]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/page_alloc.c
Merge tag 'sound-fix-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[thirdparty/kernel/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93
94 /*
95 * Array of node states.
96 */
97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100 #ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102 #ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
104 #endif
105 #ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
107 #endif
108 [N_CPU] = { { [0] = 1UL } },
109 #endif /* NUMA */
110 };
111 EXPORT_SYMBOL(node_states);
112
113 /* Protect totalram_pages and zone->managed_pages */
114 static DEFINE_SPINLOCK(managed_page_count_lock);
115
116 unsigned long totalram_pages __read_mostly;
117 unsigned long totalreserve_pages __read_mostly;
118 unsigned long totalcma_pages __read_mostly;
119
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122
123 /*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131 static inline int get_pcppage_migratetype(struct page *page)
132 {
133 return page->index;
134 }
135
136 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 {
138 page->index = migratetype;
139 }
140
141 #ifdef CONFIG_PM_SLEEP
142 /*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
150
151 static gfp_t saved_gfp_mask;
152
153 void pm_restore_gfp_mask(void)
154 {
155 WARN_ON(!mutex_is_locked(&pm_mutex));
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
160 }
161
162 void pm_restrict_gfp_mask(void)
163 {
164 WARN_ON(!mutex_is_locked(&pm_mutex));
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
168 }
169
170 bool pm_suspended_storage(void)
171 {
172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
173 return false;
174 return true;
175 }
176 #endif /* CONFIG_PM_SLEEP */
177
178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
179 unsigned int pageblock_order __read_mostly;
180 #endif
181
182 static void __free_pages_ok(struct page *page, unsigned int order);
183
184 /*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
194 */
195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
196 #ifdef CONFIG_ZONE_DMA
197 256,
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 256,
201 #endif
202 #ifdef CONFIG_HIGHMEM
203 32,
204 #endif
205 32,
206 };
207
208 EXPORT_SYMBOL(totalram_pages);
209
210 static char * const zone_names[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 "DMA",
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 "DMA32",
216 #endif
217 "Normal",
218 #ifdef CONFIG_HIGHMEM
219 "HighMem",
220 #endif
221 "Movable",
222 #ifdef CONFIG_ZONE_DEVICE
223 "Device",
224 #endif
225 };
226
227 char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232 #ifdef CONFIG_CMA
233 "CMA",
234 #endif
235 #ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237 #endif
238 };
239
240 compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243 #ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245 #endif
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248 #endif
249 };
250
251 int min_free_kbytes = 1024;
252 int user_min_free_kbytes = -1;
253 int watermark_scale_factor = 10;
254
255 static unsigned long __meminitdata nr_kernel_pages;
256 static unsigned long __meminitdata nr_all_pages;
257 static unsigned long __meminitdata dma_reserve;
258
259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __initdata required_kernelcore;
263 static unsigned long __initdata required_movablecore;
264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
265 static bool mirrored_kernelcore;
266
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278
279 int page_group_by_mobility_disabled __read_mostly;
280
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 {
284 pgdat->first_deferred_pfn = ULONG_MAX;
285 }
286
287 /* Returns true if the struct page for the pfn is uninitialised */
288 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 {
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
293 return true;
294
295 return false;
296 }
297
298 /*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302 static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305 {
306 unsigned long max_initialise;
307
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
317
318 (*nr_initialised)++;
319 if ((*nr_initialised > max_initialise) &&
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326 }
327 #else
328 static inline void reset_deferred_meminit(pg_data_t *pgdat)
329 {
330 }
331
332 static inline bool early_page_uninitialised(unsigned long pfn)
333 {
334 return false;
335 }
336
337 static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340 {
341 return true;
342 }
343 #endif
344
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
346 static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351 #else
352 return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355
356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366
367 /**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380 {
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393 }
394
395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398 {
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400 }
401
402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403 {
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405 }
406
407 /**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419 {
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444 }
445
446 void set_pageblock_migratetype(struct page *page, int migratetype)
447 {
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
450 migratetype = MIGRATE_UNMOVABLE;
451
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454 }
455
456 #ifdef CONFIG_DEBUG_VM
457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
458 {
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
462 unsigned long sp, start_pfn;
463
464 do {
465 seq = zone_span_seqbegin(zone);
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
468 if (!zone_spans_pfn(zone, pfn))
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
472 if (ret)
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
476
477 return ret;
478 }
479
480 static int page_is_consistent(struct zone *zone, struct page *page)
481 {
482 if (!pfn_valid_within(page_to_pfn(page)))
483 return 0;
484 if (zone != page_zone(page))
485 return 0;
486
487 return 1;
488 }
489 /*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492 static int bad_range(struct zone *zone, struct page *page)
493 {
494 if (page_outside_zone_boundaries(zone, page))
495 return 1;
496 if (!page_is_consistent(zone, page))
497 return 1;
498
499 return 0;
500 }
501 #else
502 static inline int bad_range(struct zone *zone, struct page *page)
503 {
504 return 0;
505 }
506 #endif
507
508 static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
510 {
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
525 pr_alert(
526 "BUG: Bad page state: %lu messages suppressed\n",
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
536 current->comm, page_to_pfn(page));
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
542 dump_page_owner(page);
543
544 print_modules();
545 dump_stack();
546 out:
547 /* Leave bad fields for debug, except PageBuddy could make trouble */
548 page_mapcount_reset(page); /* remove PageBuddy */
549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
556 *
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
559 *
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
562 *
563 * The first tail page's ->compound_order holds the order of allocation.
564 * This usage means that zero-order pages may not be compound.
565 */
566
567 void free_compound_page(struct page *page)
568 {
569 __free_pages_ok(page, compound_order(page));
570 }
571
572 void prep_compound_page(struct page *page, unsigned int order)
573 {
574 int i;
575 int nr_pages = 1 << order;
576
577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
582 set_page_count(p, 0);
583 p->mapping = TAIL_MAPPING;
584 set_compound_head(p, page);
585 }
586 atomic_set(compound_mapcount_ptr(page), -1);
587 }
588
589 #ifdef CONFIG_DEBUG_PAGEALLOC
590 unsigned int _debug_guardpage_minorder;
591 bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
593 EXPORT_SYMBOL(_debug_pagealloc_enabled);
594 bool _debug_guardpage_enabled __read_mostly;
595
596 static int __init early_debug_pagealloc(char *buf)
597 {
598 if (!buf)
599 return -EINVAL;
600 return kstrtobool(buf, &_debug_pagealloc_enabled);
601 }
602 early_param("debug_pagealloc", early_debug_pagealloc);
603
604 static bool need_debug_guardpage(void)
605 {
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
610 if (!debug_guardpage_minorder())
611 return false;
612
613 return true;
614 }
615
616 static void init_debug_guardpage(void)
617 {
618 if (!debug_pagealloc_enabled())
619 return;
620
621 if (!debug_guardpage_minorder())
622 return;
623
624 _debug_guardpage_enabled = true;
625 }
626
627 struct page_ext_operations debug_guardpage_ops = {
628 .need = need_debug_guardpage,
629 .init = init_debug_guardpage,
630 };
631
632 static int __init debug_guardpage_minorder_setup(char *buf)
633 {
634 unsigned long res;
635
636 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
637 pr_err("Bad debug_guardpage_minorder value\n");
638 return 0;
639 }
640 _debug_guardpage_minorder = res;
641 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
642 return 0;
643 }
644 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
645
646 static inline bool set_page_guard(struct zone *zone, struct page *page,
647 unsigned int order, int migratetype)
648 {
649 struct page_ext *page_ext;
650
651 if (!debug_guardpage_enabled())
652 return false;
653
654 if (order >= debug_guardpage_minorder())
655 return false;
656
657 page_ext = lookup_page_ext(page);
658 if (unlikely(!page_ext))
659 return false;
660
661 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
662
663 INIT_LIST_HEAD(&page->lru);
664 set_page_private(page, order);
665 /* Guard pages are not available for any usage */
666 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
667
668 return true;
669 }
670
671 static inline void clear_page_guard(struct zone *zone, struct page *page,
672 unsigned int order, int migratetype)
673 {
674 struct page_ext *page_ext;
675
676 if (!debug_guardpage_enabled())
677 return;
678
679 page_ext = lookup_page_ext(page);
680 if (unlikely(!page_ext))
681 return;
682
683 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684
685 set_page_private(page, 0);
686 if (!is_migrate_isolate(migratetype))
687 __mod_zone_freepage_state(zone, (1 << order), migratetype);
688 }
689 #else
690 struct page_ext_operations debug_guardpage_ops;
691 static inline bool set_page_guard(struct zone *zone, struct page *page,
692 unsigned int order, int migratetype) { return false; }
693 static inline void clear_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype) {}
695 #endif
696
697 static inline void set_page_order(struct page *page, unsigned int order)
698 {
699 set_page_private(page, order);
700 __SetPageBuddy(page);
701 }
702
703 static inline void rmv_page_order(struct page *page)
704 {
705 __ClearPageBuddy(page);
706 set_page_private(page, 0);
707 }
708
709 /*
710 * This function checks whether a page is free && is the buddy
711 * we can do coalesce a page and its buddy if
712 * (a) the buddy is not in a hole &&
713 * (b) the buddy is in the buddy system &&
714 * (c) a page and its buddy have the same order &&
715 * (d) a page and its buddy are in the same zone.
716 *
717 * For recording whether a page is in the buddy system, we set ->_mapcount
718 * PAGE_BUDDY_MAPCOUNT_VALUE.
719 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
720 * serialized by zone->lock.
721 *
722 * For recording page's order, we use page_private(page).
723 */
724 static inline int page_is_buddy(struct page *page, struct page *buddy,
725 unsigned int order)
726 {
727 if (!pfn_valid_within(page_to_pfn(buddy)))
728 return 0;
729
730 if (page_is_guard(buddy) && page_order(buddy) == order) {
731 if (page_zone_id(page) != page_zone_id(buddy))
732 return 0;
733
734 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
735
736 return 1;
737 }
738
739 if (PageBuddy(buddy) && page_order(buddy) == order) {
740 /*
741 * zone check is done late to avoid uselessly
742 * calculating zone/node ids for pages that could
743 * never merge.
744 */
745 if (page_zone_id(page) != page_zone_id(buddy))
746 return 0;
747
748 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
749
750 return 1;
751 }
752 return 0;
753 }
754
755 /*
756 * Freeing function for a buddy system allocator.
757 *
758 * The concept of a buddy system is to maintain direct-mapped table
759 * (containing bit values) for memory blocks of various "orders".
760 * The bottom level table contains the map for the smallest allocatable
761 * units of memory (here, pages), and each level above it describes
762 * pairs of units from the levels below, hence, "buddies".
763 * At a high level, all that happens here is marking the table entry
764 * at the bottom level available, and propagating the changes upward
765 * as necessary, plus some accounting needed to play nicely with other
766 * parts of the VM system.
767 * At each level, we keep a list of pages, which are heads of continuous
768 * free pages of length of (1 << order) and marked with _mapcount
769 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
770 * field.
771 * So when we are allocating or freeing one, we can derive the state of the
772 * other. That is, if we allocate a small block, and both were
773 * free, the remainder of the region must be split into blocks.
774 * If a block is freed, and its buddy is also free, then this
775 * triggers coalescing into a block of larger size.
776 *
777 * -- nyc
778 */
779
780 static inline void __free_one_page(struct page *page,
781 unsigned long pfn,
782 struct zone *zone, unsigned int order,
783 int migratetype)
784 {
785 unsigned long page_idx;
786 unsigned long combined_idx;
787 unsigned long uninitialized_var(buddy_idx);
788 struct page *buddy;
789 unsigned int max_order;
790
791 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
792
793 VM_BUG_ON(!zone_is_initialized(zone));
794 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
795
796 VM_BUG_ON(migratetype == -1);
797 if (likely(!is_migrate_isolate(migratetype)))
798 __mod_zone_freepage_state(zone, 1 << order, migratetype);
799
800 page_idx = pfn & ((1 << MAX_ORDER) - 1);
801
802 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
803 VM_BUG_ON_PAGE(bad_range(zone, page), page);
804
805 continue_merging:
806 while (order < max_order - 1) {
807 buddy_idx = __find_buddy_index(page_idx, order);
808 buddy = page + (buddy_idx - page_idx);
809 if (!page_is_buddy(page, buddy, order))
810 goto done_merging;
811 /*
812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 * merge with it and move up one order.
814 */
815 if (page_is_guard(buddy)) {
816 clear_page_guard(zone, buddy, order, migratetype);
817 } else {
818 list_del(&buddy->lru);
819 zone->free_area[order].nr_free--;
820 rmv_page_order(buddy);
821 }
822 combined_idx = buddy_idx & page_idx;
823 page = page + (combined_idx - page_idx);
824 page_idx = combined_idx;
825 order++;
826 }
827 if (max_order < MAX_ORDER) {
828 /* If we are here, it means order is >= pageblock_order.
829 * We want to prevent merge between freepages on isolate
830 * pageblock and normal pageblock. Without this, pageblock
831 * isolation could cause incorrect freepage or CMA accounting.
832 *
833 * We don't want to hit this code for the more frequent
834 * low-order merging.
835 */
836 if (unlikely(has_isolate_pageblock(zone))) {
837 int buddy_mt;
838
839 buddy_idx = __find_buddy_index(page_idx, order);
840 buddy = page + (buddy_idx - page_idx);
841 buddy_mt = get_pageblock_migratetype(buddy);
842
843 if (migratetype != buddy_mt
844 && (is_migrate_isolate(migratetype) ||
845 is_migrate_isolate(buddy_mt)))
846 goto done_merging;
847 }
848 max_order++;
849 goto continue_merging;
850 }
851
852 done_merging:
853 set_page_order(page, order);
854
855 /*
856 * If this is not the largest possible page, check if the buddy
857 * of the next-highest order is free. If it is, it's possible
858 * that pages are being freed that will coalesce soon. In case,
859 * that is happening, add the free page to the tail of the list
860 * so it's less likely to be used soon and more likely to be merged
861 * as a higher order page
862 */
863 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
864 struct page *higher_page, *higher_buddy;
865 combined_idx = buddy_idx & page_idx;
866 higher_page = page + (combined_idx - page_idx);
867 buddy_idx = __find_buddy_index(combined_idx, order + 1);
868 higher_buddy = higher_page + (buddy_idx - combined_idx);
869 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
870 list_add_tail(&page->lru,
871 &zone->free_area[order].free_list[migratetype]);
872 goto out;
873 }
874 }
875
876 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
877 out:
878 zone->free_area[order].nr_free++;
879 }
880
881 /*
882 * A bad page could be due to a number of fields. Instead of multiple branches,
883 * try and check multiple fields with one check. The caller must do a detailed
884 * check if necessary.
885 */
886 static inline bool page_expected_state(struct page *page,
887 unsigned long check_flags)
888 {
889 if (unlikely(atomic_read(&page->_mapcount) != -1))
890 return false;
891
892 if (unlikely((unsigned long)page->mapping |
893 page_ref_count(page) |
894 #ifdef CONFIG_MEMCG
895 (unsigned long)page->mem_cgroup |
896 #endif
897 (page->flags & check_flags)))
898 return false;
899
900 return true;
901 }
902
903 static void free_pages_check_bad(struct page *page)
904 {
905 const char *bad_reason;
906 unsigned long bad_flags;
907
908 bad_reason = NULL;
909 bad_flags = 0;
910
911 if (unlikely(atomic_read(&page->_mapcount) != -1))
912 bad_reason = "nonzero mapcount";
913 if (unlikely(page->mapping != NULL))
914 bad_reason = "non-NULL mapping";
915 if (unlikely(page_ref_count(page) != 0))
916 bad_reason = "nonzero _refcount";
917 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
918 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
919 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
920 }
921 #ifdef CONFIG_MEMCG
922 if (unlikely(page->mem_cgroup))
923 bad_reason = "page still charged to cgroup";
924 #endif
925 bad_page(page, bad_reason, bad_flags);
926 }
927
928 static inline int free_pages_check(struct page *page)
929 {
930 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
931 return 0;
932
933 /* Something has gone sideways, find it */
934 free_pages_check_bad(page);
935 return 1;
936 }
937
938 static int free_tail_pages_check(struct page *head_page, struct page *page)
939 {
940 int ret = 1;
941
942 /*
943 * We rely page->lru.next never has bit 0 set, unless the page
944 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
945 */
946 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
947
948 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
949 ret = 0;
950 goto out;
951 }
952 switch (page - head_page) {
953 case 1:
954 /* the first tail page: ->mapping is compound_mapcount() */
955 if (unlikely(compound_mapcount(page))) {
956 bad_page(page, "nonzero compound_mapcount", 0);
957 goto out;
958 }
959 break;
960 case 2:
961 /*
962 * the second tail page: ->mapping is
963 * page_deferred_list().next -- ignore value.
964 */
965 break;
966 default:
967 if (page->mapping != TAIL_MAPPING) {
968 bad_page(page, "corrupted mapping in tail page", 0);
969 goto out;
970 }
971 break;
972 }
973 if (unlikely(!PageTail(page))) {
974 bad_page(page, "PageTail not set", 0);
975 goto out;
976 }
977 if (unlikely(compound_head(page) != head_page)) {
978 bad_page(page, "compound_head not consistent", 0);
979 goto out;
980 }
981 ret = 0;
982 out:
983 page->mapping = NULL;
984 clear_compound_head(page);
985 return ret;
986 }
987
988 static __always_inline bool free_pages_prepare(struct page *page,
989 unsigned int order, bool check_free)
990 {
991 int bad = 0;
992
993 VM_BUG_ON_PAGE(PageTail(page), page);
994
995 trace_mm_page_free(page, order);
996 kmemcheck_free_shadow(page, order);
997
998 /*
999 * Check tail pages before head page information is cleared to
1000 * avoid checking PageCompound for order-0 pages.
1001 */
1002 if (unlikely(order)) {
1003 bool compound = PageCompound(page);
1004 int i;
1005
1006 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1007
1008 if (compound)
1009 ClearPageDoubleMap(page);
1010 for (i = 1; i < (1 << order); i++) {
1011 if (compound)
1012 bad += free_tail_pages_check(page, page + i);
1013 if (unlikely(free_pages_check(page + i))) {
1014 bad++;
1015 continue;
1016 }
1017 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1018 }
1019 }
1020 if (PageMappingFlags(page))
1021 page->mapping = NULL;
1022 if (memcg_kmem_enabled() && PageKmemcg(page))
1023 memcg_kmem_uncharge(page, order);
1024 if (check_free)
1025 bad += free_pages_check(page);
1026 if (bad)
1027 return false;
1028
1029 page_cpupid_reset_last(page);
1030 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1031 reset_page_owner(page, order);
1032
1033 if (!PageHighMem(page)) {
1034 debug_check_no_locks_freed(page_address(page),
1035 PAGE_SIZE << order);
1036 debug_check_no_obj_freed(page_address(page),
1037 PAGE_SIZE << order);
1038 }
1039 arch_free_page(page, order);
1040 kernel_poison_pages(page, 1 << order, 0);
1041 kernel_map_pages(page, 1 << order, 0);
1042 kasan_free_pages(page, order);
1043
1044 return true;
1045 }
1046
1047 #ifdef CONFIG_DEBUG_VM
1048 static inline bool free_pcp_prepare(struct page *page)
1049 {
1050 return free_pages_prepare(page, 0, true);
1051 }
1052
1053 static inline bool bulkfree_pcp_prepare(struct page *page)
1054 {
1055 return false;
1056 }
1057 #else
1058 static bool free_pcp_prepare(struct page *page)
1059 {
1060 return free_pages_prepare(page, 0, false);
1061 }
1062
1063 static bool bulkfree_pcp_prepare(struct page *page)
1064 {
1065 return free_pages_check(page);
1066 }
1067 #endif /* CONFIG_DEBUG_VM */
1068
1069 /*
1070 * Frees a number of pages from the PCP lists
1071 * Assumes all pages on list are in same zone, and of same order.
1072 * count is the number of pages to free.
1073 *
1074 * If the zone was previously in an "all pages pinned" state then look to
1075 * see if this freeing clears that state.
1076 *
1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078 * pinned" detection logic.
1079 */
1080 static void free_pcppages_bulk(struct zone *zone, int count,
1081 struct per_cpu_pages *pcp)
1082 {
1083 int migratetype = 0;
1084 int batch_free = 0;
1085 unsigned long nr_scanned;
1086 bool isolated_pageblocks;
1087
1088 spin_lock(&zone->lock);
1089 isolated_pageblocks = has_isolate_pageblock(zone);
1090 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1091 if (nr_scanned)
1092 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1093
1094 while (count) {
1095 struct page *page;
1096 struct list_head *list;
1097
1098 /*
1099 * Remove pages from lists in a round-robin fashion. A
1100 * batch_free count is maintained that is incremented when an
1101 * empty list is encountered. This is so more pages are freed
1102 * off fuller lists instead of spinning excessively around empty
1103 * lists
1104 */
1105 do {
1106 batch_free++;
1107 if (++migratetype == MIGRATE_PCPTYPES)
1108 migratetype = 0;
1109 list = &pcp->lists[migratetype];
1110 } while (list_empty(list));
1111
1112 /* This is the only non-empty list. Free them all. */
1113 if (batch_free == MIGRATE_PCPTYPES)
1114 batch_free = count;
1115
1116 do {
1117 int mt; /* migratetype of the to-be-freed page */
1118
1119 page = list_last_entry(list, struct page, lru);
1120 /* must delete as __free_one_page list manipulates */
1121 list_del(&page->lru);
1122
1123 mt = get_pcppage_migratetype(page);
1124 /* MIGRATE_ISOLATE page should not go to pcplists */
1125 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1126 /* Pageblock could have been isolated meanwhile */
1127 if (unlikely(isolated_pageblocks))
1128 mt = get_pageblock_migratetype(page);
1129
1130 if (bulkfree_pcp_prepare(page))
1131 continue;
1132
1133 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1134 trace_mm_page_pcpu_drain(page, 0, mt);
1135 } while (--count && --batch_free && !list_empty(list));
1136 }
1137 spin_unlock(&zone->lock);
1138 }
1139
1140 static void free_one_page(struct zone *zone,
1141 struct page *page, unsigned long pfn,
1142 unsigned int order,
1143 int migratetype)
1144 {
1145 unsigned long nr_scanned;
1146 spin_lock(&zone->lock);
1147 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1148 if (nr_scanned)
1149 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1150
1151 if (unlikely(has_isolate_pageblock(zone) ||
1152 is_migrate_isolate(migratetype))) {
1153 migratetype = get_pfnblock_migratetype(page, pfn);
1154 }
1155 __free_one_page(page, pfn, zone, order, migratetype);
1156 spin_unlock(&zone->lock);
1157 }
1158
1159 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1160 unsigned long zone, int nid)
1161 {
1162 set_page_links(page, zone, nid, pfn);
1163 init_page_count(page);
1164 page_mapcount_reset(page);
1165 page_cpupid_reset_last(page);
1166
1167 INIT_LIST_HEAD(&page->lru);
1168 #ifdef WANT_PAGE_VIRTUAL
1169 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 if (!is_highmem_idx(zone))
1171 set_page_address(page, __va(pfn << PAGE_SHIFT));
1172 #endif
1173 }
1174
1175 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1176 int nid)
1177 {
1178 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1179 }
1180
1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182 static void init_reserved_page(unsigned long pfn)
1183 {
1184 pg_data_t *pgdat;
1185 int nid, zid;
1186
1187 if (!early_page_uninitialised(pfn))
1188 return;
1189
1190 nid = early_pfn_to_nid(pfn);
1191 pgdat = NODE_DATA(nid);
1192
1193 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1194 struct zone *zone = &pgdat->node_zones[zid];
1195
1196 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1197 break;
1198 }
1199 __init_single_pfn(pfn, zid, nid);
1200 }
1201 #else
1202 static inline void init_reserved_page(unsigned long pfn)
1203 {
1204 }
1205 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1206
1207 /*
1208 * Initialised pages do not have PageReserved set. This function is
1209 * called for each range allocated by the bootmem allocator and
1210 * marks the pages PageReserved. The remaining valid pages are later
1211 * sent to the buddy page allocator.
1212 */
1213 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1214 {
1215 unsigned long start_pfn = PFN_DOWN(start);
1216 unsigned long end_pfn = PFN_UP(end);
1217
1218 for (; start_pfn < end_pfn; start_pfn++) {
1219 if (pfn_valid(start_pfn)) {
1220 struct page *page = pfn_to_page(start_pfn);
1221
1222 init_reserved_page(start_pfn);
1223
1224 /* Avoid false-positive PageTail() */
1225 INIT_LIST_HEAD(&page->lru);
1226
1227 SetPageReserved(page);
1228 }
1229 }
1230 }
1231
1232 static void __free_pages_ok(struct page *page, unsigned int order)
1233 {
1234 unsigned long flags;
1235 int migratetype;
1236 unsigned long pfn = page_to_pfn(page);
1237
1238 if (!free_pages_prepare(page, order, true))
1239 return;
1240
1241 migratetype = get_pfnblock_migratetype(page, pfn);
1242 local_irq_save(flags);
1243 __count_vm_events(PGFREE, 1 << order);
1244 free_one_page(page_zone(page), page, pfn, order, migratetype);
1245 local_irq_restore(flags);
1246 }
1247
1248 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1249 {
1250 unsigned int nr_pages = 1 << order;
1251 struct page *p = page;
1252 unsigned int loop;
1253
1254 prefetchw(p);
1255 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 prefetchw(p + 1);
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
1259 }
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
1262
1263 page_zone(page)->managed_pages += nr_pages;
1264 set_page_refcounted(page);
1265 __free_pages(page, order);
1266 }
1267
1268 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1270
1271 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272
1273 int __meminit early_pfn_to_nid(unsigned long pfn)
1274 {
1275 static DEFINE_SPINLOCK(early_pfn_lock);
1276 int nid;
1277
1278 spin_lock(&early_pfn_lock);
1279 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1280 if (nid < 0)
1281 nid = first_online_node;
1282 spin_unlock(&early_pfn_lock);
1283
1284 return nid;
1285 }
1286 #endif
1287
1288 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 struct mminit_pfnnid_cache *state)
1291 {
1292 int nid;
1293
1294 nid = __early_pfn_to_nid(pfn, state);
1295 if (nid >= 0 && nid != node)
1296 return false;
1297 return true;
1298 }
1299
1300 /* Only safe to use early in boot when initialisation is single-threaded */
1301 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302 {
1303 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304 }
1305
1306 #else
1307
1308 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309 {
1310 return true;
1311 }
1312 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1314 {
1315 return true;
1316 }
1317 #endif
1318
1319
1320 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1321 unsigned int order)
1322 {
1323 if (early_page_uninitialised(pfn))
1324 return;
1325 return __free_pages_boot_core(page, order);
1326 }
1327
1328 /*
1329 * Check that the whole (or subset of) a pageblock given by the interval of
1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331 * with the migration of free compaction scanner. The scanners then need to
1332 * use only pfn_valid_within() check for arches that allow holes within
1333 * pageblocks.
1334 *
1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 *
1337 * It's possible on some configurations to have a setup like node0 node1 node0
1338 * i.e. it's possible that all pages within a zones range of pages do not
1339 * belong to a single zone. We assume that a border between node0 and node1
1340 * can occur within a single pageblock, but not a node0 node1 node0
1341 * interleaving within a single pageblock. It is therefore sufficient to check
1342 * the first and last page of a pageblock and avoid checking each individual
1343 * page in a pageblock.
1344 */
1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 unsigned long end_pfn, struct zone *zone)
1347 {
1348 struct page *start_page;
1349 struct page *end_page;
1350
1351 /* end_pfn is one past the range we are checking */
1352 end_pfn--;
1353
1354 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 return NULL;
1356
1357 start_page = pfn_to_page(start_pfn);
1358
1359 if (page_zone(start_page) != zone)
1360 return NULL;
1361
1362 end_page = pfn_to_page(end_pfn);
1363
1364 /* This gives a shorter code than deriving page_zone(end_page) */
1365 if (page_zone_id(start_page) != page_zone_id(end_page))
1366 return NULL;
1367
1368 return start_page;
1369 }
1370
1371 void set_zone_contiguous(struct zone *zone)
1372 {
1373 unsigned long block_start_pfn = zone->zone_start_pfn;
1374 unsigned long block_end_pfn;
1375
1376 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 for (; block_start_pfn < zone_end_pfn(zone);
1378 block_start_pfn = block_end_pfn,
1379 block_end_pfn += pageblock_nr_pages) {
1380
1381 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382
1383 if (!__pageblock_pfn_to_page(block_start_pfn,
1384 block_end_pfn, zone))
1385 return;
1386 }
1387
1388 /* We confirm that there is no hole */
1389 zone->contiguous = true;
1390 }
1391
1392 void clear_zone_contiguous(struct zone *zone)
1393 {
1394 zone->contiguous = false;
1395 }
1396
1397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1398 static void __init deferred_free_range(struct page *page,
1399 unsigned long pfn, int nr_pages)
1400 {
1401 int i;
1402
1403 if (!page)
1404 return;
1405
1406 /* Free a large naturally-aligned chunk if possible */
1407 if (nr_pages == pageblock_nr_pages &&
1408 (pfn & (pageblock_nr_pages - 1)) == 0) {
1409 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1410 __free_pages_boot_core(page, pageblock_order);
1411 return;
1412 }
1413
1414 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1417 __free_pages_boot_core(page, 0);
1418 }
1419 }
1420
1421 /* Completion tracking for deferred_init_memmap() threads */
1422 static atomic_t pgdat_init_n_undone __initdata;
1423 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424
1425 static inline void __init pgdat_init_report_one_done(void)
1426 {
1427 if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 complete(&pgdat_init_all_done_comp);
1429 }
1430
1431 /* Initialise remaining memory on a node */
1432 static int __init deferred_init_memmap(void *data)
1433 {
1434 pg_data_t *pgdat = data;
1435 int nid = pgdat->node_id;
1436 struct mminit_pfnnid_cache nid_init_state = { };
1437 unsigned long start = jiffies;
1438 unsigned long nr_pages = 0;
1439 unsigned long walk_start, walk_end;
1440 int i, zid;
1441 struct zone *zone;
1442 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444
1445 if (first_init_pfn == ULONG_MAX) {
1446 pgdat_init_report_one_done();
1447 return 0;
1448 }
1449
1450 /* Bind memory initialisation thread to a local node if possible */
1451 if (!cpumask_empty(cpumask))
1452 set_cpus_allowed_ptr(current, cpumask);
1453
1454 /* Sanity check boundaries */
1455 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 pgdat->first_deferred_pfn = ULONG_MAX;
1458
1459 /* Only the highest zone is deferred so find it */
1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 zone = pgdat->node_zones + zid;
1462 if (first_init_pfn < zone_end_pfn(zone))
1463 break;
1464 }
1465
1466 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 unsigned long pfn, end_pfn;
1468 struct page *page = NULL;
1469 struct page *free_base_page = NULL;
1470 unsigned long free_base_pfn = 0;
1471 int nr_to_free = 0;
1472
1473 end_pfn = min(walk_end, zone_end_pfn(zone));
1474 pfn = first_init_pfn;
1475 if (pfn < walk_start)
1476 pfn = walk_start;
1477 if (pfn < zone->zone_start_pfn)
1478 pfn = zone->zone_start_pfn;
1479
1480 for (; pfn < end_pfn; pfn++) {
1481 if (!pfn_valid_within(pfn))
1482 goto free_range;
1483
1484 /*
1485 * Ensure pfn_valid is checked every
1486 * pageblock_nr_pages for memory holes
1487 */
1488 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1489 if (!pfn_valid(pfn)) {
1490 page = NULL;
1491 goto free_range;
1492 }
1493 }
1494
1495 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 page = NULL;
1497 goto free_range;
1498 }
1499
1500 /* Minimise pfn page lookups and scheduler checks */
1501 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1502 page++;
1503 } else {
1504 nr_pages += nr_to_free;
1505 deferred_free_range(free_base_page,
1506 free_base_pfn, nr_to_free);
1507 free_base_page = NULL;
1508 free_base_pfn = nr_to_free = 0;
1509
1510 page = pfn_to_page(pfn);
1511 cond_resched();
1512 }
1513
1514 if (page->flags) {
1515 VM_BUG_ON(page_zone(page) != zone);
1516 goto free_range;
1517 }
1518
1519 __init_single_page(page, pfn, zid, nid);
1520 if (!free_base_page) {
1521 free_base_page = page;
1522 free_base_pfn = pfn;
1523 nr_to_free = 0;
1524 }
1525 nr_to_free++;
1526
1527 /* Where possible, batch up pages for a single free */
1528 continue;
1529 free_range:
1530 /* Free the current block of pages to allocator */
1531 nr_pages += nr_to_free;
1532 deferred_free_range(free_base_page, free_base_pfn,
1533 nr_to_free);
1534 free_base_page = NULL;
1535 free_base_pfn = nr_to_free = 0;
1536 }
1537 /* Free the last block of pages to allocator */
1538 nr_pages += nr_to_free;
1539 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1540
1541 first_init_pfn = max(end_pfn, first_init_pfn);
1542 }
1543
1544 /* Sanity check that the next zone really is unpopulated */
1545 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546
1547 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1548 jiffies_to_msecs(jiffies - start));
1549
1550 pgdat_init_report_one_done();
1551 return 0;
1552 }
1553 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1554
1555 void __init page_alloc_init_late(void)
1556 {
1557 struct zone *zone;
1558
1559 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1560 int nid;
1561
1562 /* There will be num_node_state(N_MEMORY) threads */
1563 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1564 for_each_node_state(nid, N_MEMORY) {
1565 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 }
1567
1568 /* Block until all are initialised */
1569 wait_for_completion(&pgdat_init_all_done_comp);
1570
1571 /* Reinit limits that are based on free pages after the kernel is up */
1572 files_maxfiles_init();
1573 #endif
1574
1575 for_each_populated_zone(zone)
1576 set_zone_contiguous(zone);
1577 }
1578
1579 #ifdef CONFIG_CMA
1580 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1581 void __init init_cma_reserved_pageblock(struct page *page)
1582 {
1583 unsigned i = pageblock_nr_pages;
1584 struct page *p = page;
1585
1586 do {
1587 __ClearPageReserved(p);
1588 set_page_count(p, 0);
1589 } while (++p, --i);
1590
1591 set_pageblock_migratetype(page, MIGRATE_CMA);
1592
1593 if (pageblock_order >= MAX_ORDER) {
1594 i = pageblock_nr_pages;
1595 p = page;
1596 do {
1597 set_page_refcounted(p);
1598 __free_pages(p, MAX_ORDER - 1);
1599 p += MAX_ORDER_NR_PAGES;
1600 } while (i -= MAX_ORDER_NR_PAGES);
1601 } else {
1602 set_page_refcounted(page);
1603 __free_pages(page, pageblock_order);
1604 }
1605
1606 adjust_managed_page_count(page, pageblock_nr_pages);
1607 }
1608 #endif
1609
1610 /*
1611 * The order of subdivision here is critical for the IO subsystem.
1612 * Please do not alter this order without good reasons and regression
1613 * testing. Specifically, as large blocks of memory are subdivided,
1614 * the order in which smaller blocks are delivered depends on the order
1615 * they're subdivided in this function. This is the primary factor
1616 * influencing the order in which pages are delivered to the IO
1617 * subsystem according to empirical testing, and this is also justified
1618 * by considering the behavior of a buddy system containing a single
1619 * large block of memory acted on by a series of small allocations.
1620 * This behavior is a critical factor in sglist merging's success.
1621 *
1622 * -- nyc
1623 */
1624 static inline void expand(struct zone *zone, struct page *page,
1625 int low, int high, struct free_area *area,
1626 int migratetype)
1627 {
1628 unsigned long size = 1 << high;
1629
1630 while (high > low) {
1631 area--;
1632 high--;
1633 size >>= 1;
1634 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1635
1636 /*
1637 * Mark as guard pages (or page), that will allow to
1638 * merge back to allocator when buddy will be freed.
1639 * Corresponding page table entries will not be touched,
1640 * pages will stay not present in virtual address space
1641 */
1642 if (set_page_guard(zone, &page[size], high, migratetype))
1643 continue;
1644
1645 list_add(&page[size].lru, &area->free_list[migratetype]);
1646 area->nr_free++;
1647 set_page_order(&page[size], high);
1648 }
1649 }
1650
1651 static void check_new_page_bad(struct page *page)
1652 {
1653 const char *bad_reason = NULL;
1654 unsigned long bad_flags = 0;
1655
1656 if (unlikely(atomic_read(&page->_mapcount) != -1))
1657 bad_reason = "nonzero mapcount";
1658 if (unlikely(page->mapping != NULL))
1659 bad_reason = "non-NULL mapping";
1660 if (unlikely(page_ref_count(page) != 0))
1661 bad_reason = "nonzero _count";
1662 if (unlikely(page->flags & __PG_HWPOISON)) {
1663 bad_reason = "HWPoisoned (hardware-corrupted)";
1664 bad_flags = __PG_HWPOISON;
1665 /* Don't complain about hwpoisoned pages */
1666 page_mapcount_reset(page); /* remove PageBuddy */
1667 return;
1668 }
1669 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 }
1673 #ifdef CONFIG_MEMCG
1674 if (unlikely(page->mem_cgroup))
1675 bad_reason = "page still charged to cgroup";
1676 #endif
1677 bad_page(page, bad_reason, bad_flags);
1678 }
1679
1680 /*
1681 * This page is about to be returned from the page allocator
1682 */
1683 static inline int check_new_page(struct page *page)
1684 {
1685 if (likely(page_expected_state(page,
1686 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 return 0;
1688
1689 check_new_page_bad(page);
1690 return 1;
1691 }
1692
1693 static inline bool free_pages_prezeroed(bool poisoned)
1694 {
1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 page_poisoning_enabled() && poisoned;
1697 }
1698
1699 #ifdef CONFIG_DEBUG_VM
1700 static bool check_pcp_refill(struct page *page)
1701 {
1702 return false;
1703 }
1704
1705 static bool check_new_pcp(struct page *page)
1706 {
1707 return check_new_page(page);
1708 }
1709 #else
1710 static bool check_pcp_refill(struct page *page)
1711 {
1712 return check_new_page(page);
1713 }
1714 static bool check_new_pcp(struct page *page)
1715 {
1716 return false;
1717 }
1718 #endif /* CONFIG_DEBUG_VM */
1719
1720 static bool check_new_pages(struct page *page, unsigned int order)
1721 {
1722 int i;
1723 for (i = 0; i < (1 << order); i++) {
1724 struct page *p = page + i;
1725
1726 if (unlikely(check_new_page(p)))
1727 return true;
1728 }
1729
1730 return false;
1731 }
1732
1733 inline void post_alloc_hook(struct page *page, unsigned int order,
1734 gfp_t gfp_flags)
1735 {
1736 set_page_private(page, 0);
1737 set_page_refcounted(page);
1738
1739 arch_alloc_page(page, order);
1740 kernel_map_pages(page, 1 << order, 1);
1741 kernel_poison_pages(page, 1 << order, 1);
1742 kasan_alloc_pages(page, order);
1743 set_page_owner(page, order, gfp_flags);
1744 }
1745
1746 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1747 unsigned int alloc_flags)
1748 {
1749 int i;
1750 bool poisoned = true;
1751
1752 for (i = 0; i < (1 << order); i++) {
1753 struct page *p = page + i;
1754 if (poisoned)
1755 poisoned &= page_is_poisoned(p);
1756 }
1757
1758 post_alloc_hook(page, order, gfp_flags);
1759
1760 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1761 for (i = 0; i < (1 << order); i++)
1762 clear_highpage(page + i);
1763
1764 if (order && (gfp_flags & __GFP_COMP))
1765 prep_compound_page(page, order);
1766
1767 /*
1768 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1769 * allocate the page. The expectation is that the caller is taking
1770 * steps that will free more memory. The caller should avoid the page
1771 * being used for !PFMEMALLOC purposes.
1772 */
1773 if (alloc_flags & ALLOC_NO_WATERMARKS)
1774 set_page_pfmemalloc(page);
1775 else
1776 clear_page_pfmemalloc(page);
1777 }
1778
1779 /*
1780 * Go through the free lists for the given migratetype and remove
1781 * the smallest available page from the freelists
1782 */
1783 static inline
1784 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1785 int migratetype)
1786 {
1787 unsigned int current_order;
1788 struct free_area *area;
1789 struct page *page;
1790
1791 /* Find a page of the appropriate size in the preferred list */
1792 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1793 area = &(zone->free_area[current_order]);
1794 page = list_first_entry_or_null(&area->free_list[migratetype],
1795 struct page, lru);
1796 if (!page)
1797 continue;
1798 list_del(&page->lru);
1799 rmv_page_order(page);
1800 area->nr_free--;
1801 expand(zone, page, order, current_order, area, migratetype);
1802 set_pcppage_migratetype(page, migratetype);
1803 return page;
1804 }
1805
1806 return NULL;
1807 }
1808
1809
1810 /*
1811 * This array describes the order lists are fallen back to when
1812 * the free lists for the desirable migrate type are depleted
1813 */
1814 static int fallbacks[MIGRATE_TYPES][4] = {
1815 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1816 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1817 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1818 #ifdef CONFIG_CMA
1819 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1820 #endif
1821 #ifdef CONFIG_MEMORY_ISOLATION
1822 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1823 #endif
1824 };
1825
1826 #ifdef CONFIG_CMA
1827 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1828 unsigned int order)
1829 {
1830 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1831 }
1832 #else
1833 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1834 unsigned int order) { return NULL; }
1835 #endif
1836
1837 /*
1838 * Move the free pages in a range to the free lists of the requested type.
1839 * Note that start_page and end_pages are not aligned on a pageblock
1840 * boundary. If alignment is required, use move_freepages_block()
1841 */
1842 int move_freepages(struct zone *zone,
1843 struct page *start_page, struct page *end_page,
1844 int migratetype)
1845 {
1846 struct page *page;
1847 unsigned int order;
1848 int pages_moved = 0;
1849
1850 #ifndef CONFIG_HOLES_IN_ZONE
1851 /*
1852 * page_zone is not safe to call in this context when
1853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1854 * anyway as we check zone boundaries in move_freepages_block().
1855 * Remove at a later date when no bug reports exist related to
1856 * grouping pages by mobility
1857 */
1858 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1859 #endif
1860
1861 for (page = start_page; page <= end_page;) {
1862 /* Make sure we are not inadvertently changing nodes */
1863 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1864
1865 if (!pfn_valid_within(page_to_pfn(page))) {
1866 page++;
1867 continue;
1868 }
1869
1870 if (!PageBuddy(page)) {
1871 page++;
1872 continue;
1873 }
1874
1875 order = page_order(page);
1876 list_move(&page->lru,
1877 &zone->free_area[order].free_list[migratetype]);
1878 page += 1 << order;
1879 pages_moved += 1 << order;
1880 }
1881
1882 return pages_moved;
1883 }
1884
1885 int move_freepages_block(struct zone *zone, struct page *page,
1886 int migratetype)
1887 {
1888 unsigned long start_pfn, end_pfn;
1889 struct page *start_page, *end_page;
1890
1891 start_pfn = page_to_pfn(page);
1892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1893 start_page = pfn_to_page(start_pfn);
1894 end_page = start_page + pageblock_nr_pages - 1;
1895 end_pfn = start_pfn + pageblock_nr_pages - 1;
1896
1897 /* Do not cross zone boundaries */
1898 if (!zone_spans_pfn(zone, start_pfn))
1899 start_page = page;
1900 if (!zone_spans_pfn(zone, end_pfn))
1901 return 0;
1902
1903 return move_freepages(zone, start_page, end_page, migratetype);
1904 }
1905
1906 static void change_pageblock_range(struct page *pageblock_page,
1907 int start_order, int migratetype)
1908 {
1909 int nr_pageblocks = 1 << (start_order - pageblock_order);
1910
1911 while (nr_pageblocks--) {
1912 set_pageblock_migratetype(pageblock_page, migratetype);
1913 pageblock_page += pageblock_nr_pages;
1914 }
1915 }
1916
1917 /*
1918 * When we are falling back to another migratetype during allocation, try to
1919 * steal extra free pages from the same pageblocks to satisfy further
1920 * allocations, instead of polluting multiple pageblocks.
1921 *
1922 * If we are stealing a relatively large buddy page, it is likely there will
1923 * be more free pages in the pageblock, so try to steal them all. For
1924 * reclaimable and unmovable allocations, we steal regardless of page size,
1925 * as fragmentation caused by those allocations polluting movable pageblocks
1926 * is worse than movable allocations stealing from unmovable and reclaimable
1927 * pageblocks.
1928 */
1929 static bool can_steal_fallback(unsigned int order, int start_mt)
1930 {
1931 /*
1932 * Leaving this order check is intended, although there is
1933 * relaxed order check in next check. The reason is that
1934 * we can actually steal whole pageblock if this condition met,
1935 * but, below check doesn't guarantee it and that is just heuristic
1936 * so could be changed anytime.
1937 */
1938 if (order >= pageblock_order)
1939 return true;
1940
1941 if (order >= pageblock_order / 2 ||
1942 start_mt == MIGRATE_RECLAIMABLE ||
1943 start_mt == MIGRATE_UNMOVABLE ||
1944 page_group_by_mobility_disabled)
1945 return true;
1946
1947 return false;
1948 }
1949
1950 /*
1951 * This function implements actual steal behaviour. If order is large enough,
1952 * we can steal whole pageblock. If not, we first move freepages in this
1953 * pageblock and check whether half of pages are moved or not. If half of
1954 * pages are moved, we can change migratetype of pageblock and permanently
1955 * use it's pages as requested migratetype in the future.
1956 */
1957 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1958 int start_type)
1959 {
1960 unsigned int current_order = page_order(page);
1961 int pages;
1962
1963 /* Take ownership for orders >= pageblock_order */
1964 if (current_order >= pageblock_order) {
1965 change_pageblock_range(page, current_order, start_type);
1966 return;
1967 }
1968
1969 pages = move_freepages_block(zone, page, start_type);
1970
1971 /* Claim the whole block if over half of it is free */
1972 if (pages >= (1 << (pageblock_order-1)) ||
1973 page_group_by_mobility_disabled)
1974 set_pageblock_migratetype(page, start_type);
1975 }
1976
1977 /*
1978 * Check whether there is a suitable fallback freepage with requested order.
1979 * If only_stealable is true, this function returns fallback_mt only if
1980 * we can steal other freepages all together. This would help to reduce
1981 * fragmentation due to mixed migratetype pages in one pageblock.
1982 */
1983 int find_suitable_fallback(struct free_area *area, unsigned int order,
1984 int migratetype, bool only_stealable, bool *can_steal)
1985 {
1986 int i;
1987 int fallback_mt;
1988
1989 if (area->nr_free == 0)
1990 return -1;
1991
1992 *can_steal = false;
1993 for (i = 0;; i++) {
1994 fallback_mt = fallbacks[migratetype][i];
1995 if (fallback_mt == MIGRATE_TYPES)
1996 break;
1997
1998 if (list_empty(&area->free_list[fallback_mt]))
1999 continue;
2000
2001 if (can_steal_fallback(order, migratetype))
2002 *can_steal = true;
2003
2004 if (!only_stealable)
2005 return fallback_mt;
2006
2007 if (*can_steal)
2008 return fallback_mt;
2009 }
2010
2011 return -1;
2012 }
2013
2014 /*
2015 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2016 * there are no empty page blocks that contain a page with a suitable order
2017 */
2018 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2019 unsigned int alloc_order)
2020 {
2021 int mt;
2022 unsigned long max_managed, flags;
2023
2024 /*
2025 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2026 * Check is race-prone but harmless.
2027 */
2028 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2029 if (zone->nr_reserved_highatomic >= max_managed)
2030 return;
2031
2032 spin_lock_irqsave(&zone->lock, flags);
2033
2034 /* Recheck the nr_reserved_highatomic limit under the lock */
2035 if (zone->nr_reserved_highatomic >= max_managed)
2036 goto out_unlock;
2037
2038 /* Yoink! */
2039 mt = get_pageblock_migratetype(page);
2040 if (mt != MIGRATE_HIGHATOMIC &&
2041 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2042 zone->nr_reserved_highatomic += pageblock_nr_pages;
2043 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2044 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2045 }
2046
2047 out_unlock:
2048 spin_unlock_irqrestore(&zone->lock, flags);
2049 }
2050
2051 /*
2052 * Used when an allocation is about to fail under memory pressure. This
2053 * potentially hurts the reliability of high-order allocations when under
2054 * intense memory pressure but failed atomic allocations should be easier
2055 * to recover from than an OOM.
2056 */
2057 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2058 {
2059 struct zonelist *zonelist = ac->zonelist;
2060 unsigned long flags;
2061 struct zoneref *z;
2062 struct zone *zone;
2063 struct page *page;
2064 int order;
2065
2066 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2067 ac->nodemask) {
2068 /* Preserve at least one pageblock */
2069 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2070 continue;
2071
2072 spin_lock_irqsave(&zone->lock, flags);
2073 for (order = 0; order < MAX_ORDER; order++) {
2074 struct free_area *area = &(zone->free_area[order]);
2075
2076 page = list_first_entry_or_null(
2077 &area->free_list[MIGRATE_HIGHATOMIC],
2078 struct page, lru);
2079 if (!page)
2080 continue;
2081
2082 /*
2083 * It should never happen but changes to locking could
2084 * inadvertently allow a per-cpu drain to add pages
2085 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2086 * and watch for underflows.
2087 */
2088 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2089 zone->nr_reserved_highatomic);
2090
2091 /*
2092 * Convert to ac->migratetype and avoid the normal
2093 * pageblock stealing heuristics. Minimally, the caller
2094 * is doing the work and needs the pages. More
2095 * importantly, if the block was always converted to
2096 * MIGRATE_UNMOVABLE or another type then the number
2097 * of pageblocks that cannot be completely freed
2098 * may increase.
2099 */
2100 set_pageblock_migratetype(page, ac->migratetype);
2101 move_freepages_block(zone, page, ac->migratetype);
2102 spin_unlock_irqrestore(&zone->lock, flags);
2103 return;
2104 }
2105 spin_unlock_irqrestore(&zone->lock, flags);
2106 }
2107 }
2108
2109 /* Remove an element from the buddy allocator from the fallback list */
2110 static inline struct page *
2111 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2112 {
2113 struct free_area *area;
2114 unsigned int current_order;
2115 struct page *page;
2116 int fallback_mt;
2117 bool can_steal;
2118
2119 /* Find the largest possible block of pages in the other list */
2120 for (current_order = MAX_ORDER-1;
2121 current_order >= order && current_order <= MAX_ORDER-1;
2122 --current_order) {
2123 area = &(zone->free_area[current_order]);
2124 fallback_mt = find_suitable_fallback(area, current_order,
2125 start_migratetype, false, &can_steal);
2126 if (fallback_mt == -1)
2127 continue;
2128
2129 page = list_first_entry(&area->free_list[fallback_mt],
2130 struct page, lru);
2131 if (can_steal)
2132 steal_suitable_fallback(zone, page, start_migratetype);
2133
2134 /* Remove the page from the freelists */
2135 area->nr_free--;
2136 list_del(&page->lru);
2137 rmv_page_order(page);
2138
2139 expand(zone, page, order, current_order, area,
2140 start_migratetype);
2141 /*
2142 * The pcppage_migratetype may differ from pageblock's
2143 * migratetype depending on the decisions in
2144 * find_suitable_fallback(). This is OK as long as it does not
2145 * differ for MIGRATE_CMA pageblocks. Those can be used as
2146 * fallback only via special __rmqueue_cma_fallback() function
2147 */
2148 set_pcppage_migratetype(page, start_migratetype);
2149
2150 trace_mm_page_alloc_extfrag(page, order, current_order,
2151 start_migratetype, fallback_mt);
2152
2153 return page;
2154 }
2155
2156 return NULL;
2157 }
2158
2159 /*
2160 * Do the hard work of removing an element from the buddy allocator.
2161 * Call me with the zone->lock already held.
2162 */
2163 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2164 int migratetype)
2165 {
2166 struct page *page;
2167
2168 page = __rmqueue_smallest(zone, order, migratetype);
2169 if (unlikely(!page)) {
2170 if (migratetype == MIGRATE_MOVABLE)
2171 page = __rmqueue_cma_fallback(zone, order);
2172
2173 if (!page)
2174 page = __rmqueue_fallback(zone, order, migratetype);
2175 }
2176
2177 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2178 return page;
2179 }
2180
2181 /*
2182 * Obtain a specified number of elements from the buddy allocator, all under
2183 * a single hold of the lock, for efficiency. Add them to the supplied list.
2184 * Returns the number of new pages which were placed at *list.
2185 */
2186 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2187 unsigned long count, struct list_head *list,
2188 int migratetype, bool cold)
2189 {
2190 int i;
2191
2192 spin_lock(&zone->lock);
2193 for (i = 0; i < count; ++i) {
2194 struct page *page = __rmqueue(zone, order, migratetype);
2195 if (unlikely(page == NULL))
2196 break;
2197
2198 if (unlikely(check_pcp_refill(page)))
2199 continue;
2200
2201 /*
2202 * Split buddy pages returned by expand() are received here
2203 * in physical page order. The page is added to the callers and
2204 * list and the list head then moves forward. From the callers
2205 * perspective, the linked list is ordered by page number in
2206 * some conditions. This is useful for IO devices that can
2207 * merge IO requests if the physical pages are ordered
2208 * properly.
2209 */
2210 if (likely(!cold))
2211 list_add(&page->lru, list);
2212 else
2213 list_add_tail(&page->lru, list);
2214 list = &page->lru;
2215 if (is_migrate_cma(get_pcppage_migratetype(page)))
2216 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2217 -(1 << order));
2218 }
2219 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2220 spin_unlock(&zone->lock);
2221 return i;
2222 }
2223
2224 #ifdef CONFIG_NUMA
2225 /*
2226 * Called from the vmstat counter updater to drain pagesets of this
2227 * currently executing processor on remote nodes after they have
2228 * expired.
2229 *
2230 * Note that this function must be called with the thread pinned to
2231 * a single processor.
2232 */
2233 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2234 {
2235 unsigned long flags;
2236 int to_drain, batch;
2237
2238 local_irq_save(flags);
2239 batch = READ_ONCE(pcp->batch);
2240 to_drain = min(pcp->count, batch);
2241 if (to_drain > 0) {
2242 free_pcppages_bulk(zone, to_drain, pcp);
2243 pcp->count -= to_drain;
2244 }
2245 local_irq_restore(flags);
2246 }
2247 #endif
2248
2249 /*
2250 * Drain pcplists of the indicated processor and zone.
2251 *
2252 * The processor must either be the current processor and the
2253 * thread pinned to the current processor or a processor that
2254 * is not online.
2255 */
2256 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2257 {
2258 unsigned long flags;
2259 struct per_cpu_pageset *pset;
2260 struct per_cpu_pages *pcp;
2261
2262 local_irq_save(flags);
2263 pset = per_cpu_ptr(zone->pageset, cpu);
2264
2265 pcp = &pset->pcp;
2266 if (pcp->count) {
2267 free_pcppages_bulk(zone, pcp->count, pcp);
2268 pcp->count = 0;
2269 }
2270 local_irq_restore(flags);
2271 }
2272
2273 /*
2274 * Drain pcplists of all zones on the indicated processor.
2275 *
2276 * The processor must either be the current processor and the
2277 * thread pinned to the current processor or a processor that
2278 * is not online.
2279 */
2280 static void drain_pages(unsigned int cpu)
2281 {
2282 struct zone *zone;
2283
2284 for_each_populated_zone(zone) {
2285 drain_pages_zone(cpu, zone);
2286 }
2287 }
2288
2289 /*
2290 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2291 *
2292 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2293 * the single zone's pages.
2294 */
2295 void drain_local_pages(struct zone *zone)
2296 {
2297 int cpu = smp_processor_id();
2298
2299 if (zone)
2300 drain_pages_zone(cpu, zone);
2301 else
2302 drain_pages(cpu);
2303 }
2304
2305 /*
2306 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2307 *
2308 * When zone parameter is non-NULL, spill just the single zone's pages.
2309 *
2310 * Note that this code is protected against sending an IPI to an offline
2311 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2312 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2313 * nothing keeps CPUs from showing up after we populated the cpumask and
2314 * before the call to on_each_cpu_mask().
2315 */
2316 void drain_all_pages(struct zone *zone)
2317 {
2318 int cpu;
2319
2320 /*
2321 * Allocate in the BSS so we wont require allocation in
2322 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2323 */
2324 static cpumask_t cpus_with_pcps;
2325
2326 /*
2327 * We don't care about racing with CPU hotplug event
2328 * as offline notification will cause the notified
2329 * cpu to drain that CPU pcps and on_each_cpu_mask
2330 * disables preemption as part of its processing
2331 */
2332 for_each_online_cpu(cpu) {
2333 struct per_cpu_pageset *pcp;
2334 struct zone *z;
2335 bool has_pcps = false;
2336
2337 if (zone) {
2338 pcp = per_cpu_ptr(zone->pageset, cpu);
2339 if (pcp->pcp.count)
2340 has_pcps = true;
2341 } else {
2342 for_each_populated_zone(z) {
2343 pcp = per_cpu_ptr(z->pageset, cpu);
2344 if (pcp->pcp.count) {
2345 has_pcps = true;
2346 break;
2347 }
2348 }
2349 }
2350
2351 if (has_pcps)
2352 cpumask_set_cpu(cpu, &cpus_with_pcps);
2353 else
2354 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2355 }
2356 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2357 zone, 1);
2358 }
2359
2360 #ifdef CONFIG_HIBERNATION
2361
2362 void mark_free_pages(struct zone *zone)
2363 {
2364 unsigned long pfn, max_zone_pfn;
2365 unsigned long flags;
2366 unsigned int order, t;
2367 struct page *page;
2368
2369 if (zone_is_empty(zone))
2370 return;
2371
2372 spin_lock_irqsave(&zone->lock, flags);
2373
2374 max_zone_pfn = zone_end_pfn(zone);
2375 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2376 if (pfn_valid(pfn)) {
2377 page = pfn_to_page(pfn);
2378
2379 if (page_zone(page) != zone)
2380 continue;
2381
2382 if (!swsusp_page_is_forbidden(page))
2383 swsusp_unset_page_free(page);
2384 }
2385
2386 for_each_migratetype_order(order, t) {
2387 list_for_each_entry(page,
2388 &zone->free_area[order].free_list[t], lru) {
2389 unsigned long i;
2390
2391 pfn = page_to_pfn(page);
2392 for (i = 0; i < (1UL << order); i++)
2393 swsusp_set_page_free(pfn_to_page(pfn + i));
2394 }
2395 }
2396 spin_unlock_irqrestore(&zone->lock, flags);
2397 }
2398 #endif /* CONFIG_PM */
2399
2400 /*
2401 * Free a 0-order page
2402 * cold == true ? free a cold page : free a hot page
2403 */
2404 void free_hot_cold_page(struct page *page, bool cold)
2405 {
2406 struct zone *zone = page_zone(page);
2407 struct per_cpu_pages *pcp;
2408 unsigned long flags;
2409 unsigned long pfn = page_to_pfn(page);
2410 int migratetype;
2411
2412 if (!free_pcp_prepare(page))
2413 return;
2414
2415 migratetype = get_pfnblock_migratetype(page, pfn);
2416 set_pcppage_migratetype(page, migratetype);
2417 local_irq_save(flags);
2418 __count_vm_event(PGFREE);
2419
2420 /*
2421 * We only track unmovable, reclaimable and movable on pcp lists.
2422 * Free ISOLATE pages back to the allocator because they are being
2423 * offlined but treat RESERVE as movable pages so we can get those
2424 * areas back if necessary. Otherwise, we may have to free
2425 * excessively into the page allocator
2426 */
2427 if (migratetype >= MIGRATE_PCPTYPES) {
2428 if (unlikely(is_migrate_isolate(migratetype))) {
2429 free_one_page(zone, page, pfn, 0, migratetype);
2430 goto out;
2431 }
2432 migratetype = MIGRATE_MOVABLE;
2433 }
2434
2435 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2436 if (!cold)
2437 list_add(&page->lru, &pcp->lists[migratetype]);
2438 else
2439 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2440 pcp->count++;
2441 if (pcp->count >= pcp->high) {
2442 unsigned long batch = READ_ONCE(pcp->batch);
2443 free_pcppages_bulk(zone, batch, pcp);
2444 pcp->count -= batch;
2445 }
2446
2447 out:
2448 local_irq_restore(flags);
2449 }
2450
2451 /*
2452 * Free a list of 0-order pages
2453 */
2454 void free_hot_cold_page_list(struct list_head *list, bool cold)
2455 {
2456 struct page *page, *next;
2457
2458 list_for_each_entry_safe(page, next, list, lru) {
2459 trace_mm_page_free_batched(page, cold);
2460 free_hot_cold_page(page, cold);
2461 }
2462 }
2463
2464 /*
2465 * split_page takes a non-compound higher-order page, and splits it into
2466 * n (1<<order) sub-pages: page[0..n]
2467 * Each sub-page must be freed individually.
2468 *
2469 * Note: this is probably too low level an operation for use in drivers.
2470 * Please consult with lkml before using this in your driver.
2471 */
2472 void split_page(struct page *page, unsigned int order)
2473 {
2474 int i;
2475
2476 VM_BUG_ON_PAGE(PageCompound(page), page);
2477 VM_BUG_ON_PAGE(!page_count(page), page);
2478
2479 #ifdef CONFIG_KMEMCHECK
2480 /*
2481 * Split shadow pages too, because free(page[0]) would
2482 * otherwise free the whole shadow.
2483 */
2484 if (kmemcheck_page_is_tracked(page))
2485 split_page(virt_to_page(page[0].shadow), order);
2486 #endif
2487
2488 for (i = 1; i < (1 << order); i++)
2489 set_page_refcounted(page + i);
2490 split_page_owner(page, order);
2491 }
2492 EXPORT_SYMBOL_GPL(split_page);
2493
2494 int __isolate_free_page(struct page *page, unsigned int order)
2495 {
2496 unsigned long watermark;
2497 struct zone *zone;
2498 int mt;
2499
2500 BUG_ON(!PageBuddy(page));
2501
2502 zone = page_zone(page);
2503 mt = get_pageblock_migratetype(page);
2504
2505 if (!is_migrate_isolate(mt)) {
2506 /*
2507 * Obey watermarks as if the page was being allocated. We can
2508 * emulate a high-order watermark check with a raised order-0
2509 * watermark, because we already know our high-order page
2510 * exists.
2511 */
2512 watermark = min_wmark_pages(zone) + (1UL << order);
2513 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2514 return 0;
2515
2516 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2517 }
2518
2519 /* Remove page from free list */
2520 list_del(&page->lru);
2521 zone->free_area[order].nr_free--;
2522 rmv_page_order(page);
2523
2524 /*
2525 * Set the pageblock if the isolated page is at least half of a
2526 * pageblock
2527 */
2528 if (order >= pageblock_order - 1) {
2529 struct page *endpage = page + (1 << order) - 1;
2530 for (; page < endpage; page += pageblock_nr_pages) {
2531 int mt = get_pageblock_migratetype(page);
2532 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2533 set_pageblock_migratetype(page,
2534 MIGRATE_MOVABLE);
2535 }
2536 }
2537
2538
2539 return 1UL << order;
2540 }
2541
2542 /*
2543 * Update NUMA hit/miss statistics
2544 *
2545 * Must be called with interrupts disabled.
2546 *
2547 * When __GFP_OTHER_NODE is set assume the node of the preferred
2548 * zone is the local node. This is useful for daemons who allocate
2549 * memory on behalf of other processes.
2550 */
2551 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2552 gfp_t flags)
2553 {
2554 #ifdef CONFIG_NUMA
2555 int local_nid = numa_node_id();
2556 enum zone_stat_item local_stat = NUMA_LOCAL;
2557
2558 if (unlikely(flags & __GFP_OTHER_NODE)) {
2559 local_stat = NUMA_OTHER;
2560 local_nid = preferred_zone->node;
2561 }
2562
2563 if (z->node == local_nid) {
2564 __inc_zone_state(z, NUMA_HIT);
2565 __inc_zone_state(z, local_stat);
2566 } else {
2567 __inc_zone_state(z, NUMA_MISS);
2568 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2569 }
2570 #endif
2571 }
2572
2573 /*
2574 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2575 */
2576 static inline
2577 struct page *buffered_rmqueue(struct zone *preferred_zone,
2578 struct zone *zone, unsigned int order,
2579 gfp_t gfp_flags, unsigned int alloc_flags,
2580 int migratetype)
2581 {
2582 unsigned long flags;
2583 struct page *page;
2584 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2585
2586 if (likely(order == 0)) {
2587 struct per_cpu_pages *pcp;
2588 struct list_head *list;
2589
2590 local_irq_save(flags);
2591 do {
2592 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2593 list = &pcp->lists[migratetype];
2594 if (list_empty(list)) {
2595 pcp->count += rmqueue_bulk(zone, 0,
2596 pcp->batch, list,
2597 migratetype, cold);
2598 if (unlikely(list_empty(list)))
2599 goto failed;
2600 }
2601
2602 if (cold)
2603 page = list_last_entry(list, struct page, lru);
2604 else
2605 page = list_first_entry(list, struct page, lru);
2606
2607 list_del(&page->lru);
2608 pcp->count--;
2609
2610 } while (check_new_pcp(page));
2611 } else {
2612 /*
2613 * We most definitely don't want callers attempting to
2614 * allocate greater than order-1 page units with __GFP_NOFAIL.
2615 */
2616 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2617 spin_lock_irqsave(&zone->lock, flags);
2618
2619 do {
2620 page = NULL;
2621 if (alloc_flags & ALLOC_HARDER) {
2622 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2623 if (page)
2624 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2625 }
2626 if (!page)
2627 page = __rmqueue(zone, order, migratetype);
2628 } while (page && check_new_pages(page, order));
2629 spin_unlock(&zone->lock);
2630 if (!page)
2631 goto failed;
2632 __mod_zone_freepage_state(zone, -(1 << order),
2633 get_pcppage_migratetype(page));
2634 }
2635
2636 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2637 zone_statistics(preferred_zone, zone, gfp_flags);
2638 local_irq_restore(flags);
2639
2640 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2641 return page;
2642
2643 failed:
2644 local_irq_restore(flags);
2645 return NULL;
2646 }
2647
2648 #ifdef CONFIG_FAIL_PAGE_ALLOC
2649
2650 static struct {
2651 struct fault_attr attr;
2652
2653 bool ignore_gfp_highmem;
2654 bool ignore_gfp_reclaim;
2655 u32 min_order;
2656 } fail_page_alloc = {
2657 .attr = FAULT_ATTR_INITIALIZER,
2658 .ignore_gfp_reclaim = true,
2659 .ignore_gfp_highmem = true,
2660 .min_order = 1,
2661 };
2662
2663 static int __init setup_fail_page_alloc(char *str)
2664 {
2665 return setup_fault_attr(&fail_page_alloc.attr, str);
2666 }
2667 __setup("fail_page_alloc=", setup_fail_page_alloc);
2668
2669 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2670 {
2671 if (order < fail_page_alloc.min_order)
2672 return false;
2673 if (gfp_mask & __GFP_NOFAIL)
2674 return false;
2675 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2676 return false;
2677 if (fail_page_alloc.ignore_gfp_reclaim &&
2678 (gfp_mask & __GFP_DIRECT_RECLAIM))
2679 return false;
2680
2681 return should_fail(&fail_page_alloc.attr, 1 << order);
2682 }
2683
2684 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2685
2686 static int __init fail_page_alloc_debugfs(void)
2687 {
2688 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2689 struct dentry *dir;
2690
2691 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2692 &fail_page_alloc.attr);
2693 if (IS_ERR(dir))
2694 return PTR_ERR(dir);
2695
2696 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2697 &fail_page_alloc.ignore_gfp_reclaim))
2698 goto fail;
2699 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2700 &fail_page_alloc.ignore_gfp_highmem))
2701 goto fail;
2702 if (!debugfs_create_u32("min-order", mode, dir,
2703 &fail_page_alloc.min_order))
2704 goto fail;
2705
2706 return 0;
2707 fail:
2708 debugfs_remove_recursive(dir);
2709
2710 return -ENOMEM;
2711 }
2712
2713 late_initcall(fail_page_alloc_debugfs);
2714
2715 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2716
2717 #else /* CONFIG_FAIL_PAGE_ALLOC */
2718
2719 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2720 {
2721 return false;
2722 }
2723
2724 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2725
2726 /*
2727 * Return true if free base pages are above 'mark'. For high-order checks it
2728 * will return true of the order-0 watermark is reached and there is at least
2729 * one free page of a suitable size. Checking now avoids taking the zone lock
2730 * to check in the allocation paths if no pages are free.
2731 */
2732 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2733 int classzone_idx, unsigned int alloc_flags,
2734 long free_pages)
2735 {
2736 long min = mark;
2737 int o;
2738 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2739
2740 /* free_pages may go negative - that's OK */
2741 free_pages -= (1 << order) - 1;
2742
2743 if (alloc_flags & ALLOC_HIGH)
2744 min -= min / 2;
2745
2746 /*
2747 * If the caller does not have rights to ALLOC_HARDER then subtract
2748 * the high-atomic reserves. This will over-estimate the size of the
2749 * atomic reserve but it avoids a search.
2750 */
2751 if (likely(!alloc_harder))
2752 free_pages -= z->nr_reserved_highatomic;
2753 else
2754 min -= min / 4;
2755
2756 #ifdef CONFIG_CMA
2757 /* If allocation can't use CMA areas don't use free CMA pages */
2758 if (!(alloc_flags & ALLOC_CMA))
2759 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2760 #endif
2761
2762 /*
2763 * Check watermarks for an order-0 allocation request. If these
2764 * are not met, then a high-order request also cannot go ahead
2765 * even if a suitable page happened to be free.
2766 */
2767 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2768 return false;
2769
2770 /* If this is an order-0 request then the watermark is fine */
2771 if (!order)
2772 return true;
2773
2774 /* For a high-order request, check at least one suitable page is free */
2775 for (o = order; o < MAX_ORDER; o++) {
2776 struct free_area *area = &z->free_area[o];
2777 int mt;
2778
2779 if (!area->nr_free)
2780 continue;
2781
2782 if (alloc_harder)
2783 return true;
2784
2785 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2786 if (!list_empty(&area->free_list[mt]))
2787 return true;
2788 }
2789
2790 #ifdef CONFIG_CMA
2791 if ((alloc_flags & ALLOC_CMA) &&
2792 !list_empty(&area->free_list[MIGRATE_CMA])) {
2793 return true;
2794 }
2795 #endif
2796 }
2797 return false;
2798 }
2799
2800 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2801 int classzone_idx, unsigned int alloc_flags)
2802 {
2803 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2804 zone_page_state(z, NR_FREE_PAGES));
2805 }
2806
2807 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2808 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2809 {
2810 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2811 long cma_pages = 0;
2812
2813 #ifdef CONFIG_CMA
2814 /* If allocation can't use CMA areas don't use free CMA pages */
2815 if (!(alloc_flags & ALLOC_CMA))
2816 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2817 #endif
2818
2819 /*
2820 * Fast check for order-0 only. If this fails then the reserves
2821 * need to be calculated. There is a corner case where the check
2822 * passes but only the high-order atomic reserve are free. If
2823 * the caller is !atomic then it'll uselessly search the free
2824 * list. That corner case is then slower but it is harmless.
2825 */
2826 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2827 return true;
2828
2829 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2830 free_pages);
2831 }
2832
2833 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2834 unsigned long mark, int classzone_idx)
2835 {
2836 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2837
2838 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2839 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2840
2841 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2842 free_pages);
2843 }
2844
2845 #ifdef CONFIG_NUMA
2846 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2847 {
2848 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2849 RECLAIM_DISTANCE;
2850 }
2851 #else /* CONFIG_NUMA */
2852 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2853 {
2854 return true;
2855 }
2856 #endif /* CONFIG_NUMA */
2857
2858 /*
2859 * get_page_from_freelist goes through the zonelist trying to allocate
2860 * a page.
2861 */
2862 static struct page *
2863 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2864 const struct alloc_context *ac)
2865 {
2866 struct zoneref *z = ac->preferred_zoneref;
2867 struct zone *zone;
2868 struct pglist_data *last_pgdat_dirty_limit = NULL;
2869
2870 /*
2871 * Scan zonelist, looking for a zone with enough free.
2872 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2873 */
2874 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2875 ac->nodemask) {
2876 struct page *page;
2877 unsigned long mark;
2878
2879 if (cpusets_enabled() &&
2880 (alloc_flags & ALLOC_CPUSET) &&
2881 !__cpuset_zone_allowed(zone, gfp_mask))
2882 continue;
2883 /*
2884 * When allocating a page cache page for writing, we
2885 * want to get it from a node that is within its dirty
2886 * limit, such that no single node holds more than its
2887 * proportional share of globally allowed dirty pages.
2888 * The dirty limits take into account the node's
2889 * lowmem reserves and high watermark so that kswapd
2890 * should be able to balance it without having to
2891 * write pages from its LRU list.
2892 *
2893 * XXX: For now, allow allocations to potentially
2894 * exceed the per-node dirty limit in the slowpath
2895 * (spread_dirty_pages unset) before going into reclaim,
2896 * which is important when on a NUMA setup the allowed
2897 * nodes are together not big enough to reach the
2898 * global limit. The proper fix for these situations
2899 * will require awareness of nodes in the
2900 * dirty-throttling and the flusher threads.
2901 */
2902 if (ac->spread_dirty_pages) {
2903 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2904 continue;
2905
2906 if (!node_dirty_ok(zone->zone_pgdat)) {
2907 last_pgdat_dirty_limit = zone->zone_pgdat;
2908 continue;
2909 }
2910 }
2911
2912 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2913 if (!zone_watermark_fast(zone, order, mark,
2914 ac_classzone_idx(ac), alloc_flags)) {
2915 int ret;
2916
2917 /* Checked here to keep the fast path fast */
2918 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2919 if (alloc_flags & ALLOC_NO_WATERMARKS)
2920 goto try_this_zone;
2921
2922 if (node_reclaim_mode == 0 ||
2923 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2924 continue;
2925
2926 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2927 switch (ret) {
2928 case NODE_RECLAIM_NOSCAN:
2929 /* did not scan */
2930 continue;
2931 case NODE_RECLAIM_FULL:
2932 /* scanned but unreclaimable */
2933 continue;
2934 default:
2935 /* did we reclaim enough */
2936 if (zone_watermark_ok(zone, order, mark,
2937 ac_classzone_idx(ac), alloc_flags))
2938 goto try_this_zone;
2939
2940 continue;
2941 }
2942 }
2943
2944 try_this_zone:
2945 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2946 gfp_mask, alloc_flags, ac->migratetype);
2947 if (page) {
2948 prep_new_page(page, order, gfp_mask, alloc_flags);
2949
2950 /*
2951 * If this is a high-order atomic allocation then check
2952 * if the pageblock should be reserved for the future
2953 */
2954 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2955 reserve_highatomic_pageblock(page, zone, order);
2956
2957 return page;
2958 }
2959 }
2960
2961 return NULL;
2962 }
2963
2964 /*
2965 * Large machines with many possible nodes should not always dump per-node
2966 * meminfo in irq context.
2967 */
2968 static inline bool should_suppress_show_mem(void)
2969 {
2970 bool ret = false;
2971
2972 #if NODES_SHIFT > 8
2973 ret = in_interrupt();
2974 #endif
2975 return ret;
2976 }
2977
2978 static DEFINE_RATELIMIT_STATE(nopage_rs,
2979 DEFAULT_RATELIMIT_INTERVAL,
2980 DEFAULT_RATELIMIT_BURST);
2981
2982 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
2983 {
2984 unsigned int filter = SHOW_MEM_FILTER_NODES;
2985 struct va_format vaf;
2986 va_list args;
2987
2988 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2989 debug_guardpage_minorder() > 0)
2990 return;
2991
2992 /*
2993 * This documents exceptions given to allocations in certain
2994 * contexts that are allowed to allocate outside current's set
2995 * of allowed nodes.
2996 */
2997 if (!(gfp_mask & __GFP_NOMEMALLOC))
2998 if (test_thread_flag(TIF_MEMDIE) ||
2999 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3000 filter &= ~SHOW_MEM_FILTER_NODES;
3001 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3002 filter &= ~SHOW_MEM_FILTER_NODES;
3003
3004 pr_warn("%s: ", current->comm);
3005
3006 va_start(args, fmt);
3007 vaf.fmt = fmt;
3008 vaf.va = &args;
3009 pr_cont("%pV", &vaf);
3010 va_end(args);
3011
3012 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3013
3014 dump_stack();
3015 if (!should_suppress_show_mem())
3016 show_mem(filter);
3017 }
3018
3019 static inline struct page *
3020 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3021 const struct alloc_context *ac, unsigned long *did_some_progress)
3022 {
3023 struct oom_control oc = {
3024 .zonelist = ac->zonelist,
3025 .nodemask = ac->nodemask,
3026 .memcg = NULL,
3027 .gfp_mask = gfp_mask,
3028 .order = order,
3029 };
3030 struct page *page;
3031
3032 *did_some_progress = 0;
3033
3034 /*
3035 * Acquire the oom lock. If that fails, somebody else is
3036 * making progress for us.
3037 */
3038 if (!mutex_trylock(&oom_lock)) {
3039 *did_some_progress = 1;
3040 schedule_timeout_uninterruptible(1);
3041 return NULL;
3042 }
3043
3044 /*
3045 * Go through the zonelist yet one more time, keep very high watermark
3046 * here, this is only to catch a parallel oom killing, we must fail if
3047 * we're still under heavy pressure.
3048 */
3049 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3050 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3051 if (page)
3052 goto out;
3053
3054 if (!(gfp_mask & __GFP_NOFAIL)) {
3055 /* Coredumps can quickly deplete all memory reserves */
3056 if (current->flags & PF_DUMPCORE)
3057 goto out;
3058 /* The OOM killer will not help higher order allocs */
3059 if (order > PAGE_ALLOC_COSTLY_ORDER)
3060 goto out;
3061 /* The OOM killer does not needlessly kill tasks for lowmem */
3062 if (ac->high_zoneidx < ZONE_NORMAL)
3063 goto out;
3064 if (pm_suspended_storage())
3065 goto out;
3066 /*
3067 * XXX: GFP_NOFS allocations should rather fail than rely on
3068 * other request to make a forward progress.
3069 * We are in an unfortunate situation where out_of_memory cannot
3070 * do much for this context but let's try it to at least get
3071 * access to memory reserved if the current task is killed (see
3072 * out_of_memory). Once filesystems are ready to handle allocation
3073 * failures more gracefully we should just bail out here.
3074 */
3075
3076 /* The OOM killer may not free memory on a specific node */
3077 if (gfp_mask & __GFP_THISNODE)
3078 goto out;
3079 }
3080 /* Exhausted what can be done so it's blamo time */
3081 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3082 *did_some_progress = 1;
3083
3084 if (gfp_mask & __GFP_NOFAIL) {
3085 page = get_page_from_freelist(gfp_mask, order,
3086 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3087 /*
3088 * fallback to ignore cpuset restriction if our nodes
3089 * are depleted
3090 */
3091 if (!page)
3092 page = get_page_from_freelist(gfp_mask, order,
3093 ALLOC_NO_WATERMARKS, ac);
3094 }
3095 }
3096 out:
3097 mutex_unlock(&oom_lock);
3098 return page;
3099 }
3100
3101 /*
3102 * Maximum number of compaction retries wit a progress before OOM
3103 * killer is consider as the only way to move forward.
3104 */
3105 #define MAX_COMPACT_RETRIES 16
3106
3107 #ifdef CONFIG_COMPACTION
3108 /* Try memory compaction for high-order allocations before reclaim */
3109 static struct page *
3110 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3111 unsigned int alloc_flags, const struct alloc_context *ac,
3112 enum compact_priority prio, enum compact_result *compact_result)
3113 {
3114 struct page *page;
3115
3116 if (!order)
3117 return NULL;
3118
3119 current->flags |= PF_MEMALLOC;
3120 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3121 prio);
3122 current->flags &= ~PF_MEMALLOC;
3123
3124 if (*compact_result <= COMPACT_INACTIVE)
3125 return NULL;
3126
3127 /*
3128 * At least in one zone compaction wasn't deferred or skipped, so let's
3129 * count a compaction stall
3130 */
3131 count_vm_event(COMPACTSTALL);
3132
3133 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3134
3135 if (page) {
3136 struct zone *zone = page_zone(page);
3137
3138 zone->compact_blockskip_flush = false;
3139 compaction_defer_reset(zone, order, true);
3140 count_vm_event(COMPACTSUCCESS);
3141 return page;
3142 }
3143
3144 /*
3145 * It's bad if compaction run occurs and fails. The most likely reason
3146 * is that pages exist, but not enough to satisfy watermarks.
3147 */
3148 count_vm_event(COMPACTFAIL);
3149
3150 cond_resched();
3151
3152 return NULL;
3153 }
3154
3155 static inline bool
3156 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3157 enum compact_result compact_result,
3158 enum compact_priority *compact_priority,
3159 int *compaction_retries)
3160 {
3161 int max_retries = MAX_COMPACT_RETRIES;
3162 int min_priority;
3163
3164 if (!order)
3165 return false;
3166
3167 if (compaction_made_progress(compact_result))
3168 (*compaction_retries)++;
3169
3170 /*
3171 * compaction considers all the zone as desperately out of memory
3172 * so it doesn't really make much sense to retry except when the
3173 * failure could be caused by insufficient priority
3174 */
3175 if (compaction_failed(compact_result))
3176 goto check_priority;
3177
3178 /*
3179 * make sure the compaction wasn't deferred or didn't bail out early
3180 * due to locks contention before we declare that we should give up.
3181 * But do not retry if the given zonelist is not suitable for
3182 * compaction.
3183 */
3184 if (compaction_withdrawn(compact_result))
3185 return compaction_zonelist_suitable(ac, order, alloc_flags);
3186
3187 /*
3188 * !costly requests are much more important than __GFP_REPEAT
3189 * costly ones because they are de facto nofail and invoke OOM
3190 * killer to move on while costly can fail and users are ready
3191 * to cope with that. 1/4 retries is rather arbitrary but we
3192 * would need much more detailed feedback from compaction to
3193 * make a better decision.
3194 */
3195 if (order > PAGE_ALLOC_COSTLY_ORDER)
3196 max_retries /= 4;
3197 if (*compaction_retries <= max_retries)
3198 return true;
3199
3200 /*
3201 * Make sure there are attempts at the highest priority if we exhausted
3202 * all retries or failed at the lower priorities.
3203 */
3204 check_priority:
3205 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3206 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3207 if (*compact_priority > min_priority) {
3208 (*compact_priority)--;
3209 *compaction_retries = 0;
3210 return true;
3211 }
3212 return false;
3213 }
3214 #else
3215 static inline struct page *
3216 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3217 unsigned int alloc_flags, const struct alloc_context *ac,
3218 enum compact_priority prio, enum compact_result *compact_result)
3219 {
3220 *compact_result = COMPACT_SKIPPED;
3221 return NULL;
3222 }
3223
3224 static inline bool
3225 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3226 enum compact_result compact_result,
3227 enum compact_priority *compact_priority,
3228 int *compaction_retries)
3229 {
3230 struct zone *zone;
3231 struct zoneref *z;
3232
3233 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3234 return false;
3235
3236 /*
3237 * There are setups with compaction disabled which would prefer to loop
3238 * inside the allocator rather than hit the oom killer prematurely.
3239 * Let's give them a good hope and keep retrying while the order-0
3240 * watermarks are OK.
3241 */
3242 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3243 ac->nodemask) {
3244 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3245 ac_classzone_idx(ac), alloc_flags))
3246 return true;
3247 }
3248 return false;
3249 }
3250 #endif /* CONFIG_COMPACTION */
3251
3252 /* Perform direct synchronous page reclaim */
3253 static int
3254 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3255 const struct alloc_context *ac)
3256 {
3257 struct reclaim_state reclaim_state;
3258 int progress;
3259
3260 cond_resched();
3261
3262 /* We now go into synchronous reclaim */
3263 cpuset_memory_pressure_bump();
3264 current->flags |= PF_MEMALLOC;
3265 lockdep_set_current_reclaim_state(gfp_mask);
3266 reclaim_state.reclaimed_slab = 0;
3267 current->reclaim_state = &reclaim_state;
3268
3269 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3270 ac->nodemask);
3271
3272 current->reclaim_state = NULL;
3273 lockdep_clear_current_reclaim_state();
3274 current->flags &= ~PF_MEMALLOC;
3275
3276 cond_resched();
3277
3278 return progress;
3279 }
3280
3281 /* The really slow allocator path where we enter direct reclaim */
3282 static inline struct page *
3283 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3284 unsigned int alloc_flags, const struct alloc_context *ac,
3285 unsigned long *did_some_progress)
3286 {
3287 struct page *page = NULL;
3288 bool drained = false;
3289
3290 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3291 if (unlikely(!(*did_some_progress)))
3292 return NULL;
3293
3294 retry:
3295 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3296
3297 /*
3298 * If an allocation failed after direct reclaim, it could be because
3299 * pages are pinned on the per-cpu lists or in high alloc reserves.
3300 * Shrink them them and try again
3301 */
3302 if (!page && !drained) {
3303 unreserve_highatomic_pageblock(ac);
3304 drain_all_pages(NULL);
3305 drained = true;
3306 goto retry;
3307 }
3308
3309 return page;
3310 }
3311
3312 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3313 {
3314 struct zoneref *z;
3315 struct zone *zone;
3316 pg_data_t *last_pgdat = NULL;
3317
3318 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3319 ac->high_zoneidx, ac->nodemask) {
3320 if (last_pgdat != zone->zone_pgdat)
3321 wakeup_kswapd(zone, order, ac->high_zoneidx);
3322 last_pgdat = zone->zone_pgdat;
3323 }
3324 }
3325
3326 static inline unsigned int
3327 gfp_to_alloc_flags(gfp_t gfp_mask)
3328 {
3329 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3330
3331 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3332 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3333
3334 /*
3335 * The caller may dip into page reserves a bit more if the caller
3336 * cannot run direct reclaim, or if the caller has realtime scheduling
3337 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3338 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3339 */
3340 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3341
3342 if (gfp_mask & __GFP_ATOMIC) {
3343 /*
3344 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3345 * if it can't schedule.
3346 */
3347 if (!(gfp_mask & __GFP_NOMEMALLOC))
3348 alloc_flags |= ALLOC_HARDER;
3349 /*
3350 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3351 * comment for __cpuset_node_allowed().
3352 */
3353 alloc_flags &= ~ALLOC_CPUSET;
3354 } else if (unlikely(rt_task(current)) && !in_interrupt())
3355 alloc_flags |= ALLOC_HARDER;
3356
3357 #ifdef CONFIG_CMA
3358 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3359 alloc_flags |= ALLOC_CMA;
3360 #endif
3361 return alloc_flags;
3362 }
3363
3364 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3365 {
3366 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3367 return false;
3368
3369 if (gfp_mask & __GFP_MEMALLOC)
3370 return true;
3371 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3372 return true;
3373 if (!in_interrupt() &&
3374 ((current->flags & PF_MEMALLOC) ||
3375 unlikely(test_thread_flag(TIF_MEMDIE))))
3376 return true;
3377
3378 return false;
3379 }
3380
3381 /*
3382 * Maximum number of reclaim retries without any progress before OOM killer
3383 * is consider as the only way to move forward.
3384 */
3385 #define MAX_RECLAIM_RETRIES 16
3386
3387 /*
3388 * Checks whether it makes sense to retry the reclaim to make a forward progress
3389 * for the given allocation request.
3390 * The reclaim feedback represented by did_some_progress (any progress during
3391 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3392 * any progress in a row) is considered as well as the reclaimable pages on the
3393 * applicable zone list (with a backoff mechanism which is a function of
3394 * no_progress_loops).
3395 *
3396 * Returns true if a retry is viable or false to enter the oom path.
3397 */
3398 static inline bool
3399 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3400 struct alloc_context *ac, int alloc_flags,
3401 bool did_some_progress, int *no_progress_loops)
3402 {
3403 struct zone *zone;
3404 struct zoneref *z;
3405
3406 /*
3407 * Costly allocations might have made a progress but this doesn't mean
3408 * their order will become available due to high fragmentation so
3409 * always increment the no progress counter for them
3410 */
3411 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3412 *no_progress_loops = 0;
3413 else
3414 (*no_progress_loops)++;
3415
3416 /*
3417 * Make sure we converge to OOM if we cannot make any progress
3418 * several times in the row.
3419 */
3420 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3421 return false;
3422
3423 /*
3424 * Keep reclaiming pages while there is a chance this will lead
3425 * somewhere. If none of the target zones can satisfy our allocation
3426 * request even if all reclaimable pages are considered then we are
3427 * screwed and have to go OOM.
3428 */
3429 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3430 ac->nodemask) {
3431 unsigned long available;
3432 unsigned long reclaimable;
3433
3434 available = reclaimable = zone_reclaimable_pages(zone);
3435 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3436 MAX_RECLAIM_RETRIES);
3437 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3438
3439 /*
3440 * Would the allocation succeed if we reclaimed the whole
3441 * available?
3442 */
3443 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3444 ac_classzone_idx(ac), alloc_flags, available)) {
3445 /*
3446 * If we didn't make any progress and have a lot of
3447 * dirty + writeback pages then we should wait for
3448 * an IO to complete to slow down the reclaim and
3449 * prevent from pre mature OOM
3450 */
3451 if (!did_some_progress) {
3452 unsigned long write_pending;
3453
3454 write_pending = zone_page_state_snapshot(zone,
3455 NR_ZONE_WRITE_PENDING);
3456
3457 if (2 * write_pending > reclaimable) {
3458 congestion_wait(BLK_RW_ASYNC, HZ/10);
3459 return true;
3460 }
3461 }
3462
3463 /*
3464 * Memory allocation/reclaim might be called from a WQ
3465 * context and the current implementation of the WQ
3466 * concurrency control doesn't recognize that
3467 * a particular WQ is congested if the worker thread is
3468 * looping without ever sleeping. Therefore we have to
3469 * do a short sleep here rather than calling
3470 * cond_resched().
3471 */
3472 if (current->flags & PF_WQ_WORKER)
3473 schedule_timeout_uninterruptible(1);
3474 else
3475 cond_resched();
3476
3477 return true;
3478 }
3479 }
3480
3481 return false;
3482 }
3483
3484 static inline struct page *
3485 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3486 struct alloc_context *ac)
3487 {
3488 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3489 struct page *page = NULL;
3490 unsigned int alloc_flags;
3491 unsigned long did_some_progress;
3492 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3493 enum compact_result compact_result;
3494 int compaction_retries = 0;
3495 int no_progress_loops = 0;
3496 unsigned long alloc_start = jiffies;
3497 unsigned int stall_timeout = 10 * HZ;
3498
3499 /*
3500 * In the slowpath, we sanity check order to avoid ever trying to
3501 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3502 * be using allocators in order of preference for an area that is
3503 * too large.
3504 */
3505 if (order >= MAX_ORDER) {
3506 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3507 return NULL;
3508 }
3509
3510 /*
3511 * We also sanity check to catch abuse of atomic reserves being used by
3512 * callers that are not in atomic context.
3513 */
3514 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3515 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3516 gfp_mask &= ~__GFP_ATOMIC;
3517
3518 /*
3519 * The fast path uses conservative alloc_flags to succeed only until
3520 * kswapd needs to be woken up, and to avoid the cost of setting up
3521 * alloc_flags precisely. So we do that now.
3522 */
3523 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3524
3525 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3526 wake_all_kswapds(order, ac);
3527
3528 /*
3529 * The adjusted alloc_flags might result in immediate success, so try
3530 * that first
3531 */
3532 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3533 if (page)
3534 goto got_pg;
3535
3536 /*
3537 * For costly allocations, try direct compaction first, as it's likely
3538 * that we have enough base pages and don't need to reclaim. Don't try
3539 * that for allocations that are allowed to ignore watermarks, as the
3540 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3541 */
3542 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3543 !gfp_pfmemalloc_allowed(gfp_mask)) {
3544 page = __alloc_pages_direct_compact(gfp_mask, order,
3545 alloc_flags, ac,
3546 INIT_COMPACT_PRIORITY,
3547 &compact_result);
3548 if (page)
3549 goto got_pg;
3550
3551 /*
3552 * Checks for costly allocations with __GFP_NORETRY, which
3553 * includes THP page fault allocations
3554 */
3555 if (gfp_mask & __GFP_NORETRY) {
3556 /*
3557 * If compaction is deferred for high-order allocations,
3558 * it is because sync compaction recently failed. If
3559 * this is the case and the caller requested a THP
3560 * allocation, we do not want to heavily disrupt the
3561 * system, so we fail the allocation instead of entering
3562 * direct reclaim.
3563 */
3564 if (compact_result == COMPACT_DEFERRED)
3565 goto nopage;
3566
3567 /*
3568 * Looks like reclaim/compaction is worth trying, but
3569 * sync compaction could be very expensive, so keep
3570 * using async compaction.
3571 */
3572 compact_priority = INIT_COMPACT_PRIORITY;
3573 }
3574 }
3575
3576 retry:
3577 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3578 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3579 wake_all_kswapds(order, ac);
3580
3581 if (gfp_pfmemalloc_allowed(gfp_mask))
3582 alloc_flags = ALLOC_NO_WATERMARKS;
3583
3584 /*
3585 * Reset the zonelist iterators if memory policies can be ignored.
3586 * These allocations are high priority and system rather than user
3587 * orientated.
3588 */
3589 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3590 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3591 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3592 ac->high_zoneidx, ac->nodemask);
3593 }
3594
3595 /* Attempt with potentially adjusted zonelist and alloc_flags */
3596 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3597 if (page)
3598 goto got_pg;
3599
3600 /* Caller is not willing to reclaim, we can't balance anything */
3601 if (!can_direct_reclaim) {
3602 /*
3603 * All existing users of the __GFP_NOFAIL are blockable, so warn
3604 * of any new users that actually allow this type of allocation
3605 * to fail.
3606 */
3607 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3608 goto nopage;
3609 }
3610
3611 /* Avoid recursion of direct reclaim */
3612 if (current->flags & PF_MEMALLOC) {
3613 /*
3614 * __GFP_NOFAIL request from this context is rather bizarre
3615 * because we cannot reclaim anything and only can loop waiting
3616 * for somebody to do a work for us.
3617 */
3618 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3619 cond_resched();
3620 goto retry;
3621 }
3622 goto nopage;
3623 }
3624
3625 /* Avoid allocations with no watermarks from looping endlessly */
3626 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3627 goto nopage;
3628
3629
3630 /* Try direct reclaim and then allocating */
3631 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3632 &did_some_progress);
3633 if (page)
3634 goto got_pg;
3635
3636 /* Try direct compaction and then allocating */
3637 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3638 compact_priority, &compact_result);
3639 if (page)
3640 goto got_pg;
3641
3642 /* Do not loop if specifically requested */
3643 if (gfp_mask & __GFP_NORETRY)
3644 goto nopage;
3645
3646 /*
3647 * Do not retry costly high order allocations unless they are
3648 * __GFP_REPEAT
3649 */
3650 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3651 goto nopage;
3652
3653 /* Make sure we know about allocations which stall for too long */
3654 if (time_after(jiffies, alloc_start + stall_timeout)) {
3655 warn_alloc(gfp_mask,
3656 "page alloction stalls for %ums, order:%u\n",
3657 jiffies_to_msecs(jiffies-alloc_start), order);
3658 stall_timeout += 10 * HZ;
3659 }
3660
3661 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3662 did_some_progress > 0, &no_progress_loops))
3663 goto retry;
3664
3665 /*
3666 * It doesn't make any sense to retry for the compaction if the order-0
3667 * reclaim is not able to make any progress because the current
3668 * implementation of the compaction depends on the sufficient amount
3669 * of free memory (see __compaction_suitable)
3670 */
3671 if (did_some_progress > 0 &&
3672 should_compact_retry(ac, order, alloc_flags,
3673 compact_result, &compact_priority,
3674 &compaction_retries))
3675 goto retry;
3676
3677 /* Reclaim has failed us, start killing things */
3678 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3679 if (page)
3680 goto got_pg;
3681
3682 /* Retry as long as the OOM killer is making progress */
3683 if (did_some_progress) {
3684 no_progress_loops = 0;
3685 goto retry;
3686 }
3687
3688 nopage:
3689 warn_alloc(gfp_mask,
3690 "page allocation failure: order:%u", order);
3691 got_pg:
3692 return page;
3693 }
3694
3695 /*
3696 * This is the 'heart' of the zoned buddy allocator.
3697 */
3698 struct page *
3699 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3700 struct zonelist *zonelist, nodemask_t *nodemask)
3701 {
3702 struct page *page;
3703 unsigned int cpuset_mems_cookie;
3704 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3705 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3706 struct alloc_context ac = {
3707 .high_zoneidx = gfp_zone(gfp_mask),
3708 .zonelist = zonelist,
3709 .nodemask = nodemask,
3710 .migratetype = gfpflags_to_migratetype(gfp_mask),
3711 };
3712
3713 if (cpusets_enabled()) {
3714 alloc_mask |= __GFP_HARDWALL;
3715 alloc_flags |= ALLOC_CPUSET;
3716 if (!ac.nodemask)
3717 ac.nodemask = &cpuset_current_mems_allowed;
3718 }
3719
3720 gfp_mask &= gfp_allowed_mask;
3721
3722 lockdep_trace_alloc(gfp_mask);
3723
3724 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3725
3726 if (should_fail_alloc_page(gfp_mask, order))
3727 return NULL;
3728
3729 /*
3730 * Check the zones suitable for the gfp_mask contain at least one
3731 * valid zone. It's possible to have an empty zonelist as a result
3732 * of __GFP_THISNODE and a memoryless node
3733 */
3734 if (unlikely(!zonelist->_zonerefs->zone))
3735 return NULL;
3736
3737 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3738 alloc_flags |= ALLOC_CMA;
3739
3740 retry_cpuset:
3741 cpuset_mems_cookie = read_mems_allowed_begin();
3742
3743 /* Dirty zone balancing only done in the fast path */
3744 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3745
3746 /*
3747 * The preferred zone is used for statistics but crucially it is
3748 * also used as the starting point for the zonelist iterator. It
3749 * may get reset for allocations that ignore memory policies.
3750 */
3751 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3752 ac.high_zoneidx, ac.nodemask);
3753 if (!ac.preferred_zoneref) {
3754 page = NULL;
3755 goto no_zone;
3756 }
3757
3758 /* First allocation attempt */
3759 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3760 if (likely(page))
3761 goto out;
3762
3763 /*
3764 * Runtime PM, block IO and its error handling path can deadlock
3765 * because I/O on the device might not complete.
3766 */
3767 alloc_mask = memalloc_noio_flags(gfp_mask);
3768 ac.spread_dirty_pages = false;
3769
3770 /*
3771 * Restore the original nodemask if it was potentially replaced with
3772 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3773 */
3774 if (cpusets_enabled())
3775 ac.nodemask = nodemask;
3776 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3777
3778 no_zone:
3779 /*
3780 * When updating a task's mems_allowed, it is possible to race with
3781 * parallel threads in such a way that an allocation can fail while
3782 * the mask is being updated. If a page allocation is about to fail,
3783 * check if the cpuset changed during allocation and if so, retry.
3784 */
3785 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3786 alloc_mask = gfp_mask;
3787 goto retry_cpuset;
3788 }
3789
3790 out:
3791 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3792 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3793 __free_pages(page, order);
3794 page = NULL;
3795 }
3796
3797 if (kmemcheck_enabled && page)
3798 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3799
3800 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3801
3802 return page;
3803 }
3804 EXPORT_SYMBOL(__alloc_pages_nodemask);
3805
3806 /*
3807 * Common helper functions.
3808 */
3809 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3810 {
3811 struct page *page;
3812
3813 /*
3814 * __get_free_pages() returns a 32-bit address, which cannot represent
3815 * a highmem page
3816 */
3817 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3818
3819 page = alloc_pages(gfp_mask, order);
3820 if (!page)
3821 return 0;
3822 return (unsigned long) page_address(page);
3823 }
3824 EXPORT_SYMBOL(__get_free_pages);
3825
3826 unsigned long get_zeroed_page(gfp_t gfp_mask)
3827 {
3828 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3829 }
3830 EXPORT_SYMBOL(get_zeroed_page);
3831
3832 void __free_pages(struct page *page, unsigned int order)
3833 {
3834 if (put_page_testzero(page)) {
3835 if (order == 0)
3836 free_hot_cold_page(page, false);
3837 else
3838 __free_pages_ok(page, order);
3839 }
3840 }
3841
3842 EXPORT_SYMBOL(__free_pages);
3843
3844 void free_pages(unsigned long addr, unsigned int order)
3845 {
3846 if (addr != 0) {
3847 VM_BUG_ON(!virt_addr_valid((void *)addr));
3848 __free_pages(virt_to_page((void *)addr), order);
3849 }
3850 }
3851
3852 EXPORT_SYMBOL(free_pages);
3853
3854 /*
3855 * Page Fragment:
3856 * An arbitrary-length arbitrary-offset area of memory which resides
3857 * within a 0 or higher order page. Multiple fragments within that page
3858 * are individually refcounted, in the page's reference counter.
3859 *
3860 * The page_frag functions below provide a simple allocation framework for
3861 * page fragments. This is used by the network stack and network device
3862 * drivers to provide a backing region of memory for use as either an
3863 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3864 */
3865 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3866 gfp_t gfp_mask)
3867 {
3868 struct page *page = NULL;
3869 gfp_t gfp = gfp_mask;
3870
3871 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3872 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3873 __GFP_NOMEMALLOC;
3874 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3875 PAGE_FRAG_CACHE_MAX_ORDER);
3876 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3877 #endif
3878 if (unlikely(!page))
3879 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3880
3881 nc->va = page ? page_address(page) : NULL;
3882
3883 return page;
3884 }
3885
3886 void *__alloc_page_frag(struct page_frag_cache *nc,
3887 unsigned int fragsz, gfp_t gfp_mask)
3888 {
3889 unsigned int size = PAGE_SIZE;
3890 struct page *page;
3891 int offset;
3892
3893 if (unlikely(!nc->va)) {
3894 refill:
3895 page = __page_frag_refill(nc, gfp_mask);
3896 if (!page)
3897 return NULL;
3898
3899 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3900 /* if size can vary use size else just use PAGE_SIZE */
3901 size = nc->size;
3902 #endif
3903 /* Even if we own the page, we do not use atomic_set().
3904 * This would break get_page_unless_zero() users.
3905 */
3906 page_ref_add(page, size - 1);
3907
3908 /* reset page count bias and offset to start of new frag */
3909 nc->pfmemalloc = page_is_pfmemalloc(page);
3910 nc->pagecnt_bias = size;
3911 nc->offset = size;
3912 }
3913
3914 offset = nc->offset - fragsz;
3915 if (unlikely(offset < 0)) {
3916 page = virt_to_page(nc->va);
3917
3918 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3919 goto refill;
3920
3921 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3922 /* if size can vary use size else just use PAGE_SIZE */
3923 size = nc->size;
3924 #endif
3925 /* OK, page count is 0, we can safely set it */
3926 set_page_count(page, size);
3927
3928 /* reset page count bias and offset to start of new frag */
3929 nc->pagecnt_bias = size;
3930 offset = size - fragsz;
3931 }
3932
3933 nc->pagecnt_bias--;
3934 nc->offset = offset;
3935
3936 return nc->va + offset;
3937 }
3938 EXPORT_SYMBOL(__alloc_page_frag);
3939
3940 /*
3941 * Frees a page fragment allocated out of either a compound or order 0 page.
3942 */
3943 void __free_page_frag(void *addr)
3944 {
3945 struct page *page = virt_to_head_page(addr);
3946
3947 if (unlikely(put_page_testzero(page)))
3948 __free_pages_ok(page, compound_order(page));
3949 }
3950 EXPORT_SYMBOL(__free_page_frag);
3951
3952 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3953 size_t size)
3954 {
3955 if (addr) {
3956 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3957 unsigned long used = addr + PAGE_ALIGN(size);
3958
3959 split_page(virt_to_page((void *)addr), order);
3960 while (used < alloc_end) {
3961 free_page(used);
3962 used += PAGE_SIZE;
3963 }
3964 }
3965 return (void *)addr;
3966 }
3967
3968 /**
3969 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3970 * @size: the number of bytes to allocate
3971 * @gfp_mask: GFP flags for the allocation
3972 *
3973 * This function is similar to alloc_pages(), except that it allocates the
3974 * minimum number of pages to satisfy the request. alloc_pages() can only
3975 * allocate memory in power-of-two pages.
3976 *
3977 * This function is also limited by MAX_ORDER.
3978 *
3979 * Memory allocated by this function must be released by free_pages_exact().
3980 */
3981 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3982 {
3983 unsigned int order = get_order(size);
3984 unsigned long addr;
3985
3986 addr = __get_free_pages(gfp_mask, order);
3987 return make_alloc_exact(addr, order, size);
3988 }
3989 EXPORT_SYMBOL(alloc_pages_exact);
3990
3991 /**
3992 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3993 * pages on a node.
3994 * @nid: the preferred node ID where memory should be allocated
3995 * @size: the number of bytes to allocate
3996 * @gfp_mask: GFP flags for the allocation
3997 *
3998 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3999 * back.
4000 */
4001 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4002 {
4003 unsigned int order = get_order(size);
4004 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4005 if (!p)
4006 return NULL;
4007 return make_alloc_exact((unsigned long)page_address(p), order, size);
4008 }
4009
4010 /**
4011 * free_pages_exact - release memory allocated via alloc_pages_exact()
4012 * @virt: the value returned by alloc_pages_exact.
4013 * @size: size of allocation, same value as passed to alloc_pages_exact().
4014 *
4015 * Release the memory allocated by a previous call to alloc_pages_exact.
4016 */
4017 void free_pages_exact(void *virt, size_t size)
4018 {
4019 unsigned long addr = (unsigned long)virt;
4020 unsigned long end = addr + PAGE_ALIGN(size);
4021
4022 while (addr < end) {
4023 free_page(addr);
4024 addr += PAGE_SIZE;
4025 }
4026 }
4027 EXPORT_SYMBOL(free_pages_exact);
4028
4029 /**
4030 * nr_free_zone_pages - count number of pages beyond high watermark
4031 * @offset: The zone index of the highest zone
4032 *
4033 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4034 * high watermark within all zones at or below a given zone index. For each
4035 * zone, the number of pages is calculated as:
4036 * managed_pages - high_pages
4037 */
4038 static unsigned long nr_free_zone_pages(int offset)
4039 {
4040 struct zoneref *z;
4041 struct zone *zone;
4042
4043 /* Just pick one node, since fallback list is circular */
4044 unsigned long sum = 0;
4045
4046 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4047
4048 for_each_zone_zonelist(zone, z, zonelist, offset) {
4049 unsigned long size = zone->managed_pages;
4050 unsigned long high = high_wmark_pages(zone);
4051 if (size > high)
4052 sum += size - high;
4053 }
4054
4055 return sum;
4056 }
4057
4058 /**
4059 * nr_free_buffer_pages - count number of pages beyond high watermark
4060 *
4061 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4062 * watermark within ZONE_DMA and ZONE_NORMAL.
4063 */
4064 unsigned long nr_free_buffer_pages(void)
4065 {
4066 return nr_free_zone_pages(gfp_zone(GFP_USER));
4067 }
4068 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4069
4070 /**
4071 * nr_free_pagecache_pages - count number of pages beyond high watermark
4072 *
4073 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4074 * high watermark within all zones.
4075 */
4076 unsigned long nr_free_pagecache_pages(void)
4077 {
4078 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4079 }
4080
4081 static inline void show_node(struct zone *zone)
4082 {
4083 if (IS_ENABLED(CONFIG_NUMA))
4084 printk("Node %d ", zone_to_nid(zone));
4085 }
4086
4087 long si_mem_available(void)
4088 {
4089 long available;
4090 unsigned long pagecache;
4091 unsigned long wmark_low = 0;
4092 unsigned long pages[NR_LRU_LISTS];
4093 struct zone *zone;
4094 int lru;
4095
4096 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4097 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4098
4099 for_each_zone(zone)
4100 wmark_low += zone->watermark[WMARK_LOW];
4101
4102 /*
4103 * Estimate the amount of memory available for userspace allocations,
4104 * without causing swapping.
4105 */
4106 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4107
4108 /*
4109 * Not all the page cache can be freed, otherwise the system will
4110 * start swapping. Assume at least half of the page cache, or the
4111 * low watermark worth of cache, needs to stay.
4112 */
4113 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4114 pagecache -= min(pagecache / 2, wmark_low);
4115 available += pagecache;
4116
4117 /*
4118 * Part of the reclaimable slab consists of items that are in use,
4119 * and cannot be freed. Cap this estimate at the low watermark.
4120 */
4121 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4122 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4123
4124 if (available < 0)
4125 available = 0;
4126 return available;
4127 }
4128 EXPORT_SYMBOL_GPL(si_mem_available);
4129
4130 void si_meminfo(struct sysinfo *val)
4131 {
4132 val->totalram = totalram_pages;
4133 val->sharedram = global_node_page_state(NR_SHMEM);
4134 val->freeram = global_page_state(NR_FREE_PAGES);
4135 val->bufferram = nr_blockdev_pages();
4136 val->totalhigh = totalhigh_pages;
4137 val->freehigh = nr_free_highpages();
4138 val->mem_unit = PAGE_SIZE;
4139 }
4140
4141 EXPORT_SYMBOL(si_meminfo);
4142
4143 #ifdef CONFIG_NUMA
4144 void si_meminfo_node(struct sysinfo *val, int nid)
4145 {
4146 int zone_type; /* needs to be signed */
4147 unsigned long managed_pages = 0;
4148 unsigned long managed_highpages = 0;
4149 unsigned long free_highpages = 0;
4150 pg_data_t *pgdat = NODE_DATA(nid);
4151
4152 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4153 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4154 val->totalram = managed_pages;
4155 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4156 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4157 #ifdef CONFIG_HIGHMEM
4158 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4159 struct zone *zone = &pgdat->node_zones[zone_type];
4160
4161 if (is_highmem(zone)) {
4162 managed_highpages += zone->managed_pages;
4163 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4164 }
4165 }
4166 val->totalhigh = managed_highpages;
4167 val->freehigh = free_highpages;
4168 #else
4169 val->totalhigh = managed_highpages;
4170 val->freehigh = free_highpages;
4171 #endif
4172 val->mem_unit = PAGE_SIZE;
4173 }
4174 #endif
4175
4176 /*
4177 * Determine whether the node should be displayed or not, depending on whether
4178 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4179 */
4180 bool skip_free_areas_node(unsigned int flags, int nid)
4181 {
4182 bool ret = false;
4183 unsigned int cpuset_mems_cookie;
4184
4185 if (!(flags & SHOW_MEM_FILTER_NODES))
4186 goto out;
4187
4188 do {
4189 cpuset_mems_cookie = read_mems_allowed_begin();
4190 ret = !node_isset(nid, cpuset_current_mems_allowed);
4191 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4192 out:
4193 return ret;
4194 }
4195
4196 #define K(x) ((x) << (PAGE_SHIFT-10))
4197
4198 static void show_migration_types(unsigned char type)
4199 {
4200 static const char types[MIGRATE_TYPES] = {
4201 [MIGRATE_UNMOVABLE] = 'U',
4202 [MIGRATE_MOVABLE] = 'M',
4203 [MIGRATE_RECLAIMABLE] = 'E',
4204 [MIGRATE_HIGHATOMIC] = 'H',
4205 #ifdef CONFIG_CMA
4206 [MIGRATE_CMA] = 'C',
4207 #endif
4208 #ifdef CONFIG_MEMORY_ISOLATION
4209 [MIGRATE_ISOLATE] = 'I',
4210 #endif
4211 };
4212 char tmp[MIGRATE_TYPES + 1];
4213 char *p = tmp;
4214 int i;
4215
4216 for (i = 0; i < MIGRATE_TYPES; i++) {
4217 if (type & (1 << i))
4218 *p++ = types[i];
4219 }
4220
4221 *p = '\0';
4222 printk("(%s) ", tmp);
4223 }
4224
4225 /*
4226 * Show free area list (used inside shift_scroll-lock stuff)
4227 * We also calculate the percentage fragmentation. We do this by counting the
4228 * memory on each free list with the exception of the first item on the list.
4229 *
4230 * Bits in @filter:
4231 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4232 * cpuset.
4233 */
4234 void show_free_areas(unsigned int filter)
4235 {
4236 unsigned long free_pcp = 0;
4237 int cpu;
4238 struct zone *zone;
4239 pg_data_t *pgdat;
4240
4241 for_each_populated_zone(zone) {
4242 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4243 continue;
4244
4245 for_each_online_cpu(cpu)
4246 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4247 }
4248
4249 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4250 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4251 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4252 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4253 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4254 " free:%lu free_pcp:%lu free_cma:%lu\n",
4255 global_node_page_state(NR_ACTIVE_ANON),
4256 global_node_page_state(NR_INACTIVE_ANON),
4257 global_node_page_state(NR_ISOLATED_ANON),
4258 global_node_page_state(NR_ACTIVE_FILE),
4259 global_node_page_state(NR_INACTIVE_FILE),
4260 global_node_page_state(NR_ISOLATED_FILE),
4261 global_node_page_state(NR_UNEVICTABLE),
4262 global_node_page_state(NR_FILE_DIRTY),
4263 global_node_page_state(NR_WRITEBACK),
4264 global_node_page_state(NR_UNSTABLE_NFS),
4265 global_page_state(NR_SLAB_RECLAIMABLE),
4266 global_page_state(NR_SLAB_UNRECLAIMABLE),
4267 global_node_page_state(NR_FILE_MAPPED),
4268 global_node_page_state(NR_SHMEM),
4269 global_page_state(NR_PAGETABLE),
4270 global_page_state(NR_BOUNCE),
4271 global_page_state(NR_FREE_PAGES),
4272 free_pcp,
4273 global_page_state(NR_FREE_CMA_PAGES));
4274
4275 for_each_online_pgdat(pgdat) {
4276 printk("Node %d"
4277 " active_anon:%lukB"
4278 " inactive_anon:%lukB"
4279 " active_file:%lukB"
4280 " inactive_file:%lukB"
4281 " unevictable:%lukB"
4282 " isolated(anon):%lukB"
4283 " isolated(file):%lukB"
4284 " mapped:%lukB"
4285 " dirty:%lukB"
4286 " writeback:%lukB"
4287 " shmem:%lukB"
4288 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4289 " shmem_thp: %lukB"
4290 " shmem_pmdmapped: %lukB"
4291 " anon_thp: %lukB"
4292 #endif
4293 " writeback_tmp:%lukB"
4294 " unstable:%lukB"
4295 " pages_scanned:%lu"
4296 " all_unreclaimable? %s"
4297 "\n",
4298 pgdat->node_id,
4299 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4300 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4301 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4302 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4303 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4304 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4305 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4306 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4307 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4308 K(node_page_state(pgdat, NR_WRITEBACK)),
4309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4310 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4311 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4312 * HPAGE_PMD_NR),
4313 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4314 #endif
4315 K(node_page_state(pgdat, NR_SHMEM)),
4316 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4317 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4318 node_page_state(pgdat, NR_PAGES_SCANNED),
4319 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4320 }
4321
4322 for_each_populated_zone(zone) {
4323 int i;
4324
4325 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4326 continue;
4327
4328 free_pcp = 0;
4329 for_each_online_cpu(cpu)
4330 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4331
4332 show_node(zone);
4333 printk("%s"
4334 " free:%lukB"
4335 " min:%lukB"
4336 " low:%lukB"
4337 " high:%lukB"
4338 " active_anon:%lukB"
4339 " inactive_anon:%lukB"
4340 " active_file:%lukB"
4341 " inactive_file:%lukB"
4342 " unevictable:%lukB"
4343 " writepending:%lukB"
4344 " present:%lukB"
4345 " managed:%lukB"
4346 " mlocked:%lukB"
4347 " slab_reclaimable:%lukB"
4348 " slab_unreclaimable:%lukB"
4349 " kernel_stack:%lukB"
4350 " pagetables:%lukB"
4351 " bounce:%lukB"
4352 " free_pcp:%lukB"
4353 " local_pcp:%ukB"
4354 " free_cma:%lukB"
4355 "\n",
4356 zone->name,
4357 K(zone_page_state(zone, NR_FREE_PAGES)),
4358 K(min_wmark_pages(zone)),
4359 K(low_wmark_pages(zone)),
4360 K(high_wmark_pages(zone)),
4361 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4362 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4363 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4364 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4365 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4366 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4367 K(zone->present_pages),
4368 K(zone->managed_pages),
4369 K(zone_page_state(zone, NR_MLOCK)),
4370 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4371 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4372 zone_page_state(zone, NR_KERNEL_STACK_KB),
4373 K(zone_page_state(zone, NR_PAGETABLE)),
4374 K(zone_page_state(zone, NR_BOUNCE)),
4375 K(free_pcp),
4376 K(this_cpu_read(zone->pageset->pcp.count)),
4377 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4378 printk("lowmem_reserve[]:");
4379 for (i = 0; i < MAX_NR_ZONES; i++)
4380 printk(" %ld", zone->lowmem_reserve[i]);
4381 printk("\n");
4382 }
4383
4384 for_each_populated_zone(zone) {
4385 unsigned int order;
4386 unsigned long nr[MAX_ORDER], flags, total = 0;
4387 unsigned char types[MAX_ORDER];
4388
4389 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4390 continue;
4391 show_node(zone);
4392 printk("%s: ", zone->name);
4393
4394 spin_lock_irqsave(&zone->lock, flags);
4395 for (order = 0; order < MAX_ORDER; order++) {
4396 struct free_area *area = &zone->free_area[order];
4397 int type;
4398
4399 nr[order] = area->nr_free;
4400 total += nr[order] << order;
4401
4402 types[order] = 0;
4403 for (type = 0; type < MIGRATE_TYPES; type++) {
4404 if (!list_empty(&area->free_list[type]))
4405 types[order] |= 1 << type;
4406 }
4407 }
4408 spin_unlock_irqrestore(&zone->lock, flags);
4409 for (order = 0; order < MAX_ORDER; order++) {
4410 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4411 if (nr[order])
4412 show_migration_types(types[order]);
4413 }
4414 printk("= %lukB\n", K(total));
4415 }
4416
4417 hugetlb_show_meminfo();
4418
4419 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4420
4421 show_swap_cache_info();
4422 }
4423
4424 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4425 {
4426 zoneref->zone = zone;
4427 zoneref->zone_idx = zone_idx(zone);
4428 }
4429
4430 /*
4431 * Builds allocation fallback zone lists.
4432 *
4433 * Add all populated zones of a node to the zonelist.
4434 */
4435 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4436 int nr_zones)
4437 {
4438 struct zone *zone;
4439 enum zone_type zone_type = MAX_NR_ZONES;
4440
4441 do {
4442 zone_type--;
4443 zone = pgdat->node_zones + zone_type;
4444 if (managed_zone(zone)) {
4445 zoneref_set_zone(zone,
4446 &zonelist->_zonerefs[nr_zones++]);
4447 check_highest_zone(zone_type);
4448 }
4449 } while (zone_type);
4450
4451 return nr_zones;
4452 }
4453
4454
4455 /*
4456 * zonelist_order:
4457 * 0 = automatic detection of better ordering.
4458 * 1 = order by ([node] distance, -zonetype)
4459 * 2 = order by (-zonetype, [node] distance)
4460 *
4461 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4462 * the same zonelist. So only NUMA can configure this param.
4463 */
4464 #define ZONELIST_ORDER_DEFAULT 0
4465 #define ZONELIST_ORDER_NODE 1
4466 #define ZONELIST_ORDER_ZONE 2
4467
4468 /* zonelist order in the kernel.
4469 * set_zonelist_order() will set this to NODE or ZONE.
4470 */
4471 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4472 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4473
4474
4475 #ifdef CONFIG_NUMA
4476 /* The value user specified ....changed by config */
4477 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4478 /* string for sysctl */
4479 #define NUMA_ZONELIST_ORDER_LEN 16
4480 char numa_zonelist_order[16] = "default";
4481
4482 /*
4483 * interface for configure zonelist ordering.
4484 * command line option "numa_zonelist_order"
4485 * = "[dD]efault - default, automatic configuration.
4486 * = "[nN]ode - order by node locality, then by zone within node
4487 * = "[zZ]one - order by zone, then by locality within zone
4488 */
4489
4490 static int __parse_numa_zonelist_order(char *s)
4491 {
4492 if (*s == 'd' || *s == 'D') {
4493 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4494 } else if (*s == 'n' || *s == 'N') {
4495 user_zonelist_order = ZONELIST_ORDER_NODE;
4496 } else if (*s == 'z' || *s == 'Z') {
4497 user_zonelist_order = ZONELIST_ORDER_ZONE;
4498 } else {
4499 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4500 return -EINVAL;
4501 }
4502 return 0;
4503 }
4504
4505 static __init int setup_numa_zonelist_order(char *s)
4506 {
4507 int ret;
4508
4509 if (!s)
4510 return 0;
4511
4512 ret = __parse_numa_zonelist_order(s);
4513 if (ret == 0)
4514 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4515
4516 return ret;
4517 }
4518 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4519
4520 /*
4521 * sysctl handler for numa_zonelist_order
4522 */
4523 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4524 void __user *buffer, size_t *length,
4525 loff_t *ppos)
4526 {
4527 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4528 int ret;
4529 static DEFINE_MUTEX(zl_order_mutex);
4530
4531 mutex_lock(&zl_order_mutex);
4532 if (write) {
4533 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4534 ret = -EINVAL;
4535 goto out;
4536 }
4537 strcpy(saved_string, (char *)table->data);
4538 }
4539 ret = proc_dostring(table, write, buffer, length, ppos);
4540 if (ret)
4541 goto out;
4542 if (write) {
4543 int oldval = user_zonelist_order;
4544
4545 ret = __parse_numa_zonelist_order((char *)table->data);
4546 if (ret) {
4547 /*
4548 * bogus value. restore saved string
4549 */
4550 strncpy((char *)table->data, saved_string,
4551 NUMA_ZONELIST_ORDER_LEN);
4552 user_zonelist_order = oldval;
4553 } else if (oldval != user_zonelist_order) {
4554 mutex_lock(&zonelists_mutex);
4555 build_all_zonelists(NULL, NULL);
4556 mutex_unlock(&zonelists_mutex);
4557 }
4558 }
4559 out:
4560 mutex_unlock(&zl_order_mutex);
4561 return ret;
4562 }
4563
4564
4565 #define MAX_NODE_LOAD (nr_online_nodes)
4566 static int node_load[MAX_NUMNODES];
4567
4568 /**
4569 * find_next_best_node - find the next node that should appear in a given node's fallback list
4570 * @node: node whose fallback list we're appending
4571 * @used_node_mask: nodemask_t of already used nodes
4572 *
4573 * We use a number of factors to determine which is the next node that should
4574 * appear on a given node's fallback list. The node should not have appeared
4575 * already in @node's fallback list, and it should be the next closest node
4576 * according to the distance array (which contains arbitrary distance values
4577 * from each node to each node in the system), and should also prefer nodes
4578 * with no CPUs, since presumably they'll have very little allocation pressure
4579 * on them otherwise.
4580 * It returns -1 if no node is found.
4581 */
4582 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4583 {
4584 int n, val;
4585 int min_val = INT_MAX;
4586 int best_node = NUMA_NO_NODE;
4587 const struct cpumask *tmp = cpumask_of_node(0);
4588
4589 /* Use the local node if we haven't already */
4590 if (!node_isset(node, *used_node_mask)) {
4591 node_set(node, *used_node_mask);
4592 return node;
4593 }
4594
4595 for_each_node_state(n, N_MEMORY) {
4596
4597 /* Don't want a node to appear more than once */
4598 if (node_isset(n, *used_node_mask))
4599 continue;
4600
4601 /* Use the distance array to find the distance */
4602 val = node_distance(node, n);
4603
4604 /* Penalize nodes under us ("prefer the next node") */
4605 val += (n < node);
4606
4607 /* Give preference to headless and unused nodes */
4608 tmp = cpumask_of_node(n);
4609 if (!cpumask_empty(tmp))
4610 val += PENALTY_FOR_NODE_WITH_CPUS;
4611
4612 /* Slight preference for less loaded node */
4613 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4614 val += node_load[n];
4615
4616 if (val < min_val) {
4617 min_val = val;
4618 best_node = n;
4619 }
4620 }
4621
4622 if (best_node >= 0)
4623 node_set(best_node, *used_node_mask);
4624
4625 return best_node;
4626 }
4627
4628
4629 /*
4630 * Build zonelists ordered by node and zones within node.
4631 * This results in maximum locality--normal zone overflows into local
4632 * DMA zone, if any--but risks exhausting DMA zone.
4633 */
4634 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4635 {
4636 int j;
4637 struct zonelist *zonelist;
4638
4639 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4640 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4641 ;
4642 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4643 zonelist->_zonerefs[j].zone = NULL;
4644 zonelist->_zonerefs[j].zone_idx = 0;
4645 }
4646
4647 /*
4648 * Build gfp_thisnode zonelists
4649 */
4650 static void build_thisnode_zonelists(pg_data_t *pgdat)
4651 {
4652 int j;
4653 struct zonelist *zonelist;
4654
4655 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4656 j = build_zonelists_node(pgdat, zonelist, 0);
4657 zonelist->_zonerefs[j].zone = NULL;
4658 zonelist->_zonerefs[j].zone_idx = 0;
4659 }
4660
4661 /*
4662 * Build zonelists ordered by zone and nodes within zones.
4663 * This results in conserving DMA zone[s] until all Normal memory is
4664 * exhausted, but results in overflowing to remote node while memory
4665 * may still exist in local DMA zone.
4666 */
4667 static int node_order[MAX_NUMNODES];
4668
4669 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4670 {
4671 int pos, j, node;
4672 int zone_type; /* needs to be signed */
4673 struct zone *z;
4674 struct zonelist *zonelist;
4675
4676 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4677 pos = 0;
4678 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4679 for (j = 0; j < nr_nodes; j++) {
4680 node = node_order[j];
4681 z = &NODE_DATA(node)->node_zones[zone_type];
4682 if (managed_zone(z)) {
4683 zoneref_set_zone(z,
4684 &zonelist->_zonerefs[pos++]);
4685 check_highest_zone(zone_type);
4686 }
4687 }
4688 }
4689 zonelist->_zonerefs[pos].zone = NULL;
4690 zonelist->_zonerefs[pos].zone_idx = 0;
4691 }
4692
4693 #if defined(CONFIG_64BIT)
4694 /*
4695 * Devices that require DMA32/DMA are relatively rare and do not justify a
4696 * penalty to every machine in case the specialised case applies. Default
4697 * to Node-ordering on 64-bit NUMA machines
4698 */
4699 static int default_zonelist_order(void)
4700 {
4701 return ZONELIST_ORDER_NODE;
4702 }
4703 #else
4704 /*
4705 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4706 * by the kernel. If processes running on node 0 deplete the low memory zone
4707 * then reclaim will occur more frequency increasing stalls and potentially
4708 * be easier to OOM if a large percentage of the zone is under writeback or
4709 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4710 * Hence, default to zone ordering on 32-bit.
4711 */
4712 static int default_zonelist_order(void)
4713 {
4714 return ZONELIST_ORDER_ZONE;
4715 }
4716 #endif /* CONFIG_64BIT */
4717
4718 static void set_zonelist_order(void)
4719 {
4720 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4721 current_zonelist_order = default_zonelist_order();
4722 else
4723 current_zonelist_order = user_zonelist_order;
4724 }
4725
4726 static void build_zonelists(pg_data_t *pgdat)
4727 {
4728 int i, node, load;
4729 nodemask_t used_mask;
4730 int local_node, prev_node;
4731 struct zonelist *zonelist;
4732 unsigned int order = current_zonelist_order;
4733
4734 /* initialize zonelists */
4735 for (i = 0; i < MAX_ZONELISTS; i++) {
4736 zonelist = pgdat->node_zonelists + i;
4737 zonelist->_zonerefs[0].zone = NULL;
4738 zonelist->_zonerefs[0].zone_idx = 0;
4739 }
4740
4741 /* NUMA-aware ordering of nodes */
4742 local_node = pgdat->node_id;
4743 load = nr_online_nodes;
4744 prev_node = local_node;
4745 nodes_clear(used_mask);
4746
4747 memset(node_order, 0, sizeof(node_order));
4748 i = 0;
4749
4750 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4751 /*
4752 * We don't want to pressure a particular node.
4753 * So adding penalty to the first node in same
4754 * distance group to make it round-robin.
4755 */
4756 if (node_distance(local_node, node) !=
4757 node_distance(local_node, prev_node))
4758 node_load[node] = load;
4759
4760 prev_node = node;
4761 load--;
4762 if (order == ZONELIST_ORDER_NODE)
4763 build_zonelists_in_node_order(pgdat, node);
4764 else
4765 node_order[i++] = node; /* remember order */
4766 }
4767
4768 if (order == ZONELIST_ORDER_ZONE) {
4769 /* calculate node order -- i.e., DMA last! */
4770 build_zonelists_in_zone_order(pgdat, i);
4771 }
4772
4773 build_thisnode_zonelists(pgdat);
4774 }
4775
4776 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4777 /*
4778 * Return node id of node used for "local" allocations.
4779 * I.e., first node id of first zone in arg node's generic zonelist.
4780 * Used for initializing percpu 'numa_mem', which is used primarily
4781 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4782 */
4783 int local_memory_node(int node)
4784 {
4785 struct zoneref *z;
4786
4787 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4788 gfp_zone(GFP_KERNEL),
4789 NULL);
4790 return z->zone->node;
4791 }
4792 #endif
4793
4794 static void setup_min_unmapped_ratio(void);
4795 static void setup_min_slab_ratio(void);
4796 #else /* CONFIG_NUMA */
4797
4798 static void set_zonelist_order(void)
4799 {
4800 current_zonelist_order = ZONELIST_ORDER_ZONE;
4801 }
4802
4803 static void build_zonelists(pg_data_t *pgdat)
4804 {
4805 int node, local_node;
4806 enum zone_type j;
4807 struct zonelist *zonelist;
4808
4809 local_node = pgdat->node_id;
4810
4811 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4812 j = build_zonelists_node(pgdat, zonelist, 0);
4813
4814 /*
4815 * Now we build the zonelist so that it contains the zones
4816 * of all the other nodes.
4817 * We don't want to pressure a particular node, so when
4818 * building the zones for node N, we make sure that the
4819 * zones coming right after the local ones are those from
4820 * node N+1 (modulo N)
4821 */
4822 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4823 if (!node_online(node))
4824 continue;
4825 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4826 }
4827 for (node = 0; node < local_node; node++) {
4828 if (!node_online(node))
4829 continue;
4830 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4831 }
4832
4833 zonelist->_zonerefs[j].zone = NULL;
4834 zonelist->_zonerefs[j].zone_idx = 0;
4835 }
4836
4837 #endif /* CONFIG_NUMA */
4838
4839 /*
4840 * Boot pageset table. One per cpu which is going to be used for all
4841 * zones and all nodes. The parameters will be set in such a way
4842 * that an item put on a list will immediately be handed over to
4843 * the buddy list. This is safe since pageset manipulation is done
4844 * with interrupts disabled.
4845 *
4846 * The boot_pagesets must be kept even after bootup is complete for
4847 * unused processors and/or zones. They do play a role for bootstrapping
4848 * hotplugged processors.
4849 *
4850 * zoneinfo_show() and maybe other functions do
4851 * not check if the processor is online before following the pageset pointer.
4852 * Other parts of the kernel may not check if the zone is available.
4853 */
4854 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4855 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4856 static void setup_zone_pageset(struct zone *zone);
4857
4858 /*
4859 * Global mutex to protect against size modification of zonelists
4860 * as well as to serialize pageset setup for the new populated zone.
4861 */
4862 DEFINE_MUTEX(zonelists_mutex);
4863
4864 /* return values int ....just for stop_machine() */
4865 static int __build_all_zonelists(void *data)
4866 {
4867 int nid;
4868 int cpu;
4869 pg_data_t *self = data;
4870
4871 #ifdef CONFIG_NUMA
4872 memset(node_load, 0, sizeof(node_load));
4873 #endif
4874
4875 if (self && !node_online(self->node_id)) {
4876 build_zonelists(self);
4877 }
4878
4879 for_each_online_node(nid) {
4880 pg_data_t *pgdat = NODE_DATA(nid);
4881
4882 build_zonelists(pgdat);
4883 }
4884
4885 /*
4886 * Initialize the boot_pagesets that are going to be used
4887 * for bootstrapping processors. The real pagesets for
4888 * each zone will be allocated later when the per cpu
4889 * allocator is available.
4890 *
4891 * boot_pagesets are used also for bootstrapping offline
4892 * cpus if the system is already booted because the pagesets
4893 * are needed to initialize allocators on a specific cpu too.
4894 * F.e. the percpu allocator needs the page allocator which
4895 * needs the percpu allocator in order to allocate its pagesets
4896 * (a chicken-egg dilemma).
4897 */
4898 for_each_possible_cpu(cpu) {
4899 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4900
4901 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4902 /*
4903 * We now know the "local memory node" for each node--
4904 * i.e., the node of the first zone in the generic zonelist.
4905 * Set up numa_mem percpu variable for on-line cpus. During
4906 * boot, only the boot cpu should be on-line; we'll init the
4907 * secondary cpus' numa_mem as they come on-line. During
4908 * node/memory hotplug, we'll fixup all on-line cpus.
4909 */
4910 if (cpu_online(cpu))
4911 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4912 #endif
4913 }
4914
4915 return 0;
4916 }
4917
4918 static noinline void __init
4919 build_all_zonelists_init(void)
4920 {
4921 __build_all_zonelists(NULL);
4922 mminit_verify_zonelist();
4923 cpuset_init_current_mems_allowed();
4924 }
4925
4926 /*
4927 * Called with zonelists_mutex held always
4928 * unless system_state == SYSTEM_BOOTING.
4929 *
4930 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4931 * [we're only called with non-NULL zone through __meminit paths] and
4932 * (2) call of __init annotated helper build_all_zonelists_init
4933 * [protected by SYSTEM_BOOTING].
4934 */
4935 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4936 {
4937 set_zonelist_order();
4938
4939 if (system_state == SYSTEM_BOOTING) {
4940 build_all_zonelists_init();
4941 } else {
4942 #ifdef CONFIG_MEMORY_HOTPLUG
4943 if (zone)
4944 setup_zone_pageset(zone);
4945 #endif
4946 /* we have to stop all cpus to guarantee there is no user
4947 of zonelist */
4948 stop_machine(__build_all_zonelists, pgdat, NULL);
4949 /* cpuset refresh routine should be here */
4950 }
4951 vm_total_pages = nr_free_pagecache_pages();
4952 /*
4953 * Disable grouping by mobility if the number of pages in the
4954 * system is too low to allow the mechanism to work. It would be
4955 * more accurate, but expensive to check per-zone. This check is
4956 * made on memory-hotadd so a system can start with mobility
4957 * disabled and enable it later
4958 */
4959 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4960 page_group_by_mobility_disabled = 1;
4961 else
4962 page_group_by_mobility_disabled = 0;
4963
4964 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4965 nr_online_nodes,
4966 zonelist_order_name[current_zonelist_order],
4967 page_group_by_mobility_disabled ? "off" : "on",
4968 vm_total_pages);
4969 #ifdef CONFIG_NUMA
4970 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4971 #endif
4972 }
4973
4974 /*
4975 * Helper functions to size the waitqueue hash table.
4976 * Essentially these want to choose hash table sizes sufficiently
4977 * large so that collisions trying to wait on pages are rare.
4978 * But in fact, the number of active page waitqueues on typical
4979 * systems is ridiculously low, less than 200. So this is even
4980 * conservative, even though it seems large.
4981 *
4982 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4983 * waitqueues, i.e. the size of the waitq table given the number of pages.
4984 */
4985 #define PAGES_PER_WAITQUEUE 256
4986
4987 #ifndef CONFIG_MEMORY_HOTPLUG
4988 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4989 {
4990 unsigned long size = 1;
4991
4992 pages /= PAGES_PER_WAITQUEUE;
4993
4994 while (size < pages)
4995 size <<= 1;
4996
4997 /*
4998 * Once we have dozens or even hundreds of threads sleeping
4999 * on IO we've got bigger problems than wait queue collision.
5000 * Limit the size of the wait table to a reasonable size.
5001 */
5002 size = min(size, 4096UL);
5003
5004 return max(size, 4UL);
5005 }
5006 #else
5007 /*
5008 * A zone's size might be changed by hot-add, so it is not possible to determine
5009 * a suitable size for its wait_table. So we use the maximum size now.
5010 *
5011 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5012 *
5013 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5014 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5015 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5016 *
5017 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5018 * or more by the traditional way. (See above). It equals:
5019 *
5020 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5021 * ia64(16K page size) : = ( 8G + 4M)byte.
5022 * powerpc (64K page size) : = (32G +16M)byte.
5023 */
5024 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5025 {
5026 return 4096UL;
5027 }
5028 #endif
5029
5030 /*
5031 * This is an integer logarithm so that shifts can be used later
5032 * to extract the more random high bits from the multiplicative
5033 * hash function before the remainder is taken.
5034 */
5035 static inline unsigned long wait_table_bits(unsigned long size)
5036 {
5037 return ffz(~size);
5038 }
5039
5040 /*
5041 * Initially all pages are reserved - free ones are freed
5042 * up by free_all_bootmem() once the early boot process is
5043 * done. Non-atomic initialization, single-pass.
5044 */
5045 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5046 unsigned long start_pfn, enum memmap_context context)
5047 {
5048 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5049 unsigned long end_pfn = start_pfn + size;
5050 pg_data_t *pgdat = NODE_DATA(nid);
5051 unsigned long pfn;
5052 unsigned long nr_initialised = 0;
5053 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5054 struct memblock_region *r = NULL, *tmp;
5055 #endif
5056
5057 if (highest_memmap_pfn < end_pfn - 1)
5058 highest_memmap_pfn = end_pfn - 1;
5059
5060 /*
5061 * Honor reservation requested by the driver for this ZONE_DEVICE
5062 * memory
5063 */
5064 if (altmap && start_pfn == altmap->base_pfn)
5065 start_pfn += altmap->reserve;
5066
5067 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5068 /*
5069 * There can be holes in boot-time mem_map[]s handed to this
5070 * function. They do not exist on hotplugged memory.
5071 */
5072 if (context != MEMMAP_EARLY)
5073 goto not_early;
5074
5075 if (!early_pfn_valid(pfn))
5076 continue;
5077 if (!early_pfn_in_nid(pfn, nid))
5078 continue;
5079 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5080 break;
5081
5082 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5083 /*
5084 * Check given memblock attribute by firmware which can affect
5085 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5086 * mirrored, it's an overlapped memmap init. skip it.
5087 */
5088 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5089 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5090 for_each_memblock(memory, tmp)
5091 if (pfn < memblock_region_memory_end_pfn(tmp))
5092 break;
5093 r = tmp;
5094 }
5095 if (pfn >= memblock_region_memory_base_pfn(r) &&
5096 memblock_is_mirror(r)) {
5097 /* already initialized as NORMAL */
5098 pfn = memblock_region_memory_end_pfn(r);
5099 continue;
5100 }
5101 }
5102 #endif
5103
5104 not_early:
5105 /*
5106 * Mark the block movable so that blocks are reserved for
5107 * movable at startup. This will force kernel allocations
5108 * to reserve their blocks rather than leaking throughout
5109 * the address space during boot when many long-lived
5110 * kernel allocations are made.
5111 *
5112 * bitmap is created for zone's valid pfn range. but memmap
5113 * can be created for invalid pages (for alignment)
5114 * check here not to call set_pageblock_migratetype() against
5115 * pfn out of zone.
5116 */
5117 if (!(pfn & (pageblock_nr_pages - 1))) {
5118 struct page *page = pfn_to_page(pfn);
5119
5120 __init_single_page(page, pfn, zone, nid);
5121 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5122 } else {
5123 __init_single_pfn(pfn, zone, nid);
5124 }
5125 }
5126 }
5127
5128 static void __meminit zone_init_free_lists(struct zone *zone)
5129 {
5130 unsigned int order, t;
5131 for_each_migratetype_order(order, t) {
5132 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5133 zone->free_area[order].nr_free = 0;
5134 }
5135 }
5136
5137 #ifndef __HAVE_ARCH_MEMMAP_INIT
5138 #define memmap_init(size, nid, zone, start_pfn) \
5139 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5140 #endif
5141
5142 static int zone_batchsize(struct zone *zone)
5143 {
5144 #ifdef CONFIG_MMU
5145 int batch;
5146
5147 /*
5148 * The per-cpu-pages pools are set to around 1000th of the
5149 * size of the zone. But no more than 1/2 of a meg.
5150 *
5151 * OK, so we don't know how big the cache is. So guess.
5152 */
5153 batch = zone->managed_pages / 1024;
5154 if (batch * PAGE_SIZE > 512 * 1024)
5155 batch = (512 * 1024) / PAGE_SIZE;
5156 batch /= 4; /* We effectively *= 4 below */
5157 if (batch < 1)
5158 batch = 1;
5159
5160 /*
5161 * Clamp the batch to a 2^n - 1 value. Having a power
5162 * of 2 value was found to be more likely to have
5163 * suboptimal cache aliasing properties in some cases.
5164 *
5165 * For example if 2 tasks are alternately allocating
5166 * batches of pages, one task can end up with a lot
5167 * of pages of one half of the possible page colors
5168 * and the other with pages of the other colors.
5169 */
5170 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5171
5172 return batch;
5173
5174 #else
5175 /* The deferral and batching of frees should be suppressed under NOMMU
5176 * conditions.
5177 *
5178 * The problem is that NOMMU needs to be able to allocate large chunks
5179 * of contiguous memory as there's no hardware page translation to
5180 * assemble apparent contiguous memory from discontiguous pages.
5181 *
5182 * Queueing large contiguous runs of pages for batching, however,
5183 * causes the pages to actually be freed in smaller chunks. As there
5184 * can be a significant delay between the individual batches being
5185 * recycled, this leads to the once large chunks of space being
5186 * fragmented and becoming unavailable for high-order allocations.
5187 */
5188 return 0;
5189 #endif
5190 }
5191
5192 /*
5193 * pcp->high and pcp->batch values are related and dependent on one another:
5194 * ->batch must never be higher then ->high.
5195 * The following function updates them in a safe manner without read side
5196 * locking.
5197 *
5198 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5199 * those fields changing asynchronously (acording the the above rule).
5200 *
5201 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5202 * outside of boot time (or some other assurance that no concurrent updaters
5203 * exist).
5204 */
5205 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5206 unsigned long batch)
5207 {
5208 /* start with a fail safe value for batch */
5209 pcp->batch = 1;
5210 smp_wmb();
5211
5212 /* Update high, then batch, in order */
5213 pcp->high = high;
5214 smp_wmb();
5215
5216 pcp->batch = batch;
5217 }
5218
5219 /* a companion to pageset_set_high() */
5220 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5221 {
5222 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5223 }
5224
5225 static void pageset_init(struct per_cpu_pageset *p)
5226 {
5227 struct per_cpu_pages *pcp;
5228 int migratetype;
5229
5230 memset(p, 0, sizeof(*p));
5231
5232 pcp = &p->pcp;
5233 pcp->count = 0;
5234 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5235 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5236 }
5237
5238 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5239 {
5240 pageset_init(p);
5241 pageset_set_batch(p, batch);
5242 }
5243
5244 /*
5245 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5246 * to the value high for the pageset p.
5247 */
5248 static void pageset_set_high(struct per_cpu_pageset *p,
5249 unsigned long high)
5250 {
5251 unsigned long batch = max(1UL, high / 4);
5252 if ((high / 4) > (PAGE_SHIFT * 8))
5253 batch = PAGE_SHIFT * 8;
5254
5255 pageset_update(&p->pcp, high, batch);
5256 }
5257
5258 static void pageset_set_high_and_batch(struct zone *zone,
5259 struct per_cpu_pageset *pcp)
5260 {
5261 if (percpu_pagelist_fraction)
5262 pageset_set_high(pcp,
5263 (zone->managed_pages /
5264 percpu_pagelist_fraction));
5265 else
5266 pageset_set_batch(pcp, zone_batchsize(zone));
5267 }
5268
5269 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5270 {
5271 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5272
5273 pageset_init(pcp);
5274 pageset_set_high_and_batch(zone, pcp);
5275 }
5276
5277 static void __meminit setup_zone_pageset(struct zone *zone)
5278 {
5279 int cpu;
5280 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5281 for_each_possible_cpu(cpu)
5282 zone_pageset_init(zone, cpu);
5283 }
5284
5285 /*
5286 * Allocate per cpu pagesets and initialize them.
5287 * Before this call only boot pagesets were available.
5288 */
5289 void __init setup_per_cpu_pageset(void)
5290 {
5291 struct pglist_data *pgdat;
5292 struct zone *zone;
5293
5294 for_each_populated_zone(zone)
5295 setup_zone_pageset(zone);
5296
5297 for_each_online_pgdat(pgdat)
5298 pgdat->per_cpu_nodestats =
5299 alloc_percpu(struct per_cpu_nodestat);
5300 }
5301
5302 static noinline __ref
5303 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5304 {
5305 int i;
5306 size_t alloc_size;
5307
5308 /*
5309 * The per-page waitqueue mechanism uses hashed waitqueues
5310 * per zone.
5311 */
5312 zone->wait_table_hash_nr_entries =
5313 wait_table_hash_nr_entries(zone_size_pages);
5314 zone->wait_table_bits =
5315 wait_table_bits(zone->wait_table_hash_nr_entries);
5316 alloc_size = zone->wait_table_hash_nr_entries
5317 * sizeof(wait_queue_head_t);
5318
5319 if (!slab_is_available()) {
5320 zone->wait_table = (wait_queue_head_t *)
5321 memblock_virt_alloc_node_nopanic(
5322 alloc_size, zone->zone_pgdat->node_id);
5323 } else {
5324 /*
5325 * This case means that a zone whose size was 0 gets new memory
5326 * via memory hot-add.
5327 * But it may be the case that a new node was hot-added. In
5328 * this case vmalloc() will not be able to use this new node's
5329 * memory - this wait_table must be initialized to use this new
5330 * node itself as well.
5331 * To use this new node's memory, further consideration will be
5332 * necessary.
5333 */
5334 zone->wait_table = vmalloc(alloc_size);
5335 }
5336 if (!zone->wait_table)
5337 return -ENOMEM;
5338
5339 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5340 init_waitqueue_head(zone->wait_table + i);
5341
5342 return 0;
5343 }
5344
5345 static __meminit void zone_pcp_init(struct zone *zone)
5346 {
5347 /*
5348 * per cpu subsystem is not up at this point. The following code
5349 * relies on the ability of the linker to provide the
5350 * offset of a (static) per cpu variable into the per cpu area.
5351 */
5352 zone->pageset = &boot_pageset;
5353
5354 if (populated_zone(zone))
5355 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5356 zone->name, zone->present_pages,
5357 zone_batchsize(zone));
5358 }
5359
5360 int __meminit init_currently_empty_zone(struct zone *zone,
5361 unsigned long zone_start_pfn,
5362 unsigned long size)
5363 {
5364 struct pglist_data *pgdat = zone->zone_pgdat;
5365 int ret;
5366 ret = zone_wait_table_init(zone, size);
5367 if (ret)
5368 return ret;
5369 pgdat->nr_zones = zone_idx(zone) + 1;
5370
5371 zone->zone_start_pfn = zone_start_pfn;
5372
5373 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5374 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5375 pgdat->node_id,
5376 (unsigned long)zone_idx(zone),
5377 zone_start_pfn, (zone_start_pfn + size));
5378
5379 zone_init_free_lists(zone);
5380
5381 return 0;
5382 }
5383
5384 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5385 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5386
5387 /*
5388 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5389 */
5390 int __meminit __early_pfn_to_nid(unsigned long pfn,
5391 struct mminit_pfnnid_cache *state)
5392 {
5393 unsigned long start_pfn, end_pfn;
5394 int nid;
5395
5396 if (state->last_start <= pfn && pfn < state->last_end)
5397 return state->last_nid;
5398
5399 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5400 if (nid != -1) {
5401 state->last_start = start_pfn;
5402 state->last_end = end_pfn;
5403 state->last_nid = nid;
5404 }
5405
5406 return nid;
5407 }
5408 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5409
5410 /**
5411 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5412 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5413 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5414 *
5415 * If an architecture guarantees that all ranges registered contain no holes
5416 * and may be freed, this this function may be used instead of calling
5417 * memblock_free_early_nid() manually.
5418 */
5419 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5420 {
5421 unsigned long start_pfn, end_pfn;
5422 int i, this_nid;
5423
5424 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5425 start_pfn = min(start_pfn, max_low_pfn);
5426 end_pfn = min(end_pfn, max_low_pfn);
5427
5428 if (start_pfn < end_pfn)
5429 memblock_free_early_nid(PFN_PHYS(start_pfn),
5430 (end_pfn - start_pfn) << PAGE_SHIFT,
5431 this_nid);
5432 }
5433 }
5434
5435 /**
5436 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5437 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5438 *
5439 * If an architecture guarantees that all ranges registered contain no holes and may
5440 * be freed, this function may be used instead of calling memory_present() manually.
5441 */
5442 void __init sparse_memory_present_with_active_regions(int nid)
5443 {
5444 unsigned long start_pfn, end_pfn;
5445 int i, this_nid;
5446
5447 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5448 memory_present(this_nid, start_pfn, end_pfn);
5449 }
5450
5451 /**
5452 * get_pfn_range_for_nid - Return the start and end page frames for a node
5453 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5454 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5455 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5456 *
5457 * It returns the start and end page frame of a node based on information
5458 * provided by memblock_set_node(). If called for a node
5459 * with no available memory, a warning is printed and the start and end
5460 * PFNs will be 0.
5461 */
5462 void __meminit get_pfn_range_for_nid(unsigned int nid,
5463 unsigned long *start_pfn, unsigned long *end_pfn)
5464 {
5465 unsigned long this_start_pfn, this_end_pfn;
5466 int i;
5467
5468 *start_pfn = -1UL;
5469 *end_pfn = 0;
5470
5471 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5472 *start_pfn = min(*start_pfn, this_start_pfn);
5473 *end_pfn = max(*end_pfn, this_end_pfn);
5474 }
5475
5476 if (*start_pfn == -1UL)
5477 *start_pfn = 0;
5478 }
5479
5480 /*
5481 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5482 * assumption is made that zones within a node are ordered in monotonic
5483 * increasing memory addresses so that the "highest" populated zone is used
5484 */
5485 static void __init find_usable_zone_for_movable(void)
5486 {
5487 int zone_index;
5488 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5489 if (zone_index == ZONE_MOVABLE)
5490 continue;
5491
5492 if (arch_zone_highest_possible_pfn[zone_index] >
5493 arch_zone_lowest_possible_pfn[zone_index])
5494 break;
5495 }
5496
5497 VM_BUG_ON(zone_index == -1);
5498 movable_zone = zone_index;
5499 }
5500
5501 /*
5502 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5503 * because it is sized independent of architecture. Unlike the other zones,
5504 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5505 * in each node depending on the size of each node and how evenly kernelcore
5506 * is distributed. This helper function adjusts the zone ranges
5507 * provided by the architecture for a given node by using the end of the
5508 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5509 * zones within a node are in order of monotonic increases memory addresses
5510 */
5511 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5512 unsigned long zone_type,
5513 unsigned long node_start_pfn,
5514 unsigned long node_end_pfn,
5515 unsigned long *zone_start_pfn,
5516 unsigned long *zone_end_pfn)
5517 {
5518 /* Only adjust if ZONE_MOVABLE is on this node */
5519 if (zone_movable_pfn[nid]) {
5520 /* Size ZONE_MOVABLE */
5521 if (zone_type == ZONE_MOVABLE) {
5522 *zone_start_pfn = zone_movable_pfn[nid];
5523 *zone_end_pfn = min(node_end_pfn,
5524 arch_zone_highest_possible_pfn[movable_zone]);
5525
5526 /* Adjust for ZONE_MOVABLE starting within this range */
5527 } else if (!mirrored_kernelcore &&
5528 *zone_start_pfn < zone_movable_pfn[nid] &&
5529 *zone_end_pfn > zone_movable_pfn[nid]) {
5530 *zone_end_pfn = zone_movable_pfn[nid];
5531
5532 /* Check if this whole range is within ZONE_MOVABLE */
5533 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5534 *zone_start_pfn = *zone_end_pfn;
5535 }
5536 }
5537
5538 /*
5539 * Return the number of pages a zone spans in a node, including holes
5540 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5541 */
5542 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5543 unsigned long zone_type,
5544 unsigned long node_start_pfn,
5545 unsigned long node_end_pfn,
5546 unsigned long *zone_start_pfn,
5547 unsigned long *zone_end_pfn,
5548 unsigned long *ignored)
5549 {
5550 /* When hotadd a new node from cpu_up(), the node should be empty */
5551 if (!node_start_pfn && !node_end_pfn)
5552 return 0;
5553
5554 /* Get the start and end of the zone */
5555 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5556 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5557 adjust_zone_range_for_zone_movable(nid, zone_type,
5558 node_start_pfn, node_end_pfn,
5559 zone_start_pfn, zone_end_pfn);
5560
5561 /* Check that this node has pages within the zone's required range */
5562 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5563 return 0;
5564
5565 /* Move the zone boundaries inside the node if necessary */
5566 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5567 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5568
5569 /* Return the spanned pages */
5570 return *zone_end_pfn - *zone_start_pfn;
5571 }
5572
5573 /*
5574 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5575 * then all holes in the requested range will be accounted for.
5576 */
5577 unsigned long __meminit __absent_pages_in_range(int nid,
5578 unsigned long range_start_pfn,
5579 unsigned long range_end_pfn)
5580 {
5581 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5582 unsigned long start_pfn, end_pfn;
5583 int i;
5584
5585 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5586 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5587 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5588 nr_absent -= end_pfn - start_pfn;
5589 }
5590 return nr_absent;
5591 }
5592
5593 /**
5594 * absent_pages_in_range - Return number of page frames in holes within a range
5595 * @start_pfn: The start PFN to start searching for holes
5596 * @end_pfn: The end PFN to stop searching for holes
5597 *
5598 * It returns the number of pages frames in memory holes within a range.
5599 */
5600 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5601 unsigned long end_pfn)
5602 {
5603 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5604 }
5605
5606 /* Return the number of page frames in holes in a zone on a node */
5607 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5608 unsigned long zone_type,
5609 unsigned long node_start_pfn,
5610 unsigned long node_end_pfn,
5611 unsigned long *ignored)
5612 {
5613 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5614 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5615 unsigned long zone_start_pfn, zone_end_pfn;
5616 unsigned long nr_absent;
5617
5618 /* When hotadd a new node from cpu_up(), the node should be empty */
5619 if (!node_start_pfn && !node_end_pfn)
5620 return 0;
5621
5622 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5623 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5624
5625 adjust_zone_range_for_zone_movable(nid, zone_type,
5626 node_start_pfn, node_end_pfn,
5627 &zone_start_pfn, &zone_end_pfn);
5628 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5629
5630 /*
5631 * ZONE_MOVABLE handling.
5632 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5633 * and vice versa.
5634 */
5635 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5636 unsigned long start_pfn, end_pfn;
5637 struct memblock_region *r;
5638
5639 for_each_memblock(memory, r) {
5640 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5641 zone_start_pfn, zone_end_pfn);
5642 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5643 zone_start_pfn, zone_end_pfn);
5644
5645 if (zone_type == ZONE_MOVABLE &&
5646 memblock_is_mirror(r))
5647 nr_absent += end_pfn - start_pfn;
5648
5649 if (zone_type == ZONE_NORMAL &&
5650 !memblock_is_mirror(r))
5651 nr_absent += end_pfn - start_pfn;
5652 }
5653 }
5654
5655 return nr_absent;
5656 }
5657
5658 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5659 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5660 unsigned long zone_type,
5661 unsigned long node_start_pfn,
5662 unsigned long node_end_pfn,
5663 unsigned long *zone_start_pfn,
5664 unsigned long *zone_end_pfn,
5665 unsigned long *zones_size)
5666 {
5667 unsigned int zone;
5668
5669 *zone_start_pfn = node_start_pfn;
5670 for (zone = 0; zone < zone_type; zone++)
5671 *zone_start_pfn += zones_size[zone];
5672
5673 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5674
5675 return zones_size[zone_type];
5676 }
5677
5678 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5679 unsigned long zone_type,
5680 unsigned long node_start_pfn,
5681 unsigned long node_end_pfn,
5682 unsigned long *zholes_size)
5683 {
5684 if (!zholes_size)
5685 return 0;
5686
5687 return zholes_size[zone_type];
5688 }
5689
5690 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5691
5692 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5693 unsigned long node_start_pfn,
5694 unsigned long node_end_pfn,
5695 unsigned long *zones_size,
5696 unsigned long *zholes_size)
5697 {
5698 unsigned long realtotalpages = 0, totalpages = 0;
5699 enum zone_type i;
5700
5701 for (i = 0; i < MAX_NR_ZONES; i++) {
5702 struct zone *zone = pgdat->node_zones + i;
5703 unsigned long zone_start_pfn, zone_end_pfn;
5704 unsigned long size, real_size;
5705
5706 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5707 node_start_pfn,
5708 node_end_pfn,
5709 &zone_start_pfn,
5710 &zone_end_pfn,
5711 zones_size);
5712 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5713 node_start_pfn, node_end_pfn,
5714 zholes_size);
5715 if (size)
5716 zone->zone_start_pfn = zone_start_pfn;
5717 else
5718 zone->zone_start_pfn = 0;
5719 zone->spanned_pages = size;
5720 zone->present_pages = real_size;
5721
5722 totalpages += size;
5723 realtotalpages += real_size;
5724 }
5725
5726 pgdat->node_spanned_pages = totalpages;
5727 pgdat->node_present_pages = realtotalpages;
5728 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5729 realtotalpages);
5730 }
5731
5732 #ifndef CONFIG_SPARSEMEM
5733 /*
5734 * Calculate the size of the zone->blockflags rounded to an unsigned long
5735 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5736 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5737 * round what is now in bits to nearest long in bits, then return it in
5738 * bytes.
5739 */
5740 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5741 {
5742 unsigned long usemapsize;
5743
5744 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5745 usemapsize = roundup(zonesize, pageblock_nr_pages);
5746 usemapsize = usemapsize >> pageblock_order;
5747 usemapsize *= NR_PAGEBLOCK_BITS;
5748 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5749
5750 return usemapsize / 8;
5751 }
5752
5753 static void __init setup_usemap(struct pglist_data *pgdat,
5754 struct zone *zone,
5755 unsigned long zone_start_pfn,
5756 unsigned long zonesize)
5757 {
5758 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5759 zone->pageblock_flags = NULL;
5760 if (usemapsize)
5761 zone->pageblock_flags =
5762 memblock_virt_alloc_node_nopanic(usemapsize,
5763 pgdat->node_id);
5764 }
5765 #else
5766 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5767 unsigned long zone_start_pfn, unsigned long zonesize) {}
5768 #endif /* CONFIG_SPARSEMEM */
5769
5770 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5771
5772 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5773 void __paginginit set_pageblock_order(void)
5774 {
5775 unsigned int order;
5776
5777 /* Check that pageblock_nr_pages has not already been setup */
5778 if (pageblock_order)
5779 return;
5780
5781 if (HPAGE_SHIFT > PAGE_SHIFT)
5782 order = HUGETLB_PAGE_ORDER;
5783 else
5784 order = MAX_ORDER - 1;
5785
5786 /*
5787 * Assume the largest contiguous order of interest is a huge page.
5788 * This value may be variable depending on boot parameters on IA64 and
5789 * powerpc.
5790 */
5791 pageblock_order = order;
5792 }
5793 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5794
5795 /*
5796 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5797 * is unused as pageblock_order is set at compile-time. See
5798 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5799 * the kernel config
5800 */
5801 void __paginginit set_pageblock_order(void)
5802 {
5803 }
5804
5805 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5806
5807 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5808 unsigned long present_pages)
5809 {
5810 unsigned long pages = spanned_pages;
5811
5812 /*
5813 * Provide a more accurate estimation if there are holes within
5814 * the zone and SPARSEMEM is in use. If there are holes within the
5815 * zone, each populated memory region may cost us one or two extra
5816 * memmap pages due to alignment because memmap pages for each
5817 * populated regions may not naturally algined on page boundary.
5818 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5819 */
5820 if (spanned_pages > present_pages + (present_pages >> 4) &&
5821 IS_ENABLED(CONFIG_SPARSEMEM))
5822 pages = present_pages;
5823
5824 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5825 }
5826
5827 /*
5828 * Set up the zone data structures:
5829 * - mark all pages reserved
5830 * - mark all memory queues empty
5831 * - clear the memory bitmaps
5832 *
5833 * NOTE: pgdat should get zeroed by caller.
5834 */
5835 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5836 {
5837 enum zone_type j;
5838 int nid = pgdat->node_id;
5839 int ret;
5840
5841 pgdat_resize_init(pgdat);
5842 #ifdef CONFIG_NUMA_BALANCING
5843 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5844 pgdat->numabalancing_migrate_nr_pages = 0;
5845 pgdat->numabalancing_migrate_next_window = jiffies;
5846 #endif
5847 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5848 spin_lock_init(&pgdat->split_queue_lock);
5849 INIT_LIST_HEAD(&pgdat->split_queue);
5850 pgdat->split_queue_len = 0;
5851 #endif
5852 init_waitqueue_head(&pgdat->kswapd_wait);
5853 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5854 #ifdef CONFIG_COMPACTION
5855 init_waitqueue_head(&pgdat->kcompactd_wait);
5856 #endif
5857 pgdat_page_ext_init(pgdat);
5858 spin_lock_init(&pgdat->lru_lock);
5859 lruvec_init(node_lruvec(pgdat));
5860
5861 for (j = 0; j < MAX_NR_ZONES; j++) {
5862 struct zone *zone = pgdat->node_zones + j;
5863 unsigned long size, realsize, freesize, memmap_pages;
5864 unsigned long zone_start_pfn = zone->zone_start_pfn;
5865
5866 size = zone->spanned_pages;
5867 realsize = freesize = zone->present_pages;
5868
5869 /*
5870 * Adjust freesize so that it accounts for how much memory
5871 * is used by this zone for memmap. This affects the watermark
5872 * and per-cpu initialisations
5873 */
5874 memmap_pages = calc_memmap_size(size, realsize);
5875 if (!is_highmem_idx(j)) {
5876 if (freesize >= memmap_pages) {
5877 freesize -= memmap_pages;
5878 if (memmap_pages)
5879 printk(KERN_DEBUG
5880 " %s zone: %lu pages used for memmap\n",
5881 zone_names[j], memmap_pages);
5882 } else
5883 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5884 zone_names[j], memmap_pages, freesize);
5885 }
5886
5887 /* Account for reserved pages */
5888 if (j == 0 && freesize > dma_reserve) {
5889 freesize -= dma_reserve;
5890 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5891 zone_names[0], dma_reserve);
5892 }
5893
5894 if (!is_highmem_idx(j))
5895 nr_kernel_pages += freesize;
5896 /* Charge for highmem memmap if there are enough kernel pages */
5897 else if (nr_kernel_pages > memmap_pages * 2)
5898 nr_kernel_pages -= memmap_pages;
5899 nr_all_pages += freesize;
5900
5901 /*
5902 * Set an approximate value for lowmem here, it will be adjusted
5903 * when the bootmem allocator frees pages into the buddy system.
5904 * And all highmem pages will be managed by the buddy system.
5905 */
5906 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5907 #ifdef CONFIG_NUMA
5908 zone->node = nid;
5909 #endif
5910 zone->name = zone_names[j];
5911 zone->zone_pgdat = pgdat;
5912 spin_lock_init(&zone->lock);
5913 zone_seqlock_init(zone);
5914 zone_pcp_init(zone);
5915
5916 if (!size)
5917 continue;
5918
5919 set_pageblock_order();
5920 setup_usemap(pgdat, zone, zone_start_pfn, size);
5921 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5922 BUG_ON(ret);
5923 memmap_init(size, nid, j, zone_start_pfn);
5924 }
5925 }
5926
5927 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5928 {
5929 unsigned long __maybe_unused start = 0;
5930 unsigned long __maybe_unused offset = 0;
5931
5932 /* Skip empty nodes */
5933 if (!pgdat->node_spanned_pages)
5934 return;
5935
5936 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5937 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5938 offset = pgdat->node_start_pfn - start;
5939 /* ia64 gets its own node_mem_map, before this, without bootmem */
5940 if (!pgdat->node_mem_map) {
5941 unsigned long size, end;
5942 struct page *map;
5943
5944 /*
5945 * The zone's endpoints aren't required to be MAX_ORDER
5946 * aligned but the node_mem_map endpoints must be in order
5947 * for the buddy allocator to function correctly.
5948 */
5949 end = pgdat_end_pfn(pgdat);
5950 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5951 size = (end - start) * sizeof(struct page);
5952 map = alloc_remap(pgdat->node_id, size);
5953 if (!map)
5954 map = memblock_virt_alloc_node_nopanic(size,
5955 pgdat->node_id);
5956 pgdat->node_mem_map = map + offset;
5957 }
5958 #ifndef CONFIG_NEED_MULTIPLE_NODES
5959 /*
5960 * With no DISCONTIG, the global mem_map is just set as node 0's
5961 */
5962 if (pgdat == NODE_DATA(0)) {
5963 mem_map = NODE_DATA(0)->node_mem_map;
5964 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5965 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5966 mem_map -= offset;
5967 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5968 }
5969 #endif
5970 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5971 }
5972
5973 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5974 unsigned long node_start_pfn, unsigned long *zholes_size)
5975 {
5976 pg_data_t *pgdat = NODE_DATA(nid);
5977 unsigned long start_pfn = 0;
5978 unsigned long end_pfn = 0;
5979
5980 /* pg_data_t should be reset to zero when it's allocated */
5981 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5982
5983 reset_deferred_meminit(pgdat);
5984 pgdat->node_id = nid;
5985 pgdat->node_start_pfn = node_start_pfn;
5986 pgdat->per_cpu_nodestats = NULL;
5987 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5988 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5989 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5990 (u64)start_pfn << PAGE_SHIFT,
5991 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5992 #else
5993 start_pfn = node_start_pfn;
5994 #endif
5995 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5996 zones_size, zholes_size);
5997
5998 alloc_node_mem_map(pgdat);
5999 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6000 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6001 nid, (unsigned long)pgdat,
6002 (unsigned long)pgdat->node_mem_map);
6003 #endif
6004
6005 free_area_init_core(pgdat);
6006 }
6007
6008 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6009
6010 #if MAX_NUMNODES > 1
6011 /*
6012 * Figure out the number of possible node ids.
6013 */
6014 void __init setup_nr_node_ids(void)
6015 {
6016 unsigned int highest;
6017
6018 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6019 nr_node_ids = highest + 1;
6020 }
6021 #endif
6022
6023 /**
6024 * node_map_pfn_alignment - determine the maximum internode alignment
6025 *
6026 * This function should be called after node map is populated and sorted.
6027 * It calculates the maximum power of two alignment which can distinguish
6028 * all the nodes.
6029 *
6030 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6031 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6032 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6033 * shifted, 1GiB is enough and this function will indicate so.
6034 *
6035 * This is used to test whether pfn -> nid mapping of the chosen memory
6036 * model has fine enough granularity to avoid incorrect mapping for the
6037 * populated node map.
6038 *
6039 * Returns the determined alignment in pfn's. 0 if there is no alignment
6040 * requirement (single node).
6041 */
6042 unsigned long __init node_map_pfn_alignment(void)
6043 {
6044 unsigned long accl_mask = 0, last_end = 0;
6045 unsigned long start, end, mask;
6046 int last_nid = -1;
6047 int i, nid;
6048
6049 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6050 if (!start || last_nid < 0 || last_nid == nid) {
6051 last_nid = nid;
6052 last_end = end;
6053 continue;
6054 }
6055
6056 /*
6057 * Start with a mask granular enough to pin-point to the
6058 * start pfn and tick off bits one-by-one until it becomes
6059 * too coarse to separate the current node from the last.
6060 */
6061 mask = ~((1 << __ffs(start)) - 1);
6062 while (mask && last_end <= (start & (mask << 1)))
6063 mask <<= 1;
6064
6065 /* accumulate all internode masks */
6066 accl_mask |= mask;
6067 }
6068
6069 /* convert mask to number of pages */
6070 return ~accl_mask + 1;
6071 }
6072
6073 /* Find the lowest pfn for a node */
6074 static unsigned long __init find_min_pfn_for_node(int nid)
6075 {
6076 unsigned long min_pfn = ULONG_MAX;
6077 unsigned long start_pfn;
6078 int i;
6079
6080 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6081 min_pfn = min(min_pfn, start_pfn);
6082
6083 if (min_pfn == ULONG_MAX) {
6084 pr_warn("Could not find start_pfn for node %d\n", nid);
6085 return 0;
6086 }
6087
6088 return min_pfn;
6089 }
6090
6091 /**
6092 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6093 *
6094 * It returns the minimum PFN based on information provided via
6095 * memblock_set_node().
6096 */
6097 unsigned long __init find_min_pfn_with_active_regions(void)
6098 {
6099 return find_min_pfn_for_node(MAX_NUMNODES);
6100 }
6101
6102 /*
6103 * early_calculate_totalpages()
6104 * Sum pages in active regions for movable zone.
6105 * Populate N_MEMORY for calculating usable_nodes.
6106 */
6107 static unsigned long __init early_calculate_totalpages(void)
6108 {
6109 unsigned long totalpages = 0;
6110 unsigned long start_pfn, end_pfn;
6111 int i, nid;
6112
6113 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6114 unsigned long pages = end_pfn - start_pfn;
6115
6116 totalpages += pages;
6117 if (pages)
6118 node_set_state(nid, N_MEMORY);
6119 }
6120 return totalpages;
6121 }
6122
6123 /*
6124 * Find the PFN the Movable zone begins in each node. Kernel memory
6125 * is spread evenly between nodes as long as the nodes have enough
6126 * memory. When they don't, some nodes will have more kernelcore than
6127 * others
6128 */
6129 static void __init find_zone_movable_pfns_for_nodes(void)
6130 {
6131 int i, nid;
6132 unsigned long usable_startpfn;
6133 unsigned long kernelcore_node, kernelcore_remaining;
6134 /* save the state before borrow the nodemask */
6135 nodemask_t saved_node_state = node_states[N_MEMORY];
6136 unsigned long totalpages = early_calculate_totalpages();
6137 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6138 struct memblock_region *r;
6139
6140 /* Need to find movable_zone earlier when movable_node is specified. */
6141 find_usable_zone_for_movable();
6142
6143 /*
6144 * If movable_node is specified, ignore kernelcore and movablecore
6145 * options.
6146 */
6147 if (movable_node_is_enabled()) {
6148 for_each_memblock(memory, r) {
6149 if (!memblock_is_hotpluggable(r))
6150 continue;
6151
6152 nid = r->nid;
6153
6154 usable_startpfn = PFN_DOWN(r->base);
6155 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6156 min(usable_startpfn, zone_movable_pfn[nid]) :
6157 usable_startpfn;
6158 }
6159
6160 goto out2;
6161 }
6162
6163 /*
6164 * If kernelcore=mirror is specified, ignore movablecore option
6165 */
6166 if (mirrored_kernelcore) {
6167 bool mem_below_4gb_not_mirrored = false;
6168
6169 for_each_memblock(memory, r) {
6170 if (memblock_is_mirror(r))
6171 continue;
6172
6173 nid = r->nid;
6174
6175 usable_startpfn = memblock_region_memory_base_pfn(r);
6176
6177 if (usable_startpfn < 0x100000) {
6178 mem_below_4gb_not_mirrored = true;
6179 continue;
6180 }
6181
6182 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6183 min(usable_startpfn, zone_movable_pfn[nid]) :
6184 usable_startpfn;
6185 }
6186
6187 if (mem_below_4gb_not_mirrored)
6188 pr_warn("This configuration results in unmirrored kernel memory.");
6189
6190 goto out2;
6191 }
6192
6193 /*
6194 * If movablecore=nn[KMG] was specified, calculate what size of
6195 * kernelcore that corresponds so that memory usable for
6196 * any allocation type is evenly spread. If both kernelcore
6197 * and movablecore are specified, then the value of kernelcore
6198 * will be used for required_kernelcore if it's greater than
6199 * what movablecore would have allowed.
6200 */
6201 if (required_movablecore) {
6202 unsigned long corepages;
6203
6204 /*
6205 * Round-up so that ZONE_MOVABLE is at least as large as what
6206 * was requested by the user
6207 */
6208 required_movablecore =
6209 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6210 required_movablecore = min(totalpages, required_movablecore);
6211 corepages = totalpages - required_movablecore;
6212
6213 required_kernelcore = max(required_kernelcore, corepages);
6214 }
6215
6216 /*
6217 * If kernelcore was not specified or kernelcore size is larger
6218 * than totalpages, there is no ZONE_MOVABLE.
6219 */
6220 if (!required_kernelcore || required_kernelcore >= totalpages)
6221 goto out;
6222
6223 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6224 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6225
6226 restart:
6227 /* Spread kernelcore memory as evenly as possible throughout nodes */
6228 kernelcore_node = required_kernelcore / usable_nodes;
6229 for_each_node_state(nid, N_MEMORY) {
6230 unsigned long start_pfn, end_pfn;
6231
6232 /*
6233 * Recalculate kernelcore_node if the division per node
6234 * now exceeds what is necessary to satisfy the requested
6235 * amount of memory for the kernel
6236 */
6237 if (required_kernelcore < kernelcore_node)
6238 kernelcore_node = required_kernelcore / usable_nodes;
6239
6240 /*
6241 * As the map is walked, we track how much memory is usable
6242 * by the kernel using kernelcore_remaining. When it is
6243 * 0, the rest of the node is usable by ZONE_MOVABLE
6244 */
6245 kernelcore_remaining = kernelcore_node;
6246
6247 /* Go through each range of PFNs within this node */
6248 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6249 unsigned long size_pages;
6250
6251 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6252 if (start_pfn >= end_pfn)
6253 continue;
6254
6255 /* Account for what is only usable for kernelcore */
6256 if (start_pfn < usable_startpfn) {
6257 unsigned long kernel_pages;
6258 kernel_pages = min(end_pfn, usable_startpfn)
6259 - start_pfn;
6260
6261 kernelcore_remaining -= min(kernel_pages,
6262 kernelcore_remaining);
6263 required_kernelcore -= min(kernel_pages,
6264 required_kernelcore);
6265
6266 /* Continue if range is now fully accounted */
6267 if (end_pfn <= usable_startpfn) {
6268
6269 /*
6270 * Push zone_movable_pfn to the end so
6271 * that if we have to rebalance
6272 * kernelcore across nodes, we will
6273 * not double account here
6274 */
6275 zone_movable_pfn[nid] = end_pfn;
6276 continue;
6277 }
6278 start_pfn = usable_startpfn;
6279 }
6280
6281 /*
6282 * The usable PFN range for ZONE_MOVABLE is from
6283 * start_pfn->end_pfn. Calculate size_pages as the
6284 * number of pages used as kernelcore
6285 */
6286 size_pages = end_pfn - start_pfn;
6287 if (size_pages > kernelcore_remaining)
6288 size_pages = kernelcore_remaining;
6289 zone_movable_pfn[nid] = start_pfn + size_pages;
6290
6291 /*
6292 * Some kernelcore has been met, update counts and
6293 * break if the kernelcore for this node has been
6294 * satisfied
6295 */
6296 required_kernelcore -= min(required_kernelcore,
6297 size_pages);
6298 kernelcore_remaining -= size_pages;
6299 if (!kernelcore_remaining)
6300 break;
6301 }
6302 }
6303
6304 /*
6305 * If there is still required_kernelcore, we do another pass with one
6306 * less node in the count. This will push zone_movable_pfn[nid] further
6307 * along on the nodes that still have memory until kernelcore is
6308 * satisfied
6309 */
6310 usable_nodes--;
6311 if (usable_nodes && required_kernelcore > usable_nodes)
6312 goto restart;
6313
6314 out2:
6315 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6316 for (nid = 0; nid < MAX_NUMNODES; nid++)
6317 zone_movable_pfn[nid] =
6318 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6319
6320 out:
6321 /* restore the node_state */
6322 node_states[N_MEMORY] = saved_node_state;
6323 }
6324
6325 /* Any regular or high memory on that node ? */
6326 static void check_for_memory(pg_data_t *pgdat, int nid)
6327 {
6328 enum zone_type zone_type;
6329
6330 if (N_MEMORY == N_NORMAL_MEMORY)
6331 return;
6332
6333 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6334 struct zone *zone = &pgdat->node_zones[zone_type];
6335 if (populated_zone(zone)) {
6336 node_set_state(nid, N_HIGH_MEMORY);
6337 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6338 zone_type <= ZONE_NORMAL)
6339 node_set_state(nid, N_NORMAL_MEMORY);
6340 break;
6341 }
6342 }
6343 }
6344
6345 /**
6346 * free_area_init_nodes - Initialise all pg_data_t and zone data
6347 * @max_zone_pfn: an array of max PFNs for each zone
6348 *
6349 * This will call free_area_init_node() for each active node in the system.
6350 * Using the page ranges provided by memblock_set_node(), the size of each
6351 * zone in each node and their holes is calculated. If the maximum PFN
6352 * between two adjacent zones match, it is assumed that the zone is empty.
6353 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6354 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6355 * starts where the previous one ended. For example, ZONE_DMA32 starts
6356 * at arch_max_dma_pfn.
6357 */
6358 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6359 {
6360 unsigned long start_pfn, end_pfn;
6361 int i, nid;
6362
6363 /* Record where the zone boundaries are */
6364 memset(arch_zone_lowest_possible_pfn, 0,
6365 sizeof(arch_zone_lowest_possible_pfn));
6366 memset(arch_zone_highest_possible_pfn, 0,
6367 sizeof(arch_zone_highest_possible_pfn));
6368
6369 start_pfn = find_min_pfn_with_active_regions();
6370
6371 for (i = 0; i < MAX_NR_ZONES; i++) {
6372 if (i == ZONE_MOVABLE)
6373 continue;
6374
6375 end_pfn = max(max_zone_pfn[i], start_pfn);
6376 arch_zone_lowest_possible_pfn[i] = start_pfn;
6377 arch_zone_highest_possible_pfn[i] = end_pfn;
6378
6379 start_pfn = end_pfn;
6380 }
6381 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6382 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6383
6384 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6385 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6386 find_zone_movable_pfns_for_nodes();
6387
6388 /* Print out the zone ranges */
6389 pr_info("Zone ranges:\n");
6390 for (i = 0; i < MAX_NR_ZONES; i++) {
6391 if (i == ZONE_MOVABLE)
6392 continue;
6393 pr_info(" %-8s ", zone_names[i]);
6394 if (arch_zone_lowest_possible_pfn[i] ==
6395 arch_zone_highest_possible_pfn[i])
6396 pr_cont("empty\n");
6397 else
6398 pr_cont("[mem %#018Lx-%#018Lx]\n",
6399 (u64)arch_zone_lowest_possible_pfn[i]
6400 << PAGE_SHIFT,
6401 ((u64)arch_zone_highest_possible_pfn[i]
6402 << PAGE_SHIFT) - 1);
6403 }
6404
6405 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6406 pr_info("Movable zone start for each node\n");
6407 for (i = 0; i < MAX_NUMNODES; i++) {
6408 if (zone_movable_pfn[i])
6409 pr_info(" Node %d: %#018Lx\n", i,
6410 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6411 }
6412
6413 /* Print out the early node map */
6414 pr_info("Early memory node ranges\n");
6415 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6416 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6417 (u64)start_pfn << PAGE_SHIFT,
6418 ((u64)end_pfn << PAGE_SHIFT) - 1);
6419
6420 /* Initialise every node */
6421 mminit_verify_pageflags_layout();
6422 setup_nr_node_ids();
6423 for_each_online_node(nid) {
6424 pg_data_t *pgdat = NODE_DATA(nid);
6425 free_area_init_node(nid, NULL,
6426 find_min_pfn_for_node(nid), NULL);
6427
6428 /* Any memory on that node */
6429 if (pgdat->node_present_pages)
6430 node_set_state(nid, N_MEMORY);
6431 check_for_memory(pgdat, nid);
6432 }
6433 }
6434
6435 static int __init cmdline_parse_core(char *p, unsigned long *core)
6436 {
6437 unsigned long long coremem;
6438 if (!p)
6439 return -EINVAL;
6440
6441 coremem = memparse(p, &p);
6442 *core = coremem >> PAGE_SHIFT;
6443
6444 /* Paranoid check that UL is enough for the coremem value */
6445 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6446
6447 return 0;
6448 }
6449
6450 /*
6451 * kernelcore=size sets the amount of memory for use for allocations that
6452 * cannot be reclaimed or migrated.
6453 */
6454 static int __init cmdline_parse_kernelcore(char *p)
6455 {
6456 /* parse kernelcore=mirror */
6457 if (parse_option_str(p, "mirror")) {
6458 mirrored_kernelcore = true;
6459 return 0;
6460 }
6461
6462 return cmdline_parse_core(p, &required_kernelcore);
6463 }
6464
6465 /*
6466 * movablecore=size sets the amount of memory for use for allocations that
6467 * can be reclaimed or migrated.
6468 */
6469 static int __init cmdline_parse_movablecore(char *p)
6470 {
6471 return cmdline_parse_core(p, &required_movablecore);
6472 }
6473
6474 early_param("kernelcore", cmdline_parse_kernelcore);
6475 early_param("movablecore", cmdline_parse_movablecore);
6476
6477 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6478
6479 void adjust_managed_page_count(struct page *page, long count)
6480 {
6481 spin_lock(&managed_page_count_lock);
6482 page_zone(page)->managed_pages += count;
6483 totalram_pages += count;
6484 #ifdef CONFIG_HIGHMEM
6485 if (PageHighMem(page))
6486 totalhigh_pages += count;
6487 #endif
6488 spin_unlock(&managed_page_count_lock);
6489 }
6490 EXPORT_SYMBOL(adjust_managed_page_count);
6491
6492 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6493 {
6494 void *pos;
6495 unsigned long pages = 0;
6496
6497 start = (void *)PAGE_ALIGN((unsigned long)start);
6498 end = (void *)((unsigned long)end & PAGE_MASK);
6499 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6500 if ((unsigned int)poison <= 0xFF)
6501 memset(pos, poison, PAGE_SIZE);
6502 free_reserved_page(virt_to_page(pos));
6503 }
6504
6505 if (pages && s)
6506 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6507 s, pages << (PAGE_SHIFT - 10), start, end);
6508
6509 return pages;
6510 }
6511 EXPORT_SYMBOL(free_reserved_area);
6512
6513 #ifdef CONFIG_HIGHMEM
6514 void free_highmem_page(struct page *page)
6515 {
6516 __free_reserved_page(page);
6517 totalram_pages++;
6518 page_zone(page)->managed_pages++;
6519 totalhigh_pages++;
6520 }
6521 #endif
6522
6523
6524 void __init mem_init_print_info(const char *str)
6525 {
6526 unsigned long physpages, codesize, datasize, rosize, bss_size;
6527 unsigned long init_code_size, init_data_size;
6528
6529 physpages = get_num_physpages();
6530 codesize = _etext - _stext;
6531 datasize = _edata - _sdata;
6532 rosize = __end_rodata - __start_rodata;
6533 bss_size = __bss_stop - __bss_start;
6534 init_data_size = __init_end - __init_begin;
6535 init_code_size = _einittext - _sinittext;
6536
6537 /*
6538 * Detect special cases and adjust section sizes accordingly:
6539 * 1) .init.* may be embedded into .data sections
6540 * 2) .init.text.* may be out of [__init_begin, __init_end],
6541 * please refer to arch/tile/kernel/vmlinux.lds.S.
6542 * 3) .rodata.* may be embedded into .text or .data sections.
6543 */
6544 #define adj_init_size(start, end, size, pos, adj) \
6545 do { \
6546 if (start <= pos && pos < end && size > adj) \
6547 size -= adj; \
6548 } while (0)
6549
6550 adj_init_size(__init_begin, __init_end, init_data_size,
6551 _sinittext, init_code_size);
6552 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6553 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6554 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6555 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6556
6557 #undef adj_init_size
6558
6559 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6560 #ifdef CONFIG_HIGHMEM
6561 ", %luK highmem"
6562 #endif
6563 "%s%s)\n",
6564 nr_free_pages() << (PAGE_SHIFT - 10),
6565 physpages << (PAGE_SHIFT - 10),
6566 codesize >> 10, datasize >> 10, rosize >> 10,
6567 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6568 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6569 totalcma_pages << (PAGE_SHIFT - 10),
6570 #ifdef CONFIG_HIGHMEM
6571 totalhigh_pages << (PAGE_SHIFT - 10),
6572 #endif
6573 str ? ", " : "", str ? str : "");
6574 }
6575
6576 /**
6577 * set_dma_reserve - set the specified number of pages reserved in the first zone
6578 * @new_dma_reserve: The number of pages to mark reserved
6579 *
6580 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6581 * In the DMA zone, a significant percentage may be consumed by kernel image
6582 * and other unfreeable allocations which can skew the watermarks badly. This
6583 * function may optionally be used to account for unfreeable pages in the
6584 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6585 * smaller per-cpu batchsize.
6586 */
6587 void __init set_dma_reserve(unsigned long new_dma_reserve)
6588 {
6589 dma_reserve = new_dma_reserve;
6590 }
6591
6592 void __init free_area_init(unsigned long *zones_size)
6593 {
6594 free_area_init_node(0, zones_size,
6595 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6596 }
6597
6598 static int page_alloc_cpu_notify(struct notifier_block *self,
6599 unsigned long action, void *hcpu)
6600 {
6601 int cpu = (unsigned long)hcpu;
6602
6603 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6604 lru_add_drain_cpu(cpu);
6605 drain_pages(cpu);
6606
6607 /*
6608 * Spill the event counters of the dead processor
6609 * into the current processors event counters.
6610 * This artificially elevates the count of the current
6611 * processor.
6612 */
6613 vm_events_fold_cpu(cpu);
6614
6615 /*
6616 * Zero the differential counters of the dead processor
6617 * so that the vm statistics are consistent.
6618 *
6619 * This is only okay since the processor is dead and cannot
6620 * race with what we are doing.
6621 */
6622 cpu_vm_stats_fold(cpu);
6623 }
6624 return NOTIFY_OK;
6625 }
6626
6627 void __init page_alloc_init(void)
6628 {
6629 hotcpu_notifier(page_alloc_cpu_notify, 0);
6630 }
6631
6632 /*
6633 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6634 * or min_free_kbytes changes.
6635 */
6636 static void calculate_totalreserve_pages(void)
6637 {
6638 struct pglist_data *pgdat;
6639 unsigned long reserve_pages = 0;
6640 enum zone_type i, j;
6641
6642 for_each_online_pgdat(pgdat) {
6643
6644 pgdat->totalreserve_pages = 0;
6645
6646 for (i = 0; i < MAX_NR_ZONES; i++) {
6647 struct zone *zone = pgdat->node_zones + i;
6648 long max = 0;
6649
6650 /* Find valid and maximum lowmem_reserve in the zone */
6651 for (j = i; j < MAX_NR_ZONES; j++) {
6652 if (zone->lowmem_reserve[j] > max)
6653 max = zone->lowmem_reserve[j];
6654 }
6655
6656 /* we treat the high watermark as reserved pages. */
6657 max += high_wmark_pages(zone);
6658
6659 if (max > zone->managed_pages)
6660 max = zone->managed_pages;
6661
6662 pgdat->totalreserve_pages += max;
6663
6664 reserve_pages += max;
6665 }
6666 }
6667 totalreserve_pages = reserve_pages;
6668 }
6669
6670 /*
6671 * setup_per_zone_lowmem_reserve - called whenever
6672 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6673 * has a correct pages reserved value, so an adequate number of
6674 * pages are left in the zone after a successful __alloc_pages().
6675 */
6676 static void setup_per_zone_lowmem_reserve(void)
6677 {
6678 struct pglist_data *pgdat;
6679 enum zone_type j, idx;
6680
6681 for_each_online_pgdat(pgdat) {
6682 for (j = 0; j < MAX_NR_ZONES; j++) {
6683 struct zone *zone = pgdat->node_zones + j;
6684 unsigned long managed_pages = zone->managed_pages;
6685
6686 zone->lowmem_reserve[j] = 0;
6687
6688 idx = j;
6689 while (idx) {
6690 struct zone *lower_zone;
6691
6692 idx--;
6693
6694 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6695 sysctl_lowmem_reserve_ratio[idx] = 1;
6696
6697 lower_zone = pgdat->node_zones + idx;
6698 lower_zone->lowmem_reserve[j] = managed_pages /
6699 sysctl_lowmem_reserve_ratio[idx];
6700 managed_pages += lower_zone->managed_pages;
6701 }
6702 }
6703 }
6704
6705 /* update totalreserve_pages */
6706 calculate_totalreserve_pages();
6707 }
6708
6709 static void __setup_per_zone_wmarks(void)
6710 {
6711 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6712 unsigned long lowmem_pages = 0;
6713 struct zone *zone;
6714 unsigned long flags;
6715
6716 /* Calculate total number of !ZONE_HIGHMEM pages */
6717 for_each_zone(zone) {
6718 if (!is_highmem(zone))
6719 lowmem_pages += zone->managed_pages;
6720 }
6721
6722 for_each_zone(zone) {
6723 u64 tmp;
6724
6725 spin_lock_irqsave(&zone->lock, flags);
6726 tmp = (u64)pages_min * zone->managed_pages;
6727 do_div(tmp, lowmem_pages);
6728 if (is_highmem(zone)) {
6729 /*
6730 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6731 * need highmem pages, so cap pages_min to a small
6732 * value here.
6733 *
6734 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6735 * deltas control asynch page reclaim, and so should
6736 * not be capped for highmem.
6737 */
6738 unsigned long min_pages;
6739
6740 min_pages = zone->managed_pages / 1024;
6741 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6742 zone->watermark[WMARK_MIN] = min_pages;
6743 } else {
6744 /*
6745 * If it's a lowmem zone, reserve a number of pages
6746 * proportionate to the zone's size.
6747 */
6748 zone->watermark[WMARK_MIN] = tmp;
6749 }
6750
6751 /*
6752 * Set the kswapd watermarks distance according to the
6753 * scale factor in proportion to available memory, but
6754 * ensure a minimum size on small systems.
6755 */
6756 tmp = max_t(u64, tmp >> 2,
6757 mult_frac(zone->managed_pages,
6758 watermark_scale_factor, 10000));
6759
6760 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6761 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6762
6763 spin_unlock_irqrestore(&zone->lock, flags);
6764 }
6765
6766 /* update totalreserve_pages */
6767 calculate_totalreserve_pages();
6768 }
6769
6770 /**
6771 * setup_per_zone_wmarks - called when min_free_kbytes changes
6772 * or when memory is hot-{added|removed}
6773 *
6774 * Ensures that the watermark[min,low,high] values for each zone are set
6775 * correctly with respect to min_free_kbytes.
6776 */
6777 void setup_per_zone_wmarks(void)
6778 {
6779 mutex_lock(&zonelists_mutex);
6780 __setup_per_zone_wmarks();
6781 mutex_unlock(&zonelists_mutex);
6782 }
6783
6784 /*
6785 * Initialise min_free_kbytes.
6786 *
6787 * For small machines we want it small (128k min). For large machines
6788 * we want it large (64MB max). But it is not linear, because network
6789 * bandwidth does not increase linearly with machine size. We use
6790 *
6791 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6792 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6793 *
6794 * which yields
6795 *
6796 * 16MB: 512k
6797 * 32MB: 724k
6798 * 64MB: 1024k
6799 * 128MB: 1448k
6800 * 256MB: 2048k
6801 * 512MB: 2896k
6802 * 1024MB: 4096k
6803 * 2048MB: 5792k
6804 * 4096MB: 8192k
6805 * 8192MB: 11584k
6806 * 16384MB: 16384k
6807 */
6808 int __meminit init_per_zone_wmark_min(void)
6809 {
6810 unsigned long lowmem_kbytes;
6811 int new_min_free_kbytes;
6812
6813 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6814 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6815
6816 if (new_min_free_kbytes > user_min_free_kbytes) {
6817 min_free_kbytes = new_min_free_kbytes;
6818 if (min_free_kbytes < 128)
6819 min_free_kbytes = 128;
6820 if (min_free_kbytes > 65536)
6821 min_free_kbytes = 65536;
6822 } else {
6823 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6824 new_min_free_kbytes, user_min_free_kbytes);
6825 }
6826 setup_per_zone_wmarks();
6827 refresh_zone_stat_thresholds();
6828 setup_per_zone_lowmem_reserve();
6829
6830 #ifdef CONFIG_NUMA
6831 setup_min_unmapped_ratio();
6832 setup_min_slab_ratio();
6833 #endif
6834
6835 return 0;
6836 }
6837 core_initcall(init_per_zone_wmark_min)
6838
6839 /*
6840 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6841 * that we can call two helper functions whenever min_free_kbytes
6842 * changes.
6843 */
6844 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6845 void __user *buffer, size_t *length, loff_t *ppos)
6846 {
6847 int rc;
6848
6849 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6850 if (rc)
6851 return rc;
6852
6853 if (write) {
6854 user_min_free_kbytes = min_free_kbytes;
6855 setup_per_zone_wmarks();
6856 }
6857 return 0;
6858 }
6859
6860 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6861 void __user *buffer, size_t *length, loff_t *ppos)
6862 {
6863 int rc;
6864
6865 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6866 if (rc)
6867 return rc;
6868
6869 if (write)
6870 setup_per_zone_wmarks();
6871
6872 return 0;
6873 }
6874
6875 #ifdef CONFIG_NUMA
6876 static void setup_min_unmapped_ratio(void)
6877 {
6878 pg_data_t *pgdat;
6879 struct zone *zone;
6880
6881 for_each_online_pgdat(pgdat)
6882 pgdat->min_unmapped_pages = 0;
6883
6884 for_each_zone(zone)
6885 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6886 sysctl_min_unmapped_ratio) / 100;
6887 }
6888
6889
6890 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6891 void __user *buffer, size_t *length, loff_t *ppos)
6892 {
6893 int rc;
6894
6895 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6896 if (rc)
6897 return rc;
6898
6899 setup_min_unmapped_ratio();
6900
6901 return 0;
6902 }
6903
6904 static void setup_min_slab_ratio(void)
6905 {
6906 pg_data_t *pgdat;
6907 struct zone *zone;
6908
6909 for_each_online_pgdat(pgdat)
6910 pgdat->min_slab_pages = 0;
6911
6912 for_each_zone(zone)
6913 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6914 sysctl_min_slab_ratio) / 100;
6915 }
6916
6917 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6918 void __user *buffer, size_t *length, loff_t *ppos)
6919 {
6920 int rc;
6921
6922 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6923 if (rc)
6924 return rc;
6925
6926 setup_min_slab_ratio();
6927
6928 return 0;
6929 }
6930 #endif
6931
6932 /*
6933 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6934 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6935 * whenever sysctl_lowmem_reserve_ratio changes.
6936 *
6937 * The reserve ratio obviously has absolutely no relation with the
6938 * minimum watermarks. The lowmem reserve ratio can only make sense
6939 * if in function of the boot time zone sizes.
6940 */
6941 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6942 void __user *buffer, size_t *length, loff_t *ppos)
6943 {
6944 proc_dointvec_minmax(table, write, buffer, length, ppos);
6945 setup_per_zone_lowmem_reserve();
6946 return 0;
6947 }
6948
6949 /*
6950 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6951 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6952 * pagelist can have before it gets flushed back to buddy allocator.
6953 */
6954 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6955 void __user *buffer, size_t *length, loff_t *ppos)
6956 {
6957 struct zone *zone;
6958 int old_percpu_pagelist_fraction;
6959 int ret;
6960
6961 mutex_lock(&pcp_batch_high_lock);
6962 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6963
6964 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6965 if (!write || ret < 0)
6966 goto out;
6967
6968 /* Sanity checking to avoid pcp imbalance */
6969 if (percpu_pagelist_fraction &&
6970 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6971 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6972 ret = -EINVAL;
6973 goto out;
6974 }
6975
6976 /* No change? */
6977 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6978 goto out;
6979
6980 for_each_populated_zone(zone) {
6981 unsigned int cpu;
6982
6983 for_each_possible_cpu(cpu)
6984 pageset_set_high_and_batch(zone,
6985 per_cpu_ptr(zone->pageset, cpu));
6986 }
6987 out:
6988 mutex_unlock(&pcp_batch_high_lock);
6989 return ret;
6990 }
6991
6992 #ifdef CONFIG_NUMA
6993 int hashdist = HASHDIST_DEFAULT;
6994
6995 static int __init set_hashdist(char *str)
6996 {
6997 if (!str)
6998 return 0;
6999 hashdist = simple_strtoul(str, &str, 0);
7000 return 1;
7001 }
7002 __setup("hashdist=", set_hashdist);
7003 #endif
7004
7005 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7006 /*
7007 * Returns the number of pages that arch has reserved but
7008 * is not known to alloc_large_system_hash().
7009 */
7010 static unsigned long __init arch_reserved_kernel_pages(void)
7011 {
7012 return 0;
7013 }
7014 #endif
7015
7016 /*
7017 * allocate a large system hash table from bootmem
7018 * - it is assumed that the hash table must contain an exact power-of-2
7019 * quantity of entries
7020 * - limit is the number of hash buckets, not the total allocation size
7021 */
7022 void *__init alloc_large_system_hash(const char *tablename,
7023 unsigned long bucketsize,
7024 unsigned long numentries,
7025 int scale,
7026 int flags,
7027 unsigned int *_hash_shift,
7028 unsigned int *_hash_mask,
7029 unsigned long low_limit,
7030 unsigned long high_limit)
7031 {
7032 unsigned long long max = high_limit;
7033 unsigned long log2qty, size;
7034 void *table = NULL;
7035
7036 /* allow the kernel cmdline to have a say */
7037 if (!numentries) {
7038 /* round applicable memory size up to nearest megabyte */
7039 numentries = nr_kernel_pages;
7040 numentries -= arch_reserved_kernel_pages();
7041
7042 /* It isn't necessary when PAGE_SIZE >= 1MB */
7043 if (PAGE_SHIFT < 20)
7044 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7045
7046 /* limit to 1 bucket per 2^scale bytes of low memory */
7047 if (scale > PAGE_SHIFT)
7048 numentries >>= (scale - PAGE_SHIFT);
7049 else
7050 numentries <<= (PAGE_SHIFT - scale);
7051
7052 /* Make sure we've got at least a 0-order allocation.. */
7053 if (unlikely(flags & HASH_SMALL)) {
7054 /* Makes no sense without HASH_EARLY */
7055 WARN_ON(!(flags & HASH_EARLY));
7056 if (!(numentries >> *_hash_shift)) {
7057 numentries = 1UL << *_hash_shift;
7058 BUG_ON(!numentries);
7059 }
7060 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7061 numentries = PAGE_SIZE / bucketsize;
7062 }
7063 numentries = roundup_pow_of_two(numentries);
7064
7065 /* limit allocation size to 1/16 total memory by default */
7066 if (max == 0) {
7067 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7068 do_div(max, bucketsize);
7069 }
7070 max = min(max, 0x80000000ULL);
7071
7072 if (numentries < low_limit)
7073 numentries = low_limit;
7074 if (numentries > max)
7075 numentries = max;
7076
7077 log2qty = ilog2(numentries);
7078
7079 do {
7080 size = bucketsize << log2qty;
7081 if (flags & HASH_EARLY)
7082 table = memblock_virt_alloc_nopanic(size, 0);
7083 else if (hashdist)
7084 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7085 else {
7086 /*
7087 * If bucketsize is not a power-of-two, we may free
7088 * some pages at the end of hash table which
7089 * alloc_pages_exact() automatically does
7090 */
7091 if (get_order(size) < MAX_ORDER) {
7092 table = alloc_pages_exact(size, GFP_ATOMIC);
7093 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7094 }
7095 }
7096 } while (!table && size > PAGE_SIZE && --log2qty);
7097
7098 if (!table)
7099 panic("Failed to allocate %s hash table\n", tablename);
7100
7101 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7102 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7103
7104 if (_hash_shift)
7105 *_hash_shift = log2qty;
7106 if (_hash_mask)
7107 *_hash_mask = (1 << log2qty) - 1;
7108
7109 return table;
7110 }
7111
7112 /*
7113 * This function checks whether pageblock includes unmovable pages or not.
7114 * If @count is not zero, it is okay to include less @count unmovable pages
7115 *
7116 * PageLRU check without isolation or lru_lock could race so that
7117 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7118 * expect this function should be exact.
7119 */
7120 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7121 bool skip_hwpoisoned_pages)
7122 {
7123 unsigned long pfn, iter, found;
7124 int mt;
7125
7126 /*
7127 * For avoiding noise data, lru_add_drain_all() should be called
7128 * If ZONE_MOVABLE, the zone never contains unmovable pages
7129 */
7130 if (zone_idx(zone) == ZONE_MOVABLE)
7131 return false;
7132 mt = get_pageblock_migratetype(page);
7133 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7134 return false;
7135
7136 pfn = page_to_pfn(page);
7137 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7138 unsigned long check = pfn + iter;
7139
7140 if (!pfn_valid_within(check))
7141 continue;
7142
7143 page = pfn_to_page(check);
7144
7145 /*
7146 * Hugepages are not in LRU lists, but they're movable.
7147 * We need not scan over tail pages bacause we don't
7148 * handle each tail page individually in migration.
7149 */
7150 if (PageHuge(page)) {
7151 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7152 continue;
7153 }
7154
7155 /*
7156 * We can't use page_count without pin a page
7157 * because another CPU can free compound page.
7158 * This check already skips compound tails of THP
7159 * because their page->_refcount is zero at all time.
7160 */
7161 if (!page_ref_count(page)) {
7162 if (PageBuddy(page))
7163 iter += (1 << page_order(page)) - 1;
7164 continue;
7165 }
7166
7167 /*
7168 * The HWPoisoned page may be not in buddy system, and
7169 * page_count() is not 0.
7170 */
7171 if (skip_hwpoisoned_pages && PageHWPoison(page))
7172 continue;
7173
7174 if (!PageLRU(page))
7175 found++;
7176 /*
7177 * If there are RECLAIMABLE pages, we need to check
7178 * it. But now, memory offline itself doesn't call
7179 * shrink_node_slabs() and it still to be fixed.
7180 */
7181 /*
7182 * If the page is not RAM, page_count()should be 0.
7183 * we don't need more check. This is an _used_ not-movable page.
7184 *
7185 * The problematic thing here is PG_reserved pages. PG_reserved
7186 * is set to both of a memory hole page and a _used_ kernel
7187 * page at boot.
7188 */
7189 if (found > count)
7190 return true;
7191 }
7192 return false;
7193 }
7194
7195 bool is_pageblock_removable_nolock(struct page *page)
7196 {
7197 struct zone *zone;
7198 unsigned long pfn;
7199
7200 /*
7201 * We have to be careful here because we are iterating over memory
7202 * sections which are not zone aware so we might end up outside of
7203 * the zone but still within the section.
7204 * We have to take care about the node as well. If the node is offline
7205 * its NODE_DATA will be NULL - see page_zone.
7206 */
7207 if (!node_online(page_to_nid(page)))
7208 return false;
7209
7210 zone = page_zone(page);
7211 pfn = page_to_pfn(page);
7212 if (!zone_spans_pfn(zone, pfn))
7213 return false;
7214
7215 return !has_unmovable_pages(zone, page, 0, true);
7216 }
7217
7218 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7219
7220 static unsigned long pfn_max_align_down(unsigned long pfn)
7221 {
7222 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7223 pageblock_nr_pages) - 1);
7224 }
7225
7226 static unsigned long pfn_max_align_up(unsigned long pfn)
7227 {
7228 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7229 pageblock_nr_pages));
7230 }
7231
7232 /* [start, end) must belong to a single zone. */
7233 static int __alloc_contig_migrate_range(struct compact_control *cc,
7234 unsigned long start, unsigned long end)
7235 {
7236 /* This function is based on compact_zone() from compaction.c. */
7237 unsigned long nr_reclaimed;
7238 unsigned long pfn = start;
7239 unsigned int tries = 0;
7240 int ret = 0;
7241
7242 migrate_prep();
7243
7244 while (pfn < end || !list_empty(&cc->migratepages)) {
7245 if (fatal_signal_pending(current)) {
7246 ret = -EINTR;
7247 break;
7248 }
7249
7250 if (list_empty(&cc->migratepages)) {
7251 cc->nr_migratepages = 0;
7252 pfn = isolate_migratepages_range(cc, pfn, end);
7253 if (!pfn) {
7254 ret = -EINTR;
7255 break;
7256 }
7257 tries = 0;
7258 } else if (++tries == 5) {
7259 ret = ret < 0 ? ret : -EBUSY;
7260 break;
7261 }
7262
7263 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7264 &cc->migratepages);
7265 cc->nr_migratepages -= nr_reclaimed;
7266
7267 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7268 NULL, 0, cc->mode, MR_CMA);
7269 }
7270 if (ret < 0) {
7271 putback_movable_pages(&cc->migratepages);
7272 return ret;
7273 }
7274 return 0;
7275 }
7276
7277 /**
7278 * alloc_contig_range() -- tries to allocate given range of pages
7279 * @start: start PFN to allocate
7280 * @end: one-past-the-last PFN to allocate
7281 * @migratetype: migratetype of the underlaying pageblocks (either
7282 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7283 * in range must have the same migratetype and it must
7284 * be either of the two.
7285 *
7286 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7287 * aligned, however it's the caller's responsibility to guarantee that
7288 * we are the only thread that changes migrate type of pageblocks the
7289 * pages fall in.
7290 *
7291 * The PFN range must belong to a single zone.
7292 *
7293 * Returns zero on success or negative error code. On success all
7294 * pages which PFN is in [start, end) are allocated for the caller and
7295 * need to be freed with free_contig_range().
7296 */
7297 int alloc_contig_range(unsigned long start, unsigned long end,
7298 unsigned migratetype)
7299 {
7300 unsigned long outer_start, outer_end;
7301 unsigned int order;
7302 int ret = 0;
7303
7304 struct compact_control cc = {
7305 .nr_migratepages = 0,
7306 .order = -1,
7307 .zone = page_zone(pfn_to_page(start)),
7308 .mode = MIGRATE_SYNC,
7309 .ignore_skip_hint = true,
7310 };
7311 INIT_LIST_HEAD(&cc.migratepages);
7312
7313 /*
7314 * What we do here is we mark all pageblocks in range as
7315 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7316 * have different sizes, and due to the way page allocator
7317 * work, we align the range to biggest of the two pages so
7318 * that page allocator won't try to merge buddies from
7319 * different pageblocks and change MIGRATE_ISOLATE to some
7320 * other migration type.
7321 *
7322 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7323 * migrate the pages from an unaligned range (ie. pages that
7324 * we are interested in). This will put all the pages in
7325 * range back to page allocator as MIGRATE_ISOLATE.
7326 *
7327 * When this is done, we take the pages in range from page
7328 * allocator removing them from the buddy system. This way
7329 * page allocator will never consider using them.
7330 *
7331 * This lets us mark the pageblocks back as
7332 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7333 * aligned range but not in the unaligned, original range are
7334 * put back to page allocator so that buddy can use them.
7335 */
7336
7337 ret = start_isolate_page_range(pfn_max_align_down(start),
7338 pfn_max_align_up(end), migratetype,
7339 false);
7340 if (ret)
7341 return ret;
7342
7343 /*
7344 * In case of -EBUSY, we'd like to know which page causes problem.
7345 * So, just fall through. We will check it in test_pages_isolated().
7346 */
7347 ret = __alloc_contig_migrate_range(&cc, start, end);
7348 if (ret && ret != -EBUSY)
7349 goto done;
7350
7351 /*
7352 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7353 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7354 * more, all pages in [start, end) are free in page allocator.
7355 * What we are going to do is to allocate all pages from
7356 * [start, end) (that is remove them from page allocator).
7357 *
7358 * The only problem is that pages at the beginning and at the
7359 * end of interesting range may be not aligned with pages that
7360 * page allocator holds, ie. they can be part of higher order
7361 * pages. Because of this, we reserve the bigger range and
7362 * once this is done free the pages we are not interested in.
7363 *
7364 * We don't have to hold zone->lock here because the pages are
7365 * isolated thus they won't get removed from buddy.
7366 */
7367
7368 lru_add_drain_all();
7369 drain_all_pages(cc.zone);
7370
7371 order = 0;
7372 outer_start = start;
7373 while (!PageBuddy(pfn_to_page(outer_start))) {
7374 if (++order >= MAX_ORDER) {
7375 outer_start = start;
7376 break;
7377 }
7378 outer_start &= ~0UL << order;
7379 }
7380
7381 if (outer_start != start) {
7382 order = page_order(pfn_to_page(outer_start));
7383
7384 /*
7385 * outer_start page could be small order buddy page and
7386 * it doesn't include start page. Adjust outer_start
7387 * in this case to report failed page properly
7388 * on tracepoint in test_pages_isolated()
7389 */
7390 if (outer_start + (1UL << order) <= start)
7391 outer_start = start;
7392 }
7393
7394 /* Make sure the range is really isolated. */
7395 if (test_pages_isolated(outer_start, end, false)) {
7396 pr_info("%s: [%lx, %lx) PFNs busy\n",
7397 __func__, outer_start, end);
7398 ret = -EBUSY;
7399 goto done;
7400 }
7401
7402 /* Grab isolated pages from freelists. */
7403 outer_end = isolate_freepages_range(&cc, outer_start, end);
7404 if (!outer_end) {
7405 ret = -EBUSY;
7406 goto done;
7407 }
7408
7409 /* Free head and tail (if any) */
7410 if (start != outer_start)
7411 free_contig_range(outer_start, start - outer_start);
7412 if (end != outer_end)
7413 free_contig_range(end, outer_end - end);
7414
7415 done:
7416 undo_isolate_page_range(pfn_max_align_down(start),
7417 pfn_max_align_up(end), migratetype);
7418 return ret;
7419 }
7420
7421 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7422 {
7423 unsigned int count = 0;
7424
7425 for (; nr_pages--; pfn++) {
7426 struct page *page = pfn_to_page(pfn);
7427
7428 count += page_count(page) != 1;
7429 __free_page(page);
7430 }
7431 WARN(count != 0, "%d pages are still in use!\n", count);
7432 }
7433 #endif
7434
7435 #ifdef CONFIG_MEMORY_HOTPLUG
7436 /*
7437 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7438 * page high values need to be recalulated.
7439 */
7440 void __meminit zone_pcp_update(struct zone *zone)
7441 {
7442 unsigned cpu;
7443 mutex_lock(&pcp_batch_high_lock);
7444 for_each_possible_cpu(cpu)
7445 pageset_set_high_and_batch(zone,
7446 per_cpu_ptr(zone->pageset, cpu));
7447 mutex_unlock(&pcp_batch_high_lock);
7448 }
7449 #endif
7450
7451 void zone_pcp_reset(struct zone *zone)
7452 {
7453 unsigned long flags;
7454 int cpu;
7455 struct per_cpu_pageset *pset;
7456
7457 /* avoid races with drain_pages() */
7458 local_irq_save(flags);
7459 if (zone->pageset != &boot_pageset) {
7460 for_each_online_cpu(cpu) {
7461 pset = per_cpu_ptr(zone->pageset, cpu);
7462 drain_zonestat(zone, pset);
7463 }
7464 free_percpu(zone->pageset);
7465 zone->pageset = &boot_pageset;
7466 }
7467 local_irq_restore(flags);
7468 }
7469
7470 #ifdef CONFIG_MEMORY_HOTREMOVE
7471 /*
7472 * All pages in the range must be in a single zone and isolated
7473 * before calling this.
7474 */
7475 void
7476 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7477 {
7478 struct page *page;
7479 struct zone *zone;
7480 unsigned int order, i;
7481 unsigned long pfn;
7482 unsigned long flags;
7483 /* find the first valid pfn */
7484 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7485 if (pfn_valid(pfn))
7486 break;
7487 if (pfn == end_pfn)
7488 return;
7489 zone = page_zone(pfn_to_page(pfn));
7490 spin_lock_irqsave(&zone->lock, flags);
7491 pfn = start_pfn;
7492 while (pfn < end_pfn) {
7493 if (!pfn_valid(pfn)) {
7494 pfn++;
7495 continue;
7496 }
7497 page = pfn_to_page(pfn);
7498 /*
7499 * The HWPoisoned page may be not in buddy system, and
7500 * page_count() is not 0.
7501 */
7502 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7503 pfn++;
7504 SetPageReserved(page);
7505 continue;
7506 }
7507
7508 BUG_ON(page_count(page));
7509 BUG_ON(!PageBuddy(page));
7510 order = page_order(page);
7511 #ifdef CONFIG_DEBUG_VM
7512 pr_info("remove from free list %lx %d %lx\n",
7513 pfn, 1 << order, end_pfn);
7514 #endif
7515 list_del(&page->lru);
7516 rmv_page_order(page);
7517 zone->free_area[order].nr_free--;
7518 for (i = 0; i < (1 << order); i++)
7519 SetPageReserved((page+i));
7520 pfn += (1 << order);
7521 }
7522 spin_unlock_irqrestore(&zone->lock, flags);
7523 }
7524 #endif
7525
7526 bool is_free_buddy_page(struct page *page)
7527 {
7528 struct zone *zone = page_zone(page);
7529 unsigned long pfn = page_to_pfn(page);
7530 unsigned long flags;
7531 unsigned int order;
7532
7533 spin_lock_irqsave(&zone->lock, flags);
7534 for (order = 0; order < MAX_ORDER; order++) {
7535 struct page *page_head = page - (pfn & ((1 << order) - 1));
7536
7537 if (PageBuddy(page_head) && page_order(page_head) >= order)
7538 break;
7539 }
7540 spin_unlock_irqrestore(&zone->lock, flags);
7541
7542 return order < MAX_ORDER;
7543 }