]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/page_alloc.c
mm: fix deferred congestion timeout if preferred zone is not allowed
[thirdparty/kernel/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
56
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
65
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 /*
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
72 */
73 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
76
77 /*
78 * Array of node states.
79 */
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 [N_CPU] = { { [0] = 1UL } },
89 #endif /* NUMA */
90 };
91 EXPORT_SYMBOL(node_states);
92
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97
98 #ifdef CONFIG_PM_SLEEP
99 /*
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
106 */
107
108 static gfp_t saved_gfp_mask;
109
110 void pm_restore_gfp_mask(void)
111 {
112 WARN_ON(!mutex_is_locked(&pm_mutex));
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
116 }
117 }
118
119 void pm_restrict_gfp_mask(void)
120 {
121 WARN_ON(!mutex_is_locked(&pm_mutex));
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
125 }
126 #endif /* CONFIG_PM_SLEEP */
127
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly;
130 #endif
131
132 static void __free_pages_ok(struct page *page, unsigned int order);
133
134 /*
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
141 *
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
144 */
145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
146 #ifdef CONFIG_ZONE_DMA
147 256,
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150 256,
151 #endif
152 #ifdef CONFIG_HIGHMEM
153 32,
154 #endif
155 32,
156 };
157
158 EXPORT_SYMBOL(totalram_pages);
159
160 static char * const zone_names[MAX_NR_ZONES] = {
161 #ifdef CONFIG_ZONE_DMA
162 "DMA",
163 #endif
164 #ifdef CONFIG_ZONE_DMA32
165 "DMA32",
166 #endif
167 "Normal",
168 #ifdef CONFIG_HIGHMEM
169 "HighMem",
170 #endif
171 "Movable",
172 };
173
174 int min_free_kbytes = 1024;
175
176 static unsigned long __meminitdata nr_kernel_pages;
177 static unsigned long __meminitdata nr_all_pages;
178 static unsigned long __meminitdata dma_reserve;
179
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181 /*
182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
187 */
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
200
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __initdata required_kernelcore;
206 static unsigned long __initdata required_movablecore;
207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
208
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213
214 #if MAX_NUMNODES > 1
215 int nr_node_ids __read_mostly = MAX_NUMNODES;
216 int nr_online_nodes __read_mostly = 1;
217 EXPORT_SYMBOL(nr_node_ids);
218 EXPORT_SYMBOL(nr_online_nodes);
219 #endif
220
221 int page_group_by_mobility_disabled __read_mostly;
222
223 static void set_pageblock_migratetype(struct page *page, int migratetype)
224 {
225
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
228
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
231 }
232
233 bool oom_killer_disabled __read_mostly;
234
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
237 {
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
241
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
249
250 return ret;
251 }
252
253 static int page_is_consistent(struct zone *zone, struct page *page)
254 {
255 if (!pfn_valid_within(page_to_pfn(page)))
256 return 0;
257 if (zone != page_zone(page))
258 return 0;
259
260 return 1;
261 }
262 /*
263 * Temporary debugging check for pages not lying within a given zone.
264 */
265 static int bad_range(struct zone *zone, struct page *page)
266 {
267 if (page_outside_zone_boundaries(zone, page))
268 return 1;
269 if (!page_is_consistent(zone, page))
270 return 1;
271
272 return 0;
273 }
274 #else
275 static inline int bad_range(struct zone *zone, struct page *page)
276 {
277 return 0;
278 }
279 #endif
280
281 static void bad_page(struct page *page)
282 {
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
286
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 __ClearPageBuddy(page);
290 return;
291 }
292
293 /*
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
296 */
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
301 }
302 if (nr_unshown) {
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
305 nr_unshown);
306 nr_unshown = 0;
307 }
308 nr_shown = 0;
309 }
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
312
313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
314 current->comm, page_to_pfn(page));
315 dump_page(page);
316
317 dump_stack();
318 out:
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page);
321 add_taint(TAINT_BAD_PAGE);
322 }
323
324 /*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
333 *
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
337 */
338
339 static void free_compound_page(struct page *page)
340 {
341 __free_pages_ok(page, compound_order(page));
342 }
343
344 void prep_compound_page(struct page *page, unsigned long order)
345 {
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354
355 __SetPageTail(p);
356 p->first_page = page;
357 }
358 }
359
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page *page, unsigned long order)
362 {
363 int i;
364 int nr_pages = 1 << order;
365 int bad = 0;
366
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
369 bad_page(page);
370 bad++;
371 }
372
373 __ClearPageHead(page);
374
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
377
378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 bad_page(page);
380 bad++;
381 }
382 __ClearPageTail(p);
383 }
384
385 return bad;
386 }
387
388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389 {
390 int i;
391
392 /*
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 */
396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
399 }
400
401 static inline void set_page_order(struct page *page, int order)
402 {
403 set_page_private(page, order);
404 __SetPageBuddy(page);
405 }
406
407 static inline void rmv_page_order(struct page *page)
408 {
409 __ClearPageBuddy(page);
410 set_page_private(page, 0);
411 }
412
413 /*
414 * Locate the struct page for both the matching buddy in our
415 * pair (buddy1) and the combined O(n+1) page they form (page).
416 *
417 * 1) Any buddy B1 will have an order O twin B2 which satisfies
418 * the following equation:
419 * B2 = B1 ^ (1 << O)
420 * For example, if the starting buddy (buddy2) is #8 its order
421 * 1 buddy is #10:
422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
423 *
424 * 2) Any buddy B will have an order O+1 parent P which
425 * satisfies the following equation:
426 * P = B & ~(1 << O)
427 *
428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
429 */
430 static inline unsigned long
431 __find_buddy_index(unsigned long page_idx, unsigned int order)
432 {
433 return page_idx ^ (1 << order);
434 }
435
436 /*
437 * This function checks whether a page is free && is the buddy
438 * we can do coalesce a page and its buddy if
439 * (a) the buddy is not in a hole &&
440 * (b) the buddy is in the buddy system &&
441 * (c) a page and its buddy have the same order &&
442 * (d) a page and its buddy are in the same zone.
443 *
444 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
445 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
446 *
447 * For recording page's order, we use page_private(page).
448 */
449 static inline int page_is_buddy(struct page *page, struct page *buddy,
450 int order)
451 {
452 if (!pfn_valid_within(page_to_pfn(buddy)))
453 return 0;
454
455 if (page_zone_id(page) != page_zone_id(buddy))
456 return 0;
457
458 if (PageBuddy(buddy) && page_order(buddy) == order) {
459 VM_BUG_ON(page_count(buddy) != 0);
460 return 1;
461 }
462 return 0;
463 }
464
465 /*
466 * Freeing function for a buddy system allocator.
467 *
468 * The concept of a buddy system is to maintain direct-mapped table
469 * (containing bit values) for memory blocks of various "orders".
470 * The bottom level table contains the map for the smallest allocatable
471 * units of memory (here, pages), and each level above it describes
472 * pairs of units from the levels below, hence, "buddies".
473 * At a high level, all that happens here is marking the table entry
474 * at the bottom level available, and propagating the changes upward
475 * as necessary, plus some accounting needed to play nicely with other
476 * parts of the VM system.
477 * At each level, we keep a list of pages, which are heads of continuous
478 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
479 * order is recorded in page_private(page) field.
480 * So when we are allocating or freeing one, we can derive the state of the
481 * other. That is, if we allocate a small block, and both were
482 * free, the remainder of the region must be split into blocks.
483 * If a block is freed, and its buddy is also free, then this
484 * triggers coalescing into a block of larger size.
485 *
486 * -- wli
487 */
488
489 static inline void __free_one_page(struct page *page,
490 struct zone *zone, unsigned int order,
491 int migratetype)
492 {
493 unsigned long page_idx;
494 unsigned long combined_idx;
495 unsigned long uninitialized_var(buddy_idx);
496 struct page *buddy;
497
498 if (unlikely(PageCompound(page)))
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
501
502 VM_BUG_ON(migratetype == -1);
503
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505
506 VM_BUG_ON(page_idx & ((1 << order) - 1));
507 VM_BUG_ON(bad_range(zone, page));
508
509 while (order < MAX_ORDER-1) {
510 buddy_idx = __find_buddy_index(page_idx, order);
511 buddy = page + (buddy_idx - page_idx);
512 if (!page_is_buddy(page, buddy, order))
513 break;
514
515 /* Our buddy is free, merge with it and move up one order. */
516 list_del(&buddy->lru);
517 zone->free_area[order].nr_free--;
518 rmv_page_order(buddy);
519 combined_idx = buddy_idx & page_idx;
520 page = page + (combined_idx - page_idx);
521 page_idx = combined_idx;
522 order++;
523 }
524 set_page_order(page, order);
525
526 /*
527 * If this is not the largest possible page, check if the buddy
528 * of the next-highest order is free. If it is, it's possible
529 * that pages are being freed that will coalesce soon. In case,
530 * that is happening, add the free page to the tail of the list
531 * so it's less likely to be used soon and more likely to be merged
532 * as a higher order page
533 */
534 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
535 struct page *higher_page, *higher_buddy;
536 combined_idx = buddy_idx & page_idx;
537 higher_page = page + (combined_idx - page_idx);
538 buddy_idx = __find_buddy_index(combined_idx, order + 1);
539 higher_buddy = page + (buddy_idx - combined_idx);
540 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
541 list_add_tail(&page->lru,
542 &zone->free_area[order].free_list[migratetype]);
543 goto out;
544 }
545 }
546
547 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
548 out:
549 zone->free_area[order].nr_free++;
550 }
551
552 /*
553 * free_page_mlock() -- clean up attempts to free and mlocked() page.
554 * Page should not be on lru, so no need to fix that up.
555 * free_pages_check() will verify...
556 */
557 static inline void free_page_mlock(struct page *page)
558 {
559 __dec_zone_page_state(page, NR_MLOCK);
560 __count_vm_event(UNEVICTABLE_MLOCKFREED);
561 }
562
563 static inline int free_pages_check(struct page *page)
564 {
565 if (unlikely(page_mapcount(page) |
566 (page->mapping != NULL) |
567 (atomic_read(&page->_count) != 0) |
568 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
569 bad_page(page);
570 return 1;
571 }
572 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
573 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
574 return 0;
575 }
576
577 /*
578 * Frees a number of pages from the PCP lists
579 * Assumes all pages on list are in same zone, and of same order.
580 * count is the number of pages to free.
581 *
582 * If the zone was previously in an "all pages pinned" state then look to
583 * see if this freeing clears that state.
584 *
585 * And clear the zone's pages_scanned counter, to hold off the "all pages are
586 * pinned" detection logic.
587 */
588 static void free_pcppages_bulk(struct zone *zone, int count,
589 struct per_cpu_pages *pcp)
590 {
591 int migratetype = 0;
592 int batch_free = 0;
593 int to_free = count;
594
595 spin_lock(&zone->lock);
596 zone->all_unreclaimable = 0;
597 zone->pages_scanned = 0;
598
599 while (to_free) {
600 struct page *page;
601 struct list_head *list;
602
603 /*
604 * Remove pages from lists in a round-robin fashion. A
605 * batch_free count is maintained that is incremented when an
606 * empty list is encountered. This is so more pages are freed
607 * off fuller lists instead of spinning excessively around empty
608 * lists
609 */
610 do {
611 batch_free++;
612 if (++migratetype == MIGRATE_PCPTYPES)
613 migratetype = 0;
614 list = &pcp->lists[migratetype];
615 } while (list_empty(list));
616
617 do {
618 page = list_entry(list->prev, struct page, lru);
619 /* must delete as __free_one_page list manipulates */
620 list_del(&page->lru);
621 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
622 __free_one_page(page, zone, 0, page_private(page));
623 trace_mm_page_pcpu_drain(page, 0, page_private(page));
624 } while (--to_free && --batch_free && !list_empty(list));
625 }
626 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
627 spin_unlock(&zone->lock);
628 }
629
630 static void free_one_page(struct zone *zone, struct page *page, int order,
631 int migratetype)
632 {
633 spin_lock(&zone->lock);
634 zone->all_unreclaimable = 0;
635 zone->pages_scanned = 0;
636
637 __free_one_page(page, zone, order, migratetype);
638 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
639 spin_unlock(&zone->lock);
640 }
641
642 static bool free_pages_prepare(struct page *page, unsigned int order)
643 {
644 int i;
645 int bad = 0;
646
647 trace_mm_page_free_direct(page, order);
648 kmemcheck_free_shadow(page, order);
649
650 if (PageAnon(page))
651 page->mapping = NULL;
652 for (i = 0; i < (1 << order); i++)
653 bad += free_pages_check(page + i);
654 if (bad)
655 return false;
656
657 if (!PageHighMem(page)) {
658 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
659 debug_check_no_obj_freed(page_address(page),
660 PAGE_SIZE << order);
661 }
662 arch_free_page(page, order);
663 kernel_map_pages(page, 1 << order, 0);
664
665 return true;
666 }
667
668 static void __free_pages_ok(struct page *page, unsigned int order)
669 {
670 unsigned long flags;
671 int wasMlocked = __TestClearPageMlocked(page);
672
673 if (!free_pages_prepare(page, order))
674 return;
675
676 local_irq_save(flags);
677 if (unlikely(wasMlocked))
678 free_page_mlock(page);
679 __count_vm_events(PGFREE, 1 << order);
680 free_one_page(page_zone(page), page, order,
681 get_pageblock_migratetype(page));
682 local_irq_restore(flags);
683 }
684
685 /*
686 * permit the bootmem allocator to evade page validation on high-order frees
687 */
688 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
689 {
690 if (order == 0) {
691 __ClearPageReserved(page);
692 set_page_count(page, 0);
693 set_page_refcounted(page);
694 __free_page(page);
695 } else {
696 int loop;
697
698 prefetchw(page);
699 for (loop = 0; loop < BITS_PER_LONG; loop++) {
700 struct page *p = &page[loop];
701
702 if (loop + 1 < BITS_PER_LONG)
703 prefetchw(p + 1);
704 __ClearPageReserved(p);
705 set_page_count(p, 0);
706 }
707
708 set_page_refcounted(page);
709 __free_pages(page, order);
710 }
711 }
712
713
714 /*
715 * The order of subdivision here is critical for the IO subsystem.
716 * Please do not alter this order without good reasons and regression
717 * testing. Specifically, as large blocks of memory are subdivided,
718 * the order in which smaller blocks are delivered depends on the order
719 * they're subdivided in this function. This is the primary factor
720 * influencing the order in which pages are delivered to the IO
721 * subsystem according to empirical testing, and this is also justified
722 * by considering the behavior of a buddy system containing a single
723 * large block of memory acted on by a series of small allocations.
724 * This behavior is a critical factor in sglist merging's success.
725 *
726 * -- wli
727 */
728 static inline void expand(struct zone *zone, struct page *page,
729 int low, int high, struct free_area *area,
730 int migratetype)
731 {
732 unsigned long size = 1 << high;
733
734 while (high > low) {
735 area--;
736 high--;
737 size >>= 1;
738 VM_BUG_ON(bad_range(zone, &page[size]));
739 list_add(&page[size].lru, &area->free_list[migratetype]);
740 area->nr_free++;
741 set_page_order(&page[size], high);
742 }
743 }
744
745 /*
746 * This page is about to be returned from the page allocator
747 */
748 static inline int check_new_page(struct page *page)
749 {
750 if (unlikely(page_mapcount(page) |
751 (page->mapping != NULL) |
752 (atomic_read(&page->_count) != 0) |
753 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
754 bad_page(page);
755 return 1;
756 }
757 return 0;
758 }
759
760 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
761 {
762 int i;
763
764 for (i = 0; i < (1 << order); i++) {
765 struct page *p = page + i;
766 if (unlikely(check_new_page(p)))
767 return 1;
768 }
769
770 set_page_private(page, 0);
771 set_page_refcounted(page);
772
773 arch_alloc_page(page, order);
774 kernel_map_pages(page, 1 << order, 1);
775
776 if (gfp_flags & __GFP_ZERO)
777 prep_zero_page(page, order, gfp_flags);
778
779 if (order && (gfp_flags & __GFP_COMP))
780 prep_compound_page(page, order);
781
782 return 0;
783 }
784
785 /*
786 * Go through the free lists for the given migratetype and remove
787 * the smallest available page from the freelists
788 */
789 static inline
790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
791 int migratetype)
792 {
793 unsigned int current_order;
794 struct free_area * area;
795 struct page *page;
796
797 /* Find a page of the appropriate size in the preferred list */
798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
799 area = &(zone->free_area[current_order]);
800 if (list_empty(&area->free_list[migratetype]))
801 continue;
802
803 page = list_entry(area->free_list[migratetype].next,
804 struct page, lru);
805 list_del(&page->lru);
806 rmv_page_order(page);
807 area->nr_free--;
808 expand(zone, page, order, current_order, area, migratetype);
809 return page;
810 }
811
812 return NULL;
813 }
814
815
816 /*
817 * This array describes the order lists are fallen back to when
818 * the free lists for the desirable migrate type are depleted
819 */
820 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
825 };
826
827 /*
828 * Move the free pages in a range to the free lists of the requested type.
829 * Note that start_page and end_pages are not aligned on a pageblock
830 * boundary. If alignment is required, use move_freepages_block()
831 */
832 static int move_freepages(struct zone *zone,
833 struct page *start_page, struct page *end_page,
834 int migratetype)
835 {
836 struct page *page;
837 unsigned long order;
838 int pages_moved = 0;
839
840 #ifndef CONFIG_HOLES_IN_ZONE
841 /*
842 * page_zone is not safe to call in this context when
843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 * anyway as we check zone boundaries in move_freepages_block().
845 * Remove at a later date when no bug reports exist related to
846 * grouping pages by mobility
847 */
848 BUG_ON(page_zone(start_page) != page_zone(end_page));
849 #endif
850
851 for (page = start_page; page <= end_page;) {
852 /* Make sure we are not inadvertently changing nodes */
853 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
854
855 if (!pfn_valid_within(page_to_pfn(page))) {
856 page++;
857 continue;
858 }
859
860 if (!PageBuddy(page)) {
861 page++;
862 continue;
863 }
864
865 order = page_order(page);
866 list_del(&page->lru);
867 list_add(&page->lru,
868 &zone->free_area[order].free_list[migratetype]);
869 page += 1 << order;
870 pages_moved += 1 << order;
871 }
872
873 return pages_moved;
874 }
875
876 static int move_freepages_block(struct zone *zone, struct page *page,
877 int migratetype)
878 {
879 unsigned long start_pfn, end_pfn;
880 struct page *start_page, *end_page;
881
882 start_pfn = page_to_pfn(page);
883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
884 start_page = pfn_to_page(start_pfn);
885 end_page = start_page + pageblock_nr_pages - 1;
886 end_pfn = start_pfn + pageblock_nr_pages - 1;
887
888 /* Do not cross zone boundaries */
889 if (start_pfn < zone->zone_start_pfn)
890 start_page = page;
891 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
892 return 0;
893
894 return move_freepages(zone, start_page, end_page, migratetype);
895 }
896
897 static void change_pageblock_range(struct page *pageblock_page,
898 int start_order, int migratetype)
899 {
900 int nr_pageblocks = 1 << (start_order - pageblock_order);
901
902 while (nr_pageblocks--) {
903 set_pageblock_migratetype(pageblock_page, migratetype);
904 pageblock_page += pageblock_nr_pages;
905 }
906 }
907
908 /* Remove an element from the buddy allocator from the fallback list */
909 static inline struct page *
910 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
911 {
912 struct free_area * area;
913 int current_order;
914 struct page *page;
915 int migratetype, i;
916
917 /* Find the largest possible block of pages in the other list */
918 for (current_order = MAX_ORDER-1; current_order >= order;
919 --current_order) {
920 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
921 migratetype = fallbacks[start_migratetype][i];
922
923 /* MIGRATE_RESERVE handled later if necessary */
924 if (migratetype == MIGRATE_RESERVE)
925 continue;
926
927 area = &(zone->free_area[current_order]);
928 if (list_empty(&area->free_list[migratetype]))
929 continue;
930
931 page = list_entry(area->free_list[migratetype].next,
932 struct page, lru);
933 area->nr_free--;
934
935 /*
936 * If breaking a large block of pages, move all free
937 * pages to the preferred allocation list. If falling
938 * back for a reclaimable kernel allocation, be more
939 * agressive about taking ownership of free pages
940 */
941 if (unlikely(current_order >= (pageblock_order >> 1)) ||
942 start_migratetype == MIGRATE_RECLAIMABLE ||
943 page_group_by_mobility_disabled) {
944 unsigned long pages;
945 pages = move_freepages_block(zone, page,
946 start_migratetype);
947
948 /* Claim the whole block if over half of it is free */
949 if (pages >= (1 << (pageblock_order-1)) ||
950 page_group_by_mobility_disabled)
951 set_pageblock_migratetype(page,
952 start_migratetype);
953
954 migratetype = start_migratetype;
955 }
956
957 /* Remove the page from the freelists */
958 list_del(&page->lru);
959 rmv_page_order(page);
960
961 /* Take ownership for orders >= pageblock_order */
962 if (current_order >= pageblock_order)
963 change_pageblock_range(page, current_order,
964 start_migratetype);
965
966 expand(zone, page, order, current_order, area, migratetype);
967
968 trace_mm_page_alloc_extfrag(page, order, current_order,
969 start_migratetype, migratetype);
970
971 return page;
972 }
973 }
974
975 return NULL;
976 }
977
978 /*
979 * Do the hard work of removing an element from the buddy allocator.
980 * Call me with the zone->lock already held.
981 */
982 static struct page *__rmqueue(struct zone *zone, unsigned int order,
983 int migratetype)
984 {
985 struct page *page;
986
987 retry_reserve:
988 page = __rmqueue_smallest(zone, order, migratetype);
989
990 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
991 page = __rmqueue_fallback(zone, order, migratetype);
992
993 /*
994 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 * is used because __rmqueue_smallest is an inline function
996 * and we want just one call site
997 */
998 if (!page) {
999 migratetype = MIGRATE_RESERVE;
1000 goto retry_reserve;
1001 }
1002 }
1003
1004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1005 return page;
1006 }
1007
1008 /*
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency. Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1012 */
1013 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1014 unsigned long count, struct list_head *list,
1015 int migratetype, int cold)
1016 {
1017 int i;
1018
1019 spin_lock(&zone->lock);
1020 for (i = 0; i < count; ++i) {
1021 struct page *page = __rmqueue(zone, order, migratetype);
1022 if (unlikely(page == NULL))
1023 break;
1024
1025 /*
1026 * Split buddy pages returned by expand() are received here
1027 * in physical page order. The page is added to the callers and
1028 * list and the list head then moves forward. From the callers
1029 * perspective, the linked list is ordered by page number in
1030 * some conditions. This is useful for IO devices that can
1031 * merge IO requests if the physical pages are ordered
1032 * properly.
1033 */
1034 if (likely(cold == 0))
1035 list_add(&page->lru, list);
1036 else
1037 list_add_tail(&page->lru, list);
1038 set_page_private(page, migratetype);
1039 list = &page->lru;
1040 }
1041 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1042 spin_unlock(&zone->lock);
1043 return i;
1044 }
1045
1046 #ifdef CONFIG_NUMA
1047 /*
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1050 * expired.
1051 *
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
1054 */
1055 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1056 {
1057 unsigned long flags;
1058 int to_drain;
1059
1060 local_irq_save(flags);
1061 if (pcp->count >= pcp->batch)
1062 to_drain = pcp->batch;
1063 else
1064 to_drain = pcp->count;
1065 free_pcppages_bulk(zone, to_drain, pcp);
1066 pcp->count -= to_drain;
1067 local_irq_restore(flags);
1068 }
1069 #endif
1070
1071 /*
1072 * Drain pages of the indicated processor.
1073 *
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1076 * is not online.
1077 */
1078 static void drain_pages(unsigned int cpu)
1079 {
1080 unsigned long flags;
1081 struct zone *zone;
1082
1083 for_each_populated_zone(zone) {
1084 struct per_cpu_pageset *pset;
1085 struct per_cpu_pages *pcp;
1086
1087 local_irq_save(flags);
1088 pset = per_cpu_ptr(zone->pageset, cpu);
1089
1090 pcp = &pset->pcp;
1091 free_pcppages_bulk(zone, pcp->count, pcp);
1092 pcp->count = 0;
1093 local_irq_restore(flags);
1094 }
1095 }
1096
1097 /*
1098 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1099 */
1100 void drain_local_pages(void *arg)
1101 {
1102 drain_pages(smp_processor_id());
1103 }
1104
1105 /*
1106 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1107 */
1108 void drain_all_pages(void)
1109 {
1110 on_each_cpu(drain_local_pages, NULL, 1);
1111 }
1112
1113 #ifdef CONFIG_HIBERNATION
1114
1115 void mark_free_pages(struct zone *zone)
1116 {
1117 unsigned long pfn, max_zone_pfn;
1118 unsigned long flags;
1119 int order, t;
1120 struct list_head *curr;
1121
1122 if (!zone->spanned_pages)
1123 return;
1124
1125 spin_lock_irqsave(&zone->lock, flags);
1126
1127 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1128 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1129 if (pfn_valid(pfn)) {
1130 struct page *page = pfn_to_page(pfn);
1131
1132 if (!swsusp_page_is_forbidden(page))
1133 swsusp_unset_page_free(page);
1134 }
1135
1136 for_each_migratetype_order(order, t) {
1137 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1138 unsigned long i;
1139
1140 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1141 for (i = 0; i < (1UL << order); i++)
1142 swsusp_set_page_free(pfn_to_page(pfn + i));
1143 }
1144 }
1145 spin_unlock_irqrestore(&zone->lock, flags);
1146 }
1147 #endif /* CONFIG_PM */
1148
1149 /*
1150 * Free a 0-order page
1151 * cold == 1 ? free a cold page : free a hot page
1152 */
1153 void free_hot_cold_page(struct page *page, int cold)
1154 {
1155 struct zone *zone = page_zone(page);
1156 struct per_cpu_pages *pcp;
1157 unsigned long flags;
1158 int migratetype;
1159 int wasMlocked = __TestClearPageMlocked(page);
1160
1161 if (!free_pages_prepare(page, 0))
1162 return;
1163
1164 migratetype = get_pageblock_migratetype(page);
1165 set_page_private(page, migratetype);
1166 local_irq_save(flags);
1167 if (unlikely(wasMlocked))
1168 free_page_mlock(page);
1169 __count_vm_event(PGFREE);
1170
1171 /*
1172 * We only track unmovable, reclaimable and movable on pcp lists.
1173 * Free ISOLATE pages back to the allocator because they are being
1174 * offlined but treat RESERVE as movable pages so we can get those
1175 * areas back if necessary. Otherwise, we may have to free
1176 * excessively into the page allocator
1177 */
1178 if (migratetype >= MIGRATE_PCPTYPES) {
1179 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1180 free_one_page(zone, page, 0, migratetype);
1181 goto out;
1182 }
1183 migratetype = MIGRATE_MOVABLE;
1184 }
1185
1186 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1187 if (cold)
1188 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1189 else
1190 list_add(&page->lru, &pcp->lists[migratetype]);
1191 pcp->count++;
1192 if (pcp->count >= pcp->high) {
1193 free_pcppages_bulk(zone, pcp->batch, pcp);
1194 pcp->count -= pcp->batch;
1195 }
1196
1197 out:
1198 local_irq_restore(flags);
1199 }
1200
1201 /*
1202 * split_page takes a non-compound higher-order page, and splits it into
1203 * n (1<<order) sub-pages: page[0..n]
1204 * Each sub-page must be freed individually.
1205 *
1206 * Note: this is probably too low level an operation for use in drivers.
1207 * Please consult with lkml before using this in your driver.
1208 */
1209 void split_page(struct page *page, unsigned int order)
1210 {
1211 int i;
1212
1213 VM_BUG_ON(PageCompound(page));
1214 VM_BUG_ON(!page_count(page));
1215
1216 #ifdef CONFIG_KMEMCHECK
1217 /*
1218 * Split shadow pages too, because free(page[0]) would
1219 * otherwise free the whole shadow.
1220 */
1221 if (kmemcheck_page_is_tracked(page))
1222 split_page(virt_to_page(page[0].shadow), order);
1223 #endif
1224
1225 for (i = 1; i < (1 << order); i++)
1226 set_page_refcounted(page + i);
1227 }
1228
1229 /*
1230 * Similar to split_page except the page is already free. As this is only
1231 * being used for migration, the migratetype of the block also changes.
1232 * As this is called with interrupts disabled, the caller is responsible
1233 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1234 * are enabled.
1235 *
1236 * Note: this is probably too low level an operation for use in drivers.
1237 * Please consult with lkml before using this in your driver.
1238 */
1239 int split_free_page(struct page *page)
1240 {
1241 unsigned int order;
1242 unsigned long watermark;
1243 struct zone *zone;
1244
1245 BUG_ON(!PageBuddy(page));
1246
1247 zone = page_zone(page);
1248 order = page_order(page);
1249
1250 /* Obey watermarks as if the page was being allocated */
1251 watermark = low_wmark_pages(zone) + (1 << order);
1252 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1253 return 0;
1254
1255 /* Remove page from free list */
1256 list_del(&page->lru);
1257 zone->free_area[order].nr_free--;
1258 rmv_page_order(page);
1259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1260
1261 /* Split into individual pages */
1262 set_page_refcounted(page);
1263 split_page(page, order);
1264
1265 if (order >= pageblock_order - 1) {
1266 struct page *endpage = page + (1 << order) - 1;
1267 for (; page < endpage; page += pageblock_nr_pages)
1268 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1269 }
1270
1271 return 1 << order;
1272 }
1273
1274 /*
1275 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1276 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1277 * or two.
1278 */
1279 static inline
1280 struct page *buffered_rmqueue(struct zone *preferred_zone,
1281 struct zone *zone, int order, gfp_t gfp_flags,
1282 int migratetype)
1283 {
1284 unsigned long flags;
1285 struct page *page;
1286 int cold = !!(gfp_flags & __GFP_COLD);
1287
1288 again:
1289 if (likely(order == 0)) {
1290 struct per_cpu_pages *pcp;
1291 struct list_head *list;
1292
1293 local_irq_save(flags);
1294 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1295 list = &pcp->lists[migratetype];
1296 if (list_empty(list)) {
1297 pcp->count += rmqueue_bulk(zone, 0,
1298 pcp->batch, list,
1299 migratetype, cold);
1300 if (unlikely(list_empty(list)))
1301 goto failed;
1302 }
1303
1304 if (cold)
1305 page = list_entry(list->prev, struct page, lru);
1306 else
1307 page = list_entry(list->next, struct page, lru);
1308
1309 list_del(&page->lru);
1310 pcp->count--;
1311 } else {
1312 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1313 /*
1314 * __GFP_NOFAIL is not to be used in new code.
1315 *
1316 * All __GFP_NOFAIL callers should be fixed so that they
1317 * properly detect and handle allocation failures.
1318 *
1319 * We most definitely don't want callers attempting to
1320 * allocate greater than order-1 page units with
1321 * __GFP_NOFAIL.
1322 */
1323 WARN_ON_ONCE(order > 1);
1324 }
1325 spin_lock_irqsave(&zone->lock, flags);
1326 page = __rmqueue(zone, order, migratetype);
1327 spin_unlock(&zone->lock);
1328 if (!page)
1329 goto failed;
1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1331 }
1332
1333 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1334 zone_statistics(preferred_zone, zone);
1335 local_irq_restore(flags);
1336
1337 VM_BUG_ON(bad_range(zone, page));
1338 if (prep_new_page(page, order, gfp_flags))
1339 goto again;
1340 return page;
1341
1342 failed:
1343 local_irq_restore(flags);
1344 return NULL;
1345 }
1346
1347 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1348 #define ALLOC_WMARK_MIN WMARK_MIN
1349 #define ALLOC_WMARK_LOW WMARK_LOW
1350 #define ALLOC_WMARK_HIGH WMARK_HIGH
1351 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1352
1353 /* Mask to get the watermark bits */
1354 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1355
1356 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1357 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1358 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1359
1360 #ifdef CONFIG_FAIL_PAGE_ALLOC
1361
1362 static struct fail_page_alloc_attr {
1363 struct fault_attr attr;
1364
1365 u32 ignore_gfp_highmem;
1366 u32 ignore_gfp_wait;
1367 u32 min_order;
1368
1369 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1370
1371 struct dentry *ignore_gfp_highmem_file;
1372 struct dentry *ignore_gfp_wait_file;
1373 struct dentry *min_order_file;
1374
1375 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1376
1377 } fail_page_alloc = {
1378 .attr = FAULT_ATTR_INITIALIZER,
1379 .ignore_gfp_wait = 1,
1380 .ignore_gfp_highmem = 1,
1381 .min_order = 1,
1382 };
1383
1384 static int __init setup_fail_page_alloc(char *str)
1385 {
1386 return setup_fault_attr(&fail_page_alloc.attr, str);
1387 }
1388 __setup("fail_page_alloc=", setup_fail_page_alloc);
1389
1390 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1391 {
1392 if (order < fail_page_alloc.min_order)
1393 return 0;
1394 if (gfp_mask & __GFP_NOFAIL)
1395 return 0;
1396 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1397 return 0;
1398 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1399 return 0;
1400
1401 return should_fail(&fail_page_alloc.attr, 1 << order);
1402 }
1403
1404 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1405
1406 static int __init fail_page_alloc_debugfs(void)
1407 {
1408 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1409 struct dentry *dir;
1410 int err;
1411
1412 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1413 "fail_page_alloc");
1414 if (err)
1415 return err;
1416 dir = fail_page_alloc.attr.dentries.dir;
1417
1418 fail_page_alloc.ignore_gfp_wait_file =
1419 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420 &fail_page_alloc.ignore_gfp_wait);
1421
1422 fail_page_alloc.ignore_gfp_highmem_file =
1423 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1424 &fail_page_alloc.ignore_gfp_highmem);
1425 fail_page_alloc.min_order_file =
1426 debugfs_create_u32("min-order", mode, dir,
1427 &fail_page_alloc.min_order);
1428
1429 if (!fail_page_alloc.ignore_gfp_wait_file ||
1430 !fail_page_alloc.ignore_gfp_highmem_file ||
1431 !fail_page_alloc.min_order_file) {
1432 err = -ENOMEM;
1433 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1434 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1435 debugfs_remove(fail_page_alloc.min_order_file);
1436 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1437 }
1438
1439 return err;
1440 }
1441
1442 late_initcall(fail_page_alloc_debugfs);
1443
1444 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1445
1446 #else /* CONFIG_FAIL_PAGE_ALLOC */
1447
1448 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1449 {
1450 return 0;
1451 }
1452
1453 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1454
1455 /*
1456 * Return true if free pages are above 'mark'. This takes into account the order
1457 * of the allocation.
1458 */
1459 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1460 int classzone_idx, int alloc_flags, long free_pages)
1461 {
1462 /* free_pages my go negative - that's OK */
1463 long min = mark;
1464 int o;
1465
1466 free_pages -= (1 << order) + 1;
1467 if (alloc_flags & ALLOC_HIGH)
1468 min -= min / 2;
1469 if (alloc_flags & ALLOC_HARDER)
1470 min -= min / 4;
1471
1472 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1473 return false;
1474 for (o = 0; o < order; o++) {
1475 /* At the next order, this order's pages become unavailable */
1476 free_pages -= z->free_area[o].nr_free << o;
1477
1478 /* Require fewer higher order pages to be free */
1479 min >>= 1;
1480
1481 if (free_pages <= min)
1482 return false;
1483 }
1484 return true;
1485 }
1486
1487 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1488 int classzone_idx, int alloc_flags)
1489 {
1490 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1491 zone_page_state(z, NR_FREE_PAGES));
1492 }
1493
1494 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1495 int classzone_idx, int alloc_flags)
1496 {
1497 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1498
1499 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1500 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1501
1502 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1503 free_pages);
1504 }
1505
1506 #ifdef CONFIG_NUMA
1507 /*
1508 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1509 * skip over zones that are not allowed by the cpuset, or that have
1510 * been recently (in last second) found to be nearly full. See further
1511 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1512 * that have to skip over a lot of full or unallowed zones.
1513 *
1514 * If the zonelist cache is present in the passed in zonelist, then
1515 * returns a pointer to the allowed node mask (either the current
1516 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1517 *
1518 * If the zonelist cache is not available for this zonelist, does
1519 * nothing and returns NULL.
1520 *
1521 * If the fullzones BITMAP in the zonelist cache is stale (more than
1522 * a second since last zap'd) then we zap it out (clear its bits.)
1523 *
1524 * We hold off even calling zlc_setup, until after we've checked the
1525 * first zone in the zonelist, on the theory that most allocations will
1526 * be satisfied from that first zone, so best to examine that zone as
1527 * quickly as we can.
1528 */
1529 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1530 {
1531 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1532 nodemask_t *allowednodes; /* zonelist_cache approximation */
1533
1534 zlc = zonelist->zlcache_ptr;
1535 if (!zlc)
1536 return NULL;
1537
1538 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1539 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1540 zlc->last_full_zap = jiffies;
1541 }
1542
1543 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1544 &cpuset_current_mems_allowed :
1545 &node_states[N_HIGH_MEMORY];
1546 return allowednodes;
1547 }
1548
1549 /*
1550 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1551 * if it is worth looking at further for free memory:
1552 * 1) Check that the zone isn't thought to be full (doesn't have its
1553 * bit set in the zonelist_cache fullzones BITMAP).
1554 * 2) Check that the zones node (obtained from the zonelist_cache
1555 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1556 * Return true (non-zero) if zone is worth looking at further, or
1557 * else return false (zero) if it is not.
1558 *
1559 * This check -ignores- the distinction between various watermarks,
1560 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1561 * found to be full for any variation of these watermarks, it will
1562 * be considered full for up to one second by all requests, unless
1563 * we are so low on memory on all allowed nodes that we are forced
1564 * into the second scan of the zonelist.
1565 *
1566 * In the second scan we ignore this zonelist cache and exactly
1567 * apply the watermarks to all zones, even it is slower to do so.
1568 * We are low on memory in the second scan, and should leave no stone
1569 * unturned looking for a free page.
1570 */
1571 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1572 nodemask_t *allowednodes)
1573 {
1574 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1575 int i; /* index of *z in zonelist zones */
1576 int n; /* node that zone *z is on */
1577
1578 zlc = zonelist->zlcache_ptr;
1579 if (!zlc)
1580 return 1;
1581
1582 i = z - zonelist->_zonerefs;
1583 n = zlc->z_to_n[i];
1584
1585 /* This zone is worth trying if it is allowed but not full */
1586 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1587 }
1588
1589 /*
1590 * Given 'z' scanning a zonelist, set the corresponding bit in
1591 * zlc->fullzones, so that subsequent attempts to allocate a page
1592 * from that zone don't waste time re-examining it.
1593 */
1594 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1595 {
1596 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1597 int i; /* index of *z in zonelist zones */
1598
1599 zlc = zonelist->zlcache_ptr;
1600 if (!zlc)
1601 return;
1602
1603 i = z - zonelist->_zonerefs;
1604
1605 set_bit(i, zlc->fullzones);
1606 }
1607
1608 #else /* CONFIG_NUMA */
1609
1610 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1611 {
1612 return NULL;
1613 }
1614
1615 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1616 nodemask_t *allowednodes)
1617 {
1618 return 1;
1619 }
1620
1621 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1622 {
1623 }
1624 #endif /* CONFIG_NUMA */
1625
1626 /*
1627 * get_page_from_freelist goes through the zonelist trying to allocate
1628 * a page.
1629 */
1630 static struct page *
1631 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1632 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1633 struct zone *preferred_zone, int migratetype)
1634 {
1635 struct zoneref *z;
1636 struct page *page = NULL;
1637 int classzone_idx;
1638 struct zone *zone;
1639 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1640 int zlc_active = 0; /* set if using zonelist_cache */
1641 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1642
1643 classzone_idx = zone_idx(preferred_zone);
1644 zonelist_scan:
1645 /*
1646 * Scan zonelist, looking for a zone with enough free.
1647 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1648 */
1649 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1650 high_zoneidx, nodemask) {
1651 if (NUMA_BUILD && zlc_active &&
1652 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1653 continue;
1654 if ((alloc_flags & ALLOC_CPUSET) &&
1655 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1656 goto try_next_zone;
1657
1658 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1659 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1660 unsigned long mark;
1661 int ret;
1662
1663 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1664 if (zone_watermark_ok(zone, order, mark,
1665 classzone_idx, alloc_flags))
1666 goto try_this_zone;
1667
1668 if (zone_reclaim_mode == 0)
1669 goto this_zone_full;
1670
1671 ret = zone_reclaim(zone, gfp_mask, order);
1672 switch (ret) {
1673 case ZONE_RECLAIM_NOSCAN:
1674 /* did not scan */
1675 goto try_next_zone;
1676 case ZONE_RECLAIM_FULL:
1677 /* scanned but unreclaimable */
1678 goto this_zone_full;
1679 default:
1680 /* did we reclaim enough */
1681 if (!zone_watermark_ok(zone, order, mark,
1682 classzone_idx, alloc_flags))
1683 goto this_zone_full;
1684 }
1685 }
1686
1687 try_this_zone:
1688 page = buffered_rmqueue(preferred_zone, zone, order,
1689 gfp_mask, migratetype);
1690 if (page)
1691 break;
1692 this_zone_full:
1693 if (NUMA_BUILD)
1694 zlc_mark_zone_full(zonelist, z);
1695 try_next_zone:
1696 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1697 /*
1698 * we do zlc_setup after the first zone is tried but only
1699 * if there are multiple nodes make it worthwhile
1700 */
1701 allowednodes = zlc_setup(zonelist, alloc_flags);
1702 zlc_active = 1;
1703 did_zlc_setup = 1;
1704 }
1705 }
1706
1707 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1708 /* Disable zlc cache for second zonelist scan */
1709 zlc_active = 0;
1710 goto zonelist_scan;
1711 }
1712 return page;
1713 }
1714
1715 static inline int
1716 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1717 unsigned long pages_reclaimed)
1718 {
1719 /* Do not loop if specifically requested */
1720 if (gfp_mask & __GFP_NORETRY)
1721 return 0;
1722
1723 /*
1724 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1725 * means __GFP_NOFAIL, but that may not be true in other
1726 * implementations.
1727 */
1728 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1729 return 1;
1730
1731 /*
1732 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1733 * specified, then we retry until we no longer reclaim any pages
1734 * (above), or we've reclaimed an order of pages at least as
1735 * large as the allocation's order. In both cases, if the
1736 * allocation still fails, we stop retrying.
1737 */
1738 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1739 return 1;
1740
1741 /*
1742 * Don't let big-order allocations loop unless the caller
1743 * explicitly requests that.
1744 */
1745 if (gfp_mask & __GFP_NOFAIL)
1746 return 1;
1747
1748 return 0;
1749 }
1750
1751 static inline struct page *
1752 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1753 struct zonelist *zonelist, enum zone_type high_zoneidx,
1754 nodemask_t *nodemask, struct zone *preferred_zone,
1755 int migratetype)
1756 {
1757 struct page *page;
1758
1759 /* Acquire the OOM killer lock for the zones in zonelist */
1760 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1761 schedule_timeout_uninterruptible(1);
1762 return NULL;
1763 }
1764
1765 /*
1766 * Go through the zonelist yet one more time, keep very high watermark
1767 * here, this is only to catch a parallel oom killing, we must fail if
1768 * we're still under heavy pressure.
1769 */
1770 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1771 order, zonelist, high_zoneidx,
1772 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1773 preferred_zone, migratetype);
1774 if (page)
1775 goto out;
1776
1777 if (!(gfp_mask & __GFP_NOFAIL)) {
1778 /* The OOM killer will not help higher order allocs */
1779 if (order > PAGE_ALLOC_COSTLY_ORDER)
1780 goto out;
1781 /* The OOM killer does not needlessly kill tasks for lowmem */
1782 if (high_zoneidx < ZONE_NORMAL)
1783 goto out;
1784 /*
1785 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1786 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1787 * The caller should handle page allocation failure by itself if
1788 * it specifies __GFP_THISNODE.
1789 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1790 */
1791 if (gfp_mask & __GFP_THISNODE)
1792 goto out;
1793 }
1794 /* Exhausted what can be done so it's blamo time */
1795 out_of_memory(zonelist, gfp_mask, order, nodemask);
1796
1797 out:
1798 clear_zonelist_oom(zonelist, gfp_mask);
1799 return page;
1800 }
1801
1802 #ifdef CONFIG_COMPACTION
1803 /* Try memory compaction for high-order allocations before reclaim */
1804 static struct page *
1805 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1806 struct zonelist *zonelist, enum zone_type high_zoneidx,
1807 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1808 int migratetype, unsigned long *did_some_progress,
1809 bool sync_migration)
1810 {
1811 struct page *page;
1812
1813 if (!order || compaction_deferred(preferred_zone))
1814 return NULL;
1815
1816 current->flags |= PF_MEMALLOC;
1817 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1818 nodemask, sync_migration);
1819 current->flags &= ~PF_MEMALLOC;
1820 if (*did_some_progress != COMPACT_SKIPPED) {
1821
1822 /* Page migration frees to the PCP lists but we want merging */
1823 drain_pages(get_cpu());
1824 put_cpu();
1825
1826 page = get_page_from_freelist(gfp_mask, nodemask,
1827 order, zonelist, high_zoneidx,
1828 alloc_flags, preferred_zone,
1829 migratetype);
1830 if (page) {
1831 preferred_zone->compact_considered = 0;
1832 preferred_zone->compact_defer_shift = 0;
1833 count_vm_event(COMPACTSUCCESS);
1834 return page;
1835 }
1836
1837 /*
1838 * It's bad if compaction run occurs and fails.
1839 * The most likely reason is that pages exist,
1840 * but not enough to satisfy watermarks.
1841 */
1842 count_vm_event(COMPACTFAIL);
1843 defer_compaction(preferred_zone);
1844
1845 cond_resched();
1846 }
1847
1848 return NULL;
1849 }
1850 #else
1851 static inline struct page *
1852 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1853 struct zonelist *zonelist, enum zone_type high_zoneidx,
1854 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1855 int migratetype, unsigned long *did_some_progress,
1856 bool sync_migration)
1857 {
1858 return NULL;
1859 }
1860 #endif /* CONFIG_COMPACTION */
1861
1862 /* The really slow allocator path where we enter direct reclaim */
1863 static inline struct page *
1864 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1865 struct zonelist *zonelist, enum zone_type high_zoneidx,
1866 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1867 int migratetype, unsigned long *did_some_progress)
1868 {
1869 struct page *page = NULL;
1870 struct reclaim_state reclaim_state;
1871 bool drained = false;
1872
1873 cond_resched();
1874
1875 /* We now go into synchronous reclaim */
1876 cpuset_memory_pressure_bump();
1877 current->flags |= PF_MEMALLOC;
1878 lockdep_set_current_reclaim_state(gfp_mask);
1879 reclaim_state.reclaimed_slab = 0;
1880 current->reclaim_state = &reclaim_state;
1881
1882 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1883
1884 current->reclaim_state = NULL;
1885 lockdep_clear_current_reclaim_state();
1886 current->flags &= ~PF_MEMALLOC;
1887
1888 cond_resched();
1889
1890 if (unlikely(!(*did_some_progress)))
1891 return NULL;
1892
1893 retry:
1894 page = get_page_from_freelist(gfp_mask, nodemask, order,
1895 zonelist, high_zoneidx,
1896 alloc_flags, preferred_zone,
1897 migratetype);
1898
1899 /*
1900 * If an allocation failed after direct reclaim, it could be because
1901 * pages are pinned on the per-cpu lists. Drain them and try again
1902 */
1903 if (!page && !drained) {
1904 drain_all_pages();
1905 drained = true;
1906 goto retry;
1907 }
1908
1909 return page;
1910 }
1911
1912 /*
1913 * This is called in the allocator slow-path if the allocation request is of
1914 * sufficient urgency to ignore watermarks and take other desperate measures
1915 */
1916 static inline struct page *
1917 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1918 struct zonelist *zonelist, enum zone_type high_zoneidx,
1919 nodemask_t *nodemask, struct zone *preferred_zone,
1920 int migratetype)
1921 {
1922 struct page *page;
1923
1924 do {
1925 page = get_page_from_freelist(gfp_mask, nodemask, order,
1926 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1927 preferred_zone, migratetype);
1928
1929 if (!page && gfp_mask & __GFP_NOFAIL)
1930 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1931 } while (!page && (gfp_mask & __GFP_NOFAIL));
1932
1933 return page;
1934 }
1935
1936 static inline
1937 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1938 enum zone_type high_zoneidx,
1939 enum zone_type classzone_idx)
1940 {
1941 struct zoneref *z;
1942 struct zone *zone;
1943
1944 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1945 wakeup_kswapd(zone, order, classzone_idx);
1946 }
1947
1948 static inline int
1949 gfp_to_alloc_flags(gfp_t gfp_mask)
1950 {
1951 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1952 const gfp_t wait = gfp_mask & __GFP_WAIT;
1953
1954 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1955 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1956
1957 /*
1958 * The caller may dip into page reserves a bit more if the caller
1959 * cannot run direct reclaim, or if the caller has realtime scheduling
1960 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1961 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1962 */
1963 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1964
1965 if (!wait) {
1966 /*
1967 * Not worth trying to allocate harder for
1968 * __GFP_NOMEMALLOC even if it can't schedule.
1969 */
1970 if (!(gfp_mask & __GFP_NOMEMALLOC))
1971 alloc_flags |= ALLOC_HARDER;
1972 /*
1973 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1974 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1975 */
1976 alloc_flags &= ~ALLOC_CPUSET;
1977 } else if (unlikely(rt_task(current)) && !in_interrupt())
1978 alloc_flags |= ALLOC_HARDER;
1979
1980 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1981 if (!in_interrupt() &&
1982 ((current->flags & PF_MEMALLOC) ||
1983 unlikely(test_thread_flag(TIF_MEMDIE))))
1984 alloc_flags |= ALLOC_NO_WATERMARKS;
1985 }
1986
1987 return alloc_flags;
1988 }
1989
1990 static inline struct page *
1991 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1992 struct zonelist *zonelist, enum zone_type high_zoneidx,
1993 nodemask_t *nodemask, struct zone *preferred_zone,
1994 int migratetype)
1995 {
1996 const gfp_t wait = gfp_mask & __GFP_WAIT;
1997 struct page *page = NULL;
1998 int alloc_flags;
1999 unsigned long pages_reclaimed = 0;
2000 unsigned long did_some_progress;
2001 bool sync_migration = false;
2002
2003 /*
2004 * In the slowpath, we sanity check order to avoid ever trying to
2005 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2006 * be using allocators in order of preference for an area that is
2007 * too large.
2008 */
2009 if (order >= MAX_ORDER) {
2010 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2011 return NULL;
2012 }
2013
2014 /*
2015 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2016 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2017 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2018 * using a larger set of nodes after it has established that the
2019 * allowed per node queues are empty and that nodes are
2020 * over allocated.
2021 */
2022 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2023 goto nopage;
2024
2025 restart:
2026 if (!(gfp_mask & __GFP_NO_KSWAPD))
2027 wake_all_kswapd(order, zonelist, high_zoneidx,
2028 zone_idx(preferred_zone));
2029
2030 /*
2031 * OK, we're below the kswapd watermark and have kicked background
2032 * reclaim. Now things get more complex, so set up alloc_flags according
2033 * to how we want to proceed.
2034 */
2035 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2036
2037 /*
2038 * Find the true preferred zone if the allocation is unconstrained by
2039 * cpusets.
2040 */
2041 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2042 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2043 &preferred_zone);
2044
2045 /* This is the last chance, in general, before the goto nopage. */
2046 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2047 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2048 preferred_zone, migratetype);
2049 if (page)
2050 goto got_pg;
2051
2052 rebalance:
2053 /* Allocate without watermarks if the context allows */
2054 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2055 page = __alloc_pages_high_priority(gfp_mask, order,
2056 zonelist, high_zoneidx, nodemask,
2057 preferred_zone, migratetype);
2058 if (page)
2059 goto got_pg;
2060 }
2061
2062 /* Atomic allocations - we can't balance anything */
2063 if (!wait)
2064 goto nopage;
2065
2066 /* Avoid recursion of direct reclaim */
2067 if (current->flags & PF_MEMALLOC)
2068 goto nopage;
2069
2070 /* Avoid allocations with no watermarks from looping endlessly */
2071 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2072 goto nopage;
2073
2074 /*
2075 * Try direct compaction. The first pass is asynchronous. Subsequent
2076 * attempts after direct reclaim are synchronous
2077 */
2078 page = __alloc_pages_direct_compact(gfp_mask, order,
2079 zonelist, high_zoneidx,
2080 nodemask,
2081 alloc_flags, preferred_zone,
2082 migratetype, &did_some_progress,
2083 sync_migration);
2084 if (page)
2085 goto got_pg;
2086 sync_migration = true;
2087
2088 /* Try direct reclaim and then allocating */
2089 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2090 zonelist, high_zoneidx,
2091 nodemask,
2092 alloc_flags, preferred_zone,
2093 migratetype, &did_some_progress);
2094 if (page)
2095 goto got_pg;
2096
2097 /*
2098 * If we failed to make any progress reclaiming, then we are
2099 * running out of options and have to consider going OOM
2100 */
2101 if (!did_some_progress) {
2102 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2103 if (oom_killer_disabled)
2104 goto nopage;
2105 page = __alloc_pages_may_oom(gfp_mask, order,
2106 zonelist, high_zoneidx,
2107 nodemask, preferred_zone,
2108 migratetype);
2109 if (page)
2110 goto got_pg;
2111
2112 if (!(gfp_mask & __GFP_NOFAIL)) {
2113 /*
2114 * The oom killer is not called for high-order
2115 * allocations that may fail, so if no progress
2116 * is being made, there are no other options and
2117 * retrying is unlikely to help.
2118 */
2119 if (order > PAGE_ALLOC_COSTLY_ORDER)
2120 goto nopage;
2121 /*
2122 * The oom killer is not called for lowmem
2123 * allocations to prevent needlessly killing
2124 * innocent tasks.
2125 */
2126 if (high_zoneidx < ZONE_NORMAL)
2127 goto nopage;
2128 }
2129
2130 goto restart;
2131 }
2132 }
2133
2134 /* Check if we should retry the allocation */
2135 pages_reclaimed += did_some_progress;
2136 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2137 /* Wait for some write requests to complete then retry */
2138 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2139 goto rebalance;
2140 } else {
2141 /*
2142 * High-order allocations do not necessarily loop after
2143 * direct reclaim and reclaim/compaction depends on compaction
2144 * being called after reclaim so call directly if necessary
2145 */
2146 page = __alloc_pages_direct_compact(gfp_mask, order,
2147 zonelist, high_zoneidx,
2148 nodemask,
2149 alloc_flags, preferred_zone,
2150 migratetype, &did_some_progress,
2151 sync_migration);
2152 if (page)
2153 goto got_pg;
2154 }
2155
2156 nopage:
2157 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2158 printk(KERN_WARNING "%s: page allocation failure."
2159 " order:%d, mode:0x%x\n",
2160 current->comm, order, gfp_mask);
2161 dump_stack();
2162 show_mem();
2163 }
2164 return page;
2165 got_pg:
2166 if (kmemcheck_enabled)
2167 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2168 return page;
2169
2170 }
2171
2172 /*
2173 * This is the 'heart' of the zoned buddy allocator.
2174 */
2175 struct page *
2176 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2177 struct zonelist *zonelist, nodemask_t *nodemask)
2178 {
2179 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2180 struct zone *preferred_zone;
2181 struct page *page;
2182 int migratetype = allocflags_to_migratetype(gfp_mask);
2183
2184 gfp_mask &= gfp_allowed_mask;
2185
2186 lockdep_trace_alloc(gfp_mask);
2187
2188 might_sleep_if(gfp_mask & __GFP_WAIT);
2189
2190 if (should_fail_alloc_page(gfp_mask, order))
2191 return NULL;
2192
2193 /*
2194 * Check the zones suitable for the gfp_mask contain at least one
2195 * valid zone. It's possible to have an empty zonelist as a result
2196 * of GFP_THISNODE and a memoryless node
2197 */
2198 if (unlikely(!zonelist->_zonerefs->zone))
2199 return NULL;
2200
2201 get_mems_allowed();
2202 /* The preferred zone is used for statistics later */
2203 first_zones_zonelist(zonelist, high_zoneidx,
2204 nodemask ? : &cpuset_current_mems_allowed,
2205 &preferred_zone);
2206 if (!preferred_zone) {
2207 put_mems_allowed();
2208 return NULL;
2209 }
2210
2211 /* First allocation attempt */
2212 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2213 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2214 preferred_zone, migratetype);
2215 if (unlikely(!page))
2216 page = __alloc_pages_slowpath(gfp_mask, order,
2217 zonelist, high_zoneidx, nodemask,
2218 preferred_zone, migratetype);
2219 put_mems_allowed();
2220
2221 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2222 return page;
2223 }
2224 EXPORT_SYMBOL(__alloc_pages_nodemask);
2225
2226 /*
2227 * Common helper functions.
2228 */
2229 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2230 {
2231 struct page *page;
2232
2233 /*
2234 * __get_free_pages() returns a 32-bit address, which cannot represent
2235 * a highmem page
2236 */
2237 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2238
2239 page = alloc_pages(gfp_mask, order);
2240 if (!page)
2241 return 0;
2242 return (unsigned long) page_address(page);
2243 }
2244 EXPORT_SYMBOL(__get_free_pages);
2245
2246 unsigned long get_zeroed_page(gfp_t gfp_mask)
2247 {
2248 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2249 }
2250 EXPORT_SYMBOL(get_zeroed_page);
2251
2252 void __pagevec_free(struct pagevec *pvec)
2253 {
2254 int i = pagevec_count(pvec);
2255
2256 while (--i >= 0) {
2257 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2258 free_hot_cold_page(pvec->pages[i], pvec->cold);
2259 }
2260 }
2261
2262 void __free_pages(struct page *page, unsigned int order)
2263 {
2264 if (put_page_testzero(page)) {
2265 if (order == 0)
2266 free_hot_cold_page(page, 0);
2267 else
2268 __free_pages_ok(page, order);
2269 }
2270 }
2271
2272 EXPORT_SYMBOL(__free_pages);
2273
2274 void free_pages(unsigned long addr, unsigned int order)
2275 {
2276 if (addr != 0) {
2277 VM_BUG_ON(!virt_addr_valid((void *)addr));
2278 __free_pages(virt_to_page((void *)addr), order);
2279 }
2280 }
2281
2282 EXPORT_SYMBOL(free_pages);
2283
2284 /**
2285 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2286 * @size: the number of bytes to allocate
2287 * @gfp_mask: GFP flags for the allocation
2288 *
2289 * This function is similar to alloc_pages(), except that it allocates the
2290 * minimum number of pages to satisfy the request. alloc_pages() can only
2291 * allocate memory in power-of-two pages.
2292 *
2293 * This function is also limited by MAX_ORDER.
2294 *
2295 * Memory allocated by this function must be released by free_pages_exact().
2296 */
2297 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2298 {
2299 unsigned int order = get_order(size);
2300 unsigned long addr;
2301
2302 addr = __get_free_pages(gfp_mask, order);
2303 if (addr) {
2304 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2305 unsigned long used = addr + PAGE_ALIGN(size);
2306
2307 split_page(virt_to_page((void *)addr), order);
2308 while (used < alloc_end) {
2309 free_page(used);
2310 used += PAGE_SIZE;
2311 }
2312 }
2313
2314 return (void *)addr;
2315 }
2316 EXPORT_SYMBOL(alloc_pages_exact);
2317
2318 /**
2319 * free_pages_exact - release memory allocated via alloc_pages_exact()
2320 * @virt: the value returned by alloc_pages_exact.
2321 * @size: size of allocation, same value as passed to alloc_pages_exact().
2322 *
2323 * Release the memory allocated by a previous call to alloc_pages_exact.
2324 */
2325 void free_pages_exact(void *virt, size_t size)
2326 {
2327 unsigned long addr = (unsigned long)virt;
2328 unsigned long end = addr + PAGE_ALIGN(size);
2329
2330 while (addr < end) {
2331 free_page(addr);
2332 addr += PAGE_SIZE;
2333 }
2334 }
2335 EXPORT_SYMBOL(free_pages_exact);
2336
2337 static unsigned int nr_free_zone_pages(int offset)
2338 {
2339 struct zoneref *z;
2340 struct zone *zone;
2341
2342 /* Just pick one node, since fallback list is circular */
2343 unsigned int sum = 0;
2344
2345 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2346
2347 for_each_zone_zonelist(zone, z, zonelist, offset) {
2348 unsigned long size = zone->present_pages;
2349 unsigned long high = high_wmark_pages(zone);
2350 if (size > high)
2351 sum += size - high;
2352 }
2353
2354 return sum;
2355 }
2356
2357 /*
2358 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2359 */
2360 unsigned int nr_free_buffer_pages(void)
2361 {
2362 return nr_free_zone_pages(gfp_zone(GFP_USER));
2363 }
2364 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2365
2366 /*
2367 * Amount of free RAM allocatable within all zones
2368 */
2369 unsigned int nr_free_pagecache_pages(void)
2370 {
2371 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2372 }
2373
2374 static inline void show_node(struct zone *zone)
2375 {
2376 if (NUMA_BUILD)
2377 printk("Node %d ", zone_to_nid(zone));
2378 }
2379
2380 void si_meminfo(struct sysinfo *val)
2381 {
2382 val->totalram = totalram_pages;
2383 val->sharedram = 0;
2384 val->freeram = global_page_state(NR_FREE_PAGES);
2385 val->bufferram = nr_blockdev_pages();
2386 val->totalhigh = totalhigh_pages;
2387 val->freehigh = nr_free_highpages();
2388 val->mem_unit = PAGE_SIZE;
2389 }
2390
2391 EXPORT_SYMBOL(si_meminfo);
2392
2393 #ifdef CONFIG_NUMA
2394 void si_meminfo_node(struct sysinfo *val, int nid)
2395 {
2396 pg_data_t *pgdat = NODE_DATA(nid);
2397
2398 val->totalram = pgdat->node_present_pages;
2399 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2400 #ifdef CONFIG_HIGHMEM
2401 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2402 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2403 NR_FREE_PAGES);
2404 #else
2405 val->totalhigh = 0;
2406 val->freehigh = 0;
2407 #endif
2408 val->mem_unit = PAGE_SIZE;
2409 }
2410 #endif
2411
2412 #define K(x) ((x) << (PAGE_SHIFT-10))
2413
2414 /*
2415 * Show free area list (used inside shift_scroll-lock stuff)
2416 * We also calculate the percentage fragmentation. We do this by counting the
2417 * memory on each free list with the exception of the first item on the list.
2418 */
2419 void show_free_areas(void)
2420 {
2421 int cpu;
2422 struct zone *zone;
2423
2424 for_each_populated_zone(zone) {
2425 show_node(zone);
2426 printk("%s per-cpu:\n", zone->name);
2427
2428 for_each_online_cpu(cpu) {
2429 struct per_cpu_pageset *pageset;
2430
2431 pageset = per_cpu_ptr(zone->pageset, cpu);
2432
2433 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2434 cpu, pageset->pcp.high,
2435 pageset->pcp.batch, pageset->pcp.count);
2436 }
2437 }
2438
2439 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2440 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2441 " unevictable:%lu"
2442 " dirty:%lu writeback:%lu unstable:%lu\n"
2443 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2444 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2445 global_page_state(NR_ACTIVE_ANON),
2446 global_page_state(NR_INACTIVE_ANON),
2447 global_page_state(NR_ISOLATED_ANON),
2448 global_page_state(NR_ACTIVE_FILE),
2449 global_page_state(NR_INACTIVE_FILE),
2450 global_page_state(NR_ISOLATED_FILE),
2451 global_page_state(NR_UNEVICTABLE),
2452 global_page_state(NR_FILE_DIRTY),
2453 global_page_state(NR_WRITEBACK),
2454 global_page_state(NR_UNSTABLE_NFS),
2455 global_page_state(NR_FREE_PAGES),
2456 global_page_state(NR_SLAB_RECLAIMABLE),
2457 global_page_state(NR_SLAB_UNRECLAIMABLE),
2458 global_page_state(NR_FILE_MAPPED),
2459 global_page_state(NR_SHMEM),
2460 global_page_state(NR_PAGETABLE),
2461 global_page_state(NR_BOUNCE));
2462
2463 for_each_populated_zone(zone) {
2464 int i;
2465
2466 show_node(zone);
2467 printk("%s"
2468 " free:%lukB"
2469 " min:%lukB"
2470 " low:%lukB"
2471 " high:%lukB"
2472 " active_anon:%lukB"
2473 " inactive_anon:%lukB"
2474 " active_file:%lukB"
2475 " inactive_file:%lukB"
2476 " unevictable:%lukB"
2477 " isolated(anon):%lukB"
2478 " isolated(file):%lukB"
2479 " present:%lukB"
2480 " mlocked:%lukB"
2481 " dirty:%lukB"
2482 " writeback:%lukB"
2483 " mapped:%lukB"
2484 " shmem:%lukB"
2485 " slab_reclaimable:%lukB"
2486 " slab_unreclaimable:%lukB"
2487 " kernel_stack:%lukB"
2488 " pagetables:%lukB"
2489 " unstable:%lukB"
2490 " bounce:%lukB"
2491 " writeback_tmp:%lukB"
2492 " pages_scanned:%lu"
2493 " all_unreclaimable? %s"
2494 "\n",
2495 zone->name,
2496 K(zone_page_state(zone, NR_FREE_PAGES)),
2497 K(min_wmark_pages(zone)),
2498 K(low_wmark_pages(zone)),
2499 K(high_wmark_pages(zone)),
2500 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2501 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2502 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2503 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2504 K(zone_page_state(zone, NR_UNEVICTABLE)),
2505 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2506 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2507 K(zone->present_pages),
2508 K(zone_page_state(zone, NR_MLOCK)),
2509 K(zone_page_state(zone, NR_FILE_DIRTY)),
2510 K(zone_page_state(zone, NR_WRITEBACK)),
2511 K(zone_page_state(zone, NR_FILE_MAPPED)),
2512 K(zone_page_state(zone, NR_SHMEM)),
2513 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2514 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2515 zone_page_state(zone, NR_KERNEL_STACK) *
2516 THREAD_SIZE / 1024,
2517 K(zone_page_state(zone, NR_PAGETABLE)),
2518 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2519 K(zone_page_state(zone, NR_BOUNCE)),
2520 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2521 zone->pages_scanned,
2522 (zone->all_unreclaimable ? "yes" : "no")
2523 );
2524 printk("lowmem_reserve[]:");
2525 for (i = 0; i < MAX_NR_ZONES; i++)
2526 printk(" %lu", zone->lowmem_reserve[i]);
2527 printk("\n");
2528 }
2529
2530 for_each_populated_zone(zone) {
2531 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2532
2533 show_node(zone);
2534 printk("%s: ", zone->name);
2535
2536 spin_lock_irqsave(&zone->lock, flags);
2537 for (order = 0; order < MAX_ORDER; order++) {
2538 nr[order] = zone->free_area[order].nr_free;
2539 total += nr[order] << order;
2540 }
2541 spin_unlock_irqrestore(&zone->lock, flags);
2542 for (order = 0; order < MAX_ORDER; order++)
2543 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2544 printk("= %lukB\n", K(total));
2545 }
2546
2547 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2548
2549 show_swap_cache_info();
2550 }
2551
2552 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2553 {
2554 zoneref->zone = zone;
2555 zoneref->zone_idx = zone_idx(zone);
2556 }
2557
2558 /*
2559 * Builds allocation fallback zone lists.
2560 *
2561 * Add all populated zones of a node to the zonelist.
2562 */
2563 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2564 int nr_zones, enum zone_type zone_type)
2565 {
2566 struct zone *zone;
2567
2568 BUG_ON(zone_type >= MAX_NR_ZONES);
2569 zone_type++;
2570
2571 do {
2572 zone_type--;
2573 zone = pgdat->node_zones + zone_type;
2574 if (populated_zone(zone)) {
2575 zoneref_set_zone(zone,
2576 &zonelist->_zonerefs[nr_zones++]);
2577 check_highest_zone(zone_type);
2578 }
2579
2580 } while (zone_type);
2581 return nr_zones;
2582 }
2583
2584
2585 /*
2586 * zonelist_order:
2587 * 0 = automatic detection of better ordering.
2588 * 1 = order by ([node] distance, -zonetype)
2589 * 2 = order by (-zonetype, [node] distance)
2590 *
2591 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2592 * the same zonelist. So only NUMA can configure this param.
2593 */
2594 #define ZONELIST_ORDER_DEFAULT 0
2595 #define ZONELIST_ORDER_NODE 1
2596 #define ZONELIST_ORDER_ZONE 2
2597
2598 /* zonelist order in the kernel.
2599 * set_zonelist_order() will set this to NODE or ZONE.
2600 */
2601 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2602 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2603
2604
2605 #ifdef CONFIG_NUMA
2606 /* The value user specified ....changed by config */
2607 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2608 /* string for sysctl */
2609 #define NUMA_ZONELIST_ORDER_LEN 16
2610 char numa_zonelist_order[16] = "default";
2611
2612 /*
2613 * interface for configure zonelist ordering.
2614 * command line option "numa_zonelist_order"
2615 * = "[dD]efault - default, automatic configuration.
2616 * = "[nN]ode - order by node locality, then by zone within node
2617 * = "[zZ]one - order by zone, then by locality within zone
2618 */
2619
2620 static int __parse_numa_zonelist_order(char *s)
2621 {
2622 if (*s == 'd' || *s == 'D') {
2623 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2624 } else if (*s == 'n' || *s == 'N') {
2625 user_zonelist_order = ZONELIST_ORDER_NODE;
2626 } else if (*s == 'z' || *s == 'Z') {
2627 user_zonelist_order = ZONELIST_ORDER_ZONE;
2628 } else {
2629 printk(KERN_WARNING
2630 "Ignoring invalid numa_zonelist_order value: "
2631 "%s\n", s);
2632 return -EINVAL;
2633 }
2634 return 0;
2635 }
2636
2637 static __init int setup_numa_zonelist_order(char *s)
2638 {
2639 int ret;
2640
2641 if (!s)
2642 return 0;
2643
2644 ret = __parse_numa_zonelist_order(s);
2645 if (ret == 0)
2646 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2647
2648 return ret;
2649 }
2650 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2651
2652 /*
2653 * sysctl handler for numa_zonelist_order
2654 */
2655 int numa_zonelist_order_handler(ctl_table *table, int write,
2656 void __user *buffer, size_t *length,
2657 loff_t *ppos)
2658 {
2659 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2660 int ret;
2661 static DEFINE_MUTEX(zl_order_mutex);
2662
2663 mutex_lock(&zl_order_mutex);
2664 if (write)
2665 strcpy(saved_string, (char*)table->data);
2666 ret = proc_dostring(table, write, buffer, length, ppos);
2667 if (ret)
2668 goto out;
2669 if (write) {
2670 int oldval = user_zonelist_order;
2671 if (__parse_numa_zonelist_order((char*)table->data)) {
2672 /*
2673 * bogus value. restore saved string
2674 */
2675 strncpy((char*)table->data, saved_string,
2676 NUMA_ZONELIST_ORDER_LEN);
2677 user_zonelist_order = oldval;
2678 } else if (oldval != user_zonelist_order) {
2679 mutex_lock(&zonelists_mutex);
2680 build_all_zonelists(NULL);
2681 mutex_unlock(&zonelists_mutex);
2682 }
2683 }
2684 out:
2685 mutex_unlock(&zl_order_mutex);
2686 return ret;
2687 }
2688
2689
2690 #define MAX_NODE_LOAD (nr_online_nodes)
2691 static int node_load[MAX_NUMNODES];
2692
2693 /**
2694 * find_next_best_node - find the next node that should appear in a given node's fallback list
2695 * @node: node whose fallback list we're appending
2696 * @used_node_mask: nodemask_t of already used nodes
2697 *
2698 * We use a number of factors to determine which is the next node that should
2699 * appear on a given node's fallback list. The node should not have appeared
2700 * already in @node's fallback list, and it should be the next closest node
2701 * according to the distance array (which contains arbitrary distance values
2702 * from each node to each node in the system), and should also prefer nodes
2703 * with no CPUs, since presumably they'll have very little allocation pressure
2704 * on them otherwise.
2705 * It returns -1 if no node is found.
2706 */
2707 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2708 {
2709 int n, val;
2710 int min_val = INT_MAX;
2711 int best_node = -1;
2712 const struct cpumask *tmp = cpumask_of_node(0);
2713
2714 /* Use the local node if we haven't already */
2715 if (!node_isset(node, *used_node_mask)) {
2716 node_set(node, *used_node_mask);
2717 return node;
2718 }
2719
2720 for_each_node_state(n, N_HIGH_MEMORY) {
2721
2722 /* Don't want a node to appear more than once */
2723 if (node_isset(n, *used_node_mask))
2724 continue;
2725
2726 /* Use the distance array to find the distance */
2727 val = node_distance(node, n);
2728
2729 /* Penalize nodes under us ("prefer the next node") */
2730 val += (n < node);
2731
2732 /* Give preference to headless and unused nodes */
2733 tmp = cpumask_of_node(n);
2734 if (!cpumask_empty(tmp))
2735 val += PENALTY_FOR_NODE_WITH_CPUS;
2736
2737 /* Slight preference for less loaded node */
2738 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2739 val += node_load[n];
2740
2741 if (val < min_val) {
2742 min_val = val;
2743 best_node = n;
2744 }
2745 }
2746
2747 if (best_node >= 0)
2748 node_set(best_node, *used_node_mask);
2749
2750 return best_node;
2751 }
2752
2753
2754 /*
2755 * Build zonelists ordered by node and zones within node.
2756 * This results in maximum locality--normal zone overflows into local
2757 * DMA zone, if any--but risks exhausting DMA zone.
2758 */
2759 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2760 {
2761 int j;
2762 struct zonelist *zonelist;
2763
2764 zonelist = &pgdat->node_zonelists[0];
2765 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2766 ;
2767 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2768 MAX_NR_ZONES - 1);
2769 zonelist->_zonerefs[j].zone = NULL;
2770 zonelist->_zonerefs[j].zone_idx = 0;
2771 }
2772
2773 /*
2774 * Build gfp_thisnode zonelists
2775 */
2776 static void build_thisnode_zonelists(pg_data_t *pgdat)
2777 {
2778 int j;
2779 struct zonelist *zonelist;
2780
2781 zonelist = &pgdat->node_zonelists[1];
2782 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2783 zonelist->_zonerefs[j].zone = NULL;
2784 zonelist->_zonerefs[j].zone_idx = 0;
2785 }
2786
2787 /*
2788 * Build zonelists ordered by zone and nodes within zones.
2789 * This results in conserving DMA zone[s] until all Normal memory is
2790 * exhausted, but results in overflowing to remote node while memory
2791 * may still exist in local DMA zone.
2792 */
2793 static int node_order[MAX_NUMNODES];
2794
2795 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2796 {
2797 int pos, j, node;
2798 int zone_type; /* needs to be signed */
2799 struct zone *z;
2800 struct zonelist *zonelist;
2801
2802 zonelist = &pgdat->node_zonelists[0];
2803 pos = 0;
2804 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2805 for (j = 0; j < nr_nodes; j++) {
2806 node = node_order[j];
2807 z = &NODE_DATA(node)->node_zones[zone_type];
2808 if (populated_zone(z)) {
2809 zoneref_set_zone(z,
2810 &zonelist->_zonerefs[pos++]);
2811 check_highest_zone(zone_type);
2812 }
2813 }
2814 }
2815 zonelist->_zonerefs[pos].zone = NULL;
2816 zonelist->_zonerefs[pos].zone_idx = 0;
2817 }
2818
2819 static int default_zonelist_order(void)
2820 {
2821 int nid, zone_type;
2822 unsigned long low_kmem_size,total_size;
2823 struct zone *z;
2824 int average_size;
2825 /*
2826 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2827 * If they are really small and used heavily, the system can fall
2828 * into OOM very easily.
2829 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2830 */
2831 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2832 low_kmem_size = 0;
2833 total_size = 0;
2834 for_each_online_node(nid) {
2835 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2836 z = &NODE_DATA(nid)->node_zones[zone_type];
2837 if (populated_zone(z)) {
2838 if (zone_type < ZONE_NORMAL)
2839 low_kmem_size += z->present_pages;
2840 total_size += z->present_pages;
2841 } else if (zone_type == ZONE_NORMAL) {
2842 /*
2843 * If any node has only lowmem, then node order
2844 * is preferred to allow kernel allocations
2845 * locally; otherwise, they can easily infringe
2846 * on other nodes when there is an abundance of
2847 * lowmem available to allocate from.
2848 */
2849 return ZONELIST_ORDER_NODE;
2850 }
2851 }
2852 }
2853 if (!low_kmem_size || /* there are no DMA area. */
2854 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2855 return ZONELIST_ORDER_NODE;
2856 /*
2857 * look into each node's config.
2858 * If there is a node whose DMA/DMA32 memory is very big area on
2859 * local memory, NODE_ORDER may be suitable.
2860 */
2861 average_size = total_size /
2862 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2863 for_each_online_node(nid) {
2864 low_kmem_size = 0;
2865 total_size = 0;
2866 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2867 z = &NODE_DATA(nid)->node_zones[zone_type];
2868 if (populated_zone(z)) {
2869 if (zone_type < ZONE_NORMAL)
2870 low_kmem_size += z->present_pages;
2871 total_size += z->present_pages;
2872 }
2873 }
2874 if (low_kmem_size &&
2875 total_size > average_size && /* ignore small node */
2876 low_kmem_size > total_size * 70/100)
2877 return ZONELIST_ORDER_NODE;
2878 }
2879 return ZONELIST_ORDER_ZONE;
2880 }
2881
2882 static void set_zonelist_order(void)
2883 {
2884 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2885 current_zonelist_order = default_zonelist_order();
2886 else
2887 current_zonelist_order = user_zonelist_order;
2888 }
2889
2890 static void build_zonelists(pg_data_t *pgdat)
2891 {
2892 int j, node, load;
2893 enum zone_type i;
2894 nodemask_t used_mask;
2895 int local_node, prev_node;
2896 struct zonelist *zonelist;
2897 int order = current_zonelist_order;
2898
2899 /* initialize zonelists */
2900 for (i = 0; i < MAX_ZONELISTS; i++) {
2901 zonelist = pgdat->node_zonelists + i;
2902 zonelist->_zonerefs[0].zone = NULL;
2903 zonelist->_zonerefs[0].zone_idx = 0;
2904 }
2905
2906 /* NUMA-aware ordering of nodes */
2907 local_node = pgdat->node_id;
2908 load = nr_online_nodes;
2909 prev_node = local_node;
2910 nodes_clear(used_mask);
2911
2912 memset(node_order, 0, sizeof(node_order));
2913 j = 0;
2914
2915 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2916 int distance = node_distance(local_node, node);
2917
2918 /*
2919 * If another node is sufficiently far away then it is better
2920 * to reclaim pages in a zone before going off node.
2921 */
2922 if (distance > RECLAIM_DISTANCE)
2923 zone_reclaim_mode = 1;
2924
2925 /*
2926 * We don't want to pressure a particular node.
2927 * So adding penalty to the first node in same
2928 * distance group to make it round-robin.
2929 */
2930 if (distance != node_distance(local_node, prev_node))
2931 node_load[node] = load;
2932
2933 prev_node = node;
2934 load--;
2935 if (order == ZONELIST_ORDER_NODE)
2936 build_zonelists_in_node_order(pgdat, node);
2937 else
2938 node_order[j++] = node; /* remember order */
2939 }
2940
2941 if (order == ZONELIST_ORDER_ZONE) {
2942 /* calculate node order -- i.e., DMA last! */
2943 build_zonelists_in_zone_order(pgdat, j);
2944 }
2945
2946 build_thisnode_zonelists(pgdat);
2947 }
2948
2949 /* Construct the zonelist performance cache - see further mmzone.h */
2950 static void build_zonelist_cache(pg_data_t *pgdat)
2951 {
2952 struct zonelist *zonelist;
2953 struct zonelist_cache *zlc;
2954 struct zoneref *z;
2955
2956 zonelist = &pgdat->node_zonelists[0];
2957 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2958 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2959 for (z = zonelist->_zonerefs; z->zone; z++)
2960 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2961 }
2962
2963 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2964 /*
2965 * Return node id of node used for "local" allocations.
2966 * I.e., first node id of first zone in arg node's generic zonelist.
2967 * Used for initializing percpu 'numa_mem', which is used primarily
2968 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2969 */
2970 int local_memory_node(int node)
2971 {
2972 struct zone *zone;
2973
2974 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2975 gfp_zone(GFP_KERNEL),
2976 NULL,
2977 &zone);
2978 return zone->node;
2979 }
2980 #endif
2981
2982 #else /* CONFIG_NUMA */
2983
2984 static void set_zonelist_order(void)
2985 {
2986 current_zonelist_order = ZONELIST_ORDER_ZONE;
2987 }
2988
2989 static void build_zonelists(pg_data_t *pgdat)
2990 {
2991 int node, local_node;
2992 enum zone_type j;
2993 struct zonelist *zonelist;
2994
2995 local_node = pgdat->node_id;
2996
2997 zonelist = &pgdat->node_zonelists[0];
2998 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2999
3000 /*
3001 * Now we build the zonelist so that it contains the zones
3002 * of all the other nodes.
3003 * We don't want to pressure a particular node, so when
3004 * building the zones for node N, we make sure that the
3005 * zones coming right after the local ones are those from
3006 * node N+1 (modulo N)
3007 */
3008 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3009 if (!node_online(node))
3010 continue;
3011 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3012 MAX_NR_ZONES - 1);
3013 }
3014 for (node = 0; node < local_node; node++) {
3015 if (!node_online(node))
3016 continue;
3017 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3018 MAX_NR_ZONES - 1);
3019 }
3020
3021 zonelist->_zonerefs[j].zone = NULL;
3022 zonelist->_zonerefs[j].zone_idx = 0;
3023 }
3024
3025 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3026 static void build_zonelist_cache(pg_data_t *pgdat)
3027 {
3028 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3029 }
3030
3031 #endif /* CONFIG_NUMA */
3032
3033 /*
3034 * Boot pageset table. One per cpu which is going to be used for all
3035 * zones and all nodes. The parameters will be set in such a way
3036 * that an item put on a list will immediately be handed over to
3037 * the buddy list. This is safe since pageset manipulation is done
3038 * with interrupts disabled.
3039 *
3040 * The boot_pagesets must be kept even after bootup is complete for
3041 * unused processors and/or zones. They do play a role for bootstrapping
3042 * hotplugged processors.
3043 *
3044 * zoneinfo_show() and maybe other functions do
3045 * not check if the processor is online before following the pageset pointer.
3046 * Other parts of the kernel may not check if the zone is available.
3047 */
3048 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3049 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3050 static void setup_zone_pageset(struct zone *zone);
3051
3052 /*
3053 * Global mutex to protect against size modification of zonelists
3054 * as well as to serialize pageset setup for the new populated zone.
3055 */
3056 DEFINE_MUTEX(zonelists_mutex);
3057
3058 /* return values int ....just for stop_machine() */
3059 static __init_refok int __build_all_zonelists(void *data)
3060 {
3061 int nid;
3062 int cpu;
3063
3064 #ifdef CONFIG_NUMA
3065 memset(node_load, 0, sizeof(node_load));
3066 #endif
3067 for_each_online_node(nid) {
3068 pg_data_t *pgdat = NODE_DATA(nid);
3069
3070 build_zonelists(pgdat);
3071 build_zonelist_cache(pgdat);
3072 }
3073
3074 /*
3075 * Initialize the boot_pagesets that are going to be used
3076 * for bootstrapping processors. The real pagesets for
3077 * each zone will be allocated later when the per cpu
3078 * allocator is available.
3079 *
3080 * boot_pagesets are used also for bootstrapping offline
3081 * cpus if the system is already booted because the pagesets
3082 * are needed to initialize allocators on a specific cpu too.
3083 * F.e. the percpu allocator needs the page allocator which
3084 * needs the percpu allocator in order to allocate its pagesets
3085 * (a chicken-egg dilemma).
3086 */
3087 for_each_possible_cpu(cpu) {
3088 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3089
3090 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3091 /*
3092 * We now know the "local memory node" for each node--
3093 * i.e., the node of the first zone in the generic zonelist.
3094 * Set up numa_mem percpu variable for on-line cpus. During
3095 * boot, only the boot cpu should be on-line; we'll init the
3096 * secondary cpus' numa_mem as they come on-line. During
3097 * node/memory hotplug, we'll fixup all on-line cpus.
3098 */
3099 if (cpu_online(cpu))
3100 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3101 #endif
3102 }
3103
3104 return 0;
3105 }
3106
3107 /*
3108 * Called with zonelists_mutex held always
3109 * unless system_state == SYSTEM_BOOTING.
3110 */
3111 void build_all_zonelists(void *data)
3112 {
3113 set_zonelist_order();
3114
3115 if (system_state == SYSTEM_BOOTING) {
3116 __build_all_zonelists(NULL);
3117 mminit_verify_zonelist();
3118 cpuset_init_current_mems_allowed();
3119 } else {
3120 /* we have to stop all cpus to guarantee there is no user
3121 of zonelist */
3122 #ifdef CONFIG_MEMORY_HOTPLUG
3123 if (data)
3124 setup_zone_pageset((struct zone *)data);
3125 #endif
3126 stop_machine(__build_all_zonelists, NULL, NULL);
3127 /* cpuset refresh routine should be here */
3128 }
3129 vm_total_pages = nr_free_pagecache_pages();
3130 /*
3131 * Disable grouping by mobility if the number of pages in the
3132 * system is too low to allow the mechanism to work. It would be
3133 * more accurate, but expensive to check per-zone. This check is
3134 * made on memory-hotadd so a system can start with mobility
3135 * disabled and enable it later
3136 */
3137 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3138 page_group_by_mobility_disabled = 1;
3139 else
3140 page_group_by_mobility_disabled = 0;
3141
3142 printk("Built %i zonelists in %s order, mobility grouping %s. "
3143 "Total pages: %ld\n",
3144 nr_online_nodes,
3145 zonelist_order_name[current_zonelist_order],
3146 page_group_by_mobility_disabled ? "off" : "on",
3147 vm_total_pages);
3148 #ifdef CONFIG_NUMA
3149 printk("Policy zone: %s\n", zone_names[policy_zone]);
3150 #endif
3151 }
3152
3153 /*
3154 * Helper functions to size the waitqueue hash table.
3155 * Essentially these want to choose hash table sizes sufficiently
3156 * large so that collisions trying to wait on pages are rare.
3157 * But in fact, the number of active page waitqueues on typical
3158 * systems is ridiculously low, less than 200. So this is even
3159 * conservative, even though it seems large.
3160 *
3161 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3162 * waitqueues, i.e. the size of the waitq table given the number of pages.
3163 */
3164 #define PAGES_PER_WAITQUEUE 256
3165
3166 #ifndef CONFIG_MEMORY_HOTPLUG
3167 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3168 {
3169 unsigned long size = 1;
3170
3171 pages /= PAGES_PER_WAITQUEUE;
3172
3173 while (size < pages)
3174 size <<= 1;
3175
3176 /*
3177 * Once we have dozens or even hundreds of threads sleeping
3178 * on IO we've got bigger problems than wait queue collision.
3179 * Limit the size of the wait table to a reasonable size.
3180 */
3181 size = min(size, 4096UL);
3182
3183 return max(size, 4UL);
3184 }
3185 #else
3186 /*
3187 * A zone's size might be changed by hot-add, so it is not possible to determine
3188 * a suitable size for its wait_table. So we use the maximum size now.
3189 *
3190 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3191 *
3192 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3193 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3194 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3195 *
3196 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3197 * or more by the traditional way. (See above). It equals:
3198 *
3199 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3200 * ia64(16K page size) : = ( 8G + 4M)byte.
3201 * powerpc (64K page size) : = (32G +16M)byte.
3202 */
3203 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3204 {
3205 return 4096UL;
3206 }
3207 #endif
3208
3209 /*
3210 * This is an integer logarithm so that shifts can be used later
3211 * to extract the more random high bits from the multiplicative
3212 * hash function before the remainder is taken.
3213 */
3214 static inline unsigned long wait_table_bits(unsigned long size)
3215 {
3216 return ffz(~size);
3217 }
3218
3219 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3220
3221 /*
3222 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3223 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3224 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3225 * higher will lead to a bigger reserve which will get freed as contiguous
3226 * blocks as reclaim kicks in
3227 */
3228 static void setup_zone_migrate_reserve(struct zone *zone)
3229 {
3230 unsigned long start_pfn, pfn, end_pfn;
3231 struct page *page;
3232 unsigned long block_migratetype;
3233 int reserve;
3234
3235 /* Get the start pfn, end pfn and the number of blocks to reserve */
3236 start_pfn = zone->zone_start_pfn;
3237 end_pfn = start_pfn + zone->spanned_pages;
3238 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3239 pageblock_order;
3240
3241 /*
3242 * Reserve blocks are generally in place to help high-order atomic
3243 * allocations that are short-lived. A min_free_kbytes value that
3244 * would result in more than 2 reserve blocks for atomic allocations
3245 * is assumed to be in place to help anti-fragmentation for the
3246 * future allocation of hugepages at runtime.
3247 */
3248 reserve = min(2, reserve);
3249
3250 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3251 if (!pfn_valid(pfn))
3252 continue;
3253 page = pfn_to_page(pfn);
3254
3255 /* Watch out for overlapping nodes */
3256 if (page_to_nid(page) != zone_to_nid(zone))
3257 continue;
3258
3259 /* Blocks with reserved pages will never free, skip them. */
3260 if (PageReserved(page))
3261 continue;
3262
3263 block_migratetype = get_pageblock_migratetype(page);
3264
3265 /* If this block is reserved, account for it */
3266 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3267 reserve--;
3268 continue;
3269 }
3270
3271 /* Suitable for reserving if this block is movable */
3272 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3273 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3274 move_freepages_block(zone, page, MIGRATE_RESERVE);
3275 reserve--;
3276 continue;
3277 }
3278
3279 /*
3280 * If the reserve is met and this is a previous reserved block,
3281 * take it back
3282 */
3283 if (block_migratetype == MIGRATE_RESERVE) {
3284 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3285 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3286 }
3287 }
3288 }
3289
3290 /*
3291 * Initially all pages are reserved - free ones are freed
3292 * up by free_all_bootmem() once the early boot process is
3293 * done. Non-atomic initialization, single-pass.
3294 */
3295 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3296 unsigned long start_pfn, enum memmap_context context)
3297 {
3298 struct page *page;
3299 unsigned long end_pfn = start_pfn + size;
3300 unsigned long pfn;
3301 struct zone *z;
3302
3303 if (highest_memmap_pfn < end_pfn - 1)
3304 highest_memmap_pfn = end_pfn - 1;
3305
3306 z = &NODE_DATA(nid)->node_zones[zone];
3307 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3308 /*
3309 * There can be holes in boot-time mem_map[]s
3310 * handed to this function. They do not
3311 * exist on hotplugged memory.
3312 */
3313 if (context == MEMMAP_EARLY) {
3314 if (!early_pfn_valid(pfn))
3315 continue;
3316 if (!early_pfn_in_nid(pfn, nid))
3317 continue;
3318 }
3319 page = pfn_to_page(pfn);
3320 set_page_links(page, zone, nid, pfn);
3321 mminit_verify_page_links(page, zone, nid, pfn);
3322 init_page_count(page);
3323 reset_page_mapcount(page);
3324 SetPageReserved(page);
3325 /*
3326 * Mark the block movable so that blocks are reserved for
3327 * movable at startup. This will force kernel allocations
3328 * to reserve their blocks rather than leaking throughout
3329 * the address space during boot when many long-lived
3330 * kernel allocations are made. Later some blocks near
3331 * the start are marked MIGRATE_RESERVE by
3332 * setup_zone_migrate_reserve()
3333 *
3334 * bitmap is created for zone's valid pfn range. but memmap
3335 * can be created for invalid pages (for alignment)
3336 * check here not to call set_pageblock_migratetype() against
3337 * pfn out of zone.
3338 */
3339 if ((z->zone_start_pfn <= pfn)
3340 && (pfn < z->zone_start_pfn + z->spanned_pages)
3341 && !(pfn & (pageblock_nr_pages - 1)))
3342 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3343
3344 INIT_LIST_HEAD(&page->lru);
3345 #ifdef WANT_PAGE_VIRTUAL
3346 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3347 if (!is_highmem_idx(zone))
3348 set_page_address(page, __va(pfn << PAGE_SHIFT));
3349 #endif
3350 }
3351 }
3352
3353 static void __meminit zone_init_free_lists(struct zone *zone)
3354 {
3355 int order, t;
3356 for_each_migratetype_order(order, t) {
3357 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3358 zone->free_area[order].nr_free = 0;
3359 }
3360 }
3361
3362 #ifndef __HAVE_ARCH_MEMMAP_INIT
3363 #define memmap_init(size, nid, zone, start_pfn) \
3364 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3365 #endif
3366
3367 static int zone_batchsize(struct zone *zone)
3368 {
3369 #ifdef CONFIG_MMU
3370 int batch;
3371
3372 /*
3373 * The per-cpu-pages pools are set to around 1000th of the
3374 * size of the zone. But no more than 1/2 of a meg.
3375 *
3376 * OK, so we don't know how big the cache is. So guess.
3377 */
3378 batch = zone->present_pages / 1024;
3379 if (batch * PAGE_SIZE > 512 * 1024)
3380 batch = (512 * 1024) / PAGE_SIZE;
3381 batch /= 4; /* We effectively *= 4 below */
3382 if (batch < 1)
3383 batch = 1;
3384
3385 /*
3386 * Clamp the batch to a 2^n - 1 value. Having a power
3387 * of 2 value was found to be more likely to have
3388 * suboptimal cache aliasing properties in some cases.
3389 *
3390 * For example if 2 tasks are alternately allocating
3391 * batches of pages, one task can end up with a lot
3392 * of pages of one half of the possible page colors
3393 * and the other with pages of the other colors.
3394 */
3395 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3396
3397 return batch;
3398
3399 #else
3400 /* The deferral and batching of frees should be suppressed under NOMMU
3401 * conditions.
3402 *
3403 * The problem is that NOMMU needs to be able to allocate large chunks
3404 * of contiguous memory as there's no hardware page translation to
3405 * assemble apparent contiguous memory from discontiguous pages.
3406 *
3407 * Queueing large contiguous runs of pages for batching, however,
3408 * causes the pages to actually be freed in smaller chunks. As there
3409 * can be a significant delay between the individual batches being
3410 * recycled, this leads to the once large chunks of space being
3411 * fragmented and becoming unavailable for high-order allocations.
3412 */
3413 return 0;
3414 #endif
3415 }
3416
3417 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3418 {
3419 struct per_cpu_pages *pcp;
3420 int migratetype;
3421
3422 memset(p, 0, sizeof(*p));
3423
3424 pcp = &p->pcp;
3425 pcp->count = 0;
3426 pcp->high = 6 * batch;
3427 pcp->batch = max(1UL, 1 * batch);
3428 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3429 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3430 }
3431
3432 /*
3433 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3434 * to the value high for the pageset p.
3435 */
3436
3437 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3438 unsigned long high)
3439 {
3440 struct per_cpu_pages *pcp;
3441
3442 pcp = &p->pcp;
3443 pcp->high = high;
3444 pcp->batch = max(1UL, high/4);
3445 if ((high/4) > (PAGE_SHIFT * 8))
3446 pcp->batch = PAGE_SHIFT * 8;
3447 }
3448
3449 static __meminit void setup_zone_pageset(struct zone *zone)
3450 {
3451 int cpu;
3452
3453 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3454
3455 for_each_possible_cpu(cpu) {
3456 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3457
3458 setup_pageset(pcp, zone_batchsize(zone));
3459
3460 if (percpu_pagelist_fraction)
3461 setup_pagelist_highmark(pcp,
3462 (zone->present_pages /
3463 percpu_pagelist_fraction));
3464 }
3465 }
3466
3467 /*
3468 * Allocate per cpu pagesets and initialize them.
3469 * Before this call only boot pagesets were available.
3470 */
3471 void __init setup_per_cpu_pageset(void)
3472 {
3473 struct zone *zone;
3474
3475 for_each_populated_zone(zone)
3476 setup_zone_pageset(zone);
3477 }
3478
3479 static noinline __init_refok
3480 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3481 {
3482 int i;
3483 struct pglist_data *pgdat = zone->zone_pgdat;
3484 size_t alloc_size;
3485
3486 /*
3487 * The per-page waitqueue mechanism uses hashed waitqueues
3488 * per zone.
3489 */
3490 zone->wait_table_hash_nr_entries =
3491 wait_table_hash_nr_entries(zone_size_pages);
3492 zone->wait_table_bits =
3493 wait_table_bits(zone->wait_table_hash_nr_entries);
3494 alloc_size = zone->wait_table_hash_nr_entries
3495 * sizeof(wait_queue_head_t);
3496
3497 if (!slab_is_available()) {
3498 zone->wait_table = (wait_queue_head_t *)
3499 alloc_bootmem_node(pgdat, alloc_size);
3500 } else {
3501 /*
3502 * This case means that a zone whose size was 0 gets new memory
3503 * via memory hot-add.
3504 * But it may be the case that a new node was hot-added. In
3505 * this case vmalloc() will not be able to use this new node's
3506 * memory - this wait_table must be initialized to use this new
3507 * node itself as well.
3508 * To use this new node's memory, further consideration will be
3509 * necessary.
3510 */
3511 zone->wait_table = vmalloc(alloc_size);
3512 }
3513 if (!zone->wait_table)
3514 return -ENOMEM;
3515
3516 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3517 init_waitqueue_head(zone->wait_table + i);
3518
3519 return 0;
3520 }
3521
3522 static int __zone_pcp_update(void *data)
3523 {
3524 struct zone *zone = data;
3525 int cpu;
3526 unsigned long batch = zone_batchsize(zone), flags;
3527
3528 for_each_possible_cpu(cpu) {
3529 struct per_cpu_pageset *pset;
3530 struct per_cpu_pages *pcp;
3531
3532 pset = per_cpu_ptr(zone->pageset, cpu);
3533 pcp = &pset->pcp;
3534
3535 local_irq_save(flags);
3536 free_pcppages_bulk(zone, pcp->count, pcp);
3537 setup_pageset(pset, batch);
3538 local_irq_restore(flags);
3539 }
3540 return 0;
3541 }
3542
3543 void zone_pcp_update(struct zone *zone)
3544 {
3545 stop_machine(__zone_pcp_update, zone, NULL);
3546 }
3547
3548 static __meminit void zone_pcp_init(struct zone *zone)
3549 {
3550 /*
3551 * per cpu subsystem is not up at this point. The following code
3552 * relies on the ability of the linker to provide the
3553 * offset of a (static) per cpu variable into the per cpu area.
3554 */
3555 zone->pageset = &boot_pageset;
3556
3557 if (zone->present_pages)
3558 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3559 zone->name, zone->present_pages,
3560 zone_batchsize(zone));
3561 }
3562
3563 __meminit int init_currently_empty_zone(struct zone *zone,
3564 unsigned long zone_start_pfn,
3565 unsigned long size,
3566 enum memmap_context context)
3567 {
3568 struct pglist_data *pgdat = zone->zone_pgdat;
3569 int ret;
3570 ret = zone_wait_table_init(zone, size);
3571 if (ret)
3572 return ret;
3573 pgdat->nr_zones = zone_idx(zone) + 1;
3574
3575 zone->zone_start_pfn = zone_start_pfn;
3576
3577 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3578 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3579 pgdat->node_id,
3580 (unsigned long)zone_idx(zone),
3581 zone_start_pfn, (zone_start_pfn + size));
3582
3583 zone_init_free_lists(zone);
3584
3585 return 0;
3586 }
3587
3588 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3589 /*
3590 * Basic iterator support. Return the first range of PFNs for a node
3591 * Note: nid == MAX_NUMNODES returns first region regardless of node
3592 */
3593 static int __meminit first_active_region_index_in_nid(int nid)
3594 {
3595 int i;
3596
3597 for (i = 0; i < nr_nodemap_entries; i++)
3598 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3599 return i;
3600
3601 return -1;
3602 }
3603
3604 /*
3605 * Basic iterator support. Return the next active range of PFNs for a node
3606 * Note: nid == MAX_NUMNODES returns next region regardless of node
3607 */
3608 static int __meminit next_active_region_index_in_nid(int index, int nid)
3609 {
3610 for (index = index + 1; index < nr_nodemap_entries; index++)
3611 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3612 return index;
3613
3614 return -1;
3615 }
3616
3617 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3618 /*
3619 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3620 * Architectures may implement their own version but if add_active_range()
3621 * was used and there are no special requirements, this is a convenient
3622 * alternative
3623 */
3624 int __meminit __early_pfn_to_nid(unsigned long pfn)
3625 {
3626 int i;
3627
3628 for (i = 0; i < nr_nodemap_entries; i++) {
3629 unsigned long start_pfn = early_node_map[i].start_pfn;
3630 unsigned long end_pfn = early_node_map[i].end_pfn;
3631
3632 if (start_pfn <= pfn && pfn < end_pfn)
3633 return early_node_map[i].nid;
3634 }
3635 /* This is a memory hole */
3636 return -1;
3637 }
3638 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3639
3640 int __meminit early_pfn_to_nid(unsigned long pfn)
3641 {
3642 int nid;
3643
3644 nid = __early_pfn_to_nid(pfn);
3645 if (nid >= 0)
3646 return nid;
3647 /* just returns 0 */
3648 return 0;
3649 }
3650
3651 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3652 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3653 {
3654 int nid;
3655
3656 nid = __early_pfn_to_nid(pfn);
3657 if (nid >= 0 && nid != node)
3658 return false;
3659 return true;
3660 }
3661 #endif
3662
3663 /* Basic iterator support to walk early_node_map[] */
3664 #define for_each_active_range_index_in_nid(i, nid) \
3665 for (i = first_active_region_index_in_nid(nid); i != -1; \
3666 i = next_active_region_index_in_nid(i, nid))
3667
3668 /**
3669 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3670 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3671 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3672 *
3673 * If an architecture guarantees that all ranges registered with
3674 * add_active_ranges() contain no holes and may be freed, this
3675 * this function may be used instead of calling free_bootmem() manually.
3676 */
3677 void __init free_bootmem_with_active_regions(int nid,
3678 unsigned long max_low_pfn)
3679 {
3680 int i;
3681
3682 for_each_active_range_index_in_nid(i, nid) {
3683 unsigned long size_pages = 0;
3684 unsigned long end_pfn = early_node_map[i].end_pfn;
3685
3686 if (early_node_map[i].start_pfn >= max_low_pfn)
3687 continue;
3688
3689 if (end_pfn > max_low_pfn)
3690 end_pfn = max_low_pfn;
3691
3692 size_pages = end_pfn - early_node_map[i].start_pfn;
3693 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3694 PFN_PHYS(early_node_map[i].start_pfn),
3695 size_pages << PAGE_SHIFT);
3696 }
3697 }
3698
3699 #ifdef CONFIG_HAVE_MEMBLOCK
3700 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3701 u64 goal, u64 limit)
3702 {
3703 int i;
3704
3705 /* Need to go over early_node_map to find out good range for node */
3706 for_each_active_range_index_in_nid(i, nid) {
3707 u64 addr;
3708 u64 ei_start, ei_last;
3709 u64 final_start, final_end;
3710
3711 ei_last = early_node_map[i].end_pfn;
3712 ei_last <<= PAGE_SHIFT;
3713 ei_start = early_node_map[i].start_pfn;
3714 ei_start <<= PAGE_SHIFT;
3715
3716 final_start = max(ei_start, goal);
3717 final_end = min(ei_last, limit);
3718
3719 if (final_start >= final_end)
3720 continue;
3721
3722 addr = memblock_find_in_range(final_start, final_end, size, align);
3723
3724 if (addr == MEMBLOCK_ERROR)
3725 continue;
3726
3727 return addr;
3728 }
3729
3730 return MEMBLOCK_ERROR;
3731 }
3732 #endif
3733
3734 int __init add_from_early_node_map(struct range *range, int az,
3735 int nr_range, int nid)
3736 {
3737 int i;
3738 u64 start, end;
3739
3740 /* need to go over early_node_map to find out good range for node */
3741 for_each_active_range_index_in_nid(i, nid) {
3742 start = early_node_map[i].start_pfn;
3743 end = early_node_map[i].end_pfn;
3744 nr_range = add_range(range, az, nr_range, start, end);
3745 }
3746 return nr_range;
3747 }
3748
3749 #ifdef CONFIG_NO_BOOTMEM
3750 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3751 u64 goal, u64 limit)
3752 {
3753 void *ptr;
3754 u64 addr;
3755
3756 if (limit > memblock.current_limit)
3757 limit = memblock.current_limit;
3758
3759 addr = find_memory_core_early(nid, size, align, goal, limit);
3760
3761 if (addr == MEMBLOCK_ERROR)
3762 return NULL;
3763
3764 ptr = phys_to_virt(addr);
3765 memset(ptr, 0, size);
3766 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3767 /*
3768 * The min_count is set to 0 so that bootmem allocated blocks
3769 * are never reported as leaks.
3770 */
3771 kmemleak_alloc(ptr, size, 0, 0);
3772 return ptr;
3773 }
3774 #endif
3775
3776
3777 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3778 {
3779 int i;
3780 int ret;
3781
3782 for_each_active_range_index_in_nid(i, nid) {
3783 ret = work_fn(early_node_map[i].start_pfn,
3784 early_node_map[i].end_pfn, data);
3785 if (ret)
3786 break;
3787 }
3788 }
3789 /**
3790 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3791 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3792 *
3793 * If an architecture guarantees that all ranges registered with
3794 * add_active_ranges() contain no holes and may be freed, this
3795 * function may be used instead of calling memory_present() manually.
3796 */
3797 void __init sparse_memory_present_with_active_regions(int nid)
3798 {
3799 int i;
3800
3801 for_each_active_range_index_in_nid(i, nid)
3802 memory_present(early_node_map[i].nid,
3803 early_node_map[i].start_pfn,
3804 early_node_map[i].end_pfn);
3805 }
3806
3807 /**
3808 * get_pfn_range_for_nid - Return the start and end page frames for a node
3809 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3810 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3811 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3812 *
3813 * It returns the start and end page frame of a node based on information
3814 * provided by an arch calling add_active_range(). If called for a node
3815 * with no available memory, a warning is printed and the start and end
3816 * PFNs will be 0.
3817 */
3818 void __meminit get_pfn_range_for_nid(unsigned int nid,
3819 unsigned long *start_pfn, unsigned long *end_pfn)
3820 {
3821 int i;
3822 *start_pfn = -1UL;
3823 *end_pfn = 0;
3824
3825 for_each_active_range_index_in_nid(i, nid) {
3826 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3827 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3828 }
3829
3830 if (*start_pfn == -1UL)
3831 *start_pfn = 0;
3832 }
3833
3834 /*
3835 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3836 * assumption is made that zones within a node are ordered in monotonic
3837 * increasing memory addresses so that the "highest" populated zone is used
3838 */
3839 static void __init find_usable_zone_for_movable(void)
3840 {
3841 int zone_index;
3842 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3843 if (zone_index == ZONE_MOVABLE)
3844 continue;
3845
3846 if (arch_zone_highest_possible_pfn[zone_index] >
3847 arch_zone_lowest_possible_pfn[zone_index])
3848 break;
3849 }
3850
3851 VM_BUG_ON(zone_index == -1);
3852 movable_zone = zone_index;
3853 }
3854
3855 /*
3856 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3857 * because it is sized independant of architecture. Unlike the other zones,
3858 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3859 * in each node depending on the size of each node and how evenly kernelcore
3860 * is distributed. This helper function adjusts the zone ranges
3861 * provided by the architecture for a given node by using the end of the
3862 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3863 * zones within a node are in order of monotonic increases memory addresses
3864 */
3865 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3866 unsigned long zone_type,
3867 unsigned long node_start_pfn,
3868 unsigned long node_end_pfn,
3869 unsigned long *zone_start_pfn,
3870 unsigned long *zone_end_pfn)
3871 {
3872 /* Only adjust if ZONE_MOVABLE is on this node */
3873 if (zone_movable_pfn[nid]) {
3874 /* Size ZONE_MOVABLE */
3875 if (zone_type == ZONE_MOVABLE) {
3876 *zone_start_pfn = zone_movable_pfn[nid];
3877 *zone_end_pfn = min(node_end_pfn,
3878 arch_zone_highest_possible_pfn[movable_zone]);
3879
3880 /* Adjust for ZONE_MOVABLE starting within this range */
3881 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3882 *zone_end_pfn > zone_movable_pfn[nid]) {
3883 *zone_end_pfn = zone_movable_pfn[nid];
3884
3885 /* Check if this whole range is within ZONE_MOVABLE */
3886 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3887 *zone_start_pfn = *zone_end_pfn;
3888 }
3889 }
3890
3891 /*
3892 * Return the number of pages a zone spans in a node, including holes
3893 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3894 */
3895 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3896 unsigned long zone_type,
3897 unsigned long *ignored)
3898 {
3899 unsigned long node_start_pfn, node_end_pfn;
3900 unsigned long zone_start_pfn, zone_end_pfn;
3901
3902 /* Get the start and end of the node and zone */
3903 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3904 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3905 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3906 adjust_zone_range_for_zone_movable(nid, zone_type,
3907 node_start_pfn, node_end_pfn,
3908 &zone_start_pfn, &zone_end_pfn);
3909
3910 /* Check that this node has pages within the zone's required range */
3911 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3912 return 0;
3913
3914 /* Move the zone boundaries inside the node if necessary */
3915 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3916 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3917
3918 /* Return the spanned pages */
3919 return zone_end_pfn - zone_start_pfn;
3920 }
3921
3922 /*
3923 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3924 * then all holes in the requested range will be accounted for.
3925 */
3926 unsigned long __meminit __absent_pages_in_range(int nid,
3927 unsigned long range_start_pfn,
3928 unsigned long range_end_pfn)
3929 {
3930 int i = 0;
3931 unsigned long prev_end_pfn = 0, hole_pages = 0;
3932 unsigned long start_pfn;
3933
3934 /* Find the end_pfn of the first active range of pfns in the node */
3935 i = first_active_region_index_in_nid(nid);
3936 if (i == -1)
3937 return 0;
3938
3939 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3940
3941 /* Account for ranges before physical memory on this node */
3942 if (early_node_map[i].start_pfn > range_start_pfn)
3943 hole_pages = prev_end_pfn - range_start_pfn;
3944
3945 /* Find all holes for the zone within the node */
3946 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3947
3948 /* No need to continue if prev_end_pfn is outside the zone */
3949 if (prev_end_pfn >= range_end_pfn)
3950 break;
3951
3952 /* Make sure the end of the zone is not within the hole */
3953 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3954 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3955
3956 /* Update the hole size cound and move on */
3957 if (start_pfn > range_start_pfn) {
3958 BUG_ON(prev_end_pfn > start_pfn);
3959 hole_pages += start_pfn - prev_end_pfn;
3960 }
3961 prev_end_pfn = early_node_map[i].end_pfn;
3962 }
3963
3964 /* Account for ranges past physical memory on this node */
3965 if (range_end_pfn > prev_end_pfn)
3966 hole_pages += range_end_pfn -
3967 max(range_start_pfn, prev_end_pfn);
3968
3969 return hole_pages;
3970 }
3971
3972 /**
3973 * absent_pages_in_range - Return number of page frames in holes within a range
3974 * @start_pfn: The start PFN to start searching for holes
3975 * @end_pfn: The end PFN to stop searching for holes
3976 *
3977 * It returns the number of pages frames in memory holes within a range.
3978 */
3979 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3980 unsigned long end_pfn)
3981 {
3982 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3983 }
3984
3985 /* Return the number of page frames in holes in a zone on a node */
3986 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3987 unsigned long zone_type,
3988 unsigned long *ignored)
3989 {
3990 unsigned long node_start_pfn, node_end_pfn;
3991 unsigned long zone_start_pfn, zone_end_pfn;
3992
3993 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3994 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3995 node_start_pfn);
3996 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3997 node_end_pfn);
3998
3999 adjust_zone_range_for_zone_movable(nid, zone_type,
4000 node_start_pfn, node_end_pfn,
4001 &zone_start_pfn, &zone_end_pfn);
4002 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4003 }
4004
4005 #else
4006 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4007 unsigned long zone_type,
4008 unsigned long *zones_size)
4009 {
4010 return zones_size[zone_type];
4011 }
4012
4013 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4014 unsigned long zone_type,
4015 unsigned long *zholes_size)
4016 {
4017 if (!zholes_size)
4018 return 0;
4019
4020 return zholes_size[zone_type];
4021 }
4022
4023 #endif
4024
4025 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4026 unsigned long *zones_size, unsigned long *zholes_size)
4027 {
4028 unsigned long realtotalpages, totalpages = 0;
4029 enum zone_type i;
4030
4031 for (i = 0; i < MAX_NR_ZONES; i++)
4032 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4033 zones_size);
4034 pgdat->node_spanned_pages = totalpages;
4035
4036 realtotalpages = totalpages;
4037 for (i = 0; i < MAX_NR_ZONES; i++)
4038 realtotalpages -=
4039 zone_absent_pages_in_node(pgdat->node_id, i,
4040 zholes_size);
4041 pgdat->node_present_pages = realtotalpages;
4042 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4043 realtotalpages);
4044 }
4045
4046 #ifndef CONFIG_SPARSEMEM
4047 /*
4048 * Calculate the size of the zone->blockflags rounded to an unsigned long
4049 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4050 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4051 * round what is now in bits to nearest long in bits, then return it in
4052 * bytes.
4053 */
4054 static unsigned long __init usemap_size(unsigned long zonesize)
4055 {
4056 unsigned long usemapsize;
4057
4058 usemapsize = roundup(zonesize, pageblock_nr_pages);
4059 usemapsize = usemapsize >> pageblock_order;
4060 usemapsize *= NR_PAGEBLOCK_BITS;
4061 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4062
4063 return usemapsize / 8;
4064 }
4065
4066 static void __init setup_usemap(struct pglist_data *pgdat,
4067 struct zone *zone, unsigned long zonesize)
4068 {
4069 unsigned long usemapsize = usemap_size(zonesize);
4070 zone->pageblock_flags = NULL;
4071 if (usemapsize)
4072 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4073 }
4074 #else
4075 static inline void setup_usemap(struct pglist_data *pgdat,
4076 struct zone *zone, unsigned long zonesize) {}
4077 #endif /* CONFIG_SPARSEMEM */
4078
4079 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4080
4081 /* Return a sensible default order for the pageblock size. */
4082 static inline int pageblock_default_order(void)
4083 {
4084 if (HPAGE_SHIFT > PAGE_SHIFT)
4085 return HUGETLB_PAGE_ORDER;
4086
4087 return MAX_ORDER-1;
4088 }
4089
4090 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4091 static inline void __init set_pageblock_order(unsigned int order)
4092 {
4093 /* Check that pageblock_nr_pages has not already been setup */
4094 if (pageblock_order)
4095 return;
4096
4097 /*
4098 * Assume the largest contiguous order of interest is a huge page.
4099 * This value may be variable depending on boot parameters on IA64
4100 */
4101 pageblock_order = order;
4102 }
4103 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4104
4105 /*
4106 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4107 * and pageblock_default_order() are unused as pageblock_order is set
4108 * at compile-time. See include/linux/pageblock-flags.h for the values of
4109 * pageblock_order based on the kernel config
4110 */
4111 static inline int pageblock_default_order(unsigned int order)
4112 {
4113 return MAX_ORDER-1;
4114 }
4115 #define set_pageblock_order(x) do {} while (0)
4116
4117 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4118
4119 /*
4120 * Set up the zone data structures:
4121 * - mark all pages reserved
4122 * - mark all memory queues empty
4123 * - clear the memory bitmaps
4124 */
4125 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4126 unsigned long *zones_size, unsigned long *zholes_size)
4127 {
4128 enum zone_type j;
4129 int nid = pgdat->node_id;
4130 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4131 int ret;
4132
4133 pgdat_resize_init(pgdat);
4134 pgdat->nr_zones = 0;
4135 init_waitqueue_head(&pgdat->kswapd_wait);
4136 pgdat->kswapd_max_order = 0;
4137 pgdat_page_cgroup_init(pgdat);
4138
4139 for (j = 0; j < MAX_NR_ZONES; j++) {
4140 struct zone *zone = pgdat->node_zones + j;
4141 unsigned long size, realsize, memmap_pages;
4142 enum lru_list l;
4143
4144 size = zone_spanned_pages_in_node(nid, j, zones_size);
4145 realsize = size - zone_absent_pages_in_node(nid, j,
4146 zholes_size);
4147
4148 /*
4149 * Adjust realsize so that it accounts for how much memory
4150 * is used by this zone for memmap. This affects the watermark
4151 * and per-cpu initialisations
4152 */
4153 memmap_pages =
4154 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4155 if (realsize >= memmap_pages) {
4156 realsize -= memmap_pages;
4157 if (memmap_pages)
4158 printk(KERN_DEBUG
4159 " %s zone: %lu pages used for memmap\n",
4160 zone_names[j], memmap_pages);
4161 } else
4162 printk(KERN_WARNING
4163 " %s zone: %lu pages exceeds realsize %lu\n",
4164 zone_names[j], memmap_pages, realsize);
4165
4166 /* Account for reserved pages */
4167 if (j == 0 && realsize > dma_reserve) {
4168 realsize -= dma_reserve;
4169 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4170 zone_names[0], dma_reserve);
4171 }
4172
4173 if (!is_highmem_idx(j))
4174 nr_kernel_pages += realsize;
4175 nr_all_pages += realsize;
4176
4177 zone->spanned_pages = size;
4178 zone->present_pages = realsize;
4179 #ifdef CONFIG_NUMA
4180 zone->node = nid;
4181 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4182 / 100;
4183 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4184 #endif
4185 zone->name = zone_names[j];
4186 spin_lock_init(&zone->lock);
4187 spin_lock_init(&zone->lru_lock);
4188 zone_seqlock_init(zone);
4189 zone->zone_pgdat = pgdat;
4190
4191 zone_pcp_init(zone);
4192 for_each_lru(l) {
4193 INIT_LIST_HEAD(&zone->lru[l].list);
4194 zone->reclaim_stat.nr_saved_scan[l] = 0;
4195 }
4196 zone->reclaim_stat.recent_rotated[0] = 0;
4197 zone->reclaim_stat.recent_rotated[1] = 0;
4198 zone->reclaim_stat.recent_scanned[0] = 0;
4199 zone->reclaim_stat.recent_scanned[1] = 0;
4200 zap_zone_vm_stats(zone);
4201 zone->flags = 0;
4202 if (!size)
4203 continue;
4204
4205 set_pageblock_order(pageblock_default_order());
4206 setup_usemap(pgdat, zone, size);
4207 ret = init_currently_empty_zone(zone, zone_start_pfn,
4208 size, MEMMAP_EARLY);
4209 BUG_ON(ret);
4210 memmap_init(size, nid, j, zone_start_pfn);
4211 zone_start_pfn += size;
4212 }
4213 }
4214
4215 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4216 {
4217 /* Skip empty nodes */
4218 if (!pgdat->node_spanned_pages)
4219 return;
4220
4221 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4222 /* ia64 gets its own node_mem_map, before this, without bootmem */
4223 if (!pgdat->node_mem_map) {
4224 unsigned long size, start, end;
4225 struct page *map;
4226
4227 /*
4228 * The zone's endpoints aren't required to be MAX_ORDER
4229 * aligned but the node_mem_map endpoints must be in order
4230 * for the buddy allocator to function correctly.
4231 */
4232 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4233 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4234 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4235 size = (end - start) * sizeof(struct page);
4236 map = alloc_remap(pgdat->node_id, size);
4237 if (!map)
4238 map = alloc_bootmem_node(pgdat, size);
4239 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4240 }
4241 #ifndef CONFIG_NEED_MULTIPLE_NODES
4242 /*
4243 * With no DISCONTIG, the global mem_map is just set as node 0's
4244 */
4245 if (pgdat == NODE_DATA(0)) {
4246 mem_map = NODE_DATA(0)->node_mem_map;
4247 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4248 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4249 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4250 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4251 }
4252 #endif
4253 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4254 }
4255
4256 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4257 unsigned long node_start_pfn, unsigned long *zholes_size)
4258 {
4259 pg_data_t *pgdat = NODE_DATA(nid);
4260
4261 pgdat->node_id = nid;
4262 pgdat->node_start_pfn = node_start_pfn;
4263 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4264
4265 alloc_node_mem_map(pgdat);
4266 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4267 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4268 nid, (unsigned long)pgdat,
4269 (unsigned long)pgdat->node_mem_map);
4270 #endif
4271
4272 free_area_init_core(pgdat, zones_size, zholes_size);
4273 }
4274
4275 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4276
4277 #if MAX_NUMNODES > 1
4278 /*
4279 * Figure out the number of possible node ids.
4280 */
4281 static void __init setup_nr_node_ids(void)
4282 {
4283 unsigned int node;
4284 unsigned int highest = 0;
4285
4286 for_each_node_mask(node, node_possible_map)
4287 highest = node;
4288 nr_node_ids = highest + 1;
4289 }
4290 #else
4291 static inline void setup_nr_node_ids(void)
4292 {
4293 }
4294 #endif
4295
4296 /**
4297 * add_active_range - Register a range of PFNs backed by physical memory
4298 * @nid: The node ID the range resides on
4299 * @start_pfn: The start PFN of the available physical memory
4300 * @end_pfn: The end PFN of the available physical memory
4301 *
4302 * These ranges are stored in an early_node_map[] and later used by
4303 * free_area_init_nodes() to calculate zone sizes and holes. If the
4304 * range spans a memory hole, it is up to the architecture to ensure
4305 * the memory is not freed by the bootmem allocator. If possible
4306 * the range being registered will be merged with existing ranges.
4307 */
4308 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4309 unsigned long end_pfn)
4310 {
4311 int i;
4312
4313 mminit_dprintk(MMINIT_TRACE, "memory_register",
4314 "Entering add_active_range(%d, %#lx, %#lx) "
4315 "%d entries of %d used\n",
4316 nid, start_pfn, end_pfn,
4317 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4318
4319 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4320
4321 /* Merge with existing active regions if possible */
4322 for (i = 0; i < nr_nodemap_entries; i++) {
4323 if (early_node_map[i].nid != nid)
4324 continue;
4325
4326 /* Skip if an existing region covers this new one */
4327 if (start_pfn >= early_node_map[i].start_pfn &&
4328 end_pfn <= early_node_map[i].end_pfn)
4329 return;
4330
4331 /* Merge forward if suitable */
4332 if (start_pfn <= early_node_map[i].end_pfn &&
4333 end_pfn > early_node_map[i].end_pfn) {
4334 early_node_map[i].end_pfn = end_pfn;
4335 return;
4336 }
4337
4338 /* Merge backward if suitable */
4339 if (start_pfn < early_node_map[i].start_pfn &&
4340 end_pfn >= early_node_map[i].start_pfn) {
4341 early_node_map[i].start_pfn = start_pfn;
4342 return;
4343 }
4344 }
4345
4346 /* Check that early_node_map is large enough */
4347 if (i >= MAX_ACTIVE_REGIONS) {
4348 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4349 MAX_ACTIVE_REGIONS);
4350 return;
4351 }
4352
4353 early_node_map[i].nid = nid;
4354 early_node_map[i].start_pfn = start_pfn;
4355 early_node_map[i].end_pfn = end_pfn;
4356 nr_nodemap_entries = i + 1;
4357 }
4358
4359 /**
4360 * remove_active_range - Shrink an existing registered range of PFNs
4361 * @nid: The node id the range is on that should be shrunk
4362 * @start_pfn: The new PFN of the range
4363 * @end_pfn: The new PFN of the range
4364 *
4365 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4366 * The map is kept near the end physical page range that has already been
4367 * registered. This function allows an arch to shrink an existing registered
4368 * range.
4369 */
4370 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4371 unsigned long end_pfn)
4372 {
4373 int i, j;
4374 int removed = 0;
4375
4376 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4377 nid, start_pfn, end_pfn);
4378
4379 /* Find the old active region end and shrink */
4380 for_each_active_range_index_in_nid(i, nid) {
4381 if (early_node_map[i].start_pfn >= start_pfn &&
4382 early_node_map[i].end_pfn <= end_pfn) {
4383 /* clear it */
4384 early_node_map[i].start_pfn = 0;
4385 early_node_map[i].end_pfn = 0;
4386 removed = 1;
4387 continue;
4388 }
4389 if (early_node_map[i].start_pfn < start_pfn &&
4390 early_node_map[i].end_pfn > start_pfn) {
4391 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4392 early_node_map[i].end_pfn = start_pfn;
4393 if (temp_end_pfn > end_pfn)
4394 add_active_range(nid, end_pfn, temp_end_pfn);
4395 continue;
4396 }
4397 if (early_node_map[i].start_pfn >= start_pfn &&
4398 early_node_map[i].end_pfn > end_pfn &&
4399 early_node_map[i].start_pfn < end_pfn) {
4400 early_node_map[i].start_pfn = end_pfn;
4401 continue;
4402 }
4403 }
4404
4405 if (!removed)
4406 return;
4407
4408 /* remove the blank ones */
4409 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4410 if (early_node_map[i].nid != nid)
4411 continue;
4412 if (early_node_map[i].end_pfn)
4413 continue;
4414 /* we found it, get rid of it */
4415 for (j = i; j < nr_nodemap_entries - 1; j++)
4416 memcpy(&early_node_map[j], &early_node_map[j+1],
4417 sizeof(early_node_map[j]));
4418 j = nr_nodemap_entries - 1;
4419 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4420 nr_nodemap_entries--;
4421 }
4422 }
4423
4424 /**
4425 * remove_all_active_ranges - Remove all currently registered regions
4426 *
4427 * During discovery, it may be found that a table like SRAT is invalid
4428 * and an alternative discovery method must be used. This function removes
4429 * all currently registered regions.
4430 */
4431 void __init remove_all_active_ranges(void)
4432 {
4433 memset(early_node_map, 0, sizeof(early_node_map));
4434 nr_nodemap_entries = 0;
4435 }
4436
4437 /* Compare two active node_active_regions */
4438 static int __init cmp_node_active_region(const void *a, const void *b)
4439 {
4440 struct node_active_region *arange = (struct node_active_region *)a;
4441 struct node_active_region *brange = (struct node_active_region *)b;
4442
4443 /* Done this way to avoid overflows */
4444 if (arange->start_pfn > brange->start_pfn)
4445 return 1;
4446 if (arange->start_pfn < brange->start_pfn)
4447 return -1;
4448
4449 return 0;
4450 }
4451
4452 /* sort the node_map by start_pfn */
4453 void __init sort_node_map(void)
4454 {
4455 sort(early_node_map, (size_t)nr_nodemap_entries,
4456 sizeof(struct node_active_region),
4457 cmp_node_active_region, NULL);
4458 }
4459
4460 /* Find the lowest pfn for a node */
4461 static unsigned long __init find_min_pfn_for_node(int nid)
4462 {
4463 int i;
4464 unsigned long min_pfn = ULONG_MAX;
4465
4466 /* Assuming a sorted map, the first range found has the starting pfn */
4467 for_each_active_range_index_in_nid(i, nid)
4468 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4469
4470 if (min_pfn == ULONG_MAX) {
4471 printk(KERN_WARNING
4472 "Could not find start_pfn for node %d\n", nid);
4473 return 0;
4474 }
4475
4476 return min_pfn;
4477 }
4478
4479 /**
4480 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4481 *
4482 * It returns the minimum PFN based on information provided via
4483 * add_active_range().
4484 */
4485 unsigned long __init find_min_pfn_with_active_regions(void)
4486 {
4487 return find_min_pfn_for_node(MAX_NUMNODES);
4488 }
4489
4490 /*
4491 * early_calculate_totalpages()
4492 * Sum pages in active regions for movable zone.
4493 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4494 */
4495 static unsigned long __init early_calculate_totalpages(void)
4496 {
4497 int i;
4498 unsigned long totalpages = 0;
4499
4500 for (i = 0; i < nr_nodemap_entries; i++) {
4501 unsigned long pages = early_node_map[i].end_pfn -
4502 early_node_map[i].start_pfn;
4503 totalpages += pages;
4504 if (pages)
4505 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4506 }
4507 return totalpages;
4508 }
4509
4510 /*
4511 * Find the PFN the Movable zone begins in each node. Kernel memory
4512 * is spread evenly between nodes as long as the nodes have enough
4513 * memory. When they don't, some nodes will have more kernelcore than
4514 * others
4515 */
4516 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4517 {
4518 int i, nid;
4519 unsigned long usable_startpfn;
4520 unsigned long kernelcore_node, kernelcore_remaining;
4521 /* save the state before borrow the nodemask */
4522 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4523 unsigned long totalpages = early_calculate_totalpages();
4524 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4525
4526 /*
4527 * If movablecore was specified, calculate what size of
4528 * kernelcore that corresponds so that memory usable for
4529 * any allocation type is evenly spread. If both kernelcore
4530 * and movablecore are specified, then the value of kernelcore
4531 * will be used for required_kernelcore if it's greater than
4532 * what movablecore would have allowed.
4533 */
4534 if (required_movablecore) {
4535 unsigned long corepages;
4536
4537 /*
4538 * Round-up so that ZONE_MOVABLE is at least as large as what
4539 * was requested by the user
4540 */
4541 required_movablecore =
4542 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4543 corepages = totalpages - required_movablecore;
4544
4545 required_kernelcore = max(required_kernelcore, corepages);
4546 }
4547
4548 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4549 if (!required_kernelcore)
4550 goto out;
4551
4552 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4553 find_usable_zone_for_movable();
4554 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4555
4556 restart:
4557 /* Spread kernelcore memory as evenly as possible throughout nodes */
4558 kernelcore_node = required_kernelcore / usable_nodes;
4559 for_each_node_state(nid, N_HIGH_MEMORY) {
4560 /*
4561 * Recalculate kernelcore_node if the division per node
4562 * now exceeds what is necessary to satisfy the requested
4563 * amount of memory for the kernel
4564 */
4565 if (required_kernelcore < kernelcore_node)
4566 kernelcore_node = required_kernelcore / usable_nodes;
4567
4568 /*
4569 * As the map is walked, we track how much memory is usable
4570 * by the kernel using kernelcore_remaining. When it is
4571 * 0, the rest of the node is usable by ZONE_MOVABLE
4572 */
4573 kernelcore_remaining = kernelcore_node;
4574
4575 /* Go through each range of PFNs within this node */
4576 for_each_active_range_index_in_nid(i, nid) {
4577 unsigned long start_pfn, end_pfn;
4578 unsigned long size_pages;
4579
4580 start_pfn = max(early_node_map[i].start_pfn,
4581 zone_movable_pfn[nid]);
4582 end_pfn = early_node_map[i].end_pfn;
4583 if (start_pfn >= end_pfn)
4584 continue;
4585
4586 /* Account for what is only usable for kernelcore */
4587 if (start_pfn < usable_startpfn) {
4588 unsigned long kernel_pages;
4589 kernel_pages = min(end_pfn, usable_startpfn)
4590 - start_pfn;
4591
4592 kernelcore_remaining -= min(kernel_pages,
4593 kernelcore_remaining);
4594 required_kernelcore -= min(kernel_pages,
4595 required_kernelcore);
4596
4597 /* Continue if range is now fully accounted */
4598 if (end_pfn <= usable_startpfn) {
4599
4600 /*
4601 * Push zone_movable_pfn to the end so
4602 * that if we have to rebalance
4603 * kernelcore across nodes, we will
4604 * not double account here
4605 */
4606 zone_movable_pfn[nid] = end_pfn;
4607 continue;
4608 }
4609 start_pfn = usable_startpfn;
4610 }
4611
4612 /*
4613 * The usable PFN range for ZONE_MOVABLE is from
4614 * start_pfn->end_pfn. Calculate size_pages as the
4615 * number of pages used as kernelcore
4616 */
4617 size_pages = end_pfn - start_pfn;
4618 if (size_pages > kernelcore_remaining)
4619 size_pages = kernelcore_remaining;
4620 zone_movable_pfn[nid] = start_pfn + size_pages;
4621
4622 /*
4623 * Some kernelcore has been met, update counts and
4624 * break if the kernelcore for this node has been
4625 * satisified
4626 */
4627 required_kernelcore -= min(required_kernelcore,
4628 size_pages);
4629 kernelcore_remaining -= size_pages;
4630 if (!kernelcore_remaining)
4631 break;
4632 }
4633 }
4634
4635 /*
4636 * If there is still required_kernelcore, we do another pass with one
4637 * less node in the count. This will push zone_movable_pfn[nid] further
4638 * along on the nodes that still have memory until kernelcore is
4639 * satisified
4640 */
4641 usable_nodes--;
4642 if (usable_nodes && required_kernelcore > usable_nodes)
4643 goto restart;
4644
4645 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4646 for (nid = 0; nid < MAX_NUMNODES; nid++)
4647 zone_movable_pfn[nid] =
4648 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4649
4650 out:
4651 /* restore the node_state */
4652 node_states[N_HIGH_MEMORY] = saved_node_state;
4653 }
4654
4655 /* Any regular memory on that node ? */
4656 static void check_for_regular_memory(pg_data_t *pgdat)
4657 {
4658 #ifdef CONFIG_HIGHMEM
4659 enum zone_type zone_type;
4660
4661 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4662 struct zone *zone = &pgdat->node_zones[zone_type];
4663 if (zone->present_pages)
4664 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4665 }
4666 #endif
4667 }
4668
4669 /**
4670 * free_area_init_nodes - Initialise all pg_data_t and zone data
4671 * @max_zone_pfn: an array of max PFNs for each zone
4672 *
4673 * This will call free_area_init_node() for each active node in the system.
4674 * Using the page ranges provided by add_active_range(), the size of each
4675 * zone in each node and their holes is calculated. If the maximum PFN
4676 * between two adjacent zones match, it is assumed that the zone is empty.
4677 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4678 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4679 * starts where the previous one ended. For example, ZONE_DMA32 starts
4680 * at arch_max_dma_pfn.
4681 */
4682 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4683 {
4684 unsigned long nid;
4685 int i;
4686
4687 /* Sort early_node_map as initialisation assumes it is sorted */
4688 sort_node_map();
4689
4690 /* Record where the zone boundaries are */
4691 memset(arch_zone_lowest_possible_pfn, 0,
4692 sizeof(arch_zone_lowest_possible_pfn));
4693 memset(arch_zone_highest_possible_pfn, 0,
4694 sizeof(arch_zone_highest_possible_pfn));
4695 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4696 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4697 for (i = 1; i < MAX_NR_ZONES; i++) {
4698 if (i == ZONE_MOVABLE)
4699 continue;
4700 arch_zone_lowest_possible_pfn[i] =
4701 arch_zone_highest_possible_pfn[i-1];
4702 arch_zone_highest_possible_pfn[i] =
4703 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4704 }
4705 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4706 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4707
4708 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4709 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4710 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4711
4712 /* Print out the zone ranges */
4713 printk("Zone PFN ranges:\n");
4714 for (i = 0; i < MAX_NR_ZONES; i++) {
4715 if (i == ZONE_MOVABLE)
4716 continue;
4717 printk(" %-8s ", zone_names[i]);
4718 if (arch_zone_lowest_possible_pfn[i] ==
4719 arch_zone_highest_possible_pfn[i])
4720 printk("empty\n");
4721 else
4722 printk("%0#10lx -> %0#10lx\n",
4723 arch_zone_lowest_possible_pfn[i],
4724 arch_zone_highest_possible_pfn[i]);
4725 }
4726
4727 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4728 printk("Movable zone start PFN for each node\n");
4729 for (i = 0; i < MAX_NUMNODES; i++) {
4730 if (zone_movable_pfn[i])
4731 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4732 }
4733
4734 /* Print out the early_node_map[] */
4735 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4736 for (i = 0; i < nr_nodemap_entries; i++)
4737 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4738 early_node_map[i].start_pfn,
4739 early_node_map[i].end_pfn);
4740
4741 /* Initialise every node */
4742 mminit_verify_pageflags_layout();
4743 setup_nr_node_ids();
4744 for_each_online_node(nid) {
4745 pg_data_t *pgdat = NODE_DATA(nid);
4746 free_area_init_node(nid, NULL,
4747 find_min_pfn_for_node(nid), NULL);
4748
4749 /* Any memory on that node */
4750 if (pgdat->node_present_pages)
4751 node_set_state(nid, N_HIGH_MEMORY);
4752 check_for_regular_memory(pgdat);
4753 }
4754 }
4755
4756 static int __init cmdline_parse_core(char *p, unsigned long *core)
4757 {
4758 unsigned long long coremem;
4759 if (!p)
4760 return -EINVAL;
4761
4762 coremem = memparse(p, &p);
4763 *core = coremem >> PAGE_SHIFT;
4764
4765 /* Paranoid check that UL is enough for the coremem value */
4766 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4767
4768 return 0;
4769 }
4770
4771 /*
4772 * kernelcore=size sets the amount of memory for use for allocations that
4773 * cannot be reclaimed or migrated.
4774 */
4775 static int __init cmdline_parse_kernelcore(char *p)
4776 {
4777 return cmdline_parse_core(p, &required_kernelcore);
4778 }
4779
4780 /*
4781 * movablecore=size sets the amount of memory for use for allocations that
4782 * can be reclaimed or migrated.
4783 */
4784 static int __init cmdline_parse_movablecore(char *p)
4785 {
4786 return cmdline_parse_core(p, &required_movablecore);
4787 }
4788
4789 early_param("kernelcore", cmdline_parse_kernelcore);
4790 early_param("movablecore", cmdline_parse_movablecore);
4791
4792 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4793
4794 /**
4795 * set_dma_reserve - set the specified number of pages reserved in the first zone
4796 * @new_dma_reserve: The number of pages to mark reserved
4797 *
4798 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4799 * In the DMA zone, a significant percentage may be consumed by kernel image
4800 * and other unfreeable allocations which can skew the watermarks badly. This
4801 * function may optionally be used to account for unfreeable pages in the
4802 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4803 * smaller per-cpu batchsize.
4804 */
4805 void __init set_dma_reserve(unsigned long new_dma_reserve)
4806 {
4807 dma_reserve = new_dma_reserve;
4808 }
4809
4810 #ifndef CONFIG_NEED_MULTIPLE_NODES
4811 struct pglist_data __refdata contig_page_data = {
4812 #ifndef CONFIG_NO_BOOTMEM
4813 .bdata = &bootmem_node_data[0]
4814 #endif
4815 };
4816 EXPORT_SYMBOL(contig_page_data);
4817 #endif
4818
4819 void __init free_area_init(unsigned long *zones_size)
4820 {
4821 free_area_init_node(0, zones_size,
4822 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4823 }
4824
4825 static int page_alloc_cpu_notify(struct notifier_block *self,
4826 unsigned long action, void *hcpu)
4827 {
4828 int cpu = (unsigned long)hcpu;
4829
4830 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4831 drain_pages(cpu);
4832
4833 /*
4834 * Spill the event counters of the dead processor
4835 * into the current processors event counters.
4836 * This artificially elevates the count of the current
4837 * processor.
4838 */
4839 vm_events_fold_cpu(cpu);
4840
4841 /*
4842 * Zero the differential counters of the dead processor
4843 * so that the vm statistics are consistent.
4844 *
4845 * This is only okay since the processor is dead and cannot
4846 * race with what we are doing.
4847 */
4848 refresh_cpu_vm_stats(cpu);
4849 }
4850 return NOTIFY_OK;
4851 }
4852
4853 void __init page_alloc_init(void)
4854 {
4855 hotcpu_notifier(page_alloc_cpu_notify, 0);
4856 }
4857
4858 /*
4859 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4860 * or min_free_kbytes changes.
4861 */
4862 static void calculate_totalreserve_pages(void)
4863 {
4864 struct pglist_data *pgdat;
4865 unsigned long reserve_pages = 0;
4866 enum zone_type i, j;
4867
4868 for_each_online_pgdat(pgdat) {
4869 for (i = 0; i < MAX_NR_ZONES; i++) {
4870 struct zone *zone = pgdat->node_zones + i;
4871 unsigned long max = 0;
4872
4873 /* Find valid and maximum lowmem_reserve in the zone */
4874 for (j = i; j < MAX_NR_ZONES; j++) {
4875 if (zone->lowmem_reserve[j] > max)
4876 max = zone->lowmem_reserve[j];
4877 }
4878
4879 /* we treat the high watermark as reserved pages. */
4880 max += high_wmark_pages(zone);
4881
4882 if (max > zone->present_pages)
4883 max = zone->present_pages;
4884 reserve_pages += max;
4885 }
4886 }
4887 totalreserve_pages = reserve_pages;
4888 }
4889
4890 /*
4891 * setup_per_zone_lowmem_reserve - called whenever
4892 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4893 * has a correct pages reserved value, so an adequate number of
4894 * pages are left in the zone after a successful __alloc_pages().
4895 */
4896 static void setup_per_zone_lowmem_reserve(void)
4897 {
4898 struct pglist_data *pgdat;
4899 enum zone_type j, idx;
4900
4901 for_each_online_pgdat(pgdat) {
4902 for (j = 0; j < MAX_NR_ZONES; j++) {
4903 struct zone *zone = pgdat->node_zones + j;
4904 unsigned long present_pages = zone->present_pages;
4905
4906 zone->lowmem_reserve[j] = 0;
4907
4908 idx = j;
4909 while (idx) {
4910 struct zone *lower_zone;
4911
4912 idx--;
4913
4914 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4915 sysctl_lowmem_reserve_ratio[idx] = 1;
4916
4917 lower_zone = pgdat->node_zones + idx;
4918 lower_zone->lowmem_reserve[j] = present_pages /
4919 sysctl_lowmem_reserve_ratio[idx];
4920 present_pages += lower_zone->present_pages;
4921 }
4922 }
4923 }
4924
4925 /* update totalreserve_pages */
4926 calculate_totalreserve_pages();
4927 }
4928
4929 /**
4930 * setup_per_zone_wmarks - called when min_free_kbytes changes
4931 * or when memory is hot-{added|removed}
4932 *
4933 * Ensures that the watermark[min,low,high] values for each zone are set
4934 * correctly with respect to min_free_kbytes.
4935 */
4936 void setup_per_zone_wmarks(void)
4937 {
4938 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4939 unsigned long lowmem_pages = 0;
4940 struct zone *zone;
4941 unsigned long flags;
4942
4943 /* Calculate total number of !ZONE_HIGHMEM pages */
4944 for_each_zone(zone) {
4945 if (!is_highmem(zone))
4946 lowmem_pages += zone->present_pages;
4947 }
4948
4949 for_each_zone(zone) {
4950 u64 tmp;
4951
4952 spin_lock_irqsave(&zone->lock, flags);
4953 tmp = (u64)pages_min * zone->present_pages;
4954 do_div(tmp, lowmem_pages);
4955 if (is_highmem(zone)) {
4956 /*
4957 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4958 * need highmem pages, so cap pages_min to a small
4959 * value here.
4960 *
4961 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4962 * deltas controls asynch page reclaim, and so should
4963 * not be capped for highmem.
4964 */
4965 int min_pages;
4966
4967 min_pages = zone->present_pages / 1024;
4968 if (min_pages < SWAP_CLUSTER_MAX)
4969 min_pages = SWAP_CLUSTER_MAX;
4970 if (min_pages > 128)
4971 min_pages = 128;
4972 zone->watermark[WMARK_MIN] = min_pages;
4973 } else {
4974 /*
4975 * If it's a lowmem zone, reserve a number of pages
4976 * proportionate to the zone's size.
4977 */
4978 zone->watermark[WMARK_MIN] = tmp;
4979 }
4980
4981 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4982 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4983 setup_zone_migrate_reserve(zone);
4984 spin_unlock_irqrestore(&zone->lock, flags);
4985 }
4986
4987 /* update totalreserve_pages */
4988 calculate_totalreserve_pages();
4989 }
4990
4991 /*
4992 * The inactive anon list should be small enough that the VM never has to
4993 * do too much work, but large enough that each inactive page has a chance
4994 * to be referenced again before it is swapped out.
4995 *
4996 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4997 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4998 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4999 * the anonymous pages are kept on the inactive list.
5000 *
5001 * total target max
5002 * memory ratio inactive anon
5003 * -------------------------------------
5004 * 10MB 1 5MB
5005 * 100MB 1 50MB
5006 * 1GB 3 250MB
5007 * 10GB 10 0.9GB
5008 * 100GB 31 3GB
5009 * 1TB 101 10GB
5010 * 10TB 320 32GB
5011 */
5012 void calculate_zone_inactive_ratio(struct zone *zone)
5013 {
5014 unsigned int gb, ratio;
5015
5016 /* Zone size in gigabytes */
5017 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5018 if (gb)
5019 ratio = int_sqrt(10 * gb);
5020 else
5021 ratio = 1;
5022
5023 zone->inactive_ratio = ratio;
5024 }
5025
5026 static void __init setup_per_zone_inactive_ratio(void)
5027 {
5028 struct zone *zone;
5029
5030 for_each_zone(zone)
5031 calculate_zone_inactive_ratio(zone);
5032 }
5033
5034 /*
5035 * Initialise min_free_kbytes.
5036 *
5037 * For small machines we want it small (128k min). For large machines
5038 * we want it large (64MB max). But it is not linear, because network
5039 * bandwidth does not increase linearly with machine size. We use
5040 *
5041 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5042 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5043 *
5044 * which yields
5045 *
5046 * 16MB: 512k
5047 * 32MB: 724k
5048 * 64MB: 1024k
5049 * 128MB: 1448k
5050 * 256MB: 2048k
5051 * 512MB: 2896k
5052 * 1024MB: 4096k
5053 * 2048MB: 5792k
5054 * 4096MB: 8192k
5055 * 8192MB: 11584k
5056 * 16384MB: 16384k
5057 */
5058 static int __init init_per_zone_wmark_min(void)
5059 {
5060 unsigned long lowmem_kbytes;
5061
5062 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5063
5064 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5065 if (min_free_kbytes < 128)
5066 min_free_kbytes = 128;
5067 if (min_free_kbytes > 65536)
5068 min_free_kbytes = 65536;
5069 setup_per_zone_wmarks();
5070 setup_per_zone_lowmem_reserve();
5071 setup_per_zone_inactive_ratio();
5072 return 0;
5073 }
5074 module_init(init_per_zone_wmark_min)
5075
5076 /*
5077 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5078 * that we can call two helper functions whenever min_free_kbytes
5079 * changes.
5080 */
5081 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5082 void __user *buffer, size_t *length, loff_t *ppos)
5083 {
5084 proc_dointvec(table, write, buffer, length, ppos);
5085 if (write)
5086 setup_per_zone_wmarks();
5087 return 0;
5088 }
5089
5090 #ifdef CONFIG_NUMA
5091 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5092 void __user *buffer, size_t *length, loff_t *ppos)
5093 {
5094 struct zone *zone;
5095 int rc;
5096
5097 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5098 if (rc)
5099 return rc;
5100
5101 for_each_zone(zone)
5102 zone->min_unmapped_pages = (zone->present_pages *
5103 sysctl_min_unmapped_ratio) / 100;
5104 return 0;
5105 }
5106
5107 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5108 void __user *buffer, size_t *length, loff_t *ppos)
5109 {
5110 struct zone *zone;
5111 int rc;
5112
5113 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5114 if (rc)
5115 return rc;
5116
5117 for_each_zone(zone)
5118 zone->min_slab_pages = (zone->present_pages *
5119 sysctl_min_slab_ratio) / 100;
5120 return 0;
5121 }
5122 #endif
5123
5124 /*
5125 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5126 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5127 * whenever sysctl_lowmem_reserve_ratio changes.
5128 *
5129 * The reserve ratio obviously has absolutely no relation with the
5130 * minimum watermarks. The lowmem reserve ratio can only make sense
5131 * if in function of the boot time zone sizes.
5132 */
5133 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5134 void __user *buffer, size_t *length, loff_t *ppos)
5135 {
5136 proc_dointvec_minmax(table, write, buffer, length, ppos);
5137 setup_per_zone_lowmem_reserve();
5138 return 0;
5139 }
5140
5141 /*
5142 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5143 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5144 * can have before it gets flushed back to buddy allocator.
5145 */
5146
5147 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5148 void __user *buffer, size_t *length, loff_t *ppos)
5149 {
5150 struct zone *zone;
5151 unsigned int cpu;
5152 int ret;
5153
5154 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5155 if (!write || (ret == -EINVAL))
5156 return ret;
5157 for_each_populated_zone(zone) {
5158 for_each_possible_cpu(cpu) {
5159 unsigned long high;
5160 high = zone->present_pages / percpu_pagelist_fraction;
5161 setup_pagelist_highmark(
5162 per_cpu_ptr(zone->pageset, cpu), high);
5163 }
5164 }
5165 return 0;
5166 }
5167
5168 int hashdist = HASHDIST_DEFAULT;
5169
5170 #ifdef CONFIG_NUMA
5171 static int __init set_hashdist(char *str)
5172 {
5173 if (!str)
5174 return 0;
5175 hashdist = simple_strtoul(str, &str, 0);
5176 return 1;
5177 }
5178 __setup("hashdist=", set_hashdist);
5179 #endif
5180
5181 /*
5182 * allocate a large system hash table from bootmem
5183 * - it is assumed that the hash table must contain an exact power-of-2
5184 * quantity of entries
5185 * - limit is the number of hash buckets, not the total allocation size
5186 */
5187 void *__init alloc_large_system_hash(const char *tablename,
5188 unsigned long bucketsize,
5189 unsigned long numentries,
5190 int scale,
5191 int flags,
5192 unsigned int *_hash_shift,
5193 unsigned int *_hash_mask,
5194 unsigned long limit)
5195 {
5196 unsigned long long max = limit;
5197 unsigned long log2qty, size;
5198 void *table = NULL;
5199
5200 /* allow the kernel cmdline to have a say */
5201 if (!numentries) {
5202 /* round applicable memory size up to nearest megabyte */
5203 numentries = nr_kernel_pages;
5204 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5205 numentries >>= 20 - PAGE_SHIFT;
5206 numentries <<= 20 - PAGE_SHIFT;
5207
5208 /* limit to 1 bucket per 2^scale bytes of low memory */
5209 if (scale > PAGE_SHIFT)
5210 numentries >>= (scale - PAGE_SHIFT);
5211 else
5212 numentries <<= (PAGE_SHIFT - scale);
5213
5214 /* Make sure we've got at least a 0-order allocation.. */
5215 if (unlikely(flags & HASH_SMALL)) {
5216 /* Makes no sense without HASH_EARLY */
5217 WARN_ON(!(flags & HASH_EARLY));
5218 if (!(numentries >> *_hash_shift)) {
5219 numentries = 1UL << *_hash_shift;
5220 BUG_ON(!numentries);
5221 }
5222 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5223 numentries = PAGE_SIZE / bucketsize;
5224 }
5225 numentries = roundup_pow_of_two(numentries);
5226
5227 /* limit allocation size to 1/16 total memory by default */
5228 if (max == 0) {
5229 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5230 do_div(max, bucketsize);
5231 }
5232
5233 if (numentries > max)
5234 numentries = max;
5235
5236 log2qty = ilog2(numentries);
5237
5238 do {
5239 size = bucketsize << log2qty;
5240 if (flags & HASH_EARLY)
5241 table = alloc_bootmem_nopanic(size);
5242 else if (hashdist)
5243 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5244 else {
5245 /*
5246 * If bucketsize is not a power-of-two, we may free
5247 * some pages at the end of hash table which
5248 * alloc_pages_exact() automatically does
5249 */
5250 if (get_order(size) < MAX_ORDER) {
5251 table = alloc_pages_exact(size, GFP_ATOMIC);
5252 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5253 }
5254 }
5255 } while (!table && size > PAGE_SIZE && --log2qty);
5256
5257 if (!table)
5258 panic("Failed to allocate %s hash table\n", tablename);
5259
5260 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5261 tablename,
5262 (1UL << log2qty),
5263 ilog2(size) - PAGE_SHIFT,
5264 size);
5265
5266 if (_hash_shift)
5267 *_hash_shift = log2qty;
5268 if (_hash_mask)
5269 *_hash_mask = (1 << log2qty) - 1;
5270
5271 return table;
5272 }
5273
5274 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5275 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5276 unsigned long pfn)
5277 {
5278 #ifdef CONFIG_SPARSEMEM
5279 return __pfn_to_section(pfn)->pageblock_flags;
5280 #else
5281 return zone->pageblock_flags;
5282 #endif /* CONFIG_SPARSEMEM */
5283 }
5284
5285 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5286 {
5287 #ifdef CONFIG_SPARSEMEM
5288 pfn &= (PAGES_PER_SECTION-1);
5289 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5290 #else
5291 pfn = pfn - zone->zone_start_pfn;
5292 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5293 #endif /* CONFIG_SPARSEMEM */
5294 }
5295
5296 /**
5297 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5298 * @page: The page within the block of interest
5299 * @start_bitidx: The first bit of interest to retrieve
5300 * @end_bitidx: The last bit of interest
5301 * returns pageblock_bits flags
5302 */
5303 unsigned long get_pageblock_flags_group(struct page *page,
5304 int start_bitidx, int end_bitidx)
5305 {
5306 struct zone *zone;
5307 unsigned long *bitmap;
5308 unsigned long pfn, bitidx;
5309 unsigned long flags = 0;
5310 unsigned long value = 1;
5311
5312 zone = page_zone(page);
5313 pfn = page_to_pfn(page);
5314 bitmap = get_pageblock_bitmap(zone, pfn);
5315 bitidx = pfn_to_bitidx(zone, pfn);
5316
5317 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5318 if (test_bit(bitidx + start_bitidx, bitmap))
5319 flags |= value;
5320
5321 return flags;
5322 }
5323
5324 /**
5325 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5326 * @page: The page within the block of interest
5327 * @start_bitidx: The first bit of interest
5328 * @end_bitidx: The last bit of interest
5329 * @flags: The flags to set
5330 */
5331 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5332 int start_bitidx, int end_bitidx)
5333 {
5334 struct zone *zone;
5335 unsigned long *bitmap;
5336 unsigned long pfn, bitidx;
5337 unsigned long value = 1;
5338
5339 zone = page_zone(page);
5340 pfn = page_to_pfn(page);
5341 bitmap = get_pageblock_bitmap(zone, pfn);
5342 bitidx = pfn_to_bitidx(zone, pfn);
5343 VM_BUG_ON(pfn < zone->zone_start_pfn);
5344 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5345
5346 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5347 if (flags & value)
5348 __set_bit(bitidx + start_bitidx, bitmap);
5349 else
5350 __clear_bit(bitidx + start_bitidx, bitmap);
5351 }
5352
5353 /*
5354 * This is designed as sub function...plz see page_isolation.c also.
5355 * set/clear page block's type to be ISOLATE.
5356 * page allocater never alloc memory from ISOLATE block.
5357 */
5358
5359 static int
5360 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5361 {
5362 unsigned long pfn, iter, found;
5363 /*
5364 * For avoiding noise data, lru_add_drain_all() should be called
5365 * If ZONE_MOVABLE, the zone never contains immobile pages
5366 */
5367 if (zone_idx(zone) == ZONE_MOVABLE)
5368 return true;
5369
5370 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5371 return true;
5372
5373 pfn = page_to_pfn(page);
5374 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5375 unsigned long check = pfn + iter;
5376
5377 if (!pfn_valid_within(check)) {
5378 iter++;
5379 continue;
5380 }
5381 page = pfn_to_page(check);
5382 if (!page_count(page)) {
5383 if (PageBuddy(page))
5384 iter += (1 << page_order(page)) - 1;
5385 continue;
5386 }
5387 if (!PageLRU(page))
5388 found++;
5389 /*
5390 * If there are RECLAIMABLE pages, we need to check it.
5391 * But now, memory offline itself doesn't call shrink_slab()
5392 * and it still to be fixed.
5393 */
5394 /*
5395 * If the page is not RAM, page_count()should be 0.
5396 * we don't need more check. This is an _used_ not-movable page.
5397 *
5398 * The problematic thing here is PG_reserved pages. PG_reserved
5399 * is set to both of a memory hole page and a _used_ kernel
5400 * page at boot.
5401 */
5402 if (found > count)
5403 return false;
5404 }
5405 return true;
5406 }
5407
5408 bool is_pageblock_removable_nolock(struct page *page)
5409 {
5410 struct zone *zone = page_zone(page);
5411 return __count_immobile_pages(zone, page, 0);
5412 }
5413
5414 int set_migratetype_isolate(struct page *page)
5415 {
5416 struct zone *zone;
5417 unsigned long flags, pfn;
5418 struct memory_isolate_notify arg;
5419 int notifier_ret;
5420 int ret = -EBUSY;
5421 int zone_idx;
5422
5423 zone = page_zone(page);
5424 zone_idx = zone_idx(zone);
5425
5426 spin_lock_irqsave(&zone->lock, flags);
5427
5428 pfn = page_to_pfn(page);
5429 arg.start_pfn = pfn;
5430 arg.nr_pages = pageblock_nr_pages;
5431 arg.pages_found = 0;
5432
5433 /*
5434 * It may be possible to isolate a pageblock even if the
5435 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5436 * notifier chain is used by balloon drivers to return the
5437 * number of pages in a range that are held by the balloon
5438 * driver to shrink memory. If all the pages are accounted for
5439 * by balloons, are free, or on the LRU, isolation can continue.
5440 * Later, for example, when memory hotplug notifier runs, these
5441 * pages reported as "can be isolated" should be isolated(freed)
5442 * by the balloon driver through the memory notifier chain.
5443 */
5444 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5445 notifier_ret = notifier_to_errno(notifier_ret);
5446 if (notifier_ret)
5447 goto out;
5448 /*
5449 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5450 * We just check MOVABLE pages.
5451 */
5452 if (__count_immobile_pages(zone, page, arg.pages_found))
5453 ret = 0;
5454
5455 /*
5456 * immobile means "not-on-lru" paes. If immobile is larger than
5457 * removable-by-driver pages reported by notifier, we'll fail.
5458 */
5459
5460 out:
5461 if (!ret) {
5462 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5463 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5464 }
5465
5466 spin_unlock_irqrestore(&zone->lock, flags);
5467 if (!ret)
5468 drain_all_pages();
5469 return ret;
5470 }
5471
5472 void unset_migratetype_isolate(struct page *page)
5473 {
5474 struct zone *zone;
5475 unsigned long flags;
5476 zone = page_zone(page);
5477 spin_lock_irqsave(&zone->lock, flags);
5478 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5479 goto out;
5480 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5481 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5482 out:
5483 spin_unlock_irqrestore(&zone->lock, flags);
5484 }
5485
5486 #ifdef CONFIG_MEMORY_HOTREMOVE
5487 /*
5488 * All pages in the range must be isolated before calling this.
5489 */
5490 void
5491 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5492 {
5493 struct page *page;
5494 struct zone *zone;
5495 int order, i;
5496 unsigned long pfn;
5497 unsigned long flags;
5498 /* find the first valid pfn */
5499 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5500 if (pfn_valid(pfn))
5501 break;
5502 if (pfn == end_pfn)
5503 return;
5504 zone = page_zone(pfn_to_page(pfn));
5505 spin_lock_irqsave(&zone->lock, flags);
5506 pfn = start_pfn;
5507 while (pfn < end_pfn) {
5508 if (!pfn_valid(pfn)) {
5509 pfn++;
5510 continue;
5511 }
5512 page = pfn_to_page(pfn);
5513 BUG_ON(page_count(page));
5514 BUG_ON(!PageBuddy(page));
5515 order = page_order(page);
5516 #ifdef CONFIG_DEBUG_VM
5517 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5518 pfn, 1 << order, end_pfn);
5519 #endif
5520 list_del(&page->lru);
5521 rmv_page_order(page);
5522 zone->free_area[order].nr_free--;
5523 __mod_zone_page_state(zone, NR_FREE_PAGES,
5524 - (1UL << order));
5525 for (i = 0; i < (1 << order); i++)
5526 SetPageReserved((page+i));
5527 pfn += (1 << order);
5528 }
5529 spin_unlock_irqrestore(&zone->lock, flags);
5530 }
5531 #endif
5532
5533 #ifdef CONFIG_MEMORY_FAILURE
5534 bool is_free_buddy_page(struct page *page)
5535 {
5536 struct zone *zone = page_zone(page);
5537 unsigned long pfn = page_to_pfn(page);
5538 unsigned long flags;
5539 int order;
5540
5541 spin_lock_irqsave(&zone->lock, flags);
5542 for (order = 0; order < MAX_ORDER; order++) {
5543 struct page *page_head = page - (pfn & ((1 << order) - 1));
5544
5545 if (PageBuddy(page_head) && page_order(page_head) >= order)
5546 break;
5547 }
5548 spin_unlock_irqrestore(&zone->lock, flags);
5549
5550 return order < MAX_ORDER;
5551 }
5552 #endif
5553
5554 static struct trace_print_flags pageflag_names[] = {
5555 {1UL << PG_locked, "locked" },
5556 {1UL << PG_error, "error" },
5557 {1UL << PG_referenced, "referenced" },
5558 {1UL << PG_uptodate, "uptodate" },
5559 {1UL << PG_dirty, "dirty" },
5560 {1UL << PG_lru, "lru" },
5561 {1UL << PG_active, "active" },
5562 {1UL << PG_slab, "slab" },
5563 {1UL << PG_owner_priv_1, "owner_priv_1" },
5564 {1UL << PG_arch_1, "arch_1" },
5565 {1UL << PG_reserved, "reserved" },
5566 {1UL << PG_private, "private" },
5567 {1UL << PG_private_2, "private_2" },
5568 {1UL << PG_writeback, "writeback" },
5569 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5570 {1UL << PG_head, "head" },
5571 {1UL << PG_tail, "tail" },
5572 #else
5573 {1UL << PG_compound, "compound" },
5574 #endif
5575 {1UL << PG_swapcache, "swapcache" },
5576 {1UL << PG_mappedtodisk, "mappedtodisk" },
5577 {1UL << PG_reclaim, "reclaim" },
5578 {1UL << PG_swapbacked, "swapbacked" },
5579 {1UL << PG_unevictable, "unevictable" },
5580 #ifdef CONFIG_MMU
5581 {1UL << PG_mlocked, "mlocked" },
5582 #endif
5583 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5584 {1UL << PG_uncached, "uncached" },
5585 #endif
5586 #ifdef CONFIG_MEMORY_FAILURE
5587 {1UL << PG_hwpoison, "hwpoison" },
5588 #endif
5589 {-1UL, NULL },
5590 };
5591
5592 static void dump_page_flags(unsigned long flags)
5593 {
5594 const char *delim = "";
5595 unsigned long mask;
5596 int i;
5597
5598 printk(KERN_ALERT "page flags: %#lx(", flags);
5599
5600 /* remove zone id */
5601 flags &= (1UL << NR_PAGEFLAGS) - 1;
5602
5603 for (i = 0; pageflag_names[i].name && flags; i++) {
5604
5605 mask = pageflag_names[i].mask;
5606 if ((flags & mask) != mask)
5607 continue;
5608
5609 flags &= ~mask;
5610 printk("%s%s", delim, pageflag_names[i].name);
5611 delim = "|";
5612 }
5613
5614 /* check for left over flags */
5615 if (flags)
5616 printk("%s%#lx", delim, flags);
5617
5618 printk(")\n");
5619 }
5620
5621 void dump_page(struct page *page)
5622 {
5623 printk(KERN_ALERT
5624 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5625 page, atomic_read(&page->_count), page_mapcount(page),
5626 page->mapping, page->index);
5627 dump_page_flags(page->flags);
5628 }