zone(zone)
4535 wmark_low += zone->watermark[WMARK_LOW];
4536
4537 /*
4538 * Estimate the amount of memory available for userspace allocations,
4539 * without causing swapping.
4540 */
4541 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4542
4543 /*
4544 * Not all the page cache can be freed, otherwise the system will
4545 * start swapping. Assume at least half of the page cache, or the
4546 * low watermark worth of cache, needs to stay.
4547 */
4548 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4549 pagecache -= min(pagecache / 2, wmark_low);
4550 available += pagecache;
4551
4552 /*
4553 * Part of the reclaimable slab consists of items that are in use,
4554 * and cannot be freed. Cap this estimate at the low watermark.
4555 */
4556 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4557 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4558 wmark_low);
4559
4560 /*
4561 * Part of the kernel memory, which can be released under memory
4562 * pressure.
4563 */
4564 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4565 PAGE_SHIFT;
4566
4567 if (available < 0)
4568 available = 0;
4569 return available;
4570 }
4571 EXPORT_SYMBOL_GPL(si_mem_available);
4572
4573 void si_meminfo(struct sysinfo *val)
4574 {
4575 val->totalram = totalram_pages;
4576 val->sharedram = global_node_page_state(NR_SHMEM);
4577 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4578 val->bufferram = nr_blockdev_pages();
4579 val->totalhigh = totalhigh_pages;
4580 val->freehigh = nr_free_highpages();
4581 val->mem_unit = PAGE_SIZE;
4582 }
4583
4584 EXPORT_SYMBOL(si_meminfo);
4585
4586 #ifdef CONFIG_NUMA
4587 void si_meminfo_node(struct sysinfo *val, int nid)
4588 {
4589 int zone_type; /* needs to be signed */
4590 unsigned long managed_pages = 0;
4591 unsigned long managed_highpages = 0;
4592 unsigned long free_highpages = 0;
4593 pg_data_t *pgdat = NODE_DATA(nid);
4594
4595 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4596 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4597 val->totalram = managed_pages;
4598 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4599 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4600 #ifdef CONFIG_HIGHMEM
4601 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4602 struct zone *zone = &pgdat->node_zones[zone_type];
4603
4604 if (is_highmem(zone)) {
4605 managed_highpages += zone->managed_pages;
4606 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4607 }
4608 }
4609 val->totalhigh = managed_highpages;
4610 val->freehigh = free_highpages;
4611 #else
4612 val->totalhigh = managed_highpages;
4613 val->freehigh = free_highpages;
4614 #endif
4615 val->mem_unit = PAGE_SIZE;
4616 }
4617 #endif
4618
4619 /*
4620 * Determine whether the node should be displayed or not, depending on whether
4621 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4622 */
4623 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4624 {
4625 if (!(flags & SHOW_MEM_FILTER_NODES))
4626 return false;
4627
4628 /*
4629 * no node mask - aka implicit memory numa policy. Do not bother with
4630 * the synchronization - read_mems_allowed_begin - because we do not
4631 * have to be precise here.
4632 */
4633 if (!nodemask)
4634 nodemask = &cpuset_current_mems_allowed;
4635
4636 return !node_isset(nid, *nodemask);
4637 }
4638
4639 #define K(x) ((x) << (PAGE_SHIFT-10))
4640
4641 static void show_migration_types(unsigned char type)
4642 {
4643 static const char types[MIGRATE_TYPES] = {
4644 [MIGRATE_UNMOVABLE] = 'U',
4645 [MIGRATE_MOVABLE] = 'M',
4646 [MIGRATE_RECLAIMABLE] = 'E',
4647 [MIGRATE_HIGHATOMIC] = 'H',
4648 #ifdef CONFIG_CMA
4649 [MIGRATE_CMA] = 'C',
4650 #endif
4651 #ifdef CONFIG_MEMORY_ISOLATION
4652 [MIGRATE_ISOLATE] = 'I',
4653 #endif
4654 };
4655 char tmp[MIGRATE_TYPES + 1];
4656 char *p = tmp;
4657 int i;
4658
4659 for (i = 0; i < MIGRATE_TYPES; i++) {
4660 if (type & (1 << i))
4661 *p++ = types[i];
4662 }
4663
4664 *p = '\0';
4665 printk(KERN_CONT "(%s) ", tmp);
4666 }
4667
4668 /*
4669 * Show free area list (used inside shift_scroll-lock stuff)
4670 * We also calculate the percentage fragmentation. We do this by counting the
4671 * memory on each free list with the exception of the first item on the list.
4672 *
4673 * Bits in @filter:
4674 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4675 * cpuset.
4676 */
4677 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4678 {
4679 unsigned long free_pcp = 0;
4680 int cpu;
4681 struct zone *zone;
4682 pg_data_t *pgdat;
4683
4684 for_each_populated_zone(zone) {
4685 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4686 continue;
4687
4688 for_each_online_cpu(cpu)
4689 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4690 }
4691
4692 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4693 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4694 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4695 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4696 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4697 " free:%lu free_pcp:%lu free_cma:%lu\n",
4698 global_node_page_state(NR_ACTIVE_ANON),
4699 global_node_page_state(NR_INACTIVE_ANON),
4700 global_node_page_state(NR_ISOLATED_ANON),
4701 global_node_page_state(NR_ACTIVE_FILE),
4702 global_node_page_state(NR_INACTIVE_FILE),
4703 global_node_page_state(NR_ISOLATED_FILE),
4704 global_node_page_state(NR_UNEVICTABLE),
4705 global_node_page_state(NR_FILE_DIRTY),
4706 global_node_page_state(NR_WRITEBACK),
4707 global_node_page_state(NR_UNSTABLE_NFS),
4708 global_node_page_state(NR_SLAB_RECLAIMABLE),
4709 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4710 global_node_page_state(NR_FILE_MAPPED),
4711 global_node_page_state(NR_SHMEM),
4712 global_zone_page_state(NR_PAGETABLE),
4713 global_zone_page_state(NR_BOUNCE),
4714 global_zone_page_state(NR_FREE_PAGES),
4715 free_pcp,
4716 global_zone_page_state(NR_FREE_CMA_PAGES));
4717
4718 for_each_online_pgdat(pgdat) {
4719 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4720 continue;
4721
4722 printk("Node %d"
4723 " active_anon:%lukB"
4724 " inactive_anon:%lukB"
4725 " active_file:%lukB"
4726 " inactive_file:%lukB"
4727 " unevictable:%lukB"
4728 " isolated(anon):%lukB"
4729 " isolated(file):%lukB"
4730 " mapped:%lukB"
4731 " dirty:%lukB"
4732 " writeback:%lukB"
4733 " shmem:%lukB"
4734 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4735 " shmem_thp: %lukB"
4736 " shmem_pmdmapped: %lukB"
4737 " anon_thp: %lukB"
4738 #endif
4739 " writeback_tmp:%lukB"
4740 " unstable:%lukB"
4741 " all_unreclaimable? %s"
4742 "\n",
4743 pgdat->node_id,
4744 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4745 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4746 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4747 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4748 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4749 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4750 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4751 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4752 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4753 K(node_page_state(pgdat, NR_WRITEBACK)),
4754 K(node_page_state(pgdat, NR_SHMEM)),
4755 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4756 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4757 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4758 * HPAGE_PMD_NR),
4759 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4760 #endif
4761 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4762 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4763 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4764 "yes" : "no");
4765 }
4766
4767 for_each_populated_zone(zone) {
4768 int i;
4769
4770 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4771 continue;
4772
4773 free_pcp = 0;
4774 for_each_online_cpu(cpu)
4775 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4776
4777 show_node(zone);
4778 printk(KERN_CONT
4779 "%s"
4780 " free:%lukB"
4781 " min:%lukB"
4782 " low:%lukB"
4783 " high:%lukB"
4784 " active_anon:%lukB"
4785 " inactive_anon:%lukB"
4786 " active_file:%lukB"
4787 " inactive_file:%lukB"
4788 " unevictable:%lukB"
4789 " writepending:%lukB"
4790 " present:%lukB"
4791 " managed:%lukB"
4792 " mlocked:%lukB"
4793 " kernel_stack:%lukB"
4794 " pagetables:%lukB"
4795 " bounce:%lukB"
4796 " free_pcp:%lukB"
4797 " local_pcp:%ukB"
4798 " free_cma:%lukB"
4799 "\n",
4800 zone->name,
4801 K(zone_page_state(zone, NR_FREE_PAGES)),
4802 K(min_wmark_pages(zone)),
4803 K(low_wmark_pages(zone)),
4804 K(high_wmark_pages(zone)),
4805 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4806 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4807 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4808 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4809 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4810 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4811 K(zone->present_pages),
4812 K(zone->managed_pages),
4813 K(zone_page_state(zone, NR_MLOCK)),
4814 zone_page_state(zone, NR_KERNEL_STACK_KB),
4815 K(zone_page_state(zone, NR_PAGETABLE)),
4816 K(zone_page_state(zone, NR_BOUNCE)),
4817 K(free_pcp),
4818 K(this_cpu_read(zone->pageset->pcp.count)),
4819 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4820 printk("lowmem_reserve[]:");
4821 for (i = 0; i < MAX_NR_ZONES; i++)
4822 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4823 printk(KERN_CONT "\n");
4824 }
4825
4826 for_each_populated_zone(zone) {
4827 unsigned int order;
4828 unsigned long nr[MAX_ORDER], flags, total = 0;
4829 unsigned char types[MAX_ORDER];
4830
4831 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4832 continue;
4833 show_node(zone);
4834 printk(KERN_CONT "%s: ", zone->name);
4835
4836 spin_lock_irqsave(&zone->lock, flags);
4837 for (order = 0; order < MAX_ORDER; order++) {
4838 struct free_area *area = &zone->free_area[order];
4839 int type;
4840
4841 nr[order] = area->nr_free;
4842 total += nr[order] << order;
4843
4844 types[order] = 0;
4845 for (type = 0; type < MIGRATE_TYPES; type++) {
4846 if (!list_empty(&area->free_list[type]))
4847 types[order] |= 1 << type;
4848 }
4849 }
4850 spin_unlock_irqrestore(&zone->lock, flags);
4851 for (order = 0; order < MAX_ORDER; order++) {
4852 printk(KERN_CONT "%lu*%lukB ",
4853 nr[order], K(1UL) << order);
4854 if (nr[order])
4855 show_migration_types(types[order]);
4856 }
4857 printk(KERN_CONT "= %lukB\n", K(total));
4858 }
4859
4860 hugetlb_show_meminfo();
4861
4862 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4863
4864 show_swap_cache_info();
4865 }
4866
4867 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4868 {
4869 zoneref->zone = zone;
4870 zoneref->zone_idx = zone_idx(zone);
4871 }
4872
4873 /*
4874 * Builds allocation fallback zone lists.
4875 *
4876 * Add all populated zones of a node to the zonelist.
4877 */
4878 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4879 {
4880 struct zone *zone;
4881 enum zone_type zone_type = MAX_NR_ZONES;
4882 int nr_zones = 0;
4883
4884 do {
4885 zone_type--;
4886 zone = pgdat->node_zones + zone_type;
4887 if (managed_zone(zone)) {
4888 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4889 check_highest_zone(zone_type);
4890 }
4891 } while (zone_type);
4892
4893 return nr_zones;
4894 }
4895
4896 #ifdef CONFIG_NUMA
4897
4898 static int __parse_numa_zonelist_order(char *s)
4899 {
4900 /*
4901 * We used to support different zonlists modes but they turned
4902 * out to be just not useful. Let's keep the warning in place
4903 * if somebody still use the cmd line parameter so that we do
4904 * not fail it silently
4905 */
4906 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4907 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4908 return -EINVAL;
4909 }
4910 return 0;
4911 }
4912
4913 static __init int setup_numa_zonelist_order(char *s)
4914 {
4915 if (!s)
4916 return 0;
4917
4918 return __parse_numa_zonelist_order(s);
4919 }
4920 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4921
4922 char numa_zonelist_order[] = "Node";
4923
4924 /*
4925 * sysctl handler for numa_zonelist_order
4926 */
4927 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4928 void __user *buffer, size_t *length,
4929 loff_t *ppos)
4930 {
4931 char *str;
4932 int ret;
4933
4934 if (!write)
4935 return proc_dostring(table, write, buffer, length, ppos);
4936 str = memdup_user_nul(buffer, 16);
4937 if (IS_ERR(str))
4938 return PTR_ERR(str);
4939
4940 ret = __parse_numa_zonelist_order(str);
4941 kfree(str);
4942 return ret;
4943 }
4944
4945
4946 #define MAX_NODE_LOAD (nr_online_nodes)
4947 static int node_load[MAX_NUMNODES];
4948
4949 /**
4950 * find_next_best_node - find the next node that should appear in a given node's fallback list
4951 * @node: node whose fallback list we're appending
4952 * @used_node_mask: nodemask_t of already used nodes
4953 *
4954 * We use a number of factors to determine which is the next node that should
4955 * appear on a given node's fallback list. The node should not have appeared
4956 * already in @node's fallback list, and it should be the next closest node
4957 * according to the distance array (which contains arbitrary distance values
4958 * from each node to each node in the system), and should also prefer nodes
4959 * with no CPUs, since presumably they'll have very little allocation pressure
4960 * on them otherwise.
4961 * It returns -1 if no node is found.
4962 */
4963 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4964 {
4965 int n, val;
4966 int min_val = INT_MAX;
4967 int best_node = NUMA_NO_NODE;
4968 const struct cpumask *tmp = cpumask_of_node(0);
4969
4970 /* Use the local node if we haven't already */
4971 if (!node_isset(node, *used_node_mask)) {
4972 node_set(node, *used_node_mask);
4973 return node;
4974 }
4975
4976 for_each_node_state(n, N_MEMORY) {
4977
4978 /* Don't want a node to appear more than once */
4979 if (node_isset(n, *used_node_mask))
4980 continue;
4981
4982 /* Use the distance array to find the distance */
4983 val = node_distance(node, n);
4984
4985 /* Penalize nodes under us ("prefer the next node") */
4986 val += (n < node);
4987
4988 /* Give preference to headless and unused nodes */
4989 tmp = cpumask_of_node(n);
4990 if (!cpumask_empty(tmp))
4991 val += PENALTY_FOR_NODE_WITH_CPUS;
4992
4993 /* Slight preference for less loaded node */
4994 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4995 val += node_load[n];
4996
4997 if (val < min_val) {
4998 min_val = val;
4999 best_node = n;
5000 }
5001 }
5002
5003 if (best_node >= 0)
5004 node_set(best_node, *used_node_mask);
5005
5006 return best_node;
5007 }
5008
5009
5010 /*
5011 * Build zonelists ordered by node and zones within node.
5012 * This results in maximum locality--normal zone overflows into local
5013 * DMA zone, if any--but risks exhausting DMA zone.
5014 */
5015 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5016 unsigned nr_nodes)
5017 {
5018 struct zoneref *zonerefs;
5019 int i;
5020
5021 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5022
5023 for (i = 0; i < nr_nodes; i++) {
5024 int nr_zones;
5025
5026 pg_data_t *node = NODE_DATA(node_order[i]);
5027
5028 nr_zones = build_zonerefs_node(node, zonerefs);
5029 zonerefs += nr_zones;
5030 }
5031 zonerefs->zone = NULL;
5032 zonerefs->zone_idx = 0;
5033 }
5034
5035 /*
5036 * Build gfp_thisnode zonelists
5037 */
5038 static void build_thisnode_zonelists(pg_data_t *pgdat)
5039 {
5040 struct zoneref *zonerefs;
5041 int nr_zones;
5042
5043 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5044 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5045 zonerefs += nr_zones;
5046 zonerefs->zone = NULL;
5047 zonerefs->zone_idx = 0;
5048 }
5049
5050 /*
5051 * Build zonelists ordered by zone and nodes within zones.
5052 * This results in conserving DMA zone[s] until all Normal memory is
5053 * exhausted, but results in overflowing to remote node while memory
5054 * may still exist in local DMA zone.
5055 */
5056
5057 static void build_zonelists(pg_data_t *pgdat)
5058 {
5059 static int node_order[MAX_NUMNODES];
5060 int node, load, nr_nodes = 0;
5061 nodemask_t used_mask;
5062 int local_node, prev_node;
5063
5064 /* NUMA-aware ordering of nodes */
5065 local_node = pgdat->node_id;
5066 load = nr_online_nodes;
5067 prev_node = local_node;
5068 nodes_clear(used_mask);
5069
5070 memset(node_order, 0, sizeof(node_order));
5071 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5072 /*
5073 * We don't want to pressure a particular node.
5074 * So adding penalty to the first node in same
5075 * distance group to make it round-robin.
5076 */
5077 if (node_distance(local_node, node) !=
5078 node_distance(local_node, prev_node))
5079 node_load[node] = load;
5080
5081 node_order[nr_nodes++] = node;
5082 prev_node = node;
5083 load--;
5084 }
5085
5086 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5087 build_thisnode_zonelists(pgdat);
5088 }
5089
5090 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5091 /*
5092 * Return node id of node used for "local" allocations.
5093 * I.e., first node id of first zone in arg node's generic zonelist.
5094 * Used for initializing percpu 'numa_mem', which is used primarily
5095 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5096 */
5097 int local_memory_node(int node)
5098 {
5099 struct zoneref *z;
5100
5101 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5102 gfp_zone(GFP_KERNEL),
5103 NULL);
5104 return z->zone->node;
5105 }
5106 #endif
5107
5108 static void setup_min_unmapped_ratio(void);
5109 static void setup_min_slab_ratio(void);
5110 #else /* CONFIG_NUMA */
5111
5112 static void build_zonelists(pg_data_t *pgdat)
5113 {
5114 int node, local_node;
5115 struct zoneref *zonerefs;
5116 int nr_zones;
5117
5118 local_node = pgdat->node_id;
5119
5120 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5121 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5122 zonerefs += nr_zones;
5123
5124 /*
5125 * Now we build the zonelist so that it contains the zones
5126 * of all the other nodes.
5127 * We don't want to pressure a particular node, so when
5128 * building the zones for node N, we make sure that the
5129 * zones coming right after the local ones are those from
5130 * node N+1 (modulo N)
5131 */
5132 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5133 if (!node_online(node))
5134 continue;
5135 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5136 zonerefs += nr_zones;
5137 }
5138 for (node = 0; node < local_node; node++) {
5139 if (!node_online(node))
5140 continue;
5141 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5142 zonerefs += nr_zones;
5143 }
5144
5145 zonerefs->zone = NULL;
5146 zonerefs->zone_idx = 0;
5147 }
5148
5149 #endif /* CONFIG_NUMA */
5150
5151 /*
5152 * Boot pageset table. One per cpu which is going to be used for all
5153 * zones and all nodes. The parameters will be set in such a way
5154 * that an item put on a list will immediately be handed over to
5155 * the buddy list. This is safe since pageset manipulation is done
5156 * with interrupts disabled.
5157 *
5158 * The boot_pagesets must be kept even after bootup is complete for
5159 * unused processors and/or zones. They do play a role for bootstrapping
5160 * hotplugged processors.
5161 *
5162 * zoneinfo_show() and maybe other functions do
5163 * not check if the processor is online before following the pageset pointer.
5164 * Other parts of the kernel may not check if the zone is available.
5165 */
5166 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5167 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5168 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5169
5170 static void __build_all_zonelists(void *data)
5171 {
5172 int nid;
5173 int __maybe_unused cpu;
5174 pg_data_t *self = data;
5175 static DEFINE_SPINLOCK(lock);
5176
5177 spin_lock(&lock);
5178
5179 #ifdef CONFIG_NUMA
5180 memset(node_load, 0, sizeof(node_load));
5181 #endif
5182
5183 /*
5184 * This node is hotadded and no memory is yet present. So just
5185 * building zonelists is fine - no need to touch other nodes.
5186 */
5187 if (self && !node_online(self->node_id)) {
5188 build_zonelists(self);
5189 } else {
5190 for_each_online_node(nid) {
5191 pg_data_t *pgdat = NODE_DATA(nid);
5192
5193 build_zonelists(pgdat);
5194 }
5195
5196 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5197 /*
5198 * We now know the "local memory node" for each node--
5199 * i.e., the node of the first zone in the generic zonelist.
5200 * Set up numa_mem percpu variable for on-line cpus. During
5201 * boot, only the boot cpu should be on-line; we'll init the
5202 * secondary cpus' numa_mem as they come on-line. During
5203 * node/memory hotplug, we'll fixup all on-line cpus.
5204 */
5205 for_each_online_cpu(cpu)
5206 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5207 #endif
5208 }
5209
5210 spin_unlock(&lock);
5211 }
5212
5213 static noinline void __init
5214 build_all_zonelists_init(void)
5215 {
5216 int cpu;
5217
5218 __build_all_zonelists(NULL);
5219
5220 /*
5221 * Initialize the boot_pagesets that are going to be used
5222 * for bootstrapping processors. The real pagesets for
5223 * each zone will be allocated later when the per cpu
5224 * allocator is available.
5225 *
5226 * boot_pagesets are used also for bootstrapping offline
5227 * cpus if the system is already booted because the pagesets
5228 * are needed to initialize allocators on a specific cpu too.
5229 * F.e. the percpu allocator needs the page allocator which
5230 * needs the percpu allocator in order to allocate its pagesets
5231 * (a chicken-egg dilemma).
5232 */
5233 for_each_possible_cpu(cpu)
5234 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5235
5236 mminit_verify_zonelist();
5237 cpuset_init_current_mems_allowed();
5238 }
5239
5240 /*
5241 * unless system_state == SYSTEM_BOOTING.
5242 *
5243 * __ref due to call of __init annotated helper build_all_zonelists_init
5244 * [protected by SYSTEM_BOOTING].
5245 */
5246 void __ref build_all_zonelists(pg_data_t *pgdat)
5247 {
5248 if (system_state == SYSTEM_BOOTING) {
5249 build_all_zonelists_init();
5250 } else {
5251 __build_all_zonelists(pgdat);
5252 /* cpuset refresh routine should be here */
5253 }
5254 vm_total_pages = nr_free_pagecache_pages();
5255 /*
5256 * Disable grouping by mobility if the number of pages in the
5257 * system is too low to allow the mechanism to work. It would be
5258 * more accurate, but expensive to check per-zone. This check is
5259 * made on memory-hotadd so a system can start with mobility
5260 * disabled and enable it later
5261 */
5262 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5263 page_group_by_mobility_disabled = 1;
5264 else
5265 page_group_by_mobility_disabled = 0;
5266
5267 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5268 nr_online_nodes,
5269 page_group_by_mobility_disabled ? "off" : "on",
5270 vm_total_pages);
5271 #ifdef CONFIG_NUMA
5272 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5273 #endif
5274 }
5275
5276 /*
5277 * Initially all pages are reserved - free ones are freed
5278 * up by free_all_bootmem() once the early boot process is
5279 * done. Non-atomic initialization, single-pass.
5280 */
5281 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5282 unsigned long start_pfn, enum memmap_context context)
5283 {
5284 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5285 unsigned long end_pfn = start_pfn + size;
5286 pg_data_t *pgdat = NODE_DATA(nid);
5287 unsigned long pfn;
5288 unsigned long nr_initialised = 0;
5289 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5290 struct memblock_region *r = NULL, *tmp;
5291 #endif
5292
5293 if (highest_memmap_pfn < end_pfn - 1)
5294 highest_memmap_pfn = end_pfn - 1;
5295
5296 /*
5297 * Honor reservation requested by the driver for this ZONE_DEVICE
5298 * memory
5299 */
5300 if (altmap && start_pfn == altmap->base_pfn)
5301 start_pfn += altmap->reserve;
5302
5303 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5304 /*
5305 * There can be holes in boot-time mem_map[]s handed to this
5306 * function. They do not exist on hotplugged memory.
5307 */
5308 if (context != MEMMAP_EARLY)
5309 goto not_early;
5310
5311 if (!early_pfn_valid(pfn))
5312 continue;
5313 if (!early_pfn_in_nid(pfn, nid))
5314 continue;
5315 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5316 break;
5317
5318 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5319 /*
5320 * Check given memblock attribute by firmware which can affect
5321 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5322 * mirrored, it's an overlapped memmap init. skip it.
5323 */
5324 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5325 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5326 for_each_memblock(memory, tmp)
5327 if (pfn < memblock_region_memory_end_pfn(tmp))
5328 break;
5329 r = tmp;
5330 }
5331 if (pfn >= memblock_region_memory_base_pfn(r) &&
5332 memblock_is_mirror(r)) {
5333 /* already initialized as NORMAL */
5334 pfn = memblock_region_memory_end_pfn(r);
5335 continue;
5336 }
5337 }
5338 #endif
5339
5340 not_early:
5341 /*
5342 * Mark the block movable so that blocks are reserved for
5343 * movable at startup. This will force kernel allocations
5344 * to reserve their blocks rather than leaking throughout
5345 * the address space during boot when many long-lived
5346 * kernel allocations are made.
5347 *
5348 * bitmap is created for zone's valid pfn range. but memmap
5349 * can be created for invalid pages (for alignment)
5350 * check here not to call set_pageblock_migratetype() against
5351 * pfn out of zone.
5352 */
5353 if (!(pfn & (pageblock_nr_pages - 1))) {
5354 struct page *page = pfn_to_page(pfn);
5355
5356 __init_single_page(page, pfn, zone, nid);
5357 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5358 cond_resched();
5359 } else {
5360 __init_single_pfn(pfn, zone, nid);
5361 }
5362 }
5363 }
5364
5365 static void __meminit zone_init_free_lists(struct zone *zone)
5366 {
5367 unsigned int order, t;
5368 for_each_migratetype_order(order, t) {
5369 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5370 zone->free_area[order].nr_free = 0;
5371 }
5372 }
5373
5374 #ifndef __HAVE_ARCH_MEMMAP_INIT
5375 #define memmap_init(size, nid, zone, start_pfn) \
5376 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5377 #endif
5378
5379 static int zone_batchsize(struct zone *zone)
5380 {
5381 #ifdef CONFIG_MMU
5382 int batch;
5383
5384 /*
5385 * The per-cpu-pages pools are set to around 1000th of the
5386 * size of the zone. But no more than 1/2 of a meg.
5387 *
5388 * OK, so we don't know how big the cache is. So guess.
5389 */
5390 batch = zone->managed_pages / 1024;
5391 if (batch * PAGE_SIZE > 512 * 1024)
5392 batch = (512 * 1024) / PAGE_SIZE;
5393 batch /= 4; /* We effectively *= 4 below */
5394 if (batch < 1)
5395 batch = 1;
5396
5397 /*
5398 * Clamp the batch to a 2^n - 1 value. Having a power
5399 * of 2 value was found to be more likely to have
5400 * suboptimal cache aliasing properties in some cases.
5401 *
5402 * For example if 2 tasks are alternately allocating
5403 * batches of pages, one task can end up with a lot
5404 * of pages of one half of the possible page colors
5405 * and the other with pages of the other colors.
5406 */
5407 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5408
5409 return batch;
5410
5411 #else
5412 /* The deferral and batching of frees should be suppressed under NOMMU
5413 * conditions.
5414 *
5415 * The problem is that NOMMU needs to be able to allocate large chunks
5416 * of contiguous memory as there's no hardware page translation to
5417 * assemble apparent contiguous memory from discontiguous pages.
5418 *
5419 * Queueing large contiguous runs of pages for batching, however,
5420 * causes the pages to actually be freed in smaller chunks. As there
5421 * can be a significant delay between the individual batches being
5422 * recycled, this leads to the once large chunks of space being
5423 * fragmented and becoming unavailable for high-order allocations.
5424 */
5425 return 0;
5426 #endif
5427 }
5428
5429 /*
5430 * pcp->high and pcp->batch values are related and dependent on one another:
5431 * ->batch must never be higher then ->high.
5432 * The following function updates them in a safe manner without read side
5433 * locking.
5434 *
5435 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5436 * those fields changing asynchronously (acording the the above rule).
5437 *
5438 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5439 * outside of boot time (or some other assurance that no concurrent updaters
5440 * exist).
5441 */
5442 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5443 unsigned long batch)
5444 {
5445 /* start with a fail safe value for batch */
5446 pcp->batch = 1;
5447 smp_wmb();
5448
5449 /* Update high, then batch, in order */
5450 pcp->high = high;
5451 smp_wmb();
5452
5453 pcp->batch = batch;
5454 }
5455
5456 /* a companion to pageset_set_high() */
5457 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5458 {
5459 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5460 }
5461
5462 static void pageset_init(struct per_cpu_pageset *p)
5463 {
5464 struct per_cpu_pages *pcp;
5465 int migratetype;
5466
5467 memset(p, 0, sizeof(*p));
5468
5469 pcp = &p->pcp;
5470 pcp->count = 0;
5471 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5472 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5473 }
5474
5475 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5476 {
5477 pageset_init(p);
5478 pageset_set_batch(p, batch);
5479 }
5480
5481 /*
5482 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5483 * to the value high for the pageset p.
5484 */
5485 static void pageset_set_high(struct per_cpu_pageset *p,
5486 unsigned long high)
5487 {
5488 unsigned long batch = max(1UL, high / 4);
5489 if ((high / 4) > (PAGE_SHIFT * 8))
5490 batch = PAGE_SHIFT * 8;
5491
5492 pageset_update(&p->pcp, high, batch);
5493 }
5494
5495 static void pageset_set_high_and_batch(struct zone *zone,
5496 struct per_cpu_pageset *pcp)
5497 {
5498 if (percpu_pagelist_fraction)
5499 pageset_set_high(pcp,
5500 (zone->managed_pages /
5501 percpu_pagelist_fraction));
5502 else
5503 pageset_set_batch(pcp, zone_batchsize(zone));
5504 }
5505
5506 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5507 {
5508 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5509
5510 pageset_init(pcp);
5511 pageset_set_high_and_batch(zone, pcp);
5512 }
5513
5514 void __meminit setup_zone_pageset(struct zone *zone)
5515 {
5516 int cpu;
5517 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5518 for_each_possible_cpu(cpu)
5519 zone_pageset_init(zone, cpu);
5520 }
5521
5522 /*
5523 * Allocate per cpu pagesets and initialize them.
5524 * Before this call only boot pagesets were available.
5525 */
5526 void __init setup_per_cpu_pageset(void)
5527 {
5528 struct pglist_data *pgdat;
5529 struct zone *zone;
5530
5531 for_each_populated_zone(zone)
5532 setup_zone_pageset(zone);
5533
5534 for_each_online_pgdat(pgdat)
5535 pgdat->per_cpu_nodestats =
5536 alloc_percpu(struct per_cpu_nodestat);
5537 }
5538
5539 static __meminit void zone_pcp_init(struct zone *zone)
5540 {
5541 /*
5542 * per cpu subsystem is not up at this point. The following code
5543 * relies on the ability of the linker to provide the
5544 * offset of a (static) per cpu variable into the per cpu area.
5545 */
5546 zone->pageset = &boot_pageset;
5547
5548 if (populated_zone(zone))
5549 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5550 zone->name, zone->present_pages,
5551 zone_batchsize(zone));
5552 }
5553
5554 void __meminit init_currently_empty_zone(struct zone *zone,
5555 unsigned long zone_start_pfn,
5556 unsigned long size)
5557 {
5558 struct pglist_data *pgdat = zone->zone_pgdat;
5559
5560 pgdat->nr_zones = zone_idx(zone) + 1;
5561
5562 zone->zone_start_pfn = zone_start_pfn;
5563
5564 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5565 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5566 pgdat->node_id,
5567 (unsigned long)zone_idx(zone),
5568 zone_start_pfn, (zone_start_pfn + size));
5569
5570 zone_init_free_lists(zone);
5571 zone->initialized = 1;
5572 }
5573
5574 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5575 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5576
5577 /*
5578 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5579 */
5580 int __meminit __early_pfn_to_nid(unsigned long pfn,
5581 struct mminit_pfnnid_cache *state)
5582 {
5583 unsigned long start_pfn, end_pfn;
5584 int nid;
5585
5586 if (state->last_start <= pfn && pfn < state->last_end)
5587 return state->last_nid;
5588
5589 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5590 if (nid != -1) {
5591 state->last_start = start_pfn;
5592 state->last_end = end_pfn;
5593 state->last_nid = nid;
5594 }
5595
5596 return nid;
5597 }
5598 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5599
5600 /**
5601 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5602 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5603 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5604 *
5605 * If an architecture guarantees that all ranges registered contain no holes
5606 * and may be freed, this this function may be used instead of calling
5607 * memblock_free_early_nid() manually.
5608 */
5609 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5610 {
5611 unsigned long start_pfn, end_pfn;
5612 int i, this_nid;
5613
5614 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5615 start_pfn = min(start_pfn, max_low_pfn);
5616 end_pfn = min(end_pfn, max_low_pfn);
5617
5618 if (start_pfn < end_pfn)
5619 memblock_free_early_nid(PFN_PHYS(start_pfn),
5620 (end_pfn - start_pfn) << PAGE_SHIFT,
5621 this_nid);
5622 }
5623 }
5624
5625 /**
5626 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5627 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5628 *
5629 * If an architecture guarantees that all ranges registered contain no holes and may
5630 * be freed, this function may be used instead of calling memory_present() manually.
5631 */
5632 void __init sparse_memory_present_with_active_regions(int nid)
5633 {
5634 unsigned long start_pfn, end_pfn;
5635 int i, this_nid;
5636
5637 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5638 memory_present(this_nid, start_pfn, end_pfn);
5639 }
5640
5641 /**
5642 * get_pfn_range_for_nid - Return the start and end page frames for a node
5643 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5644 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5645 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5646 *
5647 * It returns the start and end page frame of a node based on information
5648 * provided by memblock_set_node(). If called for a node
5649 * with no available memory, a warning is printed and the start and end
5650 * PFNs will be 0.
5651 */
5652 void __meminit get_pfn_range_for_nid(unsigned int nid,
5653 unsigned long *start_pfn, unsigned long *end_pfn)
5654 {
5655 unsigned long this_start_pfn, this_end_pfn;
5656 int i;
5657
5658 *start_pfn = -1UL;
5659 *end_pfn = 0;
5660
5661 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5662 *start_pfn = min(*start_pfn, this_start_pfn);
5663 *end_pfn = max(*end_pfn, this_end_pfn);
5664 }
5665
5666 if (*start_pfn == -1UL)
5667 *start_pfn = 0;
5668 }
5669
5670 /*
5671 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5672 * assumption is made that zones within a node are ordered in monotonic
5673 * increasing memory addresses so that the "highest" populated zone is used
5674 */
5675 static void __init find_usable_zone_for_movable(void)
5676 {
5677 int zone_index;
5678 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5679 if (zone_index == ZONE_MOVABLE)
5680 continue;
5681
5682 if (arch_zone_highest_possible_pfn[zone_index] >
5683 arch_zone_lowest_possible_pfn[zone_index])
5684 break;
5685 }
5686
5687 VM_BUG_ON(zone_index == -1);
5688 movable_zone = zone_index;
5689 }
5690
5691 /*
5692 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5693 * because it is sized independent of architecture. Unlike the other zones,
5694 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5695 * in each node depending on the size of each node and how evenly kernelcore
5696 * is distributed. This helper function adjusts the zone ranges
5697 * provided by the architecture for a given node by using the end of the
5698 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5699 * zones within a node are in order of monotonic increases memory addresses
5700 */
5701 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5702 unsigned long zone_type,
5703 unsigned long node_start_pfn,
5704 unsigned long node_end_pfn,
5705 unsigned long *zone_start_pfn,
5706 unsigned long *zone_end_pfn)
5707 {
5708 /* Only adjust if ZONE_MOVABLE is on this node */
5709 if (zone_movable_pfn[nid]) {
5710 /* Size ZONE_MOVABLE */
5711 if (zone_type == ZONE_MOVABLE) {
5712 *zone_start_pfn = zone_movable_pfn[nid];
5713 *zone_end_pfn = min(node_end_pfn,
5714 arch_zone_highest_possible_pfn[movable_zone]);
5715
5716 /* Adjust for ZONE_MOVABLE starting within this range */
5717 } else if (!mirrored_kernelcore &&
5718 *zone_start_pfn < zone_movable_pfn[nid] &&
5719 *zone_end_pfn > zone_movable_pfn[nid]) {
5720 *zone_end_pfn = zone_movable_pfn[nid];
5721
5722 /* Check if this whole range is within ZONE_MOVABLE */
5723 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5724 *zone_start_pfn = *zone_end_pfn;
5725 }
5726 }
5727
5728 /*
5729 * Return the number of pages a zone spans in a node, including holes
5730 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5731 */
5732 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5733 unsigned long zone_type,
5734 unsigned long node_start_pfn,
5735 unsigned long node_end_pfn,
5736 unsigned long *zone_start_pfn,
5737 unsigned long *zone_end_pfn,
5738 unsigned long *ignored)
5739 {
5740 /* When hotadd a new node from cpu_up(), the node should be empty */
5741 if (!node_start_pfn && !node_end_pfn)
5742 return 0;
5743
5744 /* Get the start and end of the zone */
5745 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5746 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5747 adjust_zone_range_for_zone_movable(nid, zone_type,
5748 node_start_pfn, node_end_pfn,
5749 zone_start_pfn, zone_end_pfn);
5750
5751 /* Check that this node has pages within the zone's required range */
5752 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5753 return 0;
5754
5755 /* Move the zone boundaries inside the node if necessary */
5756 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5757 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5758
5759 /* Return the spanned pages */
5760 return *zone_end_pfn - *zone_start_pfn;
5761 }
5762
5763 /*
5764 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5765 * then all holes in the requested range will be accounted for.
5766 */
5767 unsigned long __meminit __absent_pages_in_range(int nid,
5768 unsigned long range_start_pfn,
5769 unsigned long range_end_pfn)
5770 {
5771 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5772 unsigned long start_pfn, end_pfn;
5773 int i;
5774
5775 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5776 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5777 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5778 nr_absent -= end_pfn - start_pfn;
5779 }
5780 return nr_absent;
5781 }
5782
5783 /**
5784 * absent_pages_in_range - Return number of page frames in holes within a range
5785 * @start_pfn: The start PFN to start searching for holes
5786 * @end_pfn: The end PFN to stop searching for holes
5787 *
5788 * It returns the number of pages frames in memory holes within a range.
5789 */
5790 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5791 unsigned long end_pfn)
5792 {
5793 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5794 }
5795
5796 /* Return the number of page frames in holes in a zone on a node */
5797 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5798 unsigned long zone_type,
5799 unsigned long node_start_pfn,
5800 unsigned long node_end_pfn,
5801 unsigned long *ignored)
5802 {
5803 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5804 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5805 unsigned long zone_start_pfn, zone_end_pfn;
5806 unsigned long nr_absent;
5807
5808 /* When hotadd a new node from cpu_up(), the node should be empty */
5809 if (!node_start_pfn && !node_end_pfn)
5810 return 0;
5811
5812 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5813 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5814
5815 adjust_zone_range_for_zone_movable(nid, zone_type,
5816 node_start_pfn, node_end_pfn,
5817 &zone_start_pfn, &zone_end_pfn);
5818 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5819
5820 /*
5821 * ZONE_MOVABLE handling.
5822 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5823 * and vice versa.
5824 */
5825 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5826 unsigned long start_pfn, end_pfn;
5827 struct memblock_region *r;
5828
5829 for_each_memblock(memory, r) {
5830 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5831 zone_start_pfn, zone_end_pfn);
5832 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5833 zone_start_pfn, zone_end_pfn);
5834
5835 if (zone_type == ZONE_MOVABLE &&
5836 memblock_is_mirror(r))
5837 nr_absent += end_pfn - start_pfn;
5838
5839 if (zone_type == ZONE_NORMAL &&
5840 !memblock_is_mirror(r))
5841 nr_absent += end_pfn - start_pfn;
5842 }
5843 }
5844
5845 return nr_absent;
5846 }
5847
5848 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5849 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5850 unsigned long zone_type,
5851 unsigned long node_start_pfn,
5852 unsigned long node_end_pfn,
5853 unsigned long *zone_start_pfn,
5854 unsigned long *zone_end_pfn,
5855 unsigned long *zones_size)
5856 {
5857 unsigned int zone;
5858
5859 *zone_start_pfn = node_start_pfn;
5860 for (zone = 0; zone < zone_type; zone++)
5861 *zone_start_pfn += zones_size[zone];
5862
5863 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5864
5865 return zones_size[zone_type];
5866 }
5867
5868 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5869 unsigned long zone_type,
5870 unsigned long node_start_pfn,
5871 unsigned long node_end_pfn,
5872 unsigned long *zholes_size)
5873 {
5874 if (!zholes_size)
5875 return 0;
5876
5877 return zholes_size[zone_type];
5878 }
5879
5880 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5881
5882 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5883 unsigned long node_start_pfn,
5884 unsigned long node_end_pfn,
5885 unsigned long *zones_size,
5886 unsigned long *zholes_size)
5887 {
5888 unsigned long realtotalpages = 0, totalpages = 0;
5889 enum zone_type i;
5890
5891 for (i = 0; i < MAX_NR_ZONES; i++) {
5892 struct zone *zone = pgdat->node_zones + i;
5893 unsigned long zone_start_pfn, zone_end_pfn;
5894 unsigned long size, real_size;
5895
5896 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5897 node_start_pfn,
5898 node_end_pfn,
5899 &zone_start_pfn,
5900 &zone_end_pfn,
5901 zones_size);
5902 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5903 node_start_pfn, node_end_pfn,
5904 zholes_size);
5905 if (size)
5906 zone->zone_start_pfn = zone_start_pfn;
5907 else
5908 zone->zone_start_pfn = 0;
5909 zone->spanned_pages = size;
5910 zone->present_pages = real_size;
5911
5912 totalpages += size;
5913 realtotalpages += real_size;
5914 }
5915
5916 pgdat->node_spanned_pages = totalpages;
5917 pgdat->node_present_pages = realtotalpages;
5918 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5919 realtotalpages);
5920 }
5921
5922 #ifndef CONFIG_SPARSEMEM
5923 /*
5924 * Calculate the size of the zone->blockflags rounded to an unsigned long
5925 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5926 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5927 * round what is now in bits to nearest long in bits, then return it in
5928 * bytes.
5929 */
5930 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5931 {
5932 unsigned long usemapsize;
5933
5934 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5935 usemapsize = roundup(zonesize, pageblock_nr_pages);
5936 usemapsize = usemapsize >> pageblock_order;
5937 usemapsize *= NR_PAGEBLOCK_BITS;
5938 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5939
5940 return usemapsize / 8;
5941 }
5942
5943 static void __init setup_usemap(struct pglist_data *pgdat,
5944 struct zone *zone,
5945 unsigned long zone_start_pfn,
5946 unsigned long zonesize)
5947 {
5948 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5949 zone->pageblock_flags = NULL;
5950 if (usemapsize)
5951 zone->pageblock_flags =
5952 memblock_virt_alloc_node_nopanic(usemapsize,
5953 pgdat->node_id);
5954 }
5955 #else
5956 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5957 unsigned long zone_start_pfn, unsigned long zonesize) {}
5958 #endif /* CONFIG_SPARSEMEM */
5959
5960 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5961
5962 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5963 void __paginginit set_pageblock_order(void)
5964 {
5965 unsigned int order;
5966
5967 /* Check that pageblock_nr_pages has not already been setup */
5968 if (pageblock_order)
5969 return;
5970
5971 if (HPAGE_SHIFT > PAGE_SHIFT)
5972 order = HUGETLB_PAGE_ORDER;
5973 else
5974 order = MAX_ORDER - 1;
5975
5976 /*
5977 * Assume the largest contiguous order of interest is a huge page.
5978 * This value may be variable depending on boot parameters on IA64 and
5979 * powerpc.
5980 */
5981 pageblock_order = order;
5982 }
5983 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5984
5985 /*
5986 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5987 * is unused as pageblock_order is set at compile-time. See
5988 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5989 * the kernel config
5990 */
5991 void __paginginit set_pageblock_order(void)
5992 {
5993 }
5994
5995 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5996
5997 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5998 unsigned long present_pages)
5999 {
6000 unsigned long pages = spanned_pages;
6001
6002 /*
6003 * Provide a more accurate estimation if there are holes within
6004 * the zone and SPARSEMEM is in use. If there are holes within the
6005 * zone, each populated memory region may cost us one or two extra
6006 * memmap pages due to alignment because memmap pages for each
6007 * populated regions may not be naturally aligned on page boundary.
6008 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6009 */
6010 if (spanned_pages > present_pages + (present_pages >> 4) &&
6011 IS_ENABLED(CONFIG_SPARSEMEM))
6012 pages = present_pages;
6013
6014 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6015 }
6016
6017 /*
6018 * Set up the zone data structures:
6019 * - mark all pages reserved
6020 * - mark all memory queues empty
6021 * - clear the memory bitmaps
6022 *
6023 * NOTE: pgdat should get zeroed by caller.
6024 */
6025 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6026 {
6027 enum zone_type j;
6028 int nid = pgdat->node_id;
6029
6030 pgdat_resize_init(pgdat);
6031 #ifdef CONFIG_NUMA_BALANCING
6032 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6033 pgdat->numabalancing_migrate_nr_pages = 0;
6034 pgdat->numabalancing_migrate_next_window = jiffies;
6035 #endif
6036 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6037 spin_lock_init(&pgdat->split_queue_lock);
6038 INIT_LIST_HEAD(&pgdat->split_queue);
6039 pgdat->split_queue_len = 0;
6040 #endif
6041 init_waitqueue_head(&pgdat->kswapd_wait);
6042 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6043 #ifdef CONFIG_COMPACTION
6044 init_waitqueue_head(&pgdat->kcompactd_wait);
6045 #endif
6046 pgdat_page_ext_init(pgdat);
6047 spin_lock_init(&pgdat->lru_lock);
6048 lruvec_init(node_lruvec(pgdat));
6049
6050 pgdat->per_cpu_nodestats = &boot_nodestats;
6051
6052 for (j = 0; j < MAX_NR_ZONES; j++) {
6053 struct zone *zone = pgdat->node_zones + j;
6054 unsigned long size, realsize, freesize, memmap_pages;
6055 unsigned long zone_start_pfn = zone->zone_start_pfn;
6056
6057 size = zone->spanned_pages;
6058 realsize = freesize = zone->present_pages;
6059
6060 /*
6061 * Adjust freesize so that it accounts for how much memory
6062 * is used by this zone for memmap. This affects the watermark
6063 * and per-cpu initialisations
6064 */
6065 memmap_pages = calc_memmap_size(size, realsize);
6066 if (!is_highmem_idx(j)) {
6067 if (freesize >= memmap_pages) {
6068 freesize -= memmap_pages;
6069 if (memmap_pages)
6070 printk(KERN_DEBUG
6071 " %s zone: %lu pages used for memmap\n",
6072 zone_names[j], memmap_pages);
6073 } else
6074 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6075 zone_names[j], memmap_pages, freesize);
6076 }
6077
6078 /* Account for reserved pages */
6079 if (j == 0 && freesize > dma_reserve) {
6080 freesize -= dma_reserve;
6081 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6082 zone_names[0], dma_reserve);
6083 }
6084
6085 if (!is_highmem_idx(j))
6086 nr_kernel_pages += freesize;
6087 /* Charge for highmem memmap if there are enough kernel pages */
6088 else if (nr_kernel_pages > memmap_pages * 2)
6089 nr_kernel_pages -= memmap_pages;
6090 nr_all_pages += freesize;
6091
6092 /*
6093 * Set an approximate value for lowmem here, it will be adjusted
6094 * when the bootmem allocator frees pages into the buddy system.
6095 * And all highmem pages will be managed by the buddy system.
6096 */
6097 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6098 #ifdef CONFIG_NUMA
6099 zone->node = nid;
6100 #endif
6101 zone->name = zone_names[j];
6102 zone->zone_pgdat = pgdat;
6103 spin_lock_init(&zone->lock);
6104 zone_seqlock_init(zone);
6105 zone_pcp_init(zone);
6106
6107 if (!size)
6108 continue;
6109
6110 set_pageblock_order();
6111 setup_usemap(pgdat, zone, zone_start_pfn, size);
6112 init_currently_empty_zone(zone, zone_start_pfn, size);
6113 memmap_init(size, nid, j, zone_start_pfn);
6114 }
6115 }
6116
6117 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6118 {
6119 unsigned long __maybe_unused start = 0;
6120 unsigned long __maybe_unused offset = 0;
6121
6122 /* Skip empty nodes */
6123 if (!pgdat->node_spanned_pages)
6124 return;
6125
6126 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6127 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6128 offset = pgdat->node_start_pfn - start;
6129 /* ia64 gets its own node_mem_map, before this, without bootmem */
6130 if (!pgdat->node_mem_map) {
6131 unsigned long size, end;
6132 struct page *map;
6133
6134 /*
6135 * The zone's endpoints aren't required to be MAX_ORDER
6136 * aligned but the node_mem_map endpoints must be in order
6137 * for the buddy allocator to function correctly.
6138 */
6139 end = pgdat_end_pfn(pgdat);
6140 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6141 size = (end - start) * sizeof(struct page);
6142 map = alloc_remap(pgdat->node_id, size);
6143 if (!map)
6144 map = memblock_virt_alloc_node_nopanic(size,
6145 pgdat->node_id);
6146 pgdat->node_mem_map = map + offset;
6147 }
6148 #ifndef CONFIG_NEED_MULTIPLE_NODES
6149 /*
6150 * With no DISCONTIG, the global mem_map is just set as node 0's
6151 */
6152 if (pgdat == NODE_DATA(0)) {
6153 mem_map = NODE_DATA(0)->node_mem_map;
6154 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6155 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6156 mem_map -= offset;
6157 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6158 }
6159 #endif
6160 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6161 }
6162
6163 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6164 unsigned long node_start_pfn, unsigned long *zholes_size)
6165 {
6166 pg_data_t *pgdat = NODE_DATA(nid);
6167 unsigned long start_pfn = 0;
6168 unsigned long end_pfn = 0;
6169
6170 /* pg_data_t should be reset to zero when it's allocated */
6171 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6172
6173 pgdat->node_id = nid;
6174 pgdat->node_start_pfn = node_start_pfn;
6175 pgdat->per_cpu_nodestats = NULL;
6176 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6177 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6178 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6179 (u64)start_pfn << PAGE_SHIFT,
6180 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6181 #else
6182 start_pfn = node_start_pfn;
6183 #endif
6184 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6185 zones_size, zholes_size);
6186
6187 alloc_node_mem_map(pgdat);
6188 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6189 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6190 nid, (unsigned long)pgdat,
6191 (unsigned long)pgdat->node_mem_map);
6192 #endif
6193
6194 reset_deferred_meminit(pgdat);
6195 free_area_init_core(pgdat);
6196 }
6197
6198 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6199
6200 #if MAX_NUMNODES > 1
6201 /*
6202 * Figure out the number of possible node ids.
6203 */
6204 void __init setup_nr_node_ids(void)
6205 {
6206 unsigned int highest;
6207
6208 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6209 nr_node_ids = highest + 1;
6210 }
6211 #endif
6212
6213 /**
6214 * node_map_pfn_alignment - determine the maximum internode alignment
6215 *
6216 * This function should be called after node map is populated and sorted.
6217 * It calculates the maximum power of two alignment which can distinguish
6218 * all the nodes.
6219 *
6220 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6221 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6222 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6223 * shifted, 1GiB is enough and this function will indicate so.
6224 *
6225 * This is used to test whether pfn -> nid mapping of the chosen memory
6226 * model has fine enough granularity to avoid incorrect mapping for the
6227 * populated node map.
6228 *
6229 * Returns the determined alignment in pfn's. 0 if there is no alignment
6230 * requirement (single node).
6231 */
6232 unsigned long __init node_map_pfn_alignment(void)
6233 {
6234 unsigned long accl_mask = 0, last_end = 0;
6235 unsigned long start, end, mask;
6236 int last_nid = -1;
6237 int i, nid;
6238
6239 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6240 if (!start || last_nid < 0 || last_nid == nid) {
6241 last_nid = nid;
6242 last_end = end;
6243 continue;
6244 }
6245
6246 /*
6247 * Start with a mask granular enough to pin-point to the
6248 * start pfn and tick off bits one-by-one until it becomes
6249 * too coarse to separate the current node from the last.
6250 */
6251 mask = ~((1 << __ffs(start)) - 1);
6252 while (mask && last_end <= (start & (mask << 1)))
6253 mask <<= 1;
6254
6255 /* accumulate all internode masks */
6256 accl_mask |= mask;
6257 }
6258
6259 /* convert mask to number of pages */
6260 return ~accl_mask + 1;
6261 }
6262
6263 /* Find the lowest pfn for a node */
6264 static unsigned long __init find_min_pfn_for_node(int nid)
6265 {
6266 unsigned long min_pfn = ULONG_MAX;
6267 unsigned long start_pfn;
6268 int i;
6269
6270 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6271 min_pfn = min(min_pfn, start_pfn);
6272
6273 if (min_pfn == ULONG_MAX) {
6274 pr_warn("Could not find start_pfn for node %d\n", nid);
6275 return 0;
6276 }
6277
6278 return min_pfn;
6279 }
6280
6281 /**
6282 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6283 *
6284 * It returns the minimum PFN based on information provided via
6285 * memblock_set_node().
6286 */
6287 unsigned long __init find_min_pfn_with_active_regions(void)
6288 {
6289 return find_min_pfn_for_node(MAX_NUMNODES);
6290 }
6291
6292 /*
6293 * early_calculate_totalpages()
6294 * Sum pages in active regions for movable zone.
6295 * Populate N_MEMORY for calculating usable_nodes.
6296 */
6297 static unsigned long __init early_calculate_totalpages(void)
6298 {
6299 unsigned long totalpages = 0;
6300 unsigned long start_pfn, end_pfn;
6301 int i, nid;
6302
6303 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6304 unsigned long pages = end_pfn - start_pfn;
6305
6306 totalpages += pages;
6307 if (pages)
6308 node_set_state(nid, N_MEMORY);
6309 }
6310 return totalpages;
6311 }
6312
6313 /*
6314 * Find the PFN the Movable zone begins in each node. Kernel memory
6315 * is spread evenly between nodes as long as the nodes have enough
6316 * memory. When they don't, some nodes will have more kernelcore than
6317 * others
6318 */
6319 static void __init find_zone_movable_pfns_for_nodes(void)
6320 {
6321 int i, nid;
6322 unsigned long usable_startpfn;
6323 unsigned long kernelcore_node, kernelcore_remaining;
6324 /* save the state before borrow the nodemask */
6325 nodemask_t saved_node_state = node_states[N_MEMORY];
6326 unsigned long totalpages = early_calculate_totalpages();
6327 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6328 struct memblock_region *r;
6329
6330 /* Need to find movable_zone earlier when movable_node is specified. */
6331 find_usable_zone_for_movable();
6332
6333 /*
6334 * If movable_node is specified, ignore kernelcore and movablecore
6335 * options.
6336 */
6337 if (movable_node_is_enabled()) {
6338 for_each_memblock(memory, r) {
6339 if (!memblock_is_hotpluggable(r))
6340 continue;
6341
6342 nid = r->nid;
6343
6344 usable_startpfn = PFN_DOWN(r->base);
6345 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6346 min(usable_startpfn, zone_movable_pfn[nid]) :
6347 usable_startpfn;
6348 }
6349
6350 goto out2;
6351 }
6352
6353 /*
6354 * If kernelcore=mirror is specified, ignore movablecore option
6355 */
6356 if (mirrored_kernelcore) {
6357 bool mem_below_4gb_not_mirrored = false;
6358
6359 for_each_memblock(memory, r) {
6360 if (memblock_is_mirror(r))
6361 continue;
6362
6363 nid = r->nid;
6364
6365 usable_startpfn = memblock_region_memory_base_pfn(r);
6366
6367 if (usable_startpfn < 0x100000) {
6368 mem_below_4gb_not_mirrored = true;
6369 continue;
6370 }
6371
6372 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6373 min(usable_startpfn, zone_movable_pfn[nid]) :
6374 usable_startpfn;
6375 }
6376
6377 if (mem_below_4gb_not_mirrored)
6378 pr_warn("This configuration results in unmirrored kernel memory.");
6379
6380 goto out2;
6381 }
6382
6383 /*
6384 * If movablecore=nn[KMG] was specified, calculate what size of
6385 * kernelcore that corresponds so that memory usable for
6386 * any allocation type is evenly spread. If both kernelcore
6387 * and movablecore are specified, then the value of kernelcore
6388 * will be used for required_kernelcore if it's greater than
6389 * what movablecore would have allowed.
6390 */
6391 if (required_movablecore) {
6392 unsigned long corepages;
6393
6394 /*
6395 * Round-up so that ZONE_MOVABLE is at least as large as what
6396 * was requested by the user
6397 */
6398 required_movablecore =
6399 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6400 required_movablecore = min(totalpages, required_movablecore);
6401 corepages = totalpages - required_movablecore;
6402
6403 required_kernelcore = max(required_kernelcore, corepages);
6404 }
6405
6406 /*
6407 * If kernelcore was not specified or kernelcore size is larger
6408 * than totalpages, there is no ZONE_MOVABLE.
6409 */
6410 if (!required_kernelcore || required_kernelcore >= totalpages)
6411 goto out;
6412
6413 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6414 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6415
6416 restart:
6417 /* Spread kernelcore memory as evenly as possible throughout nodes */
6418 kernelcore_node = required_kernelcore / usable_nodes;
6419 for_each_node_state(nid, N_MEMORY) {
6420 unsigned long start_pfn, end_pfn;
6421
6422 /*
6423 * Recalculate kernelcore_node if the division per node
6424 * now exceeds what is necessary to satisfy the requested
6425 * amount of memory for the kernel
6426 */
6427 if (required_kernelcore < kernelcore_node)
6428 kernelcore_node = required_kernelcore / usable_nodes;
6429
6430 /*
6431 * As the map is walked, we track how much memory is usable
6432 * by the kernel using kernelcore_remaining. When it is
6433 * 0, the rest of the node is usable by ZONE_MOVABLE
6434 */
6435 kernelcore_remaining = kernelcore_node;
6436
6437 /* Go through each range of PFNs within this node */
6438 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6439 unsigned long size_pages;
6440
6441 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6442 if (start_pfn >= end_pfn)
6443 continue;
6444
6445 /* Account for what is only usable for kernelcore */
6446 if (start_pfn < usable_startpfn) {
6447 unsigned long kernel_pages;
6448 kernel_pages = min(end_pfn, usable_startpfn)
6449 - start_pfn;
6450
6451 kernelcore_remaining -= min(kernel_pages,
6452 kernelcore_remaining);
6453 required_kernelcore -= min(kernel_pages,
6454 required_kernelcore);
6455
6456 /* Continue if range is now fully accounted */
6457 if (end_pfn <= usable_startpfn) {
6458
6459 /*
6460 * Push zone_movable_pfn to the end so
6461 * that if we have to rebalance
6462 * kernelcore across nodes, we will
6463 * not double account here
6464 */
6465 zone_movable_pfn[nid] = end_pfn;
6466 continue;
6467 }
6468 start_pfn = usable_startpfn;
6469 }
6470
6471 /*
6472 * The usable PFN range for ZONE_MOVABLE is from
6473 * start_pfn->end_pfn. Calculate size_pages as the
6474 * number of pages used as kernelcore
6475 */
6476 size_pages = end_pfn - start_pfn;
6477 if (size_pages > kernelcore_remaining)
6478 size_pages = kernelcore_remaining;
6479 zone_movable_pfn[nid] = start_pfn + size_pages;
6480
6481 /*
6482 * Some kernelcore has been met, update counts and
6483 * break if the kernelcore for this node has been
6484 * satisfied
6485 */
6486 required_kernelcore -= min(required_kernelcore,
6487 size_pages);
6488 kernelcore_remaining -= size_pages;
6489 if (!kernelcore_remaining)
6490 break;
6491 }
6492 }
6493
6494 /*
6495 * If there is still required_kernelcore, we do another pass with one
6496 * less node in the count. This will push zone_movable_pfn[nid] further
6497 * along on the nodes that still have memory until kernelcore is
6498 * satisfied
6499 */
6500 usable_nodes--;
6501 if (usable_nodes && required_kernelcore > usable_nodes)
6502 goto restart;
6503
6504 out2:
6505 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6506 for (nid = 0; nid < MAX_NUMNODES; nid++)
6507 zone_movable_pfn[nid] =
6508 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6509
6510 out:
6511 /* restore the node_state */
6512 node_states[N_MEMORY] = saved_node_state;
6513 }
6514
6515 /* Any regular or high memory on that node ? */
6516 static void check_for_memory(pg_data_t *pgdat, int nid)
6517 {
6518 enum zone_type zone_type;
6519
6520 if (N_MEMORY == N_NORMAL_MEMORY)
6521 return;
6522
6523 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6524 struct zone *zone = &pgdat->node_zones[zone_type];
6525 if (populated_zone(zone)) {
6526 node_set_state(nid, N_HIGH_MEMORY);
6527 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6528 zone_type <= ZONE_NORMAL)
6529 node_set_state(nid, N_NORMAL_MEMORY);
6530 break;
6531 }
6532 }
6533 }
6534
6535 /**
6536 * free_area_init_nodes - Initialise all pg_data_t and zone data
6537 * @max_zone_pfn: an array of max PFNs for each zone
6538 *
6539 * This will call free_area_init_node() for each active node in the system.
6540 * Using the page ranges provided by memblock_set_node(), the size of each
6541 * zone in each node and their holes is calculated. If the maximum PFN
6542 * between two adjacent zones match, it is assumed that the zone is empty.
6543 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6544 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6545 * starts where the previous one ended. For example, ZONE_DMA32 starts
6546 * at arch_max_dma_pfn.
6547 */
6548 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6549 {
6550 unsigned long start_pfn, end_pfn;
6551 int i, nid;
6552
6553 /* Record where the zone boundaries are */
6554 memset(arch_zone_lowest_possible_pfn, 0,
6555 sizeof(arch_zone_lowest_possible_pfn));
6556 memset(arch_zone_highest_possible_pfn, 0,
6557 sizeof(arch_zone_highest_possible_pfn));
6558
6559 start_pfn = find_min_pfn_with_active_regions();
6560
6561 for (i = 0; i < MAX_NR_ZONES; i++) {
6562 if (i == ZONE_MOVABLE)
6563 continue;
6564
6565 end_pfn = max(max_zone_pfn[i], start_pfn);
6566 arch_zone_lowest_possible_pfn[i] = start_pfn;
6567 arch_zone_highest_possible_pfn[i] = end_pfn;
6568
6569 start_pfn = end_pfn;
6570 }
6571
6572 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6573 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6574 find_zone_movable_pfns_for_nodes();
6575
6576 /* Print out the zone ranges */
6577 pr_info("Zone ranges:\n");
6578 for (i = 0; i < MAX_NR_ZONES; i++) {
6579 if (i == ZONE_MOVABLE)
6580 continue;
6581 pr_info(" %-8s ", zone_names[i]);
6582 if (arch_zone_lowest_possible_pfn[i] ==
6583 arch_zone_highest_possible_pfn[i])
6584 pr_cont("empty\n");
6585 else
6586 pr_cont("[mem %#018Lx-%#018Lx]\n",
6587 (u64)arch_zone_lowest_possible_pfn[i]
6588 << PAGE_SHIFT,
6589 ((u64)arch_zone_highest_possible_pfn[i]
6590 << PAGE_SHIFT) - 1);
6591 }
6592
6593 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6594 pr_info("Movable zone start for each node\n");
6595 for (i = 0; i < MAX_NUMNODES; i++) {
6596 if (zone_movable_pfn[i])
6597 pr_info(" Node %d: %#018Lx\n", i,
6598 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6599 }
6600
6601 /* Print out the early node map */
6602 pr_info("Early memory node ranges\n");
6603 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6604 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6605 (u64)start_pfn << PAGE_SHIFT,
6606 ((u64)end_pfn << PAGE_SHIFT) - 1);
6607
6608 /* Initialise every node */
6609 mminit_verify_pageflags_layout();
6610 setup_nr_node_ids();
6611 for_each_online_node(nid) {
6612 pg_data_t *pgdat = NODE_DATA(nid);
6613 free_area_init_node(nid, NULL,
6614 find_min_pfn_for_node(nid), NULL);
6615
6616 /* Any memory on that node */
6617 if (pgdat->node_present_pages)
6618 node_set_state(nid, N_MEMORY);
6619 check_for_memory(pgdat, nid);
6620 }
6621 }
6622
6623 static int __init cmdline_parse_core(char *p, unsigned long *core)
6624 {
6625 unsigned long long coremem;
6626 if (!p)
6627 return -EINVAL;
6628
6629 coremem = memparse(p, &p);
6630 *core = coremem >> PAGE_SHIFT;
6631
6632 /* Paranoid check that UL is enough for the coremem value */
6633 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6634
6635 return 0;
6636 }
6637
6638 /*
6639 * kernelcore=size sets the amount of memory for use for allocations that
6640 * cannot be reclaimed or migrated.
6641 */
6642 static int __init cmdline_parse_kernelcore(char *p)
6643 {
6644 /* parse kernelcore=mirror */
6645 if (parse_option_str(p, "mirror")) {
6646 mirrored_kernelcore = true;
6647 return 0;
6648 }
6649
6650 return cmdline_parse_core(p, &required_kernelcore);
6651 }
6652
6653 /*
6654 * movablecore=size sets the amount of memory for use for allocations that
6655 * can be reclaimed or migrated.
6656 */
6657 static int __init cmdline_parse_movablecore(char *p)
6658 {
6659 return cmdline_parse_core(p, &required_movablecore);
6660 }
6661
6662 early_param("kernelcore", cmdline_parse_kernelcore);
6663 early_param("movablecore", cmdline_parse_movablecore);
6664
6665 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6666
6667 void adjust_managed_page_count(struct page *page, long count)
6668 {
6669 spin_lock(&managed_page_count_lock);
6670 page_zone(page)->managed_pages += count;
6671 totalram_pages += count;
6672 #ifdef CONFIG_HIGHMEM
6673 if (PageHighMem(page))
6674 totalhigh_pages += count;
6675 #endif
6676 spin_unlock(&managed_page_count_lock);
6677 }
6678 EXPORT_SYMBOL(adjust_managed_page_count);
6679
6680 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6681 {
6682 void *pos;
6683 unsigned long pages = 0;
6684
6685 start = (void *)PAGE_ALIGN((unsigned long)start);
6686 end = (void *)((unsigned long)end & PAGE_MASK);
6687 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6688 if ((unsigned int)poison <= 0xFF)
6689 memset(pos, poison, PAGE_SIZE);
6690 free_reserved_page(virt_to_page(pos));
6691 }
6692
6693 if (pages && s)
6694 pr_info("Freeing %s memory: %ldK\n",
6695 s, pages << (PAGE_SHIFT - 10));
6696
6697 return pages;
6698 }
6699 EXPORT_SYMBOL(free_reserved_area);
6700
6701 #ifdef CONFIG_HIGHMEM
6702 void free_highmem_page(struct page *page)
6703 {
6704 __free_reserved_page(page);
6705 totalram_pages++;
6706 page_zone(page)->managed_pages++;
6707 totalhigh_pages++;
6708 }
6709 #endif
6710
6711
6712 void __init mem_init_print_info(const char *str)
6713 {
6714 unsigned long physpages, codesize, datasize, rosize, bss_size;
6715 unsigned long init_code_size, init_data_size;
6716
6717 physpages = get_num_physpages();
6718 codesize = _etext - _stext;
6719 datasize = _edata - _sdata;
6720 rosize = __end_rodata - __start_rodata;
6721 bss_size = __bss_stop - __bss_start;
6722 init_data_size = __init_end - __init_begin;
6723 init_code_size = _einittext - _sinittext;
6724
6725 /*
6726 * Detect special cases and adjust section sizes accordingly:
6727 * 1) .init.* may be embedded into .data sections
6728 * 2) .init.text.* may be out of [__init_begin, __init_end],
6729 * please refer to arch/tile/kernel/vmlinux.lds.S.
6730 * 3) .rodata.* may be embedded into .text or .data sections.
6731 */
6732 #define adj_init_size(start, end, size, pos, adj) \
6733 do { \
6734 if (start <= pos && pos < end && size > adj) \
6735 size -= adj; \
6736 } while (0)
6737
6738 adj_init_size(__init_begin, __init_end, init_data_size,
6739 _sinittext, init_code_size);
6740 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6741 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6742 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6743 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6744
6745 #undef adj_init_size
6746
6747 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6748 #ifdef CONFIG_HIGHMEM
6749 ", %luK highmem"
6750 #endif
6751 "%s%s)\n",
6752 nr_free_pages() << (PAGE_SHIFT - 10),
6753 physpages << (PAGE_SHIFT - 10),
6754 codesize >> 10, datasize >> 10, rosize >> 10,
6755 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6756 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6757 totalcma_pages << (PAGE_SHIFT - 10),
6758 #ifdef CONFIG_HIGHMEM
6759 totalhigh_pages << (PAGE_SHIFT - 10),
6760 #endif
6761 str ? ", " : "", str ? str : "");
6762 }
6763
6764 /**
6765 * set_dma_reserve - set the specified number of pages reserved in the first zone
6766 * @new_dma_reserve: The number of pages to mark reserved
6767 *
6768 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6769 * In the DMA zone, a significant percentage may be consumed by kernel image
6770 * and other unfreeable allocations which can skew the watermarks badly. This
6771 * function may optionally be used to account for unfreeable pages in the
6772 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6773 * smaller per-cpu batchsize.
6774 */
6775 void __init set_dma_reserve(unsigned long new_dma_reserve)
6776 {
6777 dma_reserve = new_dma_reserve;
6778 }
6779
6780 void __init free_area_init(unsigned long *zones_size)
6781 {
6782 free_area_init_node(0, zones_size,
6783 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6784 }
6785
6786 static int page_alloc_cpu_dead(unsigned int cpu)
6787 {
6788
6789 lru_add_drain_cpu(cpu);
6790 drain_pages(cpu);
6791
6792 /*
6793 * Spill the event counters of the dead processor
6794 * into the current processors event counters.
6795 * This artificially elevates the count of the current
6796 * processor.
6797 */
6798 vm_events_fold_cpu(cpu);
6799
6800 /*
6801 * Zero the differential counters of the dead processor
6802 * so that the vm statistics are consistent.
6803 *
6804 * This is only okay since the processor is dead and cannot
6805 * race with what we are doing.
6806 */
6807 cpu_vm_stats_fold(cpu);
6808 return 0;
6809 }
6810
6811 void __init page_alloc_init(void)
6812 {
6813 int ret;
6814
6815 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6816 "mm/page_alloc:dead", NULL,
6817 page_alloc_cpu_dead);
6818 WARN_ON(ret < 0);
6819 }
6820
6821 /*
6822 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6823 * or min_free_kbytes changes.
6824 */
6825 static void calculate_totalreserve_pages(void)
6826 {
6827 struct pglist_data *pgdat;
6828 unsigned long reserve_pages = 0;
6829 enum zone_type i, j;
6830
6831 for_each_online_pgdat(pgdat) {
6832
6833 pgdat->totalreserve_pages = 0;
6834
6835 for (i = 0; i < MAX_NR_ZONES; i++) {
6836 struct zone *zone = pgdat->node_zones + i;
6837 long max = 0;
6838
6839 /* Find valid and maximum lowmem_reserve in the zone */
6840 for (j = i; j < MAX_NR_ZONES; j++) {
6841 if (zone->lowmem_reserve[j] > max)
6842 max = zone->lowmem_reserve[j];
6843 }
6844
6845 /* we treat the high watermark as reserved pages. */
6846 max += high_wmark_pages(zone);
6847
6848 if (max > zone->managed_pages)
6849 max = zone->managed_pages;
6850
6851 pgdat->totalreserve_pages += max;
6852
6853 reserve_pages += max;
6854 }
6855 }
6856 totalreserve_pages = reserve_pages;
6857 }
6858
6859 /*
6860 * setup_per_zone_lowmem_reserve - called whenever
6861 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6862 * has a correct pages reserved value, so an adequate number of
6863 * pages are left in the zone after a successful __alloc_pages().
6864 */
6865 static void setup_per_zone_lowmem_reserve(void)
6866 {
6867 struct pglist_data *pgdat;
6868 enum zone_type j, idx;
6869
6870 for_each_online_pgdat(pgdat) {
6871 for (j = 0; j < MAX_NR_ZONES; j++) {
6872 struct zone *zone = pgdat->node_zones + j;
6873 unsigned long managed_pages = zone->managed_pages;
6874
6875 zone->lowmem_reserve[j] = 0;
6876
6877 idx = j;
6878 while (idx) {
6879 struct zone *lower_zone;
6880
6881 idx--;
6882
6883 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6884 sysctl_lowmem_reserve_ratio[idx] = 1;
6885
6886 lower_zone = pgdat->node_zones + idx;
6887 lower_zone->lowmem_reserve[j] = managed_pages /
6888 sysctl_lowmem_reserve_ratio[idx];
6889 managed_pages += lower_zone->managed_pages;
6890 }
6891 }
6892 }
6893
6894 /* update totalreserve_pages */
6895 calculate_totalreserve_pages();
6896 }
6897
6898 static void __setup_per_zone_wmarks(void)
6899 {
6900 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6901 unsigned long lowmem_pages = 0;
6902 struct zone *zone;
6903 unsigned long flags;
6904
6905 /* Calculate total number of !ZONE_HIGHMEM pages */
6906 for_each_zone(zone) {
6907 if (!is_highmem(zone))
6908 lowmem_pages += zone->managed_pages;
6909 }
6910
6911 for_each_zone(zone) {
6912 u64 tmp;
6913
6914 spin_lock_irqsave(&zone->lock, flags);
6915 tmp = (u64)pages_min * zone->managed_pages;
6916 do_div(tmp, lowmem_pages);
6917 if (is_highmem(zone)) {
6918 /*
6919 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6920 * need highmem pages, so cap pages_min to a small
6921 * value here.
6922 *
6923 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6924 * deltas control asynch page reclaim, and so should
6925 * not be capped for highmem.
6926 */
6927 unsigned long min_pages;
6928
6929 min_pages = zone->managed_pages / 1024;
6930 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6931 zone->watermark[WMARK_MIN] = min_pages;
6932 } else {
6933 /*
6934 * If it's a lowmem zone, reserve a number of pages
6935 * proportionate to the zone's size.
6936 */
6937 zone->watermark[WMARK_MIN] = tmp;
6938 }
6939
6940 /*
6941 * Set the kswapd watermarks distance according to the
6942 * scale factor in proportion to available memory, but
6943 * ensure a minimum size on small systems.
6944 */
6945 tmp = max_t(u64, tmp >> 2,
6946 mult_frac(zone->managed_pages,
6947 watermark_scale_factor, 10000));
6948
6949 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6950 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6951
6952 spin_unlock_irqrestore(&zone->lock, flags);
6953 }
6954
6955 /* update totalreserve_pages */
6956 calculate_totalreserve_pages();
6957 }
6958
6959 /**
6960 * setup_per_zone_wmarks - called when min_free_kbytes changes
6961 * or when memory is hot-{added|removed}
6962 *
6963 * Ensures that the watermark[min,low,high] values for each zone are set
6964 * correctly with respect to min_free_kbytes.
6965 */
6966 void setup_per_zone_wmarks(void)
6967 {
6968 static DEFINE_SPINLOCK(lock);
6969
6970 spin_lock(&lock);
6971 __setup_per_zone_wmarks();
6972 spin_unlock(&lock);
6973 }
6974
6975 /*
6976 * Initialise min_free_kbytes.
6977 *
6978 * For small machines we want it small (128k min). For large machines
6979 * we want it large (64MB max). But it is not linear, because network
6980 * bandwidth does not increase linearly with machine size. We use
6981 *
6982 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6983 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6984 *
6985 * which yields
6986 *
6987 * 16MB: 512k
6988 * 32MB: 724k
6989 * 64MB: 1024k
6990 * 128MB: 1448k
6991 * 256MB: 2048k
6992 * 512MB: 2896k
6993 * 1024MB: 4096k
6994 * 2048MB: 5792k
6995 * 4096MB: 8192k
6996 * 8192MB: 11584k
6997 * 16384MB: 16384k
6998 */
6999 int __meminit init_per_zone_wmark_min(void)
7000 {
7001 unsigned long lowmem_kbytes;
7002 int new_min_free_kbytes;
7003
7004 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7005 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7006
7007 if (new_min_free_kbytes > user_min_free_kbytes) {
7008 min_free_kbytes = new_min_free_kbytes;
7009 if (min_free_kbytes < 128)
7010 min_free_kbytes = 128;
7011 if (min_free_kbytes > 65536)
7012 min_free_kbytes = 65536;
7013 } else {
7014 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7015 new_min_free_kbytes, user_min_free_kbytes);
7016 }
7017 setup_per_zone_wmarks();
7018 refresh_zone_stat_thresholds();
7019 setup_per_zone_lowmem_reserve();
7020
7021 #ifdef CONFIG_NUMA
7022 setup_min_unmapped_ratio();
7023 setup_min_slab_ratio();
7024 #endif
7025
7026 return 0;
7027 }
7028 core_initcall(init_per_zone_wmark_min)
7029
7030 /*
7031 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7032 * that we can call two helper functions whenever min_free_kbytes
7033 * changes.
7034 */
7035 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7036 void __user *buffer, size_t *length, loff_t *ppos)
7037 {
7038 int rc;
7039
7040 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7041 if (rc)
7042 return rc;
7043
7044 if (write) {
7045 user_min_free_kbytes = min_free_kbytes;
7046 setup_per_zone_wmarks();
7047 }
7048 return 0;
7049 }
7050
7051 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7052 void __user *buffer, size_t *length, loff_t *ppos)
7053 {
7054 int rc;
7055
7056 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7057 if (rc)
7058 return rc;
7059
7060 if (write)
7061 setup_per_zone_wmarks();
7062
7063 return 0;
7064 }
7065
7066 #ifdef CONFIG_NUMA
7067 static void setup_min_unmapped_ratio(void)
7068 {
7069 pg_data_t *pgdat;
7070 struct zone *zone;
7071
7072 for_each_online_pgdat(pgdat)
7073 pgdat->min_unmapped_pages = 0;
7074
7075 for_each_zone(zone)
7076 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7077 sysctl_min_unmapped_ratio) / 100;
7078 }
7079
7080
7081 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7082 void __user *buffer, size_t *length, loff_t *ppos)
7083 {
7084 int rc;
7085
7086 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7087 if (rc)
7088 return rc;
7089
7090 setup_min_unmapped_ratio();
7091
7092 return 0;
7093 }
7094
7095 static void setup_min_slab_ratio(void)
7096 {
7097 pg_data_t *pgdat;
7098 struct zone *zone;
7099
7100 for_each_online_pgdat(pgdat)
7101 pgdat->min_slab_pages = 0;
7102
7103 for_each_zone(zone)
7104 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7105 sysctl_min_slab_ratio) / 100;
7106 }
7107
7108 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7109 void __user *buffer, size_t *length, loff_t *ppos)
7110 {
7111 int rc;
7112
7113 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7114 if (rc)
7115 return rc;
7116
7117 setup_min_slab_ratio();
7118
7119 return 0;
7120 }
7121 #endif
7122
7123 /*
7124 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7125 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7126 * whenever sysctl_lowmem_reserve_ratio changes.
7127 *
7128 * The reserve ratio obviously has absolutely no relation with the
7129 * minimum watermarks. The lowmem reserve ratio can only make sense
7130 * if in function of the boot time zone sizes.
7131 */
7132 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7133 void __user *buffer, size_t *length, loff_t *ppos)
7134 {
7135 proc_dointvec_minmax(table, write, buffer, length, ppos);
7136 setup_per_zone_lowmem_reserve();
7137 return 0;
7138 }
7139
7140 /*
7141 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7142 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7143 * pagelist can have before it gets flushed back to buddy allocator.
7144 */
7145 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7146 void __user *buffer, size_t *length, loff_t *ppos)
7147 {
7148 struct zone *zone;
7149 int old_percpu_pagelist_fraction;
7150 int ret;
7151
7152 mutex_lock(&pcp_batch_high_lock);
7153 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7154
7155 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7156 if (!write || ret < 0)
7157 goto out;
7158
7159 /* Sanity checking to avoid pcp imbalance */
7160 if (percpu_pagelist_fraction &&
7161 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7162 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7163 ret = -EINVAL;
7164 goto out;
7165 }
7166
7167 /* No change? */
7168 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7169 goto out;
7170
7171 for_each_populated_zone(zone) {
7172 unsigned int cpu;
7173
7174 for_each_possible_cpu(cpu)
7175 pageset_set_high_and_batch(zone,
7176 per_cpu_ptr(zone->pageset, cpu));
7177 }
7178 out:
7179 mutex_unlock(&pcp_batch_high_lock);
7180 return ret;
7181 }
7182
7183 #ifdef CONFIG_NUMA
7184 int hashdist = HASHDIST_DEFAULT;
7185
7186 static int __init set_hashdist(char *str)
7187 {
7188 if (!str)
7189 return 0;
7190 hashdist = simple_strtoul(str, &str, 0);
7191 return 1;
7192 }
7193 __setup("hashdist=", set_hashdist);
7194 #endif
7195
7196 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7197 /*
7198 * Returns the number of pages that arch has reserved but
7199 * is not known to alloc_large_system_hash().
7200 */
7201 static unsigned long __init arch_reserved_kernel_pages(void)
7202 {
7203 return 0;
7204 }
7205 #endif
7206
7207 /*
7208 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7209 * machines. As memory size is increased the scale is also increased but at
7210 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7211 * quadruples the scale is increased by one, which means the size of hash table
7212 * only doubles, instead of quadrupling as well.
7213 * Because 32-bit systems cannot have large physical memory, where this scaling
7214 * makes sense, it is disabled on such platforms.
7215 */
7216 #if __BITS_PER_LONG > 32
7217 #define ADAPT_SCALE_BASE (64ul << 30)
7218 #define ADAPT_SCALE_SHIFT 2
7219 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7220 #endif
7221
7222 /*
7223 * allocate a large system hash table from bootmem
7224 * - it is assumed that the hash table must contain an exact power-of-2
7225 * quantity of entries
7226 * - limit is the number of hash buckets, not the total allocation size
7227 */
7228 void *__init alloc_large_system_hash(const char *tablename,
7229 unsigned long bucketsize,
7230 unsigned long numentries,
7231 int scale,
7232 int flags,
7233 unsigned int *_hash_shift,
7234 unsigned int *_hash_mask,
7235 unsigned long low_limit,
7236 unsigned long high_limit)
7237 {
7238 unsigned long long max = high_limit;
7239 unsigned long log2qty, size;
7240 void *table = NULL;
7241 gfp_t gfp_flags;
7242
7243 /* allow the kernel cmdline to have a say */
7244 if (!numentries) {
7245 /* round applicable memory size up to nearest megabyte */
7246 numentries = nr_kernel_pages;
7247 numentries -= arch_reserved_kernel_pages();
7248
7249 /* It isn't necessary when PAGE_SIZE >= 1MB */
7250 if (PAGE_SHIFT < 20)
7251 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7252
7253 #if __BITS_PER_LONG > 32
7254 if (!high_limit) {
7255 unsigned long adapt;
7256
7257 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7258 adapt <<= ADAPT_SCALE_SHIFT)
7259 scale++;
7260 }
7261 #endif
7262
7263 /* limit to 1 bucket per 2^scale bytes of low memory */
7264 if (scale > PAGE_SHIFT)
7265 numentries >>= (scale - PAGE_SHIFT);
7266 else
7267 numentries <<= (PAGE_SHIFT - scale);
7268
7269 /* Make sure we've got at least a 0-order allocation.. */
7270 if (unlikely(flags & HASH_SMALL)) {
7271 /* Makes no sense without HASH_EARLY */
7272 WARN_ON(!(flags & HASH_EARLY));
7273 if (!(numentries >> *_hash_shift)) {
7274 numentries = 1UL << *_hash_shift;
7275 BUG_ON(!numentries);
7276 }
7277 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7278 numentries = PAGE_SIZE / bucketsize;
7279 }
7280 numentries = roundup_pow_of_two(numentries);
7281
7282 /* limit allocation size to 1/16 total memory by default */
7283 if (max == 0) {
7284 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7285 do_div(max, bucketsize);
7286 }
7287 max = min(max, 0x80000000ULL);
7288
7289 if (numentries < low_limit)
7290 numentries = low_limit;
7291 if (numentries > max)
7292 numentries = max;
7293
7294 log2qty = ilog2(numentries);
7295
7296 /*
7297 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7298 * currently not used when HASH_EARLY is specified.
7299 */
7300 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7301 do {
7302 size = bucketsize << log2qty;
7303 if (flags & HASH_EARLY)
7304 table = memblock_virt_alloc_nopanic(size, 0);
7305 else if (hashdist)
7306 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7307 else {
7308 /*
7309 * If bucketsize is not a power-of-two, we may free
7310 * some pages at the end of hash table which
7311 * alloc_pages_exact() automatically does
7312 */
7313 if (get_order(size) < MAX_ORDER) {
7314 table = alloc_pages_exact(size, gfp_flags);
7315 kmemleak_alloc(table, size, 1, gfp_flags);
7316 }
7317 }
7318 } while (!table && size > PAGE_SIZE && --log2qty);
7319
7320 if (!table)
7321 panic("Failed to allocate %s hash table\n", tablename);
7322
7323 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7324 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7325
7326 if (_hash_shift)
7327 *_hash_shift = log2qty;
7328 if (_hash_mask)
7329 *_hash_mask = (1 << log2qty) - 1;
7330
7331 return table;
7332 }
7333
7334 /*
7335 * This function checks whether pageblock includes unmovable pages or not.
7336 * If @count is not zero, it is okay to include less @count unmovable pages
7337 *
7338 * PageLRU check without isolation or lru_lock could race so that
7339 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7340 * check without lock_page also may miss some movable non-lru pages at
7341 * race condition. So you can't expect this function should be exact.
7342 */
7343 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7344 bool skip_hwpoisoned_pages)
7345 {
7346 unsigned long pfn, iter, found;
7347 int mt;
7348
7349 /*
7350 * For avoiding noise data, lru_add_drain_all() should be called
7351 * If ZONE_MOVABLE, the zone never contains unmovable pages
7352 */
7353 if (zone_idx(zone) == ZONE_MOVABLE)
7354 return false;
7355 mt = get_pageblock_migratetype(page);
7356 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7357 return false;
7358
7359 pfn = page_to_pfn(page);
7360 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7361 unsigned long check = pfn + iter;
7362
7363 if (!pfn_valid_within(check))
7364 continue;
7365
7366 page = pfn_to_page(check);
7367
7368 /*
7369 * Hugepages are not in LRU lists, but they're movable.
7370 * We need not scan over tail pages bacause we don't
7371 * handle each tail page individually in migration.
7372 */
7373 if (PageHuge(page)) {
7374 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7375 continue;
7376 }
7377
7378 /*
7379 * We can't use page_count without pin a page
7380 * because another CPU can free compound page.
7381 * This check already skips compound tails of THP
7382 * because their page->_refcount is zero at all time.
7383 */
7384 if (!page_ref_count(page)) {
7385 if (PageBuddy(page))
7386 iter += (1 << page_order(page)) - 1;
7387 continue;
7388 }
7389
7390 /*
7391 * The HWPoisoned page may be not in buddy system, and
7392 * page_count() is not 0.
7393 */
7394 if (skip_hwpoisoned_pages && PageHWPoison(page))
7395 continue;
7396
7397 if (__PageMovable(page))
7398 continue;
7399
7400 if (!PageLRU(page))
7401 found++;
7402 /*
7403 * If there are RECLAIMABLE pages, we need to check
7404 * it. But now, memory offline itself doesn't call
7405 * shrink_node_slabs() and it still to be fixed.
7406 */
7407 /*
7408 * If the page is not RAM, page_count()should be 0.
7409 * we don't need more check. This is an _used_ not-movable page.
7410 *
7411 * The problematic thing here is PG_reserved pages. PG_reserved
7412 * is set to both of a memory hole page and a _used_ kernel
7413 * page at boot.
7414 */
7415 if (found > count)
7416 return true;
7417 }
7418 return false;
7419 }
7420
7421 bool is_pageblock_removable_nolock(struct page *page)
7422 {
7423 struct zone *zone;
7424 unsigned long pfn;
7425
7426 /*
7427 * We have to be careful here because we are iterating over memory
7428 * sections which are not zone aware so we might end up outside of
7429 * the zone but still within the section.
7430 * We have to take care about the node as well. If the node is offline
7431 * its NODE_DATA will be NULL - see page_zone.
7432 */
7433 if (!node_online(page_to_nid(page)))
7434 return false;
7435
7436 zone = page_zone(page);
7437 pfn = page_to_pfn(page);
7438 if (!zone_spans_pfn(zone, pfn))
7439 return false;
7440
7441 return !has_unmovable_pages(zone, page, 0, true);
7442 }
7443
7444 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7445
7446 static unsigned long pfn_max_align_down(unsigned long pfn)
7447 {
7448 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7449 pageblock_nr_pages) - 1);
7450 }
7451
7452 static unsigned long pfn_max_align_up(unsigned long pfn)
7453 {
7454 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7455 pageblock_nr_pages));
7456 }
7457
7458 /* [start, end) must belong to a single zone. */
7459 static int __alloc_contig_migrate_range(struct compact_control *cc,
7460 unsigned long start, unsigned long end)
7461 {
7462 /* This function is based on compact_zone() from compaction.c. */
7463 unsigned long nr_reclaimed;
7464 unsigned long pfn = start;
7465 unsigned int tries = 0;
7466 int ret = 0;
7467
7468 migrate_prep();
7469
7470 while (pfn < end || !list_empty(&cc->migratepages)) {
7471 if (fatal_signal_pending(current)) {
7472 ret = -EINTR;
7473 break;
7474 }
7475
7476 if (list_empty(&cc->migratepages)) {
7477 cc->nr_migratepages = 0;
7478 pfn = isolate_migratepages_range(cc, pfn, end);
7479 if (!pfn) {
7480 ret = -EINTR;
7481 break;
7482 }
7483 tries = 0;
7484 } else if (++tries == 5) {
7485 ret = ret < 0 ? ret : -EBUSY;
7486 break;
7487 }
7488
7489 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7490 &cc->migratepages);
7491 cc->nr_migratepages -= nr_reclaimed;
7492
7493 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7494 NULL, 0, cc->mode, MR_CMA);
7495 }
7496 if (ret < 0) {
7497 putback_movable_pages(&cc->migratepages);
7498 return ret;
7499 }
7500 return 0;
7501 }
7502
7503 /**
7504 * alloc_contig_range() -- tries to allocate given range of pages
7505 * @start: start PFN to allocate
7506 * @end: one-past-the-last PFN to allocate
7507 * @migratetype: migratetype of the underlaying pageblocks (either
7508 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7509 * in range must have the same migratetype and it must
7510 * be either of the two.
7511 * @gfp_mask: GFP mask to use during compaction
7512 *
7513 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7514 * aligned, however it's the caller's responsibility to guarantee that
7515 * we are the only thread that changes migrate type of pageblocks the
7516 * pages fall in.
7517 *
7518 * The PFN range must belong to a single zone.
7519 *
7520 * Returns zero on success or negative error code. On success all
7521 * pages which PFN is in [start, end) are allocated for the caller and
7522 * need to be freed with free_contig_range().
7523 */
7524 int alloc_contig_range(unsigned long start, unsigned long end,
7525 unsigned migratetype, gfp_t gfp_mask)
7526 {
7527 unsigned long outer_start, outer_end;
7528 unsigned int order;
7529 int ret = 0;
7530
7531 struct compact_control cc = {
7532 .nr_migratepages = 0,
7533 .order = -1,
7534 .zone = page_zone(pfn_to_page(start)),
7535 .mode = MIGRATE_SYNC,
7536 .ignore_skip_hint = true,
7537 .gfp_mask = current_gfp_context(gfp_mask),
7538 };
7539 INIT_LIST_HEAD(&cc.migratepages);
7540
7541 /*
7542 * What we do here is we mark all pageblocks in range as
7543 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7544 * have different sizes, and due to the way page allocator
7545 * work, we align the range to biggest of the two pages so
7546 * that page allocator won't try to merge buddies from
7547 * different pageblocks and change MIGRATE_ISOLATE to some
7548 * other migration type.
7549 *
7550 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7551 * migrate the pages from an unaligned range (ie. pages that
7552 * we are interested in). This will put all the pages in
7553 * range back to page allocator as MIGRATE_ISOLATE.
7554 *
7555 * When this is done, we take the pages in range from page
7556 * allocator removing them from the buddy system. This way
7557 * page allocator will never consider using them.
7558 *
7559 * This lets us mark the pageblocks back as
7560 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7561 * aligned range but not in the unaligned, original range are
7562 * put back to page allocator so that buddy can use them.
7563 */
7564
7565 ret = start_isolate_page_range(pfn_max_align_down(start),
7566 pfn_max_align_up(end), migratetype,
7567 false);
7568 if (ret)
7569 return ret;
7570
7571 /*
7572 * In case of -EBUSY, we'd like to know which page causes problem.
7573 * So, just fall through. test_pages_isolated() has a tracepoint
7574 * which will report the busy page.
7575 *
7576 * It is possible that busy pages could become available before
7577 * the call to test_pages_isolated, and the range will actually be
7578 * allocated. So, if we fall through be sure to clear ret so that
7579 * -EBUSY is not accidentally used or returned to caller.
7580 */
7581 ret = __alloc_contig_migrate_range(&cc, start, end);
7582 if (ret && ret != -EBUSY)
7583 goto done;
7584 ret =0;
7585
7586 /*
7587 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7588 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7589 * more, all pages in [start, end) are free in page allocator.
7590 * What we are going to do is to allocate all pages from
7591 * [start, end) (that is remove them from page allocator).
7592 *
7593 * The only problem is that pages at the beginning and at the
7594 * end of interesting range may be not aligned with pages that
7595 * page allocator holds, ie. they can be part of higher order
7596 * pages. Because of this, we reserve the bigger range and
7597 * once this is done free the pages we are not interested in.
7598 *
7599 * We don't have to hold zone->lock here because the pages are
7600 * isolated thus they won't get removed from buddy.
7601 */
7602
7603 lru_add_drain_all();
7604 drain_all_pages(cc.zone);
7605
7606 order = 0;
7607 outer_start = start;
7608 while (!PageBuddy(pfn_to_page(outer_start))) {
7609 if (++order >= MAX_ORDER) {
7610 outer_start = start;
7611 break;
7612 }
7613 outer_start &= ~0UL << order;
7614 }
7615
7616 if (outer_start != start) {
7617 order = page_order(pfn_to_page(outer_start));
7618
7619 /*
7620 * outer_start page could be small order buddy page and
7621 * it doesn't include start page. Adjust outer_start
7622 * in this case to report failed page properly
7623 * on tracepoint in test_pages_isolated()
7624 */
7625 if (outer_start + (1UL << order) <= start)
7626 outer_start = start;
7627 }
7628
7629 /* Make sure the range is really isolated. */
7630 if (test_pages_isolated(outer_start, end, false)) {
7631 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7632 __func__, outer_start, end);
7633 ret = -EBUSY;
7634 goto done;
7635 }
7636
7637 /* Grab isolated pages from freelists. */
7638 outer_end = isolate_freepages_range(&cc, outer_start, end);
7639 if (!outer_end) {
7640 ret = -EBUSY;
7641 goto done;
7642 }
7643
7644 /* Free head and tail (if any) */
7645 if (start != outer_start)
7646 free_contig_range(outer_start, start - outer_start);
7647 if (end != outer_end)
7648 free_contig_range(end, outer_end - end);
7649
7650 done:
7651 undo_isolate_page_range(pfn_max_align_down(start),
7652 pfn_max_align_up(end), migratetype);
7653 return ret;
7654 }
7655
7656 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7657 {
7658 unsigned int count = 0;
7659
7660 for (; nr_pages--; pfn++) {
7661 struct page *page = pfn_to_page(pfn);
7662
7663 count += page_count(page) != 1;
7664 __free_page(page);
7665 }
7666 WARN(count != 0, "%d pages are still in use!\n", count);
7667 }
7668 #endif
7669
7670 #ifdef CONFIG_MEMORY_HOTPLUG
7671 /*
7672 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7673 * page high values need to be recalulated.
7674 */
7675 void __meminit zone_pcp_update(struct zone *zone)
7676 {
7677 unsigned cpu;
7678 mutex_lock(&pcp_batch_high_lock);
7679 for_each_possible_cpu(cpu)
7680 pageset_set_high_and_batch(zone,
7681 per_cpu_ptr(zone->pageset, cpu));
7682 mutex_unlock(&pcp_batch_high_lock);
7683 }
7684 #endif
7685
7686 void zone_pcp_reset(struct zone *zone)
7687 {
7688 unsigned long flags;
7689 int cpu;
7690 struct per_cpu_pageset *pset;
7691
7692 /* avoid races with drain_pages() */
7693 local_irq_save(flags);
7694 if (zone->pageset != &boot_pageset) {
7695 for_each_online_cpu(cpu) {
7696 pset = per_cpu_ptr(zone->pageset, cpu);
7697 drain_zonestat(zone, pset);
7698 }
7699 free_percpu(zone->pageset);
7700 zone->pageset = &boot_pageset;
7701 }
7702 local_irq_restore(flags);
7703 }
7704
7705 #ifdef CONFIG_MEMORY_HOTREMOVE
7706 /*
7707 * All pages in the range must be in a single zone and isolated
7708 * before calling this.
7709 */
7710 void
7711 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7712 {
7713 struct page *page;
7714 struct zone *zone;
7715 unsigned int order, i;
7716 unsigned long pfn;
7717 unsigned long flags;
7718 /* find the first valid pfn */
7719 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7720 if (pfn_valid(pfn))
7721 break;
7722 if (pfn == end_pfn)
7723 return;
7724 offline_mem_sections(pfn, end_pfn);
7725 zone = page_zone(pfn_to_page(pfn));
7726 spin_lock_irqsave(&zone->lock, flags);
7727 pfn = start_pfn;
7728 while (pfn < end_pfn) {
7729 if (!pfn_valid(pfn)) {
7730 pfn++;
7731 continue;
7732 }
7733 page = pfn_to_page(pfn);
7734 /*
7735 * The HWPoisoned page may be not in buddy system, and
7736 * page_count() is not 0.
7737 */
7738 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7739 pfn++;
7740 SetPageReserved(page);
7741 continue;
7742 }
7743
7744 BUG_ON(page_count(page));
7745 BUG_ON(!PageBuddy(page));
7746 order = page_order(page);
7747 #ifdef CONFIG_DEBUG_VM
7748 pr_info("remove from free list %lx %d %lx\n",
7749 pfn, 1 << order, end_pfn);
7750 #endif
7751 list_del(&page->lru);
7752 rmv_page_order(page);
7753 zone->free_area[order].nr_free--;
7754 for (i = 0; i < (1 << order); i++)
7755 SetPageReserved((page+i));
7756 pfn += (1 << order);
7757 }
7758 spin_unlock_irqrestore(&zone->lock, flags);
7759 }
7760 #endif
7761
7762 bool is_free_buddy_page(struct page *page)
7763 {
7764 struct zone *zone = page_zone(page);
7765 unsigned long pfn = page_to_pfn(page);
7766 unsigned long flags;
7767 unsigned int order;
7768
7769 spin_lock_irqsave(&zone->lock, flags);
7770 for (order = 0; order < MAX_ORDER; order++) {
7771 struct page *page_head = page - (pfn & ((1 << order) - 1));
7772
7773 if (PageBuddy(page_head) && page_order(page_head) >= order)
7774 break;
7775 }
7776 spin_unlock_irqrestore(&zone->lock, flags);
7777
7778 return order < MAX_ORDER;
7779 }