]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/page_alloc.c
d9fbac1b5030bd6c1333c042446e8a3260551b4f
[thirdparty/kernel/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81
82 /*
83 * Array of node states.
84 */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 [N_CPU] = { { [0] = 1UL } },
94 #endif /* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106 unsigned long dirty_balance_reserve __read_mostly;
107
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110
111 #ifdef CONFIG_PM_SLEEP
112 /*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
120
121 static gfp_t saved_gfp_mask;
122
123 void pm_restore_gfp_mask(void)
124 {
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
130 }
131
132 void pm_restrict_gfp_mask(void)
133 {
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
138 }
139
140 bool pm_suspended_storage(void)
141 {
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151
152 static void __free_pages_ok(struct page *page, unsigned int order);
153
154 /*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
164 */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 32,
174 #endif
175 32,
176 };
177
178 EXPORT_SYMBOL(totalram_pages);
179
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186 #endif
187 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 "HighMem",
190 #endif
191 "Movable",
192 };
193
194 int min_free_kbytes = 1024;
195
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218
219 int page_group_by_mobility_disabled __read_mostly;
220
221 /*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234 }
235
236 bool oom_killer_disabled __read_mostly;
237
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
254 }
255
256 static int page_is_consistent(struct zone *zone, struct page *page)
257 {
258 if (!pfn_valid_within(page_to_pfn(page)))
259 return 0;
260 if (zone != page_zone(page))
261 return 0;
262
263 return 1;
264 }
265 /*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268 static int bad_range(struct zone *zone, struct page *page)
269 {
270 if (page_outside_zone_boundaries(zone, page))
271 return 1;
272 if (!page_is_consistent(zone, page))
273 return 1;
274
275 return 0;
276 }
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
279 {
280 return 0;
281 }
282 #endif
283
284 static void bad_page(struct page *page)
285 {
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
292 reset_page_mapcount(page); /* remove PageBuddy */
293 return;
294 }
295
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
317 current->comm, page_to_pfn(page));
318 dump_page(page);
319
320 print_modules();
321 dump_stack();
322 out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
326 }
327
328 /*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
337 *
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
341 */
342
343 static void free_compound_page(struct page *page)
344 {
345 __free_pages_ok(page, compound_order(page));
346 }
347
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358 __SetPageTail(p);
359 set_page_count(p, 0);
360 p->first_page = page;
361 }
362 }
363
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
370
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
375 }
376
377 __ClearPageHead(page);
378
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
381
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
385 }
386 __ClearPageTail(p);
387 }
388
389 return bad;
390 }
391
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 int i;
395
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403 }
404
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
407
408 static int __init debug_guardpage_minorder_setup(char *buf)
409 {
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419 }
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422 static inline void set_page_guard_flag(struct page *page)
423 {
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426
427 static inline void clear_page_guard_flag(struct page *page)
428 {
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431 #else
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
434 #endif
435
436 static inline void set_page_order(struct page *page, int order)
437 {
438 set_page_private(page, order);
439 __SetPageBuddy(page);
440 }
441
442 static inline void rmv_page_order(struct page *page)
443 {
444 __ClearPageBuddy(page);
445 set_page_private(page, 0);
446 }
447
448 /*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
464 */
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
467 {
468 return page_idx ^ (1 << order);
469 }
470
471 /*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
474 * (a) the buddy is not in a hole &&
475 * (b) the buddy is in the buddy system &&
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
478 *
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
481 *
482 * For recording page's order, we use page_private(page).
483 */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
486 {
487 if (!pfn_valid_within(page_to_pfn(buddy)))
488 return 0;
489
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
498 if (PageBuddy(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
500 return 1;
501 }
502 return 0;
503 }
504
505 /*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519 * order is recorded in page_private(page) field.
520 * So when we are allocating or freeing one, we can derive the state of the
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
523 * If a block is freed, and its buddy is also free, then this
524 * triggers coalescing into a block of larger size.
525 *
526 * -- wli
527 */
528
529 static inline void __free_one_page(struct page *page,
530 struct zone *zone, unsigned int order,
531 int migratetype)
532 {
533 unsigned long page_idx;
534 unsigned long combined_idx;
535 unsigned long uninitialized_var(buddy_idx);
536 struct page *buddy;
537
538 if (unlikely(PageCompound(page)))
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
541
542 VM_BUG_ON(migratetype == -1);
543
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
546 VM_BUG_ON(page_idx & ((1 << order) - 1));
547 VM_BUG_ON(bad_range(zone, page));
548
549 while (order < MAX_ORDER-1) {
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
552 if (!page_is_buddy(page, buddy, order))
553 break;
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
568 combined_idx = buddy_idx & page_idx;
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
584 struct page *higher_page, *higher_buddy;
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
588 higher_buddy = higher_page + (buddy_idx - combined_idx);
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597 out:
598 zone->free_area[order].nr_free++;
599 }
600
601 static inline int free_pages_check(struct page *page)
602 {
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
605 (atomic_read(&page->_count) != 0) |
606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
607 (mem_cgroup_bad_page_check(page)))) {
608 bad_page(page);
609 return 1;
610 }
611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
613 return 0;
614 }
615
616 /*
617 * Frees a number of pages from the PCP lists
618 * Assumes all pages on list are in same zone, and of same order.
619 * count is the number of pages to free.
620 *
621 * If the zone was previously in an "all pages pinned" state then look to
622 * see if this freeing clears that state.
623 *
624 * And clear the zone's pages_scanned counter, to hold off the "all pages are
625 * pinned" detection logic.
626 */
627 static void free_pcppages_bulk(struct zone *zone, int count,
628 struct per_cpu_pages *pcp)
629 {
630 int migratetype = 0;
631 int batch_free = 0;
632 int to_free = count;
633
634 spin_lock(&zone->lock);
635 zone->all_unreclaimable = 0;
636 zone->pages_scanned = 0;
637
638 while (to_free) {
639 struct page *page;
640 struct list_head *list;
641
642 /*
643 * Remove pages from lists in a round-robin fashion. A
644 * batch_free count is maintained that is incremented when an
645 * empty list is encountered. This is so more pages are freed
646 * off fuller lists instead of spinning excessively around empty
647 * lists
648 */
649 do {
650 batch_free++;
651 if (++migratetype == MIGRATE_PCPTYPES)
652 migratetype = 0;
653 list = &pcp->lists[migratetype];
654 } while (list_empty(list));
655
656 /* This is the only non-empty list. Free them all. */
657 if (batch_free == MIGRATE_PCPTYPES)
658 batch_free = to_free;
659
660 do {
661 int mt; /* migratetype of the to-be-freed page */
662
663 page = list_entry(list->prev, struct page, lru);
664 /* must delete as __free_one_page list manipulates */
665 list_del(&page->lru);
666 mt = get_freepage_migratetype(page);
667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
668 __free_one_page(page, zone, 0, mt);
669 trace_mm_page_pcpu_drain(page, 0, mt);
670 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
671 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
672 if (is_migrate_cma(mt))
673 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
674 }
675 } while (--to_free && --batch_free && !list_empty(list));
676 }
677 spin_unlock(&zone->lock);
678 }
679
680 static void free_one_page(struct zone *zone, struct page *page, int order,
681 int migratetype)
682 {
683 spin_lock(&zone->lock);
684 zone->all_unreclaimable = 0;
685 zone->pages_scanned = 0;
686
687 __free_one_page(page, zone, order, migratetype);
688 if (unlikely(migratetype != MIGRATE_ISOLATE))
689 __mod_zone_freepage_state(zone, 1 << order, migratetype);
690 spin_unlock(&zone->lock);
691 }
692
693 static bool free_pages_prepare(struct page *page, unsigned int order)
694 {
695 int i;
696 int bad = 0;
697
698 trace_mm_page_free(page, order);
699 kmemcheck_free_shadow(page, order);
700
701 if (PageAnon(page))
702 page->mapping = NULL;
703 for (i = 0; i < (1 << order); i++)
704 bad += free_pages_check(page + i);
705 if (bad)
706 return false;
707
708 if (!PageHighMem(page)) {
709 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
710 debug_check_no_obj_freed(page_address(page),
711 PAGE_SIZE << order);
712 }
713 arch_free_page(page, order);
714 kernel_map_pages(page, 1 << order, 0);
715
716 return true;
717 }
718
719 static void __free_pages_ok(struct page *page, unsigned int order)
720 {
721 unsigned long flags;
722 int migratetype;
723
724 if (!free_pages_prepare(page, order))
725 return;
726
727 local_irq_save(flags);
728 __count_vm_events(PGFREE, 1 << order);
729 migratetype = get_pageblock_migratetype(page);
730 set_freepage_migratetype(page, migratetype);
731 free_one_page(page_zone(page), page, order, migratetype);
732 local_irq_restore(flags);
733 }
734
735 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
736 {
737 unsigned int nr_pages = 1 << order;
738 unsigned int loop;
739
740 prefetchw(page);
741 for (loop = 0; loop < nr_pages; loop++) {
742 struct page *p = &page[loop];
743
744 if (loop + 1 < nr_pages)
745 prefetchw(p + 1);
746 __ClearPageReserved(p);
747 set_page_count(p, 0);
748 }
749
750 set_page_refcounted(page);
751 __free_pages(page, order);
752 }
753
754 #ifdef CONFIG_CMA
755 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
756 void __init init_cma_reserved_pageblock(struct page *page)
757 {
758 unsigned i = pageblock_nr_pages;
759 struct page *p = page;
760
761 do {
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
764 } while (++p, --i);
765
766 set_page_refcounted(page);
767 set_pageblock_migratetype(page, MIGRATE_CMA);
768 __free_pages(page, pageblock_order);
769 totalram_pages += pageblock_nr_pages;
770 }
771 #endif
772
773 /*
774 * The order of subdivision here is critical for the IO subsystem.
775 * Please do not alter this order without good reasons and regression
776 * testing. Specifically, as large blocks of memory are subdivided,
777 * the order in which smaller blocks are delivered depends on the order
778 * they're subdivided in this function. This is the primary factor
779 * influencing the order in which pages are delivered to the IO
780 * subsystem according to empirical testing, and this is also justified
781 * by considering the behavior of a buddy system containing a single
782 * large block of memory acted on by a series of small allocations.
783 * This behavior is a critical factor in sglist merging's success.
784 *
785 * -- wli
786 */
787 static inline void expand(struct zone *zone, struct page *page,
788 int low, int high, struct free_area *area,
789 int migratetype)
790 {
791 unsigned long size = 1 << high;
792
793 while (high > low) {
794 area--;
795 high--;
796 size >>= 1;
797 VM_BUG_ON(bad_range(zone, &page[size]));
798
799 #ifdef CONFIG_DEBUG_PAGEALLOC
800 if (high < debug_guardpage_minorder()) {
801 /*
802 * Mark as guard pages (or page), that will allow to
803 * merge back to allocator when buddy will be freed.
804 * Corresponding page table entries will not be touched,
805 * pages will stay not present in virtual address space
806 */
807 INIT_LIST_HEAD(&page[size].lru);
808 set_page_guard_flag(&page[size]);
809 set_page_private(&page[size], high);
810 /* Guard pages are not available for any usage */
811 __mod_zone_freepage_state(zone, -(1 << high),
812 migratetype);
813 continue;
814 }
815 #endif
816 list_add(&page[size].lru, &area->free_list[migratetype]);
817 area->nr_free++;
818 set_page_order(&page[size], high);
819 }
820 }
821
822 /*
823 * This page is about to be returned from the page allocator
824 */
825 static inline int check_new_page(struct page *page)
826 {
827 if (unlikely(page_mapcount(page) |
828 (page->mapping != NULL) |
829 (atomic_read(&page->_count) != 0) |
830 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
831 (mem_cgroup_bad_page_check(page)))) {
832 bad_page(page);
833 return 1;
834 }
835 return 0;
836 }
837
838 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
839 {
840 int i;
841
842 for (i = 0; i < (1 << order); i++) {
843 struct page *p = page + i;
844 if (unlikely(check_new_page(p)))
845 return 1;
846 }
847
848 set_page_private(page, 0);
849 set_page_refcounted(page);
850
851 arch_alloc_page(page, order);
852 kernel_map_pages(page, 1 << order, 1);
853
854 if (gfp_flags & __GFP_ZERO)
855 prep_zero_page(page, order, gfp_flags);
856
857 if (order && (gfp_flags & __GFP_COMP))
858 prep_compound_page(page, order);
859
860 return 0;
861 }
862
863 /*
864 * Go through the free lists for the given migratetype and remove
865 * the smallest available page from the freelists
866 */
867 static inline
868 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
869 int migratetype)
870 {
871 unsigned int current_order;
872 struct free_area * area;
873 struct page *page;
874
875 /* Find a page of the appropriate size in the preferred list */
876 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
877 area = &(zone->free_area[current_order]);
878 if (list_empty(&area->free_list[migratetype]))
879 continue;
880
881 page = list_entry(area->free_list[migratetype].next,
882 struct page, lru);
883 list_del(&page->lru);
884 rmv_page_order(page);
885 area->nr_free--;
886 expand(zone, page, order, current_order, area, migratetype);
887 return page;
888 }
889
890 return NULL;
891 }
892
893
894 /*
895 * This array describes the order lists are fallen back to when
896 * the free lists for the desirable migrate type are depleted
897 */
898 static int fallbacks[MIGRATE_TYPES][4] = {
899 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
900 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
901 #ifdef CONFIG_CMA
902 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
903 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
904 #else
905 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
906 #endif
907 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
908 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
909 };
910
911 /*
912 * Move the free pages in a range to the free lists of the requested type.
913 * Note that start_page and end_pages are not aligned on a pageblock
914 * boundary. If alignment is required, use move_freepages_block()
915 */
916 int move_freepages(struct zone *zone,
917 struct page *start_page, struct page *end_page,
918 int migratetype)
919 {
920 struct page *page;
921 unsigned long order;
922 int pages_moved = 0;
923
924 #ifndef CONFIG_HOLES_IN_ZONE
925 /*
926 * page_zone is not safe to call in this context when
927 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
928 * anyway as we check zone boundaries in move_freepages_block().
929 * Remove at a later date when no bug reports exist related to
930 * grouping pages by mobility
931 */
932 BUG_ON(page_zone(start_page) != page_zone(end_page));
933 #endif
934
935 for (page = start_page; page <= end_page;) {
936 /* Make sure we are not inadvertently changing nodes */
937 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
938
939 if (!pfn_valid_within(page_to_pfn(page))) {
940 page++;
941 continue;
942 }
943
944 if (!PageBuddy(page)) {
945 page++;
946 continue;
947 }
948
949 order = page_order(page);
950 list_move(&page->lru,
951 &zone->free_area[order].free_list[migratetype]);
952 set_freepage_migratetype(page, migratetype);
953 page += 1 << order;
954 pages_moved += 1 << order;
955 }
956
957 return pages_moved;
958 }
959
960 int move_freepages_block(struct zone *zone, struct page *page,
961 int migratetype)
962 {
963 unsigned long start_pfn, end_pfn;
964 struct page *start_page, *end_page;
965
966 start_pfn = page_to_pfn(page);
967 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
968 start_page = pfn_to_page(start_pfn);
969 end_page = start_page + pageblock_nr_pages - 1;
970 end_pfn = start_pfn + pageblock_nr_pages - 1;
971
972 /* Do not cross zone boundaries */
973 if (start_pfn < zone->zone_start_pfn)
974 start_page = page;
975 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
976 return 0;
977
978 return move_freepages(zone, start_page, end_page, migratetype);
979 }
980
981 static void change_pageblock_range(struct page *pageblock_page,
982 int start_order, int migratetype)
983 {
984 int nr_pageblocks = 1 << (start_order - pageblock_order);
985
986 while (nr_pageblocks--) {
987 set_pageblock_migratetype(pageblock_page, migratetype);
988 pageblock_page += pageblock_nr_pages;
989 }
990 }
991
992 /* Remove an element from the buddy allocator from the fallback list */
993 static inline struct page *
994 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
995 {
996 struct free_area * area;
997 int current_order;
998 struct page *page;
999 int migratetype, i;
1000
1001 /* Find the largest possible block of pages in the other list */
1002 for (current_order = MAX_ORDER-1; current_order >= order;
1003 --current_order) {
1004 for (i = 0;; i++) {
1005 migratetype = fallbacks[start_migratetype][i];
1006
1007 /* MIGRATE_RESERVE handled later if necessary */
1008 if (migratetype == MIGRATE_RESERVE)
1009 break;
1010
1011 area = &(zone->free_area[current_order]);
1012 if (list_empty(&area->free_list[migratetype]))
1013 continue;
1014
1015 page = list_entry(area->free_list[migratetype].next,
1016 struct page, lru);
1017 area->nr_free--;
1018
1019 /*
1020 * If breaking a large block of pages, move all free
1021 * pages to the preferred allocation list. If falling
1022 * back for a reclaimable kernel allocation, be more
1023 * aggressive about taking ownership of free pages
1024 *
1025 * On the other hand, never change migration
1026 * type of MIGRATE_CMA pageblocks nor move CMA
1027 * pages on different free lists. We don't
1028 * want unmovable pages to be allocated from
1029 * MIGRATE_CMA areas.
1030 */
1031 if (!is_migrate_cma(migratetype) &&
1032 (unlikely(current_order >= pageblock_order / 2) ||
1033 start_migratetype == MIGRATE_RECLAIMABLE ||
1034 page_group_by_mobility_disabled)) {
1035 int pages;
1036 pages = move_freepages_block(zone, page,
1037 start_migratetype);
1038
1039 /* Claim the whole block if over half of it is free */
1040 if (pages >= (1 << (pageblock_order-1)) ||
1041 page_group_by_mobility_disabled)
1042 set_pageblock_migratetype(page,
1043 start_migratetype);
1044
1045 migratetype = start_migratetype;
1046 }
1047
1048 /* Remove the page from the freelists */
1049 list_del(&page->lru);
1050 rmv_page_order(page);
1051
1052 /* Take ownership for orders >= pageblock_order */
1053 if (current_order >= pageblock_order &&
1054 !is_migrate_cma(migratetype))
1055 change_pageblock_range(page, current_order,
1056 start_migratetype);
1057
1058 expand(zone, page, order, current_order, area,
1059 is_migrate_cma(migratetype)
1060 ? migratetype : start_migratetype);
1061
1062 trace_mm_page_alloc_extfrag(page, order, current_order,
1063 start_migratetype, migratetype);
1064
1065 return page;
1066 }
1067 }
1068
1069 return NULL;
1070 }
1071
1072 /*
1073 * Do the hard work of removing an element from the buddy allocator.
1074 * Call me with the zone->lock already held.
1075 */
1076 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1077 int migratetype)
1078 {
1079 struct page *page;
1080
1081 retry_reserve:
1082 page = __rmqueue_smallest(zone, order, migratetype);
1083
1084 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1085 page = __rmqueue_fallback(zone, order, migratetype);
1086
1087 /*
1088 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1089 * is used because __rmqueue_smallest is an inline function
1090 * and we want just one call site
1091 */
1092 if (!page) {
1093 migratetype = MIGRATE_RESERVE;
1094 goto retry_reserve;
1095 }
1096 }
1097
1098 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1099 return page;
1100 }
1101
1102 /*
1103 * Obtain a specified number of elements from the buddy allocator, all under
1104 * a single hold of the lock, for efficiency. Add them to the supplied list.
1105 * Returns the number of new pages which were placed at *list.
1106 */
1107 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1108 unsigned long count, struct list_head *list,
1109 int migratetype, int cold)
1110 {
1111 int mt = migratetype, i;
1112
1113 spin_lock(&zone->lock);
1114 for (i = 0; i < count; ++i) {
1115 struct page *page = __rmqueue(zone, order, migratetype);
1116 if (unlikely(page == NULL))
1117 break;
1118
1119 /*
1120 * Split buddy pages returned by expand() are received here
1121 * in physical page order. The page is added to the callers and
1122 * list and the list head then moves forward. From the callers
1123 * perspective, the linked list is ordered by page number in
1124 * some conditions. This is useful for IO devices that can
1125 * merge IO requests if the physical pages are ordered
1126 * properly.
1127 */
1128 if (likely(cold == 0))
1129 list_add(&page->lru, list);
1130 else
1131 list_add_tail(&page->lru, list);
1132 if (IS_ENABLED(CONFIG_CMA)) {
1133 mt = get_pageblock_migratetype(page);
1134 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1135 mt = migratetype;
1136 }
1137 set_freepage_migratetype(page, mt);
1138 list = &page->lru;
1139 if (is_migrate_cma(mt))
1140 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1141 -(1 << order));
1142 }
1143 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1144 spin_unlock(&zone->lock);
1145 return i;
1146 }
1147
1148 #ifdef CONFIG_NUMA
1149 /*
1150 * Called from the vmstat counter updater to drain pagesets of this
1151 * currently executing processor on remote nodes after they have
1152 * expired.
1153 *
1154 * Note that this function must be called with the thread pinned to
1155 * a single processor.
1156 */
1157 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1158 {
1159 unsigned long flags;
1160 int to_drain;
1161
1162 local_irq_save(flags);
1163 if (pcp->count >= pcp->batch)
1164 to_drain = pcp->batch;
1165 else
1166 to_drain = pcp->count;
1167 if (to_drain > 0) {
1168 free_pcppages_bulk(zone, to_drain, pcp);
1169 pcp->count -= to_drain;
1170 }
1171 local_irq_restore(flags);
1172 }
1173 #endif
1174
1175 /*
1176 * Drain pages of the indicated processor.
1177 *
1178 * The processor must either be the current processor and the
1179 * thread pinned to the current processor or a processor that
1180 * is not online.
1181 */
1182 static void drain_pages(unsigned int cpu)
1183 {
1184 unsigned long flags;
1185 struct zone *zone;
1186
1187 for_each_populated_zone(zone) {
1188 struct per_cpu_pageset *pset;
1189 struct per_cpu_pages *pcp;
1190
1191 local_irq_save(flags);
1192 pset = per_cpu_ptr(zone->pageset, cpu);
1193
1194 pcp = &pset->pcp;
1195 if (pcp->count) {
1196 free_pcppages_bulk(zone, pcp->count, pcp);
1197 pcp->count = 0;
1198 }
1199 local_irq_restore(flags);
1200 }
1201 }
1202
1203 /*
1204 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1205 */
1206 void drain_local_pages(void *arg)
1207 {
1208 drain_pages(smp_processor_id());
1209 }
1210
1211 /*
1212 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1213 *
1214 * Note that this code is protected against sending an IPI to an offline
1215 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1216 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1217 * nothing keeps CPUs from showing up after we populated the cpumask and
1218 * before the call to on_each_cpu_mask().
1219 */
1220 void drain_all_pages(void)
1221 {
1222 int cpu;
1223 struct per_cpu_pageset *pcp;
1224 struct zone *zone;
1225
1226 /*
1227 * Allocate in the BSS so we wont require allocation in
1228 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1229 */
1230 static cpumask_t cpus_with_pcps;
1231
1232 /*
1233 * We don't care about racing with CPU hotplug event
1234 * as offline notification will cause the notified
1235 * cpu to drain that CPU pcps and on_each_cpu_mask
1236 * disables preemption as part of its processing
1237 */
1238 for_each_online_cpu(cpu) {
1239 bool has_pcps = false;
1240 for_each_populated_zone(zone) {
1241 pcp = per_cpu_ptr(zone->pageset, cpu);
1242 if (pcp->pcp.count) {
1243 has_pcps = true;
1244 break;
1245 }
1246 }
1247 if (has_pcps)
1248 cpumask_set_cpu(cpu, &cpus_with_pcps);
1249 else
1250 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1251 }
1252 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1253 }
1254
1255 #ifdef CONFIG_HIBERNATION
1256
1257 void mark_free_pages(struct zone *zone)
1258 {
1259 unsigned long pfn, max_zone_pfn;
1260 unsigned long flags;
1261 int order, t;
1262 struct list_head *curr;
1263
1264 if (!zone->spanned_pages)
1265 return;
1266
1267 spin_lock_irqsave(&zone->lock, flags);
1268
1269 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1270 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1271 if (pfn_valid(pfn)) {
1272 struct page *page = pfn_to_page(pfn);
1273
1274 if (!swsusp_page_is_forbidden(page))
1275 swsusp_unset_page_free(page);
1276 }
1277
1278 for_each_migratetype_order(order, t) {
1279 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1280 unsigned long i;
1281
1282 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1283 for (i = 0; i < (1UL << order); i++)
1284 swsusp_set_page_free(pfn_to_page(pfn + i));
1285 }
1286 }
1287 spin_unlock_irqrestore(&zone->lock, flags);
1288 }
1289 #endif /* CONFIG_PM */
1290
1291 /*
1292 * Free a 0-order page
1293 * cold == 1 ? free a cold page : free a hot page
1294 */
1295 void free_hot_cold_page(struct page *page, int cold)
1296 {
1297 struct zone *zone = page_zone(page);
1298 struct per_cpu_pages *pcp;
1299 unsigned long flags;
1300 int migratetype;
1301
1302 if (!free_pages_prepare(page, 0))
1303 return;
1304
1305 migratetype = get_pageblock_migratetype(page);
1306 set_freepage_migratetype(page, migratetype);
1307 local_irq_save(flags);
1308 __count_vm_event(PGFREE);
1309
1310 /*
1311 * We only track unmovable, reclaimable and movable on pcp lists.
1312 * Free ISOLATE pages back to the allocator because they are being
1313 * offlined but treat RESERVE as movable pages so we can get those
1314 * areas back if necessary. Otherwise, we may have to free
1315 * excessively into the page allocator
1316 */
1317 if (migratetype >= MIGRATE_PCPTYPES) {
1318 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1319 free_one_page(zone, page, 0, migratetype);
1320 goto out;
1321 }
1322 migratetype = MIGRATE_MOVABLE;
1323 }
1324
1325 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1326 if (cold)
1327 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1328 else
1329 list_add(&page->lru, &pcp->lists[migratetype]);
1330 pcp->count++;
1331 if (pcp->count >= pcp->high) {
1332 free_pcppages_bulk(zone, pcp->batch, pcp);
1333 pcp->count -= pcp->batch;
1334 }
1335
1336 out:
1337 local_irq_restore(flags);
1338 }
1339
1340 /*
1341 * Free a list of 0-order pages
1342 */
1343 void free_hot_cold_page_list(struct list_head *list, int cold)
1344 {
1345 struct page *page, *next;
1346
1347 list_for_each_entry_safe(page, next, list, lru) {
1348 trace_mm_page_free_batched(page, cold);
1349 free_hot_cold_page(page, cold);
1350 }
1351 }
1352
1353 /*
1354 * split_page takes a non-compound higher-order page, and splits it into
1355 * n (1<<order) sub-pages: page[0..n]
1356 * Each sub-page must be freed individually.
1357 *
1358 * Note: this is probably too low level an operation for use in drivers.
1359 * Please consult with lkml before using this in your driver.
1360 */
1361 void split_page(struct page *page, unsigned int order)
1362 {
1363 int i;
1364
1365 VM_BUG_ON(PageCompound(page));
1366 VM_BUG_ON(!page_count(page));
1367
1368 #ifdef CONFIG_KMEMCHECK
1369 /*
1370 * Split shadow pages too, because free(page[0]) would
1371 * otherwise free the whole shadow.
1372 */
1373 if (kmemcheck_page_is_tracked(page))
1374 split_page(virt_to_page(page[0].shadow), order);
1375 #endif
1376
1377 for (i = 1; i < (1 << order); i++)
1378 set_page_refcounted(page + i);
1379 }
1380
1381 /*
1382 * Similar to the split_page family of functions except that the page
1383 * required at the given order and being isolated now to prevent races
1384 * with parallel allocators
1385 */
1386 int capture_free_page(struct page *page, int alloc_order, int migratetype)
1387 {
1388 unsigned int order;
1389 unsigned long watermark;
1390 struct zone *zone;
1391 int mt;
1392
1393 BUG_ON(!PageBuddy(page));
1394
1395 zone = page_zone(page);
1396 order = page_order(page);
1397
1398 /* Obey watermarks as if the page was being allocated */
1399 watermark = low_wmark_pages(zone) + (1 << order);
1400 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1401 return 0;
1402
1403 /* Remove page from free list */
1404 list_del(&page->lru);
1405 zone->free_area[order].nr_free--;
1406 rmv_page_order(page);
1407
1408 mt = get_pageblock_migratetype(page);
1409 if (unlikely(mt != MIGRATE_ISOLATE))
1410 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
1411
1412 if (alloc_order != order)
1413 expand(zone, page, alloc_order, order,
1414 &zone->free_area[order], migratetype);
1415
1416 /* Set the pageblock if the captured page is at least a pageblock */
1417 if (order >= pageblock_order - 1) {
1418 struct page *endpage = page + (1 << order) - 1;
1419 for (; page < endpage; page += pageblock_nr_pages) {
1420 int mt = get_pageblock_migratetype(page);
1421 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1422 set_pageblock_migratetype(page,
1423 MIGRATE_MOVABLE);
1424 }
1425 }
1426
1427 return 1UL << alloc_order;
1428 }
1429
1430 /*
1431 * Similar to split_page except the page is already free. As this is only
1432 * being used for migration, the migratetype of the block also changes.
1433 * As this is called with interrupts disabled, the caller is responsible
1434 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1435 * are enabled.
1436 *
1437 * Note: this is probably too low level an operation for use in drivers.
1438 * Please consult with lkml before using this in your driver.
1439 */
1440 int split_free_page(struct page *page)
1441 {
1442 unsigned int order;
1443 int nr_pages;
1444
1445 BUG_ON(!PageBuddy(page));
1446 order = page_order(page);
1447
1448 nr_pages = capture_free_page(page, order, 0);
1449 if (!nr_pages)
1450 return 0;
1451
1452 /* Split into individual pages */
1453 set_page_refcounted(page);
1454 split_page(page, order);
1455 return nr_pages;
1456 }
1457
1458 /*
1459 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1460 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1461 * or two.
1462 */
1463 static inline
1464 struct page *buffered_rmqueue(struct zone *preferred_zone,
1465 struct zone *zone, int order, gfp_t gfp_flags,
1466 int migratetype)
1467 {
1468 unsigned long flags;
1469 struct page *page;
1470 int cold = !!(gfp_flags & __GFP_COLD);
1471
1472 again:
1473 if (likely(order == 0)) {
1474 struct per_cpu_pages *pcp;
1475 struct list_head *list;
1476
1477 local_irq_save(flags);
1478 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1479 list = &pcp->lists[migratetype];
1480 if (list_empty(list)) {
1481 pcp->count += rmqueue_bulk(zone, 0,
1482 pcp->batch, list,
1483 migratetype, cold);
1484 if (unlikely(list_empty(list)))
1485 goto failed;
1486 }
1487
1488 if (cold)
1489 page = list_entry(list->prev, struct page, lru);
1490 else
1491 page = list_entry(list->next, struct page, lru);
1492
1493 list_del(&page->lru);
1494 pcp->count--;
1495 } else {
1496 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1497 /*
1498 * __GFP_NOFAIL is not to be used in new code.
1499 *
1500 * All __GFP_NOFAIL callers should be fixed so that they
1501 * properly detect and handle allocation failures.
1502 *
1503 * We most definitely don't want callers attempting to
1504 * allocate greater than order-1 page units with
1505 * __GFP_NOFAIL.
1506 */
1507 WARN_ON_ONCE(order > 1);
1508 }
1509 spin_lock_irqsave(&zone->lock, flags);
1510 page = __rmqueue(zone, order, migratetype);
1511 spin_unlock(&zone->lock);
1512 if (!page)
1513 goto failed;
1514 __mod_zone_freepage_state(zone, -(1 << order),
1515 get_pageblock_migratetype(page));
1516 }
1517
1518 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1519 zone_statistics(preferred_zone, zone, gfp_flags);
1520 local_irq_restore(flags);
1521
1522 VM_BUG_ON(bad_range(zone, page));
1523 if (prep_new_page(page, order, gfp_flags))
1524 goto again;
1525 return page;
1526
1527 failed:
1528 local_irq_restore(flags);
1529 return NULL;
1530 }
1531
1532 #ifdef CONFIG_FAIL_PAGE_ALLOC
1533
1534 static struct {
1535 struct fault_attr attr;
1536
1537 u32 ignore_gfp_highmem;
1538 u32 ignore_gfp_wait;
1539 u32 min_order;
1540 } fail_page_alloc = {
1541 .attr = FAULT_ATTR_INITIALIZER,
1542 .ignore_gfp_wait = 1,
1543 .ignore_gfp_highmem = 1,
1544 .min_order = 1,
1545 };
1546
1547 static int __init setup_fail_page_alloc(char *str)
1548 {
1549 return setup_fault_attr(&fail_page_alloc.attr, str);
1550 }
1551 __setup("fail_page_alloc=", setup_fail_page_alloc);
1552
1553 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1554 {
1555 if (order < fail_page_alloc.min_order)
1556 return false;
1557 if (gfp_mask & __GFP_NOFAIL)
1558 return false;
1559 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1560 return false;
1561 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1562 return false;
1563
1564 return should_fail(&fail_page_alloc.attr, 1 << order);
1565 }
1566
1567 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1568
1569 static int __init fail_page_alloc_debugfs(void)
1570 {
1571 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1572 struct dentry *dir;
1573
1574 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1575 &fail_page_alloc.attr);
1576 if (IS_ERR(dir))
1577 return PTR_ERR(dir);
1578
1579 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1580 &fail_page_alloc.ignore_gfp_wait))
1581 goto fail;
1582 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1583 &fail_page_alloc.ignore_gfp_highmem))
1584 goto fail;
1585 if (!debugfs_create_u32("min-order", mode, dir,
1586 &fail_page_alloc.min_order))
1587 goto fail;
1588
1589 return 0;
1590 fail:
1591 debugfs_remove_recursive(dir);
1592
1593 return -ENOMEM;
1594 }
1595
1596 late_initcall(fail_page_alloc_debugfs);
1597
1598 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1599
1600 #else /* CONFIG_FAIL_PAGE_ALLOC */
1601
1602 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1603 {
1604 return false;
1605 }
1606
1607 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1608
1609 /*
1610 * Return true if free pages are above 'mark'. This takes into account the order
1611 * of the allocation.
1612 */
1613 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1614 int classzone_idx, int alloc_flags, long free_pages)
1615 {
1616 /* free_pages my go negative - that's OK */
1617 long min = mark;
1618 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1619 int o;
1620
1621 free_pages -= (1 << order) - 1;
1622 if (alloc_flags & ALLOC_HIGH)
1623 min -= min / 2;
1624 if (alloc_flags & ALLOC_HARDER)
1625 min -= min / 4;
1626 #ifdef CONFIG_CMA
1627 /* If allocation can't use CMA areas don't use free CMA pages */
1628 if (!(alloc_flags & ALLOC_CMA))
1629 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1630 #endif
1631 if (free_pages <= min + lowmem_reserve)
1632 return false;
1633 for (o = 0; o < order; o++) {
1634 /* At the next order, this order's pages become unavailable */
1635 free_pages -= z->free_area[o].nr_free << o;
1636
1637 /* Require fewer higher order pages to be free */
1638 min >>= 1;
1639
1640 if (free_pages <= min)
1641 return false;
1642 }
1643 return true;
1644 }
1645
1646 #ifdef CONFIG_MEMORY_ISOLATION
1647 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1648 {
1649 if (unlikely(zone->nr_pageblock_isolate))
1650 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1651 return 0;
1652 }
1653 #else
1654 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1655 {
1656 return 0;
1657 }
1658 #endif
1659
1660 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1661 int classzone_idx, int alloc_flags)
1662 {
1663 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1664 zone_page_state(z, NR_FREE_PAGES));
1665 }
1666
1667 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1668 int classzone_idx, int alloc_flags)
1669 {
1670 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1671
1672 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1673 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1674
1675 /*
1676 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1677 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1678 * sleep although it could do so. But this is more desirable for memory
1679 * hotplug than sleeping which can cause a livelock in the direct
1680 * reclaim path.
1681 */
1682 free_pages -= nr_zone_isolate_freepages(z);
1683 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1684 free_pages);
1685 }
1686
1687 #ifdef CONFIG_NUMA
1688 /*
1689 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1690 * skip over zones that are not allowed by the cpuset, or that have
1691 * been recently (in last second) found to be nearly full. See further
1692 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1693 * that have to skip over a lot of full or unallowed zones.
1694 *
1695 * If the zonelist cache is present in the passed in zonelist, then
1696 * returns a pointer to the allowed node mask (either the current
1697 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1698 *
1699 * If the zonelist cache is not available for this zonelist, does
1700 * nothing and returns NULL.
1701 *
1702 * If the fullzones BITMAP in the zonelist cache is stale (more than
1703 * a second since last zap'd) then we zap it out (clear its bits.)
1704 *
1705 * We hold off even calling zlc_setup, until after we've checked the
1706 * first zone in the zonelist, on the theory that most allocations will
1707 * be satisfied from that first zone, so best to examine that zone as
1708 * quickly as we can.
1709 */
1710 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1711 {
1712 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1713 nodemask_t *allowednodes; /* zonelist_cache approximation */
1714
1715 zlc = zonelist->zlcache_ptr;
1716 if (!zlc)
1717 return NULL;
1718
1719 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1720 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1721 zlc->last_full_zap = jiffies;
1722 }
1723
1724 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1725 &cpuset_current_mems_allowed :
1726 &node_states[N_HIGH_MEMORY];
1727 return allowednodes;
1728 }
1729
1730 /*
1731 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1732 * if it is worth looking at further for free memory:
1733 * 1) Check that the zone isn't thought to be full (doesn't have its
1734 * bit set in the zonelist_cache fullzones BITMAP).
1735 * 2) Check that the zones node (obtained from the zonelist_cache
1736 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1737 * Return true (non-zero) if zone is worth looking at further, or
1738 * else return false (zero) if it is not.
1739 *
1740 * This check -ignores- the distinction between various watermarks,
1741 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1742 * found to be full for any variation of these watermarks, it will
1743 * be considered full for up to one second by all requests, unless
1744 * we are so low on memory on all allowed nodes that we are forced
1745 * into the second scan of the zonelist.
1746 *
1747 * In the second scan we ignore this zonelist cache and exactly
1748 * apply the watermarks to all zones, even it is slower to do so.
1749 * We are low on memory in the second scan, and should leave no stone
1750 * unturned looking for a free page.
1751 */
1752 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1753 nodemask_t *allowednodes)
1754 {
1755 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1756 int i; /* index of *z in zonelist zones */
1757 int n; /* node that zone *z is on */
1758
1759 zlc = zonelist->zlcache_ptr;
1760 if (!zlc)
1761 return 1;
1762
1763 i = z - zonelist->_zonerefs;
1764 n = zlc->z_to_n[i];
1765
1766 /* This zone is worth trying if it is allowed but not full */
1767 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1768 }
1769
1770 /*
1771 * Given 'z' scanning a zonelist, set the corresponding bit in
1772 * zlc->fullzones, so that subsequent attempts to allocate a page
1773 * from that zone don't waste time re-examining it.
1774 */
1775 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1776 {
1777 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1778 int i; /* index of *z in zonelist zones */
1779
1780 zlc = zonelist->zlcache_ptr;
1781 if (!zlc)
1782 return;
1783
1784 i = z - zonelist->_zonerefs;
1785
1786 set_bit(i, zlc->fullzones);
1787 }
1788
1789 /*
1790 * clear all zones full, called after direct reclaim makes progress so that
1791 * a zone that was recently full is not skipped over for up to a second
1792 */
1793 static void zlc_clear_zones_full(struct zonelist *zonelist)
1794 {
1795 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1796
1797 zlc = zonelist->zlcache_ptr;
1798 if (!zlc)
1799 return;
1800
1801 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1802 }
1803
1804 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1805 {
1806 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1807 }
1808
1809 static void __paginginit init_zone_allows_reclaim(int nid)
1810 {
1811 int i;
1812
1813 for_each_online_node(i)
1814 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1815 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1816 else
1817 zone_reclaim_mode = 1;
1818 }
1819
1820 #else /* CONFIG_NUMA */
1821
1822 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1823 {
1824 return NULL;
1825 }
1826
1827 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1828 nodemask_t *allowednodes)
1829 {
1830 return 1;
1831 }
1832
1833 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1834 {
1835 }
1836
1837 static void zlc_clear_zones_full(struct zonelist *zonelist)
1838 {
1839 }
1840
1841 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1842 {
1843 return true;
1844 }
1845
1846 static inline void init_zone_allows_reclaim(int nid)
1847 {
1848 }
1849 #endif /* CONFIG_NUMA */
1850
1851 /*
1852 * get_page_from_freelist goes through the zonelist trying to allocate
1853 * a page.
1854 */
1855 static struct page *
1856 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1857 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1858 struct zone *preferred_zone, int migratetype)
1859 {
1860 struct zoneref *z;
1861 struct page *page = NULL;
1862 int classzone_idx;
1863 struct zone *zone;
1864 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1865 int zlc_active = 0; /* set if using zonelist_cache */
1866 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1867
1868 classzone_idx = zone_idx(preferred_zone);
1869 zonelist_scan:
1870 /*
1871 * Scan zonelist, looking for a zone with enough free.
1872 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1873 */
1874 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1875 high_zoneidx, nodemask) {
1876 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1877 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1878 continue;
1879 if ((alloc_flags & ALLOC_CPUSET) &&
1880 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1881 continue;
1882 /*
1883 * When allocating a page cache page for writing, we
1884 * want to get it from a zone that is within its dirty
1885 * limit, such that no single zone holds more than its
1886 * proportional share of globally allowed dirty pages.
1887 * The dirty limits take into account the zone's
1888 * lowmem reserves and high watermark so that kswapd
1889 * should be able to balance it without having to
1890 * write pages from its LRU list.
1891 *
1892 * This may look like it could increase pressure on
1893 * lower zones by failing allocations in higher zones
1894 * before they are full. But the pages that do spill
1895 * over are limited as the lower zones are protected
1896 * by this very same mechanism. It should not become
1897 * a practical burden to them.
1898 *
1899 * XXX: For now, allow allocations to potentially
1900 * exceed the per-zone dirty limit in the slowpath
1901 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1902 * which is important when on a NUMA setup the allowed
1903 * zones are together not big enough to reach the
1904 * global limit. The proper fix for these situations
1905 * will require awareness of zones in the
1906 * dirty-throttling and the flusher threads.
1907 */
1908 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1909 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1910 goto this_zone_full;
1911
1912 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1913 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1914 unsigned long mark;
1915 int ret;
1916
1917 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1918 if (zone_watermark_ok(zone, order, mark,
1919 classzone_idx, alloc_flags))
1920 goto try_this_zone;
1921
1922 if (IS_ENABLED(CONFIG_NUMA) &&
1923 !did_zlc_setup && nr_online_nodes > 1) {
1924 /*
1925 * we do zlc_setup if there are multiple nodes
1926 * and before considering the first zone allowed
1927 * by the cpuset.
1928 */
1929 allowednodes = zlc_setup(zonelist, alloc_flags);
1930 zlc_active = 1;
1931 did_zlc_setup = 1;
1932 }
1933
1934 if (zone_reclaim_mode == 0 ||
1935 !zone_allows_reclaim(preferred_zone, zone))
1936 goto this_zone_full;
1937
1938 /*
1939 * As we may have just activated ZLC, check if the first
1940 * eligible zone has failed zone_reclaim recently.
1941 */
1942 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1943 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1944 continue;
1945
1946 ret = zone_reclaim(zone, gfp_mask, order);
1947 switch (ret) {
1948 case ZONE_RECLAIM_NOSCAN:
1949 /* did not scan */
1950 continue;
1951 case ZONE_RECLAIM_FULL:
1952 /* scanned but unreclaimable */
1953 continue;
1954 default:
1955 /* did we reclaim enough */
1956 if (!zone_watermark_ok(zone, order, mark,
1957 classzone_idx, alloc_flags))
1958 goto this_zone_full;
1959 }
1960 }
1961
1962 try_this_zone:
1963 page = buffered_rmqueue(preferred_zone, zone, order,
1964 gfp_mask, migratetype);
1965 if (page)
1966 break;
1967 this_zone_full:
1968 if (IS_ENABLED(CONFIG_NUMA))
1969 zlc_mark_zone_full(zonelist, z);
1970 }
1971
1972 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1973 /* Disable zlc cache for second zonelist scan */
1974 zlc_active = 0;
1975 goto zonelist_scan;
1976 }
1977
1978 if (page)
1979 /*
1980 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1981 * necessary to allocate the page. The expectation is
1982 * that the caller is taking steps that will free more
1983 * memory. The caller should avoid the page being used
1984 * for !PFMEMALLOC purposes.
1985 */
1986 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1987
1988 return page;
1989 }
1990
1991 /*
1992 * Large machines with many possible nodes should not always dump per-node
1993 * meminfo in irq context.
1994 */
1995 static inline bool should_suppress_show_mem(void)
1996 {
1997 bool ret = false;
1998
1999 #if NODES_SHIFT > 8
2000 ret = in_interrupt();
2001 #endif
2002 return ret;
2003 }
2004
2005 static DEFINE_RATELIMIT_STATE(nopage_rs,
2006 DEFAULT_RATELIMIT_INTERVAL,
2007 DEFAULT_RATELIMIT_BURST);
2008
2009 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2010 {
2011 unsigned int filter = SHOW_MEM_FILTER_NODES;
2012
2013 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2014 debug_guardpage_minorder() > 0)
2015 return;
2016
2017 /*
2018 * This documents exceptions given to allocations in certain
2019 * contexts that are allowed to allocate outside current's set
2020 * of allowed nodes.
2021 */
2022 if (!(gfp_mask & __GFP_NOMEMALLOC))
2023 if (test_thread_flag(TIF_MEMDIE) ||
2024 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2025 filter &= ~SHOW_MEM_FILTER_NODES;
2026 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2027 filter &= ~SHOW_MEM_FILTER_NODES;
2028
2029 if (fmt) {
2030 struct va_format vaf;
2031 va_list args;
2032
2033 va_start(args, fmt);
2034
2035 vaf.fmt = fmt;
2036 vaf.va = &args;
2037
2038 pr_warn("%pV", &vaf);
2039
2040 va_end(args);
2041 }
2042
2043 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2044 current->comm, order, gfp_mask);
2045
2046 dump_stack();
2047 if (!should_suppress_show_mem())
2048 show_mem(filter);
2049 }
2050
2051 static inline int
2052 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2053 unsigned long did_some_progress,
2054 unsigned long pages_reclaimed)
2055 {
2056 /* Do not loop if specifically requested */
2057 if (gfp_mask & __GFP_NORETRY)
2058 return 0;
2059
2060 /* Always retry if specifically requested */
2061 if (gfp_mask & __GFP_NOFAIL)
2062 return 1;
2063
2064 /*
2065 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2066 * making forward progress without invoking OOM. Suspend also disables
2067 * storage devices so kswapd will not help. Bail if we are suspending.
2068 */
2069 if (!did_some_progress && pm_suspended_storage())
2070 return 0;
2071
2072 /*
2073 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2074 * means __GFP_NOFAIL, but that may not be true in other
2075 * implementations.
2076 */
2077 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2078 return 1;
2079
2080 /*
2081 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2082 * specified, then we retry until we no longer reclaim any pages
2083 * (above), or we've reclaimed an order of pages at least as
2084 * large as the allocation's order. In both cases, if the
2085 * allocation still fails, we stop retrying.
2086 */
2087 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2088 return 1;
2089
2090 return 0;
2091 }
2092
2093 static inline struct page *
2094 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2095 struct zonelist *zonelist, enum zone_type high_zoneidx,
2096 nodemask_t *nodemask, struct zone *preferred_zone,
2097 int migratetype)
2098 {
2099 struct page *page;
2100
2101 /* Acquire the OOM killer lock for the zones in zonelist */
2102 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2103 schedule_timeout_uninterruptible(1);
2104 return NULL;
2105 }
2106
2107 /*
2108 * Go through the zonelist yet one more time, keep very high watermark
2109 * here, this is only to catch a parallel oom killing, we must fail if
2110 * we're still under heavy pressure.
2111 */
2112 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2113 order, zonelist, high_zoneidx,
2114 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2115 preferred_zone, migratetype);
2116 if (page)
2117 goto out;
2118
2119 if (!(gfp_mask & __GFP_NOFAIL)) {
2120 /* The OOM killer will not help higher order allocs */
2121 if (order > PAGE_ALLOC_COSTLY_ORDER)
2122 goto out;
2123 /* The OOM killer does not needlessly kill tasks for lowmem */
2124 if (high_zoneidx < ZONE_NORMAL)
2125 goto out;
2126 /*
2127 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2128 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2129 * The caller should handle page allocation failure by itself if
2130 * it specifies __GFP_THISNODE.
2131 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2132 */
2133 if (gfp_mask & __GFP_THISNODE)
2134 goto out;
2135 }
2136 /* Exhausted what can be done so it's blamo time */
2137 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2138
2139 out:
2140 clear_zonelist_oom(zonelist, gfp_mask);
2141 return page;
2142 }
2143
2144 #ifdef CONFIG_COMPACTION
2145 /* Try memory compaction for high-order allocations before reclaim */
2146 static struct page *
2147 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2148 struct zonelist *zonelist, enum zone_type high_zoneidx,
2149 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2150 int migratetype, bool sync_migration,
2151 bool *contended_compaction, bool *deferred_compaction,
2152 unsigned long *did_some_progress)
2153 {
2154 struct page *page = NULL;
2155
2156 if (!order)
2157 return NULL;
2158
2159 if (compaction_deferred(preferred_zone, order)) {
2160 *deferred_compaction = true;
2161 return NULL;
2162 }
2163
2164 current->flags |= PF_MEMALLOC;
2165 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2166 nodemask, sync_migration,
2167 contended_compaction, &page);
2168 current->flags &= ~PF_MEMALLOC;
2169
2170 /* If compaction captured a page, prep and use it */
2171 if (page) {
2172 prep_new_page(page, order, gfp_mask);
2173 goto got_page;
2174 }
2175
2176 if (*did_some_progress != COMPACT_SKIPPED) {
2177 /* Page migration frees to the PCP lists but we want merging */
2178 drain_pages(get_cpu());
2179 put_cpu();
2180
2181 page = get_page_from_freelist(gfp_mask, nodemask,
2182 order, zonelist, high_zoneidx,
2183 alloc_flags & ~ALLOC_NO_WATERMARKS,
2184 preferred_zone, migratetype);
2185 if (page) {
2186 got_page:
2187 preferred_zone->compact_blockskip_flush = false;
2188 preferred_zone->compact_considered = 0;
2189 preferred_zone->compact_defer_shift = 0;
2190 if (order >= preferred_zone->compact_order_failed)
2191 preferred_zone->compact_order_failed = order + 1;
2192 count_vm_event(COMPACTSUCCESS);
2193 return page;
2194 }
2195
2196 /*
2197 * It's bad if compaction run occurs and fails.
2198 * The most likely reason is that pages exist,
2199 * but not enough to satisfy watermarks.
2200 */
2201 count_vm_event(COMPACTFAIL);
2202
2203 /*
2204 * As async compaction considers a subset of pageblocks, only
2205 * defer if the failure was a sync compaction failure.
2206 */
2207 if (sync_migration)
2208 defer_compaction(preferred_zone, order);
2209
2210 cond_resched();
2211 }
2212
2213 return NULL;
2214 }
2215 #else
2216 static inline struct page *
2217 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2218 struct zonelist *zonelist, enum zone_type high_zoneidx,
2219 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2220 int migratetype, bool sync_migration,
2221 bool *contended_compaction, bool *deferred_compaction,
2222 unsigned long *did_some_progress)
2223 {
2224 return NULL;
2225 }
2226 #endif /* CONFIG_COMPACTION */
2227
2228 /* Perform direct synchronous page reclaim */
2229 static int
2230 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2231 nodemask_t *nodemask)
2232 {
2233 struct reclaim_state reclaim_state;
2234 int progress;
2235
2236 cond_resched();
2237
2238 /* We now go into synchronous reclaim */
2239 cpuset_memory_pressure_bump();
2240 current->flags |= PF_MEMALLOC;
2241 lockdep_set_current_reclaim_state(gfp_mask);
2242 reclaim_state.reclaimed_slab = 0;
2243 current->reclaim_state = &reclaim_state;
2244
2245 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2246
2247 current->reclaim_state = NULL;
2248 lockdep_clear_current_reclaim_state();
2249 current->flags &= ~PF_MEMALLOC;
2250
2251 cond_resched();
2252
2253 return progress;
2254 }
2255
2256 /* The really slow allocator path where we enter direct reclaim */
2257 static inline struct page *
2258 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2259 struct zonelist *zonelist, enum zone_type high_zoneidx,
2260 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2261 int migratetype, unsigned long *did_some_progress)
2262 {
2263 struct page *page = NULL;
2264 bool drained = false;
2265
2266 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2267 nodemask);
2268 if (unlikely(!(*did_some_progress)))
2269 return NULL;
2270
2271 /* After successful reclaim, reconsider all zones for allocation */
2272 if (IS_ENABLED(CONFIG_NUMA))
2273 zlc_clear_zones_full(zonelist);
2274
2275 retry:
2276 page = get_page_from_freelist(gfp_mask, nodemask, order,
2277 zonelist, high_zoneidx,
2278 alloc_flags & ~ALLOC_NO_WATERMARKS,
2279 preferred_zone, migratetype);
2280
2281 /*
2282 * If an allocation failed after direct reclaim, it could be because
2283 * pages are pinned on the per-cpu lists. Drain them and try again
2284 */
2285 if (!page && !drained) {
2286 drain_all_pages();
2287 drained = true;
2288 goto retry;
2289 }
2290
2291 return page;
2292 }
2293
2294 /*
2295 * This is called in the allocator slow-path if the allocation request is of
2296 * sufficient urgency to ignore watermarks and take other desperate measures
2297 */
2298 static inline struct page *
2299 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2300 struct zonelist *zonelist, enum zone_type high_zoneidx,
2301 nodemask_t *nodemask, struct zone *preferred_zone,
2302 int migratetype)
2303 {
2304 struct page *page;
2305
2306 do {
2307 page = get_page_from_freelist(gfp_mask, nodemask, order,
2308 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2309 preferred_zone, migratetype);
2310
2311 if (!page && gfp_mask & __GFP_NOFAIL)
2312 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2313 } while (!page && (gfp_mask & __GFP_NOFAIL));
2314
2315 return page;
2316 }
2317
2318 static inline
2319 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2320 enum zone_type high_zoneidx,
2321 enum zone_type classzone_idx)
2322 {
2323 struct zoneref *z;
2324 struct zone *zone;
2325
2326 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2327 wakeup_kswapd(zone, order, classzone_idx);
2328 }
2329
2330 static inline int
2331 gfp_to_alloc_flags(gfp_t gfp_mask)
2332 {
2333 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2334 const gfp_t wait = gfp_mask & __GFP_WAIT;
2335
2336 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2337 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2338
2339 /*
2340 * The caller may dip into page reserves a bit more if the caller
2341 * cannot run direct reclaim, or if the caller has realtime scheduling
2342 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2343 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2344 */
2345 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2346
2347 if (!wait) {
2348 /*
2349 * Not worth trying to allocate harder for
2350 * __GFP_NOMEMALLOC even if it can't schedule.
2351 */
2352 if (!(gfp_mask & __GFP_NOMEMALLOC))
2353 alloc_flags |= ALLOC_HARDER;
2354 /*
2355 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2356 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2357 */
2358 alloc_flags &= ~ALLOC_CPUSET;
2359 } else if (unlikely(rt_task(current)) && !in_interrupt())
2360 alloc_flags |= ALLOC_HARDER;
2361
2362 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2363 if (gfp_mask & __GFP_MEMALLOC)
2364 alloc_flags |= ALLOC_NO_WATERMARKS;
2365 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2366 alloc_flags |= ALLOC_NO_WATERMARKS;
2367 else if (!in_interrupt() &&
2368 ((current->flags & PF_MEMALLOC) ||
2369 unlikely(test_thread_flag(TIF_MEMDIE))))
2370 alloc_flags |= ALLOC_NO_WATERMARKS;
2371 }
2372 #ifdef CONFIG_CMA
2373 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2374 alloc_flags |= ALLOC_CMA;
2375 #endif
2376 return alloc_flags;
2377 }
2378
2379 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2380 {
2381 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2382 }
2383
2384 static inline struct page *
2385 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2386 struct zonelist *zonelist, enum zone_type high_zoneidx,
2387 nodemask_t *nodemask, struct zone *preferred_zone,
2388 int migratetype)
2389 {
2390 const gfp_t wait = gfp_mask & __GFP_WAIT;
2391 struct page *page = NULL;
2392 int alloc_flags;
2393 unsigned long pages_reclaimed = 0;
2394 unsigned long did_some_progress;
2395 bool sync_migration = false;
2396 bool deferred_compaction = false;
2397 bool contended_compaction = false;
2398
2399 /*
2400 * In the slowpath, we sanity check order to avoid ever trying to
2401 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2402 * be using allocators in order of preference for an area that is
2403 * too large.
2404 */
2405 if (order >= MAX_ORDER) {
2406 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2407 return NULL;
2408 }
2409
2410 /*
2411 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2412 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2413 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2414 * using a larger set of nodes after it has established that the
2415 * allowed per node queues are empty and that nodes are
2416 * over allocated.
2417 */
2418 if (IS_ENABLED(CONFIG_NUMA) &&
2419 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2420 goto nopage;
2421
2422 restart:
2423 if (!(gfp_mask & __GFP_NO_KSWAPD))
2424 wake_all_kswapd(order, zonelist, high_zoneidx,
2425 zone_idx(preferred_zone));
2426
2427 /*
2428 * OK, we're below the kswapd watermark and have kicked background
2429 * reclaim. Now things get more complex, so set up alloc_flags according
2430 * to how we want to proceed.
2431 */
2432 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2433
2434 /*
2435 * Find the true preferred zone if the allocation is unconstrained by
2436 * cpusets.
2437 */
2438 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2439 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2440 &preferred_zone);
2441
2442 rebalance:
2443 /* This is the last chance, in general, before the goto nopage. */
2444 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2445 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2446 preferred_zone, migratetype);
2447 if (page)
2448 goto got_pg;
2449
2450 /* Allocate without watermarks if the context allows */
2451 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2452 /*
2453 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2454 * the allocation is high priority and these type of
2455 * allocations are system rather than user orientated
2456 */
2457 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2458
2459 page = __alloc_pages_high_priority(gfp_mask, order,
2460 zonelist, high_zoneidx, nodemask,
2461 preferred_zone, migratetype);
2462 if (page) {
2463 goto got_pg;
2464 }
2465 }
2466
2467 /* Atomic allocations - we can't balance anything */
2468 if (!wait)
2469 goto nopage;
2470
2471 /* Avoid recursion of direct reclaim */
2472 if (current->flags & PF_MEMALLOC)
2473 goto nopage;
2474
2475 /* Avoid allocations with no watermarks from looping endlessly */
2476 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2477 goto nopage;
2478
2479 /*
2480 * Try direct compaction. The first pass is asynchronous. Subsequent
2481 * attempts after direct reclaim are synchronous
2482 */
2483 page = __alloc_pages_direct_compact(gfp_mask, order,
2484 zonelist, high_zoneidx,
2485 nodemask,
2486 alloc_flags, preferred_zone,
2487 migratetype, sync_migration,
2488 &contended_compaction,
2489 &deferred_compaction,
2490 &did_some_progress);
2491 if (page)
2492 goto got_pg;
2493 sync_migration = true;
2494
2495 /*
2496 * If compaction is deferred for high-order allocations, it is because
2497 * sync compaction recently failed. In this is the case and the caller
2498 * requested a movable allocation that does not heavily disrupt the
2499 * system then fail the allocation instead of entering direct reclaim.
2500 */
2501 if ((deferred_compaction || contended_compaction) &&
2502 (gfp_mask & __GFP_NO_KSWAPD))
2503 goto nopage;
2504
2505 /* Try direct reclaim and then allocating */
2506 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2507 zonelist, high_zoneidx,
2508 nodemask,
2509 alloc_flags, preferred_zone,
2510 migratetype, &did_some_progress);
2511 if (page)
2512 goto got_pg;
2513
2514 /*
2515 * If we failed to make any progress reclaiming, then we are
2516 * running out of options and have to consider going OOM
2517 */
2518 if (!did_some_progress) {
2519 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2520 if (oom_killer_disabled)
2521 goto nopage;
2522 /* Coredumps can quickly deplete all memory reserves */
2523 if ((current->flags & PF_DUMPCORE) &&
2524 !(gfp_mask & __GFP_NOFAIL))
2525 goto nopage;
2526 page = __alloc_pages_may_oom(gfp_mask, order,
2527 zonelist, high_zoneidx,
2528 nodemask, preferred_zone,
2529 migratetype);
2530 if (page)
2531 goto got_pg;
2532
2533 if (!(gfp_mask & __GFP_NOFAIL)) {
2534 /*
2535 * The oom killer is not called for high-order
2536 * allocations that may fail, so if no progress
2537 * is being made, there are no other options and
2538 * retrying is unlikely to help.
2539 */
2540 if (order > PAGE_ALLOC_COSTLY_ORDER)
2541 goto nopage;
2542 /*
2543 * The oom killer is not called for lowmem
2544 * allocations to prevent needlessly killing
2545 * innocent tasks.
2546 */
2547 if (high_zoneidx < ZONE_NORMAL)
2548 goto nopage;
2549 }
2550
2551 goto restart;
2552 }
2553 }
2554
2555 /* Check if we should retry the allocation */
2556 pages_reclaimed += did_some_progress;
2557 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2558 pages_reclaimed)) {
2559 /* Wait for some write requests to complete then retry */
2560 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2561 goto rebalance;
2562 } else {
2563 /*
2564 * High-order allocations do not necessarily loop after
2565 * direct reclaim and reclaim/compaction depends on compaction
2566 * being called after reclaim so call directly if necessary
2567 */
2568 page = __alloc_pages_direct_compact(gfp_mask, order,
2569 zonelist, high_zoneidx,
2570 nodemask,
2571 alloc_flags, preferred_zone,
2572 migratetype, sync_migration,
2573 &contended_compaction,
2574 &deferred_compaction,
2575 &did_some_progress);
2576 if (page)
2577 goto got_pg;
2578 }
2579
2580 nopage:
2581 warn_alloc_failed(gfp_mask, order, NULL);
2582 return page;
2583 got_pg:
2584 if (kmemcheck_enabled)
2585 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2586
2587 return page;
2588 }
2589
2590 /*
2591 * This is the 'heart' of the zoned buddy allocator.
2592 */
2593 struct page *
2594 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2595 struct zonelist *zonelist, nodemask_t *nodemask)
2596 {
2597 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2598 struct zone *preferred_zone;
2599 struct page *page = NULL;
2600 int migratetype = allocflags_to_migratetype(gfp_mask);
2601 unsigned int cpuset_mems_cookie;
2602 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2603
2604 gfp_mask &= gfp_allowed_mask;
2605
2606 lockdep_trace_alloc(gfp_mask);
2607
2608 might_sleep_if(gfp_mask & __GFP_WAIT);
2609
2610 if (should_fail_alloc_page(gfp_mask, order))
2611 return NULL;
2612
2613 /*
2614 * Check the zones suitable for the gfp_mask contain at least one
2615 * valid zone. It's possible to have an empty zonelist as a result
2616 * of GFP_THISNODE and a memoryless node
2617 */
2618 if (unlikely(!zonelist->_zonerefs->zone))
2619 return NULL;
2620
2621 retry_cpuset:
2622 cpuset_mems_cookie = get_mems_allowed();
2623
2624 /* The preferred zone is used for statistics later */
2625 first_zones_zonelist(zonelist, high_zoneidx,
2626 nodemask ? : &cpuset_current_mems_allowed,
2627 &preferred_zone);
2628 if (!preferred_zone)
2629 goto out;
2630
2631 #ifdef CONFIG_CMA
2632 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2633 alloc_flags |= ALLOC_CMA;
2634 #endif
2635 /* First allocation attempt */
2636 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2637 zonelist, high_zoneidx, alloc_flags,
2638 preferred_zone, migratetype);
2639 if (unlikely(!page))
2640 page = __alloc_pages_slowpath(gfp_mask, order,
2641 zonelist, high_zoneidx, nodemask,
2642 preferred_zone, migratetype);
2643
2644 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2645
2646 out:
2647 /*
2648 * When updating a task's mems_allowed, it is possible to race with
2649 * parallel threads in such a way that an allocation can fail while
2650 * the mask is being updated. If a page allocation is about to fail,
2651 * check if the cpuset changed during allocation and if so, retry.
2652 */
2653 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2654 goto retry_cpuset;
2655
2656 return page;
2657 }
2658 EXPORT_SYMBOL(__alloc_pages_nodemask);
2659
2660 /*
2661 * Common helper functions.
2662 */
2663 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2664 {
2665 struct page *page;
2666
2667 /*
2668 * __get_free_pages() returns a 32-bit address, which cannot represent
2669 * a highmem page
2670 */
2671 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2672
2673 page = alloc_pages(gfp_mask, order);
2674 if (!page)
2675 return 0;
2676 return (unsigned long) page_address(page);
2677 }
2678 EXPORT_SYMBOL(__get_free_pages);
2679
2680 unsigned long get_zeroed_page(gfp_t gfp_mask)
2681 {
2682 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2683 }
2684 EXPORT_SYMBOL(get_zeroed_page);
2685
2686 void __free_pages(struct page *page, unsigned int order)
2687 {
2688 if (put_page_testzero(page)) {
2689 if (order == 0)
2690 free_hot_cold_page(page, 0);
2691 else
2692 __free_pages_ok(page, order);
2693 }
2694 }
2695
2696 EXPORT_SYMBOL(__free_pages);
2697
2698 void free_pages(unsigned long addr, unsigned int order)
2699 {
2700 if (addr != 0) {
2701 VM_BUG_ON(!virt_addr_valid((void *)addr));
2702 __free_pages(virt_to_page((void *)addr), order);
2703 }
2704 }
2705
2706 EXPORT_SYMBOL(free_pages);
2707
2708 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2709 {
2710 if (addr) {
2711 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2712 unsigned long used = addr + PAGE_ALIGN(size);
2713
2714 split_page(virt_to_page((void *)addr), order);
2715 while (used < alloc_end) {
2716 free_page(used);
2717 used += PAGE_SIZE;
2718 }
2719 }
2720 return (void *)addr;
2721 }
2722
2723 /**
2724 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2725 * @size: the number of bytes to allocate
2726 * @gfp_mask: GFP flags for the allocation
2727 *
2728 * This function is similar to alloc_pages(), except that it allocates the
2729 * minimum number of pages to satisfy the request. alloc_pages() can only
2730 * allocate memory in power-of-two pages.
2731 *
2732 * This function is also limited by MAX_ORDER.
2733 *
2734 * Memory allocated by this function must be released by free_pages_exact().
2735 */
2736 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2737 {
2738 unsigned int order = get_order(size);
2739 unsigned long addr;
2740
2741 addr = __get_free_pages(gfp_mask, order);
2742 return make_alloc_exact(addr, order, size);
2743 }
2744 EXPORT_SYMBOL(alloc_pages_exact);
2745
2746 /**
2747 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2748 * pages on a node.
2749 * @nid: the preferred node ID where memory should be allocated
2750 * @size: the number of bytes to allocate
2751 * @gfp_mask: GFP flags for the allocation
2752 *
2753 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2754 * back.
2755 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2756 * but is not exact.
2757 */
2758 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2759 {
2760 unsigned order = get_order(size);
2761 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2762 if (!p)
2763 return NULL;
2764 return make_alloc_exact((unsigned long)page_address(p), order, size);
2765 }
2766 EXPORT_SYMBOL(alloc_pages_exact_nid);
2767
2768 /**
2769 * free_pages_exact - release memory allocated via alloc_pages_exact()
2770 * @virt: the value returned by alloc_pages_exact.
2771 * @size: size of allocation, same value as passed to alloc_pages_exact().
2772 *
2773 * Release the memory allocated by a previous call to alloc_pages_exact.
2774 */
2775 void free_pages_exact(void *virt, size_t size)
2776 {
2777 unsigned long addr = (unsigned long)virt;
2778 unsigned long end = addr + PAGE_ALIGN(size);
2779
2780 while (addr < end) {
2781 free_page(addr);
2782 addr += PAGE_SIZE;
2783 }
2784 }
2785 EXPORT_SYMBOL(free_pages_exact);
2786
2787 static unsigned int nr_free_zone_pages(int offset)
2788 {
2789 struct zoneref *z;
2790 struct zone *zone;
2791
2792 /* Just pick one node, since fallback list is circular */
2793 unsigned int sum = 0;
2794
2795 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2796
2797 for_each_zone_zonelist(zone, z, zonelist, offset) {
2798 unsigned long size = zone->present_pages;
2799 unsigned long high = high_wmark_pages(zone);
2800 if (size > high)
2801 sum += size - high;
2802 }
2803
2804 return sum;
2805 }
2806
2807 /*
2808 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2809 */
2810 unsigned int nr_free_buffer_pages(void)
2811 {
2812 return nr_free_zone_pages(gfp_zone(GFP_USER));
2813 }
2814 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2815
2816 /*
2817 * Amount of free RAM allocatable within all zones
2818 */
2819 unsigned int nr_free_pagecache_pages(void)
2820 {
2821 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2822 }
2823
2824 static inline void show_node(struct zone *zone)
2825 {
2826 if (IS_ENABLED(CONFIG_NUMA))
2827 printk("Node %d ", zone_to_nid(zone));
2828 }
2829
2830 void si_meminfo(struct sysinfo *val)
2831 {
2832 val->totalram = totalram_pages;
2833 val->sharedram = 0;
2834 val->freeram = global_page_state(NR_FREE_PAGES);
2835 val->bufferram = nr_blockdev_pages();
2836 val->totalhigh = totalhigh_pages;
2837 val->freehigh = nr_free_highpages();
2838 val->mem_unit = PAGE_SIZE;
2839 }
2840
2841 EXPORT_SYMBOL(si_meminfo);
2842
2843 #ifdef CONFIG_NUMA
2844 void si_meminfo_node(struct sysinfo *val, int nid)
2845 {
2846 pg_data_t *pgdat = NODE_DATA(nid);
2847
2848 val->totalram = pgdat->node_present_pages;
2849 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2850 #ifdef CONFIG_HIGHMEM
2851 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2852 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2853 NR_FREE_PAGES);
2854 #else
2855 val->totalhigh = 0;
2856 val->freehigh = 0;
2857 #endif
2858 val->mem_unit = PAGE_SIZE;
2859 }
2860 #endif
2861
2862 /*
2863 * Determine whether the node should be displayed or not, depending on whether
2864 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2865 */
2866 bool skip_free_areas_node(unsigned int flags, int nid)
2867 {
2868 bool ret = false;
2869 unsigned int cpuset_mems_cookie;
2870
2871 if (!(flags & SHOW_MEM_FILTER_NODES))
2872 goto out;
2873
2874 do {
2875 cpuset_mems_cookie = get_mems_allowed();
2876 ret = !node_isset(nid, cpuset_current_mems_allowed);
2877 } while (!put_mems_allowed(cpuset_mems_cookie));
2878 out:
2879 return ret;
2880 }
2881
2882 #define K(x) ((x) << (PAGE_SHIFT-10))
2883
2884 static void show_migration_types(unsigned char type)
2885 {
2886 static const char types[MIGRATE_TYPES] = {
2887 [MIGRATE_UNMOVABLE] = 'U',
2888 [MIGRATE_RECLAIMABLE] = 'E',
2889 [MIGRATE_MOVABLE] = 'M',
2890 [MIGRATE_RESERVE] = 'R',
2891 #ifdef CONFIG_CMA
2892 [MIGRATE_CMA] = 'C',
2893 #endif
2894 [MIGRATE_ISOLATE] = 'I',
2895 };
2896 char tmp[MIGRATE_TYPES + 1];
2897 char *p = tmp;
2898 int i;
2899
2900 for (i = 0; i < MIGRATE_TYPES; i++) {
2901 if (type & (1 << i))
2902 *p++ = types[i];
2903 }
2904
2905 *p = '\0';
2906 printk("(%s) ", tmp);
2907 }
2908
2909 /*
2910 * Show free area list (used inside shift_scroll-lock stuff)
2911 * We also calculate the percentage fragmentation. We do this by counting the
2912 * memory on each free list with the exception of the first item on the list.
2913 * Suppresses nodes that are not allowed by current's cpuset if
2914 * SHOW_MEM_FILTER_NODES is passed.
2915 */
2916 void show_free_areas(unsigned int filter)
2917 {
2918 int cpu;
2919 struct zone *zone;
2920
2921 for_each_populated_zone(zone) {
2922 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2923 continue;
2924 show_node(zone);
2925 printk("%s per-cpu:\n", zone->name);
2926
2927 for_each_online_cpu(cpu) {
2928 struct per_cpu_pageset *pageset;
2929
2930 pageset = per_cpu_ptr(zone->pageset, cpu);
2931
2932 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2933 cpu, pageset->pcp.high,
2934 pageset->pcp.batch, pageset->pcp.count);
2935 }
2936 }
2937
2938 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2939 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2940 " unevictable:%lu"
2941 " dirty:%lu writeback:%lu unstable:%lu\n"
2942 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2943 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2944 " free_cma:%lu\n",
2945 global_page_state(NR_ACTIVE_ANON),
2946 global_page_state(NR_INACTIVE_ANON),
2947 global_page_state(NR_ISOLATED_ANON),
2948 global_page_state(NR_ACTIVE_FILE),
2949 global_page_state(NR_INACTIVE_FILE),
2950 global_page_state(NR_ISOLATED_FILE),
2951 global_page_state(NR_UNEVICTABLE),
2952 global_page_state(NR_FILE_DIRTY),
2953 global_page_state(NR_WRITEBACK),
2954 global_page_state(NR_UNSTABLE_NFS),
2955 global_page_state(NR_FREE_PAGES),
2956 global_page_state(NR_SLAB_RECLAIMABLE),
2957 global_page_state(NR_SLAB_UNRECLAIMABLE),
2958 global_page_state(NR_FILE_MAPPED),
2959 global_page_state(NR_SHMEM),
2960 global_page_state(NR_PAGETABLE),
2961 global_page_state(NR_BOUNCE),
2962 global_page_state(NR_FREE_CMA_PAGES));
2963
2964 for_each_populated_zone(zone) {
2965 int i;
2966
2967 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2968 continue;
2969 show_node(zone);
2970 printk("%s"
2971 " free:%lukB"
2972 " min:%lukB"
2973 " low:%lukB"
2974 " high:%lukB"
2975 " active_anon:%lukB"
2976 " inactive_anon:%lukB"
2977 " active_file:%lukB"
2978 " inactive_file:%lukB"
2979 " unevictable:%lukB"
2980 " isolated(anon):%lukB"
2981 " isolated(file):%lukB"
2982 " present:%lukB"
2983 " mlocked:%lukB"
2984 " dirty:%lukB"
2985 " writeback:%lukB"
2986 " mapped:%lukB"
2987 " shmem:%lukB"
2988 " slab_reclaimable:%lukB"
2989 " slab_unreclaimable:%lukB"
2990 " kernel_stack:%lukB"
2991 " pagetables:%lukB"
2992 " unstable:%lukB"
2993 " bounce:%lukB"
2994 " free_cma:%lukB"
2995 " writeback_tmp:%lukB"
2996 " pages_scanned:%lu"
2997 " all_unreclaimable? %s"
2998 "\n",
2999 zone->name,
3000 K(zone_page_state(zone, NR_FREE_PAGES)),
3001 K(min_wmark_pages(zone)),
3002 K(low_wmark_pages(zone)),
3003 K(high_wmark_pages(zone)),
3004 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3005 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3006 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3007 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3008 K(zone_page_state(zone, NR_UNEVICTABLE)),
3009 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3010 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3011 K(zone->present_pages),
3012 K(zone_page_state(zone, NR_MLOCK)),
3013 K(zone_page_state(zone, NR_FILE_DIRTY)),
3014 K(zone_page_state(zone, NR_WRITEBACK)),
3015 K(zone_page_state(zone, NR_FILE_MAPPED)),
3016 K(zone_page_state(zone, NR_SHMEM)),
3017 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3018 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3019 zone_page_state(zone, NR_KERNEL_STACK) *
3020 THREAD_SIZE / 1024,
3021 K(zone_page_state(zone, NR_PAGETABLE)),
3022 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3023 K(zone_page_state(zone, NR_BOUNCE)),
3024 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3025 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3026 zone->pages_scanned,
3027 (zone->all_unreclaimable ? "yes" : "no")
3028 );
3029 printk("lowmem_reserve[]:");
3030 for (i = 0; i < MAX_NR_ZONES; i++)
3031 printk(" %lu", zone->lowmem_reserve[i]);
3032 printk("\n");
3033 }
3034
3035 for_each_populated_zone(zone) {
3036 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3037 unsigned char types[MAX_ORDER];
3038
3039 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3040 continue;
3041 show_node(zone);
3042 printk("%s: ", zone->name);
3043
3044 spin_lock_irqsave(&zone->lock, flags);
3045 for (order = 0; order < MAX_ORDER; order++) {
3046 struct free_area *area = &zone->free_area[order];
3047 int type;
3048
3049 nr[order] = area->nr_free;
3050 total += nr[order] << order;
3051
3052 types[order] = 0;
3053 for (type = 0; type < MIGRATE_TYPES; type++) {
3054 if (!list_empty(&area->free_list[type]))
3055 types[order] |= 1 << type;
3056 }
3057 }
3058 spin_unlock_irqrestore(&zone->lock, flags);
3059 for (order = 0; order < MAX_ORDER; order++) {
3060 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3061 if (nr[order])
3062 show_migration_types(types[order]);
3063 }
3064 printk("= %lukB\n", K(total));
3065 }
3066
3067 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3068
3069 show_swap_cache_info();
3070 }
3071
3072 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3073 {
3074 zoneref->zone = zone;
3075 zoneref->zone_idx = zone_idx(zone);
3076 }
3077
3078 /*
3079 * Builds allocation fallback zone lists.
3080 *
3081 * Add all populated zones of a node to the zonelist.
3082 */
3083 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3084 int nr_zones, enum zone_type zone_type)
3085 {
3086 struct zone *zone;
3087
3088 BUG_ON(zone_type >= MAX_NR_ZONES);
3089 zone_type++;
3090
3091 do {
3092 zone_type--;
3093 zone = pgdat->node_zones + zone_type;
3094 if (populated_zone(zone)) {
3095 zoneref_set_zone(zone,
3096 &zonelist->_zonerefs[nr_zones++]);
3097 check_highest_zone(zone_type);
3098 }
3099
3100 } while (zone_type);
3101 return nr_zones;
3102 }
3103
3104
3105 /*
3106 * zonelist_order:
3107 * 0 = automatic detection of better ordering.
3108 * 1 = order by ([node] distance, -zonetype)
3109 * 2 = order by (-zonetype, [node] distance)
3110 *
3111 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3112 * the same zonelist. So only NUMA can configure this param.
3113 */
3114 #define ZONELIST_ORDER_DEFAULT 0
3115 #define ZONELIST_ORDER_NODE 1
3116 #define ZONELIST_ORDER_ZONE 2
3117
3118 /* zonelist order in the kernel.
3119 * set_zonelist_order() will set this to NODE or ZONE.
3120 */
3121 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3122 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3123
3124
3125 #ifdef CONFIG_NUMA
3126 /* The value user specified ....changed by config */
3127 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3128 /* string for sysctl */
3129 #define NUMA_ZONELIST_ORDER_LEN 16
3130 char numa_zonelist_order[16] = "default";
3131
3132 /*
3133 * interface for configure zonelist ordering.
3134 * command line option "numa_zonelist_order"
3135 * = "[dD]efault - default, automatic configuration.
3136 * = "[nN]ode - order by node locality, then by zone within node
3137 * = "[zZ]one - order by zone, then by locality within zone
3138 */
3139
3140 static int __parse_numa_zonelist_order(char *s)
3141 {
3142 if (*s == 'd' || *s == 'D') {
3143 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3144 } else if (*s == 'n' || *s == 'N') {
3145 user_zonelist_order = ZONELIST_ORDER_NODE;
3146 } else if (*s == 'z' || *s == 'Z') {
3147 user_zonelist_order = ZONELIST_ORDER_ZONE;
3148 } else {
3149 printk(KERN_WARNING
3150 "Ignoring invalid numa_zonelist_order value: "
3151 "%s\n", s);
3152 return -EINVAL;
3153 }
3154 return 0;
3155 }
3156
3157 static __init int setup_numa_zonelist_order(char *s)
3158 {
3159 int ret;
3160
3161 if (!s)
3162 return 0;
3163
3164 ret = __parse_numa_zonelist_order(s);
3165 if (ret == 0)
3166 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3167
3168 return ret;
3169 }
3170 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3171
3172 /*
3173 * sysctl handler for numa_zonelist_order
3174 */
3175 int numa_zonelist_order_handler(ctl_table *table, int write,
3176 void __user *buffer, size_t *length,
3177 loff_t *ppos)
3178 {
3179 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3180 int ret;
3181 static DEFINE_MUTEX(zl_order_mutex);
3182
3183 mutex_lock(&zl_order_mutex);
3184 if (write)
3185 strcpy(saved_string, (char*)table->data);
3186 ret = proc_dostring(table, write, buffer, length, ppos);
3187 if (ret)
3188 goto out;
3189 if (write) {
3190 int oldval = user_zonelist_order;
3191 if (__parse_numa_zonelist_order((char*)table->data)) {
3192 /*
3193 * bogus value. restore saved string
3194 */
3195 strncpy((char*)table->data, saved_string,
3196 NUMA_ZONELIST_ORDER_LEN);
3197 user_zonelist_order = oldval;
3198 } else if (oldval != user_zonelist_order) {
3199 mutex_lock(&zonelists_mutex);
3200 build_all_zonelists(NULL, NULL);
3201 mutex_unlock(&zonelists_mutex);
3202 }
3203 }
3204 out:
3205 mutex_unlock(&zl_order_mutex);
3206 return ret;
3207 }
3208
3209
3210 #define MAX_NODE_LOAD (nr_online_nodes)
3211 static int node_load[MAX_NUMNODES];
3212
3213 /**
3214 * find_next_best_node - find the next node that should appear in a given node's fallback list
3215 * @node: node whose fallback list we're appending
3216 * @used_node_mask: nodemask_t of already used nodes
3217 *
3218 * We use a number of factors to determine which is the next node that should
3219 * appear on a given node's fallback list. The node should not have appeared
3220 * already in @node's fallback list, and it should be the next closest node
3221 * according to the distance array (which contains arbitrary distance values
3222 * from each node to each node in the system), and should also prefer nodes
3223 * with no CPUs, since presumably they'll have very little allocation pressure
3224 * on them otherwise.
3225 * It returns -1 if no node is found.
3226 */
3227 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3228 {
3229 int n, val;
3230 int min_val = INT_MAX;
3231 int best_node = -1;
3232 const struct cpumask *tmp = cpumask_of_node(0);
3233
3234 /* Use the local node if we haven't already */
3235 if (!node_isset(node, *used_node_mask)) {
3236 node_set(node, *used_node_mask);
3237 return node;
3238 }
3239
3240 for_each_node_state(n, N_HIGH_MEMORY) {
3241
3242 /* Don't want a node to appear more than once */
3243 if (node_isset(n, *used_node_mask))
3244 continue;
3245
3246 /* Use the distance array to find the distance */
3247 val = node_distance(node, n);
3248
3249 /* Penalize nodes under us ("prefer the next node") */
3250 val += (n < node);
3251
3252 /* Give preference to headless and unused nodes */
3253 tmp = cpumask_of_node(n);
3254 if (!cpumask_empty(tmp))
3255 val += PENALTY_FOR_NODE_WITH_CPUS;
3256
3257 /* Slight preference for less loaded node */
3258 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3259 val += node_load[n];
3260
3261 if (val < min_val) {
3262 min_val = val;
3263 best_node = n;
3264 }
3265 }
3266
3267 if (best_node >= 0)
3268 node_set(best_node, *used_node_mask);
3269
3270 return best_node;
3271 }
3272
3273
3274 /*
3275 * Build zonelists ordered by node and zones within node.
3276 * This results in maximum locality--normal zone overflows into local
3277 * DMA zone, if any--but risks exhausting DMA zone.
3278 */
3279 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3280 {
3281 int j;
3282 struct zonelist *zonelist;
3283
3284 zonelist = &pgdat->node_zonelists[0];
3285 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3286 ;
3287 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3288 MAX_NR_ZONES - 1);
3289 zonelist->_zonerefs[j].zone = NULL;
3290 zonelist->_zonerefs[j].zone_idx = 0;
3291 }
3292
3293 /*
3294 * Build gfp_thisnode zonelists
3295 */
3296 static void build_thisnode_zonelists(pg_data_t *pgdat)
3297 {
3298 int j;
3299 struct zonelist *zonelist;
3300
3301 zonelist = &pgdat->node_zonelists[1];
3302 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3303 zonelist->_zonerefs[j].zone = NULL;
3304 zonelist->_zonerefs[j].zone_idx = 0;
3305 }
3306
3307 /*
3308 * Build zonelists ordered by zone and nodes within zones.
3309 * This results in conserving DMA zone[s] until all Normal memory is
3310 * exhausted, but results in overflowing to remote node while memory
3311 * may still exist in local DMA zone.
3312 */
3313 static int node_order[MAX_NUMNODES];
3314
3315 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3316 {
3317 int pos, j, node;
3318 int zone_type; /* needs to be signed */
3319 struct zone *z;
3320 struct zonelist *zonelist;
3321
3322 zonelist = &pgdat->node_zonelists[0];
3323 pos = 0;
3324 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3325 for (j = 0; j < nr_nodes; j++) {
3326 node = node_order[j];
3327 z = &NODE_DATA(node)->node_zones[zone_type];
3328 if (populated_zone(z)) {
3329 zoneref_set_zone(z,
3330 &zonelist->_zonerefs[pos++]);
3331 check_highest_zone(zone_type);
3332 }
3333 }
3334 }
3335 zonelist->_zonerefs[pos].zone = NULL;
3336 zonelist->_zonerefs[pos].zone_idx = 0;
3337 }
3338
3339 static int default_zonelist_order(void)
3340 {
3341 int nid, zone_type;
3342 unsigned long low_kmem_size,total_size;
3343 struct zone *z;
3344 int average_size;
3345 /*
3346 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3347 * If they are really small and used heavily, the system can fall
3348 * into OOM very easily.
3349 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3350 */
3351 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3352 low_kmem_size = 0;
3353 total_size = 0;
3354 for_each_online_node(nid) {
3355 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3356 z = &NODE_DATA(nid)->node_zones[zone_type];
3357 if (populated_zone(z)) {
3358 if (zone_type < ZONE_NORMAL)
3359 low_kmem_size += z->present_pages;
3360 total_size += z->present_pages;
3361 } else if (zone_type == ZONE_NORMAL) {
3362 /*
3363 * If any node has only lowmem, then node order
3364 * is preferred to allow kernel allocations
3365 * locally; otherwise, they can easily infringe
3366 * on other nodes when there is an abundance of
3367 * lowmem available to allocate from.
3368 */
3369 return ZONELIST_ORDER_NODE;
3370 }
3371 }
3372 }
3373 if (!low_kmem_size || /* there are no DMA area. */
3374 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3375 return ZONELIST_ORDER_NODE;
3376 /*
3377 * look into each node's config.
3378 * If there is a node whose DMA/DMA32 memory is very big area on
3379 * local memory, NODE_ORDER may be suitable.
3380 */
3381 average_size = total_size /
3382 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3383 for_each_online_node(nid) {
3384 low_kmem_size = 0;
3385 total_size = 0;
3386 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3387 z = &NODE_DATA(nid)->node_zones[zone_type];
3388 if (populated_zone(z)) {
3389 if (zone_type < ZONE_NORMAL)
3390 low_kmem_size += z->present_pages;
3391 total_size += z->present_pages;
3392 }
3393 }
3394 if (low_kmem_size &&
3395 total_size > average_size && /* ignore small node */
3396 low_kmem_size > total_size * 70/100)
3397 return ZONELIST_ORDER_NODE;
3398 }
3399 return ZONELIST_ORDER_ZONE;
3400 }
3401
3402 static void set_zonelist_order(void)
3403 {
3404 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3405 current_zonelist_order = default_zonelist_order();
3406 else
3407 current_zonelist_order = user_zonelist_order;
3408 }
3409
3410 static void build_zonelists(pg_data_t *pgdat)
3411 {
3412 int j, node, load;
3413 enum zone_type i;
3414 nodemask_t used_mask;
3415 int local_node, prev_node;
3416 struct zonelist *zonelist;
3417 int order = current_zonelist_order;
3418
3419 /* initialize zonelists */
3420 for (i = 0; i < MAX_ZONELISTS; i++) {
3421 zonelist = pgdat->node_zonelists + i;
3422 zonelist->_zonerefs[0].zone = NULL;
3423 zonelist->_zonerefs[0].zone_idx = 0;
3424 }
3425
3426 /* NUMA-aware ordering of nodes */
3427 local_node = pgdat->node_id;
3428 load = nr_online_nodes;
3429 prev_node = local_node;
3430 nodes_clear(used_mask);
3431
3432 memset(node_order, 0, sizeof(node_order));
3433 j = 0;
3434
3435 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3436 /*
3437 * We don't want to pressure a particular node.
3438 * So adding penalty to the first node in same
3439 * distance group to make it round-robin.
3440 */
3441 if (node_distance(local_node, node) !=
3442 node_distance(local_node, prev_node))
3443 node_load[node] = load;
3444
3445 prev_node = node;
3446 load--;
3447 if (order == ZONELIST_ORDER_NODE)
3448 build_zonelists_in_node_order(pgdat, node);
3449 else
3450 node_order[j++] = node; /* remember order */
3451 }
3452
3453 if (order == ZONELIST_ORDER_ZONE) {
3454 /* calculate node order -- i.e., DMA last! */
3455 build_zonelists_in_zone_order(pgdat, j);
3456 }
3457
3458 build_thisnode_zonelists(pgdat);
3459 }
3460
3461 /* Construct the zonelist performance cache - see further mmzone.h */
3462 static void build_zonelist_cache(pg_data_t *pgdat)
3463 {
3464 struct zonelist *zonelist;
3465 struct zonelist_cache *zlc;
3466 struct zoneref *z;
3467
3468 zonelist = &pgdat->node_zonelists[0];
3469 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3470 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3471 for (z = zonelist->_zonerefs; z->zone; z++)
3472 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3473 }
3474
3475 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3476 /*
3477 * Return node id of node used for "local" allocations.
3478 * I.e., first node id of first zone in arg node's generic zonelist.
3479 * Used for initializing percpu 'numa_mem', which is used primarily
3480 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3481 */
3482 int local_memory_node(int node)
3483 {
3484 struct zone *zone;
3485
3486 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3487 gfp_zone(GFP_KERNEL),
3488 NULL,
3489 &zone);
3490 return zone->node;
3491 }
3492 #endif
3493
3494 #else /* CONFIG_NUMA */
3495
3496 static void set_zonelist_order(void)
3497 {
3498 current_zonelist_order = ZONELIST_ORDER_ZONE;
3499 }
3500
3501 static void build_zonelists(pg_data_t *pgdat)
3502 {
3503 int node, local_node;
3504 enum zone_type j;
3505 struct zonelist *zonelist;
3506
3507 local_node = pgdat->node_id;
3508
3509 zonelist = &pgdat->node_zonelists[0];
3510 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3511
3512 /*
3513 * Now we build the zonelist so that it contains the zones
3514 * of all the other nodes.
3515 * We don't want to pressure a particular node, so when
3516 * building the zones for node N, we make sure that the
3517 * zones coming right after the local ones are those from
3518 * node N+1 (modulo N)
3519 */
3520 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3521 if (!node_online(node))
3522 continue;
3523 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3524 MAX_NR_ZONES - 1);
3525 }
3526 for (node = 0; node < local_node; node++) {
3527 if (!node_online(node))
3528 continue;
3529 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3530 MAX_NR_ZONES - 1);
3531 }
3532
3533 zonelist->_zonerefs[j].zone = NULL;
3534 zonelist->_zonerefs[j].zone_idx = 0;
3535 }
3536
3537 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3538 static void build_zonelist_cache(pg_data_t *pgdat)
3539 {
3540 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3541 }
3542
3543 #endif /* CONFIG_NUMA */
3544
3545 /*
3546 * Boot pageset table. One per cpu which is going to be used for all
3547 * zones and all nodes. The parameters will be set in such a way
3548 * that an item put on a list will immediately be handed over to
3549 * the buddy list. This is safe since pageset manipulation is done
3550 * with interrupts disabled.
3551 *
3552 * The boot_pagesets must be kept even after bootup is complete for
3553 * unused processors and/or zones. They do play a role for bootstrapping
3554 * hotplugged processors.
3555 *
3556 * zoneinfo_show() and maybe other functions do
3557 * not check if the processor is online before following the pageset pointer.
3558 * Other parts of the kernel may not check if the zone is available.
3559 */
3560 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3561 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3562 static void setup_zone_pageset(struct zone *zone);
3563
3564 /*
3565 * Global mutex to protect against size modification of zonelists
3566 * as well as to serialize pageset setup for the new populated zone.
3567 */
3568 DEFINE_MUTEX(zonelists_mutex);
3569
3570 /* return values int ....just for stop_machine() */
3571 static int __build_all_zonelists(void *data)
3572 {
3573 int nid;
3574 int cpu;
3575 pg_data_t *self = data;
3576
3577 #ifdef CONFIG_NUMA
3578 memset(node_load, 0, sizeof(node_load));
3579 #endif
3580
3581 if (self && !node_online(self->node_id)) {
3582 build_zonelists(self);
3583 build_zonelist_cache(self);
3584 }
3585
3586 for_each_online_node(nid) {
3587 pg_data_t *pgdat = NODE_DATA(nid);
3588
3589 build_zonelists(pgdat);
3590 build_zonelist_cache(pgdat);
3591 }
3592
3593 /*
3594 * Initialize the boot_pagesets that are going to be used
3595 * for bootstrapping processors. The real pagesets for
3596 * each zone will be allocated later when the per cpu
3597 * allocator is available.
3598 *
3599 * boot_pagesets are used also for bootstrapping offline
3600 * cpus if the system is already booted because the pagesets
3601 * are needed to initialize allocators on a specific cpu too.
3602 * F.e. the percpu allocator needs the page allocator which
3603 * needs the percpu allocator in order to allocate its pagesets
3604 * (a chicken-egg dilemma).
3605 */
3606 for_each_possible_cpu(cpu) {
3607 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3608
3609 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3610 /*
3611 * We now know the "local memory node" for each node--
3612 * i.e., the node of the first zone in the generic zonelist.
3613 * Set up numa_mem percpu variable for on-line cpus. During
3614 * boot, only the boot cpu should be on-line; we'll init the
3615 * secondary cpus' numa_mem as they come on-line. During
3616 * node/memory hotplug, we'll fixup all on-line cpus.
3617 */
3618 if (cpu_online(cpu))
3619 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3620 #endif
3621 }
3622
3623 return 0;
3624 }
3625
3626 /*
3627 * Called with zonelists_mutex held always
3628 * unless system_state == SYSTEM_BOOTING.
3629 */
3630 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3631 {
3632 set_zonelist_order();
3633
3634 if (system_state == SYSTEM_BOOTING) {
3635 __build_all_zonelists(NULL);
3636 mminit_verify_zonelist();
3637 cpuset_init_current_mems_allowed();
3638 } else {
3639 /* we have to stop all cpus to guarantee there is no user
3640 of zonelist */
3641 #ifdef CONFIG_MEMORY_HOTPLUG
3642 if (zone)
3643 setup_zone_pageset(zone);
3644 #endif
3645 stop_machine(__build_all_zonelists, pgdat, NULL);
3646 /* cpuset refresh routine should be here */
3647 }
3648 vm_total_pages = nr_free_pagecache_pages();
3649 /*
3650 * Disable grouping by mobility if the number of pages in the
3651 * system is too low to allow the mechanism to work. It would be
3652 * more accurate, but expensive to check per-zone. This check is
3653 * made on memory-hotadd so a system can start with mobility
3654 * disabled and enable it later
3655 */
3656 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3657 page_group_by_mobility_disabled = 1;
3658 else
3659 page_group_by_mobility_disabled = 0;
3660
3661 printk("Built %i zonelists in %s order, mobility grouping %s. "
3662 "Total pages: %ld\n",
3663 nr_online_nodes,
3664 zonelist_order_name[current_zonelist_order],
3665 page_group_by_mobility_disabled ? "off" : "on",
3666 vm_total_pages);
3667 #ifdef CONFIG_NUMA
3668 printk("Policy zone: %s\n", zone_names[policy_zone]);
3669 #endif
3670 }
3671
3672 /*
3673 * Helper functions to size the waitqueue hash table.
3674 * Essentially these want to choose hash table sizes sufficiently
3675 * large so that collisions trying to wait on pages are rare.
3676 * But in fact, the number of active page waitqueues on typical
3677 * systems is ridiculously low, less than 200. So this is even
3678 * conservative, even though it seems large.
3679 *
3680 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3681 * waitqueues, i.e. the size of the waitq table given the number of pages.
3682 */
3683 #define PAGES_PER_WAITQUEUE 256
3684
3685 #ifndef CONFIG_MEMORY_HOTPLUG
3686 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3687 {
3688 unsigned long size = 1;
3689
3690 pages /= PAGES_PER_WAITQUEUE;
3691
3692 while (size < pages)
3693 size <<= 1;
3694
3695 /*
3696 * Once we have dozens or even hundreds of threads sleeping
3697 * on IO we've got bigger problems than wait queue collision.
3698 * Limit the size of the wait table to a reasonable size.
3699 */
3700 size = min(size, 4096UL);
3701
3702 return max(size, 4UL);
3703 }
3704 #else
3705 /*
3706 * A zone's size might be changed by hot-add, so it is not possible to determine
3707 * a suitable size for its wait_table. So we use the maximum size now.
3708 *
3709 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3710 *
3711 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3712 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3713 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3714 *
3715 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3716 * or more by the traditional way. (See above). It equals:
3717 *
3718 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3719 * ia64(16K page size) : = ( 8G + 4M)byte.
3720 * powerpc (64K page size) : = (32G +16M)byte.
3721 */
3722 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3723 {
3724 return 4096UL;
3725 }
3726 #endif
3727
3728 /*
3729 * This is an integer logarithm so that shifts can be used later
3730 * to extract the more random high bits from the multiplicative
3731 * hash function before the remainder is taken.
3732 */
3733 static inline unsigned long wait_table_bits(unsigned long size)
3734 {
3735 return ffz(~size);
3736 }
3737
3738 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3739
3740 /*
3741 * Check if a pageblock contains reserved pages
3742 */
3743 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3744 {
3745 unsigned long pfn;
3746
3747 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3748 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3749 return 1;
3750 }
3751 return 0;
3752 }
3753
3754 /*
3755 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3756 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3757 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3758 * higher will lead to a bigger reserve which will get freed as contiguous
3759 * blocks as reclaim kicks in
3760 */
3761 static void setup_zone_migrate_reserve(struct zone *zone)
3762 {
3763 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3764 struct page *page;
3765 unsigned long block_migratetype;
3766 int reserve;
3767
3768 /*
3769 * Get the start pfn, end pfn and the number of blocks to reserve
3770 * We have to be careful to be aligned to pageblock_nr_pages to
3771 * make sure that we always check pfn_valid for the first page in
3772 * the block.
3773 */
3774 start_pfn = zone->zone_start_pfn;
3775 end_pfn = start_pfn + zone->spanned_pages;
3776 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3777 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3778 pageblock_order;
3779
3780 /*
3781 * Reserve blocks are generally in place to help high-order atomic
3782 * allocations that are short-lived. A min_free_kbytes value that
3783 * would result in more than 2 reserve blocks for atomic allocations
3784 * is assumed to be in place to help anti-fragmentation for the
3785 * future allocation of hugepages at runtime.
3786 */
3787 reserve = min(2, reserve);
3788
3789 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3790 if (!pfn_valid(pfn))
3791 continue;
3792 page = pfn_to_page(pfn);
3793
3794 /* Watch out for overlapping nodes */
3795 if (page_to_nid(page) != zone_to_nid(zone))
3796 continue;
3797
3798 block_migratetype = get_pageblock_migratetype(page);
3799
3800 /* Only test what is necessary when the reserves are not met */
3801 if (reserve > 0) {
3802 /*
3803 * Blocks with reserved pages will never free, skip
3804 * them.
3805 */
3806 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3807 if (pageblock_is_reserved(pfn, block_end_pfn))
3808 continue;
3809
3810 /* If this block is reserved, account for it */
3811 if (block_migratetype == MIGRATE_RESERVE) {
3812 reserve--;
3813 continue;
3814 }
3815
3816 /* Suitable for reserving if this block is movable */
3817 if (block_migratetype == MIGRATE_MOVABLE) {
3818 set_pageblock_migratetype(page,
3819 MIGRATE_RESERVE);
3820 move_freepages_block(zone, page,
3821 MIGRATE_RESERVE);
3822 reserve--;
3823 continue;
3824 }
3825 }
3826
3827 /*
3828 * If the reserve is met and this is a previous reserved block,
3829 * take it back
3830 */
3831 if (block_migratetype == MIGRATE_RESERVE) {
3832 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3833 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3834 }
3835 }
3836 }
3837
3838 /*
3839 * Initially all pages are reserved - free ones are freed
3840 * up by free_all_bootmem() once the early boot process is
3841 * done. Non-atomic initialization, single-pass.
3842 */
3843 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3844 unsigned long start_pfn, enum memmap_context context)
3845 {
3846 struct page *page;
3847 unsigned long end_pfn = start_pfn + size;
3848 unsigned long pfn;
3849 struct zone *z;
3850
3851 if (highest_memmap_pfn < end_pfn - 1)
3852 highest_memmap_pfn = end_pfn - 1;
3853
3854 z = &NODE_DATA(nid)->node_zones[zone];
3855 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3856 /*
3857 * There can be holes in boot-time mem_map[]s
3858 * handed to this function. They do not
3859 * exist on hotplugged memory.
3860 */
3861 if (context == MEMMAP_EARLY) {
3862 if (!early_pfn_valid(pfn))
3863 continue;
3864 if (!early_pfn_in_nid(pfn, nid))
3865 continue;
3866 }
3867 page = pfn_to_page(pfn);
3868 set_page_links(page, zone, nid, pfn);
3869 mminit_verify_page_links(page, zone, nid, pfn);
3870 init_page_count(page);
3871 reset_page_mapcount(page);
3872 SetPageReserved(page);
3873 /*
3874 * Mark the block movable so that blocks are reserved for
3875 * movable at startup. This will force kernel allocations
3876 * to reserve their blocks rather than leaking throughout
3877 * the address space during boot when many long-lived
3878 * kernel allocations are made. Later some blocks near
3879 * the start are marked MIGRATE_RESERVE by
3880 * setup_zone_migrate_reserve()
3881 *
3882 * bitmap is created for zone's valid pfn range. but memmap
3883 * can be created for invalid pages (for alignment)
3884 * check here not to call set_pageblock_migratetype() against
3885 * pfn out of zone.
3886 */
3887 if ((z->zone_start_pfn <= pfn)
3888 && (pfn < z->zone_start_pfn + z->spanned_pages)
3889 && !(pfn & (pageblock_nr_pages - 1)))
3890 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3891
3892 INIT_LIST_HEAD(&page->lru);
3893 #ifdef WANT_PAGE_VIRTUAL
3894 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3895 if (!is_highmem_idx(zone))
3896 set_page_address(page, __va(pfn << PAGE_SHIFT));
3897 #endif
3898 }
3899 }
3900
3901 static void __meminit zone_init_free_lists(struct zone *zone)
3902 {
3903 int order, t;
3904 for_each_migratetype_order(order, t) {
3905 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3906 zone->free_area[order].nr_free = 0;
3907 }
3908 }
3909
3910 #ifndef __HAVE_ARCH_MEMMAP_INIT
3911 #define memmap_init(size, nid, zone, start_pfn) \
3912 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3913 #endif
3914
3915 static int __meminit zone_batchsize(struct zone *zone)
3916 {
3917 #ifdef CONFIG_MMU
3918 int batch;
3919
3920 /*
3921 * The per-cpu-pages pools are set to around 1000th of the
3922 * size of the zone. But no more than 1/2 of a meg.
3923 *
3924 * OK, so we don't know how big the cache is. So guess.
3925 */
3926 batch = zone->present_pages / 1024;
3927 if (batch * PAGE_SIZE > 512 * 1024)
3928 batch = (512 * 1024) / PAGE_SIZE;
3929 batch /= 4; /* We effectively *= 4 below */
3930 if (batch < 1)
3931 batch = 1;
3932
3933 /*
3934 * Clamp the batch to a 2^n - 1 value. Having a power
3935 * of 2 value was found to be more likely to have
3936 * suboptimal cache aliasing properties in some cases.
3937 *
3938 * For example if 2 tasks are alternately allocating
3939 * batches of pages, one task can end up with a lot
3940 * of pages of one half of the possible page colors
3941 * and the other with pages of the other colors.
3942 */
3943 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3944
3945 return batch;
3946
3947 #else
3948 /* The deferral and batching of frees should be suppressed under NOMMU
3949 * conditions.
3950 *
3951 * The problem is that NOMMU needs to be able to allocate large chunks
3952 * of contiguous memory as there's no hardware page translation to
3953 * assemble apparent contiguous memory from discontiguous pages.
3954 *
3955 * Queueing large contiguous runs of pages for batching, however,
3956 * causes the pages to actually be freed in smaller chunks. As there
3957 * can be a significant delay between the individual batches being
3958 * recycled, this leads to the once large chunks of space being
3959 * fragmented and becoming unavailable for high-order allocations.
3960 */
3961 return 0;
3962 #endif
3963 }
3964
3965 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3966 {
3967 struct per_cpu_pages *pcp;
3968 int migratetype;
3969
3970 memset(p, 0, sizeof(*p));
3971
3972 pcp = &p->pcp;
3973 pcp->count = 0;
3974 pcp->high = 6 * batch;
3975 pcp->batch = max(1UL, 1 * batch);
3976 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3977 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3978 }
3979
3980 /*
3981 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3982 * to the value high for the pageset p.
3983 */
3984
3985 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3986 unsigned long high)
3987 {
3988 struct per_cpu_pages *pcp;
3989
3990 pcp = &p->pcp;
3991 pcp->high = high;
3992 pcp->batch = max(1UL, high/4);
3993 if ((high/4) > (PAGE_SHIFT * 8))
3994 pcp->batch = PAGE_SHIFT * 8;
3995 }
3996
3997 static void __meminit setup_zone_pageset(struct zone *zone)
3998 {
3999 int cpu;
4000
4001 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4002
4003 for_each_possible_cpu(cpu) {
4004 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4005
4006 setup_pageset(pcp, zone_batchsize(zone));
4007
4008 if (percpu_pagelist_fraction)
4009 setup_pagelist_highmark(pcp,
4010 (zone->present_pages /
4011 percpu_pagelist_fraction));
4012 }
4013 }
4014
4015 /*
4016 * Allocate per cpu pagesets and initialize them.
4017 * Before this call only boot pagesets were available.
4018 */
4019 void __init setup_per_cpu_pageset(void)
4020 {
4021 struct zone *zone;
4022
4023 for_each_populated_zone(zone)
4024 setup_zone_pageset(zone);
4025 }
4026
4027 static noinline __init_refok
4028 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4029 {
4030 int i;
4031 struct pglist_data *pgdat = zone->zone_pgdat;
4032 size_t alloc_size;
4033
4034 /*
4035 * The per-page waitqueue mechanism uses hashed waitqueues
4036 * per zone.
4037 */
4038 zone->wait_table_hash_nr_entries =
4039 wait_table_hash_nr_entries(zone_size_pages);
4040 zone->wait_table_bits =
4041 wait_table_bits(zone->wait_table_hash_nr_entries);
4042 alloc_size = zone->wait_table_hash_nr_entries
4043 * sizeof(wait_queue_head_t);
4044
4045 if (!slab_is_available()) {
4046 zone->wait_table = (wait_queue_head_t *)
4047 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4048 } else {
4049 /*
4050 * This case means that a zone whose size was 0 gets new memory
4051 * via memory hot-add.
4052 * But it may be the case that a new node was hot-added. In
4053 * this case vmalloc() will not be able to use this new node's
4054 * memory - this wait_table must be initialized to use this new
4055 * node itself as well.
4056 * To use this new node's memory, further consideration will be
4057 * necessary.
4058 */
4059 zone->wait_table = vmalloc(alloc_size);
4060 }
4061 if (!zone->wait_table)
4062 return -ENOMEM;
4063
4064 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4065 init_waitqueue_head(zone->wait_table + i);
4066
4067 return 0;
4068 }
4069
4070 static __meminit void zone_pcp_init(struct zone *zone)
4071 {
4072 /*
4073 * per cpu subsystem is not up at this point. The following code
4074 * relies on the ability of the linker to provide the
4075 * offset of a (static) per cpu variable into the per cpu area.
4076 */
4077 zone->pageset = &boot_pageset;
4078
4079 if (zone->present_pages)
4080 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4081 zone->name, zone->present_pages,
4082 zone_batchsize(zone));
4083 }
4084
4085 int __meminit init_currently_empty_zone(struct zone *zone,
4086 unsigned long zone_start_pfn,
4087 unsigned long size,
4088 enum memmap_context context)
4089 {
4090 struct pglist_data *pgdat = zone->zone_pgdat;
4091 int ret;
4092 ret = zone_wait_table_init(zone, size);
4093 if (ret)
4094 return ret;
4095 pgdat->nr_zones = zone_idx(zone) + 1;
4096
4097 zone->zone_start_pfn = zone_start_pfn;
4098
4099 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4100 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4101 pgdat->node_id,
4102 (unsigned long)zone_idx(zone),
4103 zone_start_pfn, (zone_start_pfn + size));
4104
4105 zone_init_free_lists(zone);
4106
4107 return 0;
4108 }
4109
4110 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4111 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4112 /*
4113 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4114 * Architectures may implement their own version but if add_active_range()
4115 * was used and there are no special requirements, this is a convenient
4116 * alternative
4117 */
4118 int __meminit __early_pfn_to_nid(unsigned long pfn)
4119 {
4120 unsigned long start_pfn, end_pfn;
4121 int i, nid;
4122
4123 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4124 if (start_pfn <= pfn && pfn < end_pfn)
4125 return nid;
4126 /* This is a memory hole */
4127 return -1;
4128 }
4129 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4130
4131 int __meminit early_pfn_to_nid(unsigned long pfn)
4132 {
4133 int nid;
4134
4135 nid = __early_pfn_to_nid(pfn);
4136 if (nid >= 0)
4137 return nid;
4138 /* just returns 0 */
4139 return 0;
4140 }
4141
4142 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4143 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4144 {
4145 int nid;
4146
4147 nid = __early_pfn_to_nid(pfn);
4148 if (nid >= 0 && nid != node)
4149 return false;
4150 return true;
4151 }
4152 #endif
4153
4154 /**
4155 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4156 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4157 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4158 *
4159 * If an architecture guarantees that all ranges registered with
4160 * add_active_ranges() contain no holes and may be freed, this
4161 * this function may be used instead of calling free_bootmem() manually.
4162 */
4163 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4164 {
4165 unsigned long start_pfn, end_pfn;
4166 int i, this_nid;
4167
4168 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4169 start_pfn = min(start_pfn, max_low_pfn);
4170 end_pfn = min(end_pfn, max_low_pfn);
4171
4172 if (start_pfn < end_pfn)
4173 free_bootmem_node(NODE_DATA(this_nid),
4174 PFN_PHYS(start_pfn),
4175 (end_pfn - start_pfn) << PAGE_SHIFT);
4176 }
4177 }
4178
4179 /**
4180 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4181 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4182 *
4183 * If an architecture guarantees that all ranges registered with
4184 * add_active_ranges() contain no holes and may be freed, this
4185 * function may be used instead of calling memory_present() manually.
4186 */
4187 void __init sparse_memory_present_with_active_regions(int nid)
4188 {
4189 unsigned long start_pfn, end_pfn;
4190 int i, this_nid;
4191
4192 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4193 memory_present(this_nid, start_pfn, end_pfn);
4194 }
4195
4196 /**
4197 * get_pfn_range_for_nid - Return the start and end page frames for a node
4198 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4199 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4200 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4201 *
4202 * It returns the start and end page frame of a node based on information
4203 * provided by an arch calling add_active_range(). If called for a node
4204 * with no available memory, a warning is printed and the start and end
4205 * PFNs will be 0.
4206 */
4207 void __meminit get_pfn_range_for_nid(unsigned int nid,
4208 unsigned long *start_pfn, unsigned long *end_pfn)
4209 {
4210 unsigned long this_start_pfn, this_end_pfn;
4211 int i;
4212
4213 *start_pfn = -1UL;
4214 *end_pfn = 0;
4215
4216 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4217 *start_pfn = min(*start_pfn, this_start_pfn);
4218 *end_pfn = max(*end_pfn, this_end_pfn);
4219 }
4220
4221 if (*start_pfn == -1UL)
4222 *start_pfn = 0;
4223 }
4224
4225 /*
4226 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4227 * assumption is made that zones within a node are ordered in monotonic
4228 * increasing memory addresses so that the "highest" populated zone is used
4229 */
4230 static void __init find_usable_zone_for_movable(void)
4231 {
4232 int zone_index;
4233 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4234 if (zone_index == ZONE_MOVABLE)
4235 continue;
4236
4237 if (arch_zone_highest_possible_pfn[zone_index] >
4238 arch_zone_lowest_possible_pfn[zone_index])
4239 break;
4240 }
4241
4242 VM_BUG_ON(zone_index == -1);
4243 movable_zone = zone_index;
4244 }
4245
4246 /*
4247 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4248 * because it is sized independent of architecture. Unlike the other zones,
4249 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4250 * in each node depending on the size of each node and how evenly kernelcore
4251 * is distributed. This helper function adjusts the zone ranges
4252 * provided by the architecture for a given node by using the end of the
4253 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4254 * zones within a node are in order of monotonic increases memory addresses
4255 */
4256 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4257 unsigned long zone_type,
4258 unsigned long node_start_pfn,
4259 unsigned long node_end_pfn,
4260 unsigned long *zone_start_pfn,
4261 unsigned long *zone_end_pfn)
4262 {
4263 /* Only adjust if ZONE_MOVABLE is on this node */
4264 if (zone_movable_pfn[nid]) {
4265 /* Size ZONE_MOVABLE */
4266 if (zone_type == ZONE_MOVABLE) {
4267 *zone_start_pfn = zone_movable_pfn[nid];
4268 *zone_end_pfn = min(node_end_pfn,
4269 arch_zone_highest_possible_pfn[movable_zone]);
4270
4271 /* Adjust for ZONE_MOVABLE starting within this range */
4272 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4273 *zone_end_pfn > zone_movable_pfn[nid]) {
4274 *zone_end_pfn = zone_movable_pfn[nid];
4275
4276 /* Check if this whole range is within ZONE_MOVABLE */
4277 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4278 *zone_start_pfn = *zone_end_pfn;
4279 }
4280 }
4281
4282 /*
4283 * Return the number of pages a zone spans in a node, including holes
4284 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4285 */
4286 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4287 unsigned long zone_type,
4288 unsigned long *ignored)
4289 {
4290 unsigned long node_start_pfn, node_end_pfn;
4291 unsigned long zone_start_pfn, zone_end_pfn;
4292
4293 /* Get the start and end of the node and zone */
4294 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4295 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4296 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4297 adjust_zone_range_for_zone_movable(nid, zone_type,
4298 node_start_pfn, node_end_pfn,
4299 &zone_start_pfn, &zone_end_pfn);
4300
4301 /* Check that this node has pages within the zone's required range */
4302 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4303 return 0;
4304
4305 /* Move the zone boundaries inside the node if necessary */
4306 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4307 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4308
4309 /* Return the spanned pages */
4310 return zone_end_pfn - zone_start_pfn;
4311 }
4312
4313 /*
4314 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4315 * then all holes in the requested range will be accounted for.
4316 */
4317 unsigned long __meminit __absent_pages_in_range(int nid,
4318 unsigned long range_start_pfn,
4319 unsigned long range_end_pfn)
4320 {
4321 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4322 unsigned long start_pfn, end_pfn;
4323 int i;
4324
4325 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4326 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4327 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4328 nr_absent -= end_pfn - start_pfn;
4329 }
4330 return nr_absent;
4331 }
4332
4333 /**
4334 * absent_pages_in_range - Return number of page frames in holes within a range
4335 * @start_pfn: The start PFN to start searching for holes
4336 * @end_pfn: The end PFN to stop searching for holes
4337 *
4338 * It returns the number of pages frames in memory holes within a range.
4339 */
4340 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4341 unsigned long end_pfn)
4342 {
4343 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4344 }
4345
4346 /* Return the number of page frames in holes in a zone on a node */
4347 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4348 unsigned long zone_type,
4349 unsigned long *ignored)
4350 {
4351 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4352 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4353 unsigned long node_start_pfn, node_end_pfn;
4354 unsigned long zone_start_pfn, zone_end_pfn;
4355
4356 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4357 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4358 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4359
4360 adjust_zone_range_for_zone_movable(nid, zone_type,
4361 node_start_pfn, node_end_pfn,
4362 &zone_start_pfn, &zone_end_pfn);
4363 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4364 }
4365
4366 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4367 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4368 unsigned long zone_type,
4369 unsigned long *zones_size)
4370 {
4371 return zones_size[zone_type];
4372 }
4373
4374 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4375 unsigned long zone_type,
4376 unsigned long *zholes_size)
4377 {
4378 if (!zholes_size)
4379 return 0;
4380
4381 return zholes_size[zone_type];
4382 }
4383
4384 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4385
4386 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4387 unsigned long *zones_size, unsigned long *zholes_size)
4388 {
4389 unsigned long realtotalpages, totalpages = 0;
4390 enum zone_type i;
4391
4392 for (i = 0; i < MAX_NR_ZONES; i++)
4393 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4394 zones_size);
4395 pgdat->node_spanned_pages = totalpages;
4396
4397 realtotalpages = totalpages;
4398 for (i = 0; i < MAX_NR_ZONES; i++)
4399 realtotalpages -=
4400 zone_absent_pages_in_node(pgdat->node_id, i,
4401 zholes_size);
4402 pgdat->node_present_pages = realtotalpages;
4403 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4404 realtotalpages);
4405 }
4406
4407 #ifndef CONFIG_SPARSEMEM
4408 /*
4409 * Calculate the size of the zone->blockflags rounded to an unsigned long
4410 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4411 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4412 * round what is now in bits to nearest long in bits, then return it in
4413 * bytes.
4414 */
4415 static unsigned long __init usemap_size(unsigned long zonesize)
4416 {
4417 unsigned long usemapsize;
4418
4419 usemapsize = roundup(zonesize, pageblock_nr_pages);
4420 usemapsize = usemapsize >> pageblock_order;
4421 usemapsize *= NR_PAGEBLOCK_BITS;
4422 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4423
4424 return usemapsize / 8;
4425 }
4426
4427 static void __init setup_usemap(struct pglist_data *pgdat,
4428 struct zone *zone, unsigned long zonesize)
4429 {
4430 unsigned long usemapsize = usemap_size(zonesize);
4431 zone->pageblock_flags = NULL;
4432 if (usemapsize)
4433 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4434 usemapsize);
4435 }
4436 #else
4437 static inline void setup_usemap(struct pglist_data *pgdat,
4438 struct zone *zone, unsigned long zonesize) {}
4439 #endif /* CONFIG_SPARSEMEM */
4440
4441 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4442
4443 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4444 void __init set_pageblock_order(void)
4445 {
4446 unsigned int order;
4447
4448 /* Check that pageblock_nr_pages has not already been setup */
4449 if (pageblock_order)
4450 return;
4451
4452 if (HPAGE_SHIFT > PAGE_SHIFT)
4453 order = HUGETLB_PAGE_ORDER;
4454 else
4455 order = MAX_ORDER - 1;
4456
4457 /*
4458 * Assume the largest contiguous order of interest is a huge page.
4459 * This value may be variable depending on boot parameters on IA64 and
4460 * powerpc.
4461 */
4462 pageblock_order = order;
4463 }
4464 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4465
4466 /*
4467 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4468 * is unused as pageblock_order is set at compile-time. See
4469 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4470 * the kernel config
4471 */
4472 void __init set_pageblock_order(void)
4473 {
4474 }
4475
4476 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4477
4478 /*
4479 * Set up the zone data structures:
4480 * - mark all pages reserved
4481 * - mark all memory queues empty
4482 * - clear the memory bitmaps
4483 *
4484 * NOTE: pgdat should get zeroed by caller.
4485 */
4486 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4487 unsigned long *zones_size, unsigned long *zholes_size)
4488 {
4489 enum zone_type j;
4490 int nid = pgdat->node_id;
4491 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4492 int ret;
4493
4494 pgdat_resize_init(pgdat);
4495 init_waitqueue_head(&pgdat->kswapd_wait);
4496 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4497 pgdat_page_cgroup_init(pgdat);
4498
4499 for (j = 0; j < MAX_NR_ZONES; j++) {
4500 struct zone *zone = pgdat->node_zones + j;
4501 unsigned long size, realsize, memmap_pages;
4502
4503 size = zone_spanned_pages_in_node(nid, j, zones_size);
4504 realsize = size - zone_absent_pages_in_node(nid, j,
4505 zholes_size);
4506
4507 /*
4508 * Adjust realsize so that it accounts for how much memory
4509 * is used by this zone for memmap. This affects the watermark
4510 * and per-cpu initialisations
4511 */
4512 memmap_pages =
4513 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4514 if (realsize >= memmap_pages) {
4515 realsize -= memmap_pages;
4516 if (memmap_pages)
4517 printk(KERN_DEBUG
4518 " %s zone: %lu pages used for memmap\n",
4519 zone_names[j], memmap_pages);
4520 } else
4521 printk(KERN_WARNING
4522 " %s zone: %lu pages exceeds realsize %lu\n",
4523 zone_names[j], memmap_pages, realsize);
4524
4525 /* Account for reserved pages */
4526 if (j == 0 && realsize > dma_reserve) {
4527 realsize -= dma_reserve;
4528 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4529 zone_names[0], dma_reserve);
4530 }
4531
4532 if (!is_highmem_idx(j))
4533 nr_kernel_pages += realsize;
4534 nr_all_pages += realsize;
4535
4536 zone->spanned_pages = size;
4537 zone->present_pages = realsize;
4538 #ifdef CONFIG_NUMA
4539 zone->node = nid;
4540 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4541 / 100;
4542 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4543 #endif
4544 zone->name = zone_names[j];
4545 spin_lock_init(&zone->lock);
4546 spin_lock_init(&zone->lru_lock);
4547 zone_seqlock_init(zone);
4548 zone->zone_pgdat = pgdat;
4549
4550 zone_pcp_init(zone);
4551 lruvec_init(&zone->lruvec);
4552 if (!size)
4553 continue;
4554
4555 set_pageblock_order();
4556 setup_usemap(pgdat, zone, size);
4557 ret = init_currently_empty_zone(zone, zone_start_pfn,
4558 size, MEMMAP_EARLY);
4559 BUG_ON(ret);
4560 memmap_init(size, nid, j, zone_start_pfn);
4561 zone_start_pfn += size;
4562 }
4563 }
4564
4565 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4566 {
4567 /* Skip empty nodes */
4568 if (!pgdat->node_spanned_pages)
4569 return;
4570
4571 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4572 /* ia64 gets its own node_mem_map, before this, without bootmem */
4573 if (!pgdat->node_mem_map) {
4574 unsigned long size, start, end;
4575 struct page *map;
4576
4577 /*
4578 * The zone's endpoints aren't required to be MAX_ORDER
4579 * aligned but the node_mem_map endpoints must be in order
4580 * for the buddy allocator to function correctly.
4581 */
4582 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4583 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4584 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4585 size = (end - start) * sizeof(struct page);
4586 map = alloc_remap(pgdat->node_id, size);
4587 if (!map)
4588 map = alloc_bootmem_node_nopanic(pgdat, size);
4589 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4590 }
4591 #ifndef CONFIG_NEED_MULTIPLE_NODES
4592 /*
4593 * With no DISCONTIG, the global mem_map is just set as node 0's
4594 */
4595 if (pgdat == NODE_DATA(0)) {
4596 mem_map = NODE_DATA(0)->node_mem_map;
4597 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4598 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4599 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4600 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4601 }
4602 #endif
4603 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4604 }
4605
4606 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4607 unsigned long node_start_pfn, unsigned long *zholes_size)
4608 {
4609 pg_data_t *pgdat = NODE_DATA(nid);
4610
4611 /* pg_data_t should be reset to zero when it's allocated */
4612 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4613
4614 pgdat->node_id = nid;
4615 pgdat->node_start_pfn = node_start_pfn;
4616 init_zone_allows_reclaim(nid);
4617 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4618
4619 alloc_node_mem_map(pgdat);
4620 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4621 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4622 nid, (unsigned long)pgdat,
4623 (unsigned long)pgdat->node_mem_map);
4624 #endif
4625
4626 free_area_init_core(pgdat, zones_size, zholes_size);
4627 }
4628
4629 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4630
4631 #if MAX_NUMNODES > 1
4632 /*
4633 * Figure out the number of possible node ids.
4634 */
4635 static void __init setup_nr_node_ids(void)
4636 {
4637 unsigned int node;
4638 unsigned int highest = 0;
4639
4640 for_each_node_mask(node, node_possible_map)
4641 highest = node;
4642 nr_node_ids = highest + 1;
4643 }
4644 #else
4645 static inline void setup_nr_node_ids(void)
4646 {
4647 }
4648 #endif
4649
4650 /**
4651 * node_map_pfn_alignment - determine the maximum internode alignment
4652 *
4653 * This function should be called after node map is populated and sorted.
4654 * It calculates the maximum power of two alignment which can distinguish
4655 * all the nodes.
4656 *
4657 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4658 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4659 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4660 * shifted, 1GiB is enough and this function will indicate so.
4661 *
4662 * This is used to test whether pfn -> nid mapping of the chosen memory
4663 * model has fine enough granularity to avoid incorrect mapping for the
4664 * populated node map.
4665 *
4666 * Returns the determined alignment in pfn's. 0 if there is no alignment
4667 * requirement (single node).
4668 */
4669 unsigned long __init node_map_pfn_alignment(void)
4670 {
4671 unsigned long accl_mask = 0, last_end = 0;
4672 unsigned long start, end, mask;
4673 int last_nid = -1;
4674 int i, nid;
4675
4676 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4677 if (!start || last_nid < 0 || last_nid == nid) {
4678 last_nid = nid;
4679 last_end = end;
4680 continue;
4681 }
4682
4683 /*
4684 * Start with a mask granular enough to pin-point to the
4685 * start pfn and tick off bits one-by-one until it becomes
4686 * too coarse to separate the current node from the last.
4687 */
4688 mask = ~((1 << __ffs(start)) - 1);
4689 while (mask && last_end <= (start & (mask << 1)))
4690 mask <<= 1;
4691
4692 /* accumulate all internode masks */
4693 accl_mask |= mask;
4694 }
4695
4696 /* convert mask to number of pages */
4697 return ~accl_mask + 1;
4698 }
4699
4700 /* Find the lowest pfn for a node */
4701 static unsigned long __init find_min_pfn_for_node(int nid)
4702 {
4703 unsigned long min_pfn = ULONG_MAX;
4704 unsigned long start_pfn;
4705 int i;
4706
4707 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4708 min_pfn = min(min_pfn, start_pfn);
4709
4710 if (min_pfn == ULONG_MAX) {
4711 printk(KERN_WARNING
4712 "Could not find start_pfn for node %d\n", nid);
4713 return 0;
4714 }
4715
4716 return min_pfn;
4717 }
4718
4719 /**
4720 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4721 *
4722 * It returns the minimum PFN based on information provided via
4723 * add_active_range().
4724 */
4725 unsigned long __init find_min_pfn_with_active_regions(void)
4726 {
4727 return find_min_pfn_for_node(MAX_NUMNODES);
4728 }
4729
4730 /*
4731 * early_calculate_totalpages()
4732 * Sum pages in active regions for movable zone.
4733 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4734 */
4735 static unsigned long __init early_calculate_totalpages(void)
4736 {
4737 unsigned long totalpages = 0;
4738 unsigned long start_pfn, end_pfn;
4739 int i, nid;
4740
4741 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4742 unsigned long pages = end_pfn - start_pfn;
4743
4744 totalpages += pages;
4745 if (pages)
4746 node_set_state(nid, N_HIGH_MEMORY);
4747 }
4748 return totalpages;
4749 }
4750
4751 /*
4752 * Find the PFN the Movable zone begins in each node. Kernel memory
4753 * is spread evenly between nodes as long as the nodes have enough
4754 * memory. When they don't, some nodes will have more kernelcore than
4755 * others
4756 */
4757 static void __init find_zone_movable_pfns_for_nodes(void)
4758 {
4759 int i, nid;
4760 unsigned long usable_startpfn;
4761 unsigned long kernelcore_node, kernelcore_remaining;
4762 /* save the state before borrow the nodemask */
4763 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4764 unsigned long totalpages = early_calculate_totalpages();
4765 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4766
4767 /*
4768 * If movablecore was specified, calculate what size of
4769 * kernelcore that corresponds so that memory usable for
4770 * any allocation type is evenly spread. If both kernelcore
4771 * and movablecore are specified, then the value of kernelcore
4772 * will be used for required_kernelcore if it's greater than
4773 * what movablecore would have allowed.
4774 */
4775 if (required_movablecore) {
4776 unsigned long corepages;
4777
4778 /*
4779 * Round-up so that ZONE_MOVABLE is at least as large as what
4780 * was requested by the user
4781 */
4782 required_movablecore =
4783 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4784 corepages = totalpages - required_movablecore;
4785
4786 required_kernelcore = max(required_kernelcore, corepages);
4787 }
4788
4789 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4790 if (!required_kernelcore)
4791 goto out;
4792
4793 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4794 find_usable_zone_for_movable();
4795 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4796
4797 restart:
4798 /* Spread kernelcore memory as evenly as possible throughout nodes */
4799 kernelcore_node = required_kernelcore / usable_nodes;
4800 for_each_node_state(nid, N_HIGH_MEMORY) {
4801 unsigned long start_pfn, end_pfn;
4802
4803 /*
4804 * Recalculate kernelcore_node if the division per node
4805 * now exceeds what is necessary to satisfy the requested
4806 * amount of memory for the kernel
4807 */
4808 if (required_kernelcore < kernelcore_node)
4809 kernelcore_node = required_kernelcore / usable_nodes;
4810
4811 /*
4812 * As the map is walked, we track how much memory is usable
4813 * by the kernel using kernelcore_remaining. When it is
4814 * 0, the rest of the node is usable by ZONE_MOVABLE
4815 */
4816 kernelcore_remaining = kernelcore_node;
4817
4818 /* Go through each range of PFNs within this node */
4819 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4820 unsigned long size_pages;
4821
4822 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4823 if (start_pfn >= end_pfn)
4824 continue;
4825
4826 /* Account for what is only usable for kernelcore */
4827 if (start_pfn < usable_startpfn) {
4828 unsigned long kernel_pages;
4829 kernel_pages = min(end_pfn, usable_startpfn)
4830 - start_pfn;
4831
4832 kernelcore_remaining -= min(kernel_pages,
4833 kernelcore_remaining);
4834 required_kernelcore -= min(kernel_pages,
4835 required_kernelcore);
4836
4837 /* Continue if range is now fully accounted */
4838 if (end_pfn <= usable_startpfn) {
4839
4840 /*
4841 * Push zone_movable_pfn to the end so
4842 * that if we have to rebalance
4843 * kernelcore across nodes, we will
4844 * not double account here
4845 */
4846 zone_movable_pfn[nid] = end_pfn;
4847 continue;
4848 }
4849 start_pfn = usable_startpfn;
4850 }
4851
4852 /*
4853 * The usable PFN range for ZONE_MOVABLE is from
4854 * start_pfn->end_pfn. Calculate size_pages as the
4855 * number of pages used as kernelcore
4856 */
4857 size_pages = end_pfn - start_pfn;
4858 if (size_pages > kernelcore_remaining)
4859 size_pages = kernelcore_remaining;
4860 zone_movable_pfn[nid] = start_pfn + size_pages;
4861
4862 /*
4863 * Some kernelcore has been met, update counts and
4864 * break if the kernelcore for this node has been
4865 * satisified
4866 */
4867 required_kernelcore -= min(required_kernelcore,
4868 size_pages);
4869 kernelcore_remaining -= size_pages;
4870 if (!kernelcore_remaining)
4871 break;
4872 }
4873 }
4874
4875 /*
4876 * If there is still required_kernelcore, we do another pass with one
4877 * less node in the count. This will push zone_movable_pfn[nid] further
4878 * along on the nodes that still have memory until kernelcore is
4879 * satisified
4880 */
4881 usable_nodes--;
4882 if (usable_nodes && required_kernelcore > usable_nodes)
4883 goto restart;
4884
4885 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4886 for (nid = 0; nid < MAX_NUMNODES; nid++)
4887 zone_movable_pfn[nid] =
4888 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4889
4890 out:
4891 /* restore the node_state */
4892 node_states[N_HIGH_MEMORY] = saved_node_state;
4893 }
4894
4895 /* Any regular memory on that node ? */
4896 static void __init check_for_regular_memory(pg_data_t *pgdat)
4897 {
4898 #ifdef CONFIG_HIGHMEM
4899 enum zone_type zone_type;
4900
4901 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4902 struct zone *zone = &pgdat->node_zones[zone_type];
4903 if (zone->present_pages) {
4904 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4905 break;
4906 }
4907 }
4908 #endif
4909 }
4910
4911 /**
4912 * free_area_init_nodes - Initialise all pg_data_t and zone data
4913 * @max_zone_pfn: an array of max PFNs for each zone
4914 *
4915 * This will call free_area_init_node() for each active node in the system.
4916 * Using the page ranges provided by add_active_range(), the size of each
4917 * zone in each node and their holes is calculated. If the maximum PFN
4918 * between two adjacent zones match, it is assumed that the zone is empty.
4919 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4920 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4921 * starts where the previous one ended. For example, ZONE_DMA32 starts
4922 * at arch_max_dma_pfn.
4923 */
4924 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4925 {
4926 unsigned long start_pfn, end_pfn;
4927 int i, nid;
4928
4929 /* Record where the zone boundaries are */
4930 memset(arch_zone_lowest_possible_pfn, 0,
4931 sizeof(arch_zone_lowest_possible_pfn));
4932 memset(arch_zone_highest_possible_pfn, 0,
4933 sizeof(arch_zone_highest_possible_pfn));
4934 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4935 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4936 for (i = 1; i < MAX_NR_ZONES; i++) {
4937 if (i == ZONE_MOVABLE)
4938 continue;
4939 arch_zone_lowest_possible_pfn[i] =
4940 arch_zone_highest_possible_pfn[i-1];
4941 arch_zone_highest_possible_pfn[i] =
4942 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4943 }
4944 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4945 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4946
4947 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4948 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4949 find_zone_movable_pfns_for_nodes();
4950
4951 /* Print out the zone ranges */
4952 printk("Zone ranges:\n");
4953 for (i = 0; i < MAX_NR_ZONES; i++) {
4954 if (i == ZONE_MOVABLE)
4955 continue;
4956 printk(KERN_CONT " %-8s ", zone_names[i]);
4957 if (arch_zone_lowest_possible_pfn[i] ==
4958 arch_zone_highest_possible_pfn[i])
4959 printk(KERN_CONT "empty\n");
4960 else
4961 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4962 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4963 (arch_zone_highest_possible_pfn[i]
4964 << PAGE_SHIFT) - 1);
4965 }
4966
4967 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4968 printk("Movable zone start for each node\n");
4969 for (i = 0; i < MAX_NUMNODES; i++) {
4970 if (zone_movable_pfn[i])
4971 printk(" Node %d: %#010lx\n", i,
4972 zone_movable_pfn[i] << PAGE_SHIFT);
4973 }
4974
4975 /* Print out the early node map */
4976 printk("Early memory node ranges\n");
4977 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4978 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4979 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4980
4981 /* Initialise every node */
4982 mminit_verify_pageflags_layout();
4983 setup_nr_node_ids();
4984 for_each_online_node(nid) {
4985 pg_data_t *pgdat = NODE_DATA(nid);
4986 free_area_init_node(nid, NULL,
4987 find_min_pfn_for_node(nid), NULL);
4988
4989 /* Any memory on that node */
4990 if (pgdat->node_present_pages)
4991 node_set_state(nid, N_HIGH_MEMORY);
4992 check_for_regular_memory(pgdat);
4993 }
4994 }
4995
4996 static int __init cmdline_parse_core(char *p, unsigned long *core)
4997 {
4998 unsigned long long coremem;
4999 if (!p)
5000 return -EINVAL;
5001
5002 coremem = memparse(p, &p);
5003 *core = coremem >> PAGE_SHIFT;
5004
5005 /* Paranoid check that UL is enough for the coremem value */
5006 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5007
5008 return 0;
5009 }
5010
5011 /*
5012 * kernelcore=size sets the amount of memory for use for allocations that
5013 * cannot be reclaimed or migrated.
5014 */
5015 static int __init cmdline_parse_kernelcore(char *p)
5016 {
5017 return cmdline_parse_core(p, &required_kernelcore);
5018 }
5019
5020 /*
5021 * movablecore=size sets the amount of memory for use for allocations that
5022 * can be reclaimed or migrated.
5023 */
5024 static int __init cmdline_parse_movablecore(char *p)
5025 {
5026 return cmdline_parse_core(p, &required_movablecore);
5027 }
5028
5029 early_param("kernelcore", cmdline_parse_kernelcore);
5030 early_param("movablecore", cmdline_parse_movablecore);
5031
5032 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5033
5034 /**
5035 * set_dma_reserve - set the specified number of pages reserved in the first zone
5036 * @new_dma_reserve: The number of pages to mark reserved
5037 *
5038 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5039 * In the DMA zone, a significant percentage may be consumed by kernel image
5040 * and other unfreeable allocations which can skew the watermarks badly. This
5041 * function may optionally be used to account for unfreeable pages in the
5042 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5043 * smaller per-cpu batchsize.
5044 */
5045 void __init set_dma_reserve(unsigned long new_dma_reserve)
5046 {
5047 dma_reserve = new_dma_reserve;
5048 }
5049
5050 void __init free_area_init(unsigned long *zones_size)
5051 {
5052 free_area_init_node(0, zones_size,
5053 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5054 }
5055
5056 static int page_alloc_cpu_notify(struct notifier_block *self,
5057 unsigned long action, void *hcpu)
5058 {
5059 int cpu = (unsigned long)hcpu;
5060
5061 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5062 lru_add_drain_cpu(cpu);
5063 drain_pages(cpu);
5064
5065 /*
5066 * Spill the event counters of the dead processor
5067 * into the current processors event counters.
5068 * This artificially elevates the count of the current
5069 * processor.
5070 */
5071 vm_events_fold_cpu(cpu);
5072
5073 /*
5074 * Zero the differential counters of the dead processor
5075 * so that the vm statistics are consistent.
5076 *
5077 * This is only okay since the processor is dead and cannot
5078 * race with what we are doing.
5079 */
5080 refresh_cpu_vm_stats(cpu);
5081 }
5082 return NOTIFY_OK;
5083 }
5084
5085 void __init page_alloc_init(void)
5086 {
5087 hotcpu_notifier(page_alloc_cpu_notify, 0);
5088 }
5089
5090 /*
5091 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5092 * or min_free_kbytes changes.
5093 */
5094 static void calculate_totalreserve_pages(void)
5095 {
5096 struct pglist_data *pgdat;
5097 unsigned long reserve_pages = 0;
5098 enum zone_type i, j;
5099
5100 for_each_online_pgdat(pgdat) {
5101 for (i = 0; i < MAX_NR_ZONES; i++) {
5102 struct zone *zone = pgdat->node_zones + i;
5103 unsigned long max = 0;
5104
5105 /* Find valid and maximum lowmem_reserve in the zone */
5106 for (j = i; j < MAX_NR_ZONES; j++) {
5107 if (zone->lowmem_reserve[j] > max)
5108 max = zone->lowmem_reserve[j];
5109 }
5110
5111 /* we treat the high watermark as reserved pages. */
5112 max += high_wmark_pages(zone);
5113
5114 if (max > zone->present_pages)
5115 max = zone->present_pages;
5116 reserve_pages += max;
5117 /*
5118 * Lowmem reserves are not available to
5119 * GFP_HIGHUSER page cache allocations and
5120 * kswapd tries to balance zones to their high
5121 * watermark. As a result, neither should be
5122 * regarded as dirtyable memory, to prevent a
5123 * situation where reclaim has to clean pages
5124 * in order to balance the zones.
5125 */
5126 zone->dirty_balance_reserve = max;
5127 }
5128 }
5129 dirty_balance_reserve = reserve_pages;
5130 totalreserve_pages = reserve_pages;
5131 }
5132
5133 /*
5134 * setup_per_zone_lowmem_reserve - called whenever
5135 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5136 * has a correct pages reserved value, so an adequate number of
5137 * pages are left in the zone after a successful __alloc_pages().
5138 */
5139 static void setup_per_zone_lowmem_reserve(void)
5140 {
5141 struct pglist_data *pgdat;
5142 enum zone_type j, idx;
5143
5144 for_each_online_pgdat(pgdat) {
5145 for (j = 0; j < MAX_NR_ZONES; j++) {
5146 struct zone *zone = pgdat->node_zones + j;
5147 unsigned long present_pages = zone->present_pages;
5148
5149 zone->lowmem_reserve[j] = 0;
5150
5151 idx = j;
5152 while (idx) {
5153 struct zone *lower_zone;
5154
5155 idx--;
5156
5157 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5158 sysctl_lowmem_reserve_ratio[idx] = 1;
5159
5160 lower_zone = pgdat->node_zones + idx;
5161 lower_zone->lowmem_reserve[j] = present_pages /
5162 sysctl_lowmem_reserve_ratio[idx];
5163 present_pages += lower_zone->present_pages;
5164 }
5165 }
5166 }
5167
5168 /* update totalreserve_pages */
5169 calculate_totalreserve_pages();
5170 }
5171
5172 static void __setup_per_zone_wmarks(void)
5173 {
5174 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5175 unsigned long lowmem_pages = 0;
5176 struct zone *zone;
5177 unsigned long flags;
5178
5179 /* Calculate total number of !ZONE_HIGHMEM pages */
5180 for_each_zone(zone) {
5181 if (!is_highmem(zone))
5182 lowmem_pages += zone->present_pages;
5183 }
5184
5185 for_each_zone(zone) {
5186 u64 tmp;
5187
5188 spin_lock_irqsave(&zone->lock, flags);
5189 tmp = (u64)pages_min * zone->present_pages;
5190 do_div(tmp, lowmem_pages);
5191 if (is_highmem(zone)) {
5192 /*
5193 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5194 * need highmem pages, so cap pages_min to a small
5195 * value here.
5196 *
5197 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5198 * deltas controls asynch page reclaim, and so should
5199 * not be capped for highmem.
5200 */
5201 int min_pages;
5202
5203 min_pages = zone->present_pages / 1024;
5204 if (min_pages < SWAP_CLUSTER_MAX)
5205 min_pages = SWAP_CLUSTER_MAX;
5206 if (min_pages > 128)
5207 min_pages = 128;
5208 zone->watermark[WMARK_MIN] = min_pages;
5209 } else {
5210 /*
5211 * If it's a lowmem zone, reserve a number of pages
5212 * proportionate to the zone's size.
5213 */
5214 zone->watermark[WMARK_MIN] = tmp;
5215 }
5216
5217 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5218 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5219
5220 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5221 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5222 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5223
5224 setup_zone_migrate_reserve(zone);
5225 spin_unlock_irqrestore(&zone->lock, flags);
5226 }
5227
5228 /* update totalreserve_pages */
5229 calculate_totalreserve_pages();
5230 }
5231
5232 /**
5233 * setup_per_zone_wmarks - called when min_free_kbytes changes
5234 * or when memory is hot-{added|removed}
5235 *
5236 * Ensures that the watermark[min,low,high] values for each zone are set
5237 * correctly with respect to min_free_kbytes.
5238 */
5239 void setup_per_zone_wmarks(void)
5240 {
5241 mutex_lock(&zonelists_mutex);
5242 __setup_per_zone_wmarks();
5243 mutex_unlock(&zonelists_mutex);
5244 }
5245
5246 /*
5247 * The inactive anon list should be small enough that the VM never has to
5248 * do too much work, but large enough that each inactive page has a chance
5249 * to be referenced again before it is swapped out.
5250 *
5251 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5252 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5253 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5254 * the anonymous pages are kept on the inactive list.
5255 *
5256 * total target max
5257 * memory ratio inactive anon
5258 * -------------------------------------
5259 * 10MB 1 5MB
5260 * 100MB 1 50MB
5261 * 1GB 3 250MB
5262 * 10GB 10 0.9GB
5263 * 100GB 31 3GB
5264 * 1TB 101 10GB
5265 * 10TB 320 32GB
5266 */
5267 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5268 {
5269 unsigned int gb, ratio;
5270
5271 /* Zone size in gigabytes */
5272 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5273 if (gb)
5274 ratio = int_sqrt(10 * gb);
5275 else
5276 ratio = 1;
5277
5278 zone->inactive_ratio = ratio;
5279 }
5280
5281 static void __meminit setup_per_zone_inactive_ratio(void)
5282 {
5283 struct zone *zone;
5284
5285 for_each_zone(zone)
5286 calculate_zone_inactive_ratio(zone);
5287 }
5288
5289 /*
5290 * Initialise min_free_kbytes.
5291 *
5292 * For small machines we want it small (128k min). For large machines
5293 * we want it large (64MB max). But it is not linear, because network
5294 * bandwidth does not increase linearly with machine size. We use
5295 *
5296 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5297 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5298 *
5299 * which yields
5300 *
5301 * 16MB: 512k
5302 * 32MB: 724k
5303 * 64MB: 1024k
5304 * 128MB: 1448k
5305 * 256MB: 2048k
5306 * 512MB: 2896k
5307 * 1024MB: 4096k
5308 * 2048MB: 5792k
5309 * 4096MB: 8192k
5310 * 8192MB: 11584k
5311 * 16384MB: 16384k
5312 */
5313 int __meminit init_per_zone_wmark_min(void)
5314 {
5315 unsigned long lowmem_kbytes;
5316
5317 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5318
5319 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5320 if (min_free_kbytes < 128)
5321 min_free_kbytes = 128;
5322 if (min_free_kbytes > 65536)
5323 min_free_kbytes = 65536;
5324 setup_per_zone_wmarks();
5325 refresh_zone_stat_thresholds();
5326 setup_per_zone_lowmem_reserve();
5327 setup_per_zone_inactive_ratio();
5328 return 0;
5329 }
5330 module_init(init_per_zone_wmark_min)
5331
5332 /*
5333 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5334 * that we can call two helper functions whenever min_free_kbytes
5335 * changes.
5336 */
5337 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5338 void __user *buffer, size_t *length, loff_t *ppos)
5339 {
5340 proc_dointvec(table, write, buffer, length, ppos);
5341 if (write)
5342 setup_per_zone_wmarks();
5343 return 0;
5344 }
5345
5346 #ifdef CONFIG_NUMA
5347 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5348 void __user *buffer, size_t *length, loff_t *ppos)
5349 {
5350 struct zone *zone;
5351 int rc;
5352
5353 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5354 if (rc)
5355 return rc;
5356
5357 for_each_zone(zone)
5358 zone->min_unmapped_pages = (zone->present_pages *
5359 sysctl_min_unmapped_ratio) / 100;
5360 return 0;
5361 }
5362
5363 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5364 void __user *buffer, size_t *length, loff_t *ppos)
5365 {
5366 struct zone *zone;
5367 int rc;
5368
5369 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5370 if (rc)
5371 return rc;
5372
5373 for_each_zone(zone)
5374 zone->min_slab_pages = (zone->present_pages *
5375 sysctl_min_slab_ratio) / 100;
5376 return 0;
5377 }
5378 #endif
5379
5380 /*
5381 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5382 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5383 * whenever sysctl_lowmem_reserve_ratio changes.
5384 *
5385 * The reserve ratio obviously has absolutely no relation with the
5386 * minimum watermarks. The lowmem reserve ratio can only make sense
5387 * if in function of the boot time zone sizes.
5388 */
5389 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5390 void __user *buffer, size_t *length, loff_t *ppos)
5391 {
5392 proc_dointvec_minmax(table, write, buffer, length, ppos);
5393 setup_per_zone_lowmem_reserve();
5394 return 0;
5395 }
5396
5397 /*
5398 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5399 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5400 * can have before it gets flushed back to buddy allocator.
5401 */
5402
5403 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5404 void __user *buffer, size_t *length, loff_t *ppos)
5405 {
5406 struct zone *zone;
5407 unsigned int cpu;
5408 int ret;
5409
5410 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5411 if (!write || (ret < 0))
5412 return ret;
5413 for_each_populated_zone(zone) {
5414 for_each_possible_cpu(cpu) {
5415 unsigned long high;
5416 high = zone->present_pages / percpu_pagelist_fraction;
5417 setup_pagelist_highmark(
5418 per_cpu_ptr(zone->pageset, cpu), high);
5419 }
5420 }
5421 return 0;
5422 }
5423
5424 int hashdist = HASHDIST_DEFAULT;
5425
5426 #ifdef CONFIG_NUMA
5427 static int __init set_hashdist(char *str)
5428 {
5429 if (!str)
5430 return 0;
5431 hashdist = simple_strtoul(str, &str, 0);
5432 return 1;
5433 }
5434 __setup("hashdist=", set_hashdist);
5435 #endif
5436
5437 /*
5438 * allocate a large system hash table from bootmem
5439 * - it is assumed that the hash table must contain an exact power-of-2
5440 * quantity of entries
5441 * - limit is the number of hash buckets, not the total allocation size
5442 */
5443 void *__init alloc_large_system_hash(const char *tablename,
5444 unsigned long bucketsize,
5445 unsigned long numentries,
5446 int scale,
5447 int flags,
5448 unsigned int *_hash_shift,
5449 unsigned int *_hash_mask,
5450 unsigned long low_limit,
5451 unsigned long high_limit)
5452 {
5453 unsigned long long max = high_limit;
5454 unsigned long log2qty, size;
5455 void *table = NULL;
5456
5457 /* allow the kernel cmdline to have a say */
5458 if (!numentries) {
5459 /* round applicable memory size up to nearest megabyte */
5460 numentries = nr_kernel_pages;
5461 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5462 numentries >>= 20 - PAGE_SHIFT;
5463 numentries <<= 20 - PAGE_SHIFT;
5464
5465 /* limit to 1 bucket per 2^scale bytes of low memory */
5466 if (scale > PAGE_SHIFT)
5467 numentries >>= (scale - PAGE_SHIFT);
5468 else
5469 numentries <<= (PAGE_SHIFT - scale);
5470
5471 /* Make sure we've got at least a 0-order allocation.. */
5472 if (unlikely(flags & HASH_SMALL)) {
5473 /* Makes no sense without HASH_EARLY */
5474 WARN_ON(!(flags & HASH_EARLY));
5475 if (!(numentries >> *_hash_shift)) {
5476 numentries = 1UL << *_hash_shift;
5477 BUG_ON(!numentries);
5478 }
5479 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5480 numentries = PAGE_SIZE / bucketsize;
5481 }
5482 numentries = roundup_pow_of_two(numentries);
5483
5484 /* limit allocation size to 1/16 total memory by default */
5485 if (max == 0) {
5486 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5487 do_div(max, bucketsize);
5488 }
5489 max = min(max, 0x80000000ULL);
5490
5491 if (numentries < low_limit)
5492 numentries = low_limit;
5493 if (numentries > max)
5494 numentries = max;
5495
5496 log2qty = ilog2(numentries);
5497
5498 do {
5499 size = bucketsize << log2qty;
5500 if (flags & HASH_EARLY)
5501 table = alloc_bootmem_nopanic(size);
5502 else if (hashdist)
5503 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5504 else {
5505 /*
5506 * If bucketsize is not a power-of-two, we may free
5507 * some pages at the end of hash table which
5508 * alloc_pages_exact() automatically does
5509 */
5510 if (get_order(size) < MAX_ORDER) {
5511 table = alloc_pages_exact(size, GFP_ATOMIC);
5512 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5513 }
5514 }
5515 } while (!table && size > PAGE_SIZE && --log2qty);
5516
5517 if (!table)
5518 panic("Failed to allocate %s hash table\n", tablename);
5519
5520 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5521 tablename,
5522 (1UL << log2qty),
5523 ilog2(size) - PAGE_SHIFT,
5524 size);
5525
5526 if (_hash_shift)
5527 *_hash_shift = log2qty;
5528 if (_hash_mask)
5529 *_hash_mask = (1 << log2qty) - 1;
5530
5531 return table;
5532 }
5533
5534 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5535 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5536 unsigned long pfn)
5537 {
5538 #ifdef CONFIG_SPARSEMEM
5539 return __pfn_to_section(pfn)->pageblock_flags;
5540 #else
5541 return zone->pageblock_flags;
5542 #endif /* CONFIG_SPARSEMEM */
5543 }
5544
5545 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5546 {
5547 #ifdef CONFIG_SPARSEMEM
5548 pfn &= (PAGES_PER_SECTION-1);
5549 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5550 #else
5551 pfn = pfn - zone->zone_start_pfn;
5552 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5553 #endif /* CONFIG_SPARSEMEM */
5554 }
5555
5556 /**
5557 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5558 * @page: The page within the block of interest
5559 * @start_bitidx: The first bit of interest to retrieve
5560 * @end_bitidx: The last bit of interest
5561 * returns pageblock_bits flags
5562 */
5563 unsigned long get_pageblock_flags_group(struct page *page,
5564 int start_bitidx, int end_bitidx)
5565 {
5566 struct zone *zone;
5567 unsigned long *bitmap;
5568 unsigned long pfn, bitidx;
5569 unsigned long flags = 0;
5570 unsigned long value = 1;
5571
5572 zone = page_zone(page);
5573 pfn = page_to_pfn(page);
5574 bitmap = get_pageblock_bitmap(zone, pfn);
5575 bitidx = pfn_to_bitidx(zone, pfn);
5576
5577 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5578 if (test_bit(bitidx + start_bitidx, bitmap))
5579 flags |= value;
5580
5581 return flags;
5582 }
5583
5584 /**
5585 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5586 * @page: The page within the block of interest
5587 * @start_bitidx: The first bit of interest
5588 * @end_bitidx: The last bit of interest
5589 * @flags: The flags to set
5590 */
5591 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5592 int start_bitidx, int end_bitidx)
5593 {
5594 struct zone *zone;
5595 unsigned long *bitmap;
5596 unsigned long pfn, bitidx;
5597 unsigned long value = 1;
5598
5599 zone = page_zone(page);
5600 pfn = page_to_pfn(page);
5601 bitmap = get_pageblock_bitmap(zone, pfn);
5602 bitidx = pfn_to_bitidx(zone, pfn);
5603 VM_BUG_ON(pfn < zone->zone_start_pfn);
5604 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5605
5606 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5607 if (flags & value)
5608 __set_bit(bitidx + start_bitidx, bitmap);
5609 else
5610 __clear_bit(bitidx + start_bitidx, bitmap);
5611 }
5612
5613 /*
5614 * This function checks whether pageblock includes unmovable pages or not.
5615 * If @count is not zero, it is okay to include less @count unmovable pages
5616 *
5617 * PageLRU check wihtout isolation or lru_lock could race so that
5618 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5619 * expect this function should be exact.
5620 */
5621 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5622 bool skip_hwpoisoned_pages)
5623 {
5624 unsigned long pfn, iter, found;
5625 int mt;
5626
5627 /*
5628 * For avoiding noise data, lru_add_drain_all() should be called
5629 * If ZONE_MOVABLE, the zone never contains unmovable pages
5630 */
5631 if (zone_idx(zone) == ZONE_MOVABLE)
5632 return false;
5633 mt = get_pageblock_migratetype(page);
5634 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5635 return false;
5636
5637 pfn = page_to_pfn(page);
5638 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5639 unsigned long check = pfn + iter;
5640
5641 if (!pfn_valid_within(check))
5642 continue;
5643
5644 page = pfn_to_page(check);
5645 /*
5646 * We can't use page_count without pin a page
5647 * because another CPU can free compound page.
5648 * This check already skips compound tails of THP
5649 * because their page->_count is zero at all time.
5650 */
5651 if (!atomic_read(&page->_count)) {
5652 if (PageBuddy(page))
5653 iter += (1 << page_order(page)) - 1;
5654 continue;
5655 }
5656
5657 /*
5658 * The HWPoisoned page may be not in buddy system, and
5659 * page_count() is not 0.
5660 */
5661 if (skip_hwpoisoned_pages && PageHWPoison(page))
5662 continue;
5663
5664 if (!PageLRU(page))
5665 found++;
5666 /*
5667 * If there are RECLAIMABLE pages, we need to check it.
5668 * But now, memory offline itself doesn't call shrink_slab()
5669 * and it still to be fixed.
5670 */
5671 /*
5672 * If the page is not RAM, page_count()should be 0.
5673 * we don't need more check. This is an _used_ not-movable page.
5674 *
5675 * The problematic thing here is PG_reserved pages. PG_reserved
5676 * is set to both of a memory hole page and a _used_ kernel
5677 * page at boot.
5678 */
5679 if (found > count)
5680 return true;
5681 }
5682 return false;
5683 }
5684
5685 bool is_pageblock_removable_nolock(struct page *page)
5686 {
5687 struct zone *zone;
5688 unsigned long pfn;
5689
5690 /*
5691 * We have to be careful here because we are iterating over memory
5692 * sections which are not zone aware so we might end up outside of
5693 * the zone but still within the section.
5694 * We have to take care about the node as well. If the node is offline
5695 * its NODE_DATA will be NULL - see page_zone.
5696 */
5697 if (!node_online(page_to_nid(page)))
5698 return false;
5699
5700 zone = page_zone(page);
5701 pfn = page_to_pfn(page);
5702 if (zone->zone_start_pfn > pfn ||
5703 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5704 return false;
5705
5706 return !has_unmovable_pages(zone, page, 0, true);
5707 }
5708
5709 #ifdef CONFIG_CMA
5710
5711 static unsigned long pfn_max_align_down(unsigned long pfn)
5712 {
5713 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5714 pageblock_nr_pages) - 1);
5715 }
5716
5717 static unsigned long pfn_max_align_up(unsigned long pfn)
5718 {
5719 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5720 pageblock_nr_pages));
5721 }
5722
5723 /* [start, end) must belong to a single zone. */
5724 static int __alloc_contig_migrate_range(struct compact_control *cc,
5725 unsigned long start, unsigned long end)
5726 {
5727 /* This function is based on compact_zone() from compaction.c. */
5728 unsigned long nr_reclaimed;
5729 unsigned long pfn = start;
5730 unsigned int tries = 0;
5731 int ret = 0;
5732
5733 migrate_prep_local();
5734
5735 while (pfn < end || !list_empty(&cc->migratepages)) {
5736 if (fatal_signal_pending(current)) {
5737 ret = -EINTR;
5738 break;
5739 }
5740
5741 if (list_empty(&cc->migratepages)) {
5742 cc->nr_migratepages = 0;
5743 pfn = isolate_migratepages_range(cc->zone, cc,
5744 pfn, end, true);
5745 if (!pfn) {
5746 ret = -EINTR;
5747 break;
5748 }
5749 tries = 0;
5750 } else if (++tries == 5) {
5751 ret = ret < 0 ? ret : -EBUSY;
5752 break;
5753 }
5754
5755 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5756 &cc->migratepages);
5757 cc->nr_migratepages -= nr_reclaimed;
5758
5759 ret = migrate_pages(&cc->migratepages,
5760 alloc_migrate_target,
5761 0, false, MIGRATE_SYNC);
5762 }
5763
5764 putback_movable_pages(&cc->migratepages);
5765 return ret > 0 ? 0 : ret;
5766 }
5767
5768 /*
5769 * Update zone's cma pages counter used for watermark level calculation.
5770 */
5771 static inline void __update_cma_watermarks(struct zone *zone, int count)
5772 {
5773 unsigned long flags;
5774 spin_lock_irqsave(&zone->lock, flags);
5775 zone->min_cma_pages += count;
5776 spin_unlock_irqrestore(&zone->lock, flags);
5777 setup_per_zone_wmarks();
5778 }
5779
5780 /*
5781 * Trigger memory pressure bump to reclaim some pages in order to be able to
5782 * allocate 'count' pages in single page units. Does similar work as
5783 *__alloc_pages_slowpath() function.
5784 */
5785 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5786 {
5787 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5788 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5789 int did_some_progress = 0;
5790 int order = 1;
5791
5792 /*
5793 * Increase level of watermarks to force kswapd do his job
5794 * to stabilise at new watermark level.
5795 */
5796 __update_cma_watermarks(zone, count);
5797
5798 /* Obey watermarks as if the page was being allocated */
5799 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5800 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5801
5802 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5803 NULL);
5804 if (!did_some_progress) {
5805 /* Exhausted what can be done so it's blamo time */
5806 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5807 }
5808 }
5809
5810 /* Restore original watermark levels. */
5811 __update_cma_watermarks(zone, -count);
5812
5813 return count;
5814 }
5815
5816 /**
5817 * alloc_contig_range() -- tries to allocate given range of pages
5818 * @start: start PFN to allocate
5819 * @end: one-past-the-last PFN to allocate
5820 * @migratetype: migratetype of the underlaying pageblocks (either
5821 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5822 * in range must have the same migratetype and it must
5823 * be either of the two.
5824 *
5825 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5826 * aligned, however it's the caller's responsibility to guarantee that
5827 * we are the only thread that changes migrate type of pageblocks the
5828 * pages fall in.
5829 *
5830 * The PFN range must belong to a single zone.
5831 *
5832 * Returns zero on success or negative error code. On success all
5833 * pages which PFN is in [start, end) are allocated for the caller and
5834 * need to be freed with free_contig_range().
5835 */
5836 int alloc_contig_range(unsigned long start, unsigned long end,
5837 unsigned migratetype)
5838 {
5839 struct zone *zone = page_zone(pfn_to_page(start));
5840 unsigned long outer_start, outer_end;
5841 int ret = 0, order;
5842
5843 struct compact_control cc = {
5844 .nr_migratepages = 0,
5845 .order = -1,
5846 .zone = page_zone(pfn_to_page(start)),
5847 .sync = true,
5848 .ignore_skip_hint = true,
5849 };
5850 INIT_LIST_HEAD(&cc.migratepages);
5851
5852 /*
5853 * What we do here is we mark all pageblocks in range as
5854 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5855 * have different sizes, and due to the way page allocator
5856 * work, we align the range to biggest of the two pages so
5857 * that page allocator won't try to merge buddies from
5858 * different pageblocks and change MIGRATE_ISOLATE to some
5859 * other migration type.
5860 *
5861 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5862 * migrate the pages from an unaligned range (ie. pages that
5863 * we are interested in). This will put all the pages in
5864 * range back to page allocator as MIGRATE_ISOLATE.
5865 *
5866 * When this is done, we take the pages in range from page
5867 * allocator removing them from the buddy system. This way
5868 * page allocator will never consider using them.
5869 *
5870 * This lets us mark the pageblocks back as
5871 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5872 * aligned range but not in the unaligned, original range are
5873 * put back to page allocator so that buddy can use them.
5874 */
5875
5876 ret = start_isolate_page_range(pfn_max_align_down(start),
5877 pfn_max_align_up(end), migratetype,
5878 false);
5879 if (ret)
5880 return ret;
5881
5882 ret = __alloc_contig_migrate_range(&cc, start, end);
5883 if (ret)
5884 goto done;
5885
5886 /*
5887 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5888 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5889 * more, all pages in [start, end) are free in page allocator.
5890 * What we are going to do is to allocate all pages from
5891 * [start, end) (that is remove them from page allocator).
5892 *
5893 * The only problem is that pages at the beginning and at the
5894 * end of interesting range may be not aligned with pages that
5895 * page allocator holds, ie. they can be part of higher order
5896 * pages. Because of this, we reserve the bigger range and
5897 * once this is done free the pages we are not interested in.
5898 *
5899 * We don't have to hold zone->lock here because the pages are
5900 * isolated thus they won't get removed from buddy.
5901 */
5902
5903 lru_add_drain_all();
5904 drain_all_pages();
5905
5906 order = 0;
5907 outer_start = start;
5908 while (!PageBuddy(pfn_to_page(outer_start))) {
5909 if (++order >= MAX_ORDER) {
5910 ret = -EBUSY;
5911 goto done;
5912 }
5913 outer_start &= ~0UL << order;
5914 }
5915
5916 /* Make sure the range is really isolated. */
5917 if (test_pages_isolated(outer_start, end, false)) {
5918 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5919 outer_start, end);
5920 ret = -EBUSY;
5921 goto done;
5922 }
5923
5924 /*
5925 * Reclaim enough pages to make sure that contiguous allocation
5926 * will not starve the system.
5927 */
5928 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5929
5930 /* Grab isolated pages from freelists. */
5931 outer_end = isolate_freepages_range(&cc, outer_start, end);
5932 if (!outer_end) {
5933 ret = -EBUSY;
5934 goto done;
5935 }
5936
5937 /* Free head and tail (if any) */
5938 if (start != outer_start)
5939 free_contig_range(outer_start, start - outer_start);
5940 if (end != outer_end)
5941 free_contig_range(end, outer_end - end);
5942
5943 done:
5944 undo_isolate_page_range(pfn_max_align_down(start),
5945 pfn_max_align_up(end), migratetype);
5946 return ret;
5947 }
5948
5949 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5950 {
5951 for (; nr_pages--; ++pfn)
5952 __free_page(pfn_to_page(pfn));
5953 }
5954 #endif
5955
5956 #ifdef CONFIG_MEMORY_HOTPLUG
5957 static int __meminit __zone_pcp_update(void *data)
5958 {
5959 struct zone *zone = data;
5960 int cpu;
5961 unsigned long batch = zone_batchsize(zone), flags;
5962
5963 for_each_possible_cpu(cpu) {
5964 struct per_cpu_pageset *pset;
5965 struct per_cpu_pages *pcp;
5966
5967 pset = per_cpu_ptr(zone->pageset, cpu);
5968 pcp = &pset->pcp;
5969
5970 local_irq_save(flags);
5971 if (pcp->count > 0)
5972 free_pcppages_bulk(zone, pcp->count, pcp);
5973 drain_zonestat(zone, pset);
5974 setup_pageset(pset, batch);
5975 local_irq_restore(flags);
5976 }
5977 return 0;
5978 }
5979
5980 void __meminit zone_pcp_update(struct zone *zone)
5981 {
5982 stop_machine(__zone_pcp_update, zone, NULL);
5983 }
5984 #endif
5985
5986 void zone_pcp_reset(struct zone *zone)
5987 {
5988 unsigned long flags;
5989 int cpu;
5990 struct per_cpu_pageset *pset;
5991
5992 /* avoid races with drain_pages() */
5993 local_irq_save(flags);
5994 if (zone->pageset != &boot_pageset) {
5995 for_each_online_cpu(cpu) {
5996 pset = per_cpu_ptr(zone->pageset, cpu);
5997 drain_zonestat(zone, pset);
5998 }
5999 free_percpu(zone->pageset);
6000 zone->pageset = &boot_pageset;
6001 }
6002 local_irq_restore(flags);
6003 }
6004
6005 #ifdef CONFIG_MEMORY_HOTREMOVE
6006 /*
6007 * All pages in the range must be isolated before calling this.
6008 */
6009 void
6010 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6011 {
6012 struct page *page;
6013 struct zone *zone;
6014 int order, i;
6015 unsigned long pfn;
6016 unsigned long flags;
6017 /* find the first valid pfn */
6018 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6019 if (pfn_valid(pfn))
6020 break;
6021 if (pfn == end_pfn)
6022 return;
6023 zone = page_zone(pfn_to_page(pfn));
6024 spin_lock_irqsave(&zone->lock, flags);
6025 pfn = start_pfn;
6026 while (pfn < end_pfn) {
6027 if (!pfn_valid(pfn)) {
6028 pfn++;
6029 continue;
6030 }
6031 page = pfn_to_page(pfn);
6032 /*
6033 * The HWPoisoned page may be not in buddy system, and
6034 * page_count() is not 0.
6035 */
6036 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6037 pfn++;
6038 SetPageReserved(page);
6039 continue;
6040 }
6041
6042 BUG_ON(page_count(page));
6043 BUG_ON(!PageBuddy(page));
6044 order = page_order(page);
6045 #ifdef CONFIG_DEBUG_VM
6046 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6047 pfn, 1 << order, end_pfn);
6048 #endif
6049 list_del(&page->lru);
6050 rmv_page_order(page);
6051 zone->free_area[order].nr_free--;
6052 for (i = 0; i < (1 << order); i++)
6053 SetPageReserved((page+i));
6054 pfn += (1 << order);
6055 }
6056 spin_unlock_irqrestore(&zone->lock, flags);
6057 }
6058 #endif
6059
6060 #ifdef CONFIG_MEMORY_FAILURE
6061 bool is_free_buddy_page(struct page *page)
6062 {
6063 struct zone *zone = page_zone(page);
6064 unsigned long pfn = page_to_pfn(page);
6065 unsigned long flags;
6066 int order;
6067
6068 spin_lock_irqsave(&zone->lock, flags);
6069 for (order = 0; order < MAX_ORDER; order++) {
6070 struct page *page_head = page - (pfn & ((1 << order) - 1));
6071
6072 if (PageBuddy(page_head) && page_order(page_head) >= order)
6073 break;
6074 }
6075 spin_unlock_irqrestore(&zone->lock, flags);
6076
6077 return order < MAX_ORDER;
6078 }
6079 #endif
6080
6081 static const struct trace_print_flags pageflag_names[] = {
6082 {1UL << PG_locked, "locked" },
6083 {1UL << PG_error, "error" },
6084 {1UL << PG_referenced, "referenced" },
6085 {1UL << PG_uptodate, "uptodate" },
6086 {1UL << PG_dirty, "dirty" },
6087 {1UL << PG_lru, "lru" },
6088 {1UL << PG_active, "active" },
6089 {1UL << PG_slab, "slab" },
6090 {1UL << PG_owner_priv_1, "owner_priv_1" },
6091 {1UL << PG_arch_1, "arch_1" },
6092 {1UL << PG_reserved, "reserved" },
6093 {1UL << PG_private, "private" },
6094 {1UL << PG_private_2, "private_2" },
6095 {1UL << PG_writeback, "writeback" },
6096 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6097 {1UL << PG_head, "head" },
6098 {1UL << PG_tail, "tail" },
6099 #else
6100 {1UL << PG_compound, "compound" },
6101 #endif
6102 {1UL << PG_swapcache, "swapcache" },
6103 {1UL << PG_mappedtodisk, "mappedtodisk" },
6104 {1UL << PG_reclaim, "reclaim" },
6105 {1UL << PG_swapbacked, "swapbacked" },
6106 {1UL << PG_unevictable, "unevictable" },
6107 #ifdef CONFIG_MMU
6108 {1UL << PG_mlocked, "mlocked" },
6109 #endif
6110 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6111 {1UL << PG_uncached, "uncached" },
6112 #endif
6113 #ifdef CONFIG_MEMORY_FAILURE
6114 {1UL << PG_hwpoison, "hwpoison" },
6115 #endif
6116 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6117 {1UL << PG_compound_lock, "compound_lock" },
6118 #endif
6119 };
6120
6121 static void dump_page_flags(unsigned long flags)
6122 {
6123 const char *delim = "";
6124 unsigned long mask;
6125 int i;
6126
6127 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6128
6129 printk(KERN_ALERT "page flags: %#lx(", flags);
6130
6131 /* remove zone id */
6132 flags &= (1UL << NR_PAGEFLAGS) - 1;
6133
6134 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6135
6136 mask = pageflag_names[i].mask;
6137 if ((flags & mask) != mask)
6138 continue;
6139
6140 flags &= ~mask;
6141 printk("%s%s", delim, pageflag_names[i].name);
6142 delim = "|";
6143 }
6144
6145 /* check for left over flags */
6146 if (flags)
6147 printk("%s%#lx", delim, flags);
6148
6149 printk(")\n");
6150 }
6151
6152 void dump_page(struct page *page)
6153 {
6154 printk(KERN_ALERT
6155 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6156 page, atomic_read(&page->_count), page_mapcount(page),
6157 page->mapping, page->index);
6158 dump_page_flags(page->flags);
6159 mem_cgroup_print_bad_page(page);
6160 }